Science.gov

Sample records for agricultural model intercomparison

  1. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation research activity for historical period model intercomparison and future climate change conditions with participation of multiple crop and agricultural economic model groups around the...

  2. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Overview and Progress

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Hatfield, J.; Jones, J. W.; Ruane, A. C.

    2012-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is an international effort to assess the state of global agricultural modeling and to understand climate impacts on the agricultural sector. AgMIP connects the climate science, crop modeling, and agricultural economic modeling communities to generate probabilistic projections of current and future climate impacts. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. This presentation will describe the general approach of AgMIP and highlight its findings and activities. AgMIP crop model intercomparisons have been established for wheat (27 models participating), maize (25 models), and rice (15+ models), and are being established for sugarcane, soybean, sorghum/millet, and peanut. In coordination with these pilots, methodologies to utilize weather generators and downscaled climate simulations for agricultural applications are under development. An AgMIP global agricultural economics model intercomparison with participation of 11 international groups is ongoing, and a number of global biophysical models are currently being evaluated for future climate impacts on agricultural lands both as part of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) and for contribution to the IPCC Fifth Assessment Report (AR5). AgMIP is also organizing regional research efforts, and has already held workshops in South America, Sub-Saharan Africa, South Asia, Europe, and North America. Outcomes from these meetings have informed AgMIP activities, and 10 research teams from Sub-Saharan Africa and South Asia have been selected for project funding. Additional activities are planned for Australia and East Asia. As the AgMIP research community continues to work towards its goals, three key cross-cutting scientific challenges have emerged and are being

  3. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; Asseng, S.; Basso, B.; Ewert, F.; Wallach, D.; Baigorria, G.; Winter, J. M.

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with

  4. The Agriculture Model Intercomparison and Improvement Project (AgMIP) (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2010-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and world agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Historical period results will spur model improvement and interaction among major modeling groups, while future period results will lead directly to tests of adaptation and mitigation strategies across a range of scales. AgMIP will consist of a multi-scale impact assessment utilizing the latest methods for climate and agricultural scenario generation. Scenarios and modeling protocols will be distributed on the web, and multi-model results will be collated and analyzed to ensure the widest possible coverage of agricultural crops and regions. AgMIP will place regional changes in agricultural production in a global context that reflects new trading opportunities, imbalances, and shortages in world markets resulting from climate change and other driving forces for food supply. Such projections are essential inputs from the Vulnerability, Impacts, and Adaptation (VIA) research community to the Intergovernmental Panel on Climate Change Fifth Assessment (AR5), now underway, and the UN Framework Convention on Climate Change. They will set the context for local-scale vulnerability and adaptation studies, supply test scenarios for national-scale development of trade policy instruments, provide critical information on changing supply and demand for water resources, and elucidate interactive effects of climate change and land use change. AgMIP will not only provide crucially-needed new global estimates of how climate change will affect food supply and hunger in the

  5. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  6. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison

    PubMed Central

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Müller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A. M.; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W.

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies. PMID:24344314

  7. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison.

    PubMed

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C; Müller, Christoph; Arneth, Almut; Boote, Kenneth J; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A M; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W

    2014-03-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  8. Model Evaluation and Uncertainty in Agricultural Impacts Assessments: Results and Strategies from the Agricultural Model Intercomparison and Improvement Project (AgMIP)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Hatfield, J.; Jones, J. W.; Ruane, A. C.

    2012-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is an international effort to assess the state of global agricultural modeling and to understand climate impacts on the agricultural sector. AgMIP connects the climate science, crop modeling, and agricultural economic modeling communities to generate probabilistic projections of current and future climate impacts. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. This presentation will describe the general approach of AgMIP, highlight AgMIP efforts to evaluate climate, crop, and economic models, and discuss AgMIP uncertainty assessments. Model evaluation efforts will be outlined using examples from various facets of AgMIP, including climate scenario generation, the wheat crop model intercomparison, and the global agricultural economics model intercomparison being led in collaboration with the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Strategies developed to quantify uncertainty in each component of AgMIP, as well as the propagation of uncertainty through the climate-crop-economic modeling framework, will be detailed and preliminary uncertainty assessments that highlight crucial areas requiring improved models and data collection will be introduced.

  9. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Progress and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2011-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Recent progress and the current status of AgMIP will be presented, highlighting three areas of activity: preliminary results from crop pilot studies, outcomes from regional workshops, and emerging scientific challenges. AgMIP crop modeling efforts are being led by pilot studies, which have been established for wheat, maize, rice, and sugarcane. These crop-specific initiatives have proven instrumental in testing and contributing to AgMIP protocols, as well as creating preliminary results for aggregation and input to agricultural trade models. Regional workshops are being held to encourage collaborations and set research activities in motion for key agricultural areas. The first of these workshops was hosted by Embrapa and UNICAMP and held in Campinas, Brazil. Outcomes from this meeting have informed crop modeling research activities within South America, AgMIP protocols, and future regional workshops. Several scientific challenges have emerged and are currently being addressed by AgMIP researchers. Areas of particular interest include geospatial weather generation, ensemble methods for climate scenarios and crop models, spatial aggregation of field-scale yields to regional and global production, and characterization of future changes in climate variability.

  10. Introduction The Role of the Agricultural Model Intercomparison and Improvement Project

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Hillel, Daniel

    2015-01-01

    Climate impacts on agriculture are of increasing concern in both the scientific and policy communities because of the need to ensure food security for a growing population. A special challenge is posed by the changes in the frequency and intensity of heat-waves, droughts, and episodic rainstorms already underway in many parts of the world. Changes in production are directly linked to such variations in temperature and precipitation during the growing season, and often to offseason changes in weather affecting soil-water storage and availability to crops. This is not an isolated problem but one of both global and regional importance, because of impacts on the livelihoods of smallholder farmers as well as consequences for the world food trade system. This two-part set the Agricultural Model Intercomparison and Improvement Project (AgMIP): Integrated Crop and Economic Assessments is the first to be entirely devoted to AgMIP (www.agmip.org). AgMIP is a major international research program focused on climate change and agriculture. The goal of the two parts is to advance the field by providing detailed information on new simulation techniques and assessments being conducted by this program. It presents information about new methods of global and regional integrated assessment, results from agricultural regions, and adaptation strategies for maintaining food security under changing climate conditions.

  11. The Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Jones, James W.; Hatfield, Jerry L.; Antle, John M.; Ruane, Alexander C.; Mutter, Carolyn Z.

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.

  12. The Agricultural Model Intercomparison and Improvement Project (AgMIP) Town Hall

    NASA Technical Reports Server (NTRS)

    Ruane, Alex; Rosenzweig, Cynthia; Kyle, Page; Basso, Bruno; Winter, Jonathan; Asseng, Senthold

    2015-01-01

    AgMIP (www.agmip.org) is an international community of climate, crop, livestock, economics, and IT experts working to further the development and application of multi-model, multi-scale, multi-disciplinary agricultural models that can inform policy and decision makers around the world. This meeting will engage the AGU community by providing a brief overview of AgMIP, in particular its new plans for a Coordinated Global and Regional Assessment of climate change impacts on agriculture and food security for AR6. This Town Hall will help identify opportunities for participants to become involved in AgMIP and its 30+ activities.

  13. Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMIP)

    NASA Astrophysics Data System (ADS)

    Xia, Lili; Robock, Alan; Cole, Jason; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Singh, Balwinder; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2014-07-01

    Geoengineering via solar radiation management could affect agricultural productivity due to changes in temperature, precipitation, and solar radiation. To study rice and maize production changes in China, we used results from 10 climate models participating in the Geoengineering Model Intercomparison Project (GeoMIP) G2 scenario to force the Decision Support System for Agrotechnology Transfer (DSSAT) crop model. G2 prescribes an insolation reduction to balance a 1% a-1 increase in CO2 concentration (1pctCO2) for 50 years. We first evaluated the DSSAT model using 30 years (1978-2007) of daily observed weather records and agriculture practices for 25 major agriculture provinces in China and compared the results to observations of yield. We then created three sets of climate forcing for 42 locations in China for DSSAT from each climate model experiment: (1) 1pctCO2, (2) G2, and (3) G2 with constant CO2 concentration (409 ppm) and compared the resulting agricultural responses. In the DSSAT simulations: (1) Without changing management practices, the combined effect of simulated climate changes due to geoengineering and CO2 fertilization during the last 15 years of solar reduction would change rice production in China by -3.0 ± 4.0 megaton (Mt) (2.4 ± 4.0%) as compared with 1pctCO2 and increase Chinese maize production by 18.1 ± 6.0 Mt (13.9 ± 5.9%). (2) The termination of geoengineering shows negligible impacts on rice production but a 19.6 Mt (11.9%) reduction of maize production as compared to the last 15 years of geoengineering. (3) The CO2 fertilization effect compensates for the deleterious impacts of changes in temperature, precipitation, and solar radiation due to geoengineering on rice production, increasing rice production by 8.6 Mt. The elevated CO2 concentration enhances maize production in G2, contributing 7.7 Mt (42.4%) to the total increase. Using the DSSAT crop model, virtually all of the climate models agree on the sign of the responses, even though

  14. Climate and Agriculture: Model Inter-Comparison for Evaluating the Uncertainties in Climate Change Impact Assessment

    NASA Astrophysics Data System (ADS)

    Geethalakshmi, V.; Lakshmanan, A.; Bhuvaneswari, K.; Rajalakshmi, D.; Sekhar, N. U.; Anbhazhagan, R.; Gurusamy, L.

    2011-12-01

    Presence of large uncertainties in climate models (CM) and in future emission scenarios makes it difficult to predict the long-term climate changes at regional scales. Climate models do a reasonable job of capturing the large-scale aspects of current climate but still contain systematic model errors adding uncertainty to the future projections. Using CM outputs in impact models also cascade the uncertainty in climate change research. A study was undertaken with the objective of evaluating the uncertainty of climate change predictions by comparing the outputs from Regional Climate Models (RCM) and their resultant impact on rice productivity in Bhavani basin of Tamil Nadu, India. Current and future climate data were developed using RCMs viz., RegCM3 and PRECIS considering SRES A1B scenario for 130 years (1971-2100). The RCM outputs were used in DSSAT and EPIC models for assessing the impact of climate change. Results were compared to assess the magnitude of uncertainty in predicting the future climate and the resultant impacts. Comparison of predicted current climate with observed data indicated that RegCM3 under estimates maximum temperature by 1.8 °C while, PRECIS over estimates by 1.1°C over 40 years (1971 - 2010). The minimum temperature was under estimated by both the models, but with varying magnitude (3.8 °C for RegCM3 and 1 °C for PRECIS). RegCM3 over predicted rainfall (14 %), in contrast, PRECIS underpredicted (30.9 %) the same. Future climate projections indicated gradual increase in maximum and minimum temperatures with progress of time. Increase of maximum and minimum temperatures in PRECIS was 3.7oC and 4.2oC respectively and in RegCM3, it was 3.1oC and 3.7oC by 2100. No clear trend could be observed for rainfall other than increase in the quantum compared to current rainfall. Rice yield simulated over Bhavani basin for current and future climate by DSSAT, without CO2 fertilization effect, indicated reduction of 356 and 217 Kg ha-1decade-1 for

  15. An intercomparison of models used to simulate the short-range atmospheric dispersion of agricultural ammonia emissions

    EPA Science Inventory

    Ammonia emitted into the atmosphere from agricultural sources can have an impact on nearby sensitive ecosystems either through elevated ambient concentrations or dry/wet deposition to vegetation and soil surfaces. Short-range atmospheric dispersion models are often used to assess...

  16. Models and Measurements Intercomparison 2

    NASA Technical Reports Server (NTRS)

    Park, Jae H. (Editor); Ko, Malcolm K. W. (Editor); Jackman, Charles H. (Editor); Plumb, R. Alan (Editor); Kaye, Jack A. (Editor); Sage, Karen H. (Editor)

    1999-01-01

    Models and Measurement Intercomparison II (MM II) summarizes the intercomparison of results from model simulations and observations of stratospheric species. Representatives from twenty-three modeling groups using twenty-nine models participated in these MM II exercises between 1996 and 1999. Twelve of the models were two- dimensional zonal-mean models while seventeen were three-dimensional models. This was an international effort as seven were from outside the United States. Six transport experiments and five chemistry experiments were designed for various models. Models participating in the transport experiments performed simulations of chemically inert tracers providing diagnostics for transport. The chemistry experiments involved simulating the distributions of chemically active trace cases including ozone. The model run conditions for dynamics and chemistry were prescribed in order to minimize the factors that caused differences in the models. The report includes a critical review of the results by the participants and a discussion of the causes of differences between modeled and measured results as well as between results from different models, A sizable effort went into preparation of the database of the observations. This included a new climatology for ozone. The report should help in evaluating the results from various predictive models for assessing humankind perturbations of the stratosphere.

  17. Inter-comparison of subglacial hydrological models

    NASA Astrophysics Data System (ADS)

    de Fleurian, Basile; Werder, Mauro

    2016-04-01

    The recent emergence of a number of subglacial hydrological models allows us to obtain theoretical insights on basal processes; for instance on the coupling between water pressure and the sliding of glaciers. In ice-flow models, it is relatively clear what the simulated physics ought to be. Conversely, the physical processes incorporated into subglacial hydrology models are diverse as it is yet unclear which ones are of relevance for a particular setting. An inter-comparison of hydrology models will therefore need a somewhat different approach to the one used in the many ice-flow model inter-comparisons (EISMINT, ISMIP, etc.). Here, we present a set of experiments that will allow the comparison of the behavior of different hydrology models. The design of the benchmark aims at allowing the participation of a wide range of models based on different physical approaches. We aim at evaluating the models with a focus on the effective pressure which has the most impact on the dynamics of glaciers. The aim of this inter-comparison is to provide modellers with the necessary data to make an informed decision on which subglacial hydrology model to use for a particular study.

  18. Why Do Global Long-term Scenarios for Agriculture Differ? An overview of the AgMIP Global Economic Model Intercomparison

    SciTech Connect

    von Lampe, Martin; Willenbockel, Dirk; Ahammad, Helal; Blanc, Elodie; Cai, Yongxia; Calvin, Katherine V.; Fujimori, Shinichiro; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Lotze-Campen, Hermann; Mason d'Croz, Daniel; Nelson, Gerald; Sands, Ronald; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; van der Mensbrugghe, Dominique; van Meijl, Hans

    2013-12-02

    Recent studies assessing plausible futures for agricultural markets and global food security have had contradictory outcomes. Ten global economic models that produce long-term scenarios were asked to compare a reference scenario with alternate socio-economic, climate change and bioenergy scenarios using a common set of key drivers. Results suggest that, once general assumptions are harmonized, the variability in general trends across models declines, and that several common conclusions are possible. Nonetheless, differences in basic model parameters, sometimes hidden in the way market behavior is modeled, result in significant differences in the details. This holds for both the common reference scenario and for the various shocks applied. We conclude that agro-economic modelers aiming to inform the agricultural and development policy debate require better data and analysis on both economic behavior and biophysical drivers. More interdisciplinary modeling efforts are required to cross-fertilize analyses at different scales.

  19. The Pliocene Model Intercomparison Project - Phase 2

    NASA Astrophysics Data System (ADS)

    Haywood, Alan; Dowsett, Harry; Dolan, Aisling; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark; Hunter, Stephen; Lunt, Daniel; Pound, Matthew; Salzmann, Ulrich

    2016-04-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate, and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilised for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilise state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land/ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  20. The Pliocene Model Intercomparison Project - Phase 2

    NASA Astrophysics Data System (ADS)

    Haywood, Alan; Dowsett, Harry; Dolan, Aisling; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark; Lunt, Daniel; Salzmann, Ulrich

    2015-04-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a coordinated international climate modelling initiative designed to understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP operates under the umbrella of the Palaeoclimate Modelling Intercomparison Project (PMIP), which examines multiple intervals in Earth history, the consistency of model predictions in simulating these intervals and their ability to reproduce climate signals preserved in geological climate archives. PlioMIP was initiated in 2008 and is closely aligned with the U.S. Geological Survey project known as PRISM (Pliocene Research Interpretation and Synoptic Mapping). PRISM has spent more than 25 years reconstructing and understanding mid-Pliocene climate (~3.3 to 3 million years ago), as well producing boundary condition data sets suitable for use with numerical climate models. The first phase of the PlioMIP (PlioMIP1: 2008-2014) resulted in the most complete analysis to date of the Pliocene climate. This included examination of large-scale features of global climate, detailed analyses of Pliocene ocean circulation and monsoon behaviour, and the ability of models to reproduce regional climate patterns reconstructed from both marine and terrestrial archives. The lessons learned from PlioMIP1 facilitated a revision of data and modelling approaches towards the understanding of the mid Pliocene. PlioMIP2 has now been launched, and includes significant improvements to many of the Pliocene palaeogeograhic boundary conditions used for driving climate models (new land/sea mask, topography, bathymetry and ice sheet reconstructions). Within Phase 2 modelling groups have the option of using dynamic global vegetation models to predict (rather than prescribe) land cover, and a broader portfolio of model experiments has been proposed to support efforts to better understand the Pliocene, as well as to use the Pliocene as a means

  1. Intercomparison of hydrologic processes in global climate models

    NASA Technical Reports Server (NTRS)

    Lau, W. K.-M.; Sud, Y. C.; Kim, J.-H.

    1995-01-01

    In this report, we address the intercomparison of precipitation (P), evaporation (E), and surface hydrologic forcing (P-E) for 23 Atmospheric Model Intercomparison Project (AMIP) general circulation models (GCM's) including relevant observations, over a variety of spatial and temporal scales. The intercomparison includes global and hemispheric means, latitudinal profiles, selected area means for the tropics and extratropics, ocean and land, respectively. In addition, we have computed anomaly pattern correlations among models and observations for different seasons, harmonic analysis for annual and semiannual cycles, and rain-rate frequency distribution. We also compare the joint influence of temperature and precipitation on local climate using the Koeppen climate classification scheme.

  2. RESULTS FROM THE NORTH AMERICAN MERCURY MODEL INTER-COMPARISON STUDY (NAMMIS)

    EPA Science Inventory

    A North American Mercury Model Intercomparison Study (NAMMIS) has been conducted to build upon the findings from previous mercury model intercomparison in Europe. In the absence of mercury measurement networks sufficient for model evaluation, model developers continue to rely on...

  3. ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6

    NASA Technical Reports Server (NTRS)

    Nowicki, S.

    2015-01-01

    ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.

  4. Contribution towards statistical intercomparison of general circulation models

    SciTech Connect

    Sengupta, S.; Boyle, J.

    1995-06-01

    The Atmospheric Model Intercomparison Project (AMIP) of the World Climate Research Programme`s Working Group on Numerical Experimentation (WGNE) is an ambitious attempt to comprehensively intercompare atmospheric General Circulation Models (GCMs). The participants in AMIP simulate the global atmosphere for the decade 1979 to 1988 using, a common solar constant and Carbon Dioxide(CO{sub 2}) concentration and a common monthly averaged sea surface temperature (SST) and sea ice data set. In this work we attempt to present a statistical framework to address the difficult task of model intercomparison and verification.

  5. The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    DOE PAGES

    Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K. J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; et al

    2015-02-11

    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project consist of global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification ofmore » key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.« less

  6. The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    SciTech Connect

    Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K. J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; Izaurralde, R. C.; Mueller, N. D.; Ray, D. K.; Rosenzweig, C.; Ruane, A. C.; Sheffield, J.

    2015-02-11

    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project consist of global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.

  7. INTERCOMPARISON STUDY OF ATMOSPHERIC MERCURY MODELS: 1. COMPARISON OF MODELS WITH SHORT-TERM MEASUREMENTS

    EPA Science Inventory

    Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, one hemispheric and one global scale model participated in an atmospheric mercury modelling intercomparison study. Model-predicted concentrations in ambient air were comp...

  8. An Intercomparison of 10 Atmospheric Model Dynamical Cores

    NASA Astrophysics Data System (ADS)

    Jablonowski, C.; Lauritzen, P. H.; Taylor, M. A.; Nair, R. D.

    2008-12-01

    The poster introduces an idealized test suite for the dynamical cores of Atmospheric General Circulation Models (GCMs) and presents results of the broadest dynamical core intercomparison project ever conducted to date. The intercomparison project was held at the National Center for Atmospheric Research (NCAR), Boulder, in June 2008. It was part of the NCAR Advanced Study Program's Summer Colloquium that not only surveyed the latest developments in numerical methods for dynamical cores but also hosted 10 modeling groups, key lecturers and 40 students for a two-week time period. The participating models represent a wide spectrum of numerical approaches and computational grids like latitude-longitude grids, Gaussian, icosahedral and cubed-sphere meshes. The comparison reveals new insights into the characteristics of the model simulations which include the diffusion and conservation properties. These were assessed via six deterministic dynamical core test cases run by the student group. The test hierarchy is now suggested as the starting point for a standard dynamical core test suite and serves as a launch pad for an even broader community driven dynamical core intercomparison experiment.

  9. Climate Model Intercomparisons: Preparing for the Next Phase

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; Moss, Richard; Taylor, Karl E.; Eyring, Veronika; Stouffer, Ronald J.; Bony, Sandrine; Stevens, Bjorn

    2014-03-01

    Since 1995, the Coupled Model Intercomparison Project (CMIP) has coordinated climate model experiments involving multiple international modeling teams. Through CMIP, climate modelers and scientists from around the world have analyzed and compared state-of-the-art climate model simulations to gain insights into the processes, mechanisms, and consequences of climate variability and climate change. This has led to a better understanding of past, present, and future climate, and CMIP model experiments have routinely been the basis for future climate change assessments made by the Intergovernmental Panel on Climate Change (IPCC) [e.g., IPCC, 2013, and references therein].

  10. Two-Dimensional Intercomparison of Stratospheric Models

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H. (Editor); Seals, Robert K., Jr. (Editor); Prather, Michael J. (Editor)

    1989-01-01

    A detailed record is provided for the examination of fundamental differences in photochemistry and transport among atmospheric models. The results of 16 different modeling groups are presented for several model experiments.

  11. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

    NASA Astrophysics Data System (ADS)

    Pattyn, F.; Schoof, C.; Perichon, L.; Hindmarsh, R. C. A.; Bueler, E.; de Fleurian, B.; Durand, G.; Gagliardini, O.; Gladstone, R.; Goldberg, D.; Gudmundsson, G. H.; Lee, V.; Nick, F. M.; Payne, A. J.; Pollard, D.; Rybak, O.; Saito, F.; Vieli, A.

    2012-01-01

    Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing). Unique steady-state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including in fixed-grid models that generally perform poorly at coarse resolution. Fixed grid models with nested grid representations of the grounding line are able to generate accurate steady-state positions, but can be inaccurate over transients. Only one full Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full Stokes models remains to be determined in detail, especially during transients.

  12. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

    NASA Astrophysics Data System (ADS)

    Pattyn, F.; Schoof, C.; Perichon, L.; Hindmarsh, R. C. A.; Bueler, E.; de Fleurian, B.; Durand, G.; Gagliardini, O.; Gladstone, R.; Goldberg, D.; Gudmundsson, G. H.; Huybrechts, P.; Lee, V.; Nick, F. M.; Payne, A. J.; Pollard, D.; Rybak, O.; Saito, F.; Vieli, A.

    2012-05-01

    Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing). Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.

  13. Intercomparisons of AIRS Observations with MERRA Reanalysis and Climate Models

    NASA Astrophysics Data System (ADS)

    Hearty, T. J.; Vollmer, B.; Theobald, M.; Savtchenko, A. K.; Ding, F.; Esfandiari, A. E.; Ostrenga, D.; Bosilovich, M. G.; Fetzer, E.; Tian, B.; Fishbein, E.; Manning, E.; Yue, Q.

    2012-12-01

    We perform intercomparisons among AIRS (Atmospheric Infrared Sounder) observations, MERRA (Modern-Era Retrospective Analysis for Research and Applications) reanalysis, and CMIP5 models. One of the greatest challenges of using satellite observations from Low Earth Orbit (LEO) to evaluate climate models is to account for differences in the sampling. Climate models are sampled on a regular grid with equal increments in time and space while LEO satellite observations are not. Since AIRS is an infrared instrument its sampling is also affected by clouds. Version 6 of the AIRS processing algorithm will have improved accuracy and increased sampling over the Version 5 algorithm. We compare AIRS and MERRA data with identical sampling to assess how well the satellite observations and reanalysis Water Vapor, Temperature, and Clouds agree when they have the same sampling. Since Version 6 of the AIRS processing algorithms also have improved sampling we use MERRA sampled like AIRS to estimate the improvement in the sampling bias between AIRS Version 5 and Version 6 Results. While the uncertainties in the current generation of climate models are larger than the sampling uncertainties, as the models improve more careful intercomparisons will be necessary. Therefore we compare the differences between AIRS observations and CMIP5 Climate Models to assess the significance of the sampling uncertainties.

  14. Projecting future climate change: Implications of carbon cycle model intercomparisons

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.; Jain, Atul K.

    2003-06-01

    The range of responses of alternate detailed models for the ocean and biosphere components of the global carbon cycle, cataloged in model intercomparison studies, are simulated by a reduced form Earth system model employing a range of model parameters. The reduced form model, parameterized in this way, allows the integration of these components of the carbon cycle with an energy balance climate model with a prescribed range of climate sensitivity. We use this model to construct ranges of: (1) past carbon budgets given past CO2 concentrations, fossil carbon emissions, and temperature records, (2) future CO2 concentrations and temperature for given emission scenarios, and (3) CO2 emissions and temperature for given trajectories of future CO2 concentrations leading to constant levels within the next several centuries. Carbon cycle is an additional contributor to uncertainty in climate projections that is calculated to expand the range of projected global temperature beyond that reported in the 2001 Intergovernmental Panel on Climate Change assessment.

  15. IPRT polarized radiative transfer model intercomparison project - Phase A

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Korkin, Sergey; Ota, Yoshifumi; Labonnote, Laurent C.; Lyapustin, Alexei; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2015-10-01

    The polarization state of electromagnetic radiation scattered by atmospheric particles such as aerosols, cloud droplets, or ice crystals contains much more information about the optical and microphysical properties than the total intensity alone. For this reason an increasing number of polarimetric observations are performed from space, from the ground and from aircraft. Polarized radiative transfer models are required to interpret and analyse these measurements and to develop retrieval algorithms exploiting polarimetric observations. In the last years a large number of new codes have been developed, mostly for specific applications. Benchmark results are available for specific cases, but not for more sophisticated scenarios including polarized surface reflection and multi-layer atmospheres. The International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to fill this gap. This paper presents the results of the first phase A of the IPRT project which includes ten test cases, from simple setups with only one layer and Rayleigh scattering to rather sophisticated setups with a cloud embedded in a standard atmosphere above an ocean surface. All scenarios in the first phase A of the intercomparison project are for a one-dimensional plane-parallel model geometry. The commonly established benchmark results are available at the IPRT website.

  16. ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6

    NASA Astrophysics Data System (ADS)

    Nowicki, Sophie; Payne, Tony; Larour, Eric; Abe Ouchi, Ayako; Goelzer, Heiko; Gregory, Jonathan; Lipscomb, William; Seroussi, Helene; Shepherd, Andrew

    2015-04-01

    The sea level projections made by the glaciological community as part of the Intergovernmental Panel on Climate Change (IPCC) process have often been out of phase with the projections considered by the wider Coupled Model Intercomparison Project (CMIP) community. For instance in AR5, the ice2sea and SeaRISE (Sea-level Response to Ice Sheet Evolution) ice sheet projects predominantly worked with AR4 scenarios, while the CMIP5 community used new future scenarios. As the next phase of CMIP is being designed (CMIP6), an effort for ice sheet models to be better integrated in the CMIP6 initiative has been proposed to the CMIP panel. We present the framework for the new effort, ISMIP6, the Ice Sheet Model Intercomparison Project for CMIP6. The primary goal of ISMIP6 is to improve projections of sea level rise via improved projections of the evolution of the Greenland and Antarctic ice sheets under a changing climate, along with a quantification of associated uncertainties (including uncertainty in both climate forcing and ice-sheet response). This goal requires an evaluation of AOGCM climate over and surrounding the ice sheets; analysis of simulated ice-sheet response from standalone models forced "offline" with CMIP AOGCM outputs and, where possible, with coupled ice sheet-AOGCM models; and experiments with standalone ice sheet models targeted at exploring the uncertainty associated with ice sheets physics, dynamics and numerical implementation. A secondary goal is to investigate the role of feedbacks between ice sheets and climate in order to gain insight into the impact of increased mass loss from the ice sheets on regional and global sea level, and of the implied ocean freshening on the coupled ocean-atmosphere circulation. These goals map into both Cryosphere and Sea-Level Rise Grand Challenges relevant to Climate and Cryosphere (CliC) and the World Climate Research Program (WCRP).

  17. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  18. Overview of the Coupled Model Intercomparison Project (CMIP)

    SciTech Connect

    Meehl, G A; Covey, C; McAvaney, B; Latif, M; Stouffer, R J

    2004-08-05

    The Coupled Model Intercomparison Project (CMIP) is designed to allow study and intercomparison of multi-model simulations of present-day and future climate. The latter are represented by idealized forcing of compounded 1% per year CO2 increase to the time of CO2 doubling near year 70 in simulations with global coupled models that contain, typically, components representing atmosphere, ocean, sea ice and land surface. Results from CMIP diagnostic subprojects were presented at the Second CMIP Workshop held at the Max Planck Institute for Meteorology in Hamburg, Germany, in September, 2003. Significant progress in diagnosing and understanding results from global coupled models has been made since the First CMIP Workshop in Melbourne, Australia in 1998. For example, the issue of flux adjustment is slowly fading as more and more models obtain stable multi-century surface climates without them. El Nino variability, usually about half the observed amplitude in the previous generation of coupled models, is now more accurately simulated in the present generation of global coupled models, though there are still biases in simulating the patterns of maximum variability. Typical resolutions of atmospheric component models contained in coupled models is now usually around 2.5 degrees latitude-longitude, with the ocean components often having about twice the atmospheric model resolution, with even higher resolution in the equatorial tropics. Some new-generation coupled models have atmospheric model resolutions of around 1.5 degrees latitude-longitude. Modeling groups now routinely run the CMIP control and 1% CO2 simulations in addition to 20th and 21st century climate simulations with a variety of forcings (e.g. volcanoes, solar variability, anthropogenic sulfate aerosols, ozone, and greenhouse gases (GHGs), with the anthropogenic forcings for future climate as well). However, persistent systematic errors noted in previous generations of global coupled models still are present

  19. Uranium adsorption on weathered schist - Intercomparison of modeling approaches

    USGS Publications Warehouse

    Payne, T.E.; Davis, J.A.; Ochs, M.; Olin, M.; Tweed, C.J.

    2004-01-01

    Experimental data for uranium adsorption on a complex weathered rock were simulated by twelve modelling teams from eight countries using surface complexation (SC) models. This intercomparison was part of an international project to evaluate the present capabilities and limitations of SC models in representing sorption by geologic materials. The models were assessed in terms of their predictive ability, data requirements, number of optimised parameters, ability to simulate diverse chemical conditions and transferability to other substrates. A particular aim was to compare the generalised composite (GC) and component additivity (CA) approaches for modelling sorption by complex substrates. Both types of SC models showed a promising capability to simulate sorption data obtained across a range of chemical conditions. However, the models incorporated a wide variety of assumptions, particularly in terms of input parameters such as site densities and surface site types. Furthermore, the methods used to extrapolate the model simulations to different weathered rock samples collected at the same field site tended to be unsatisfactory. The outcome of this modelling exercise provides an overview of the present status of adsorption modelling in the context of radionuclide migration as practised in a number of countries worldwide.

  20. Three models intercomparison for Quantitative Precipitation Forecast over Calabria

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Bellecci, C.; Colacino, M.; Lavagnini, A.; Accadia, C.; Mariani, S.; Casaioli, M.

    2004-11-01

    In the framework of the National Project “Sviluppo di distretti industriali per le Osservazioni della Terra” (Development of Industrial Districts for Earth Observations) funded by MIUR (Ministero dell'Università e della Ricerca Scientifica --Italian Ministry of the University and Scientific Research) two operational mesoscale models were set-up for Calabria, the southernmost tip of the Italian peninsula. Models are RAMS (Regional Atmospheric Modeling System) and MM5 (Mesoscale Modeling 5) that are run every day at Crati scrl to produce weather forecast over Calabria (http://www.crati.it). This paper reports model intercomparison for Quantitative Precipitation Forecast evaluated for a 20 month period from 1th October 2000 to 31th May 2002. In addition to RAMS and MM5 outputs, QBOLAM rainfall fields are available for the period selected and included in the comparison. This model runs operationally at “Agenzia per la Protezione dell'Ambiente e per i Servizi Tecnici”. Forecasts are verified comparing models outputs with raingauge data recorded by the regional meteorological network, which has 75 raingauges. Large-scale forcing is the same for all models considered and differences are due to physical/numerical parameterizations and horizontal resolutions. QPFs show differences between models. Largest differences are for BIA compared to the other considered scores. Performances decrease with increasing forecast time for RAMS and MM5, whilst QBOLAM scores better for second day forecast.

  1. Climate Model Intercomparison at the Dynamics Level (Invited)

    NASA Astrophysics Data System (ADS)

    Tsonis, A.; Steinhaeuser, K.

    2013-12-01

    Until now, climate model intercomparison has focused primarily on annual and global averages of various quantities or on specific components, not on how well the general dynamics in the models compare to each other. In order to address how well models agree when it comes to dynamics they generate, we have adopted a new approach based on climate networks. We have considered 28 pre-industrial control runs as well as 70 20th-century forced runs from 23 climate models and have constructed networks for the 500 hPa, surface air temperature (SAT), sea level pressure (SLP), and precipitation fields for each run. Then we employed a widely used algorithm to derive the community structure in these networks. Communities separate 'nodes' in the network sharing similar dynamics. It has been shown that these communities, or sub-systems, in the climate system are associated with major climate modes and physics of the atmosphere. Once the community structure for all runs is derived, we use a pattern matching statistic to obtain a measure of how well any two models agree with each other. We find that, with possibly the exception of the 500 hPa field, the consistency for the SAT, SLP, and precipitation fields is questionable. More importantly, none of the models comes close to the community structure of the actual observations (reality). This is a significant finding especially for the temperature and precipitation fields, as these are the fields widely used to produce future projections in time and in space.

  2. A climate model intercomparison at the dynamics level

    NASA Astrophysics Data System (ADS)

    Tsonis, A.; Steinhaeuser, K.

    2012-12-01

    Up to now climate model intercomparison has focused on annual and global averages of various quantities or on specific components, not on how well the general dynamics in the models compare to each other. In order to address how well the models agree when it comes to dynamics they generate, we have adopted a new approach based on climate networks. We have considered 57 20th-century control runs from 17 climate models and have constructed networks for the 500 hPa, surface air temperature (SAT), and sea level pressure (SLP) fields for each run. Then we used two different algorithms to derive the community structure in these networks. Communities separate "nodes' in the network sharing similar dynamics. It has been shown that these communities, or sub-systems, in the climate system are associated with major climate modes and physics of the atmosphere 1-3. Once the community structure for all runs is derived we use a pattern matching statistic to obtain a measure of how well any two models agree with each other. We find that with possibly the exception of the 500 hPa filed, the consistency for the SLP and especially SAT fields is questionable. More importantly none of the models comes close to the community structure of the actual observations (reality). This is a significant finding especially for the temperature field, as this is the field predicted to produce temperature projections in time and in space.

  3. A climate model intercomparison at the dynamics level

    NASA Astrophysics Data System (ADS)

    Tsonis, Anastasios; Steinhaeuser, Karsten

    2013-04-01

    Until now, climate model intercomparison has focused primarily on annual and global averages of various quantities or on specific components, not on how well the general dynamics in the models compare to each other. In order to address how well models agree when it comes to dynamics they generate, we have adopted a new approach based on climate networks. We have considered 28 pre-industrial control runs as well as 70 20th-century forced runs from 23 climate models and have constructed networks for the 500 hPa, surface air temperature (SAT), sea level pressure (SLP), and precipitation fields for each run. Then we employed a widely used algorithm to derive the community structure in these networks. Communities separate "nodes" in the network sharing similar dynamics. It has been shown that these communities, or sub-systems, in the climate system are associated with major climate modes and physics of the atmosphere. Once the community structure for all runs is derived, we use a pattern matching statistic to obtain a measure of how well any two models agree with each other. We find that, with possibly the exception of the 500 hPa field, the consistency for the SAT, SLP, and precipitation fields is questionable. More importantly, none of the models comes close to the community structure of the actual observations (reality). This is a significant finding especially for the temperature and precipitation fields, as these are the fields widely used to produce future projections in time and in space.

  4. The Program for Climate Model Diagnosis and Intercomparison Diagnostic System: Implementing a New Strategy Beyond the Atmospheric Model Intercomparison Project (AMIP)

    SciTech Connect

    Potter, G.L.

    1999-10-18

    The Program for Climate Model Diagnosis and Intercomparison (PCMDI) was established in 1989 at the Lawrence Livermore National Laboratory (LLNL) with the principal mission to develop improved methods and tools for the diagnosis, validation and intercomparison of global climate models. The goal of the process is to eventually improve simulation of the regional climate effects of increasing greenhouse gases. In addition to comparing models, PCMDI continues to develop a modeling infrastructure by creating diagnostics that will be shared throughout the research community. PCMDI's early model intercomparison strategy was to solicit a few models that could be run for a specified period with prescribed sea-surface temperatures after being imported and adapted to the LLNL unclassified computer systems. Because of the enormous time required to prepare each model, the experiment was reversed and the modeling groups were asked to perform the controlled simulations themselves. In order to reach out to the entire atmospheric modeling community, the Working Group for Numerical Experimentation (WGNE) became the parent organization and the project was named the Atmospheric Model Intercomparison Project (AMIP). Eventually, more than thirty atmospheric modeling groups joined the effort to compare their model output (Gates et al. 1999). The general results showed that the models vary widely for some variables and are tightly clustered for other variables. Fig. 1 characterizes the wide array of results obtained in AMIP and underscores the need to better understand differences among models and between models and observations. As a result of AMIP, model development and improvement strategy has incurred a permanent change. Modeling groups routinely perform AMIP-like simulations as they improve their models and create new versions containing substantial modifications to parameterizations. Other model intercomparison projects (MIPs) have since sprung up, most notably, the Coupled Model

  5. Arctic Pacific water dynamics from model intercomparison and observations

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Karcher, Michael; Proshutinsky, Andrey; Gerdes, Ruediger; Bacon, Sheldon; Nurser, George; Coward, Andrew; Golubeva, Elena; Kauker, Frank; Nguyen, An; Platov, Gennady; Wadley, Martin; Watanabe, Eiji

    2016-04-01

    Pacific Water imports heat and fresh water from the northern Pacific in the Arctic Ocean, impacting upper ocean mixing and dynamics, as well as Arctic sea ice. Pathways and the circulation of PW in the central Arctic Ocean are not well known due to the lack of observations. This study uses an ensemble of the sea ice-ocean models integrated with passive tracer released in the Bering Strait to simulate Pacific water spread. We investigate different branches and modes of Pacific water and analyse changes in the water mass distribution through the Arctic Ocean due to changes in the wind and ocean potential vorticity. We focus on seasonal cycle and inter-decadal variations. The first results have been published recently (Aksenov et al., 2015) as a part of Forum for Arctic Ocean Modeling and Observational Synthesis (FAMOS) project. In the present study we extend the examination further and discuss the role of the Pacific water variability in the recent changes in the Arctic heat and fresh water storage. We present insights in the projected future changes to Pacific water dynamics. Reference Aksenov, Y., et al. (2015), Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments, J. Geophys. Res. Oceans, 120, doi:10.1002/2015JC011299.

  6. ISI-MIP: The Inter-Sectoral Impact Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Huber, V.; Dahlemann, S.; Frieler, K.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.

    2013-12-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. The unique cross-sectoral scope of the project provides the opportunity to study cascading effects of impacts in interacting sectors and to identify regional 'hot spots' where multiple sectors experience extreme impacts. Another emphasis lies on the development of novel metrics to describe societal impacts of a warmer climate. We briefly outline the methodological framework, and then present selected results of the first, fast-tracked phase of ISI-MIP. The fast track brought together 35 global impact models internationally, spanning five sectors across human society and the natural world (agriculture, water, natural ecosystems, health and coastal infrastructure), and using the latest generation of global climate simulations (RCP projections from the CMIP5 archive) and socioeconomic drivers provided within the SSP process. We also introduce the second phase of the project, which will enlarge the scope of ISI-MIP by encompassing further impact sectors (e.g., forestry, fisheries, permafrost) and regional modeling approaches. The focus for the next round of simulations will be the validation and improvement of models based on historical observations and the analysis of variability and extreme events. Last but not least, we discuss the longer-term objective of ISI-MIP to initiate a coordinated, ongoing impact assessment process, driven by the entire impact community and in parallel with well-established climate model intercomparisons (CMIP).

  7. A climate model intercomparison at the dynamics level

    NASA Astrophysics Data System (ADS)

    Steinhaeuser, Karsten; Tsonis, Anastasios A.

    2014-03-01

    Until now, climate model intercomparison has focused primarily on annual and global averages of various quantities or on specific components, not on how well the general dynamics in the models compare to each other. In order to address how well models agree when it comes to the dynamics they generate, we have adopted a new approach based on climate networks. We have considered 28 pre-industrial control runs as well as 70 20th-century forced runs from 23 climate models and have constructed networks for the 500 hPa, surface air temperature (SAT), sea level pressure (SLP), and precipitation fields for each run. We then employed a widely used algorithm to derive the community structure in these networks. Communities separate "nodes" in the network sharing similar dynamics. It has been shown that these communities, or sub-systems, in the climate system are associated with major climate modes and physics of the atmosphere (Tsonis AA, Swanson KL, Wang G, J Clim 21: 2990-3001 in 2008; Tsonis AA, Wang G, Swanson KL, Rodrigues F, da Fontura Costa L, Clim Dyn, 37: 933-940 in 2011; Steinhaeuser K, Ganguly AR, Chawla NV, Clim Dyn 39: 889-895 in 2012). Once the community structure for all runs is derived, we use a pattern matching statistic to obtain a measure of how well any two models agree with each other. We find that, with the possible exception of the 500 hPa field, consistency for the SAT, SLP, and precipitation fields is questionable. More importantly, none of the models comes close to the community structure of the actual observations (reality). This is a significant finding especially for the temperature and precipitation fields, as these are the fields widely used to produce future projections in time and in space.

  8. Global dust model intercomparison in AeroCom phase I

    SciTech Connect

    Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; Diehl, T.; Easter, R.; Fillmore, D.; Ghan, S.; Ginoux, P.; Grini, A.; Horowitz, L.; Koch, D.; Krol, M. C.; Landing, W.; Liu, X.; Mahowald, N.; Miller, R.; Morcrette, J. -J.; Myhre, G.; Penner, J.; Perlwitz, J.; Stier, P.; Takemura, T.; Zender, C. S.

    2011-08-01

    This study presents the results of a broad intercomparison of a total of 15 global aerosol models within the AeroCom project. Each model is compared to observations related to desert dust aerosols, their direct radiative effect, and their impact on the biogeochemical cycle, i.e., aerosol optical depth (AOD) and dust deposition. Additional comparisons to Angström exponent (AE), coarse mode AOD and dust surface concentrations are included to extend the assessment of model performance and to identify common biases present in models. These data comprise a benchmark dataset that is proposed for model inspection and future dust model development. There are large differences among the global models that simulate the dust cycle and its impact on climate. In general, models simulate the climatology of vertically integrated parameters (AOD and AE) within a factor of two whereas the total deposition and surface concentration are reproduced within a factor of 10. In addition, smaller mean normalized bias and root mean square errors are obtained for the climatology of AOD and AE than for total deposition and surface concentration. Characteristics of the datasets used and their uncertainties may influence these differences. Large uncertainties still exist with respect to the deposition fluxes in the southern oceans. Further measurements and model studies are necessary to assess the general model performance to reproduce dust deposition in ocean regions sensible to iron contributions. Models overestimate the wet deposition in regions dominated by dry deposition. They generally simulate more realistic surface concentration at stations downwind of the main sources than at remote ones. Most models simulate the gradient in AOD and AE between the different dusty regions. However the seasonality and magnitude of both variables is better simulated at African stations than Middle East ones. The models simulate the offshore transport of West Africa throughout the year but they

  9. Pliocene Model Intercomparison Project (PlioMIP): Experimental Design and Boundary Conditions (Experiment 2)

    NASA Technical Reports Server (NTRS)

    Haywood, A. M.; Dowsett, H. J.; Robinson, M. M.; Stoll, D. K.; Dolan, A. M.; Lunt, D. J.; Otto-Bliesner, B.; Chandler, M. A.

    2011-01-01

    The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere only climate models. The second (Experiment 2) utilizes fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.

  10. Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2)

    USGS Publications Warehouse

    Haywood, A.M.; Dowsett, H.J.; Robinson, M.M.; Stoll, D.K.; Dolan, A.M.; Lunt, D.J.; Otto-Bliesner, B.; Chandler, M.A.

    2011-01-01

    The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.

  11. The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models

    SciTech Connect

    Cederwall, R.T.; Rodriques, D.J.; Krueger, S.K.; Randall, D.A.

    1999-10-27

    The Single-Column Model (SCM) Working Group (WC) and the Cloud Working Group (CWG) in the Atmospheric Radiation Measurement (ARM) Program have begun a collaboration with the GEWEX Cloud System Study (GCSS) WGs. The forcing data sets derived from the special ARM radiosonde measurements made during the SCM Intensive Observation Periods (IOPs), the wealth of cloud and related data sets collected by the ARM Program, and the ARM infrastructure support of the SCM WG are of great value to GCSS. In return, GCSS brings the efforts of an international group of cloud system modelers to bear on ARM data sets and ARM-related scientific questions. The first major activity of the ARM-GCSS collaboration is a model intercomparison study involving SCMs and cloud system models (CSMs), also known as cloud-resolving or cloud-ensemble models. The SCM methodologies developed in the ARM Program have matured to the point where an intercomparison will help identify the strengths and weaknesses of various approaches. CSM simulations will bring much additional information about clouds to evaluate cloud parameterizations used in the SCMs. CSMs and SCMs have been compared successfully in previous GCSS intercomparison studies for tropical conditions. The ARM Southern Great Plains (SGP) site offers an opportunity for GCSS to test their models in continental, mid-latitude conditions. The Summer 1997 SCM IOP has been chosen since it provides a wide range of summertime weather events that will be a challenging test of these models.

  12. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework

    PubMed Central

    Warszawski, Lila; Frieler, Katja; Huber, Veronika; Piontek, Franziska; Serdeczny, Olivia; Schewe, Jacob

    2014-01-01

    The Inter-Sectoral Impact Model Intercomparison Project offers a framework to compare climate impact projections in different sectors and at different scales. Consistent climate and socio-economic input data provide the basis for a cross-sectoral integration of impact projections. The project is designed to enable quantitative synthesis of climate change impacts at different levels of global warming. This report briefly outlines the objectives and framework of the first, fast-tracked phase of Inter-Sectoral Impact Model Intercomparison Project, based on global impact models, and provides an overview of the participating models, input data, and scenario set-up. PMID:24344316

  13. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework.

    PubMed

    Warszawski, Lila; Frieler, Katja; Huber, Veronika; Piontek, Franziska; Serdeczny, Olivia; Schewe, Jacob

    2014-03-01

    The Inter-Sectoral Impact Model Intercomparison Project offers a framework to compare climate impact projections in different sectors and at different scales. Consistent climate and socio-economic input data provide the basis for a cross-sectoral integration of impact projections. The project is designed to enable quantitative synthesis of climate change impacts at different levels of global warming. This report briefly outlines the objectives and framework of the first, fast-tracked phase of Inter-Sectoral Impact Model Intercomparison Project, based on global impact models, and provides an overview of the participating models, input data, and scenario set-up.

  14. An Analysis of Simulated Wet Deposition of Mercury from the North American Mercury Model Intercomparison Study

    EPA Science Inventory

    A previous intercomparison of atmospheric mercury models in North America has been extended to compare simulated and observed wet deposition of mercury. Three regional-scale atmospheric mercury models were tested; CMAQ, REMSAD and TEAM. These models were each employed using thr...

  15. Estimating near-road pollutant dispersion: a model inter-comparison

    EPA Science Inventory

    A model inter-comparison study to assess the abilities of steady-state Gaussian dispersion models to capture near-road pollutant dispersion has been carried out with four models (AERMOD, run with both the area-source and volume-source options to represent roadways, CALINE, versio...

  16. Intercomparison of a 'Bottom-up' and 'Top-down' Modeling Paradigm for estimating carbon and latent heat fluxes over a variety of vegetative regimes across the U.S., Agricultural and Forest Meteorology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biophysical models intended for routine applications at a range of scales should attempt to balance the competing demands of generality and simplicity and be capable of realistically simulating the response of CO2 and energy fluxes to environmental and physiological forcings. At the same time they m...

  17. Evaluation of Intercomparisons of Four Different Types of Model Simulating TWP-ICE

    NASA Technical Reports Server (NTRS)

    Petch, Jon; Hill, Adrian; Davies, Laura; Fridlind, Ann; Jakob, Christian; Lin, Yanluan; Xie, Shaoecheng; Zhu, Ping

    2013-01-01

    Four model intercomparisons were run and evaluated using the TWP-ICE field campaign, each involving different types of atmospheric model. Here we highlight what can be learnt from having single-column model (SCM), cloud-resolving model (CRM), global atmosphere model (GAM) and limited-area model (LAM) intercomparisons all based around the same field campaign. We also make recommendations for anyone planning further large multi-model intercomparisons to ensure they are of maximum value to the model development community. CRMs tended to match observations better than other model types, although there were exceptions such as outgoing long-wave radiation. All SCMs grew large temperature and moisture biases and performed worse than other model types for many diagnostics. The GAMs produced a delayed and significantly reduced peak in domain-average rain rate when compared to the observations. While it was shown that this was in part due to the analysis used to drive these models, the LAMs were also driven by this analysis and did not have the problem to the same extent. Based on differences between the models with parametrized convection (SCMs and GAMs) and those without (CRMs and LAMs), we speculate that that having explicit convection helps to constrain liquid water whereas the ice contents are controlled more by the representation of the microphysics.

  18. The Program for climate Model diagnosis and Intercomparison: 20-th anniversary Symposium

    SciTech Connect

    Potter, Gerald L; Bader, David C; Riches, Michael; Bamzai, Anjuli; Joseph, Renu

    2011-01-05

    Twenty years ago, W. Lawrence (Larry) Gates approached the U.S. Department of Energy (DOE) Office of Energy Research (now the Office of Science) with a plan to coordinate the comparison and documentation of climate model differences. This effort would help improve our understanding of climate change through a systematic approach to model intercomparison. Early attempts at comparing results showed a surprisingly large range in control climate from such parameters as cloud cover, precipitation, and even atmospheric temperature. The DOE agreed to fund the effort at the Lawrence Livermore National Laboratory (LLNL), in part because of the existing computing environment and because of a preexisting atmospheric science group that contained a wide variety of expertise. The project was named the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and it has changed the international landscape of climate modeling over the past 20 years. In spring 2009 the DOE hosted a 1-day symposium to celebrate the twentieth anniversary of PCMDI and to honor its founder, Larry Gates. Through their personal experiences, the morning presenters painted an image of climate science in the 1970s and 1980s, that generated early support from the international community for model intercomparison, thereby bringing PCMDI into existence. Four talks covered Gates's early contributions to climate research at the University of California, Los Angeles (UCLA), the RAND Corporation, and Oregon State University through the founding of PCMDI to coordinate the Atmospheric Model Intercomparison Project (AMIP). The speakers were, in order of presentation, Warren Washington [National Center for Atmospheric Research (NCAR)], Kelly Redmond (Western Regional Climate Center), George Boer (Canadian Centre for Climate Modelling and Analysis), and Lennart Bengtsson [University of Reading, former director of the European Centre for Medium-Range Weather Forecasts (ECMWF)]. The afternoon session emphasized

  19. Model Intercomparison Study to Investigate a Dense Contaminant Plume in a Complex Hydrogeologic System

    SciTech Connect

    Williams, Mark D. ); Cole, Charles R. ); Foley, Michael G. ); Zinina, Galina A.; Zinin, Alexander I.; Vasil'Kova, Nelly A.; Samsonova, Lilia M.

    2001-12-01

    A joint Russian and U.S. model intercomparison study was undertaken for developing more realistic contaminant transport models of the Mayak Site, Southern Urals. The test problems were developed by the Russian Team based on their experience modeling contaminant migration near Lake Karachai. The intercomparison problems were designed to address lake and contaminant plume interactions, as well as river interactions and plume density effects. Different numerical codes were used. Overall there is good agreement between the results of both models. Features shown by both models include (1) the sinking of the plume below the lake, (2) the raising of the water table in the fresh water adjacent to the lake in response to the increased pressure from the dense plume, and (3) the formation of a second sinking plume in an area where evapotranspiration exceeded infiltration, thus increasing the solute concentrations above the source (i.e., lake) values.

  20. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Potter, G. L.; Blanchet, J. P.; Boer, G. J.; Del Genio, A. D.

    1990-01-01

    The present study provides an intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. This intercomparison uses sea surface temperature change as a surrogate for climate change. The interpretation of cloud-climate interactions is given special attention. A roughly threefold variation in one measure of global climate sensitivity is found among the 19 models. The important conclusion is that most of this variation is attributable to differences in the models' depiction of cloud feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as reliable climate predictors. It is further emphazied that cloud feedback is the consequence of all interacting physical and dynamical processes in a general circulation model. The result of these processes is to produce changes in temperature, moisture distribution, and clouds which are integrated into the radiative response termed cloud feedback.

  1. INTERCOMPARISON STUDY OF ATMOSPHERIC MERCURY MODELS: 2. MODELING RESULTS VS. LONG-TERM OBSERVATIONS AND COMPARISON OF COUNTRY ATMOSPHERIC BALANCES

    EPA Science Inventory

    Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, two hemispheric and one global scale model participated in the atmospheric Hg modelling intercomparison study. The models were compared between each other and with availa...

  2. The Southern Ocean in the Coupled Model Intercomparison Project phase 5

    PubMed Central

    Meijers, A. J. S.

    2014-01-01

    The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear. PMID:24891395

  3. New Results from the Geoengineering Model Intercomparison Project (GeoMIP)

    NASA Astrophysics Data System (ADS)

    Robock, A.; Kravitz, B.

    2013-12-01

    The Geoengineering Model Intercomparison Project (GeoMIP) was designed to determine robust climate system model responses to Solar Radiation Management (SRM). While mitigation (reducing greenhouse gases emissions) is the most effective way of reducing future climate change, SRM (the deliberate modification of incoming solar radiation) has been proposed as a means of temporarily alleviating some of the effects of global warming. For society to make informed decisions as to whether SRM should ever be implemented, information is needed on the benefits, risks, and side effects, and GeoMIP seeks to aid in that endeavor. GeoMIP has organized four standardized climate model simulations involving reduction of insolation or increased amounts of stratospheric sulfate aerosols to counteract increasing greenhouse gases. Thirteen comprehensive atmosphere-ocean general circulation models have participated in the project so far. GeoMIP is a 'CMIP Coordinated Experiment' as part of the Climate Model Intercomparison Project 5 (CMIP5) and has been endorsed by SPARC (Stratosphere-troposphere Processes And their Role in Climate). GeoMIP has held three international workshops and has produced a number of recent journal articles. GeoMIP has found that if increasing greenhouse gases could be counteracted with insolation reduction, the global average temperature could be kept constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform. The tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without SRM. If SRM were halted all at once, there would be rapid temperature and precipitation increases at 5-10 times the rates from gradual global warming. SRM combined with CO2 fertilization would have small impacts on rice production in China, but would increase maize production

  4. Multi-Model Combination techniques for Hydrological Forecasting: Application to Distributed Model Intercomparison Project Results

    SciTech Connect

    Ajami, N K; Duan, Q; Gao, X; Sorooshian, S

    2005-04-11

    This paper examines several multi-model combination techniques: the Simple Multi-model Average (SMA), the Multi-Model Super Ensemble (MMSE), Modified Multi-Model Super Ensemble (M3SE) and the Weighted Average Method (WAM). These model combination techniques were evaluated using the results from the Distributed Model Intercomparison Project (DMIP), an international project sponsored by the National Weather Service (NWS) Office of Hydrologic Development (OHD). All of the multi-model combination results were obtained using uncalibrated DMIP model outputs and were compared against the best uncalibrated as well as the best calibrated individual model results. The purpose of this study is to understand how different combination techniques affect the skill levels of the multi-model predictions. This study revealed that the multi-model predictions obtained from uncalibrated single model predictions are generally better than any single member model predictions, even the best calibrated single model predictions. Furthermore, more sophisticated multi-model combination techniques that incorporated bias correction steps work better than simple multi-model average predictions or multi-model predictions without bias correction.

  5. Multi-Model Combination Techniques for Hydrological Forecasting: Application to Distributed Model Intercomparison Project Results

    SciTech Connect

    Ajami, N; Duan, Q; Gao, X; Sorooshian, S

    2006-05-08

    This paper examines several multi-model combination techniques: the Simple Multimodel Average (SMA), the Multi-Model Super Ensemble (MMSE), Modified Multi-Model Super Ensemble (M3SE) and the Weighted Average Method (WAM). These model combination techniques were evaluated using the results from the Distributed Model Intercomparison Project (DMIP), an international project sponsored by the National Weather Service (NWS) Office of Hydrologic Development (OHD). All of the multi-model combination results were obtained using uncalibrated DMIP model outputs and were compared against the best uncalibrated as well as the best calibrated individual model results. The purpose of this study is to understand how different combination techniques affect the skill levels of the multi-model predictions. This study revealed that the multi-model predictions obtained from uncalibrated single model predictions are generally better than any single member model predictions, even the best calibrated single model predictions. Furthermore, more sophisticated multi-model combination techniques that incorporated bias correction steps work better than simple multi-model average predictions or multi-model predictions without bias correction.

  6. Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels

    NASA Technical Reports Server (NTRS)

    Garand, L.; Turner, D. S.; Larocque, M.; Bates, J.; Boukabara, S.; Brunel, P.; Chevallier, F.; Deblonde, G.; Engelen, R.; Atlas, Robert (Technical Monitor)

    2000-01-01

    The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: seven HIRS (High-resolution Infrared Sounder) and four AMSU (Advanced Microwave Sounding Unit) channels. Interest in this topic was evidenced by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances, but also Jacobians (of temperature, water vapor, and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging. In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However significant differences were noted among LBL models. Extending the intercomparison to the Jacobians proved very useful in detecting subtle and more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences. Recommendations for future intercomparisons are suggested.

  7. Clear-sky Atmospheric Radiative Transfer: A Model Intercomparison for Shortwave Irradiances

    NASA Astrophysics Data System (ADS)

    Wang, P.; Knap, W. H.; Munneke, P. Kuipers; Stammes, P.

    2009-03-01

    This study consists of an intercomparison of clear-sky shortwave irradiances calculated by the Doubling Adding model of KNMI (DAK) and the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS). The DAK and SMARTS models are run with identical input (state profiles, water vapour, ozone, aerosols, etc.) and the differences between the models are examined in terms of broadband shortwave irradiances as a function of solar zenith angle. The DAK and SMARTS models agree very well. For a pure Rayleigh atmosphere the differences in the irradiances are less than 5 W/m2. For cases with aerosols the differences of the irradiances are within 10 W/m2.

  8. Cloud-Resolving Model Intercomparison with the ARM Summer 1997 IOP Data

    SciTech Connect

    Xu, K-M; Johnson, D E; Tao, W-K; Krueger, S K; Khairoutdinov, M; Randall, D A; Donner, L J; Seman, C J; Petch, J C; Guichard, F; Cederwell, R T; Xie, S C; Yio, J J; Grabowski, W; Zhang, M-H

    2000-03-13

    The Atmospheric Radiation Measurement (ARM) Program's Single Column Model (SCM) working group conducted its intercomparison study of midlatitude summertime continental convection using the July 1995 Intensive Operational Period (IOP) data set (Ghan et al. 2000). Only one cloud-resolving model (CRM) participated in the study. On the other hand, several CRMs participated in the GEWEX (Global Energy and Water-cycle Experiment) Cloud System Study (GCSS) Working Group 4's intercomparison study of tropical deep convection (Krueger and Lazarus 1998; Redelsperger et al. 2000). Both groups decided to have a joint intercomparison project to maximize the resources and advance our understanding of midlatitude continental convection. This joint project compares the cloud-resolving and single-column simulations of summertime continental cumulus convection observed at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site during the ARM Summer 1997 IOP. This paper reports the findings and results of cloud-resolving simulations, while Cederwall et al. (2000) reports the SCM part of the project. Seven CRMs are participating in this project.

  9. Collaborative experiment on intercomparison of regional-scale hydrological models for climate impact assessment

    NASA Astrophysics Data System (ADS)

    Krysanova, Valentina; Hattermann, Fred

    2015-04-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) is a community-driven modelling effort bringing together impact modellers across sectors and scales to create more consistent and comprehensive projections of the impacts of climate change. This project is aimed in establishing a long-term, systematic, cross-sectoral impact model intercomparison process, including comparison of climate change impacts for multiple sectors using ensemble of climate scenarios and applying global and regional impact models. The project is coordinated by the Potsdam Institute for Climate Impact Research. An overview of this project and collaborative experiment related to the regional-scale water sector model intercomparison in ISI-MIP will be presented. The regional-scale water sector modelling includes eleven models applied to eleven large-scale river basins worldwide (not every model is applied to every of eleven basins). In total, 60-65 model applications will be done by several collaborating groups from different Institutions. The modelling tools include: ECOMAG, HBV, HBV-light, HYPE, LASCAM, LISFLOOD, mHM, SWAT, SWIM, VIC and WaterGAP. Eleven river basins chosen for the model application and intercomparison are: the Rhine and Tagus in Europe, the Niger and Blue Nile in Africa, the Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, the Upper Mississippi and Upper Amazon in America, and the Murray-Darling in Australia. Their drainage areas range between 67,490 km2 (Tagus) to 2,460,000 km2 (Lena). Data from global and regional datasets are used for the model setup and calibration. The model calibration and validation was done using the WATCH climate data for all cases, also checking the representation of high and low percentiles of river discharge. For most of the basins, also intermediate gauge stations were included in the calibration. The calibration and validation results, evaluated with the Nash and Sutcliffe efficiency (NSE) and percent bias (PBIAS), are mostly

  10. World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3): Multi-Model Dataset Archive at PCMDI (Program for Climate Model Diagnosis and Intercomparison)

    DOE Data Explorer

    In response to a proposed activity of the WCRP's Working Group on Coupled Modelling (WGCM),PCMDI volunteered to collect model output contributed by leading modeling centers around the world. Climate model output from simulations of the past, present and future climate was collected by PCMDI mostly during the years 2005 and 2006, and this archived data constitutes phase 3 of the Coupled Model Intercomparison Project (CMIP3). In part, the WGCM organized this activity to enable those outside the major modeling centers to perform research of relevance to climate scientists preparing the Fourth Asssessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The IPCC was established by the World Meteorological Organization and the United Nations Environmental Program to assess scientific information on climate change. The IPCC publishes reports that summarize the state of the science. This unprecedented collection of recent model output is officially known as the WCRP CMIP3 multi-model dataset. It is meant to serve IPCC's Working Group 1, which focuses on the physical climate system - atmosphere, land surface, ocean and sea ice - and the choice of variables archived at the PCMDI reflects this focus. A more comprehensive set of output for a given model may be available from the modeling center that produced it. As of November 2007, over 35 terabytes of data were in the archive and over 303 terabytes of data had been downloaded among the more than 1200 registered users. Over 250 journal articles, based at least in part on the dataset, have been published or have been accepted for peer-reviewed publication. Countries from which models have been gathered include Australia, Canada, China, France, Germany and Korea, Italy, Japan, Norway, Russia, Great Britain and the United States. Models, variables, and documentation are collected and stored. Check http://www-pcmdi.llnl.gov/ipcc/data_status_tables.htm to see at a glance the output that is available

  11. Catchment Prediction In Changing Environments (CAPICHE): A Model Inter-Comparison Experiment

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Nijzink, Remko; Pechlivanidis, Ilias; Capell, René; Wagener, Thorsten; Freer, Jim; Han, Dawei; Hrachowitz, Markus; Arheimer, Berit

    2016-04-01

    In order to improve societal resilience to the impacts of changes in climate and land-use, improved understanding of how catchments respond to changing forcing conditions is required. Such understanding may help better identify the range of effective interventions to improve overall integrated catchment management. For example, re-foresting catchment headwaters may reduce high flows, but also reduce low flows through increased evapotranspiration, creating a potential trade-off that needs to be reliably understood when considering benefits for both water supply and flood mitigation. Catchment modelling may be useful to inform such management decisions by simulating future forcing changes, so that we can assess the relative benefits of different catchment management scenarios. However, numerical models are known to be uncertain, and their ability to simulate future change is compromised by the fact that model parameters can show non-stationary and compensatory effects for different forcing conditions, notwithstanding errors and uncertainties in the future forcings themselves. In order to first identify, and second develop the most appropriate models to simulate catchments under environmental change, we argue that model inter-comparisons are required that move beyond a simple comparison of predictive performance alone, towards a controlled comparison of how different models simulate change. We present the development of a methodology for model inter-comparison under changing forcings to analyse, in this case, how models simulate landscape change, built upon time-varying sensitivity analysis of model parameters. First, for a given catchment, hydrologic signatures are calculated over consecutive windows covering the period of forcing change to analyse how the catchment responds hydrologically to change. Then, each model is calibrated to each window, and within each window, to each signature, which allows us to analyse the time-varying relationship between catchment

  12. Evaluation of Arctic Sea Ice Thickness Simulated by Arctic Ocean Model Intercomparison Project Models

    NASA Technical Reports Server (NTRS)

    Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa; Ashik, Igor; De Cuevas, Beverly

    2012-01-01

    Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.

  13. Experimental design for three interrelated Marine Ice-Sheet and Ocean Model Intercomparison Projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X. S.; Cornford, S. L.; Durand, G.; Galton-Fenzi, B. K.; Gladstone, R. M.; Gudmundsson, G. H.; Hattermann, T.; Holland, D. M.; Holland, D.; Holland, P. R.; Martin, D. F.; Mathiot, P.; Pattyn, F.; Seroussi, H.

    2015-11-01

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions in the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the ice shelf-ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for evaluation of the participating models.

  14. Large-Scale Features of Pliocene Climate: Results from the Pliocene Model Intercomparison Project

    NASA Technical Reports Server (NTRS)

    Haywood, A. M.; Hill, D.J.; Dolan, A. M.; Otto-Bliesner, B. L.; Bragg, F.; Chan, W.-L.; Chandler, M. A.; Contoux, C.; Dowsett, H. J.; Jost, A.; Kamae, Y.; Lohmann, G.; Lunt, D. J.; Abe-Ouchi, A.; Pickering, S. J.; Ramstein, G.; Rosenbloom, N. A.; Salzmann, U.; Sohl, L.; Stepanek, C.; Ueda, H.; Yan, Q.; Zhang, Z.

    2013-01-01

    Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied.Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-mode data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5.

  15. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  16. Variable-Resolution GCMs for Regional Climate Modeling: Stretched-Grid Model Intercomparison Project (SGMIP)

    NASA Astrophysics Data System (ADS)

    Fox-Rabinovitz, M.; Cote, J.; Dugas, B.; Deque, M.; McGregor, J.

    2006-05-01

    Variable-resolution GCMs using a global stretched grid (SG) with enhanced resolution over the region(s) of interest have proven to be an established approach to regional climate modeling providing an efficient regional down-scaling to mesoscales. This approach has been used since the early-mid 90s by the French, U.S., Canadian, Australian and other climate modeling groups along with the widely-used nested-grid approach. The important advantages of SG-GCMs are that they do not require any lateral boundary conditions/forcing and are free of the associated undesirable computational problems. SG-GCMs provide self-consistent interactions between global and regional scales, while a high quality of global circulation is preserved. The international SGMIP-1 (Stretched-Grid Model Intercomparison Project, phase-1), using SG-GCMs developed at the major centers/groups in Australia, Canada, France, and the U.S., has been successfully conducted in 2002-2005. The results of the 12-year (1987-1998) climate simulations for a major part of North America are available at the SGMIP web site: http://essic.umd.edu/~foxrab/sgmip.html, and are described in [1]. The multi-model SGMIP-1 regional climate simulations were conducted with enhanced 0.45 - 0.5 degree regional resolution for SG-GCMs, with the same or a similar number of global grid points as in a 1 x 1 degree global grid. The SGMIP-1 SG-GCM simulations were analyzed in terms of studying the impact of high regional resolution on efficient downscaling to realistic mesoscales and regional climate variability. We focused mostly on studying the quality of the multi-model ensemble results. The SGMIP-1 multi-model ensemble results for the region compare well with reanalysis and observations, in terms of spatial and temporal diagnostics. The next SGMIP phase, SGMIP-2 (phase-2), includes comparisons of high resolution stretched and uniform grid GCMs. These SGMIP-2 experiments provide the possibility for a comprehensive analysis of enhanced

  17. GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project

    NASA Astrophysics Data System (ADS)

    Zhou, Tianjun; Turner, Andrew G.; Kinter, James L.; Wang, Bin; Qian, Yun; Chen, Xiaolong; Wu, Bo; Wang, Bin; Liu, Bo; Zou, Liwei; He, Bian

    2016-10-01

    The Global Monsoons Model Inter-comparison Project (GMMIP) has been endorsed by the panel of Coupled Model Inter-comparison Project (CMIP) as one of the participating model inter-comparison projects (MIPs) in the sixth phase of CMIP (CMIP6). The focus of GMMIP is on monsoon climatology, variability, prediction and projection, which is relevant to four of the "Grand Challenges" proposed by the World Climate Research Programme. At present, 21 international modeling groups are committed to joining GMMIP. This overview paper introduces the motivation behind GMMIP and the scientific questions it intends to answer. Three tiers of experiments, of decreasing priority, are designed to examine (a) model skill in simulating the climatology and interannual-to-multidecadal variability of global monsoons forced by the sea surface temperature during historical climate period; (b) the roles of the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation in driving variations of the global and regional monsoons; and (c) the effects of large orographic terrain on the establishment of the monsoons. The outputs of the CMIP6 Diagnostic, Evaluation and Characterization of Klima experiments (DECK), "historical" simulation and endorsed MIPs will also be used in the diagnostic analysis of GMMIP to give a comprehensive understanding of the roles played by different external forcings, potential improvements in the simulation of monsoon rainfall at high resolution and reproducibility at decadal timescales. The implementation of GMMIP will improve our understanding of the fundamental physics of changes in the global and regional monsoons over the past 140 years and ultimately benefit monsoons prediction and projection in the current century.

  18. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    DOE PAGES

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Kravitz, Benjamin S.; Lamarque, J. F.; Pitari, G.; English, J. M.

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annualmore » tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.« less

  19. Inter-comparison of time series models of lake levels predicted by several modeling strategies

    NASA Astrophysics Data System (ADS)

    Khatibi, R.; Ghorbani, M. A.; Naghipour, L.; Jothiprakash, V.; Fathima, T. A.; Fazelifard, M. H.

    2014-04-01

    Five modeling strategies are employed to analyze water level time series of six lakes with different physical characteristics such as shape, size, altitude and range of variations. The models comprise chaos theory, Auto-Regressive Integrated Moving Average (ARIMA) - treated for seasonality and hence SARIMA, Artificial Neural Networks (ANN), Gene Expression Programming (GEP) and Multiple Linear Regression (MLR). Each is formulated on a different premise with different underlying assumptions. Chaos theory is elaborated in a greater detail as it is customary to identify the existence of chaotic signals by a number of techniques (e.g. average mutual information and false nearest neighbors) and future values are predicted using the Nonlinear Local Prediction (NLP) technique. This paper takes a critical view of past inter-comparison studies seeking a superior performance, against which it is reported that (i) the performances of all five modeling strategies vary from good to poor, hampering the recommendation of a clear-cut predictive model; (ii) the performances of the datasets of two cases are consistently better with all five modeling strategies; (iii) in other cases, their performances are poor but the results can still be fit-for-purpose; (iv) the simultaneous good performances of NLP and SARIMA pull their underlying assumptions to different ends, which cannot be reconciled. A number of arguments are presented including the culture of pluralism, according to which the various modeling strategies facilitate an insight into the data from different vantages.

  20. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    SciTech Connect

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Kravitz, Benjamin S.; Lamarque, J. F.; Pitari, G.; English, J. M.

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.

  1. Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty.

    PubMed

    Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul

    2012-06-01

    Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion.

  2. Airborne spread of foot-and-mouth disease - model intercomparison

    SciTech Connect

    Gloster, J; Jones, A; Redington, A; Burgin, L; Sorensen, J H; Turner, R; Dillon, M; Hullinger, P; Simpson, M; Astrup, P; Garner, G; Stewart, P; D'Amours, R; Sellers, R; Paton, D

    2008-09-04

    Foot-and-mouth disease is a highly infectious vesicular disease of cloven-hoofed animals caused by foot-and-mouth disease virus. It spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route - with the relative importance of each mechanism depending on the particular outbreak characteristics. Over the years a number of workers have developed or adapted atmospheric dispersion models to assess the risk of foot-and-mouth disease virus spread through the air. Six of these models were compared at a workshop hosted by the Institute for Animal Health/Met Office during 2008. A number of key issues emerged from the workshop and subsequent modelling work: (1) in general all of the models predicted similar directions for 'at risk' livestock with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events is highly important, especially if the meteorological conditions vary substantially during the virus emission period; and (3) differences in assumptions made about virus release, environmental fate, and subsequent infection can substantially modify the size and location of the downwind risk area. Close relationships have now been established between participants, which in the event of an outbreak of disease could be readily activated to supply advice or modelling support.

  3. Intercomparison of garnet barometers and implications for garnet mixing models

    SciTech Connect

    Anovitz, L.M.; Essene, E.J.

    1985-01-01

    Several well-calibrated barometers are available in the system Ca-Fe-Ti-Al-Si-O, including: Alm+3Ru-3Ilm+Sil+2Qtz (GRAIL), 2Alm+Grreverse arrow6Ru=6Ilm+3An+3Qtz (GRIPS); 2Alm+Gr=3Fa+3An (FAG); 3AnGr+Ky+Qtz (GASP); 2Fs-Fa+Qtz (FFQ); and Gr+Qtz=An+2Wo (WAGS). GRIPS, GRAIL and GASP form a linearly dependent set such that any two should yield the third given an a/X model for the grossular/almandine solid-solution. Application to barometry of garnet granulite assemblages from the Grenville in Ontario yields average pressures 0.1 kb lower for GRIPS and 0.4 kb higher for FAGS using our mixing model. Results from Parry Island, Ontario, yield 8.7 kb from GRAIL as opposed to 9.1 kb using Ganguly and Saxena's model. For GASP, Parry Island assemblages yield 8.4 kb with the authors calibration. Ganguly and Saxena's model gives 5.4 kb using Gasparik's reversals and 8.1 kb using the position of GASP calculated from GRIPS and GRAIL. These corrections allow GRIPS, GRAIL, GASP and FAGS to yield consistent pressures to +/- 0.5 kb in regional metamorphic terranes. Application of their mixing model outside of the fitted range 700-1000 K is not encouraged as extrapolation may yield erroneous results.

  4. Grene-Terrestrial Model Intercomparison Project in Arctic (GTMIP)

    NASA Astrophysics Data System (ADS)

    Saito, K.; Miyazaki, S.; Mori, J.; Ise, T.; Yamazaki, T.; Arakida, H.

    2014-12-01

    The GTMIP, a part of the terrestrial branch on Japan-funded Arctic Climate Change Research (GRENE-TEA), aims to 1) enhance communications and understanding of the "mind and hands" between the modeling and field scientists, and 2) assess the uncertainty and variations stemmed from the model implementation/designation, and the variability due to climatic and historical conditions among the Arctic terrestrial regions. The target metrics cover both physics and biogeochemistry such as snow, permafrost, hydrology, and carbon budget. The MIP consists of two stages: one-dimensional, historical GRENE-TEA site evaluations (stage 1) and circumpolar evaluations using projected climate change data from GCM outputs (stage 2). At the current stage 1, forcing and validation data are prepared, taking maximum advantage of the observation data taken at GRENE-TEA sites (e.g., Fairbanks in Alaska, Yakutsk and Tiksi in Russia, and Kevo in Finland), to evaluate the inter-model and inter-site variations. Since the observation data are prone to missing or lack of the consistency, and not ready to drive the numerical model directly, we create continuous forcing data (called version 0) derived from the reanalysis product (i.e. ERA-interim) with monthly bias corrections using the CRU (for temperature) and GPCP (for precipitation) datasets taken from the respectively nearest grid to the GRENE-TEA sites. Then, it is modified to reflect the local characteristics (version 1), and, in addition, replaced with the observed data (version 1 with obs). These data are partly open at Arctic Data Archive System. The project is open to any modelers who are interested, and welcomes participation of wide range of the terrestrial models possibly with different levels of complexity and philosophy.

  5. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Robock, A.; Tilmes, S.; Boucher, O.; English, J. M.; Irvine, P. J.; Jones, A.; Lawrence, M. G.; MacCracken, M.; Muri, H.; Moore, J. C.; Niemeier, U.; Phipps, S. J.; Sillmann, J.; Storelvmo, T.; Wang, H.; Watanabe, S.

    2015-06-01

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  6. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6). Simulation Design and Preliminary Results

    SciTech Connect

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; Boucher, Olivier; English, J.; Irvine, Peter; Jones, Andrew; Lawrence, M. G.; Maccracken, Michael C.; Muri, Helene O.; Moore, John; Niemeier, Ulrike; Phipps, Steven; Sillmann, Jana; Storelvmo, Trude; Wang, Hailong; Watanabe, Shingo

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  7. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results

    DOE PAGES

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; Boucher, Olivier; English, J. M.; Irvine, Peter J.; Jones, Andrew; Lawrence, M. G.; MacCracken, Michael C.; Muri, Helene O.; et al

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale formore » those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.« less

  8. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results

    SciTech Connect

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; Boucher, Olivier; English, J. M.; Irvine, Peter J.; Jones, Andrew; Lawrence, M. G.; MacCracken, Michael C.; Muri, Helene O.; Moore, John C.; Niemeier, Ulrike; Phipps, Steven J.; Sillmann, Jana; Storelvmo, Trude; Wang, Hailong; Watanabe, Shingo

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  9. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Robock, A.; Tilmes, S.; Boucher, O.; English, J. M.; Irvine, P. J.; Jones, A.; Lawrence, M. G.; MacCracken, M.; Muri, H.; Moore, J. C.; Niemeier, U.; Phipps, S. J.; Sillmann, J.; Storelvmo, T.; Wang, H.; Watanabe, S.

    2015-10-01

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  10. Climate Model Response from the Geoengineering Model Intercomparison Project (GeoMIP)

    SciTech Connect

    Kravitz, Benjamin S.; Caldeira, Ken; Boucher, Olivier; Robock, Alan; Rasch, Philip J.; Alterskjaer, Kari; Bou Karam, Diana; Cole, Jason N.; Curry, Charles L.; Haywood, J.; Irvine, Peter; Ji, Duoying; Jones, A.; Kristjansson, J. E.; Lunt, Daniel; Moore, John; Niemeier, Ulrike; Schmidt, Hauke; Schulz, M.; Singh, Balwinder; Tilmes, S.; Watanabe, Shingo; Yang, Shuting; Yoon, Jin-Ho

    2013-08-09

    Solar geoengineering—deliberate reduction in the amount of solar radiation retained by the Earth—has been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwise occur under high CO2 levels but, compared to the preindustrial climate, leaves the tropics cooler (-0.3 K) and the poles warmer (+0.8 K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2mmday-1 in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO2 fertilization, but also in part due to reduced plant heat stress compared to a high CO2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels.

  11. Intercomparison of mesoscale meteorological models for precipitation forecasting

    NASA Astrophysics Data System (ADS)

    Richard, E.; Cosma, S.; Benoit, R.; Binder, P.; Buzzi, A.; Kaufmann, P.

    In the framework of the RAPHAEL EU project, a series of past heavy precipitation events has been simulated with different meteorological models. Rainfall hindcasts and forecasts have been produced by four models in use at various meteorological services or research centres of Italy, Canada, France and Switzerland. The paper is focused on the comparison of the computed precipitation fields with the available surface observations. The comparison is carried out for three meteorological situations which lead to severe flashflood over the Toce-Ticino catchment in Italy (6599 km2) or the Ammer catchment (709 km2) in Germany. The results show that all four models reproduced the occurrence of these heavy precipitation events. The accuracy of the computed precipitation appears to be more case-dependent than model-dependent. The sensitivity of the computed rainfall to the boundary conditions (hindcast v. forecast) was found to be rather weak, indicating that a flood forecasting system based upon a numerical meteo-hydrological simulation could be feasible in an operational context.

  12. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earth’s atmosphere and influence the Earth’s energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  13. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George

    2016-01-01

    Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

  14. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments

    PubMed Central

    Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George

    2016-01-01

    Abstract Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state‐of‐the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

  15. Satellite-Model-Ground-based Inter-Comparisons (WG-3)

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2014-01-01

    AERO-SAT is an international consortium of experts on aerosol remote sensing from ground and space. This initiative was established in 2013 (1) to accelerate the exchange of ideas and concepts and (2) to elevate the capabilities of satellite sensorsretrieval (aerosol) products, which are needed to constrain aerosol processing in and assist in evaluations of global modeling. The main goal of the meeting is to substantiate and invigorate the five AEROSAT working groups. On each of those five topics dedicated working groups are building up and will report on their initial activities followed by further related presentations and ample time for discussions. Organizers of the meeting held September 27-28, 2014 would like to post the presentations to a website.

  16. Aviation Fuel Tracer Simulation: Model Intercomparison and Implications

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Fahey, D. W.; Schumann, U.; Prather, M. J.; Penner, J. E.; Ko, M. K. W.; Weisenstein, D. K.; Jackman, C. H.; Pitari, G.; Koehler, I.; Sausen, R.; Weaver, C. J.; Douglass, A. R.; Connell, P. S.; Kinnison, D. E.; Dentener, F. J.; Fleming, E. L.; Berntsen, T. K.; Isaksen, I. S. A.; Haywood, J. M.

    1998-01-01

    An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key Endings are that subsonic aircraft emissions: (1) have not be responsible for the observed water vapor trends at 40 deg N; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively.

  17. The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations

    NASA Astrophysics Data System (ADS)

    Emmons, L. K.; Arnold, S. R.; Monks, S. A.; Huijnen, V.; Tilmes, S.; Law, K. S.; Thomas, J. L.; Raut, J.-C.; Bouarar, I.; Turquety, S.; Long, Y.; Duncan, B.; Steenrod, S.; Strode, S.; Flemming, J.; Mao, J.; Langner, J.; Thompson, A. M.; Tarasick, D.; Apel, E. C.; Blake, D. R.; Cohen, R. C.; Dibb, J.; Diskin, G. S.; Fried, A.; Hall, S. R.; Huey, L. G.; Weinheimer, A. J.; Wisthaler, A.; Mikoviny, T.; Nowak, J.; Peischl, J.; Roberts, J. M.; Ryerson, T.; Warneke, C.; Helmig, D.

    2015-06-01

    A model intercomparison activity was inspired by the large suite of observations of atmospheric composition made during the International Polar Year (2008) in the Arctic. Nine global and two regional chemical transport models participated in this intercomparison and performed simulations for 2008 using a common emissions inventory to assess the differences in model chemistry and transport schemes. This paper summarizes the models and compares their simulations of ozone and its precursors and presents an evaluation of the simulations using a variety of surface, balloon, aircraft and satellite observations. Each type of measurement has some limitations in spatial or temporal coverage or in composition, but together they assist in quantifying the limitations of the models in the Arctic and surrounding regions. Despite using the same emissions, large differences are seen among the models. The cloud fields and photolysis rates are shown to vary greatly among the models, indicating one source of the differences in the simulated chemical species. The largest differences among models, and between models and observations, are in NOy partitioning (PAN vs. HNO3) and in oxygenated volatile organic compounds (VOCs) such as acetaldehyde and acetone. Comparisons to surface site measurements of ethane and propane indicate that the emissions of these species are significantly underestimated. Satellite observations of NO2 from the OMI (Ozone Monitoring Instrument) have been used to evaluate the models over source regions, indicating anthropogenic emissions are underestimated in East Asia, but fire emissions are generally overestimated. The emission factors for wildfires in Canada are evaluated using the correlations of VOCs to CO in the model output in comparison to enhancement factors derived from aircraft observations, showing reasonable agreement for methanol and acetaldehyde but underestimate ethanol, propane and acetone, while overestimating ethane emission factors.

  18. Intercomparison of Surface Energy Fluxes Estimates from the FEST-EWB and TSEB Models over the Heterogeneous REFLEX 2012 Site (Barrax, Spain)

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara; Timmermans, Wim; Andreu, Ana

    2015-12-01

    An intercomparison between the Energy Water Balance model (FEST-EWB) and the Two-Source Energy Balance model (TSEB) is performed over a heterogeneous agricultural area. TSEB is a residual model which uses Land Surface Temperature (LST) from remote sensing as a main input parameter so that energy fluxes are computed instantaneously at the time of data acquisition. FEST-EWB is a hydrological model that predicts soil moisture and the surface energy fluxes on a continuous basis. LST is then a modelled variable. Ground and remote sensing data from the Regional Experiments For Land-atmosphere Exchanges (REFLEX) campaign in 2012 in Barrax gave the opportunity to validate and compare spatially distributed energy fluxes. The output of both models matches the ground observations quite well. However, a spatial analysis reveals significant differences between the two approaches for latent and sensible heat fluxes over relatively small fields characterized by high heterogeneity in vegetation cover.

  19. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design

    NASA Astrophysics Data System (ADS)

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; Salzmann, Ulrich

    2016-03-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  20. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific Objectives and Experimental Design

    NASA Technical Reports Server (NTRS)

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; Salzmann, Ulrich

    2016-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  1. International Photolysis Frequency Measurement and Model Intercomparison (IPMMI): Spectral actinic solar flux measurements and modeling

    NASA Astrophysics Data System (ADS)

    Bais, A. F.; Madronich, S.; Crawford, J.; Hall, S. R.; Mayer, B.; van Weele, M.; Lenoble, J.; Calvert, J. G.; Cantrell, C. A.; Shetter, R. E.; Hofzumahaus, A.; Koepke, P.; Monks, P. S.; Frost, G.; McKenzie, R.; Krotkov, N.; Kylling, A.; Swartz, W. H.; Lloyd, S.; Pfister, G.; Martin, T. J.; Roeth, E.-P.; Griffioen, E.; Ruggaber, A.; Krol, M.; Kraus, A.; Edwards, G. D.; Mueller, M.; Lefer, B. L.; Johnston, P.; Schwander, H.; Flittner, D.; Gardiner, B. G.; Barrick, J.; Schmitt, R.

    2003-08-01

    The International Photolysis Frequency Measurement and Model Intercomparison (IPMMI) took place in Boulder, Colorado, from 15 to 19 June 1998, aiming to investigate the level of accuracy of photolysis frequency and spectral downwelling actinic flux measurements and to explore the ability of radiative transfer models to reproduce the measurements. During this period, 2 days were selected to compare model calculations with measurements, one cloud-free and one cloudy. A series of ancillary measurements were also performed and provided parameters required as input to the models. Both measurements and modeling were blind, in the sense that no exchanges of data or calculations were allowed among the participants, and the results were objectively analyzed and compared by two independent referees. The objective of this paper is, first, to present the results of comparisons made between measured and modeled downwelling actinic flux and irradiance spectra and, second, to investigate the reasons for which some of the models or measurements deviate from the others. For clear skies the relative agreement between the 16 models depends strongly on solar zenith angle (SZA) and wavelength as well as on the input parameters used, like the extraterrestrial (ET) solar flux and the absorption cross sections. The majority of the models (11) agreed to within about ±6% for solar zenith angles smaller than ˜60°. The agreement among the measured spectra depends on the optical characteristics of the instruments (e.g., slit function, stray light rejection, and sensitivity). After transforming the measurements to a common spectral resolution, two of the three participating spectroradiometers agree to within ˜10% for wavelengths longer than 310 nm and at all solar zenith angles, while their differences increase when moving to shorter wavelengths. Most models agree well with the measurements (both downwelling actinic flux and global irradiance), especially at local noon, where the agreement

  2. The GRENE-TEA Model Intercomparison Project (GTMIP) stage 1 forcing dataset

    NASA Astrophysics Data System (ADS)

    Sueyoshi, T.; Saito, K.; Miyazaki, S.; Mori, J.; Ise, T.; Arakida, H.; Suzuki, R.; Sato, A.; Iijima, Y.; Yabuki, H.; Ikawa, H.; Ohta, T.; Kotani, A.; Hajima, T.; Sato, H.; Yamazaki, T.; Sugimoto, A.

    2015-08-01

    Here, the authors describe the construction of a forcing dataset for Land Surface Models (including both physical and biogeochemical models; LSMs) with eight meteorological variables for the 35 year period from 1979 to 2013. The dataset is intended for use in a model intercomparison (MIP) study, called GTMIP, which is a part of the Japanese-funded Arctic Climate Change research project. In order to prepare a set of site-fitted forcing data for LSMs with realistic yet continuous entries (i.e. without missing data), four observational sites across the pan-Arctic region (Fairbanks, Tiksi, Yakutsk, and Kevo) were selected to construct a blended dataset using both global reanalysis and observational data. Marked improvements were found in the diurnal cycles of surface air temperature and humidity, wind speed, and precipitation. The datasets and participation in GTMIP are open to the scientific community (https://ads.nipr.ac.jp/gtmip/gtmip.html).

  3. A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas

    NASA Astrophysics Data System (ADS)

    Whitley, R.; Beringer, J.; Hutley, L.; Abramowitz, G.; De Kauwe, M. G.; Duursma, R.; Evans, B.; Haverd, V.; Li, L.; Ryu, Y.; Smith, B.; Wang, Y.-P.; Williams, M.; Yu, Q.

    2015-12-01

    Savanna ecosystems are one of the most dominant and complex terrestrial biomes that derives from a distinct vegetative surface comprised of co-dominant tree and grass populations. While these two vegetation types co-exist functionally, demographically they are not static, but are dynamically changing in response to environmental forces such as annual fire events and rainfall variability. Modelling savanna environments with the current generation of terrestrial biosphere models (TBMs) has presented many problems, particularly describing fire frequency and intensity, phenology, leaf biochemistry of C3 and C4 photosynthesis vegetation, and root water uptake. In order to better understand why TBMs perform so poorly in savannas, we conducted a model inter-comparison of 6 TBMs and assessed their performance at simulating latent energy (LE) and gross primary productivity (GPP) for five savanna sites along a rainfall gradient in northern Australia. Performance in predicting LE and GPP was measured using an empirical benchmarking system, which ranks models by their ability to utilise meteorological driving information to predict the fluxes. On average, the TBMs performed as well as a multi-linear regression of the fluxes against solar radiation, temperature and vapour pressure deficit, but were outperformed by a more complicated nonlinear response model that also included the leaf area index (LAI). This identified that the TBMs are not fully utilising their input information effectively in determining savanna LE and GPP, and highlights that savanna dynamics cannot be calibrated into models and that there are problems in underlying model processes. We identified key weaknesses in a model's ability to simulate savanna fluxes and their seasonal variation, related to the representation of vegetation by the models and root water uptake. We underline these weaknesses in terms of three critical areas for development. First, prescribed tree-rooting depths must be deep enough

  4. A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas

    NASA Astrophysics Data System (ADS)

    Whitley, Rhys; Beringer, Jason; Hutley, Lindsay B.; Abramowitz, Gab; De Kauwe, Martin G.; Duursma, Remko; Evans, Bradley; Haverd, Vanessa; Li, Longhui; Ryu, Youngryel; Smith, Benjamin; Wang, Ying-Ping; Williams, Mathew; Yu, Qiang

    2016-06-01

    The savanna ecosystem is one of the most dominant and complex terrestrial biomes, deriving from a distinct vegetative surface comprised of co-dominant tree and grass populations. While these two vegetation types co-exist functionally, demographically they are not static but are dynamically changing in response to environmental forces such as annual fire events and rainfall variability. Modelling savanna environments with the current generation of terrestrial biosphere models (TBMs) has presented many problems, particularly describing fire frequency and intensity, phenology, leaf biochemistry of C3 and C4 photosynthesis vegetation, and root-water uptake. In order to better understand why TBMs perform so poorly in savannas, we conducted a model inter-comparison of six TBMs and assessed their performance at simulating latent energy (LE) and gross primary productivity (GPP) for five savanna sites along a rainfall gradient in northern Australia. Performance in predicting LE and GPP was measured using an empirical benchmarking system, which ranks models by their ability to utilise meteorological driving information to predict the fluxes. On average, the TBMs performed as well as a multi-linear regression of the fluxes against solar radiation, temperature and vapour pressure deficit but were outperformed by a more complicated nonlinear response model that also included the leaf area index (LAI). This identified that the TBMs are not fully utilising their input information effectively in determining savanna LE and GPP and highlights that savanna dynamics cannot be calibrated into models and that there are problems in underlying model processes. We identified key weaknesses in a model's ability to simulate savanna fluxes and their seasonal variation, related to the representation of vegetation by the models and root-water uptake. We underline these weaknesses in terms of three critical areas for development. First, prescribed tree-rooting depths must be deep enough

  5. Intercomparison of bias-correction methods for monthly temperature and precipitation simulated by multiple climate models

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Kanae, Shinjiro; Seto, Shinta; Yeh, Pat J.-F.; Hirabayashi, Yukiko; Oki, Taikan

    2012-12-01

    Bias-correction methods applied to monthly temperature and precipitation data simulated by multiple General Circulation Models (GCMs) are evaluated in this study. Although various methods have been proposed recently, an intercomparison among them using multiple GCM simulations has seldom been reported. Moreover, no previous methods have addressed the issue how to adequately deal with the changes of the statistics of bias-corrected variables from the historical to future simulations. In this study, a new method which conserves the changes of mean and standard deviation of the uncorrected model simulation data is proposed, and then five previous bias-correction methods as well as the proposed new method are intercompared by applying them to monthly temperature and precipitation data simulated from 12 GCMs in the Coupled Model Intercomparison Project (CMIP3) archives. Parameters of each method are calibrated by using 1948-1972 observed data and validated in the 1974-1998 period. These methods are then applied to the GCM future simulations (2073-2097) and the bias-corrected data are intercompared. For the historical simulations, negligible difference can be found between observed and bias-corrected data. However, the differences in future simulations are large dependent on the characteristics of each method. The new method successfully conserves the changes in the mean, standard deviation and the coefficient of variation before and after bias-correction. The differences of bias-corrected data among methods are discussed according to their respective characteristics. Importantly, this study classifies available correction methods into two distinct categories, and articulates important features for each of them.

  6. Community Intercomparison Suite (CIS) v1.4.0: a tool for intercomparing models and observations

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Schutgens, Nick; Cook, Nicholas; Kipling, Zak; Kershaw, Philip; Gryspeerdt, Edward; Lawrence, Bryan; Stier, Philip

    2016-09-01

    The Community Intercomparison Suite (CIS) is an easy-to-use command-line tool which has been developed to allow the straightforward intercomparison of remote sensing, in situ and model data. While there are a number of tools available for working with climate model data, the large diversity of sources (and formats) of remote sensing and in situ measurements necessitated a novel software solution. Developed by a professional software company, CIS supports a large number of gridded and ungridded data sources "out-of-the-box", including climate model output in NetCDF or the UK Met Office pp file format, CloudSat, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), MODIS (MODerate resolution Imaging Spectroradiometer), Cloud and Aerosol CCI (Climate Change Initiative) level 2 satellite data and a number of in situ aircraft and ground station data sets. The open-source architecture also supports user-defined plugins to allow many other sources to be easily added. Many of the key operations required when comparing heterogenous data sets are provided by CIS, including subsetting, aggregating, collocating and plotting the data. Output data are written to CF-compliant NetCDF files to ensure interoperability with other tools and systems. The latest documentation, including a user manual and installation instructions, can be found on our website (http://cistools.net). Here, we describe the need which this tool fulfils, followed by descriptions of its main functionality (as at version 1.4.0) and plugin architecture which make it unique in the field.

  7. Intercomparison of state-of-the-art models for wind energy resources with mesoscale models:

    NASA Astrophysics Data System (ADS)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria; Badger, Jake; Joergensen, Hans E.

    2016-04-01

    vertical resolution, model parameterizations, surface roughness length) that could be used to group the various models and interpret the results of the intercomparison. 3. Main body abstract Twenty separate entries were received by the deadline of 31 March 2015. They included simulations done with various versions of the Weather Research and Forecast (WRF) model, but also of six other well-known mesoscale models. The various entries represent an excellent sample of the various models used in by the wind energy industry today. The analysis of the submitted time series included comparison to observations, summarized with well-known measures such as biases, RMSE, correlations, and of sector-wise statistics, e.g. frequency and Weibull A and k. The comparison also includes the observed and modeled temporal spectra. The various statistics were grouped as a function of the various models, their spatial resolution, forcing data, and the various integration methods. Many statistics have been computed and will be presented in addition to those shown in the Helsinki presentation. 4. Conclusions The analysis of the time series from twenty entries has shown to be an invaluable source of information about state of the art in wind modeling with mesoscale models. Biases between the simulated and observed wind speeds at hub heights (80-100 m AGL) from the various models are around ±1.0 m/s and fairly independent of the site and do not seem to be directly related to the model horizontal resolution used in the modeling. As probably expected, the wind speeds from the simulations using the various version of the WRF model cluster close to each other, especially in their description of the wind profile.

  8. Intercomparison of reactive transport models applied to UO2 oxidative dissolution and uranium migration.

    PubMed

    De Windt, L; Burnol, A; Montarnal, P; van der Lee, J

    2003-03-01

    Oxidative dissolution of uranium dioxide (UO(2)) and the subsequent migration of uranium in a subsurface environment and an underground waste disposal have been simulated with reactive transport models. In these systems, hydrogeological and chemical processes are closely entangled and their interdependency has been analyzed in detail, notably with respect to redox reactions, kinetics of mineralogical evolution and hydrodynamic migration of species of interest. Different codes, where among CASTEM, CHEMTRAP and HYTEC, have been used as an intercomparison and verification exercise. Although the agreement between codes is satisfactory, it is shown that the discretization method of the transport equation (i.e. finite elements (FE) versus mixed-hybrid FE and finite differences) and the sequential coupling scheme may lead to systematic discrepancies.

  9. Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario.

    PubMed

    Vives I Batlle, J; Beresford, N A; Beaugelin-Seiller, K; Bezhenar, R; Brown, J; Cheng, J-J; Ćujić, M; Dragović, S; Duffa, C; Fiévet, B; Hosseini, A; Jung, K T; Kamboj, S; Keum, D-K; Kryshev, A; LePoire, D; Maderich, V; Min, B-I; Periáñez, R; Sazykina, T; Suh, K-S; Yu, C; Wang, C; Heling, R

    2016-03-01

    We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of (90)Sr, (131)I and (137)Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and which uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters.

  10. Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario.

    PubMed

    Vives I Batlle, J; Beresford, N A; Beaugelin-Seiller, K; Bezhenar, R; Brown, J; Cheng, J-J; Ćujić, M; Dragović, S; Duffa, C; Fiévet, B; Hosseini, A; Jung, K T; Kamboj, S; Keum, D-K; Kryshev, A; LePoire, D; Maderich, V; Min, B-I; Periáñez, R; Sazykina, T; Suh, K-S; Yu, C; Wang, C; Heling, R

    2016-03-01

    We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of (90)Sr, (131)I and (137)Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and which uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters. PMID:26717350

  11. ISA-MIP: A co-ordinated intercomparison of Interactive Stratospheric Aerosol models

    NASA Astrophysics Data System (ADS)

    Timmreck, Claudia; Mann, Graham; Aquila, Valentina; Bruehl, Christoph; Chin, Mian; Dohmse, Sandip; English, Jason; Lee, Lindsay; Mills, Michael; Hommel, Rene; Neely, Ryan; Schmidt, Anja; Sheng, Jianxiong; Toohey, Matthew; Weisenstein, Debra

    2016-04-01

    The SPARC activity, "Stratospheric Sulfur and its Role in Climate" (SSiRC) was initiated to coordinate international research activities on modelling and observation of stratospheric sulphate aerosols (and precursor gases) in order to assess its climate forcing and feedback. With several international activities to extend and improve observational stratospheric aerosol capabilities and data sets, and a growing number of global models treating stratospheric aerosol interactively, a new model intercomparison activity "ISA-MIP" has been established in the frame of SSIRC. ISA-MIP will compare interactive stratospheric aerosol (ISA) models using a range of observations to constrain and improve the models and to provide a sound scientific basis for future work. Four ISA-MIP experiments have been designed to assess different periods of the obervational stratospheric aerosol record, and to explore key processes which influence the formation and temporal development of stratospheric aerosol. The "Background" experiment will focus on the role of microphysical and transport processes under volcanically quiescent conditions, where the stratospheric aerosol size distribution is only modulated by seasonal circulations. The "Model intercomparison of Transient Aerosol Record" (MiTAR) experiment will focus on addressing the role of small- to moderate-magnitude volcanic eruptions and transport processes in the upper troposphere - lower stratosphere (UTLS) aerosols loading over the period 1998-2011. Background and MiTAR simulations will be compared to recent in-situ and satellite observations to evaluate the performances of the model and understand their strengths and weaknesses. Two further experiments investigate the radiative forcing from historical major eruptions. The Historical Eruptions SO2 Emission Assessment (HErSEA) will involve models carrying out mini-ensembles of the stratospheric aerosol perturbations from each of the 1963 Agung, 1982 El Chichon and 1991 Pinatubo

  12. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; Eyring, Veronika; Friedlingstein, Pierre; Hurtt, George; Knutti, Reto; Kriegler, Elmar; Lamarque, Jean-Francois; Lowe, Jason; Meehl, Gerald A.; Moss, Richard; Riahi, Keywan; Sanderson, Benjamin M.

    2016-09-01

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit

  13. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations

    NASA Astrophysics Data System (ADS)

    Notz, Dirk; Jahn, Alexandra; Holland, Marika; Hunke, Elizabeth; Massonnet, François; Stroeve, Julienne; Tremblay, Bruno; Vancoppenolle, Martin

    2016-09-01

    A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standard for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. In this contribution, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.

  14. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation

    NASA Astrophysics Data System (ADS)

    Eyring, V.; Bony, S.; Meehl, G. A.; Senior, C.; Stevens, B.; Stouffer, R. J.; Taylor, K. E.

    2015-12-01

    By coordinating the design and distribution of global climate model simulations of the past, current and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima experiments) and the CMIP Historical Simulation (1850-near-present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP, (2) common standards, coordination, infrastructure and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble, and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and the CMIP Historical Simulation to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP Historical Simulation, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. The participation in the CMIP6-Endorsed MIPs will be at the discretion of the modelling groups, and will depend on scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: (i) how does the Earth system respond to forcing?, (ii) what are the origins and consequences of systematic model biases?, and (iii) how can we assess future climate changes given climate variability, predictability and

  15. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization

    NASA Astrophysics Data System (ADS)

    Eyring, Veronika; Bony, Sandrine; Meehl, Gerald A.; Senior, Catherine A.; Stevens, Bjorn; Stouffer, Ronald J.; Taylor, Karl E.

    2016-05-01

    By coordinating the design and distribution of global climate model simulations of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations (1850-near present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP; (2) common standards, coordination, infrastructure, and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble; and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and CMIP historical simulations to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP historical simulations, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. Participation in CMIP6-Endorsed MIPs by individual modelling groups will be at their own discretion and will depend on their scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: - How does the Earth system respond to forcing? - What are the origins and consequences of systematic model biases? - How can we assess future climate changes given internal climate variability, predictability, and uncertainties in

  16. Modeling biogeochemistry in agricultural soils

    SciTech Connect

    Li, C.; Frolking, S.; Harriss, R.

    1994-09-01

    An existing model of C and N dynamics in soils was supplemented with a plant growth submodel and cropping practice routines (fertilization, irrigation, tillage, crop rotation, and manure amendments) to study the biogeochemistry of soil carbon in arable lands. The new model was validated against field results for short-term (1-9 years) decomposition experiments, the seasonal pattern of soil CO{sub 2} respiration, and long-term (100 years) soil carbon storage dynamics. A series of sensitivity runs investigated the impact of varying agricultural practices on soil organic carbon (SOC) sequestration. The tests were simulated for corn (maize) plots over a range of soil and climate conditions typical of the United States. The largest carbon sequestration occurred with manure additions; the results were very sensitive to soil texture (more clay led to greater sequestration). Increased N fertilization generally enhanced carbon sequestration, but the results were sensitive to soil texture, initial soil carbon content, and annual precipitation. Reduced tillage also generally (but not always) increased SOC content, through the results were very sensitive to soil texture, initial SOC content, and annual precipitation. A series of long-term simulations investigated the SOC equilibrium for various agricultural practices, soil and climate conditions, and crop rotations. Equilibrium SOC content increased with decreasing temperatures, increasing clay content, enhanced N fertilization, manure amendments, and crops with higher residue yield. Time to equilibrium appears to be one hundred to several hundred years. In all cases, equilibration time was longer for increasing SOC content than for decreasing SOC content. Efforts to enhance carbon sequestration in agricultural soils would do well to focus on those specific areas and agricultural practices with the greatest potential for increasing soil carbon content. 64 refs., 13 figs., 5 tabs.

  17. Intercomparison and suitability of five Greenland topographic datasets for the purpose of hydrologic runoff modeling

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Smith, L. C.; Rennermalm, A. K.; Chu, V. W.; Gleason, C. J.; Yang, K.; Finnegan, D. C.; LeWinter, A. L.; Moller, D.; Moustafa, S.

    2012-12-01

    Rapid melting of the Greenland Ice Sheet (GrIS) and subsequent sea level rise has underscored the need for accurate modeling of hydrologic processes. Researchers rely on the accuracy of topography datasets for this purpose, especially in remote areas like Greenland where in situ validation data are difficult to acquire. A number of new remotely-sensed Digital Elevation Models (DEMs) have recently become available for Greenland, but a comparative study of their respective quality and suitability for hydrologic modeling has not been undertaken. We examine five such remotely-sensed DEMs acquired for proglacial and supraglacial ablation zones of Greenland, namely (1) WorldView stereo DEMs, (2) NASA GLISTIN-A experimental radar, (3) NASA/IceBridge Airborne Topographic Mapper (ATM), (4) Greenland Ice Mapping Project (GIMP) DEM, and (5) ASTER DEM. The quality, strengths and weaknesses of these DEMs for GrIS hydrologic modeling is assessed through intercomparison and in situ terrestrial lidar scanning data with precise RTK GPS control. Additionally, gridded bedrock (i.e. NASA/IceBridge Multichannel Coherent Radar Depth Sounder (MCoRDS); Bamber DEMs) and surface topography datasets are combined to create a hydraulic potentiometric surface for hydrologic modeling. Finally, the suitability of these combined topographic products for hydrologic modeling, characterization of GrIS meltwater runoff, and estimating sub- and/or englacial pathways is explored.

  18. Representing Extremes in Agricultural Models

    NASA Technical Reports Server (NTRS)

    Ruane, Alex

    2015-01-01

    AgMIP and related projects are conducting several activities to understand and improve crop model response to extreme events. This involves crop model studies as well as the generation of climate datasets and scenarios more capable of capturing extremes. Models are typically less responsive to extreme events than we observe, and miss several forms of extreme events. Models also can capture interactive effects between climate change and climate extremes. Additional work is needed to understand response of markets and economic systems to food shocks. AgMIP is planning a Coordinated Global and Regional Assessment of Climate Change Impacts on Agricultural Production and Food Security with an aim to inform the IPCC Sixth Assessment Report.

  19. Evaluation of total cloudiness and its variability in the atmospheric model intercomparison project

    SciTech Connect

    Weare, B.C.; Mokhov, I.I.

    1995-09-01

    Total cloudiness of 29 models participating in the Atmospheric Model Intercomparison Project is compared with the ISCCP C2 as well as the Nimbus-7 and Meteor observational estimates. The root-mean-square differences between the annual means of the model calculations and the C2 observations vary from about twice to nearly four times the difference between the C2 and Meteor observations. The large differences are in some cases due to the fact that although a model qualitatively has patterns of spatial variations similar to those of the observations, the magnitude of those variations is much too small. In other cases the models have produced the approximate magnitude of the spatial variability of the observations but display sizable errors in the pattern of that variability. Deficiencies with respect to the model simulations of the mean seasonal cycle are also pronounced. For instance, the differences between the zonal averages of total cloudiness for contrasting seasons suggest that near 60{degrees} most models predict minima in cloudiness in summer, whereas observations strongly suggest the opposite. Smoothed seasonal cycle analyses suggest that a portion of these deficiencies in some models is the result of a simulated seasonal cycle that lead that of the observations by about two months. However, some models, which appear to have the proper phase of the seasonal cycle, still show large root-mean-squared differences and small correlations when compared with the smoothed seasonal cycle of the C2 observations. The C2 and Meteor observations show a modest signal in total cloudiness for the only important interannual variation during the July 1983 through June 1988 observation period-the 1986/87 ENSO event. A few models reproduce this event about as well as do the Meteor observations, whereas many models fail to show any evidence of it. Overall, models that better reproduce the ENSO results also tend to do well with seasonal variations. 32 refs., 12 figs., 1 tab.

  20. The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations

    NASA Astrophysics Data System (ADS)

    Emmons, L. K.; Arnold, S. R.; Monks, S. A.; Huijnen, V.; Tilmes, S.; Law, K. S.; Thomas, J. L.; Raut, J.-C.; Bouarar, I.; Turquety, S.; Long, Y.; Duncan, B.; Steenrod, S.; Strode, S.; Flemming, J.; Mao, J.; Langner, J.; Thompson, A. M.; Tarasick, D.; Apel, E. C.; Blake, D. R.; Cohen, R. C.; Dibb, J.; Diskin, G. S.; Fried, A.; Hall, S. R.; Huey, L. G.; Weinheimer, A. J.; Wisthaler, A.; Mikoviny, T.; Nowak, J.; Peischl, J.; Roberts, J. M.; Ryerson, T.; Warneke, C.; Helmig, D.

    2014-11-01

    A model intercomparison activity was inspired by the large suite of atmospheric chemistry observations made during the International Polar Year (2008) in the Arctic. Nine global and two regional chemical transport models have performed simulations for 2008 using a common emissions inventory to quantify the differences in model chemistry and transport schemes. This paper summarizes the models and compares their simulations of ozone and its precursors, and presents an evaluation of the simulations using a variety of surface, balloon, aircraft and satellite observations. Despite using the same emissions, large differences are seen among the models. Differences in a number of model parameters are identified as contributing to differences in the modelled chemical species, including cloud fields and photolysis rates. The largest differences among models, and between models and observations, are in NOy partitioning (PAN vs. HNO3) and in oxygenated volatile organic compounds (VOCs) such as acetaldehyde and acetone. Comparisons to surface site measurements of ethane and propane indicate that the emissions of these species are significantly underestimated. While limited in spatial and temporal coverage, the aircraft measurements provide a simultaneous evaluation of many species. Satellite observations of NO2 from OMI have been used to evaluate the models over source regions, indicating anthropogenic emissions are underestimated in East Asia, but fire emissions are generally overestimated. The emission factors for wildfires in Canada are evaluated using the correlations of VOCs to CO in the model output in comparison to enhancement factors derived from aircraft observations, showing reasonable agreement for methanol and acetaldehyde, but underestimate of ethanol, propane and acetone, while overestimating ethane emission factors.

  1. The GRENE-TEA model intercomparison project (GTMIP) Stage 1 forcing data set

    NASA Astrophysics Data System (ADS)

    Sueyoshi, T.; Saito, K.; Miyazaki, S.; Mori, J.; Ise, T.; Arakida, H.; Suzuki, R.; Sato, A.; Iijima, Y.; Yabuki, H.; Ikawa, H.; Ohta, T.; Kotani, A.; Hajima, T.; Sato, H.; Yamazaki, T.; Sugimoto, A.

    2016-01-01

    Here, the authors describe the construction of a forcing data set for land surface models (including both physical and biogeochemical models; LSMs) with eight meteorological variables for the 35-year period from 1979 to 2013. The data set is intended for use in a model intercomparison study, called GTMIP, which is a part of the Japanese-funded Arctic Climate Change Research Project. In order to prepare a set of site-fitted forcing data for LSMs with realistic yet continuous entries (i.e. without missing data), four observational sites across the pan-Arctic region (Fairbanks, Tiksi, Yakutsk, and Kevo) were selected to construct a blended data set using both global reanalysis and observational data. Marked improvements were found in the diurnal cycles of surface air temperature and humidity, wind speed, and precipitation. The data sets and participation in GTMIP are open to the scientific community (doi:10.17592/001.2015093001).

  2. GCM (general circulation model)-data intercomparison: The good news and the bad

    SciTech Connect

    Grotch, S.L.

    1990-09-01

    General circulation models (GCMs) are being actively used to assess possible climate change due to increasing greenhouse gas concentrations. Because such simulations provide detailed climatic predictions at a wide range of scales, they are of particular interest to those making regional assessments of climatic change. It is especially important that workers using the results of such simulations be aware of some of the limitations of these results. In this study some of the positive results from these model simulations will be shown and some of the deficiencies will also be highlighted. Following an introductory section describing the nature of GCM climate simulations the issue of the spatial scales of such simulations is examined. A comparison of the results of seven GCM simulations of the current climate and the predictions of these models for the changes due to a doubling of CO{sub 2} will be discussed. In these intercomparisons, the spatial scale over which the results are compared varies from global to zonal (longitudinally averaged at a given latitude) to individual slices through the data along specified latitudes or longitudes. Finally, the dangers and pitfalls of relying on simple averages will be highlighted. 19 refs., 9 figs., 1 tab.

  3. Intercomparison Of Bias-Correction Methods For Monthly Temperature And Precipitation Simulated By Multiple Climate Models

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Kanae, S.; Seto, S.; Hirabayashi, Y.; Oki, T.

    2012-12-01

    Bias-correction methods applied to monthly temperature and precipitation data simulated by multiple General Circulation Models (GCMs) are evaluated in this study. Although various methods have been proposed recently, an intercomparison among them using multiple GCM simulations has seldom been reported. Here, five previous methods as well as a proposed new method are compared. Before the comparison, we classified previous methods. The methods proposed in previous studies can be classified into four types based on the following two criteria: 1) Whether the statistics (e.g. mean, standard deviation, or the coefficient of variation) of future simulation is used in bias-correction; and 2) whether the estimation of cumulative probability is included in bias-correction. The methods which require future statistics will depend on the data in the projection period, while those which do not use future statistics are not. The classification proposed can characterize each bias-correction method. These methods are applied to temperature and precipitation simulated from 12 GCMs in the Coupled Model Intercomparison Project (CMIP3) archives. Parameters of each method are calibrated by using 1948-1972 observed data and validated for the 1974-1998 period. These methods are then applied to GCM future simulations (2073-2097), and the bias-corrected data are intercompared. For the historical simulation, negligible difference can be found between observed and bias-corrected data. However, the difference in the future simulation is large dependent on the characteristics of each method. The frequency (probability) that the 2073-2097 bias-corrected data exceed the 95th percentile of the 1948-1972 observed data is estimated in order to evaluate the differences among methods. The difference between proposed and one of the previous method is more than 10% in many areas. The differences of bias-corrected data among methods are discussed based on their respective characteristics. The results

  4. TRAC-MIP: Tropical Rain bands with an Annual cycle and Continent - Model Intercomparison Project.

    NASA Astrophysics Data System (ADS)

    Biasutti, Michela; Voigt, Aiko; Scheff, Jack; Zeppetello, Lucas Randall

    2016-04-01

    Understanding and modeling tropical rainfall has proven to be one of the most stubborn challenges in climate science. Tropical rainfall biases such as a double inter-tropical convergence zone (ITCZ) in the East Pacific have now persisted more than two decades despite the general improvements of climate models, and projections for the ITCZ and the monsoon systems remain uncertain in magnitude and sign. Progress in these areas can be fostered by a set of idealized experiments that target the dynamics of tropical rain band, as long as these simple experiments are properly integrated within a full hierarchy of model simulations. To this aim, we have designed the "Tropical Rain belts with an Annual cycle and Continent - Model Intercomparison Project." TRAC-MIP involves five experiments using idealized aquaplanet and land setups to explore the dynamics of tropical rainfall. By using interactive sea-surface temperatures and seasonally-varying insolation TRAC-MIP fills the gap between idealized aquaplanet simulations with prescribed SSTs and the fully-coupled realistic model simulations of CMIP5. TRAC-MIP includes the participation of 13 state-of-the art comprehensive climate models, and it also includes a simplified model that neglects cloud and water-vapor radiative feedbacks, thus allowing a more direct connection between the results from the TRAC-MIP comprehensive models and the theoretical studies of tropical rain belt dynamics. We will present preliminary results from the ensemble, aiming to examine the mechanisms controlling tropical precipitation in the context of forced variability. First and foremost, we are interested in the largest forced variation: the annual cycle. Second, we are interested in the response to key forcings of the future (greenhouse gases) and of the Holocene (insolation). We will draw out the similarities and the distinctions between oceanic and continental rain bands, study the ways in which the two interact with each other, and investigate

  5. TWP-ICE Global Atmospheric Model Intercomparison: Convection Responsiveness and Resolution Impact

    SciTech Connect

    Lin, Yanluan; Donner, Leo J.; Petch, Jon C.; Bechtold, P.; Boyle, James; Klein, Stephen A.; Komori, T.; Wapler, K.; Willett, M.; Xie, X.; Zhao, M.; Xie, Shaocheng; McFarlane, Sally A.; Schumacher, Courtney

    2012-05-08

    Results are presented from an intercomparison of global atmospheric model (GAM) simulations of tropical convection during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE). The distinct cloud properties, precipitation, radiation, and vertical diabatic heating profiles associated with three different monsoon regimes (wet, dry, and break) from available observations are used to evaluate 9 GAM forecasts initialized daily from realistic global analyses. All models well captured the evolution of large-scale circulation and the thermodynamic fields, but cloud properties differed substantially among models. For example, liquid water path and ice water path differed by up to two orders of magnitude. Compared with the relatively well simulated top-heavy heating structures during the wet and break period, most models had difficulty in depicting the bottom-heavy heating profiles associated with cumulus congestus. The best performing models during this period were the ones whose convection scheme was most responsive to the free tropospheric humidity. Compared with the large impact of cloud and convective parameterizations on model cloud and precipitation characteristics, resolution has relatively minor impact on simulated cloud properties. However, one feature that was influence by the resolution study in several models was the diurnal cycle of precipitation. Peaking at a different time from convective precipitation, large-scale precipitation generally increases in high resolution forecasts and modulates the total precipitation diurnal cycle. Overall, the study emphasizes the importance of more environmental responsive convective parameterizations to capture various types of convection and the substantial diversity among large-scale cloud and precipitation schemes in current GAMs. This experiment has also demonstrated itself to be a very useful testbed for those developing cloud and convection schemes in these models.

  6. The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6

    NASA Astrophysics Data System (ADS)

    Pincus, Robert; Forster, Piers M.; Stevens, Bjorn

    2016-09-01

    The phrasing of the first of three questions motivating CMIP6 - "How does the Earth system respond to forcing?" - suggests that forcing is always well-known, yet the radiative forcing to which this question refers has historically been uncertain in coordinated experiments even as understanding of how best to infer radiative forcing has evolved. The Radiative Forcing Model Intercomparison Project (RFMIP) endorsed by CMIP6 seeks to provide a foundation for answering the question through three related activities: (i) accurate characterization of the effective radiative forcing relative to a near-preindustrial baseline and careful diagnosis of the components of this forcing; (ii) assessment of the absolute accuracy of clear-sky radiative transfer parameterizations against reference models on the global scales relevant for climate modeling; and (iii) identification of robust model responses to tightly specified aerosol radiative forcing from 1850 to present. Complete characterization of effective radiative forcing can be accomplished with 180 years (Tier 1) of atmosphere-only simulation using a sea-surface temperature and sea ice concentration climatology derived from the host model's preindustrial control simulation. Assessment of parameterization error requires trivial amounts of computation but the development of small amounts of infrastructure: new, spectrally detailed diagnostic output requested as two snapshots at present-day and preindustrial conditions, and results from the model's radiation code applied to specified atmospheric conditions. The search for robust responses to aerosol changes relies on the CMIP6 specification of anthropogenic aerosol properties; models using this specification can contribute to RFMIP with no additional simulation, while those using a full aerosol model are requested to perform at least one and up to four 165-year coupled ocean-atmosphere simulations at Tier 1.

  7. OptIC project: An intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models

    NASA Astrophysics Data System (ADS)

    Trudinger, Cathy M.; Raupach, Michael R.; Rayner, Peter J.; Kattge, Jens; Liu, Qing; Pak, Bernard; Reichstein, Markus; Renzullo, Luigi; Richardson, Andrew D.; Roxburgh, Stephen H.; Styles, Julie; Wang, Ying Ping; Briggs, Peter; Barrett, Damian; Nikolova, Sonja

    2007-06-01

    We describe results of a project known as OptIC (Optimisation InterComparison) for comparison of parameter estimation methods in terrestrial biogeochemical models. A highly simplified test model was used to generate pseudo-data to which noise with different characteristics was added. Participants in the OptIC project were asked to estimate the model parameters used to generate this data, and to predict model variables into the future. Ten participants contributed results using one of the following methods: Levenberg-Marquardt, adjoint, Kalman filter, Markov chain Monte Carlo and genetic algorithm. Methods differed in how they locate the minimum (gradient-descent or global search), how observations are processed (all at once sequentially), or the number of iterations used, or assumptions about the statistics (some methods assume Gaussian probability density functions; others do not). We found the different methods equally successful at estimating the parameters in our application. The biggest variation in parameter estimates arose from the choice of cost function, not the choice of optimization method. Relatively poor results were obtained when the model-data mismatch in the cost function included weights that were instantaneously dependent on noisy observations. This was the case even when the magnitude of residuals varied with the magnitude of observations. Missing data caused estimates to be more scattered, and the uncertainty of predictions increased correspondingly. All methods gave biased results when the noise was temporally correlated or non-Gaussian, or when incorrect model forcing was used. Our results highlight the need for care in choosing the error model in any optimization.

  8. Spatio-temporal characteristics of Agulhas leakage: a model inter-comparison study

    NASA Astrophysics Data System (ADS)

    Holton, L.; Deshayes, J.; Backeberg, B. C.; Loveday, B. R.; Hermes, J. C.; Reason, C. J. C.

    2016-05-01

    Investigating the variability of Agulhas leakage, the volume transport of water from the Indian Ocean to the South Atlantic Ocean, is highly relevant due to its potential contribution to the Atlantic Meridional Overturning Circulation as well as the global circulation of heat and salt and hence global climate. Quantifying Agulhas leakage is challenging due to the non-linear nature of this process; current observations are insufficient to estimate its variability and ocean models all have biases in this region, even at high resolution . An Eulerian threshold integration method is developed to examine the mechanisms of Agulhas leakage variability in six ocean model simulations of varying resolution. This intercomparison, based on the circulation and thermohaline structure at the Good Hope line, a transect to the south west of the southern tip of Africa , is used to identify features that are robust regardless of the model used and takes into account the thermohaline biases of each model. When determined by a passive tracer method, 60 % of the magnitude of Agulhas leakage is captured and more than 80 % of its temporal fluctuations, suggesting that the method is appropriate for investigating the variability of Agulhas leakage. In all simulations but one, the major driver of variability is associated with mesoscale features passing through the section. High resolution ({<} 1/10°) hindcast models agree on the temporal (2-4 cycles per year) and spatial (300-500 km) scales of these features corresponding to observed Agulhas Rings. Coarser resolution models ({<} 1/4°) reproduce similar time scale of variability of Agulhas leakage in spite of their difficulties in representing the Agulhas rings properties. A coarser resolution climate model (2°) does not resolve the spatio-temporal mechanism of variability of Agulhas leakage. Hence it is expected to underestimate the contribution of Agulhas Current System to climate variability.

  9. The North American Carbon Program Multi-scale synthesis and Terrestrial Model Intercomparison Project Part 1: Overview and experimental design

    SciTech Connect

    Huntzinger, D.N.; Schwalm, C.; Michalak, A.M; Schaefer, K.; King, A.W.; Wei, Y.; Jacobson, A.; Liu, S.; Cook, R.; Post, W.M.; Berthier, G.; Hayes, D.; Huang, M.; Ito, A.; Lei, H.; Lu, C.; Mao, J.; Peng, C.H.; Peng, S.; Poulter, B.; Riccuito, D.; Shi, X.; Tian, H.; Wang, W.; Zeng, N.; Zhao, F.; Zhu, Q.

    2013-01-01

    Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding of land-atmosphere carbon exchange to larger regions. The North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal model intercomparison and evaluation effort focused on improving the diagnosis and attribution of carbon exchange at regional and global scales. MsTMIP builds upon current and past synthesis activities, and has a unique framework designed to isolate, interpret, and inform understanding of how model structural differences impact estimates of carbon uptake and release. Here we provide an overview of the MsTMIP effort and describe how the MsTMIP experimental design enables the assessment and quantification of TBM structural uncertainty. Model structure refers to the types of processes considered (e.g. nutrient cycling, disturbance, lateral transport of carbon), and how these processes are represented (e.g. photosynthetic formulation, temperature sensitivity, respiration) in the models. By prescribing a common experimental protocol with standard spin-up procedures and driver data sets, we isolate any biases and variability in TBM estimates of regional and global carbon budgets resulting from differences in the models themselves (i.e. model structure) and model-specific parameter values. An initial intercomparison of model structural differences is represented using hierarchical cluster diagrams (a.k.a. dendrograms), which highlight similarities and differences in how models account for carbon cycle, vegetation, energy, and nitrogen cycle dynamics. We show that, despite the standardized protocol used to derive initial conditions, models show a high degree of variation for GPP, total living biomass, and total soil carbon, underscoring the influence of differences in model structure and parameterization on model estimates.

  10. Results from the Intergovernmental Panel on Climatic Change Photochemical Model Intercomparison (PhotoComp)

    NASA Astrophysics Data System (ADS)

    Olson, Jennifer; Prather, Michael; Berntsen, Terje; Carmichael, Gregory; Chatfield, Robert; Connell, Peter; Derwent, Richard; Horowitz, Larry; Jin, Shengxin; Kanakidou, Maria; Kasibhatla, Prasad; Kotamarthi, Rao; Kuhn, Michael; Law, Kathy; Penner, Joyce; Perliski, Lori; Sillman, Sanford; Stordal, Frode; Thompson, Anne; Wild, Oliver

    1997-03-01

    Results from the Intergovernmental Panel on Climatic Change (IPCC) tropospheric photochemical model intercomparison (PhotoComp) are presented with a brief discussion of the factors that may contribute to differences in the modeled behaviors of HOx cycling and the accompanying O3 tendencies. PhotoComp was a tightly controlled model experiment in which the IPCC 1994 assessment sought to determine the consistency among models that are used to predict changes in tropospheric ozone, an important greenhouse gas. Calculated tropospheric photodissociation rates displayed significant differences, with a root-mean-square (rms) error of the reported model results ranging from about ±6-9% of the mean (for O3 and NO2) to up to ±15% (H2O2 and CH2O). Models using multistream methods in radiative transfer calculations showed distinctly higher rates for photodissociation of NO2 and CH2O compared to models using two-stream methods, and this difference accounted for up to one third of the rms error for these two rates. In general, some small but systematic differences between models were noted for the predicted chemical tendencies in cases that did not include reactions of nomnethane hydrocarbons (NMHC). These differences in modeled O3 tendencies in some cases could be identified, for example, as being due to differences in photodissociation rates, but in others they could not and must be ascribed to unidentified errors. O3 tendencies showed rms errors of about ±10% in the moist, surface level cases with NOx concentrations equal to a few tens of parts per trillion by volume. Most of these model to model differences can be traced to differences in the destruction of O3 due to reaction with HO2. Differences in HO2, in turn, are likely due to (1) inconsistent reaction rates used by the models for the conversion of HO2 to H2O2 and (2) differences in the model-calculated photolysis of H2O2 and CH2O. In the middle tropospheric "polluted" scenario with NOx concentrations larger than a

  11. A new methodology to assess the performance and uncertainty of source apportionment models in intercomparison exercises

    NASA Astrophysics Data System (ADS)

    Belis, C. A.; Pernigotti, D.; Karagulian, F.; Pirovano, G.; Larsen, B. R.; Gerboles, M.; Hopke, P. K.

    2015-10-01

    A new methodology to assess source apportionment model performance in intercomparison exercises, encompassing the preparation of real-world and synthetic datasets and the evaluation of the source apportionment results reported by participants, is described. The evaluation consists of three types of tests: complementary tests, preliminary tests, and performance tests. The complementary tests provide summary information about the source apportionment results as a whole. The preliminary tests check whether source/factors belong to a given source category. Three types of indicators: Pearson correlation (Pearson), standardized identity distance (SID), and weighted difference (WD) are used to test factor/source chemical profiles, while factor/source time series and contribution-to-species values are tested only using the Pearson. The performance tests, based on international standards for proficiency testing, are targeted at evaluating whether the reported biases in the quantification of the factor/source contribution estimates (SCEs) and uncertainties are consistent with previously established quality standards in a fitness-for-purpose approach. Moreover, the consistency of the SCE time series is evaluated using a variant of the RMSE normalised by the reference standard uncertainty. The described methodology facilitates a thorough evaluation of the source apportionment output. The new indicator to compare source or factor profiles presented in this study (SID) is more robust and provides additional information compared to the existing ones.

  12. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    NASA Astrophysics Data System (ADS)

    Breuer, L.; Huisman, J. A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B. F. W.; Frede, H.-G.; Gräff, T.; Hubrechts, L.; Jakeman, A. J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D. P.; Lindström, G.; Seibert, J.; Sivapalan, M.; Viney, N. R.

    2009-02-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model

  13. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    USGS Publications Warehouse

    Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.

    2009-01-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model

  14. The impact of geoengineering on vegetation in experiment G1 of the Geoengineering Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Irvine, Peter; Glienke, Susanne; Lawrence, Mark

    2015-04-01

    Solar Radiation Management (SRM) has been proposed as a means to partly counteract global warming. The Geoengineering Model Intercomparison Project (GeoMIP) simulated the climate consequences of a number of SRM techniques, but the effects on vegetation have not yet been thoroughly studied. Here, the vegetation response to the idealized GeoMIP G1 experiment is analyzed, in which a reduction of the solar constant counterbalances the radiative effects of quadrupled atmospheric CO2 concentrations; the results from eight fully coupled earth system models (ESMs) are included. For most models and regions, changes in net primary productivity (NPP) are dominated by the increase in CO2, via the CO2 fertilization effect. As SRM will lower temperatures, in high latitudes this will reverse gains in NPP from the lifting of temperature limitations. In low latitudes this cooling relative to the 4xCO2 simulation decreases plant respiration whilst having little effect on gross primary productivity, increasing NPP. Despite reductions in precipitation in most regions in response to SRM, runoff and NPP increase in many regions including those previously highlighted as potentially being at risk of drought under SRM. This is due to simultaneous reductions in evaporation and increases in water use efficiency by plants due to higher CO2 concentrations. The relative differences between models in the vegetation response are substantially larger than the differences in their climate responses. The largest differences between models are for those with and without a nitrogen-cycle, with a much smaller CO2 fertilization effect for the former. These results suggest that until key vegetation processes are integrated into ESM predictions, the vegetation response to SRM will remain highly uncertain.

  15. Intercomparison of six fast-response sensors for the eddy-covariance flux measurement of nitrous oxide over agricultural grassland

    NASA Astrophysics Data System (ADS)

    Nemitz, Eiko; Famulari, Daniela; Ibrom, Andreas; Vermeulen, Alex; Hensen, Arjan; van den Bulk, Pim; Loubet, Benjamin; Laville, Patricia; Mammarella, Ivan; Haapanala, Sami; Lohila, Annalea; Laurila, Tuomas; Eva, Rabot; Laborde, Marie; Cowan, Nicholas; Anderson, Margaret; Helfter, Carole

    2015-04-01

    Nitrous oxide (N2O) is the third most important greenhouse gas and its terrestrial budget remains poorly constraint, with bottom up and top down estimates of country emissions often disagreeing by more than a factor of two. Whilst the measurements of the biosphere / atmosphere exchange of CO2 with micrometeorological methods is commonplace, emissions of CH4 and N2O are more commonly measured with enclosure techniques due to limitations in fast-response sensors with good signal-to-noise characteristics. Recent years have seen the development of a range of instruments based on optical spectroscopy. This started in the early 1990s with instruments based on lead salt lasers, which had temperamental long-term characteristics. More recent developments in quantum cascade lasers has lead to increasingly stable instruments, initially based on pulsed, later on continuous wave lasers. Within the context of the European FP7 Infrastructure Project InGOS ('Integrated non-CO2 Greenhouse gas Observing System'), we conducted an intercomparison of six fast response sensors for N2O: three more or less identical instruments based on off-axis Integrated Cavity Optical Spectrocopy (ICOS) (Los Gatos Research Inc.) and three instruments based on quantum cascade laser absorption spectrometry (Aerodyne Research Inc.): one older generation pulsed instrument (p-QCL) and two of the latest generation of compact continuous wave instruments (cw-QCL), operating at two different wavelengths. One of the ICOS instruments was operated with an inlet drier. In addition, the campaign was joined by a relaxed eddy-accumulation system linked to a FTIR spectrometer (Ecotech), a gradient system based on a home-built slower QCL (INRA Orleans) and a fast chamber system. Here we present the results of the study and a detailed examination of the various corrections and errors of the different instruments. Overall, with the exception of the older generation QCL, the average fluxes based on the different fast

  16. Evaluation of Total Cloudiness and Its Variability in the Atmospheric Model Intercomparison Project.

    NASA Astrophysics Data System (ADS)

    Weare, Bryan C.; Mokhov, Igor I.

    1995-09-01

    Total cloudiness of 29 models participating in the Atmospheric Model Intercomparison Project is compared with the ISCCP C2 as well as the Nimbus-7 and Meteor observational estimates. The root-mean-square differences between the annual means of the model calculations and the C2 observations after global means are removed vary from about twice to nearly four times the difference between the C2 and Meteor observations. The large differences are in some cases due to the fact that although a model qualitatively has patterns of spatial variations similar to those of the observations, the magnitude of those variations is much too small. In other cases the models have produced the approximate magnitude of the spatial variability of the observations but display sizable errors in the pattern of that variability.Deficiencies with respect to the model simulations of the mean seasonal cycle are also pronounced. For instance, the differences between the zonal averages of total cloudiness for contrasting seasons suggest that near 60° most models predict minima in cloudiness in summer, whereas observations strongly suggest the opposite. In addition, smoothed seasonal cycle analyses suggest that a portion of these deficiencies in some models is the result of a simulated seasonal cycle that leads that of the observations by about two months. However, some models, which appear to have the proper phase of the seasonal cycle, still show large root-mean-square differences and small correlations when compared with the smoothed seasonal cycle of the C2 observations. The C2 and Meteor observations show a modest signal in total cloudiness for the only important interannual variation during the July 1983 through June 1988 observation period-the 1986/87 ENSO event. A few models reproduce this event about as well as do the Meteor observations, whereas many models fail to show any evidence of it.Overall, models that better reproduce the ENSO results also tend to do well with seasonal

  17. Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: present climate evaluations

    NASA Astrophysics Data System (ADS)

    Vaittinada Ayar, Pradeebane; Vrac, Mathieu; Bastin, Sophie; Carreau, Julie; Déqué, Michel; Gallardo, Clemente

    2016-02-01

    Given the coarse spatial resolution of General Circulation Models, finer scale projections of variables affected by local-scale processes such as precipitation are often needed to drive impacts models, for example in hydrology or ecology among other fields. This need for high-resolution data leads to apply projection techniques called downscaling. Downscaling can be performed according to two approaches: dynamical and statistical models. The latter approach is constituted by various statistical families conceptually different. If several studies have made some intercomparisons of existing downscaling models, none of them included all those families and approaches in a manner that all the models are equally considered. To this end, the present study conducts an intercomparison exercise under the EURO- and MED-CORDEX initiative hindcast framework. Six Statistical Downscaling Models (SDMs) and five Regional Climate Models (RCMs) are compared in terms of precipitation outputs. The downscaled simulations are driven by the ERAinterim reanalyses over the 1989-2008 period over a common area at 0.44° of resolution. The 11 models are evaluated according to four aspects of the precipitation: occurrence, intensity, as well as spatial and temporal properties. For each aspect, one or several indicators are computed to discriminate the models. The results indicate that marginal properties of rain occurrence and intensity are better modelled by stochastic and resampling-based SDMs, while spatial and temporal variability are better modelled by RCMs and resampling-based SDM. These general conclusions have to be considered with caution because they rely on the chosen indicators and could change when considering other specific criteria. The indicators suit specific purpose and therefore the model evaluation results depend on the end-users point of view and how they intend to use with model outputs. Nevertheless, building on previous intercomparison exercises, this study provides a

  18. Evaluation of Tropospheric Water Vapor Simulations from the Atmospheric Model Intercomparison Project

    NASA Technical Reports Server (NTRS)

    Gaffen, Dian J.; Rosen, Richard D.; Salstein, David A.; Boyle, James S.

    1997-01-01

    Simulations of humidity from 28 general circulation models for the period 1979-88 from the Atmospheric Model Intercomparison Project are compared with observations from radiosondes over North America and the globe and with satellite microwave observations over the Pacific basin. The simulations of decadal mean values of precipitable water (W) integrated over each of these regions tend to be less moist than the real atmosphere in all three cases; the median model values are approximately 5% less than the observed values. The spread among the simulations is larger over regions of high terrain, which suggests that differences in methods of resolving topographic features are important. The mean elevation of the North American continent is substantially higher in the models than is observed, which may contribute to the overall dry bias of the models over that area. The authors do not find a clear association between the mean topography of a model and its mean W simulation, however, which suggests that the bias over land is not purely a matter of orography. The seasonal cycle of W is reasonably well simulated by the models, although over North America they have a tendency to become moister more quickly in the spring than is observed. The interannual component of the variability of W is not well captured by the models over North America. Globally, the simulated W values show a signal correlated with the Southern Oscillation index but the observations do not. This discrepancy may be related to deficiencies in the radiosonde network, which does not sample the tropical ocean regions well. Overall, the interannual variability of W, as well as its climatology and mean seasonal cycle, are better described by the median of the 28 simulations than by individual members of the ensemble. Tests to learn whether simulated precipitable water, evaporation, and precipitation values may be related to aspects of model formulation yield few clear signals, although the authors find, for

  19. Results of the IAVCEI inter-comparison study of eruptive plume models

    NASA Astrophysics Data System (ADS)

    Costa, Antonio

    2016-04-01

    Volcanic plume heights are key observable data for estimating crucial parameters such as mass flow rate, and they are commonly used as input for dispersal models of tephra particles. Therefore, quantitative relationships between plume heights and eruption conditions are required. During the last decades, many 1D, 2D, and 3D models of volcanic plume have been proposed. In order to investigate the dependence of plume dynamics on the models and their assumptions, we carried out an inter-comparison study of the recent plume models (nine 1D models based on the buoyant plume theory and four 3D models). The study was designed as a test in which a set of common input parameters was given for two reference eruptions, representing a strong and a weak eruption column under different meteorological conditions. Comparing the results of the different models has allowed us to evaluate their capabilities and target areas for improvement. Despite their different formulations, the 1D and 3D models provide reasonably consistent predictions of some of the key global descriptors of the volcanic plumes. Variability in modeled plume height, estimated as standard deviation, is within ~20% for the weak plume and ~10% for the strong plume. Predictions of neutral buoyancy level are also in reasonably good agreement among the different models, with a standard deviation ranging from 9 to 19% (the latter for the weak plume in a windy atmosphere). Overall, these discrepancies are in the range of observational uncertainty of column height. However, there are important differences amongst models in terms of local properties along the plume axis, particularly for the strong plume. The analysis suggests that the simplified treatment of entrainment in 1D models is adequate to resolve the general behavior of the weak plume. However, it appears clearly inadequate to capture complex features of the strong plume, such as large vortices, partial column collapse, or gravitational fountaining that strongly

  20. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data

    DOE PAGES

    Wei, Yaxing; Liu, Shishi; Huntzinger, Deborah N.; Michalak, Anna M.; Viovy, Nicolas; Post, Wilfred M.; Schwalm, Christopher R.; Schaeffer, Kevin; Jacobson, Andrew R.; Lu, Chaoqun; et al

    2014-12-05

    Ecosystems are important and dynamic components of the global carbon cycle, and terrestrial biospheric models (TBMs) are crucial tools in further understanding of how terrestrial carbon is stored and exchanged with the atmosphere across a variety of spatial and temporal scales. Improving TBM skills, and quantifying and reducing their estimation uncertainties, pose significant challenges. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal multi-scale and multi-model intercomparison effort set up to tackle these challenges. The MsTMIP protocol prescribes standardized environmental driver data that are shared among model teams to facilitate model model and model observation comparisons. Inmore » this article, we describe the global and North American environmental driver data sets prepared for the MsTMIP activity to both support their use in MsTMIP and make these data, along with the processes used in selecting/processing these data, accessible to a broader audience. Based on project needs and lessons learned from past model intercomparison activities, we compiled climate, atmospheric CO2 concentrations, nitrogen deposition, land use and land cover change (LULCC), C3 / C4 grasses fractions, major crops, phenology and soil data into a standard format for global (0.5⁰ x 0.5⁰ resolution) and regional (North American: 0.25⁰ x 0.25⁰ resolution) simulations. In order to meet the needs of MsTMIP, improvements were made to several of the original environmental data sets, by improving the quality, and/or changing their spatial and temporal coverage, and resolution. The resulting standardized model driver data sets are being used by over 20 different models participating in MsTMIP. Lastly, the data are archived at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov) to provide long-term data management and distribution.« less

  1. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data

    SciTech Connect

    Wei, Yaxing; Liu, Shishi; Huntzinger, Deborah N.; Michalak, Anna M.; Viovy, Nicolas; Post, Wilfred M.; Schwalm, Christopher R.; Schaeffer, Kevin; Jacobson, Andrew R.; Lu, Chaoqun; Tian, Hanqin; Ricciuto, Daniel M.; Cook, Robert B.; Mao, Jiafu; Shi, Xiaoying

    2014-12-05

    Ecosystems are important and dynamic components of the global carbon cycle, and terrestrial biospheric models (TBMs) are crucial tools in further understanding of how terrestrial carbon is stored and exchanged with the atmosphere across a variety of spatial and temporal scales. Improving TBM skills, and quantifying and reducing their estimation uncertainties, pose significant challenges. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal multi-scale and multi-model intercomparison effort set up to tackle these challenges. The MsTMIP protocol prescribes standardized environmental driver data that are shared among model teams to facilitate model model and model observation comparisons. In this article, we describe the global and North American environmental driver data sets prepared for the MsTMIP activity to both support their use in MsTMIP and make these data, along with the processes used in selecting/processing these data, accessible to a broader audience. Based on project needs and lessons learned from past model intercomparison activities, we compiled climate, atmospheric CO2 concentrations, nitrogen deposition, land use and land cover change (LULCC), C3 / C4 grasses fractions, major crops, phenology and soil data into a standard format for global (0.5⁰ x 0.5⁰ resolution) and regional (North American: 0.25⁰ x 0.25⁰ resolution) simulations. In order to meet the needs of MsTMIP, improvements were made to several of the original environmental data sets, by improving the quality, and/or changing their spatial and temporal coverage, and resolution. The resulting standardized model driver data sets are being used by over 20 different models participating in MsTMIP. Lastly, the data are archived at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov) to provide long-term data management and distribution.

  2. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project - Part 2: Environmental driver data

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Liu, S.; Huntzinger, D. N.; Michalak, A. M.; Viovy, N.; Post, W. M.; Schwalm, C. R.; Schaefer, K.; Jacobson, A. R.; Lu, C.; Tian, H.; Ricciuto, D. M.; Cook, R. B.; Mao, J.; Shi, X.

    2014-12-01

    Ecosystems are important and dynamic components of the global carbon cycle, and terrestrial biospheric models (TBMs) are crucial tools in further understanding of how terrestrial carbon is stored and exchanged with the atmosphere across a variety of spatial and temporal scales. Improving TBM skills, and quantifying and reducing their estimation uncertainties, pose significant challenges. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal multi-scale and multi-model intercomparison effort set up to tackle these challenges. The MsTMIP protocol prescribes standardized environmental driver data that are shared among model teams to facilitate model-model and model-observation comparisons. This paper describes the global and North American environmental driver data sets prepared for the MsTMIP activity to both support their use in MsTMIP and make these data, along with the processes used in selecting/processing these data, accessible to a broader audience. Based on project needs and lessons learned from past model intercomparison activities, we compiled climate, atmospheric CO2 concentrations, nitrogen deposition, land use and land cover change (LULCC), C3 / C4 grasses fractions, major crops, phenology and soil data into a standard format for global (0.5° × 0.5° resolution) and regional (North American: 0.25° × 0.25° resolution) simulations. In order to meet the needs of MsTMIP, improvements were made to several of the original environmental data sets, by improving the quality, and/or changing their spatial and temporal coverage, and resolution. The resulting standardized model driver data sets are being used by over 20 different models participating in MsTMIP. The data are archived at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov) to provide long-term data management and distribution.

  3. Understanding the Atmospheric Response to Ocean Heat Transport: a Model Inter-Comparison

    NASA Astrophysics Data System (ADS)

    Rose, B.

    2012-12-01

    The oceans' contribution to poleward heat transport (1 to 2 PW) is dwarfed by the atmosphere, and yet ocean heat transport (OHT) exerts a powerful climatic influence by exciting various atmospheric feedbacks. OHT drives polar-amplified greenhouse warming through a dynamical redistribution of tropospheric water vapor, and helps set the strength and position of the ITCZ. These complex responses explicitly couple tropical and extra-tropical processes, and depend on interactions between large-scale dynamics and moist physics. Considerable insights have been drawn from recent idealized experiments with aquaplanet GCMs coupled to slab oceans with prescribed OHT convergence (q-flux). However sensitivity to uncertain model parameterizations pose a barrier to deeper understanding. I will introduce a new multi-institution collaboration called the Q-flux / Aquaplanet Model Inter-comparison Project (QAquMIP), designed to test the robustness of the climatic impact of OHT and its relationship to traditional climate sensitivity. A standardized set of GCM experiments, repeated across a broad range of models, are forced by a few simple analytical q-fluxes. Experimental controls include the meridional scale of poleward OHT, strength of inter-hemispheric OHT, and zonally asymmetric equatorial heating. I will compare robust spatial patterns of temperature and precipitation changes associated with OHT forcing to those driven by CO2, and discuss the underlying spatial pattern of atmospheric feedbacks. A recurring theme is the key role of moist convection in communicating sea surface heating signals throughout the atmosphere, with consequences for clouds, water vapor, radiation, and hydrology. QAquMIP will better constrain the possible role of the oceans in past warm climates, provide a standard framework for testing new parameterizations, and advance our fundamental understanding of the moist processes contributing to present-day climate sensitivity.

  4. An intercomparison of radar-based liquid cloud microphysics retrievals and implication for model evaluation studies

    NASA Astrophysics Data System (ADS)

    Huang, D.; Zhao, C.; Dunn, M.; Dong, X.; Mace, G. G.; Jensen, M. P.; Xie, S.; Liu, Y.

    2011-12-01

    To assess if current radar-based liquid cloud microphysical retrievals of the Atmospheric Radiation Measurement (ARM) program can provide useful constraints for modeling studies, this paper presents intercomparison results of three cloud products at the Southern Great Plains (SGP) site: the ARM MICROBASE, University of Utah (UU), and University of North Dakota (UND) products over the nine-year period from 1998 to 2006. The probability density and spatial autocorrelation functions of the three cloud Liquid Water Content (LWC) retrievals appear to be consistent with each other, while large differences are found in the droplet effective radius retrievals. The differences in the vertical distribution of both cloud LWC and droplet effective radius retrievals are found to be alarmingly large, with the relative difference between nine-year mean cloud LWC retrievals ranging from 20% at low altitudes to 100% at high altitudes. Nevertheless, the spread in LWC retrievals is much smaller than that in cloud simulations by climate and cloud resolving models. The MICROBASE effective radius ranges from 2.0 at high altitudes to 6.0 μm at low altitudes and the UU and UND droplet effective radius is 6 μm larger. Further analysis through a suite of retrieval experiments shows that the difference between MICROBASE and UU LWC retrievals stems primarily from the partition total Liquid Water path (LWP) into supercooled and warm liquid, and from the input cloud boundaries and LWP. The large differences between MICROBASE and UU droplet effective radius retrievals are mainly due to rain/drizzle contamination and the assumptions of cloud droplet concentration used in the retrieval algorithms. The large discrepancy between different products suggests caution in model evaluation with these observational products, and calls for improved retrievals in general.

  5. WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Melton, J. R.; Ito, A.; Kleinen, T.; Spahni, R.; Stocker, B. D.; Zhang, B.; Zhu, X.; Schroeder, R.; Glagolev, M. V.; Maksyutov, S.; Brovkin, V.; Chen, G.; Denisov, S. N.; Eliseev, A. V.; Gallego-Sala, A.; McDonald, K. C.; Rawlins, M. A.; Riley, W. J.; Subin, Z. M.; Tian, H.; Zhuang, Q.; Kaplan, J. O.

    2015-06-01

    Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr-1), inversions (6.06 ± 1.22 Tg CH4 yr-1), and in situ observations (3.91 ± 1.29 Tg CH4 yr-1) largely agreed; (b) forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver (inundation or air

  6. WETCHIMP-WSL: Intercomparison of wetland methane emissions models over West Siberia

    NASA Astrophysics Data System (ADS)

    Melton, Joe; Bohn, Theodore

    2015-04-01

    Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux dataset, several wetland maps, and two satellite inundation products. We found that: a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ±0.54 Tg CH4 y-1), inversions (6.06 ±1.22 Tg CH4 y-1), and in situ observations (3.91 ±1.29 Tg CH4 y-1) largely agreed; b) forward models using inundation products alone to estimate wetland areas suffered from severe biases in CH4 emissions; c) the interannual timeseries of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver (inundation or air temperature), unlike

  7. WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Melton, J. R.; Ito, A.; Kleinen, T.; Spahni, R.; Stocker, B. D.; Zhang, B.; Zhu, X.; Schroeder, R.; Glagolev, M. V.; Maksyutov, S.; Brovkin, V.; Chen, G.; Denisov, S. N.; Eliseev, A. V.; Gallego-Sala, A.; McDonald, K. C.; Rawlins, M. A.; Riley, W. J.; Subin, Z. M.; Tian, H.; Zhuang, Q.; Kaplan, J. O.

    2015-01-01

    Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux dataset, several wetland maps, and two satellite inundation products. We found that: (a) despite the large scatter of individual estimates, 12 year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 y-1), inversions (6.06 ± 1.22 Tg CH4 y-1), and in situ observations (3.91 ± 1.29 Tg CH4 y-1) largely agreed, (b) forward models using inundation products alone to estimate wetland areas suffered from severe biases in CH4 emissions, (c) the interannual timeseries of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver (inundation or air temperature

  8. WETCHIMP-WSL: Intercomparison of wetland methane emissions models over West Siberia

    DOE PAGES

    Bohn, T. J.; Melton, J. R.; Ito, A.; Kleinen, T.; Spahni, R.; Stocker, B. D.; Zhang, B.; Zhu, X.; Schroeder, R.; Glagolev, M. V.; et al

    2015-06-03

    Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations.more » Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr⁻¹), inversions (6.06 ± 1.22 Tg CH4 yr⁻¹), and in situ observations (3.91 ± 1.29 Tg CH4 yr⁻¹) largely agreed; (b) forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver

  9. WETCHIMP-WSL: Intercomparison of wetland methane emissions models over West Siberia

    SciTech Connect

    Bohn, T. J.; Melton, J. R.; Ito, A.; Kleinen, T.; Spahni, R.; Stocker, B. D.; Zhang, B.; Zhu, X.; Schroeder, R.; Glagolev, M. V.; Maksyutov, S.; Brovkin, V.; Chen, G.; Denisov, S. N.; Eliseev, A. V.; Gallego-Sala, A.; McDonald, K. C.; Rawlins, M. A.; Riley, W. J.; Subin, Z. M.; Tian, H.; Zhuang, Q.; Kaplan, J. O.

    2015-06-03

    Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr⁻¹), inversions (6.06 ± 1.22 Tg CH4 yr⁻¹), and in situ observations (3.91 ± 1.29 Tg CH4 yr⁻¹) largely agreed; (b) forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from

  10. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison

    SciTech Connect

    Lotze-Campen, Hermann; von Lampe, Martin; Kyle, G. Page; Fujimori, Shinichiro; Havlik, Petr; van Meijl, Hans; Hasegawa, Tomoko; Popp, Alexander; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; Willenbockel, Dirk; Wise, Marshall A.

    2014-01-01

    Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Comparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g. from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an RCP2.6-type scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in an RCP8.5-type scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

  11. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics

    NASA Technical Reports Server (NTRS)

    Lamarque, J.-F.; Shindell, D. T.; Naik, V.; Plummer, D.; Josse, B.; Righi, M.; Rumbold, S. T.; Schulz, M.; Skeie, R. B.; Strode, S.; Young, P. J.; Cionni, I.; Dalsoren, S.; Eyring, V.; Bergmann, D.; Cameron-Smith, P.; Collins, W. J.; Doherty, R.; Faluvegi, G.; Folberth, G.; Ghan, S. J.; Horowitz, L. W.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to- model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.

  12. The Hydrological Impact of Geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)

    SciTech Connect

    Tilmes, S.; Fasullo, John; Lamarque, J.-F.; Marsh, D.; Mills, Mike; Alterskjaer, Kari; Muri, Helene O.; Kristjansson, Jon E.; Boucher, Olivier; Schulz, M.; Cole, Jason N.; Curry, Charles L.; Jones, A.; Haywood, J.; Irvine, Peter; Ji, Duoying; Moore, John; Bou Karam, Diana; Kravitz, Benjamin S.; Rasch, Philip J.; Singh, Balwinder; Yoon, Jin-Ho; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Yang, Shuting; Watanabe, Shingo

    2013-10-14

    Abstract: The hydrologic impact of enhancing Earth’s albedo due to solar radiation management (SRM) is investigated using simulations from 12 models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). An artificial experiment is investigated, where global mean temperature is preserved at pre-industrial conditions, while atmospheric carbon dioxide concentrations are quadrupled. The associated reduction of downwelling surface solar radiation in a high CO2 environment leads to a reduction of global evaporation of 10% and 4% and precipitation of 6.1% and 6.3% over land and ocean, respectively. An initial reduction of latent heat flux at the surface is largely driven by reduced evapotranspiration over land with instantly increasing CO2 concentrations in both experiments. A warming surface associated with the transient adjustment in the 4xCO2 experiment further generates an increase of global precipitation, with considerable regional changes, such as a significant precipitation reduction of 7% for the North American summer monsoon. Reduced global precipitation persists in the geoengineered experiment where temperatures are stabilized, with considerable regional rainfall deficits. Precipitation reductions that are consistent in sign across models are identified in the geoengineered experiment over monsoonal land regions of East Asia (6%), North America (7%), South America (6%) and South Africa (5%). In contrast to the 4xCO2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50%, it is reduced by up to 20% in the geoengineering scenario . The reduction in heavy precipitation is more pronounced over land than over the ocean, and accompanies a stronger reduction in evaporation over land. For northern mid-latitudes, maximum precipitation reduction over land ranges from 1 to 16% for individual models. For 45-65°N, the frequency of median to high intensity precipitation in summer is strongly reduced. These

  13. Regional climate effects of irrigation and urbanization in thewestern united states: a model intercomparison

    SciTech Connect

    Snyder, M.A.; Kueppers, L.M.; Sloan, L.C.; Cavan, D.C.; Jin, J.; Kanamaru, H.; Miller, N.L.; Tyree, M.; Du, H.; Weare, B.

    2006-05-01

    In the western United States, more than 30,500 square miles has been converted to irrigated agriculture and urban areas. This study compares the climate responses of four regional climate models (RCMs) to these past land-use changes. The RCMs used two contrasting land cover distributions: potential natural vegetation, and modern land cover that includes agriculture and urban areas. Three of the RCMs represented irrigation by supplementing soil moisture, producing large decreases in August mean (-2.5 F to -5.6 F) and maximum (-5.2 F to -10.1 F) 2-meter temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9 percent 36 percent absolute change). Only one of the RCMs produced increases in summer minimum temperature. Converting natural vegetation to urban land cover produced modest but discernable climate effects in all models, with the magnitude of the effects dependent upon the preexisting vegetation type. Overall, the RCM results indicate that land use change impacts are most pronounced during the summer months, when surface heating is strongest and differences in surface moisture between irrigated land and natural vegetation are largest. The irrigation effect on summer maximum temperatures is comparable in magnitude (but opposite in sign) to predicted future temperature change due to increasing greenhouse gas concentrations.

  14. A Cloud-Resolving Modeling Intercomparison Study on Properties of Cloud Microphysics, Convection, and Precipitation for a Squall Line Cas

    NASA Astrophysics Data System (ADS)

    Fan, J.; Han, B.; Morrison, H.; Varble, A.; Mansell, E.; Milbrandt, J.; Wang, Y.; Lin, Y.; Dong, X.; Giangrande, S. E.; Jensen, M. P.; Collis, S. M.; North, K.; Kollias, P.

    2015-12-01

    The large spread in CRM model simulations of deep convection and aerosol effects on deep convective clouds (DCCs) makes it difficult (1) to further our understanding of deep convection and (2) to define "benchmarks" and recommendations for their use in parameterization developments. Past model intercomparison studies used different models with different complexities of dynamic-microphysics interactions, making it hard to isolate the causes of differences between simulations. In this intercomparison study, we employed a much more constrained approach - with the same model and same experiment setups for simulations with different cloud microphysics schemes (one-moment, two-moment, and bin models). Both the piggybacking and interactive approaches are employed to explore the major microphysical processes that control the model differences and the significance of their feedback to dynamics through latent heating/cooling and cold pool characteristics. Real-case simulations are conducted for the squall line case 20 May 2011 from the MC3E field campaign. Results from the piggybacking approach show substantially different responses of the microphysics schemes to the same dynamical fields. Although the interactive microphysics-dynamics simulations buffer some differences compared with those from the piggyback runs, large differences still exist and are mainly contributed by ice microphysical processes parameterizations. The presentation will include in-depth analyses of the major microphysical processes for the squall line case, the significance of the feedback of the processes to dynamics, and how those results differ in different cloud microphysics schemes.

  15. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics

    SciTech Connect

    Lamarque, J.-F.; Shindell, Drew; Josse, B.; Young, P. J.; Cionni, I.; Eyring, Veronika; Bergmann, D.; Cameron-Smith, Philip; Collins, W. J.; Doherty, R.; Dalsoren, S.; Faluvegi, G.; Folberth, G.; Ghan, Steven J.; Horowitz, L.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; Naik, Vaishali; Plummer, David; Righi, M.; Rumbold, S.; Schulz, M.; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Sudo, K.; Szopa, S.; Voulgarakis, A.; Zeng, G.

    2013-02-07

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of timeslice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting radiative forcing and the associated composition changes. Here we introduce the various simulations performed under ACCMIP and the associated model output. The ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions lead to a significant range in emissions, mostly for ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results, but with outliers different enough to possibly affect their representation of climate impact on chemistry.

  16. Does bottom roughness determine hypoxic extent? Results from an intercomparison of hypoxia models for the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Hetland, Robert; Justic, Dubravko; Ko, Dong S.; Laurent, Arnaud; Lehrter, John; Murrell, Michael; Wang, Lixia; Yu, Liuqian; Zhang, Wenxia

    2015-04-01

    A large hypoxic zone forms every summer over the continental shelf in the northern Gulf of Mexico because of significant nutrient and freshwater inputs from the Mississippi/Atchafalaya River System. Several coupled circulation-hypoxia models are under development for this region in order to improve mechanistic understanding of hypoxia formation and to inform nutrient management decisions. Here we report initial results of an intercomparison of these hypoxia models, which is being undertaken within the NOAA-funded Coastal & Ocean Modeling Testbed (COMT). Four circulation models are included: two implementations of the Regional Ocean Modeling System (ROMS), one implementation of the Finite Volume Coastal Ocean model (FVCOM), and one implementation of the U.S. Navy's coastal ocean model (NCOM). In order to elucidate the effects of model physics on hypoxia, all circulation models were initially run with the same, highly simplified hypoxia model, which parameterizes oxygen sinks in water column and sediment, and includes air-sea gas exchange. The simplified hypoxia models were found to have surprisingly high predictive skill when compared with their corresponding full biogeochemical models. Oxygen consumption by the sediment was found to be the most important oxygen sink driving hypoxia generation in this region. The thickness of the bottom boundary layer effectively defines the timescale of hypoxia generation, making bottom roughness an unexpected but important factor in determining whether a model is likely to generate hypoxic conditions or not. The second step of the intercomparison will include a detailed analysis of the full ecosystem-hypoxia models. Our ultimate goal is to improve model formulations, hindcasts, forecasts and mechanistic understanding.

  17. Estimation of Distributed Groundwater Pumping Rates in Yolo County,CA—Intercomparison of Two Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Maples, S.; Fogg, G. E.; Harter, T.

    2015-12-01

    Accurate estimation of groundwater (GW) budgets and effective management of agricultural GW pumping remains a challenge in much of California's Central Valley (CV) due to a lack of irrigation well metering. CVHM and C2VSim are two regional-scale integrated hydrologic models that provide estimates of historical and current CV distributed pumping rates. However, both models estimate GW pumping using conceptually different agricultural water models with uncertainties that have not been adequately investigated. Here, we evaluate differences in distributed agricultural GW pumping and recharge estimates related to important differences in the conceptual framework and model assumptions used to simulate surface water (SW) and GW interaction across the root zone. Differences in the magnitude and timing of GW pumping and recharge were evaluated for a subregion (~1000 mi2) coincident with Yolo County, CA, to provide similar initial and boundary conditions for both models. Synthetic, multi-year datasets of land-use, precipitation, evapotranspiration (ET), and SW deliveries were prescribed for each model to provide realistic end-member scenarios for GW-pumping demand and recharge. Results show differences in the magnitude and timing of GW-pumping demand, deep percolation, and recharge. Discrepancies are related, in large part, to model differences in the estimation of ET requirements and representation of soil-moisture conditions. CVHM partitions ET demand, while C2VSim uses a bulk ET rate, resulting in differences in both crop-water and GW-pumping demand. Additionally, CVHM assumes steady-state soil-moisture conditions, and simulates deep percolation as a function of irrigation inefficiencies, while C2VSim simulates deep percolation as a function of transient soil-moisture storage conditions. These findings show that estimates of GW-pumping demand are sensitive to these important conceptual differences, which can impact conjunctive-use water management decisions in the CV.

  18. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design

    NASA Astrophysics Data System (ADS)

    Lawrence, David M.; Hurtt, George C.; Arneth, Almut; Brovkin, Victor; Calvin, Kate V.; Jones, Andrew D.; Jones, Chris D.; Lawrence, Peter J.; de Noblet-Ducoudré, Nathalie; Pongratz, Julia; Seneviratne, Sonia I.; Shevliakova, Elena

    2016-09-01

    Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the following questions. (1) What are the effects of LULCC on climate and biogeochemical cycling (past-future)? (2) What are the impacts of land management on surface fluxes of carbon, water, and energy, and are there regional land-management strategies with the promise to help mitigate climate change? In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process-level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. There will be particular focus on the separation and quantification of the effects on climate from LULCC relative to all forcings, separation of biogeochemical from biogeophysical effects of land use, the unique impacts of land-cover change vs. land-management change, modulation of land-use impact on climate by land-atmosphere coupling strength, and the extent to which impacts of enhanced CO2 concentrations on plant photosynthesis are modulated by past and future land use.LUMIP involves three major sets of science activities: (1) development of an updated and expanded historical and future land-use data set, (2) an experimental protocol for specific LUMIP experiments for CMIP6, and (3) definition of metrics and diagnostic protocols that quantify model performance, and related sensitivities, with respect to LULCC. In this paper, we describe LUMIP activity (2), i.e., the LUMIP simulations that will formally be part of CMIP6. These experiments are explicitly designed to be

  19. LS3MIP (v1.0) Contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model Intercomparison Project Aims, Setup and Expected Outcome.

    NASA Technical Reports Server (NTRS)

    Van Den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; Seneviratne, Sonia I.; Derksen, Chris; Oki, Taikan; Douville, Herve; Colin, Jeanne; Ducharne, Agnes; Cheruy, Frederique; Viovy, Nicholas; Puma, Michael J.; Wada, Yoshide; Li, Weiping; Jia, Binghao; Alessandri, Andrea; Lawrence, Dave M.; Weedon, Graham P.; Ellis, Richard; Hagemann, Stefan

    2016-01-01

    The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth System Models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems).The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (LMIP, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (LFMIP, building upon the GLACE-CMIP blueprint).

  20. LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project - aims, setup and expected outcome

    NASA Astrophysics Data System (ADS)

    van den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; Seneviratne, Sonia I.; Derksen, Chris; Oki, Taikan; Douville, Hervé; Colin, Jeanne; Ducharne, Agnès; Cheruy, Frederique; Viovy, Nicholas; Puma, Michael J.; Wada, Yoshihide; Li, Weiping; Jia, Binghao; Alessandri, Andrea; Lawrence, Dave M.; Weedon, Graham P.; Ellis, Richard; Hagemann, Stefan; Mao, Jiafu; Flanner, Mark G.; Zampieri, Matteo; Materia, Stefano; Law, Rachel M.; Sheffield, Justin

    2016-08-01

    The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth system models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode ("LMIP", building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework ("LFMIP", building upon the GLACE-CMIP blueprint).

  1. The AeroCom evaluation and intercomparison of organic aerosol in global models

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.; Adams, P. J.; Artaxo, P.; Bahadur, R.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Benedetti, A.; Bergman, T.; Berntsen, T. K.; Beukes, J. P.; Bian, H.; Carslaw, K. S.; Chin, M.; Curci, G.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Gong, S. L.; Hodzic, A.; Hoyle, C. R.; Iversen, T.; Jathar, S.; Jimenez, J. L.; Kaiser, J. W.; Kirkevåg, A.; Koch, D.; Kokkola, H.; Lee, Y. H.; Lin, G.; Liu, X.; Luo, G.; Ma, X.; Mann, G. W.; Mihalopoulos, N.; Morcrette, J.-J.; Müller, J.-F.; Myhre, G.; Myriokefalitakis, S.; Ng, N. L.; O'Donnell, D.; Penner, J. E.; Pozzoli, L.; Pringle, K. J.; Russell, L. M.; Schulz, M.; Sciare, J.; Seland, Ø.; Shindell, D. T.; Sillman, S.; Skeie, R. B.; Spracklen, D.; Stavrakou, T.; Steenrod, S. D.; Takemura, T.; Tiitta, P.; Tilmes, S.; Tost, H.; van Noije, T.; van Zyl, P. G.; von Salzen, K.; Yu, F.; Wang, Z.; Wang, Z.; Zaveri, R. A.; Zhang, H.; Zhang, K.; Zhang, Q.; Zhang, X.

    2014-10-01

    This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a-1 (range 34-144 Tg a-1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a-1 (range 13-121 Tg a-1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a-1 (range 16-121 Tg a-1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a-1; range 13-20 Tg a-1, with one model at 37 Tg a-1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6-2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8-9.6 days). In models that reported both OA and

  2. The AeroCom evaluation and intercomparison of organic aerosol in global models

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.; Adams, P. J.; Artaxo, P.; Bahadur, R.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Benedetti, A.; Bergman, T.; Berntsen, T. K.; Beukes, J. P.; Bian, H.; Carslaw, K. S.; Chin, M.; Curci, G.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Gong, S. L.; Hodzic, A.; Hoyle, C. R.; Iversen, T.; Jathar, S.; Jimenez, J. L.; Kaiser, J. W.; Kirkevåg, A.; Koch, D.; Kokkola, H.; Lee, Y. H.; Lin, G.; Liu, X.; Luo, G.; Ma, X.; Mann, G. W.; Mihalopoulos, N.; Morcrette, J.-J.; Müller, J.-F.; Myhre, G.; Myriokefalitakis, S.; Ng, S.; O'Donnell, D.; Penner, J. E.; Pozzoli, L.; Pringle, K. J.; Russell, L. M.; Schulz, M.; Sciare, J.; Seland, Ø.; Shindell, D. T.; Sillman, S.; Skeie, R. B.; Spracklen, D.; Stavrakou, T.; Steenrod, S. D.; Takemura, T.; Tiitta, P.; Tilmes, S.; Tost, H.; van Noije, T.; van Zyl, P. G.; von Salzen, K.; Yu, F.; Wang, Z.; Wang, Z.; Zaveri, R. A.; Zhang, H.; Zhang, K.; Zhang, Q.; Zhang, X.

    2014-03-01

    This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry/transport and general circulation models have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over an order of magnitude exists in the modeled vertical distribution of OA that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing and is important for model evaluation against OA and OC observations, it is resolved only by few global models. The median global primary OA (POA) source strength is 56 Tg a-1 (range 34-144 Tg a-1) and the median secondary OA source strength (natural and anthropogenic) is 19 Tg a-1 (range 13-121 Tg a-1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a-1 (range 16-121 Tg a-1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a-1; range 13-20 Tg a-1, with one model at 37 Tg a-1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6-2.0 Tg and 4 between 2.4-3.8 Tg) with a median OA lifetime of 5.4 days (range 3.8-9.6 days). In models that reported both OA and sulfate burdens, the median value of

  3. The AeroCom evaluation and intercomparison of organic aerosol in global models

    DOE PAGES

    Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.; Adams, P. J.; Artaxo, P.; Bahadur, R.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Benedetti, A.; et al

    2014-10-15

    This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemicalmore » and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a–1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a–1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a–1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a–1; range 13–20 Tg a–1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days

  4. The AeroCom evaluation and intercomparison of organic aerosol in global models

    SciTech Connect

    Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.; Adams, P. J.; Artaxo, P.; Bahadur, R.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Benedetti, A.; Bergman, T.; Berntsen, T. K.; Beukes, J. P.; Bian, H.; Carslaw, K. S.; Chin, M.; Curci, G.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Gong, S. L.; Hodzic, A.; Hoyle, C. R.; Iversen, T.; Jathar, S.; Jimenez, J. L.; Kaiser, J. W.; Kirkevåg, A.; Koch, D.; Kokkola, H.; Lee, Y. H.; Lin, G.; Liu, X.; Luo, G.; Ma, X.; Mann, G. W.; Mihalopoulos, N.; Morcrette, J. -J.; Müller, J. -F.; Myhre, G.; Myriokefalitakis, S.; Ng, N. L.; O'Donnell, D.; Penner, J. E.; Pozzoli, L.; Pringle, K. J.; Russell, L. M.; Schulz, M.; Sciare, J.; Seland, Ø.; Shindell, D. T.; Sillman, S.; Skeie, R. B.; Spracklen, D.; Stavrakou, T.; Steenrod, S. D.; Takemura, T.; Tiitta, P.; Tilmes, S.; Tost, H.; van Noije, T.; van Zyl, P. G.; von Salzen, K.; Yu, F.; Wang, Z.; Wang, Z.; Zaveri, R. A.; Zhang, H.; Zhang, K.; Zhang, Q.; Zhang, X.

    2014-10-15

    This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models.

    The median global primary OA (POA) source strength is 56 Tg a–1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a–1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a–1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a–1; range 13–20 Tg a–1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0

  5. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project - Part 2: Environmental driver data

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Liu, S.; Huntzinger, D. N.; Michalak, A. M.; Viovy, N.; Post, W. M.; Schwalm, C. R.; Schaefer, K.; Jacobson, A. R.; Lu, C.; Tian, H.; Ricciuto, D. M.; Cook, R. B.; Mao, J.; Shi, X.

    2013-11-01

    Ecosystems are important and dynamic components of the global carbon cycle, and terrestrial biospheric models (TBMs) are crucial tools in further understanding of how terrestrial carbon is stored and exchanged with the atmosphere across a variety of spatial and temporal scales. Improving TBM model skills, and quantifying and reducing their estimation uncertainties, pose significant challenges. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal multi-scale and multi-model intercomparison effort set up to tackle these challenges. The MsTMIP protocol prescribes standardized environmental driver data that are shared among model teams to facilitate model-model and model-observation comparisons. This paper describes the global and North American environmental driver data sets prepared for the MsTMIP activity to both support their use in MsTMIP and make these data, along with the processes used in selecting/processing these data, accessible to a broader audience. Based on project needs, we compiled climate, atmospheric CO2 concentrations, nitrogen deposition, land-use and land-cover change (LULCC), C3/C4 grasses fractions, major crops, phenology, and soil data into a standard format for global (0.5° x 0.5° resolution) and regional (North American, 0.25° x 0.25° resolution) simulations. In order to meet the needs of MsTMIP, improvements were made to several of the original environmental data sets, by changing the quality, the spatial and temporal coverage, resolution, or a combination of these. The resulting standardized model driver data sets are being used by over 20 different models participating MsTMIP. The data are archived at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov) to provide long-term data management and distribution.

  6. An Intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) Modeling Schemes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An intercomparison of output from two models estimating spatially distributed surface energy fluxes from remotely sensed imagery is conducted. A major difference between the two models is whether the soil and vegetation components of the scene are treated separately (Two-Source Energy Balance; TSEB ...

  7. C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6

    DOE PAGES

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; Bopp, Laurent; Brovkin, Victor; Dunne, John; Graven, Heather; Hoffman, Forrest; Ilyina, Tatiana; John, Jasmin G.; et al

    2016-08-25

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will

  8. C4MIP - The Coupled Climate-Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6

    NASA Astrophysics Data System (ADS)

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; Bopp, Laurent; Brovkin, Victor; Dunne, John; Graven, Heather; Hoffman, Forrest; Ilyina, Tatiana; John, Jasmin G.; Jung, Martin; Kawamiya, Michio; Koven, Charlie; Pongratz, Julia; Raddatz, Thomas; Randerson, James T.; Zaehle, Sönke

    2016-08-01

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate-carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate-carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to

  9. The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: assessing the stratosphere-troposphere system

    NASA Astrophysics Data System (ADS)

    Gerber, Edwin P.; Manzini, Elisa

    2016-09-01

    Diagnostics of atmospheric momentum and energy transport are needed to investigate the origin of circulation biases in climate models and to understand the atmospheric response to natural and anthropogenic forcing. Model biases in atmospheric dynamics are one of the factors that increase uncertainty in projections of regional climate, precipitation and extreme events. Here we define requirements for diagnosing the atmospheric circulation and variability across temporal scales and for evaluating the transport of mass, momentum and energy by dynamical processes in the context of the Coupled Model Intercomparison Project Phase 6 (CMIP6). These diagnostics target the assessments of both resolved and parameterized dynamical processes in climate models, a novelty for CMIP, and are particularly vital for assessing the impact of the stratosphere on surface climate change.

  10. Inter-Comparison of Retrieved and Modelled Soil Moisture and Coherency of Remotely Sensed Hydrology Data

    NASA Astrophysics Data System (ADS)

    Kolassa, Jana; Aires, Filipe

    2013-04-01

    A neural network algorithm has been developed for the retrieval of Soil Moisture (SM) from global satellite observations. The algorithm estimates soil moisture from a synergy of passive and active microwave, infrared and visible satellite observations in order to capture the different SM variabilities that the individual sensors are sensitive to. The advantages and drawbacks of each satellite observation have been analysed and the information type and content carried by each observation have been determined. A global data set of monthly mean soil moisture for the 1993-2000 period has been computed with the neural network algorithm (Kolassa et al., in press, 2012). The resulting soil moisture retrieval product has then been used in an inter-comparison study including soil moisture from (1) the HTESSEL model (Balsamo et al., 2009), (2) the WACMOS satellite product (Liu et al., 2011), and (3) in situ measurements from the International Soil Moisture Network (Dorigo et al., 2011). The analysis showed that the satellite remote sensing products are well-suited to capture the spatial variability of the in situ data and even show the potential to improve the modelled soil moisture. Both satellite retrievals also display a good agreement with the temporal structures of the in situ data, however, HTESSEL appears to be more suitable for capturing the temporal variability (Kolassa et al., in press, 2012). The use of this type of neural network approach is currently being investigated as a retrieval option for the SMOS mission. Our soil moisture retrieval product has also been used in a coherence study with precipitation data from GPCP (Adler et al., 2003) and inundation estimates from GIEMS (Prigent et al., 2007). It was investigated on a global scale whether the three observation-based datasets are coherent with each other and show the expected behaviour. For most regions of the Earth, the datasets were consistent and the behaviour observed could be explained with the known

  11. Evaluation of the Earth System CoG Infrastructure in Supporting a Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Wallis, J. C.; Rood, R. B.; Murphy, S.; Cinquini, L.; DeLuca, C.

    2013-12-01

    Earth System CoG is a web-based collaboration environment that combines data services with metadata and project management services. The environment is particularly suited to support software development and model intercomparison projects. CoG was recently used to support the National Climate Predictions and Projections Platform (NCPP) Quantitative Evaluation of Downscaling (QED-2013) workshop. QED-2013 was a workshop with a community approach for the objective, quantitative evaluation of techniques to downscale climate model predictions and projections. This paper will present a brief introduction to CoG, QED-2013, and findings from an ethnographic evaluation of how CoG supported QED-2013. The QED-2013 workshop focused on real-world application problems drawn from several sectors, and contributed to the informed use of downscaled data. This workshop is a part of a larger effort by NCPP and partner organizations to develop a standardized evaluation framework for local and regional climate information. The main goals of QED-2013 were to a) coordinate efforts for quantitative evaluation, b) develop software infrastructure, c) develop a repository of information, d) develop translational and guidance information, e) identify and engage key user communities, and f) promote collaboration and interoperability. CoG was a key player in QED-2013 support. NCPP was an early adopter of the CoG platform, providing valuable recommendations for overall development plus specific workshop-related requirements. New CoG features developed for QED-2013 included: the ability to publish images and associated metadata contained within XML files to its associated data node combine both artifacts into an integrated display. The ability to modify data search facets into scientifically relevant groups and display dynamic lists of workshop participants and their interests was also added to the interface. During the workshop, the QED-2013 project page on CoG provided meeting logistics, meeting

  12. OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Griffies, Stephen M.; Danabasoglu, Gokhan; Durack, Paul J.; Adcroft, Alistair J.; Balaji, V.; Böning, Claus W.; Chassignet, Eric P.; Curchitser, Enrique; Deshayes, Julie; Drange, Helge; Fox-Kemper, Baylor; Gleckler, Peter J.; Gregory, Jonathan M.; Haak, Helmuth; Hallberg, Robert W.; Heimbach, Patrick; Hewitt, Helene T.; Holland, David M.; Ilyina, Tatiana; Jungclaus, Johann H.; Komuro, Yoshiki; Krasting, John P.; Large, William G.; Marsland, Simon J.; Masina, Simona; McDougall, Trevor J.; Nurser, A. J. George; Orr, James C.; Pirani, Anna; Qiao, Fangli; Stouffer, Ronald J.; Taylor, Karl E.; Treguier, Anne Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valdivieso, Maria; Wang, Qiang; Winton, Michael; Yeager, Stephen G.

    2016-09-01

    The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs.OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations.

  13. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    USGS Publications Warehouse

    David E. Rupp

    2016-01-01

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  14. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    USGS Publications Warehouse

    David E. Rupp,

    2016-05-05

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  15. An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites.

    PubMed

    Cesari, Daniela; Amato, F; Pandolfi, M; Alastuey, A; Querol, X; Contini, D

    2016-08-01

    Source apportionment of aerosol is an important approach to investigate aerosol formation and transformation processes as well as to assess appropriate mitigation strategies and to investigate causes of non-compliance with air quality standards (Directive 2008/50/CE). Receptor models (RMs) based on chemical composition of aerosol measured at specific sites are a useful, and widely used, tool to perform source apportionment. However, an analysis of available studies in the scientific literature reveals heterogeneities in the approaches used, in terms of "working variables" such as the number of samples in the dataset and the number of chemical species used as well as in the modeling tools used. In this work, an inter-comparison of PM10 source apportionment results obtained at three European measurement sites is presented, using two receptor models: principal component analysis coupled with multi-linear regression analysis (PCA-MLRA) and positive matrix factorization (PMF). The inter-comparison focuses on source identification, quantification of source contribution to PM10, robustness of the results, and how these are influenced by the number of chemical species available in the datasets. Results show very similar component/factor profiles identified by PCA and PMF, with some discrepancies in the number of factors. The PMF model appears to be more suitable to separate secondary sulfate and secondary nitrate with respect to PCA at least in the datasets analyzed. Further, some difficulties have been observed with PCA in separating industrial and heavy oil combustion contributions. Commonly at all sites, the crustal contributions found with PCA were larger than those found with PMF, and the secondary inorganic aerosol contributions found by PCA were lower than those found by PMF. Site-dependent differences were also observed for traffic and marine contributions. The inter-comparison of source apportionment performed on complete datasets (using the full range of

  16. An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites.

    PubMed

    Cesari, Daniela; Amato, F; Pandolfi, M; Alastuey, A; Querol, X; Contini, D

    2016-08-01

    Source apportionment of aerosol is an important approach to investigate aerosol formation and transformation processes as well as to assess appropriate mitigation strategies and to investigate causes of non-compliance with air quality standards (Directive 2008/50/CE). Receptor models (RMs) based on chemical composition of aerosol measured at specific sites are a useful, and widely used, tool to perform source apportionment. However, an analysis of available studies in the scientific literature reveals heterogeneities in the approaches used, in terms of "working variables" such as the number of samples in the dataset and the number of chemical species used as well as in the modeling tools used. In this work, an inter-comparison of PM10 source apportionment results obtained at three European measurement sites is presented, using two receptor models: principal component analysis coupled with multi-linear regression analysis (PCA-MLRA) and positive matrix factorization (PMF). The inter-comparison focuses on source identification, quantification of source contribution to PM10, robustness of the results, and how these are influenced by the number of chemical species available in the datasets. Results show very similar component/factor profiles identified by PCA and PMF, with some discrepancies in the number of factors. The PMF model appears to be more suitable to separate secondary sulfate and secondary nitrate with respect to PCA at least in the datasets analyzed. Further, some difficulties have been observed with PCA in separating industrial and heavy oil combustion contributions. Commonly at all sites, the crustal contributions found with PCA were larger than those found with PMF, and the secondary inorganic aerosol contributions found by PCA were lower than those found by PMF. Site-dependent differences were also observed for traffic and marine contributions. The inter-comparison of source apportionment performed on complete datasets (using the full range of

  17. Simulating wind energy resources with mesoscale models: Intercomparison of state-of-the-art models over Northern Europe

    NASA Astrophysics Data System (ADS)

    Hahmann, A. N.

    2015-12-01

    Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are useful because they give information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Various mesoscale models and families of mesoscale models are being used, with thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. We have carried out a blind benchmarking study to evaluate the capabilities of mesoscale models used in wind energy to estimate site wind conditions: to highlight common issues on mesoscale modeling of wind conditions on sites with different characteristics, and to identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. Three experimental sites with tall mast measurements were selected: FINO3 (offshore), Høvsøre (coastal), and Cabauw (land-based). The participants were asked to provide hourly time series of wind speed and direction, temperature, etc., at various heights for 2011. The methods used were left to the choice of the participants, but they were asked for a detailed description of their model and many other parameters (e.g., horizontal and vertical resolution, model parameterizations, surface roughness length) that could be used to group the models and interpret the results of the intercomparison. The analysis of the time series includes comparison to observations, summarized with well-known measures such as biases, RMSE, correlations, and of sector-wise statistics, and the temporal spectra. The statistics were grouped by the models, their spatial resolution, forcing data, various integration methods, etc. The results show high fidelity of the various entries in simulating the wind climate at the offshore and coastal site. Over land and the statistics of other derived fields

  18. Looking beyond general metrics for model evaluation - lessons from an international model intercomparison study

    NASA Astrophysics Data System (ADS)

    Bouaziz, Laurène; de Boer-Euser, Tanja; Brauer, Claudia; Drogue, Gilles; Fenicia, Fabrizio; Grelier, Benjamin; de Niel, Jan; Nossent, Jiri; Pereira, Fernando; Savenije, Hubert; Thirel, Guillaume; Willems, Patrick

    2016-04-01

    International collaboration between institutes and universities is a promising way to reach consensus on hydrological model development. Education, experience and expert knowledge of the hydrological community have resulted in the development of a great variety of model concepts, calibration methods and analysis techniques. Although comparison studies are very valuable for international cooperation, they do often not lead to very clear new insights regarding the relevance of the modelled processes. We hypothesise that this is partly caused by model complexity and the used comparison methods, which focus on a good overall performance instead of focusing on specific events. We propose an approach that focuses on the evaluation of specific events. Eight international research groups calibrated their model for the Ourthe catchment in Belgium (1607 km2) and carried out a validation in time for the Ourthe (i.e. on two different periods, one of them on a blind mode for the modellers) and a validation in space for nested and neighbouring catchments of the Meuse in a completely blind mode. For each model, the same protocol was followed and an ensemble of best performing parameter sets was selected. Signatures were first used to assess model performances in the different catchments during validation. Comparison of the models was then followed by evaluation of selected events, which include: low flows, high flows and the transition from low to high flows. While the models show rather similar performances based on general metrics (i.e. Nash-Sutcliffe Efficiency), clear differences can be observed for specific events. While most models are able to simulate high flows well, large differences are observed during low flows and in the ability to capture the first peaks after drier months. The transferability of model parameters to neighbouring and nested catchments is assessed as an additional measure in the model evaluation. This suggested approach helps to select, among competing

  19. Effects of model physics on hypoxia simulations for the northern Gulf of Mexico: A model intercomparison

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Laurent, Arnaud; Hetland, Robert; Justić, Dubravko; Ko, Dong S.; Lehrter, John; Murrell, Michael; Wang, Lixia; Yu, Liuqian; Zhang, Wenxia

    2016-08-01

    A large hypoxic zone forms every summer on the Texas-Louisiana Shelf in the northern Gulf of Mexico due to nutrient and freshwater inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through reductions in river nutrient inputs, but the response of hypoxia to such nutrient load reductions is difficult to predict because biological responses are confounded by variability in physical processes. The objective of this study is to identify the major physical model aspects that matter for hypoxia simulation and prediction. In order to do so, we compare three different circulation models (ROMS, FVCOM, and NCOM) implemented for the northern Gulf of Mexico, all coupled to the same simple oxygen model, with observations and against each other. By using a highly simplified oxygen model, we eliminate the potentially confounding effects of a full biogeochemical model and can isolate the effects of physical features. In a systematic assessment, we found that (1) model-to-model differences in bottom water temperatures result in differences in simulated hypoxia because temperature influences the uptake rate of oxygen by the sediments (an important oxygen sink in this system), (2) vertical stratification does not explain model-to-model differences in hypoxic conditions in a straightforward way, and (3) the thickness of the bottom boundary layer, which sets the thickness of the hypoxic layer in all three models, is key to determining the likelihood of a model to generate hypoxic conditions. These results imply that hypoxic area, the commonly used metric in the northern Gulf which ignores hypoxic layer thickness, is insufficient for assessing a model's ability to accurately simulate hypoxia, and that hypoxic volume needs to be considered as well.

  20. Winter cyclone frequencies in thirteen models participating in the Atmospheric Model Intercomparison Project (AMIP1)

    NASA Astrophysics Data System (ADS)

    Lambert, S. J.; Sheng, J.; Boyle, J.

    Various aspects of the simulated behaviour of cyclones in thirteen models participating in the AMIP1 exercise are presented. In the simulation of the winter climatological mean sea level pressure field for the Northern Hemisphere, the models produce reasonable simulations of the "semi-permanent" features of the climatology. The greatest departures from the observed climatology occur near the exit regions of the oceanic storm tracks; i.e., over northwestern North America, over and to the west of the British Isles and in the Mediterranean. The departures in the three geographical areas are very systematic in that at least eleven of the models exhibit similar departures from observations. In the Southern Hemisphere the intensity of the circumpolar trough is generally well simulated but positioned slightly too far north. Most models exhibit errors south of Africa, New Zealand, and South America. The simulations of the cyclone events show that the models are reasonably successful in reproducing the large-scale aspects of observed cyclone events but deficiencies in the details of the simulations are apparent. The paucity of simulated events to the south of the Alps and to the east of the Rockies suggests that the models have difficulty simulating lee cyclogenesis. Over much of North America, the models have difficulty simulating the correct level of synoptic activity as demonstrated by the low numbers of both cyclone events and anticyclone events. The models have difficulty simulating the distribution of cyclone events as a function of central pressure. The most common problem is that the models exhibit an ever increasing deficit of events with decreasing central pressure. This problem is more apparent in the Southern Hemisphere than in the Northern Hemisphere and does not appear to be resolution dependent. There is an apparent ENSO signal in the observed Northern Hemisphere interannual variability of intense winter cyclone events. With the exception of ECMWF, the models

  1. Inter-comparison of Computer Codes for TRISO-based Fuel Micro-Modeling and Performance Assessment

    SciTech Connect

    Brian Boer; Chang Keun Jo; Wen Wu; Abderrafi M. Ougouag; Donald McEachren; Francesco Venneri

    2010-10-01

    The Next Generation Nuclear Plant (NGNP), the Deep Burn Pebble Bed Reactor (DB-PBR) and the Deep Burn Prismatic Block Reactor (DB-PMR) are all based on fuels that use TRISO particles as their fundamental constituent. The TRISO particle properties include very high durability in radiation environments, hence the designs reliance on the TRISO to form the principal barrier to radioactive materials release. This durability forms the basis for the selection of this fuel type for applications such as Deep Bun (DB), which require exposures up to four times those expected for light water reactors. It follows that the study and prediction of the durability of TRISO particles must be carried as part of the safety and overall performance characterization of all the designs mentioned above. Such evaluations have been carried out independently by the performers of the DB project using independently developed codes. These codes, PASTA, PISA and COPA, incorporate models for stress analysis on the various layers of the TRISO particle (and of the intervening matrix material for some of them), model for fission products release and migration then accumulation within the SiC layer of the TRISO particle, just next to the layer, models for free oxygen and CO formation and migration to the same location, models for temperature field modeling within the various layers of the TRISO particle and models for the prediction of failure rates. All these models may be either internal to the code or external. This large number of models and the possibility of different constitutive data and model formulations and the possibility of a variety of solution techniques makes it highly unlikely that the model would give identical results in the modeling of identical situations. The purpose of this paper is to present the results of an inter-comparison between the codes and to identify areas of agreement and areas that need reconciliation. The inter-comparison has been carried out by the cooperating

  2. Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Putti, M.; Meyerhoff, S.; Delfs, J.-O.; Ferguson, I. M.; Ivanov, V.; Kim, J.; Kolditz, O.; Kollet, S. J.; Kumar, M.; Paniconi, C.; Park, Y.-J.; Phanikumar, M. S.; Sudicky, E.; Sulis, M.

    2012-04-01

    There is a growing number of large scale, complex hydrologic models with fully 2D and 3D formulations that seek to combine surface and subsurface flow. Many of these models are coupled to land-surface energy balances, biogeochemical and ecological process models, and atmospheric models. Although they are being increasingly applied for hydrologic prediction and environmental understanding, no formal verification and/or benchmarking of these models has been performed. This presentation describes the results of a first intercomparison study of surface-subsurface models. The study is based on a series of benchmark problems, and the simulation results from seven coupled hydrologic models are presented. All the models simultaneously solve adapted forms of the Richards and shallow water equations, yet they span a range of approaches for the solution of the coupled equations, including global implicit, sequential iterative, and asynchronous linking. Various strategies are used to enforce flux and pressure continuity at the surface--subsurface interface. The simulation results show good agreement for the simpler test cases, while the more complicated test cases bring out some of the differences in physical process representations and numerical resolution approaches between the models. This project funded by the United States National Science Foundation (NSF) Grant EAR-1126761.

  3. Implementation and model to model intercomparison of 12 heat stress metrics

    NASA Astrophysics Data System (ADS)

    Buzan, Jonathan R.

    Earth system models simulate the dynamics of the most complex systems on our planet with some success. Despite the overwhelming sophistication of these models, which include dynamical interactions of ocean, atmosphere, vegetation, ice, and land-surface properties, they fail to include the most important element. People. Humans are also a complex physical-biological system and coupling of human physiology within an Earth Systems Modeling framework is challenging. This thesis presents results that tackle one particular component of human physiological climate interaction--a representation of heat stress on human physiology. Twelve different metrics were implemented and analyzed. These metrics represent a variety of philosophical approaches to characterizing heat stress: thermal comfort, physiological responses, and first principle physics. We implemented these 12 metrics into the Community Land Model (CLM4.5). All of the metrics implemented measure the covariance of near surface atmospheric variables: temperature, pressure, and humidity. Results show that heat stress may be broken into two regimes; arid and non-arid regions (i.e. the rest of the land surface). Additionally, results show that the highest heat stress zones are a robust feature with low variability. Temperatures vary by +/-3°C as compared to +/-1°C wet bulb temperatures, and is consistent over a vast area of Earth.

  4. Evaluation of Present-day Aerosols over China Simulated from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Liao, H.; Chang, W.

    2014-12-01

    High concentrations of aerosols over China lead to strong radiative forcing that is important for both regional and global climate. To understand the representation of aerosols in China in current global climate models, we evaluate extensively the simulated present-day aerosol concentrations and aerosol optical depth (AOD) over China from the 12 models that participated in Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP), by using ground-based measurements and satellite remote sensing. Ground-based measurements of aerosol concentrations used in this work include those from the China Meteorological Administration (CMA) Atmosphere Watch Network (CAWNET) and the observed fine-mode aerosol concentrations collected from the literature. The ground-based measurements of AOD in China are taken from the AErosol RObotic NETwork (AERONET), the sites with CIMEL sun photometer operated by Institute of Atmospheric Physics, Chinese Academy of Sciences, and from Chinese Sun Hazemeter Network (CSHNET). We find that the ACCMIP models generally underestimate concentrations of all major aerosol species in China. On an annual mean basis, the multi-model mean concentrations of sulfate, nitrate, ammonium, black carbon, and organic carbon are underestimated by 63%, 73%, 54%, 53%, and 59%, respectively. The multi-model mean AOD values show low biases of 20-40% at studied sites in China. The ACCMIP models can reproduce seasonal variation of nitrate but cannot capture well the seasonal variations of other aerosol species. Our analyses indicate that current global models generally underestimate the role of aerosols in China in climate simulations.

  5. Longitudinal Inter-Comparison of Modeled and Measured West Greenland Ice Sheet Meltwater Runoff Losses (2004-2014)

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Tedesco, M.; Mote, T. L.; Koenig, L.; Smith, L. C.; Hagedorn, B.; Overeem, I.; Sletten, R. S.; Mikkelsen, A. B.; Hasholt, B.; Hall, D. K.

    2015-12-01

    Increased surface meltwater runoff, that exits the Greenland ice sheet (GrIS) margin via supra-, en-, and sub-glacial drainage networks into fjords, pro-glacial lakes and rivers, accounts for half or more of total mass loss. Despite its importance, modeled meltwater runoff fluxes are poorly constrained, primarily due to a lack of direct in situ observations. Here, we present the first ever longitudinal (north-south) inter-comparison of a multi-year dataset (2004-2014) of discharge for four drainage basins - Watson, Akuliarusiarsuup Kuua, Naujat Kuat, and North Rivers - along West Greenland. These in situ hydrologic measurements are compared with modeled runoff output from Modèle Atmosphérique Régional (MAR) regional climate model, and the performance of the model is examined. An analysis of the relationship between modeled and actual ice sheet runoff patterns is assessed, and provides insight into the model's ability to capture inter-annual and intra-annual variability, spatiotemporal patterns, and extreme melt events. This study's findings will inform future development and parameterization of ice sheet surface mass balance models.

  6. Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions.

    PubMed

    Cai, Chenxia; Kelly, James T; Avise, Jeremy C; Kaduwela, Ajith P; Stockwell, William R

    2011-05-01

    An updated version of the Statewide Air Pollution Research Center (SAPRC) chemical mechanism (SAPRC07C) was implemented into the Community Multiscale Air Quality (CMAQ) version 4.6. CMAQ simulations using SAPRC07C and the previously released version, SAPRC99, were performed and compared for an episode during July-August, 2000. Ozone (O3) predictions of the SAPRC07C simulation are generally lower than those of the SAPRC99 simulation in the key areas of central and southern California, especially in areas where modeled concentrations are greater than the federal 8-hr O3 standard of 75 parts per billion (ppb) and/or when the volatile organic compound (VOC)/nitrogen oxides (NOx) ratio is less than 13. The relative changes of ozone production efficiency (OPE) against the VOC/NOx ratio at 46 sites indicate that the OPE is reduced in SAPRC07C compared with SAPRC99 at most sites by as much as approximately 22%. The SAPRC99 and SAPRC07C mechanisms respond similarly to 20% reductions in anthropogenic VOC emissions. The response of the mechanisms to 20% NOx emissions reductions can be grouped into three cases. In case 1, in which both mechanisms show a decrease in daily maximum 8-hr O3 concentration with decreasing NOx emissions, the O3 decrease in SAPRC07C is smaller. In case 2, in which both mechanisms show an increase in O3 with decreasing NOx emissions, the O3 increase is larger in SAPRC07C. In case 3, SAPRC07C simulates an increase in O3 in response to reduced NOx emissions whereas SAPRC99 simulates a decrease in O3 for the same region. As a result, the areas where NOx controls would be disbeneficial are spatially expanded in SAPRC07C. Although the results presented here are valuable for understanding differences in predictions and model response for SAPRC99 and SAPRC07C, the study did not evaluate the impact of mechanism differences in the context of the U.S. Environmental Protection Agency's guidance for using numerical models in demonstrating air quality attainment

  7. Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions.

    PubMed

    Cai, Chenxia; Kelly, James T; Avise, Jeremy C; Kaduwela, Ajith P; Stockwell, William R

    2011-05-01

    An updated version of the Statewide Air Pollution Research Center (SAPRC) chemical mechanism (SAPRC07C) was implemented into the Community Multiscale Air Quality (CMAQ) version 4.6. CMAQ simulations using SAPRC07C and the previously released version, SAPRC99, were performed and compared for an episode during July-August, 2000. Ozone (O3) predictions of the SAPRC07C simulation are generally lower than those of the SAPRC99 simulation in the key areas of central and southern California, especially in areas where modeled concentrations are greater than the federal 8-hr O3 standard of 75 parts per billion (ppb) and/or when the volatile organic compound (VOC)/nitrogen oxides (NOx) ratio is less than 13. The relative changes of ozone production efficiency (OPE) against the VOC/NOx ratio at 46 sites indicate that the OPE is reduced in SAPRC07C compared with SAPRC99 at most sites by as much as approximately 22%. The SAPRC99 and SAPRC07C mechanisms respond similarly to 20% reductions in anthropogenic VOC emissions. The response of the mechanisms to 20% NOx emissions reductions can be grouped into three cases. In case 1, in which both mechanisms show a decrease in daily maximum 8-hr O3 concentration with decreasing NOx emissions, the O3 decrease in SAPRC07C is smaller. In case 2, in which both mechanisms show an increase in O3 with decreasing NOx emissions, the O3 increase is larger in SAPRC07C. In case 3, SAPRC07C simulates an increase in O3 in response to reduced NOx emissions whereas SAPRC99 simulates a decrease in O3 for the same region. As a result, the areas where NOx controls would be disbeneficial are spatially expanded in SAPRC07C. Although the results presented here are valuable for understanding differences in predictions and model response for SAPRC99 and SAPRC07C, the study did not evaluate the impact of mechanism differences in the context of the U.S. Environmental Protection Agency's guidance for using numerical models in demonstrating air quality attainment

  8. Assessing doses to terrestrial wildlife at a radioactive waste disposal site: inter-comparison of modelling approaches.

    PubMed

    Johansen, M P; Barnett, C L; Beresford, N A; Brown, J E; Černe, M; Howard, B J; Kamboj, S; Keum, D-K; Smodiš, B; Twining, J R; Vandenhove, H; Vives i Batlle, J; Wood, M D; Yu, C

    2012-06-15

    Radiological doses to terrestrial wildlife were examined in this model inter-comparison study that emphasised factors causing variability in dose estimation. The study participants used varying modelling approaches and information sources to estimate dose rates and tissue concentrations for a range of biota types exposed to soil contamination at a shallow radionuclide waste burial site in Australia. Results indicated that the dominant factor causing variation in dose rate estimates (up to three orders of magnitude on mean total dose rates) was the soil-to-organism transfer of radionuclides that included variation in transfer parameter values as well as transfer calculation methods. Additional variation was associated with other modelling factors including: how participants conceptualised and modelled the exposure configurations (two orders of magnitude); which progeny to include with the parent radionuclide (typically less than one order of magnitude); and dose calculation parameters, including radiation weighting factors and dose conversion coefficients (typically less than one order of magnitude). Probabilistic approaches to model parameterisation were used to encompass and describe variable model parameters and outcomes. The study confirms the need for continued evaluation of the underlying mechanisms governing soil-to-organism transfer of radionuclides to improve estimation of dose rates to terrestrial wildlife. The exposure pathways and configurations available in most current codes are limited when considering instances where organisms access subsurface contamination through rooting, burrowing, or using different localised waste areas as part of their habitual routines.

  9. RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models

    NASA Astrophysics Data System (ADS)

    Widlowski, J.-L.; Pinty, B.; Clerici, M.; Dai, Y.; de Kauwe, M.; De Ridder, K.; Kallel, A.; Kobayashi, H.; Lavergne, T.; Ni-Meister, W.; Olchev, A.; Quaife, T.; Wang, S.; Yang, W.; Yang, Y.; Yuan, H.

    2011-06-01

    Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.

  10. Intercomparison of simulation models for CO{sub 2} disposal in underground storage reservoirs

    SciTech Connect

    Pruess, K.; Tsang, C.F.; Law, D.; Oldenburg, C.

    2001-01-01

    An intercomparison study between simulation codes for terrestrial sequestration of CO{sub 2} is proposed. The objectives are, on the one hand, to focus and evaluate key processes through numerical simulation and, on the other, to explore the strengths of different codes and achieve acceptance of such codes for use in the development of geologic systems for CO{sub 2} disposal. This will be carried out through the study of a series of test problems by groups using their simulation codes. A progression from simple and uncoupled to increasingly complex and coupled problems is envisioned. The proposed study will attempt to involve interested technical groups worldwide, and will proceed through an iterative process of problem definition, solution comparison, discussion and refinement. The Internet will be used as a medium for communicating and organizing activities, and for a flexible exchange of information and documentation of results. In addition, it is planned to hold a series of workshops. The present write-up includes an initial set of eight proposed test problems and represents the first step in the process. Readers are encouraged to communicate with us at the email address above to indicate their interest and to provide suggestions and input.

  11. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents

    NASA Astrophysics Data System (ADS)

    Vetter, T.; Huang, S.; Aich, V.; Yang, T.; Wang, X.; Krysanova, V.; Hattermann, F.

    2015-01-01

    Climate change impacts on hydrological processes should be simulated for river basins using validated models and multiple climate scenarios in order to provide reliable results for stakeholders. In the last 10-15 years, climate impact assessment has been performed for many river basins worldwide using different climate scenarios and models. However, their results are hardly comparable, and do not allow one to create a full picture of impacts and uncertainties. Therefore, a systematic intercomparison of impacts is suggested, which should be done for representative regions using state-of-the-art models. Only a few such studies have been available until now with the global-scale hydrological models, and our study is intended as a step in this direction by applying the regional-scale models. The impact assessment presented here was performed for three river basins on three continents: the Rhine in Europe, the Upper Niger in Africa and the Upper Yellow in Asia. For that, climate scenarios from five general circulation models (GCMs) and three hydrological models, HBV, SWIM and VIC, were used. Four representative concentration pathways (RCPs) covering a range of emissions and land-use change projections were included. The objectives were to analyze and compare climate impacts on future river discharge and to evaluate uncertainties from different sources. The results allow one to draw some robust conclusions, but uncertainties are large and shared differently between sources in the studied basins. Robust results in terms of trend direction and slope and changes in seasonal dynamics could be found for the Rhine basin regardless of which hydrological model or forcing GCM is used. For the Niger River, scenarios from climate models are the largest uncertainty source, providing large discrepancies in precipitation, and therefore clear projections are difficult to do. For the Upper Yellow basin, both the hydrological models and climate models contribute to uncertainty in the

  12. Task-focused modeling in automated agriculture

    NASA Astrophysics Data System (ADS)

    Vriesenga, Mark R.; Peleg, K.; Sklansky, Jack

    1993-01-01

    Machine vision systems analyze image data to carry out automation tasks. Our interest is in machine vision systems that rely on models to achieve their designed task. When the model is interrogated from an a priori menu of questions, the model need not be complete. Instead, the machine vision system can use a partial model that contains a large amount of information in regions of interest and less information elsewhere. We propose an adaptive modeling scheme for machine vision, called task-focused modeling, which constructs a model having just sufficient detail to carry out the specified task. The model is detailed in regions of interest to the task and is less detailed elsewhere. This focusing effect saves time and reduces the computational effort expended by the machine vision system. We illustrate task-focused modeling by an example involving real-time micropropagation of plants in automated agriculture.

  13. Host Model Uncertainties in Aerosol Radiative Forcing Estimates: Results from the AeroCom Prescribed Intercomparison Study

    SciTech Connect

    Stier, Phillip; Schutgens, Nick A.; Bellouin, N.; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven J.; Huneeus, N.; Kinne, Stefan; Lin, G.; Ma, Xiaoyan; Myhre, G.; Penner, J. E.; Randles, Cynthia; Samset, B. H.; Schulz, M.; Takemura, T.; Yu, Fangqun; Yu, Hongbin; Zhou, Cheng

    2013-03-20

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as mea- sure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties,simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 Wm-2 and the inter-model standard deviation is 0.70 Wm-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 Wm-2, and the standard deviation increases to 1.21 W-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative in the AeroCom Direct Effect experiment, demonstrates that host model uncertain- ties could explain about half of the overall sulfate forcing diversity of 0.13 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained.

  14. Forward Model Studies of Water Vapor Using Scanning Microwave Radiometers, Global Positioning System, and Radiosondes during the Cloudiness Intercomparison Experiment

    SciTech Connect

    Mattioli, Vinia; Westwater, Ed R.; Gutman, S.; Morris, Victor R.

    2005-05-01

    Brightness temperatures computed from five absorption models and radiosonde observations were analyzed by comparing them with measurements from three microwave radiometers at 23.8 and 31.4 GHz. Data were obtained during the Cloudiness Inter-Comparison experiment at the U.S. Department of Energy's Atmospheric Radiation Measurement Program's (ARM) site in North-Central Oklahoma in 2003. The radiometers were calibrated using two procedures, the so-called instantaneous ?tipcal? method and an automatic self-calibration algorithm. Measurements from the radiometers were in agreement, with less than a 0.4-K difference during clear skies, when the instantaneous method was applied. Brightness temperatures from the radiometer and the radiosonde showed an agreement of less than 0.55 K when the most recent absorption models were considered. Precipitable water vapor (PWV) computed from the radiometers were also compared to the PWV derived from a Global Positioning System station that operates at the ARM site. The instruments agree to within 0.1 cm in PWV retrieval.

  15. Intercomparison of remote sensing-based evapotranspiration models using SGP and SMEX data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate characterization of evapotranspiration (ET) over a range of spatial and temporal scales is critical for many applications in hydrology, ecohydrology, meteorology, climatology, and agriculture. Over the past several years, there has been a major effort devoted to the development and refineme...

  16. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) Software Development: Applications, Infrastructure, and Middleware/Networks

    SciTech Connect

    Williams, Dean N.

    2011-06-30

    The status of and future plans for the Program for Climate Model Diagnosis and Intercomparison (PCMDI) hinge on software that PCMDI is either currently distributing or plans to distribute to the climate community in the near future. These software products include standard conventions, national and international federated infrastructures, and community analysis and visualization tools. This report also mentions other secondary software not necessarily led by or developed at PCMDI to provide a complete picture of the overarching applications, infrastructures, and middleware/networks. Much of the software described anticipates the use of future technologies envisioned over the span of next year to 10 years. These technologies, together with the software, will be the catalyst required to address extreme-scale data warehousing, scalability issues, and service-level requirements for a diverse set of well-known projects essential for predicting climate change. These tools, unlike the previous static analysis tools of the past, will support the co-existence of many users in a productive, shared virtual environment. This advanced technological world driven by extreme-scale computing and the data it generates will increase scientists’ productivity, exploit national and international relationships, and push research to new levels of understanding.

  17. An Intercomparison of Cloud-Resolving Models with the Atmospheric Radiation Measurement Summer 1997 Intensive Observation Period Data

    NASA Astrophysics Data System (ADS)

    Xu, Kuan-Man; Cederwall, Richard T.; Donner, Leo J.; Grabowski, Wojciech W.; Guichard, Francoise; Johnson, Daniel E.; Khairoutdinov, Marat; Krueger, Steven K.; Petch, Jon C.; Randall, David A.

    2002-01-01

    This paper reports an intercomparison study of midlatitude continental cumulus convection simulated by eight two-dimensional and two three-dimensional cloud-resolving models (CRMs), driven by observed large-scale advective temperature and moisture tendencies, surface turbulent fluxes, and radiative-heating profiles during three sub-periods of the summer 1997 Intensive Observation Period of the US Department of Energy's Atmospheric Radiation Measurement (ARM) program. Each sub-period includes two or three precipitation events of various intensities over a span of 4 or 5 days. The results can be summarized as follows. CRMs can reasonably simulate midlatitude continental summer convection observed at the ARM Cloud and Radiation Testbed site in terms of the intensity of convective activity, and the temperature and specific-humidity evolution. Delayed occurrences of the initial precipitation events are a common feature for all three sub-cases among the models. Cloud mass fluxes, condensate mixing ratios and hydrometeor fractions produced by all CRMs are similar. Some of the simulated cloud properties such as cloud liquid-water path and hydrometeor fraction are rather similar to available observations. All CRMs produce large downdraught mass fluxes with magnitudes similar to those of updraughts, in contrast to CRM results for tropical convection. Some inter-model differences in cloud properties are likely to be related to those in the parametrizations of microphysical processes. There is generally a good agreement between the CRMs and observations with CRMs being significantly better than single-column models (SCMs), suggesting that current results are suitable for use in improving parametrizations in SCMs. However, improvements can still be made in the CRM simulations; these include the proper initialization of the CRMs and a more proper method of diagnosing cloud boundaries in model outputs for comparison with satellite and radar cloud observations.

  18. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect

    Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-06-24

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-μm infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

  19. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect

    Varble, Adam; Fridlind, Ann; Zipser, Edward J.; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-10-04

    The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. In stratiform regions, there is a large spread in model results with none resembling observed distributions. Above the melting level, observed radar reflectivity decreases more gradually with height than simulated radar reflectivity. A few simulations produce unrealistically uniform and cold 10.8-μm infrared brightness temperatures, but several simulations produce distributions close to observed. Assumed ice particle size distributions appear to play a larger role than ice water contents in producing incorrect simulated radar reflectivity distributions aloft despite substantial differences in mean graupel and snow water contents across models.

  20. A Spatial Data Model Desing For The Management Of Agricultural Data (Farmer, Agricultural Land And Agricultural Production)

    NASA Astrophysics Data System (ADS)

    Taşkanat, Talha; İbrahim İnan, Halil

    2016-04-01

    Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and

  1. Arctic Cryosphere Response in the Geoengineering Model Intercomparison Project (GeoMIP) G3 and G4 scenarios

    NASA Astrophysics Data System (ADS)

    Berdahl, M.; Robock, A.

    2013-12-01

    Geoengineering has been proposed in recent literature as a way to curb global warming and reduce some of the risks associated therein. It is of paramount interest to assess the effects of geoengineering on the Arctic, given its high sensitivity to increases in greenhouse gases and the weighty consequences of continued warming. We ask whether geoengineering by injection of sulfate aerosols into the lower stratosphere from the years 2020 to 2070 is able to prevent the demise of minimum annual sea ice, or slow spring snow cover loss. We used results from the Geoengineering Model Intercomparison Project (GeoMIP) for the two most 'realistic' scenarios, which use the Representative Concentration Pathway of 4.5 Wm-2 by 2100 (RCP4.5) as the control run and inject sulfate aerosol precursors into the stratosphere. The first experiment, G3, aims to balance radiative forcing of RCP4.5 at 2020 levels by injection of sulfate aerosols, and the second, G4, injects 5 Tg SO2 per year. We show that in all available models, despite geoengineering efforts, September sea ice extents still decrease from 2020 to 2070, although not as quickly as in RCP4.5. In two of five models, total September ice loss occurs before 2060. Spring snow extent is increased from 2020 to 2070 compared to RCP4.5 although there is still a decreasing trend in 3 of 4 models. Because of the climate system lag in responding to the existing radiative forcing, to stop Arctic sea ice and snow from continuing to melt, the imposed forcing would have to be large enough to also counteract the existing radiative imbalance. After the cessation of sulfate aerosol injection in 2070, the climate system rebounds to the warmer RCP4.5 state quickly, and thus any sea ice or snow retention as a result of geoengineering is lost within a decade.

  2. DUE PERMAFROST: A Circumpolar Remote Sensing Service for Permafrost - Evaluation Case Studies and Intercomparison with Regional Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Heim, B.; Bartsch, A.; Elger, K. K.; Rinke, A.; Matthes, H.; Zhou, X.; Klehmet, K.; Buchhorn, M.; Soliman, A. S.; Duguay, C. R.

    2013-12-01

    stakeholders and the IPA, and the ongoing evaluation of the remote sensing derived products make the DUE Permafrost products accepted by the scientific community. The Helmholtz Climate Initiative REKLIM (Regionale KlimaAnderungen/Regional climate change) is a climate research program where regional observations and process studies are coupled with model simulations (http://www.reklim.de/en/home/). The ESA DUE Permafrost User workshops initiated the use of the DUE time series within the REKLIM framework for inter-comparison experiments in order to assist the evaluation of calculated parameter fields of models. Within the REKLIM framework we spatio-temporally compare the geophysical surface parameters simulated by regional climate models with the spatio-temporal variability of Earth Observational remote sensing products. Earth Observational remote sensing products are: DUE Permafrost, DUE GlobSnow (http://www.globsnow.info) and the MODIS albedo product (MOD 43). We show intercomparison substudies on simulated fields of surface temperature and ground frozen, non-frozen state simulated by the regional climate models HIRHAM for the circumpolar domain and COSMO-CLM for Central Siberia.

  3. Future changes in surface ozone over the Mediterranean region from the Atmospheric Chemistry and Climate Model Intercomparison (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Jaidan, Nizar; El Amraoui, Laaziz; Attié, Jean-Luc; Ricaud, Philippe

    2016-04-01

    The Mediterranean basin (MB), surrounded by three continents with diverse pollution sources, is a region favoring the stagnation of pollutants and air pollution, in particular during summer. This region is also particularly sensitive to climate change due to its location and diversity of ecosystems. We focused on surface ozone evolution over the MB during the next century as well as sources contributing to the increase of ozone in the MB which are varied and depending on the location. In the framework of the ChArMEx (Chemistry and Aerosol Mediterranean Experiment) project, we focused on future changes in surface ozone from 2000 to 2100 above the MB using model outputs from the Atmospheric Chemistry and Climate Model Intercomparison (ACCMIP) project. We used the four different emission scenarios called RCPs (Representation Concentration Pathways) to highlight the impact and the evolution of different parameters contributing to surface ozone changes. . In a first step, we will evaluate the ACCMIP model outputs using surface ozone observations from different ground-based networks (EMEP, WMO-GAW and Airbase) over the historical period (1990-2010). In the second step, the impacts of ozone precursors such as VOCS, Nox and CH4 as well as those of meteorological parameters on the surface ozone are investigated. The ozone budget over the MB is also discussed. Three periods are considered:a reference period which corresponds to the 2000 time slices representing a combination of the best information available from existing regional and global inventories in the years 2008-2009 when the inventory was built and two future periods in both the short and long term, corresponding respectively to the 2030 and 2100 time slices from the RCPs.

  4. Upper-soil moisture inter-comparison from SMOS's products and land surface models over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Polcher, Jan; Barella-Ortiz, Anaïs; Aires, Filipe; Balsamo, Gianpaolo; Gelati, Emiliano; Rodríguez-Fernández, Nemesio

    2015-04-01

    Soil moisture is a key state variable of the hydrological cycle. It conditions runoff, infiltration and evaporation over continental surfaces, and is key for forecasting droughts and floods. It plays thus an important role in surface-atmosphere interactions. Surface Soil Moisture (SSM) can be measured by in situ measurements, by satellite observations or modelled using land surface models. As a complementary tool, data assimilation can be used to combine both modelling and satellite observations. The work presented here is an inter-comparison of retrieved and modelled SSM data, for the 2010 - 2012 period, over the Iberian Peninsula. The region has been chosen because its vegetation cover is not very dense and includes strong contrasts in the rainfall regimes and thus a diversity of behaviours for SSM. Furthermore this semi-arid region is strongly dependent on a good management of its water resources. Satellite observations correspond to the Soil Moisture and Ocean Salinity (SMOS) retrievals: the L2 product from an optimal interpolation retrieval, and 3 other products using Neural Network retrievals with different input information: SMOS time indexes, purely SMOS data, or addition of the European Advanced Scaterometer (ASCAT) backscattering, and the Moderate-Resolution Imaging Spectrometer (MODIS) surface temperature information. The modelled soil moistures have been taken from the ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEms) and the HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) land surface models. Both models are forced with the same atmospheric conditions (as part of the Earth2Observe FP7 project) over the period but they represent the surface soil moisture with very different degrees of complexity. ORCHIDEE has 5 levels in the top 5 centimetres of soil while in HTESSEL this variable is part of the top soil moisture level. The two types of SMOS retrievals are compared to the model outputs in their spatial and temporal

  5. The Impact of Abrupt Suspension of Solar Radiation Management (Termination Effect) in Experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP)

    SciTech Connect

    Jones, Andrew; Haywood, J.; Alterskjaer, Kari; Boucher, Olivier; Cole, Jason N.; Curry, Charles L.; Irvine, Peter; Ji, Duoying; Kravitz, Benjamin S.; Kristjansson, Jon E.; Moore, John; Niemeier, Ulrike; Robock, Alan; Schmidt, Hauke; Singh, Balwinder; Tilmes, S.; Watanabe, Shingo; Yoon, Jin-Ho

    2013-09-11

    We have examined changes in climate which result from the sudden termination of geoengineering after 50 years of offsetting a 1% per annum increase in CO2 concentra- tions as simulated by 11 different climate models in experiment G2 of the Geoengineering Model Intercomparison Project. The models agree on a rapid rate of global-mean warming following termination, accompanied by increases in global-mean precipitation rate and in plant net primary productivity, and decreases in sea-ice cover. While there is a considerable degree of consensus for the geographical distribution of warming, there is much less of an agreement regarding the patterns of change in the other quantities.

  6. The ISA-MIP Historical Eruption SO2 Emissions Assessment (HErSEA): an intercomparison for interactive stratospheric aerosol models

    NASA Astrophysics Data System (ADS)

    Mann, Graham; Dhomse, Sandip; Sheng, Jianxiong; Mills, Mike

    2016-04-01

    Major historical volcanic eruptions have injected huge amounts of sulphur dioxide into the stratosphere with observations showing an enhancement of the stratospheric aerosol layer for several years (ASAP, 2006). Such long-lasting increases in stratospheric aerosol loading cool the Earth's surface by scattering incoming solar radiation and warm the stratosphere via absorption of near infra-red solar and long-wave terrestrial radiation with complex effects on climate (e.g. Robock, 2000). Two recent modelling studies of Mount Pinatubo (Dhomse et al., 2014; Sheng et al. 2015) have highlighted that observations suggest the sulphur loading of the volcanically enhanced stratospheric aerosol may have been considerably lower than suggested by measurements of the injected SO2. This poster describes a new model intercomparison activity "ISA-MIP" for interactive stratospheric aerosol models within the framework of the SPARC initiative on Stratospheric Sulphur and its Role in Climate (SSiRC). The new "Historical Eruption SO2 emissions Assessment" (HErSEA) will intercompare model simulations of the three largest volcanic perturbations to the stratosphere in the last 50 years, 1963 Mt Agung, 1982 El Chichon and 1991 Mt Pinatubo. The aim is to assess how effectively the emitted SO2 translates into perturbations to stratospheric aerosol properties and simulated radiative forcings in different composition-climate models with interactive stratospheric aerosol (ISA). Each modelling group will run a mini-ensemble of transient AMIP-type runs for the 3 eruptions with a control no-eruption run followed by upper and lower bound injection amount estimates and 3 different injection height settings for two shallow (e.g. 19-21km amd 23-25km) and one deep (e.g. 19-25km) injection. First order analysis will intercompare stratospheric aerosol metrics such as 2D-monthly AOD(550nm, 1020nm) and timeseries of tropical and NH/SH mid-visible extinction at three different models levels (15, 20 and 25km

  7. Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël; Galton-Fenzi, Benjamin K.; Gladstone, Rupert M.; Hilmar Gudmundsson, G.; Hattermann, Tore; Holland, David M.; Holland, Denise; Holland, Paul R.; Martin, Daniel F.; Mathiot, Pierre; Pattyn, Frank; Seroussi, Hélène

    2016-07-01

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.

  8. Intercomparison of IPCC AR4 models with ERA-40 and NCEP/NCAR reanalysis within the AFRICA-CORDEX domain

    NASA Astrophysics Data System (ADS)

    León, M.; González, Y.; Díaz, J. P.; Expósito, F. J.; Pérez, J. C.; González, A.

    2012-04-01

    One of the most useful techniques to obtain regional climate projections along the XXI century is to run a mesoscale model driven by coarse input data (initial and boundaries conditions) obtained from Atmosphere-Ocean coupled Global Circulation Models (AOGCM). This is the dynamical downscaling approach. To correctly configure the dynamical downscaling approach it is necessary to choose the correct input dataset that project the climatic situation in a more accurate way and to establish a boundary to the errors in the results associated to these input data. In this study, we consider that the agreement of models with present observations is a way to assign confidence to the quality of a model. With this aim we intercompare the surface temperature of 21 IPCC AR4 runs models with the results from the reanalysis databases ERA40 and NCEP/NCAR in the CORDEX-AFRICA domain in the period 1961-2000. Thus, we have studied the seasonal cycles of the four decades of this period in addition to the probability density functions (PDFs) of the IPCC models. The statistical study allows us to classify the IPCC AR4 models according to their discrepancies with reanalysis data for the CORDEX domain. In general, the MRI CGCM 2.3.2 IPCC AR4 model presents the best fits compared with the reanalysis databases regarding to the correlation factor, root mean square (rms) and PDF skill score. For the intercomparison with ERA-40, the percentage of points with rms lower than 2°C is over 80%, for the four decades; with 89% of the points showing correlations coefficients larger than 0.80 and a 76 % of the data presents skill-scores values, based on the common areas of the PDFs, above a threshold of 0.7. Acknowledgements The authors acknowledge to the MEC (Ministry of Education and Science, Spain) for the next supports: projects CGL2007-66477-C02-02/CLI, CGL2008-04740/CLI, CGL2010-21366-C04-01 and UNLL08-3E-007.

  9. Analysis of UK and European NOx and VOC emission scenarios in the Defra model intercomparison exercise

    NASA Astrophysics Data System (ADS)

    Derwent, Richard; Beevers, Sean; Chemel, Charles; Cooke, Sally; Francis, Xavier; Fraser, Andrea; Heal, Mathew R.; Kitwiroon, Nutthida; Lingard, Justin; Redington, Alison; Sokhi, Ranjeet; Vieno, Massimo

    2014-09-01

    Simple emission scenarios have been implemented in eight United Kingdom air quality models with the aim of assessing how these models compared when addressing whether photochemical ozone formation in southern England was NOx- or VOC-sensitive and whether ozone precursor sources in the UK or in the Rest of Europe (RoE) were the most important during July 2006. The suite of models included three Eulerian-grid models (three implementations of one of these models), a Lagrangian atmospheric dispersion model and two moving box air parcel models. The assignments as to NOx- or VOC-sensitive and to UK- versus RoE-dominant, turned out to be highly variable and often contradictory between the individual models. However, when the assignments were filtered by model performance on each day, many of the contradictions could be eliminated. Nevertheless, no one model was found to be the 'best' model on all days, indicating that no single air quality model could currently be relied upon to inform policymakers robustly in terms of NOx- versus VOC-sensitivity and UK- versus RoE-dominance on each day. It is important to maintain a diversity in model approaches.

  10. Stratospheric Ozone Response in Experiments G3 and G4 of the Geoengineering Model Intercomparison Project (GeoMIP)

    NASA Technical Reports Server (NTRS)

    Pitari, Giovanni; Aquila, Valentina; Kravitz, Ben; Watanabe, Shingo; Tilmes, Simone; Mancini, Eva; DeLuca, Natalia; DiGenova, Glauco

    2013-01-01

    Geoengineering with stratospheric sulfate aerosols has been proposed as a means of temporarily cooling the planet, alleviating some of the side effects of anthropogenic CO2 emissions. However, one of the known side effects of stratospheric injections of sulfate aerosols is a decrease in stratospheric ozone. Here we show results from two general circulation models and two coupled chemistry climate models that have simulated stratospheric sulfate aerosol geoengineering as part of the Geoengineering Model Intercomparison Project (GeoMIP). Changes in photolysis rates and upwelling of ozone-poor air in the tropics reduce stratospheric ozone, suppression of the NOx cycle increases stratospheric ozone, and an increase in available surfaces for heterogeneous chemistry modulates reductions in ozone. On average, the models show a factor 20-40 increase of the sulfate aerosol surface area density (SAD) at 50 hPa in the tropics with respect to unperturbed background conditions and a factor 3-10 increase at mid-high latitudes. The net effect for a tropical injection rate of 5 Tg SO2 per year is a decrease in globally averaged ozone by 1.1-2.1 DU in the years 2040-2050 for three models which include heterogeneous chemistry on the sulfate aerosol surfaces. GISS-E2-R, a fully coupled general circulation model, performed simulations with no heterogeneous chemistry and a smaller aerosol size; it showed a decrease in ozone by 9.7 DU. After the year 2050, suppression of the NOx cycle becomes more important than destruction of ozone by ClOx, causing an increase in total stratospheric ozone. Contribution of ozone changes in this experiment to radiative forcing is 0.23 W m-2 in GISS-E2-R and less than 0.1 W m-2 in the other three models. Polar ozone depletion, due to enhanced formation of both sulfate aerosol SAD and polar stratospheric clouds, results in an average 5 percent increase in calculated surface UV-B.

  11. Inter-comparison of the phase partitioning of cloud water among global climate models

    NASA Astrophysics Data System (ADS)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, Ulrike; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, Toshihiko

    2013-05-01

    Cloud water phase partitioning of global climate models is investigated using four different models. Two simulations are done: One with the models' default heterogeneous ice nucleation and another one using a fixed ice nucleation for all models. Results show that heterogeneous ice nucleation can influence the water phase partitioning, however, its influence is not the dominant factor leading to the phase partitioning differences among models. The name of the second author, "Trude Storelvmo" was mistakenly written as "Trude Storevlmo". All online versions of the article have been corrected.

  12. The Significance of Quality Assurance within Model Intercomparison Projects at the World Data Centre for Climate (WDCC)

    NASA Astrophysics Data System (ADS)

    Toussaint, F.; Hoeck, H.; Stockhause, M.; Lautenschlager, M.

    2014-12-01

    The classical goals of a quality assessment system in the data life cycle are (1) to encourage data creators to improve their quality assessment procedures to reach the next quality level and (2) enable data consumers to decide, whether a dataset has a quality that is sufficient for usage in the target application, i.e. to appraise the data usability for their own purpose.As the data volumes of projects and the interdisciplinarity of data usage grow, the need for homogeneous structure and standardised notation of data and metadata increases. This third aspect is especially valid for the data repositories, as they manage data through machine agents. So checks for homogeneity and consistency in early parts of the workflow become essential to cope with today's data volumes.Selected parts of the workflow in the model intercomparison project CMIP5 and the archival of the data for the interdiscipliary user community of the IPCC-DDC AR5 and the associated quality checks are reviewed. We compare data and metadata checks and relate different types of checks to their positions in the data life cycle.The project's data citation approach is included in the discussion, with focus on temporal aspects of the time necessary to comply with the project's requirements for formal data citations and the demand for the availability of such data citations.In order to make different quality assessments of projects comparable, WDCC developed a generic Quality Assessment System. Based on the self-assessment approach of a maturity matrix, an objective and uniform quality level system for all data at WDCC is derived which consists of five maturity quality levels.

  13. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; vanNoije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-01-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some

  14. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. S.; Young, P. J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; van Noije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-03-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%), nitrogen oxides (31 ± 9%), carbon monoxide (15 ± 3%) and non-methane volatile organic compounds (9 ± 2%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m-2 DU-1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m-2; relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the

  15. Inter-comparison of isotropic and anisotropic sea ice rheology in a fully coupled model

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Cassano, J. J.; Maslowski, W.; Osinski, R.; Seefeldt, M. W.; Hughes, M.; Duvivier, A.; Nijssen, B.; Hamman, J.; Hutchings, J. K.; Hunke, E. C.

    2015-12-01

    We present the sea ice climate of the Regional Arctic System Model (RASM), using a suite of new physics available in the Los Alamos Sea Ice Model (CICE5). RASM is a high-resolution fully coupled pan-Arctic model that also includes the Parallel Ocean Program (POP), the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) land model. The model domain extends from ~45˚N to the North Pole and is configured to run at ~9km resolution for the ice and ocean components, coupled to 50km resolution atmosphere and land models. The baseline sea ice model configuration includes mushy-layer sea ice thermodynamics and level-ice melt ponds. Using this configuration, we compare the use of isotropic and anisotropic sea ice mechanics, and evaluate model performance using these two variants against observations including Arctic buoy drift and deformation, satellite-derived drift and deformation, and sea ice volume estimates from ICESat. We find that the isotropic rheology better approximates spatial patterns of thickness observed across the Arctic, but that both rheologies closely approximate scaling laws observed in the pack using buoys and RGPS data. A fundamental component of both ice mechanics variants, the so called Elastic-Viscous-Plastic (EVP) and Anisotropic-Elastic-Plastic (EAP), is that they are highly sensitive to the timestep used for elastic sub-cycling in an inertial-resolving coupled framework, and this has a significant affect on surface fluxes in the fully coupled framework.

  16. Intercomparison of two meteorological models, COSMO and WRF, for verification of QPF over Italy

    NASA Astrophysics Data System (ADS)

    Pasi, F.; Gozzini, B.; Oberto, E.; Milelli, M.

    2010-09-01

    Objective verification is an important and basic instrument to evaluate and analyze the quality of meteorological model outputs. In particular it is a valuable tool for assessing QPF (Quantitative Precipitation Forecast) quality with respect to severe weather events. On the other hand objective verification allows a better understanding of models’ behaviour in different meteorological situations and helps in the evaluation of the reliability of model forecasting average and maxima values both for short and long forecast ranges. Therefore the aim of this work is to compare the behaviour with respect to QPF of two Limited Area Models (LAM): COSMO, developed in the framework of the COSMO Consortium and WRF-NMM, developed at NOAA-NCEP (see www.cosmo-model.org and www.wrf-model.org respectively for a comprehensive description of the models and their related development activities). Both models run operationally with 7 km horizontal resolution and with initial and boundary conditions from ECMWF Global Circulation Model (GCM). The verification has been carried out using more than 1300 rain gauges distributed over the 90 italian warning areas designed for civil protection purposes according to climatological and meteo-hydrological criteria. Models’ skills and scores have been calculated comparing the recorded and forecasted 24 hours cumulated precipitation value in order to estimate the models behaviour in term of underestimation/overestimation, accuracy in space-time detection and capability of correctly predict high and low amounts of rainfall. In particular, it has been studied the seasonal evolution of the model with classical statistical indexes referred to the first and second day of forecast (+24h and +48h respectively). In order to evaluate if the performances of the two models are statistically different, it has been adopted an approach based on testing hypothesis (see for instance Hamill, 1999) in which a confidence interval has been built for the performance

  17. Intercomparison of the community multiscale air quality model and CALGRID using process analysis.

    PubMed

    O'Neill, Susan M; Lamb, Brian K

    2005-08-01

    This study was designed to examine the similarities and differences between two advanced photochemical air quality modeling systems: EPA Models-3/CMAQ and CALGRID/CALMET. Both modeling systems were applied to an ozone episode that occurred along the I-5 urban corridor in western Washington and Oregon during July 11-14, 1996. Both models employed the same modeling domain and used the same detailed gridded emission inventory. The CMAQ model was run using both the CB-IV and RADM2 chemical mechanisms, while CALGRID was used with the SAPRC-97 chemical mechanism. Outputfrom the Mesoscale Meteorological Model (MM5) employed with observational nudging was used in both models. The two modeling systems, representing three chemical mechanisms and two sets of meteorological inputs, were evaluated in terms of statistical performance measures for both 1- and 8-h average observed ozone concentrations. The results showed that the different versions of the systems were more similar than different, and all versions performed well in the Portland region and downwind of Seattle but performed poorly in the more rural region north of Seattle. Improving the meteorological input into the CALGRID/CALMET system with planetary boundary layer (PBL) parameters from the Models-3/CMAQ meteorology preprocessor (MCIP) improved the performance of the CALGRID/CALMET system. The 8-h ensemble case was often the best performer of all the cases indicating that the models perform better over longer analysis periods. The 1-h ensemble case, derived from all runs, was not necessarily an improvement over the five individual cases, but the standard deviation about the mean provided a measure of overall modeling uncertainty. Process analysis was applied to examine the contribution of the individual processes to the species conservation equation. The process analysis results indicated that the two modeling systems arrive at similar solutions by very different means. Transport rates are faster and exhibit

  18. Intercomparison of the community multiscale air quality model and CALGRID using process analysis.

    PubMed

    O'Neill, Susan M; Lamb, Brian K

    2005-08-01

    This study was designed to examine the similarities and differences between two advanced photochemical air quality modeling systems: EPA Models-3/CMAQ and CALGRID/CALMET. Both modeling systems were applied to an ozone episode that occurred along the I-5 urban corridor in western Washington and Oregon during July 11-14, 1996. Both models employed the same modeling domain and used the same detailed gridded emission inventory. The CMAQ model was run using both the CB-IV and RADM2 chemical mechanisms, while CALGRID was used with the SAPRC-97 chemical mechanism. Outputfrom the Mesoscale Meteorological Model (MM5) employed with observational nudging was used in both models. The two modeling systems, representing three chemical mechanisms and two sets of meteorological inputs, were evaluated in terms of statistical performance measures for both 1- and 8-h average observed ozone concentrations. The results showed that the different versions of the systems were more similar than different, and all versions performed well in the Portland region and downwind of Seattle but performed poorly in the more rural region north of Seattle. Improving the meteorological input into the CALGRID/CALMET system with planetary boundary layer (PBL) parameters from the Models-3/CMAQ meteorology preprocessor (MCIP) improved the performance of the CALGRID/CALMET system. The 8-h ensemble case was often the best performer of all the cases indicating that the models perform better over longer analysis periods. The 1-h ensemble case, derived from all runs, was not necessarily an improvement over the five individual cases, but the standard deviation about the mean provided a measure of overall modeling uncertainty. Process analysis was applied to examine the contribution of the individual processes to the species conservation equation. The process analysis results indicated that the two modeling systems arrive at similar solutions by very different means. Transport rates are faster and exhibit

  19. Forecasting the North African dust outbreak towards Europe in April 2011: a model intercomparison

    NASA Astrophysics Data System (ADS)

    Huneeus, N.; Basart, S.; Fiedler, S.; Morcrette, J.-J.; Benedetti, A.; Mulcahy, J.; Terradellas, E.; Pérez García-Pando, C.; Pejanovic, G.; Nickovic, S.; Arsenovic, P.; Schulz, M.; Cuevas, E.; Baldasano, J. M.; Pey, J.; Remy, S.; Cvetkovic, B.

    2015-10-01

    In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting Western and Northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead-times of up to 72 h using observations of aerosol optical depth (AOD) from the Aerosol Robotic Network (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distribution was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead-times. On average, differences among the models are larger than differences among lead-times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards Northern Europe. Our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.

  20. Forecasting the northern African dust outbreak towards Europe in April 2011: A model intercomparison

    DOE PAGES

    Huneeus, N.; Basart, S.; Fiedler, S.; Morcrette, J. -J.; Benedetti, A.; Mulcahy, J.; Terradellas, E.; Garcia-Pando, C. Perez; Pejanovic, G.; Nickovic, S.; et al

    2016-04-21

    In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 h using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distributionmore » was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. In this paper, our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.« less

  1. Forecasting the Northern African Dust Outbreak Towards Europe in April 2011: A Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Huneeus, N.; Basart, S.; Fiedler, S.; Morcrette, J.-J.; Benedetti, A.; Mulcahy, J.; Terradellas, E.; Pérez García-Pando, C.; Pejanovic, G.; Nickovic, S.

    2016-01-01

    In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 hours using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distribution was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. Our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.

  2. Forecasting the northern African dust outbreak towards Europe in April 2011: a model intercomparison

    NASA Astrophysics Data System (ADS)

    Huneeus, N.; Basart, S.; Fiedler, S.; Morcrette, J.-J.; Benedetti, A.; Mulcahy, J.; Terradellas, E.; Pérez García-Pando, C.; Pejanovic, G.; Nickovic, S.; Arsenovic, P.; Schulz, M.; Cuevas, E.; Baldasano, J. M.; Pey, J.; Remy, S.; Cvetkovic, B.

    2016-04-01

    In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 h using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distribution was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. Our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.

  3. OAK FOREST CARBON AND WATER SIMULATIONS: MODEL INTERCOMPARISONS AND EVALUATIONS AGAINST INDEPENDENT DATA

    SciTech Connect

    Hanson, Paul J; Amthor, Jeffrey S; Wullschleger, Stan D; Wilson, K.; Grant, Robert F.; Hartley, Anne; Hui, D.; HuntJr., E. Raymond; Johnson, Dale W.; Kimball, John S.; King, Anthony Wayne; Luo, Yiqi; McNulty, Steven G.; Sun, G.; Thornton, Peter; Wang, S.; Williams, M.; Baldocchi, D. D.; Cushman, Robert Michael

    2004-01-01

    Models represent our primary method for integration of small-scale, processlevel phenomena into a comprehensive description of forest-stand or ecosystem function. They also represent a key method for testing hypotheses about the response of forest ecosystems to multiple changing environmental conditions. This paper describes the evaluation of 13 stand-level models varying in their spatial, mechanistic, and temporal complexity for their ability to capture intra- and interannual components of the water and carbon cycle for an upland, oak-dominated forest of eastern Tennessee. Comparisons between model simulations and observations were conducted for hourly, daily, and annual time steps. Data for the comparisons were obtained from a wide range of methods including: eddy covariance, sapflow, chamber-based soil respiration, biometric estimates of stand-level net primary production and growth, and soil water content by time or frequency domain reflectometry. Response surfaces of carbon and water flux as a function of environmental drivers, and a variety of goodness-of-fit statistics (bias, absolute bias, and model efficiency) were used to judge model performance. A single model did not consistently perform the best at all time steps or for all variables considered. Intermodel comparisons showed good agreement for water cycle fluxes, but considerable disagreement among models for predicted carbon fluxes. The mean of all model outputs, however, was nearly always the best fit to the observations. Not surprisingly, models missing key forest components or processes, such as roots or modeled soil water content, were unable to provide accurate predictions of ecosystem responses to short-term drought phenomenon. Nevertheless, an inability to correctly capture short-term physiological processes under drought was not necessarily an indicator of poor annual water and carbon budget simulations. This is possible because droughts in the subject ecosystem were of short duration and

  4. Intercomparison and Evaluation of Global Aerosol Microphysical Properties Among Aerocom Models of a Range of Complexity

    NASA Technical Reports Server (NTRS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; Zhang, K.; Ghan, S. J.; Easter, R. C.; Liu, X.; Stier, P.; Lee, Y. H; Adams, P. J.; Tost, H.; Lelieveld, J.; Bauer, S. E.; Tsigaridis, K.; van Noije, T. P. C.; Strunk, A.; Vignati, E.; Bellouin, N.

    2014-01-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel- mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting

  5. Intercomparison of two meteorological models, COSMO and WRF, for verification of QPF over Italy

    NASA Astrophysics Data System (ADS)

    Oberto, E.; Milelli, M.; Pasi, F.; Gozzini, B.

    2010-09-01

    Objective verification is an important and basic instrument to evaluate and analyze the quality of meteorological model outputs. In particular it is a valuable tool for assessing QPF (Quantitative Precipitation Forecast) quality with respect to severe weather events. On the other hand objective verification allows a better understanding of models' behaviour in different meteorological situations and helps in the evaluation of the reliability of model forecasting average and maxima values both for short and long forecast ranges. Therefore the aim of this work is to compare the behaviour with respect to QPF of two Limited Area Models (LAM): COSMO, developed in the framework of the COSMO Consortium and WRF-NMM, developed at NOAA-NCEP (see www.cosmo-model.org and www.wrf-model.org respectively for a comprehensive description of the models and their related development activities). Both models run operationally with 7 km horizontal resolution and with initial and boundary conditions from ECMWF Global Circulation Model (GCM). The verification has been carried out using more than 1300 rain gauges distributed over the 90 italian warning areas designed for civil protection purposes according to climatological and meteo-hydrological criteria. Models' skills and scores have been calculated comparing the recorded and forecasted 24 hours cumulated precipitation value in order to estimate the models behaviour in term of underestimation/overestimation, accuracy in space-time detection and capability of correctly predict high and low amounts of rainfall. The verification period starts from December 2006 until November 2008. In particular, it has been studied the seasonal evolution of the model with classical statistical indexes referred to the first and second day of forecast (+24h and +48h respectively). In order to evaluate if the performances of the two models are statistically different, it has been adopted an approach based on testing hypothesis (see for instance Hamill, 1999

  6. Intercomparisons between passive and active microwave remote sensing, and hydrological modeling for soil moisture

    NASA Technical Reports Server (NTRS)

    Wood, E. F.; Lin, D.-S.; Mancini, M.; Thongs, D.; Troch, P. A.; Jackson, T. J.; Famiglietti, J. S.; Engman, E. T.

    1993-01-01

    Soil moisture estimations from a distributed hydrological model and two microwave sensors were compared with ground measurements collected during the MAC-HYDRO'90 experiment. The comparison was done with the purpose of evaluating the performance of the hydrological model and examining the limitations of remote sensing techniques used in soil moisture estimation. An image integration technique was used to integrate and analyze rainfall, soil properties, land cover, topography, and remote sensing imagery. Results indicate that the hydrological model and microwave sensors successfully picked up temporal variations of soil moisture and that the spatial soil moisture pattern may be remotely sensed with reasonable accuracy using existing algorithms.

  7. Anisn-Dort Neutron-Gamma Flux Intercomparison Exercise for a Simple Testing Model

    NASA Astrophysics Data System (ADS)

    Boehmer, B.; Konheiser, J.; Borodkin, G.; Brodkin, E.; Egorov, A.; Kozhevnikov, A.; Zaritsky, S.; Manturov, G.; Voloschenko, A.

    2003-06-01

    The ability of transport codes ANISN, DORT, ROZ-6, MCNP and TRAMO, as well as nuclear data libraries BUGLE-96, ABBN-93, VITAMIN-B6 and ENDF/B-6 to deliver consistent gamma and neutron flux results was tested in the calculation of a one-dimensional cylindrical model consisting of a homogeneous core and an outer zone with a single material. Model variants with H2O, Fe, Cr and Ni in the outer zones were investigated. The results are compared with MCNP-ENDF/B-6 results. Discrepancies are discussed. The specified test model is proposed as a computational benchmark for testing calculation codes and data libraries.

  8. North American Carbon Project (NACP) Regional Interim Synthesis: Terrestrial Biospheric Model Intercomparison

    SciTech Connect

    Huntzinger, Deborah; Post, W. M.; Wei, Yaxing; Michalak, A. M.; West, Tristram O.; Jacobson, Andy; Baker, Ian; Chen, Jing Ming; Davis, K. J.; Hayes, D. J.; Hoffman, F. M.; Jain, Atul K.; Liu, S.; McGuire, A. David; Neilson, R. P.; Potter, Christopher; Poulter, Benjamin; Price, David; Raczka, B. M.; Tian, Hanqin; Thornton, P.; Tomelleri, E.; Viovy, N.; Xiao, J.; Yuan, Wenping; Zeng, Ning; Zhao, M.; Cook, R. B.

    2012-05-10

    Understanding of carbon exchange between terrestrial ecosystems and the atmosphere can be improved through direct observations and experiments, as well as through modeling activities. Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding to much larger terrestrial regions. Although models vary in their specific goals and approaches, their central role within carbon cycle science is to provide a better understanding of the mechanisms currently controlling carbon exchange. Recently, the North American Carbon Program (NACP) organized several interim-synthesis activities to evaluate and inter-compare models and observations at local to continental scales for the years 2000 to 2005. Here, we compare the results from the TBMs collected as part of the regional and continental interim-synthesis (RCIS) activities. The primary objective of this work is to synthesize and compare the 19 participating TBMs to assess current understanding of the terrestrial carbon cycle in North America.

  9. Placing Bounds on Extreme Temperature Response of Maize to Improve Crop Model Intercomparison

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Babcock, B.; Peng, Y.; Gassman, P. W.; Campbell, T.

    2015-12-01

    We propose the development of community-based estimates for bounds on maize sensitivity to extreme temperature. We use model-based, observation-driven soil moisture climatology in a high maize production region in the United States to develop bounds on high temperature sensitivity through its dependence on available water. For the portion of the region with relatively long growing season, yield reduction per degree-C is 10% for high water availability and 32.5% for low water availability. Where the growing season is shorter, yield reduction per degree-C is 6% for high water availability and 27% for low water availability. High temperature sensitivity is indeterminate where extreme temperature yield effect does not yet exceed excessive water yield effect. We suggest new soil moisture climatology from reanalysis datasets could be used to develop community-based estimates of high temperature sensitivity that would significantly improve the accuracy of maize temperature sensitivity bounds, their regional variability, and their importance relative to other weather yield shocks. A community-based estimate would substantially improve evaluation of crop system simulation models and provide baseline information for evaluation of adaptation options. For instance, since process models are needed for evaluation of crop system adaptation response under climate projections, a community-developed estimate would provide a clear target for process model evaluation. Furthermore, the range of extreme temperature sensitivity from empirical models would provide a lower bound on variability that could be achieved from process models. If the process models achieved this bound, it would mean the uncertainty among their simulations would be primarily from observational limitations than differences in model response. While we demonstrate the potential in the context of maize, the concept could be implemented within any crop production system.

  10. From Past to future: the Paleoclimate Modelling Intercomparison Project's contribution to CMIP6

    NASA Astrophysics Data System (ADS)

    Kageyama, Masa; Braconnot, Pascale; Harrison, Sandy; Haywood, Alan; Jungclaus, Johann; Otto-Bliesner, Bette; Abe-Ouchi, Ayako

    2016-04-01

    Since the 1990s, PMIP has developed with the following objectives: 1/to evaluate the ability of climate models used for climate prediction in simulating well-documented past climates outside the range of present and recent climate variability; 2/to understand the mechanisms of these climate changes, in particular the role of the different climate feedbacks. To achieve these goals, PMIP has actively fostered paleo-data syntheses, multi-model analyses, including analyses of relationships between model results from past and future simulations, and model-data comparisons. For CMIP6, PMIP will focus on five past periods: - the Last Millennium (850 CE - present), to analyse natural climate variability on multidecadal or longer time-scales - the mid-Holocene, 6000 years ago, to compare model runs with paleodata for a period of warmer climate in the Northern Hemisphere, with an enhanced hydrological cycle - the Last Glacial Maximum, 21000 years ago, to evaluate the ability of climate models to represent a cold climate extreme and examine whether paleoinformation about this period can help and constrain climate sensitivity - the Last InterGlacial (~127,000 year ago), which provides a benchmark for a period of high sea-level stand - the mid-Pliocene warm period (~3.2 million years ago), which allows for the evaluation of the model's long-term response to a CO2 level analogous to the modern one. This poster will present the rationale of these "PMIP4-CMIP6" experiments. Participants are invited to come and discuss about the experimental set-up and the model output to be distributed via CMIP6. For more information and discussion of the PMIP4-CMIP6 experimental design, please visit: https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:cmip6:design:index

  11. Regional intercomparisons of General Circulation Model predictions and historical climate data: CO/sub 2/

    SciTech Connect

    Grotch, S.L.

    1988-04-01

    This study is a detailed intercomparsion of the results produced by four different General Circulation Models (GCMs) that have been used to project the climatic consequences of a doubling of the atmospheric CO/sub 2/ concentration. The results for the models developed by groups at the National Center for Atmospheric Research (NCARCCM, Washington and Meehl, 1984), the Geophysical Fluid Dynamics Laboratory of NOAA (GFDL, Manable and Wetherald, 1987), and the Goddard Institute for Space Studies of NASA (GISS, Hansen, et al., 1984) have been described by Schlesinger and Mitchell (1985) in the DOE state-of-art (SOA) report, ''Projecting the Climatic Effects of Increasing Carbon Dioxide''. The fourth model examined here is the Oregon State University GCM (OSU, Schlesinger, 1986), results for which did not become available until after publication of the SOA. We have chosen to examine only two model variables here: (1) surface air temperature, and (2) precipation. We consider these variables for both seasonally and annually averaged periods, for both the current climatic conditions and the predicted equilibrium changes after a doubling of the CO/sub 2/ concentration. The major conclusion of this study is that, although the models often agree well comparing seasonal or annual averages over the large areas, substanial disagreements become apparent as the spatial extent is reduced, particularly when detailed regional distributions are examined. At scales below continental, the correlations observed between different model predictions are often very poor, particularly for land gridpoints during the Northern Hemisphere (NH) summer, with differences of as much as 5/degree/C between models and observations and between one model and another over relatively large areas.

  12. An Intercomparison of Lidar Ozone and Temperature Measurements From the SOLVE Mission With Predicted Model Values

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas J.; Hoegy, Walt; Lait, Leslie; Sumnicht, Grant; Twigg, Larry; Heaps, William

    2000-01-01

    Temperature profiles acquired by Goddard Space Flight Center's AROTEL lidar during the SOLVE mission onboard NASA's DC-8 are compared with predicted values from several atmospheric models (DAO, NCEP and UKMO). The variability in the differences between measured and calculated temperature fields was approximately 5 K. Retrieved temperatures within the polar vortex showed large regions that were significantly colder than predicted by the atmospheric models.

  13. Low-cost solar array project: Four absolute cavity radiometer (pyrheliometer) intercomparisons at New River, Arizona: Radiometer standards

    NASA Technical Reports Server (NTRS)

    Estey, R. S.; Seaman, C. H.

    1981-01-01

    Four detailed intercomparisons were made for a number of models of cavity-type self-calibrating radiometers (pyrheliometers). Each intercomparison consisted of simultaneous readings of pyrheliometers at 30-second intervals in runs of 10 minutes, with at least 15 runs per intercomparison. Twenty-seven instruments were in at least one intercomparison, and five were in all four. Summarized results and all raw data are provided from the intercomparisons.

  14. Evaluation and intercomparison of three-dimensional global marine carbon cycle models

    SciTech Connect

    Caldeira, K., LLNL

    1998-07-01

    The addition of carbon dioxide to the atmosphere from fossil fuel burning and deforestation has profound implications for the future of the earth`s climate and hence for humankind itself. Society is looking toward the community of environmental scientists to predict the consequences of increased atmospheric carbon dioxide so that sound input can be provided to economists, environmental engineers, and, ultimately, policy makers. Environmental scientists have responded to this challenge through the creation of several ambitious, highly-coordinated programs, each focused on a different aspect of the climate system. Recognizing that numerical models, be they relatively simple statistical-empirical models or highly complex process-oriented models, are the only means for predicting the future of the climate system, all of these programs include the development of accurate, predictive models as a central goal. The Joint Global Ocean Flux Study (JGOFS) is one such program, and was built on the well-founded premise that biological, chemical and physical oceanographic processes have a profound influence on the C0{sub 2} content of the atmosphere. The, cap-stone, phase of JGOFS, the Synthesis and Modeling Project (SMP), is charged with the development of models that can be used in the prediction of future air-sea partitioning of C0{sub 2}. JGOFS, particularly the SMP phase, has a number of interim goals as well, including the determination of fluxes and inventories of carbon in the modern ocean that air germane to the air-sea partitioning of C0{sub 2}. Models have a role to play here too, because many of these fluxes and inventories, such as the distributions of anthropogenic dissolved inorganic carbon (DIC), new primary production and aphotic zone remineralization, while not amenable to direct observation on the large scale, can be determined using a variety of modeling approaches (Siegenthaler and Oeschger, 1987; Maier-Reimer and Hasselman, 1987, Bacastow and Maier

  15. Inter-comparison and performance evaluation of chemistry transport models over Indian region

    NASA Astrophysics Data System (ADS)

    Govardhan, Gaurav R.; Nanjundiah, Ravi S.; Satheesh, S. K.; Moorthy, K. Krishna; Takemura, Toshihiko

    2016-01-01

    Aerosol loading over the South Asian region has the potential to affect the monsoon rainfall, Himalayan glaciers and regional air-quality, with implications for the billions in this region. While field campaigns and network observations provide primary data, they tend to be location/season specific. Numerical models are useful to regionalize such location-specific data. Studies have shown that numerical models underestimate the aerosol scenario over the Indian region, mainly due to shortcomings related to meteorology and the emission inventories used. In this context, we have evaluated the performance of two such chemistry-transport models: WRF-Chem and SPRINTARS over an India-centric domain. The models differ in many aspects including physical domain, horizontal resolution, meteorological forcing and so on etc. Despite these differences, both the models simulated similar spatial patterns of Black Carbon (BC) mass concentration, (with a spatial correlation of 0.9 with each other), and a reasonable estimates of its concentration, though both of them under-estimated vis-a-vis the observations. While the emissions are lower (higher) in SPRINTARS (WRF-Chem), overestimation of wind parameters in WRF-Chem caused the concentration to be similar in both models. Additionally, we quantified the underestimations of anthropogenic BC emissions in the inventories used these two models and three other widely used emission inventories. Our analysis indicates that all these emission inventories underestimate the emissions of BC over India by a factor that ranges from 1.5 to 2.9. We have also studied the model simulations of aerosol optical depth over the Indian region. The models differ significantly in simulations of AOD, with WRF-Chem having a better agreement with satellite observations of AOD as far as the spatial pattern is concerned. It is important to note that in addition to BC, dust can also contribute significantly to AOD. The models differ in simulations of the spatial

  16. Technical Note: On the use of nudging for aerosol-climate model intercomparison studies

    DOE PAGES

    Zhang, K.; Wan, H.; Liu, X.; Ghan, S. J.; Kooperman, G. J.; Ma, P.-L.; Rasch, P. J.

    2014-04-24

    Nudging is an assimilation technique widely used in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosolmore » concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects through ice clouds, since it provides well-constrained meteorology without strongly perturbing the model's mean climate.« less

  17. Technical Note: On the use of nudging for aerosol–climate model intercomparison studies

    DOE PAGES

    Zhang, K.; Wan, H.; Liu, X.; Ghan, S. J.; Kooperman, G. J.; Ma, P.-L.; Rasch, P. J.; Neubauer, D.; Lohmann, U.

    2014-08-26

    Nudging as an assimilation technique has seen increased use in recent years in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5 (CAM5), due to the systematic temperature bias in the standard model and the sensitivity ofmore » simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on long-wave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations, and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. Results from both CAM5 and a second aerosol–climate model ECHAM6-HAM2 also indicate that compared to the wind-and-temperature nudging, constraining only winds leads to better agreement with the free-running model in terms of the estimated shortwave cloud forcing and the simulated convective activities. This suggests nudging the horizontal winds but not

  18. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

    SciTech Connect

    Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, Lai-Yung R.; Fan, Jiwen; Nenes, Athanasios

    2015-07-22

    Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107–113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation

  19. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, L. Ruby; Fan, Jiwen; Nenes, Athanasios

    2015-07-01

    Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107-113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation

  20. Intercomparison of two models to simulate snowcover dynamics beneath forest canopies

    NASA Astrophysics Data System (ADS)

    Link, T. E.; Tribbeck, M. J.; Marks, D.; Winstral, A.

    2003-12-01

    Numerical simulation of snowcover dynamics in mountain environments is complicated by the fact that forest canopies strongly affect the snow surface energy balance relative to open sites. A number of methods to simulate the affect of forest canopies on the snow surface microclimate have recently been developed and successfully applied across a range of canopy structures. A detailed comparison of two techniques to simulate snowcover processes beneath forest canopies is presented. One method uses empirically-derived canopy adjustment algorithms based on Beers Law to drive the 2-layer mass- and energy-balance model SNOBAL. The second model (SNOWCAN) contains a physically-based optical and thermal canopy radiation model that was recently coupled to a snow energy budget model based on the SNTHERM code. The two models were tested across a range of forest structures including deciduous, mixed deciduous-conifer, sparse conifer and dense conifer canopies. Both models accurately simulated the development and ablation of the seasonal snowcovers, however differences in the components of the energy balance were observed in all of the canopies. Simulated sub-canopy radiation components were relatively similar (within ~10%) in the leafless deciduous canopy, but diverged strongly in canopies with higher leaf area indices. Simulated sub-canopy direct solar radiation was larger at high sun angles in the SNOBAL simulations relative to the SNOWCAN simulations. Maximum direct solar radiation differences between the two models approached a factor of 3 during clear, midday, late-season periods in the dense conifer canopies. In contrast, simulated sub-canopy thermal radiation was lower in the SNOBAL simulations relative to the SNOWCAN simulations. Maximum differences between the two models were approximately 10% during clear periods, and negligible during cloudy periods. Simulated sub-canopy diffuse solar radiation differences were generally within 2% for all canopy structures during all

  1. An intercomparison and verification of outputs of several climate models on representative Mediterranean catchments

    NASA Astrophysics Data System (ADS)

    Deidda, R.; Caroletti, G. N.; Luccarini, V.; Marrocu, M.; Puliga, M.; Pusceddu, G.; Speranza, A.

    2012-04-01

    Within the framework of the FP7 project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins: Reducing Uncertainty and Quantifying Risk through an Integrated Monitoring and Modeling System), we present here the results of a systematic analysis aimed at the evaluation of the performances of several climate models in providing reliable variables for hydrological modelling in representative catchments of the Mediterranean area. Specifically, we consider the outputs of regional and global climate models available through the open access data projects IPCC, PRUDENCE and ENSEMBLES. In order to extract and to keep updated the variables of interest on specific target hydrological catchments we developed an interface based on a software that synchronises a local database with the output of several climatic models. The performances of precipitation and temperature fields on the 7 Mediterranean catchments of interest for CLIMB project activities are evaluated using the E-OBS gridded dataset. Comparisons and evaluations of performances in reproducing both the hydrological cycle and the extremes at the catchment scale are presented and discussed.

  2. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  3. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  4. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  5. Radionuclides in fruit systems: model prediction-experimental data intercomparison study.

    PubMed

    Ould-Dada, Z; Carini, F; Eged, K; Kis, Z; Linkov, I; Mitchell, N G; Mourlon, C; Robles, B; Sweeck, L; Venter, A

    2006-08-01

    This paper presents results from an international exercise undertaken to test model predictions against an independent data set for the transfer of radioactivity to fruit. Six models with various structures and complexity participated in this exercise. Predictions from these models were compared against independent experimental measurements on the transfer of 134Cs and 85Sr via leaf-to-fruit and soil-to-fruit in strawberry plants after an acute release. Foliar contamination was carried out through wet deposition on the plant at two different growing stages, anthesis and ripening, while soil contamination was effected at anthesis only. In the case of foliar contamination, predicted values are within the same order of magnitude as the measured values for both radionuclides, while in the case of soil contamination models tend to under-predict by up to three orders of magnitude for 134Cs, while differences for 85Sr are lower. Performance of models against experimental data is discussed together with the lessons learned from this exercise.

  6. Technical Note: On the Use of Nudging for Aerosol-Climate Model Intercomparison Studies

    SciTech Connect

    Zhang, Kai; Wan, Hui; Liu, Xiaohong; Ghan, Steven J.; Kooperman, G. J.; Ma, Po-Lun; Rasch, Philip J.; Neubauer, David; Lohmann, U.

    2014-08-26

    Nudging is an assimilation technique widely used in the development and evaluation of climate models. Con- straining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the artificial forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the relatively strong sensitivity of homogeneous ice nucleation to aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests that nudging the horizontal winds but not temperature is a good strategy, especially for studies that involve both warm and cold clouds.

  7. Intercomparison of Downscaling Methods on Hydrological Impact for Earth System Model of NE United States

    NASA Astrophysics Data System (ADS)

    Yang, P.; Fekete, B. M.; Rosenzweig, B.; Lengyel, F.; Vorosmarty, C. J.

    2012-12-01

    Atmospheric dynamics are essential inputs to Regional-scale Earth System Models (RESMs). Variables including surface air temperature, total precipitation, solar radiation, wind speed and humidity must be downscaled from coarse-resolution, global General Circulation Models (GCMs) to the high temporal and spatial resolution required for regional modeling. However, this downscaling procedure can be challenging due to the need to correct for bias from the GCM and to capture the spatiotemporal heterogeneity of the regional dynamics. In this study, the results obtained using several downscaling techniques and observational datasets were compared for a RESM of the Northeast Corridor of the United States. Previous efforts have enhanced GCM model outputs through bias correction using novel techniques. For example, the Climate Impact Research at Potsdam Institute developed a series of bias-corrected GCMs towards the next generation climate change scenarios (Schiermeier, 2012; Moss et al., 2010). Techniques to better represent the heterogeneity of climate variables have also been improved using statistical approaches (Maurer, 2008; Abatzoglou, 2011). For this study, four downscaling approaches to transform bias-corrected HADGEM2-ES Model output (daily at .5 x .5 degree) to the 3'*3'(longitude*latitude) daily and monthly resolution required for the Northeast RESM were compared: 1) Bilinear Interpolation, 2) Daily bias-corrected spatial downscaling (D-BCSD) with Gridded Meteorological Datasets (developed by Abazoglou 2011), 3) Monthly bias-corrected spatial disaggregation (M-BCSD) with CRU(Climate Research Unit) and 4) Dynamic Downscaling based on Weather Research and Forecast (WRF) model. Spatio-temporal analysis of the variability in precipitation was conducted over the study domain. Validation of the variables of different downscaling methods against observational datasets was carried out for assessment of the downscaled climate model outputs. The effects of using the

  8. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    SciTech Connect

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  9. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE

    SciTech Connect

    Morrison, H.; Zuidema, Paquita; Ackerman, Andrew; Avramov, Alexander; de Boer, Gijs; Fan, Jiwen; Fridlind, Ann; Hashino, Tempei; Harrington, Jerry Y.; Luo, Yali; Ovchinnikov, Mikhail; Shipway, Ben

    2011-06-16

    An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA) and First ISCCP Regional Experiment - Arctic Cloud Experiment (FIRE-ACE). Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN) concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associated with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple equilibria. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 1-2x10-5 g kg-1 s-1. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel studies of the cloud

  10. An Intercomparison of the Deposition Models Used in the CASTNET and CAPMoN Networks

    EPA Science Inventory

    To assess long-term trends in atmospheric deposition, the U.S. operates the Clean Air Status and Trends Network (CASTNET) and Canada operates the Canadian Air and Precipitation Monitoring Network (CAPMoN). Both networks use modeled dry deposition velocities and measured atmospher...

  11. Glacial isostatic adjustment associated with the Barents Sea ice sheet: A modelling inter-comparison

    NASA Astrophysics Data System (ADS)

    Auriac, A.; Whitehouse, P. L.; Bentley, M. J.; Patton, H.; Lloyd, J. M.; Hubbard, A.

    2016-09-01

    The 3D geometrical evolution of the Barents Sea Ice Sheet (BSIS), particularly during its late-glacial retreat phase, remains largely ambiguous due to the paucity of direct marine- and terrestrial-based evidence constraining its horizontal and vertical extent and chronology. One way of validating the numerous BSIS reconstructions previously proposed is to collate and apply them under a wide range of Earth models and to compare prognostic (isostatic) output through time with known relative sea-level (RSL) data. Here we compare six contrasting BSIS load scenarios via a spherical Earth system model and derive a best-fit, χ2 parameter using RSL data from the four main terrestrial regions within the domain: Svalbard, Franz Josef Land, Novaya Zemlya and northern Norway. Poor χ2 values allow two load scenarios to be dismissed, leaving four that agree well with RSL observations. The remaining four scenarios optimally fit the RSL data when combined with Earth models that have an upper mantle viscosity of 0.2-2 × 1021 Pa s, while there is less sensitivity to the lithosphere thickness (ranging from 71 to 120 km) and lower mantle viscosity (spanning 1-50 × 1021 Pa s). GPS observations are also compared with predictions of present-day uplift across the Barents Sea. Key locations where relative sea-level and GPS data would prove critical in constraining future ice-sheet modelling efforts are also identified.

  12. A meteorological forcing data set for global crop modeling: Development, evaluation, and intercomparison

    NASA Astrophysics Data System (ADS)

    Iizumi, Toshichika; Okada, Masashi; Yokozawza, Masayuki

    2014-01-01

    The Global Risk Assessment toward Stable Production of Food (GRASP) project uses global crop models to evaluate the impacts on global food security by changes in climate extremes, water resources, and land use. Such models require meteorological forcing data. This study presents the development of the GRASP forcing data that is a hybrid of the reanalyses (ERA-40 and JRA-25) and observations. The GRASP data offer daily mean, maximum, and minimum 2 m air temperatures as well as precipitation, solar radiation, vapor pressure, and 10 m wind speed over global land areas, excluding Antarctica, for the period 1961-2010 at a grid size of 1.125°. The monthly climatologies of the variables of the GRASP data were forced to be close to those of the observations for the baseline period (1961-1990 or 1983-2005) through bias corrections. The GRASP data are intercompared with other forcing data for land surface modeling (the S06, WATCH Forcing Data, and WATCH Forcing Data Methodology Applied to ERA-Interim data). The results demonstrate that the daily minimum temperature, diurnal temperature range, vapor pressure, solar radiation, and wind speed from the GRASP data are more valuable for crop modeling than the reanalyses and other forcing data. For remaining variables, the reliability of the GRASP data is higher than that of the reanalyses and on a similar level with that of the other forcing data. The GRASP data offer accurate estimates of daily weather as the inputs for crop models, providing unique opportunities to link historical changes in climate with crop production over the last half century.

  13. Climate change uncertainty for daily minimum and maximum temperatures: a model inter-comparison

    SciTech Connect

    Lobell, D; Bonfils, C; Duffy, P

    2006-11-09

    Several impacts of climate change may depend more on changes in mean daily minimum (T{sub min}) or maximum (T{sub max}) temperatures than daily averages. To evaluate uncertainties in these variables, we compared projections of T{sub min} and T{sub max} changes by 2046-2065 for 12 climate models under an A2 emission scenario. Average modeled changes in T{sub max} were slightly lower in most locations than T{sub min}, consistent with historical trends exhibiting a reduction in diurnal temperature ranges. However, while average changes in T{sub min} and T{sub max} were similar, the inter-model variability of T{sub min} and T{sub max} projections exhibited substantial differences. For example, inter-model standard deviations of June-August T{sub max} changes were more than 50% greater than for T{sub min} throughout much of North America, Europe, and Asia. Model differences in cloud changes, which exert relatively greater influence on T{sub max} during summer and T{sub min} during winter, were identified as the main source of uncertainty disparities. These results highlight the importance of considering separately projections for T{sub max} and T{sub min} when assessing climate change impacts, even in cases where average projected changes are similar. In addition, impacts that are most sensitive to summertime T{sub min} or wintertime T{sub max} may be more predictable than suggested by analyses using only projections of daily average temperatures.

  14. An evaluation of simulated particulate sulfate over East Asia through global model intercomparison

    NASA Astrophysics Data System (ADS)

    Goto, Daisuke; Nakajima, Teruyuki; Dai, Tie; Takemura, Toshihiko; Kajino, Mizuo; Matsui, Hitoshi; Takami, Akinori; Hatakeyama, Shiro; Sugimoto, Nobuo; Shimizu, Atsushi; Ohara, Toshimasa

    2015-06-01

    Sulfate aerosols simulated by an aerosol module coupled to the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) at a spatial resolution (220 km) widely used by global climate models were evaluated by a comparison with in situ observations and the same aerosol module coupled to the Model for Interdisciplinary Research on Climate (MIROC) over East Asia for January, April, July, and October 2006. The results indicated that a horizontal gradient of sulfate from the source over China to the outflow over Korea-Japan was present in both the simulations and the observations. At the observation sites, the correlation coefficients of the sulfate concentrations between the simulations and the observations were high (NICAM: 0.49-0.89, MIROC: 0.61-0.77), whereas the simulated sulfate concentrations were lower than those obtained by the observation with the normalized mean bias of NICAM being -68 to -54% (all), -77 to -63% (source), and -67 to -30% (outflow) and that of MIROC being -61 to -28% (all), -77 to -63% (source), and -60 to +2% (outflow). Both NICAM and MIROC strongly underpredict surface SO2 over China source regions and Korea-Japan outflow regions, but the MIROC SO2 is much higher than NICAM SO2 over both regions. These differences between the models were mainly explained by differences in the sulfate formation within clouds and the dry deposition of SO2. These results indicated that the uncertainty of the meteorological and cloud fields as well as the vertical transport patterns between the different host climate models has a substantial impact on the simulated sulfate distribution.

  15. Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Jin, Meibing; Popova, Ekaterina E.; Zhang, Jinlun; Ji, Rubao; Pendleton, Daniel; Varpe, Øystein; Yool, Andrew; Lee, Younjoo J.

    2016-01-01

    Previous observational studies have found increasing primary production (PP) in response to declining sea ice cover in the Arctic Ocean. In this study, under-ice PP was assessed based on three coupled ice-ocean-ecosystem models participating in the Forum for Arctic Modeling and Observational Synthesis (FAMOS) project. All models showed good agreement with under-ice measurements of surface chlorophyll-a concentration and vertically integrated PP rates during the main under-ice production period, from mid-May to September. Further, modeled 30-year (1980-2009) mean values and spatial patterns of sea ice concentration compared well with remote sensing data. Under-ice PP was higher in the Arctic shelf seas than in the Arctic Basin, but ratios of under-ice PP over total PP were spatially correlated with annual mean sea ice concentration, with higher ratios in higher ice concentration regions. Decreases in sea ice from 1980 to 2009 were correlated significantly with increases in total PP and decreases in the under-ice PP/total PP ratio for most of the Arctic, but nonsignificantly related to under-ice PP, especially in marginal ice zones. Total PP within the Arctic Circle increased at an annual rate of between 3.2 and 8.0 Tg C/yr from 1980 to 2009. This increase in total PP was due mainly to a PP increase in open water, including increases in both open water area and PP rate per unit area, and therefore much stronger than the changes in under-ice PP. All models suggested that, on a pan-Arctic scale, the fraction of under-ice PP declined with declining sea ice cover over the last three decades.

  16. Intercomparison and interpretation of surface energy fluxes in atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Cess, R. D.; Blanchet, J. P.; Boer, G. J.; Dazlich, D. A.; Del Genio, A. D.; Deque, M.; Dymnikov, V.; Galin, V.; Ghan, S. J.

    1992-01-01

    Responses of the surface energy budgets and hydrologic cycles of 19 atmospheric general circulation models to an imposed, globally uniform sea surface temperature perturbation of 4 K were analyzed. The responses of the simulated surface energy budgets are extremely diverse and are closely linked to the responses of the simulated hydrologic cycles. The response of the net surface energy flux is not controlled by cloud effects; instead, it is determined primarily by the response of the latent heat flux. The prescribed warming of the oceans leads to major increases in the atmospheric water vapor content and the rates of evaporation and precipitation. The increased water vapor amount drastically increases the downwelling IR radiation at the earth's surface, but the amount of the change varies dramatically from one model to another.

  17. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    SciTech Connect

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is

  18. An intercomparison of several diagnostic meteorological processors used in mesoscale air quality modeling

    SciTech Connect

    Vimont, J.C.; Scire, J.S.

    1994-12-31

    A major component, and area of uncertainty, in mesoscale air quality modeling, is the specification of the meteorological fields which affect the transport and dispersion of pollutants. Various options are available for estimating the wind and mixing depth fields over a mesoscale domain. Estimates of the wind field can be obtained from spatial and temporal interpolation of available observations or from diagnostic meteorological models, which estimate a meteorological field from available data and adjust those fields based on parameterizations of physical processes. A major weakness of these processors is their dependence on spatially and temporally sparse input data, particularly upper air data. These problems are exacerbated in regions of complex terrain and along the shorelines of large bodies of water. Similarly, the estimation of mixing depth is also reliant upon sparse observations and the parameterization of the convective and mechanical processes. The meteorological processors examined in this analysis were developed to drive different Lagrangian puff models. This paper describes the algorithms these processors use to estimate the wind fields and mixing depth fields.

  19. Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data

    SciTech Connect

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, T.; Wang, Minghuai; Penner, Joyce E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, A.; Feingold, G.; Hoose, Corinna; Kristjansson, J. E.; Liu, Xiaohong; Balkanski, Y.; Donner, Leo J.; Ginoux, P.; Stier, P.; Grandey, B.; Feichter, J.; Sednev, Igor; Bauer, Susanne E.; Koch, D.; Grainger, Roy G.; Kirkevag, A.; Iversen, T.; Seland, O.; Easter, Richard C.; Ghan, Steven J.; Rasch, Philip J.; Morrison, H.; Lamarque, J. F.; Iacono, Michael J.; Kinne, Stefan; Schulz, M.

    2009-11-16

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated in the present study using three satellite datasets. The satellite datasets are taken as reference bearing in mind that cloud and aerosol retrievals include uncertainties. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities consistently in models and satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over oceans. The relationship between τa and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to rep¬resentation of the second aerosol indirect effect in terms of autoconversion. A positive re¬lationship between total cloud fraction (fcld) and τa as found in the satellite data is simulated by the majority of the models, albeit less strongly in most of them. In a discussion of the hypo¬theses proposed in the literature to explain the satellite-derived strong fcld – τa relation¬ship, we find that none is unequivocally confirmed by our results. Relationships similar to the ones found in satellite data between τa and cloud top tem¬perature and outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - τa relationship show a strong positive cor¬relation between τa and cloud fraction. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of τa, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the short

  20. Intercomparison of atmospheric reanalysis data in the Arctic region: To derive site-specific forcing data for terrestrial models

    NASA Astrophysics Data System (ADS)

    Mori, J.; Saito, K.; Machiya, H.; Yabuki, H.; Ikawa, H.; Ohta, T.; Iijima, Y.; Kotani, A.; Suzuki, R.; Miyazaki, S.; Sato, A.; Hajima, T.; Sueyoshi, T.

    2015-12-01

    An intercomparison project for the Arctic terrestrial (physical and ecosystem) models, GTMIP, is conducted, targeting at improvements in the existing terrestrial schemes, as an activity of the Terrestrial Ecosystem research group in the Arctic of Japan GRENE Arctic Climate Change Research Project (GRENE-TEA). For site simulations for four GRENE-TEA sites (i.e., Fairbanks/AK, Kevo/Finland, Tiksi and Yakutsk/Siberia), we needed to prepare continuous, site-fit forcing data ready to drive the models. Due to scarcity of site observations in the region, however, it was difficult to make such data directly from the observations. Therefore, we decided to create a backbone dataset (Level 0 or Lv0) first by utilizing the reanalysis data to derive the site-specific data (Level 1 or Lv1). For selection of the best dataset for our purpose, we compared four atmospheric reanalysis datasets, i.e., ERA Interim, JRA-55, NCEP/NCAR Reanalysis 1, and NCEP-DOE Reanalysis 2, in terms of the climatic reproducibility (w.r.t. temperature at 2 m and precipitation) in the region north of 60°N. CRU for temperature and GPCP for precipitation were also used for monthly-mean ground-level climate. As we will show ERA-Interim showed the smallest bias for both the parameters in terms of RMSE. Especially, air temperature in the cold period was reproduced better in ERA-Interim than is in JRA-55 or other reanalysis products. Therefore, we created Lv0 from ERA-Interim. Comparison between the site observations and Lv0 showed good agreement except for wind speed at all sites and air temperature at Tiksi, a coastal site in the eastern Siberia. Air temperature of ERA-Interim showed significantly continental characteristics while the site observation more coastal. The 34-year-long, hourly, site-fit continuous data (Lv1) for each of the GRENE-TEA sites was then created from the Lv0 values at the grid point closest to the site, by merging with the observations.

  1. The Model Intercomparison Project on the Climatic Response to Volcanic Forcing (VolMIP): Experimental Design and Forcing Input Data for CMIP6

    NASA Technical Reports Server (NTRS)

    Zanchettin, Davide; Khodri, Myriam; Timmreck, Claudia; Toohey, Matthew; Schmidt, Anja; Gerber, Edwin P.; Hegerl, Gabriele; Robock, Alan; Pausata, Francesco; Ball, William T.; Bauer, Susanne E.; LeGrande, Allegra N.; Tsigaridis, Kostas

    2016-01-01

    The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.

  2. The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6

    NASA Astrophysics Data System (ADS)

    Zanchettin, Davide; Khodri, Myriam; Timmreck, Claudia; Toohey, Matthew; Schmidt, Anja; Gerber, Edwin P.; Hegerl, Gabriele; Robock, Alan; Pausata, Francesco S. R.; Ball, William T.; Bauer, Susanne E.; Bekki, Slimane; Dhomse, Sandip S.; LeGrande, Allegra N.; Mann, Graham W.; Marshall, Lauren; Mills, Michael; Marchand, Marion; Niemeier, Ulrike; Poulain, Virginie; Rozanov, Eugene; Rubino, Angelo; Stenke, Andrea; Tsigaridis, Kostas; Tummon, Fiona

    2016-08-01

    The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.

  3. An Architecture and Analysis Environment for Model to Observational Data Intercomparisons

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.; Williams, D.; Braverman, A. J.; Crichton, D. J.

    2009-12-01

    The Jet Propulsion Laboratory (JPL) has within the last year initiated an effort to increase the use of its observational data in the improvement and analysis of climate model outputs. This effort, known as the Climate Data eXchange (CDX), is a multi-institutional collaboration involving representatives from JPL and from the Program for Climate Model Diagnosis and Intercomparisions (PCMDI) at Lawrence Livermore National Laboratory (LLNL). Our early focus in the context of CDX has been on NASA Level 2 observational data products. These products vary in a number of ways incl.: (1) format - many of the products are stored in the Hierarchical Data Format (HDF), others in netCDF, with variation even between software versions that generated these output files within the same format; (2) geographic distribution - most observational data products are co-located with their scientific discipline expertise, to increase the yield of promising scientific results and to cut down on the effort for a science user to make progress; (3) data access mechanism - some data products are available from sophisticated web service interfaces, e.g., OPeNDAP -- others are not, requiring a user to fill on an online web ordering ``cart'', and have an email notification indicating availability at a later date; and (4) size - depending on the frequency of the instrument's orbit, and the characteristics of the mission including the way that the instrument ``sees'' the Earth, the sheer volume of the Level 2 data can widely vary, ranging from megabytes (MB) per product, to gigabytes (GB). These four dimensions are just a sampling of the characteristics of Level 2 observational data. The goal of CDX is to deliver an open source software toolkit that allows science users to alleviate as much of the complexity of dealing with Level 2 observational data as possible, and to facilitate its comparison to model outputs. In this fashion, there are two fundamental subsystems within CDX: (1) a Client Toolkit

  4. A NASA Climate Model Data Services (CDS) End-to-End System to Support Reanalysis Intercomparison

    NASA Astrophysics Data System (ADS)

    Carriere, L.; Potter, G. L.; McInerney, M.; Nadeau, D.; Shen, Y.; Duffy, D.; Schnase, J. L.; Maxwell, T. P.; Huffer, E.

    2014-12-01

    The NASA Climate Model Data Service (CDS) and the NASA Center for Climate Simulation (NCCS) are collaborating to provide an end-to-end system for the comparative study of the major Reanalysis projects, currently, ECMWF ERA-Interim, NASA/GMAO MERRA, NOAA/NCEP CFSR, NOAA/ESRL 20CR, and JMA JRA25. Components of the system include the full spectrum of Climate Model Data Services; Data, Compute Services, Data Services, Analytic Services and Knowledge Services. The Data includes standard Reanalysis model output, and will be expanded to include gridded observations, and gridded Innovations (O-A and O-F). The NCCS High Performance Science Cloud provides the compute environment (storage, servers, and network). Data Services are provided through an Earth System Grid Federation (ESGF) data node complete with Live Access Server (LAS), Web Map Service (WMS) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) for visualization, as well as a collaborative interface through the Earth System CoG. Analytic Services include UV-CDAT for analysis and MERRA/AS, accessed via the CDS API, for computation services, both part of the CDS Climate Analytics as a Service (CAaaS). Knowledge Services include access to an Ontology browser, ODISEES, for metadata search and data retrieval. The result is a system that provides the ability for both reanalysis scientists and those scientists in need of reanalysis output to identify the data of interest, compare, compute, visualize, and research without the need for transferring large volumes of data, performing time consuming format conversions, and writing code for frequently run computations and visualizations.

  5. An intercomparison of intraseasonal variability in general circulation models and observations

    NASA Technical Reports Server (NTRS)

    Park, Chung-Kyu; Straus, David M.; Lau, Ka-Ming; Schubert, Siegfried D.

    1990-01-01

    Low frequency oscillations appearing in three GCM seasonal cycle integrations are compared with the analyses of the European Center for Medium Range Weather Forecasting (ECMWF). All three models have the same resolution: 4 deg latitude by 5 deg longitude, with 9 levels. The dominant phase speeds and the differential vertical structure of the heating profiles in the GCMs are in general agreement with current theory involving the positive feedback between latent heating and moist static stability. All three GCMs fail to capture the detailed evolution in the different stages of the development and decay of the oscillation. The results suggest that an improvement in the boundary layer moisture processes may be crucial for a better simulation of the oscillation.

  6. Assessment of malaria transmission changes in Africa, due to the climate impact of land use change using Coupled Model Intercomparison Project Phase 5 earth system models.

    PubMed

    Tompkins, Adrian M; Caporaso, Luca

    2016-03-31

    Using mathematical modelling tools, we assessed the potential for land use change (LUC) associated with the Intergovernmental Panel on Climate Change low- and high-end emission scenarios (RCP2.6 and RCP8.5) to impact malaria transmission in Africa. To drive a spatially explicit, dynamical malaria model, data from the four available earth system models (ESMs) that contributed to the LUC experiment of the Fifth Climate Model Intercomparison Project are used. Despite the limited size of the ESM ensemble, stark differences in the assessment of how LUC can impact climate are revealed. In three out of four ESMs, the impact of LUC on precipitation and temperature over the next century is limited, resulting in no significant change in malaria transmission. However, in one ESM, LUC leads to increases in precipitation under scenario RCP2.6, and increases in temperature in areas of land use conversion to farmland under both scenarios. The result is a more intense transmission and longer transmission seasons in the southeast of the continent, most notably in Mozambique and southern Tanzania. In contrast, warming associated with LUC in the Sahel region reduces risk in this model, as temperatures are already above the 25-30°C threshold at which transmission peaks. The differences between the ESMs emphasise the uncertainty in such assessments. It is also recalled that the modelling framework is unable to adequately represent local-scale changes in climate due to LUC, which some field studies indicate could be significant.

  7. Assessment of malaria transmission changes in Africa, due to the climate impact of land use change using Coupled Model Intercomparison Project Phase 5 earth system models.

    PubMed

    Tompkins, Adrian M; Caporaso, Luca

    2016-01-01

    Using mathematical modelling tools, we assessed the potential for land use change (LUC) associated with the Intergovernmental Panel on Climate Change low- and high-end emission scenarios (RCP2.6 and RCP8.5) to impact malaria transmission in Africa. To drive a spatially explicit, dynamical malaria model, data from the four available earth system models (ESMs) that contributed to the LUC experiment of the Fifth Climate Model Intercomparison Project are used. Despite the limited size of the ESM ensemble, stark differences in the assessment of how LUC can impact climate are revealed. In three out of four ESMs, the impact of LUC on precipitation and temperature over the next century is limited, resulting in no significant change in malaria transmission. However, in one ESM, LUC leads to increases in precipitation under scenario RCP2.6, and increases in temperature in areas of land use conversion to farmland under both scenarios. The result is a more intense transmission and longer transmission seasons in the southeast of the continent, most notably in Mozambique and southern Tanzania. In contrast, warming associated with LUC in the Sahel region reduces risk in this model, as temperatures are already above the 25-30°C threshold at which transmission peaks. The differences between the ESMs emphasise the uncertainty in such assessments. It is also recalled that the modelling framework is unable to adequately represent local-scale changes in climate due to LUC, which some field studies indicate could be significant. PMID:27063732

  8. Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations

    NASA Astrophysics Data System (ADS)

    Belmonte Rivas, M.; Veefkind, P.; Boersma, F.; Levelt, P.; Eskes, H.; Gille, J.

    2014-07-01

    This paper evaluates the agreement between stratospheric NO2 retrievals from infrared limb sounders (Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and High Resolution Dynamics Limb Sounder (HIRDLS)) and solar UV/VIS backscatter sensors (Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) limb and nadir) over the 2005-2007 period and across the seasons. The observational agreement is contrasted with the representation of NO2 profiles in 3-D chemical transport models such as the Whole Atmosphere Community Climate Model (WACCM) and TM4. A conclusion central to this work is that the definition of a reference for stratospheric NO2 columns formed by consistent agreement among SCIAMACHY, MIPAS and HIRDLS limb records (all of which agree to within 0.25 × 1015 molecules cm-2 or better than 10%) allows us to draw attention to relative errors in other data sets, e.g., (1) WACCM overestimates NO2 densities in the extratropical lower stratosphere, particularly in the springtime and over northern latitudes by up to 35% relative to limb observations, and (2) there are remarkable discrepancies between stratospheric NO2 column estimates from limb and nadir techniques, with a characteristic seasonally and latitudinally dependent pattern. We find that SCIAMACHY nadir and OMI stratospheric columns show overall biases of -0.5 × 1015 molecules cm-2 (-20%) and +0.6 × 1015 molecules cm-2 (+20%) relative to limb observations, respectively. It is argued that additive biases in nadir stratospheric columns are not expected to affect tropospheric retrievals significantly, and that they can be attributed to errors in the total slant column density, related either to algorithmic or instrumental effects. In order to obtain accurate and long-term time series of stratospheric NO2, an effort towards the harmonization of currently used differential optical absorption spectroscopy (DOAS) approaches to nadir

  9. Methods for Validation and Intercomparison of Remote Sensing and In situ Ice Water Measurements: Case Studies from CRYSTAL-FACE and Model Results

    NASA Technical Reports Server (NTRS)

    Sayres, D.S.; Pittman, J. V.; Smith, J. B.; Weinstock, E. M.; Anderson, J. G.; Heymsfield, G.; Li, L.; Fridlind, A.; Ackerman, A. S.

    2004-01-01

    Remote sensing observations, such as those from AURA, are necessary to understand the role of cirrus in determining the radiative and humidity budgets of the upper troposphere. Using these measurements quantitatively requires comparisons with in situ measurements that have previously been validated. However, a direct comparison of remote and in situ measurements is difficult due to the requirement that the spatial and temporal overlap be sufficient in order to guarantee that both instruments are measuring the same air parcel. A difficult as this might be for gas phase intercomparisons, cloud inhomogeneities significantly exacerbate the problem for cloud ice water content measurements. The CRYSTAL-FACE mission provided an opportunity to assess how well such intercomparisons can be performed and to establish flight plans that will be necessary for validation of future satellite instruments. During CRYSTAL-FACE, remote and in situ instruments were placed on different aircraft (NASA's ER-2 and WB-59, and the two planes flew in tandem so that the in situ payload flew in the field of view of the remote instruments. We show here that, even with this type of careful flight planning, it is not always possible to guarantee that remote and in situ instruments are viewing the same air parcel. We use ice water data derived from the in situ Harvard Total Water (HV-TW) instrument, and the remote Goddard Cloud Radar System (CRS) and show that agreement between HV-TW and CRS is a strong function of the horizontal separation and the time delay between the aircraft transects. We also use a cloud model to simulate possible trajectories through a cloud and evaluate the use of statistical analysis in determining the agreement between the two instruments. This type of analysis should guide flight planning for future intercomparison efforts, whether for aircraft or satellite-borne instrumentation.

  10. An inter-comparison of plot-scale, satellite and earth system model estimates of tropical net primary productivity (Invited)

    NASA Astrophysics Data System (ADS)

    Townsend, A. R.; Cleveland, C. C.; Taylor, P.; Dahlin, K.; Wieder, W. R.; Smith, W. K.; Sullivan, B. W.; Chadwick, K.; Doughty, C.

    2013-12-01

    Tropical forests exchange more CO2 with the atmosphere than any other biome, making them a key control over Earth's climate. And yet, our ability to both measure and model the tropical carbon (C) cycle remains far from ideal, creating a substantial challenge for the development of Earth system models that couple the climate system with ecosystem dynamics. In part, this deficit arises from a lack of sufficient data combined with a biome that displays enormous biogeochemical heterogeneity. Here, we compare a new synthesis of plot-based measurements of tropical net primary productivity (NPP ) compared with two commonly used approaches to evaluating the tropical C cycle at large scales: NPP estimates derived from 1) the MODIS MOD-17 algorithm, and 2) the Community Land Model version 4.5. We also assess the major drivers of variance in NPP in each method, partly as a way to explore how well modeled and satellite-derived values compare to field-based measurements of NPP responses to environmental variables. At the largest scale, MODIS, CLM and a simple climate-based extrapolation of the plot-scale data compare reasonably well: multi-year averaged pan-tropical NPP values from the three approaches were 9.4, 10.8 and 9.5 PgC/yr, respectively. However, inter-comparisons at finer spatial and temporal scales reveal substantial differences among the three methods. For example, CLM predicts a steady increase in tropical NPP throughout the last decade or more, largely because of model assumptions surrounding the importance of CO2 fertilization, while MOD-17 produces a declining NPP trend. CLM also predicts significant N-limitation of lowland forest NPP, a finding that does not agree with most field-based evidence. MODIS estimates show little dependence on fPAR (fraction of absorbed photosynthetically active radiation), in part because the complex canopy architecture creates a radiative transfer environment that the MODIS sensor cannot resolve. Therefore, variation in MODIS

  11. What is the difference between a 2, 3, 4, or 5 °C world and how good are we at telling this difference? Results from ISI-MIP the first Inter-Sectoral Impact Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Frieler, K.; Huber, V.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.

    2012-12-01

    The Inter-sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. Over 25 climate impact modelling teams from around the world, working within the agriculture, water, biomes, infrastructure and health sectors, are collaborating to find answers to the question "What is the difference between a 2, 3, 4, or 5 °C world and how good are we at telling this difference?". The analysis is based on common, bias-corrected climate projections, and socio-economic pathways. The first, fast-tracked phase of the ISI-MIP has a focus on global impact models. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. Novel metrics, developed to emphasize societal impacts, will be used to identify regional 'hot-spots' of climate change impacts, as well as to quantify the cross-sectoral impact of the increasing frequency of extreme events in future climates. We present here first results from the Fast-Track phase of the project covering impact simulations in the biomes, agriculture and water sectors, in which the societal impacts of climate change are quantified for different levels of global warming. We also discuss the design of the scenario set-up and impact indicators chosen to suit the unique cross-sectoral, multi-model nature of the project.

  12. Climate Forcing Datasets for Agricultural Modeling: Merged Products for Gap-Filling and Historical Climate Series Estimation

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Goldberg, Richard; Chryssanthacopoulos, James

    2014-01-01

    The AgMERRA and AgCFSR climate forcing datasets provide daily, high-resolution, continuous, meteorological series over the 1980-2010 period designed for applications examining the agricultural impacts of climate variability and climate change. These datasets combine daily resolution data from retrospective analyses (the Modern-Era Retrospective Analysis for Research and Applications, MERRA, and the Climate Forecast System Reanalysis, CFSR) with in situ and remotely-sensed observational datasets for temperature, precipitation, and solar radiation, leading to substantial reductions in bias in comparison to a network of 2324 agricultural-region stations from the Hadley Integrated Surface Dataset (HadISD). Results compare favorably against the original reanalyses as well as the leading climate forcing datasets (Princeton, WFD, WFD-EI, and GRASP), and AgMERRA distinguishes itself with substantially improved representation of daily precipitation distributions and extreme events owing to its use of the MERRA-Land dataset. These datasets also peg relative humidity to the maximum temperature time of day, allowing for more accurate representation of the diurnal cycle of near-surface moisture in agricultural models. AgMERRA and AgCFSR enable a number of ongoing investigations in the Agricultural Model Intercomparison and Improvement Project (AgMIP) and related research networks, and may be used to fill gaps in historical observations as well as a basis for the generation of future climate scenarios.

  13. The Carbon-Land Model Intercomparison Project (C-LAMP): A Model-Data Comparison System for Evaluation of Coupled Biosphere-Atmosphere Models

    SciTech Connect

    Hoffman, Forrest M; Randerson, Jim; Thornton, Peter E; Mahowald, Natalie; Bonan, Gordon; Running, Steven; Fung, Inez

    2009-01-01

    The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) provides a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments

  14. EURADOS intercomparison exercise on MC modelling for the in-vivo monitoring of AM-241 in skull phantoms (Part II and III).

    NASA Astrophysics Data System (ADS)

    Vrba, Tomas; Broggio, David; Caldeira, Margarida; Capello, Kevin; Fantínová, Karin; Franck, Didier; Gómez-Ros, Jose Maria; Hunt, John; Kinase, Sakae; Leone, Debora; Lombardo, Pasquale Alessandro; Manohari, Murugan; Marzocchi, Olaf; Moraleda, Montserrat; Nogueira, Pedro; Ośko, Jakub; Arron, Shutt; Suhl, Soheigh; Takahashi, Masa; Teles, Pedro; Tremblay, Marilyn; Tymińska, Katarzyna; Lopez, Maria Antonia; Tanner, Rick

    2015-08-01

    An intercomparison on in-vivo monitoring for determination of Am-241 in three skull phantoms was launched by EURADOS in 2011. The project focused on measurement and estimation of the activity of Am-241 in the human skull. Three human skull phantoms of different complexity were used. A Monte Carlo (MC) intercomparison exercise with the voxel representations of the physical phantom was launched additionally in September of 2012. The main goals of the action were (1) to investigate the different methodologies for developing MC calibrations that might arise from a complex radiological assessment and (2) to compare individual approaches of the participating laboratories in order to determine international guidance for best practice. The MC exercise consisted of three tasks with increasing difficulty, in order to test the extent of skills needed by the participating laboratory. The first task was to simulate a given detector and a well-defined semi-skull phantom. The second and third tasks presented in this paper-introduced more complex simulations with individual geometry and real detector modelling. The paper provides an overview of the participant's results, analyses of the observed issues concerning tasks two and three, and a general evaluation of the whole project.

  15. ICRCCM (InterComparison of Radiation Codes used in Climate Models) Phase 2: Verification and calibration of radiation codes in climate models

    SciTech Connect

    Ellingson, R.G.; Wiscombe, W.J.; Murcray, D.; Smith, W.; Strauch, R.

    1990-01-01

    Following the finding by the InterComparison of Radiation Codes used in Climate Models (ICRCCM) of large differences among fluxes predicted by sophisticated radiation models that could not be sorted out because of the lack of a set of accurate atmospheric spectral radiation data measured simultaneously with the important radiative properties of the atmosphere, our team of scientists proposed to remedy the situation by carrying out a comprehensive program of measurement and analysis called SPECTRE (Spectral Radiance Experiment). SPECTRE will establish an absolute standard against which to compare models, and will aim to remove the hidden variables'' (unknown humidities, aerosols, etc.) which radiation modelers have invoked to excuse disagreements with observation. The data to be collected during SPECTRE will form the test bed for the second phase of ICRCCM, namely verification and calibration of radiation codes used to climate models. This should lead to more accurate radiation models for use in parameterizing climate models, which in turn play a key role in the prediction of trace-gas greenhouse effects. Overall, the project is proceeding much as had been anticipated in the original proposal. The most significant accomplishments to date include the completion of the analysis of the original ICRCCM calculations, the completion of the initial sensitivity analysis of the radiation calculations for the effects of uncertainties in the measurement of water vapor and temperature and the acquisition and testing of the inexpensive spectrometers for use in the field experiment. The sensitivity analysis and the spectrometer tests given us much more confidence that the field experiment will yield the quality of data necessary to make a significant tests of and improvements to radiative transfer models used in climate studies.

  16. SOIL moisture data intercomparison

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Rodriguez-Frenandez, Nemesio; Al-Yaari, Amen; Parens, Marie; Molero, Beatriz; Mahmoodi, Ali; Mialon, Arnaud; Richaume, Philippe; Bindlish, Rajat; Mecklenburg, Susanne; Wigneron, Jean-Pierre

    2016-04-01

    The Soil Moisture and Ocean Salinity satellite (SMOS) was launched in November 2009 and started delivering data in January 2010. Subsequently, the satellite has been in operation for over 6 years while the retrieval algorithms from Level 1 to Level 2 underwent significant evolutions as knowledge improved. Other approaches for retrieval at Level 2 over land were also investigated while Level 3 and 4 were initiated. In this présentation these improvements are assessed by inter-comparisons of the current Level 2 (V620) against the previous version (V551) and new products either using neural networks or Level 3. In addition a global evaluation of different SMOS soil moisture (SM) products is performed comparing products with those of model simulations and other satellites (AMSR E/ AMSR2 and ASCAT). Finally, all products were evaluated against in situ measurements of soil moisture (SM). The study demonstrated that the V620 shows a significant improvement (including those at level1 improving level2)) with respect to the earlier version V551. Results also show that neural network based approaches can yield excellent results over areas where other products are poor. Finally, global comparison indicates that SMOS behaves very well when compared to other sensors/approaches and gives consistent results over all surfaces from very dry (African Sahel, Arizona), to wet (tropical rain forests). RFI (Radio Frequency Interference) is still an issue even though detection has been greatly improved while RFI sources in several areas of the world are significantly reduced. When compared to other satellite products, the analysis shows that SMOS achieves its expected goals and is globally consistent over different eco climate regions from low to high latitudes and throughout the seasons.

  17. The Development Model Electronic Commerce of Regional Agriculture

    NASA Astrophysics Data System (ADS)

    Kang, Jun; Cai, Lecai; Li, Hongchan

    With the developing of the agricultural information, it is inevitable trend of the development of agricultural electronic commercial affairs. On the basis of existing study on the development application model of e-commerce, combined with the character of the agricultural information, compared with the developing model from the theory and reality, a new development model electronic commerce of regional agriculture base on the government is put up, and such key issues as problems of the security applications, payment mode, sharing mechanisms, and legal protection are analyzed, etc. The among coordination mechanism of the region is discussed on, it is significance for regulating the development of agricultural e-commerce and promoting the regional economical development.

  18. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    NASA Technical Reports Server (NTRS)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, D.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Zeng, G.

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  19. Phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  20. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes

    SciTech Connect

    Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-20

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  1. Changes in Discharge in an Agricultural Watershed in Iowa: Modeling and Projections

    NASA Astrophysics Data System (ADS)

    Villarini, G.

    2014-12-01

    Our improved capability to adapt to future changes in discharge is unavoidably linked to our capability to predict the magnitude or at least the direction of these changes. The importance of improving discharge projections is particularly relevant in an agricultural state like Iowa. Iowa has been affected by a sequence of extreme events over the most recent years, with the flood events of 1993, 2008, 2010, 2013 and 2014 interrupted by the droughts of 2012 and summer 2013. It is clear that too much or too little water will have severe economic and societal impacts for this state, and the agricultural U.S. Midwest more generally. Therefore, being able to increase our confidence in the direction and magnitude of the projected changes in discharge (from low to high flow) will be of key importance for improving our mitigation and management strategies during both flooding and droughts. Here we focus on the Raccoon River at Van Meter, Iowa, and use a statistical approach to examine projected changes in discharge. We build on statistical models using rainfall and harvested corn and soybean acreage to explain the observed stream flow variability. We then use projections of these two predictors to examine the projected discharge response. Results are based on seven state-of-the-art global climate models (GCMs) produced under the Fifth Coupled Model Intercomparison Project (CMIP5), and two representative concentration pathways (RCPs 4.5 and 8.5). We find that there is not a strong signal of change in the discharge projections under the RCP 4.5. On the other hand, the results for the RCP 8.5 point to a stronger changing signal, in particular increasing trends in the upper part of the discharge distribution. Examination of two hypothetical agricultural scenarios indicates that these increasing trends could be potentially offset by decreasing the extent of the agricultural production. Finally, we discuss how to move forward with the concept of return period for engineering

  2. Integration of agricultural and energy system models for biofuel assessment

    EPA Science Inventory

    This paper presents a coupled modeling framework to capture the dynamic linkages between agricultural and energy markets that have been enhanced through the expansion of biofuel production, as well as the environmental impacts resulting from this expansion. The framework incorpor...

  3. Statistical modeling of agricultural chemical occurrence in midwestern rivers

    NASA Astrophysics Data System (ADS)

    Battaglin, William A.; Goolsby, Donald A.

    1997-09-01

    Agricultural chemicals in surface water may constitute a human health risk or have adverse effects on aquatic life. Recent research on unregulated rivers in the midwestern USA documents that elevated concentrations of herbicides occur for 1-4 months following application in late spring and early summer. In contrast, nitrate concentrations in unregulated rivers are elevated during fall, winter, and spring months. Natural and anthropogenic variables of river drainage basins, such as soil permeability, amount of agricultural chemicals applied, or percentage of land planted in corn, affect agricultural chemical concentration and mass transport in rivers. Presented is an analysis of selected data on agricultural chemicals collected for three regional studies conducted by the US Geological Survey. Statistical techniques such as multiple linear and logistic regression were used to identify natural and anthropogenic variables of drainage basins that have strong relations to agricultural chemical concentrations and mass transport measured in rivers. A geographic information system (GIS) was used to manage and analyze spatial data. Statistical models were developed that estimated the concentration, annual transport, and annual mean concentration of selected agricultural chemicals in midwestern rivers. Multiple linear regression models were not very successful ( R2 from 0.162 to 0.517) in explaining the variance in observed agricultural chemical concentrations during post-planting runoff. Logistic regression models were somewhat more successful, correctly matching the observed concentration category in 61-80% of observations. Linear and multiple linear regression models were moderately successful ( R2 from 0.522 to 0.995) in explaining the variance in observed annual transport and annual mean concentration of agricultural chemicals. Explanatory variables that were commonly significant in the regression models include estimates of agricultural chemical use, crop acreage, soil

  4. Statistical modeling of agricultural chemical occurrence in midwestern rivers

    USGS Publications Warehouse

    Battaglin, W.A.; Goolsby, D.A.

    1997-01-01

    Agricultural chemicals in surface water may constitute a human health risk or have adverse effects on aquatic life. Recent research on unregulated rivers in the midwestern USA documents that elevated concentrations of herbicides occur for 1-4 months following application in late spring and early summer. In contrast, nitrate concentrations in unregulated rivers are elevated during fall, winter, and spring months. Natural and anthropogenic variables of fiver drainage basins, such as soil permeability, amount of agricultural chemicals applied, or percentage of land planted in corn, affect agricultural chemical concentration and mass transport in rivers. Presented is an analysis of selected data on agricultural chemicals collected for three regional studies conducted by the US Geological Survey. Statistical techniques such as multiple linear and logistic regression were used to identify natural and anthropogenic variables of drainage basins that have strong relations to agricultural chemical concentrations and mass transport measured in rivers. A geographic information system (GIS) was used to manage and analyze spatial data. Statistical models were developed that estimated the concentration, annual transport, and annual mean concentration of selected agricultural chemicals in midwestern rivers. Multiple linear regression models were not very successful (R2 from 0.162 to 0.517) in explaining the variance in observed agricultural chemical concentrations during post-planting runoff. Logistic regression models were somewhat more successful, correctly matching the observed concentration category in 61-80% of observations. Linear and multiple linear regression models were moderately successful (R2 from 0.522 to 0.995) in explaining the variance in observed annual transport and annual mean concentration of agricultural chemicals. Explanatory variables that were commonly significant in the regression models include estimates of agricultural chemical use, crop acreage, soil

  5. Integrating seasonal climate prediction and agricultural models for insights into agricultural practice

    PubMed Central

    Hansen, James W

    2005-01-01

    Interest in integrating crop simulation models with dynamic seasonal climate forecast models is expanding in response to a perceived opportunity to add value to seasonal climate forecasts for agriculture. Integrated modelling may help to address some obstacles to effective agricultural use of climate information. First, modelling can address the mismatch between farmers' needs and available operational forecasts. Probabilistic crop yield forecasts are directly relevant to farmers' livelihood decisions and, at a different scale, to early warning and market applications. Second, credible ex ante evidence of livelihood benefits, using integrated climate–crop–economic modelling in a value-of-information framework, may assist in the challenge of obtaining institutional, financial and political support; and inform targeting for greatest benefit. Third, integrated modelling can reduce the risk and learning time associated with adaptation and adoption, and related uncertainty on the part of advisors and advocates. It can provide insights to advisors, and enhance site-specific interpretation of recommendations when driven by spatial data. Model-based ‘discussion support systems’ contribute to learning and farmer–researcher dialogue. Integrated climate–crop modelling may play a genuine, but limited role in efforts to support climate risk management in agriculture, but only if they are used appropriately, with understanding of their capabilities and limitations, and with cautious evaluation of model predictions and of the insights that arises from model-based decision analysis. PMID:16433092

  6. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud

    SciTech Connect

    Klein, Stephen A.; McCoy, Renata; Morrison, H.; Ackerman, Andrew; Avramov, Alexander; DeBoer, GIJS; Chen, Mingxuan; Cole, Jason N.; DelGenio, Anthony D.; Falk, Michael; Foster, Mike; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat; Larson, Vince; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg; Menon, Surabi; Neggers, Roel; Park, Sungsu; Poellot, M. R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben; Shupe, Matthew D.; Spangenberg, D.; Sud, Yogesh; Turner, David D.; Veron, Dana; Von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, G.

    2009-05-21

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the ARM Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of –15°C. While the cloud was water dominated, ice precipitation appears to have lowered the liquid water path to about 2/3 of the adiabatic value. The simulations, which were performed by seventeen single column and nine cloud-resolving models, generally underestimate the liquid water path with the median single-column and cloud-resolving model liquid water path a factor of 3 smaller than observed. While the simulated ice water path is in general agreement with the observed values, results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice phase microphysics is responsible for the strong model underestimate of liquid water path. Although no single factor is found to lead to a good simulation, these results emphasize the need for care in the model treatment of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be benchmark for model simulations of mixed-phase clouds.

  7. SPARC Reanalysis Intercomparison Project (S-RIP)

    NASA Astrophysics Data System (ADS)

    Fujiwara, M.; Long, C. S.

    2014-12-01

    The middle atmosphere and climate community use reanalyses widely to understand atmospheric processes and variability in the middle atmosphere, to validate climate models, and, potentially, for trend analysis. Yet different reanalyses give different results for the same diagnostic. There is thus a need for a coordinated reanalysis intercomparison project that shall start a comprehensive activity to compare all appropriate reanalysis data sets for key diagnostics to help understand the causes of differences and to use the results to provide guidance on appropriate usage of various reanalysis products in scientific studies. In addition, the reanalysis community will benefit from coordinated user feedback, which can lead to improvements in the next generation of reanalysis products. The Stratosphere-troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a SPARC activity that was proposed in 2012 and approved in 2014. The goals of S-RIP are: (1) to create a communication platform between the SPARC community and the reanalysis centers; (2) to understand current reanalysis products and to contribute to future reanalysis improvements in the middle atmosphere region; and (3) to write up the results of the reanalysis intercomparison in peer reviewed papers and a SPARC report. The project duration is from 2013 to 2018. In the presentation, an overview of the project is made and some early intercomparison results are discussed.

  8. A critical evaluation of present-day and future surface ozone as simulated by global chemistry-climate models in the Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Schnell, J.; Prather, M. J.

    2014-12-01

    In evaluating a future scenario for air quality, one can identify four major causal factors: (1) global emissions that alter atmospheric composition and thence baseline levels of surface ozone (O3); (2) global changes in climate that also alter these baselines (e.g., temperature, water vapor); (3) climate-driven changes in the meteorological regimes of polluted regions that lead to air quality extreme (AQX) episodes; and (4) changes in the efficacy of local emissions to produce pollution within a governance region. While these factors are all part of a coupled system, a model that combines all would be difficult to verify. Thus an assessment approach would be to evaluate each factor separately using observations and an ensemble of models. In this study, we focus on factor (3), evaluating the ability of the models in the Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP) to reproduce the observed present-day climatology (e.g. diurnal/seasonal cycles, AQX episode size) of surface O3 in North America (NA) and Europe (EU). We then characterize future changes within these domains as well as south Asia (SA) for two experiments of RCP8.5 climate, one with O3 precursor emissions representative of the 2100s (RCP8.5) and one representative of the 2000s (Cl2100Em2000). We find that most models simulate the observed climatology well, albeit biased high over the range of each domain's probability distribution (Fig. 1). For RCP8.5, the ensemble mean shows an increase of ~10% in the mean annual maximum daily 8-h average (MDA8) over all domains, with the largest changes in winter months. For Cl2100Em2000, NA shows a small increase (+1%) in annual mean MDA8 while EU and SA show small decreases (-2% and -3%, respectively). Also for RCP8.5, most models show decreases in the mean size (S) and mean duration (D) of AQX episodes in EU (S = -28%, D = -17%) and increases in SA (+54%, +15%). The ensemble mean shows decreases in D (-7%) and increases in S (+21%) in NA

  9. Application of Program Logic Model to Agricultural Technology Transfer Programs.

    ERIC Educational Resources Information Center

    Framst, Gordon

    1995-01-01

    Program logic models provide a method of presenting program objectives schematically. This article presents a model that explicitly recognizes the ultimate societal-level benefits and accommodates identification of outputs, performance indicators, and targets. The model is illustrated with a hypothetical agricultural technology transfer program.…

  10. Probabilistic assessment of agricultural droughts using graphical models

    NASA Astrophysics Data System (ADS)

    Ramadas, Meenu; Govindaraju, Rao S.

    2015-07-01

    Agricultural droughts are often characterized by soil moisture in the root zone of the soil, but crop needs are rarely factored into the analysis. Since water needs vary with crops, agricultural drought incidences in a region can be characterized better if crop responses to soil water deficits are also accounted for in the drought index. This study investigates agricultural droughts driven by plant stress due to soil moisture deficits using crop stress functions available in the literature. Crop water stress is assumed to begin at the soil moisture level corresponding to incipient stomatal closure, and reaches its maximum at the crop's wilting point. Using available location-specific crop acreage data, a weighted crop water stress function is computed. A new probabilistic agricultural drought index is then developed within a hidden Markov model (HMM) framework that provides model uncertainty in drought classification and accounts for time dependence between drought states. The proposed index allows probabilistic classification of the drought states and takes due cognizance of the stress experienced by the crop due to soil moisture deficit. The capabilities of HMM model formulations for assessing agricultural droughts are compared to those of current drought indices such as standardized precipitation evapotranspiration index (SPEI) and self-calibrating Palmer drought severity index (SC-PDSI). The HMM model identified critical drought events and several drought occurrences that are not detected by either SPEI or SC-PDSI, and shows promise as a tool for agricultural drought studies.

  11. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison

    NASA Astrophysics Data System (ADS)

    Pattyn, Frank; Perichon, Laura; Durand, Gaël; Gagliardini, Olivier; Favier, Lionel; Hindmarsh, Richard; Zwinger, Thomas; Participants, Mismip3d

    2013-04-01

    Predictions of marine ice-sheet behaviour require models able to simulate grounding line migration. We present results of an intercomparison experiment for plan-view marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no buttressing effects from lateral drag). A unique steady state grounding line position exists for ice sheets on a downward sloping bed under those simplified conditions. Perturbation experiments specifying spatial (lateral) variation in basal sliding parameters permitted the evolution of curved grounding lines, generating buttressing effects. The experiments showed regions of compression and extensional flow across the grounding line, thereby invalidating the boundary layer theory. Models based on the shallow ice approximation, which neither resolve membrane stresses, nor reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line, are invalid. Steady-state grounding line positions were found to be dependent on the level of physical model approximation. Models that only include membrane stresses result in ice sheets with a larger span than those that also incorporate vertical shearing at the grounding line, such as higher-order and full-Stokes models. From a numerical perspective, resolving grounding lines requires a sufficiently small grid size (

  12. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as

  13. Forest water use and water use efficiency at elevated CO2 : a model-data intercomparison at two contrasting temperate forest FACE sites.

    PubMed

    De Kauwe, Martin G; Medlyn, Belinda E; Zaehle, Sönke; Walker, Anthony P; Dietze, Michael C; Hickler, Thomas; Jain, Atul K; Luo, Yiqi; Parton, William J; Prentice, I Colin; Smith, Benjamin; Thornton, Peter E; Wang, Shusen; Wang, Ying-Ping; Wårlind, David; Weng, Ensheng; Crous, Kristine Y; Ellsworth, David S; Hanson, Paul J; Seok Kim, Hyun-; Warren, Jeffrey M; Oren, Ram; Norby, Richard J

    2013-06-01

    Predicted responses of transpiration to elevated atmospheric CO2 concentration (eCO2 ) are highly variable amongst process-based models. To better understand and constrain this variability amongst models, we conducted an intercomparison of 11 ecosystem models applied to data from two forest free-air CO2 enrichment (FACE) experiments at Duke University and Oak Ridge National Laboratory. We analysed model structures to identify the key underlying assumptions causing differences in model predictions of transpiration and canopy water use efficiency. We then compared the models against data to identify model assumptions that are incorrect or are large sources of uncertainty. We found that model-to-model and model-to-observations differences resulted from four key sets of assumptions, namely (i) the nature of the stomatal response to elevated CO2 (coupling between photosynthesis and stomata was supported by the data); (ii) the roles of the leaf and atmospheric boundary layer (models which assumed multiple conductance terms in series predicted more decoupled fluxes than observed at the broadleaf site); (iii) the treatment of canopy interception (large intermodel variability, 2-15%); and (iv) the impact of soil moisture stress (process uncertainty in how models limit carbon and water fluxes during moisture stress). Overall, model predictions of the CO2 effect on WUE were reasonable (intermodel μ = approximately 28% ± 10%) compared to the observations (μ = approximately 30% ± 13%) at the well-coupled coniferous site (Duke), but poor (intermodel μ = approximately 24% ± 6%; observations μ = approximately 38% ± 7%) at the broadleaf site (Oak Ridge). The study yields a framework for analysing and interpreting model predictions of transpiration responses to eCO2 , and highlights key improvements to these types of models. PMID:23504858

  14. EURADOS INTERCOMPARISON ON MEASUREMENTS AND MONTE CARLO MODELLING FOR THE ASSESSMENT OF AMERICIUM IN A USTUR LEG PHANTOM

    SciTech Connect

    Lopez, M. A.; Broggio, D.; Capello, K.; Cardenas-Mendez, E.; El-Faramawy, N.; Franck, D.; James, Anthony C.; Kramer, Gary H.; Lacerenza, G.; Lynch, Timothy P.; Navarro, J. F.; Navarro, T.; Perez, B.; Ruhm, W.; Tolmachev, Sergei Y.; Weitzenegger, E.

    2011-03-01

    United States Transuranium and Uranium Registries (USTUR) Case 0102 was the first whole-body donation to the USTUR (1979), of a worker affected by a substantial accidental 241Am intake(1). Half of this man’s skeleton, encased in tissue-quivalent plastic, provides a unique human ‘phantom’ for calibrating in vivo counting systems. In this case, the 241Am skeletal activity was measured 25 y after the intake. Approximately 82 % of the 241Am remaining in the body was found in the bones and teeth. The241Am activity concentration throughout the skeleton (in all types of bone) was fairly uniform(2). A protocol has been proposed by a group of in vivo laboratories from Europe [CIEMAT-Spain, IRSN-France and Helmholtz Zentrum Mu¨nchen (HMGU)-Germany] and Canada (HML) participating in this DOS/USTUR intercomparison. The focus areas for the study included: (1) the efficiency pattern along the leg phantom using Germanium detectors (experimental and computational), (2) the comparison of Monte Carlo (MC) results with experimental values in counting efficiency data and (3) the inflence of americium distribution in the bone material (volume or surface).

  15. Intercomparison of retrospective radon detectors.

    PubMed Central

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-01-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type

  16. Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison

    NASA Astrophysics Data System (ADS)

    Rypina, I. I.; Jayne, S. R.; Yoshida, S.; Macdonald, A. M.; Douglass, E.; Buesseler, K.

    2013-07-01

    The Great East Japan Earthquake and tsunami that caused a loss of power at the Fukushima nuclear power plants (FNPP) resulted in emission of radioactive isotopes into the atmosphere and the ocean. In June of 2011, an international survey measuring a variety of radionuclide isotopes, including 137Cs, was conducted in surface and subsurface waters off Japan. This paper presents the results of numerical simulations specifically aimed at interpreting these observations and investigating the spread of Fukushima-derived radionuclides off the coast of Japan and into the greater Pacific Ocean. Together, the simulations and observations allow us to study the dominant mechanisms governing this process, and to estimate the total amount of radionuclides in discharged coolant waters and atmospheric airborne radionuclide fallout. The numerical simulations are based on two different ocean circulation models, one inferred from AVISO altimetry and NCEP/NCAR reanalysis wind stress, and the second generated numerically by the NCOM model. Our simulations determine that > 95% of 137Cs remaining in the water within ~600 km of Fukushima, Japan in mid-June 2011 was due to the direct oceanic discharge. The estimated strength of the oceanic source is 16.2 ± 1.6 PBq, based on minimizing the model-data mismatch. We cannot make an accurate estimate for the atmospheric source strength since most of the fallout cesium had left the survey area by mid-June. The model explained several key features of the observed 137Cs distribution. First, the absence of 137Cs at the southernmost stations is attributed to the Kuroshio Current acting as a transport barrier against the southward progression of 137Cs. Second, the largest 137Cs concentrations were associated with a semi-permanent eddy that entrained 137Cs-rich waters, collecting and stirring them around the eddy perimeter. Finally, the intermediate 137Cs concentrations at the westernmost stations are attributed to younger, and therefore less Cs

  17. Plumbum contamination detecting model for agricultural soil using hyperspectral data

    NASA Astrophysics Data System (ADS)

    Liu, Xiangnan; Huang, Fang; Wang, Ping

    2008-10-01

    The issue of environmental pollution due to toxic heavy metals in agricultural land has caused worldwide growing concern in recent years. Being one of toxic heavy metals, the accumulation of Plumbum (Pb) may have negative effects on natural and agricultural vegetation growth, yield and quality. It can also constitute short-term and long-term health risks by entering the food chain. In this study, we analyze the relationships between physical and chemical characteristics, biological parameters of soil-vegetation system and hyperspectral spectrum responses systematically. The relation between hyperspectral data and the biological parameters of Pb polluted wheat canopy such as leaf pigments, leaf moisture, cell structure and leaf area index (LAI) are discussed. We detect the changes in the wheat biological parameters and spectral response associated with Pb concentration in soil. To reveal the impact mechanisms of Pb concentration on agricultural soil, six models including chlorophyll-leaf moisture model, chlorophyll-cell structure model, chlorophyll-LAI model, leaf moisture-cell structure model, leaf moisture-LAI model, cell structure- LAI model are explored. We find that changes in Pb concentration present various features in different models. Pb contamination in agricultural soil can be identified and assessed effectively while integrating the characteristics of those developed models.

  18. Harmonization and translation of crop modeling data to ensure interoperability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Model Intercomparison and Improvement Project (AgMIP, www.agmip.org) seeks to improve the capability of ecophysiological and economic models to describe the potential impacts of climate change on agricultural systems. AgMIP protocols emphasize the use of multiple models; consequentl...

  19. Evaluation of Preindustrial to Present-day Black Carbon and its Albedo Forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    SciTech Connect

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, Drew; Berntsen, T.; Bisiauxs, M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, Steven J.; Horowitz, L.; McConnell, J.R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, Vaishali; Rumbold, S.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, Jin-Ho

    2013-03-05

    As a part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against the observations including 12 ice core records, a long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using the NCAR Community Land and Sea-Ice model 4 with prescribed meteorology from 1996-2000, which includes the SNICAR BC-snow model. We evaluated the vertical profile of BC snow concentrations from these offline simulations to using recent BC snowpack measurements. Despite using the same BC emissions, global BC burden differs by approximately a factor of 3 among models due to the differences in aerosol removal parameterizations and simulated meteorology among models; 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However,models agree well on 2.5~3 times increase in the global BC burden from preindustrial to present-day, which matches with the 2.5 times increase in BC emissions. We find a large model diversity at both NH and SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC mass concentrations well in Europe and North America except at Jungfrauch and Ispra. However, the models fail to capture the Arctic BC seasonality due tosevere underestimations during winter and spring. Compared to recent snowpack measurements, the simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of observations except for Greenland and Arctic Ocean. However, model and observation differ widely due to missing interannual variations in emissions and possibly due to the choice of the prescribed meteorology period (i.e., 1996-2000).

  20. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  1. Intercomparison of the Wetchimp-Wsl Wetland Methane Models over West Siberia: How Well Can We Simulate High-Latitude Wetland Methane Emissions?

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Melton, J. R.; Brovkin, V.; Chen, G.; Denisov, S. N.; Eliseev, A. V.; Gallego-Sala, A. V.; Glagolev, M.; Ito, A.; Kaplan, J. O.; Kleinen, T.; Maksyutov, S. S.; McDonald, K. C.; Rawlins, M. A.; Riley, W. J.; Schroeder, R.; Spahni, R.; Stocker, B.; Subin, Z. M.; Tian, H.; Zhang, B.; Zhu, X.; Zhuang, Q.

    2014-12-01

    Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of these emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This is particularly true at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over this century. Despite the importance of wetland methane emissions to the global carbon cycle and climate dynamics, global models exhibit little agreement as to the magnitude and spatial distribution of emissions, due to uncertainties in both wetland area and emissions per unit area driven by a scarcity of in situ observations. Recent intensive field campaigns across West Siberia make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Model Intercomparison Project focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 17 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux dataset, several wetland maps, and two satellite inundation products. Findings include: a) estimates of total CH4 emissions from both models and inversions spanned almost an order of magnitude; b) forward models using inundation alone to estimate wetland areas suffered from severe biases in CH4 emissions; and c) aside from these area-driven biases, disagreement in flux per unit wetland area was the main driver of forward model uncertainty. We examine which forward model approaches are best suited towards simulating high-latitude wetlands and make recommendations for future modeling, remote sensing, and field campaigns to reduce model uncertainty.

  2. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect

    Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong

    2009-02-02

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.

  3. Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

    NASA Astrophysics Data System (ADS)

    de Boer, B.; Dolan, A. M.; Bernales, J.; Gasson, E.; Goelzer, H.; Golledge, N. R.; Sutter, J.; Huybrechts, P.; Lohmann, G.; Rogozhina, I.; Abe-Ouchi, A.; Saito, F.; van de Wal, R. S. W.

    2015-05-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The late Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of five sensitivity experiments. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, considering the models are set up with their own parameter settings. For the Pliocene, the results demonstrate the difficulty of all six models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. The specific sea-level contribution of the Antarctic ice sheet at this point cannot be conclusively determined, whereas improved grounding line physics could be essential for a correct representation of the migration of the grounding-line of the Antarctic ice sheet during the Pliocene.

  4. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layered cloud

    SciTech Connect

    Morrison, H; McCoy, R B; Klein, S A; Xie, S; Luo, Y; Avramov, A; Chen, M; Cole, J; Falk, M; Foster, M; Genio, A D; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; McFarquhar, G; Poellot, M; Shipway, B; Shupe, M; Sud, Y; Turner, D; Veron, D; Walker, G; Wang, Z; Wolf, A; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  5. Agricultural Model for the Nile Basin Decision Support System

    NASA Astrophysics Data System (ADS)

    van der Bolt, Frank; Seid, Abdulkarim

    2014-05-01

    To analyze options for increasing food supply in the Nile basin the Nile Agricultural Model (AM) was developed. The AM includes state-of-the-art descriptions of biophysical, hydrological and economic processes and realizes a coherent and consistent integration of hydrology, agronomy and economics. The AM covers both the agro-ecological domain (water, crop productivity) and the economic domain (food supply, demand, and trade) and allows to evaluate the macro-economic and hydrological impacts of scenarios for agricultural development. Starting with the hydrological information from the NileBasin-DSS the AM calculates the available water for agriculture, the crop production and irrigation requirements with the FAO-model AquaCrop. With the global commodity trade model MAGNET scenarios for land development and conversion are evaluated. The AM predicts consequences for trade, food security and development based on soil and water availability, crop allocation, food demand and food policy. The model will be used as a decision support tool to contribute to more productive and sustainable agriculture in individual Nile countries and the whole region.

  6. Composition Changes After the "Halloween" Solar Proton Event: The High-Energy Particle Precipitation in the Atmosphere (HEPPA) Model Versus MIPAS Data Intercomparison Study

    NASA Technical Reports Server (NTRS)

    Funke, B.; Baumgaertner, A.; Calisto, M.; Egorova, T.; Jackman, C. H.; Kieser, J.; Krivolutsky, A.; Lopez-Puertas, M.; Marsh. D. R.; Reddmann, T.; Rozanov, E.; Salmi, S.-M.; Sinnhuber, M.; Stiller, G. P.; Verronen, P. T.; Versick, S.; vonClarmann, T.; Vyushkova, T. Y.; Wieters, N.; Wissing, J. M.

    2010-01-01

    analysis of chlorine species perturbations has shown that the encountered differences between models and observations, particularly the underestimation of observed ClONO2 enhancements, are related to a smaller availability of ClO in the polar night region already before the SPE. In general, the intercomparison has demonstrated that differences in the meteorology and/or initial state of the atmosphere in the simulations causes a relevant variability of the model results, even on a short timescale of only a few days.

  7. A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises

    NASA Astrophysics Data System (ADS)

    Belis, C. A.; Karagulian, F.; Amato, F.; Almeida, M.; Artaxo, P.; Beddows, D. C. S.; Bernardoni, V.; Bove, M. C.; Carbone, S.; Cesari, D.; Contini, D.; Cuccia, E.; Diapouli, E.; Eleftheriadis, K.; Favez, O.; El Haddad, I.; Harrison, R. M.; Hellebust, S.; Hovorka, J.; Jang, E.; Jorquera, H.; Kammermeier, T.; Karl, M.; Lucarelli, F.; Mooibroek, D.; Nava, S.; Nøjgaard, J. K.; Paatero, P.; Pandolfi, M.; Perrone, M. G.; Petit, J. E.; Pietrodangelo, A.; Pokorná, P.; Prati, P.; Prevot, A. S. H.; Quass, U.; Querol, X.; Saraga, D.; Sciare, J.; Sfetsos, A.; Valli, G.; Vecchi, R.; Vestenius, M.; Yubero, E.; Hopke, P. K.

    2015-12-01

    The performance and the uncertainty of receptor models (RMs) were assessed in intercomparison exercises employing real-world and synthetic input datasets. To that end, the results obtained by different practitioners using ten different RMs were compared with a reference. In order to explain the differences in the performances and uncertainties of the different approaches, the apportioned mass, the number of sources, the chemical profiles, the contribution-to-species and the time trends of the sources were all evaluated using the methodology described in Belis et al. (2015). In this study, 87% of the 344 source contribution estimates (SCEs) reported by participants in 47 different source apportionment model results met the 50% standard uncertainty quality objective established for the performance test. In addition, 68% of the SCE uncertainties reported in the results were coherent with the analytical uncertainties in the input data. The most used models, EPA-PMF v.3, PMF2 and EPA-CMB 8.2, presented quite satisfactory performances in the estimation of SCEs while unconstrained models, that do not account for the uncertainty in the input data (e.g. APCS and FA-MLRA), showed below average performance. Sources with well-defined chemical profiles and seasonal time trends, that make appreciable contributions (>10%), were those better quantified by the models while those with contributions to the PM mass close to 1% represented a challenge. The results of the assessment indicate that RMs are capable of estimating the contribution of the major pollution source categories over a given time window with a level of accuracy that is in line with the needs of air quality management.

  8. Modeling Sustainable Agricultural Residue Removal at the Subfield Scale

    SciTech Connect

    Muth, D.J.; McCorkle, D.S.; Koch, J.B.; Bryden, K.M.

    2012-05-02

    This study developed a computational strategy that utilizes data inputs from multiple spatial scales to investigate how variability within individual fields can impact sustainable residue removal for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in limiting soil erosion and maintaining soil C, health, and productivity. Increased availability of subfield-scale data sets such as grain yield data, high-fidelity digital elevation models, and soil characteristic data provides an opportunity to investigate the impacts of subfield-scale variability on sustainable agricultural residue removal. Using three representative fields in Iowa, this study contrasted the results of current NRCS conservation management planning analysis with subfield-scale analysis for rake-and-bale removal of agricultural residue. The results of the comparison show that the field-average assumptions used in NRCS conservation management planning may lead to unsustainable residue removal decisions for significant portions of some fields. This highlights the need for additional research on subfield-scale sustainable agricultural residue removal including the development of real-time variable removal technologies for agricultural residue.

  9. Simulating the Antarctic ice sheet in the Late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Dolan, Aisling; Bernales, Jorge; Gasson, Edward; Goelzer, Heiko; Golledge, Nick; Sutter, Johannes; Huybrechts, Phillipe; Lohmann, Gerrit; Rogozhina, Irina; Abe-Ouchi, Ayako; Saito, Fuyuki; van de Wal, Roderik

    2015-04-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The Late-Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of four sensitivity experiments. Ice-sheet model forcing fields are taken from the HadCM3 atmosphere-ocean climate model runs for the pre-industrial and the Pliocene. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, although the models are setup with their own parameter settings. For the Pliocene simulations using the Bedmap1 bedrock topography, some models show a small retreat of the East Antarctic ice sheet, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. This can be ascribed to either the surface mass balance, as the HadCM3 Pliocene climate shows a significant increase over the Wilkes and Aurora basin, or the initial bedrock topography. For the latter, our simulations with the recently

  10. Evaluating climate change impacts and adaptation options for agriculture in West Africa: a multi-model comparison

    NASA Astrophysics Data System (ADS)

    Sultan, B.; Lobell, D. B.; Biasutti, M.; Guan, K.; Roudier, P.; Piani, C.

    2013-12-01

    Climate change is likely to stress food production in many parts of the developing world over the next few decades. In areas such as West Africa, where poor communities are highly dependent on the direct use of local natural resources, the effects of climate change on food security could be particularly devastating. Given these concerns, there is great interest in identifying and investing in technologies or practices that could help farmers adapt to climate variability and change. Recent studies found a robust agreement across the various climate models of the IPCC Coupled Models Inter-comparison Program ensemble on the seasonal distribution of Sahel rainfall changes (with a drying of the early season and positive rainfall anomaly at the end) in contrast with a large uncertainty for summertime rainfall totals. These changes will therefore certainly impact agriculture strategy (selection of new cultivars, later sowing) and output. This study estimates such impacts by using a series of climate scenarios as input for two crop models for multiple locations within West Africa. Simulations are run for the two major crops in the region - sorghum and millets. Building on the above simulations, we then simulate different scenarios of adaptation that could be used to cope with climate changes.

  11. Pre-industrial to End 21st Century Projections of Tropospheric Ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Young, P. J.; Archibald, A. T.; Bowman, K. W.; Lamarque, J.-F.; Naik, V.; Stevenson, D. S.; Tilmes, S.; Voulgarakis, A.; Wild, O.; Bergmann, D.; Cameron-Smith, P.; Cionni, I.; Collins, W. J.; Dalsoren, S. B.; Doherty, R. M.; Eyring, V.; Faluvegi, G.; Horowitz, L. W.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; Plummer, D. A.; Righi, M.; Strode, S. A.

    2013-01-01

    Present day tropospheric ozone and its changes between 1850 and 2100 are considered, analysing 15 global models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean compares well against present day observations. The seasonal cycle correlates well, except for some locations in the tropical upper troposphere. Most (75 %) of the models are encompassed with a range of global mean tropospheric ozone column estimates from satellite data, but there is a suggestion of a high bias in the Northern Hemisphere and a low bias in the Southern Hemisphere, which could indicate deficiencies with the ozone precursor emissions. Compared to the present day ensemble mean tropospheric ozone burden of 337+/-23 Tg, the ensemble mean burden for 1850 time slice is approx. 30% lower. Future changes were modelled using emissions and climate projections from four Representative Concentration Pathways (RCPs). Compared to 2000, the relative changes in the ensemble mean tropospheric ozone burden in 2030 (2100) for the different RCPs are: -4% (-16 %) for RCP2.6, 2% (-7%) for RCP4.5, 1% (-9%) for RCP6.0, and 7% (18 %) for RCP8.5. Model agreement on the magnitude of the change is greatest for larger changes. Reductions in most precursor emissions are common across the RCPs and drive ozone decreases in all but RCP8.5, where doubled methane and a 40-150% greater stratospheric influx (estimated from a subset of models) increase ozone. While models with a high ozone burden for the present day also have high ozone burdens for the other time slices, no model consistently predicts large or small ozone changes; i.e. the magnitudes of the burdens and burden changes do not appear to be related simply, and the models are sensitive to emissions and climate changes in different ways. Spatial patterns of ozone changes are well correlated across most models, but are notably different for models without time evolving stratospheric ozone concentrations

  12. Tropical and subtropical cloud transitions in weather and climate prediction models: the GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI)

    SciTech Connect

    Teixeira, J.; Cardoso, S.; Bonazzola, M.; Cole, Jason N.; DelGenio, Anthony D.; DeMott, C.; Franklin, A.; Hannay, Cecile; Jakob, Christian; Jiao, Y.; Karlsson, J.; Kitagawa, H.; Koehler, M.; Kuwano-Yoshida, A.; LeDrian, C.; Lock, Adrian; Miller, M.; Marquet, P.; Martins, J.; Mechoso, C. R.; Meijgaard, E. V.; Meinke, I.; Miranda, P.; Mironov, D.; Neggers, Roel; Pan, H. L.; Randall, David A.; Rasch, Philip J.; Rockel, B.; Rossow, William B.; Ritter, B.; Siebesma, A. P.; Soares, P.; Turk, F. J.; Vaillancourt, P.; Von Engeln, A.; Zhao, M.

    2011-11-01

    A model evaluation approach is proposed where weather and climate prediction models are analyzed along a Pacific Ocean cross-section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade-winds, to the deep convection regions of the ITCZ: the GCSS/WGNE Pacific Cross-section Intercomparison (GPCI). The main goal of GPCI is to evaluate, and help understand and improve the representation of tropical and sub-tropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross-section from the sub-tropics to the tropics for the season JJA of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the ECMWF Re-Analysis (ERA40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical crosssections of cloud properties (in particular), vertical velocity and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA40 in the stratocumulus regions (as compared to ISCCP) is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade-wind Lagrangian trajectory. Histograms of cloud cover along the cross-section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud

  13. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    PubMed

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  14. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    PubMed

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics. PMID:24748331

  15. Sensitivity of Global and Regional Terrestrial Carbon Storage to the Direct CO2 Effect and Climate Change Based on the CMIP5 Model Intercomparison

    PubMed Central

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics. PMID:24748331

  16. Agricultural and Environmental Input Parameters for the Biosphere Model

    SciTech Connect

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  17. Simulating the Antarctic ice sheet in the Late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

    NASA Astrophysics Data System (ADS)

    de Boer, B.; Dolan, A. M.; Bernales, J.; Gasson, E.; Goelzer, H.; Golledge, N. R.; Sutter, J.; Huybrechts, P.; Lohmann, G.; Rogozhina, I.; Abe-Ouchi, A.; Saito, F.; van de Wal, R. S. W.

    2014-11-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The Late-Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of four sensitivity experiments. Ice-sheet model forcing fields are taken from the HadCM3 atmosphere-ocean climate model runs for the pre-industrial and the Pliocene. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, although the models are setup with their own parameter settings. For the Pliocene simulations using the Bedmap1 bedrock topography, some models show a small retreat of the East Antarctic ice sheet, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. This can be ascribed to either the surface mass balance, as the HadCM3 Pliocene climate shows a significant increase over the Wilkes and Aurora basin, or the initial bedrock topography. For the latter, our simulations with the recently

  18. Simulating the Antarctic ice sheet in the Late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Dolan, Aisling M.; Hill, Daniel J.; van de Wal, Roderik S. W.

    2014-05-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The Late-Pliocene Warm Period (also known as the PRISM interval: 3.29 to 2.97 million years before present) can serve as a potential analogue for projected future climates, with a global annual mean surface-air temperature warming of 1.76 °C. Although Pliocene ice locations and surface extents are still poorly constrained, a significant contribution to sea-level rise should be expected from Greenland and West and, possibly, East Antarctica based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of the ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of sensitivity experiments. Ice-sheet model forcing fields are taken from the PlioMIP results incorporating multiple coupled atmosphere-ocean general circulation models (GCM). We show that ice-sheet models simulate a present-day ice sheet which is comparable to the observations, and find no systematic biases introduced when using different GCM forcing relative to observational climate forcing. This project includes multiple ice-sheet models forced with multiple climate model output, from which a comprehensive assessment can be made as to the uncertainties of ice-sheet extent on Antarctica. These results may eventually serve as a new constraint on the extent of the Antarctic ice sheet during the Late-Pliocene Warm Period

  19. Dust Model Intercomparison and Extensive Comparison to Observations in the Western Mediterranean for the Summer 2012 Pre-ChArMEx/TRAQA Campaign

    NASA Astrophysics Data System (ADS)

    Basart, S.; Dulac, F.; Baldasano, J. M.

    2014-12-01

    The present analysis focuses on the model capability to properly simulate long-range Saharan dust transport for summer 2012 in the Western Mediterranean. In this period, Saharan dust events were numerous as shown by satellite and ground-based remote sensing observations.An exhaustive comparison of model outputs against other models and observations can reveal weaknesses of individual models, provide an assessment of uncertainties in simulating the dust cycle and give additional information on sources for potential model improvement. For this kind of study, multiple and different observations are combined to deliver a detailed idea of the structure and evolution of the dust cloud and the state of the atmosphere at the different stages of the event. The present contribution shows an intercomparison of a set of 7 European regional dust model simulations (NMMB/BSC-Dust, ALADIN, Meso-NH, RegCM, CHIMERE, COSMO/MUSCAT; MOCAGE and BSC-DREAM8b). In this study, the model outputs are compared against a variety of both ground-based and airborne in situ and remote sensing measurements performed during the pre-ChArMEx/TRAQA field campaign which included in particular several AERONET sites, the airborne lidar LNG, sounding with a ULA and with the new balloonborne optical particle counter LOAC showing large particles (>15 µm), the CARAGA network of weekly deposition samples, etc. The models are also compared with satellite aerosol products (including MSG/SEVIRI, MODIS, POLDER and CALIOP), which provide a description of the spatial AOD distribution over the basin. These observational datasets provide a complete set of unusual quantitative constraints for model simulations of this period, combining data on aerosol optical depth, vertical distribution, particle size distribution, deposition flux, and chemical and optical properties. Acknowledgements are addressed to OMP/SEDOO for the ChArMEx data portal and to CNES for balloon operations and funding. The other main sponsors of the

  20. Dust Model Intercomparison For Summer 2012 In The Western Mediterranean and Comparison to The Pre-ChArMEx/TRAQA Campaign Observations

    NASA Astrophysics Data System (ADS)

    Basart, Sara

    2014-05-01

    Saharan dust is an important contributor on European air quality levels and consequently has a relevant impact on human health and ecosystems. Even though most of the transport of dust particles occurs in altitude, as shown by surface lidars and airborne data, dust events signi?cantly impact surface PM10 concentrations even in urban traf?c type of air quality monitoring stations, and background stations are needed to assess the contribution of desert dust. In this sense, regional air quality models are useful to understand the dynamics and transport of pollutants. The present contribution shows a preliminary intercomparison of a set of 7 regional dust model simulations (NMMB/BSC-Dust, ALADIN, Meso-NH, RegCM, CHIMERE, COSMO/MUSCAT; MOCAGE and BSC-DREAM8b). The present analysis focuses on the model capability to properly simulate long-range Saharan dust transport for summer 2012 in the Western Mediterranean. In this period, Saharan dust events were numerous as shown by satellite and ground-based observations. The model evaluation is crucial to determine the individual performance of each model and it provides a useful tool to identify their strengths and weaknesses. In this study, the model outputs are compared against a variety of both ground-based and airborne in situ and remote sensing measurements performed during the pre-ChArMEx/TRAQA ?eld campaign which included the airborne lidar LNG and the new balloonborne optical particle counter LOAC. Also, the models are compared with satellite aerosol products (including MSG/SEVIRI, POLDER and CALIOP) which provide a description of the spatial AOD distribution over the basin. These observational datasets provide a complete set of unusual quantitative constraints for model simulations of this period, combining data on aerosol optical depth, vertical distribution, particle size distribution, and chemical and optical properties. Acknowledgements are addressed to OMP/SEDOO for the ChArMEx data portal and to CNES for balloon

  1. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  2. Intercomparison of two BRDF models in the estimation of the directional emissivity in MIR channel from MSG1-SEVIRI data.

    PubMed

    Jiang, Geng-Ming; Li, Zhao-Liang

    2008-11-10

    This work intercompared two Bi-directional Reflectance Distribution Function (BRDF) models, the modified Minnaert's model and the RossThick-LiSparse-R model, in the estimation of the directional emissivity in Middle Infra-Red (MIR) channel from the data acquired by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the first Meteosat Second Generation (MSG1). The bi-directional reflectances in SEVIRI channel 4 (3.9 microm) were estimated from the combined MIR and Thermal Infra-Red (TIR) data and then were used to estimate the directional emissivity in this channel with aid of the BRDF models. The results show that: (1) Both models can relatively well describe the non-Lambertian reflective behavior of land surfaces in SEVIRI channel 4; (2) The RossThick-LiSparse-R model is better than the modified Minnaert's model in modeling the bi-directional reflectances, and the directional emissivities modeled by the modified Minnaert's model are always lower than the ones obtained by the RossThick-LiSparse-R model with averaged emissivity differences of approximately 0.01 and approximately 0.04 over the vegetated and bare areas, respectively. The use of the RossThick-LiSparse-R model in the estimation of the directional emissivity in MIR channel is recommended.

  3. Intercomparison of two BRDF models in the estimation of the directional emissivity in MIR channel from MSG1-SEVIRI data.

    PubMed

    Jiang, Geng-Ming; Li, Zhao-Liang

    2008-11-10

    This work intercompared two Bi-directional Reflectance Distribution Function (BRDF) models, the modified Minnaert's model and the RossThick-LiSparse-R model, in the estimation of the directional emissivity in Middle Infra-Red (MIR) channel from the data acquired by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the first Meteosat Second Generation (MSG1). The bi-directional reflectances in SEVIRI channel 4 (3.9 microm) were estimated from the combined MIR and Thermal Infra-Red (TIR) data and then were used to estimate the directional emissivity in this channel with aid of the BRDF models. The results show that: (1) Both models can relatively well describe the non-Lambertian reflective behavior of land surfaces in SEVIRI channel 4; (2) The RossThick-LiSparse-R model is better than the modified Minnaert's model in modeling the bi-directional reflectances, and the directional emissivities modeled by the modified Minnaert's model are always lower than the ones obtained by the RossThick-LiSparse-R model with averaged emissivity differences of approximately 0.01 and approximately 0.04 over the vegetated and bare areas, respectively. The use of the RossThick-LiSparse-R model in the estimation of the directional emissivity in MIR channel is recommended. PMID:19582025

  4. Economic impacts of climate change on agriculture: the AgMIP approach

    NASA Astrophysics Data System (ADS)

    Delincé, Jacques; Ciaian, Pavel; Witzke, Heinz-Peter

    2015-01-01

    The current paper investigates the long-term global impacts on crop productivity under different climate scenarios using the AgMIP approach (Agricultural Model Intercomparison and Improvement Project). The paper provides horizontal model intercomparison from 11 economic models as well as a more detailed analysis of the simulated effects from the Common Agricultural Policy Regionalized Impact (CAPRI) model to systematically compare its performance with other AgMIP models and specifically for the Chinese agriculture. CAPRI is a comparative static partial equilibrium model extensively used for medium and long-term economic and environmental policy impact applications. The results indicate that, at the global level, the climate change will cause an agricultural productivity decrease (between -2% and -15% by 2050), a food price increase (between 1.3% and 56%) and an expansion of cultivated area (between 1% and 4%) by 2050. The results for China indicate that the climate change effects tend to be smaller than the global impacts. The CAPRI-simulated effects are, in general, close to the median across all AgMIP models. Model intercomparison analyses reveal consistency in terms of direction of change to climate change but relatively strong heterogeneity in the magnitude of the effects between models.

  5. Intercomparison of HONO SCDs and profiles from MAX-DOAS observations during the MAD-CAT campaign and comparison to chemical model simulations

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wagner, Thomas; Xie, Pinhua; Remmers, Julia; Li, Ang; Lampel, Johannes; Friess, Udo; Peters, Enno; Wittrock, Folkard; Richter, Andreas; Hilboll, Andreas; Volkamer, Rainer; Ortega, Ivan; Hendrick, Francois; Van Roozendael, Michel; Ma, Jianzhong; Jin, Junli; Su, Hang; Cheng, Yafang

    2015-04-01

    In order to promote the development of the passive DOAS technique and to improve the retrieval algorithms of trace gases and aerosols the Multi Axis DOAS - Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max Planck Institute for Chemistry in Mainz, Germany from June to October 2013. MAX-DOAS (Multi-Axis Differential Optical Absorption Spectroscopy) instruments of various designs recorded UV-visible spectra of scattered sunlight at different elevation and azimuth angles. We present intercomparison results for slant column densities (SCDs) of nitrous acid (HONO) retrieved during this campaign by several research groups. Data analysis was performed in two steps, starting with the preferred settings of the individual groups, followed by an analysis using common retrieval settings. In general good agreement of the resulting HONO SCD sets was found. Furthermore, we performed various sensitivity analyses to improve and evaluate the uncertainties in the HONO SCD retrieval, such as the influence of the wavelength dependence of the NO2 air mass factor, the selection of the wavelength interval of the retrieval, the choice of the Fraunhofer reference spectrum, or the offset correction. Finally we compared the results from different kinds of inversion algorithms for the vertical profiles of trace gases and aerosols. The derived HONO profiles, VMR near surface and tropospheric vertical column densities are compared with each other and with the results of regional chemical model simulations. We found a high HONO VMR near surface of about 200 ppt, which is much higher than the typical daytime VMR of lower than 10 ppt at the early noon (around 9:30 local time), probably indicating a strong source of HONO. The strong vertical gradient in the profile of HONO VMR probably indicates the HONO source is close to the surface.

  6. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    DOE PAGES

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; et al

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar tomore » observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds

  7. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    SciTech Connect

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; Lin, Yanluan; Morcrette, J. -J.; Mulcahay, Jane; Saide, Pablo; Spak, S. N.; Yang, Qing

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL

  8. Urban Agriculture Programs on the Rise: Agriculture Education Model Can Reach Students Other Classes Leave Behind

    ERIC Educational Resources Information Center

    Fritsch, Julie M.

    2013-01-01

    Agricultural education begins with hands-on classroom and laboratory instruction. Because agriculture is such a broad topic, schools typically tailor agriculture class offerings to match the interests of the student population, needs of nearby businesses and industry, or topics relevant to their state's standard assessments. Within most…

  9. Modeling radionuclide effluxes from agricultural and natural ecosystems in Belarus.

    PubMed

    Zhuchenko, Yu M; Firsakova, S K; Voigt, G

    2002-06-01

    A mathematical model is described which is appropriately constructed to calculate effluxes of radionuclides from agricultural and natural ecosystems. The application of this model is demonstrated by estimating effluxes in the Bragin region and in the Narovlya region in the Republic of Belarus both highly affected by the Chernobyl accident fallout. Depending on the nature of the area and the deposition, the total efflux and the exported radioactivity are calculated. It is shown that the exported radioactivity for natural foodstuffs represents more than 64% (Bragin region) and 86% (Narovlya region) of the total 137Cs efflux, and for agricultural products 2.7% and 2.3%, respectively. The contribution of the different foodstuffs deriving from natural and agricultural used land to the individual and collective dose for 137Cs and 90Sr are estimated and presented. In the Bragin region for the collective annual dose the highest contribution is due to milk and meat consumption (137Cs) and flour and milk (90Sr), for individual annual dose milk and mushrooms (137Cs), and milk and flour (90Sr) contribute most. In the Narovlya region this contribution for the collective and individual annual dose is due to milk and mushroom consumption (137Cs) and flour and milk (90Sr).

  10. Assessing and modelling ecohydrologic processes at the agricultural field scale

    NASA Astrophysics Data System (ADS)

    Basso, Bruno

    2015-04-01

    One of the primary goals of agricultural management is to increase the amount of crop produced per unit of fertilizer and water used. World record corn yields demonstrated that water use efficiency can increase fourfold with improved agronomic management and cultivars able to tolerate high densities. Planting crops with higher plant density can lead to significant yield increases, and increase plant transpiration vs. soil water evaporation. Precision agriculture technologies have been adopted for the last twenty years but seldom have the data collected been converted to information that led farmers to different agronomic management. These methods are intuitively appealing, but yield maps and other spatial layers of data need to be properly analyzed and interpreted to truly become valuable. Current agro-mechanic and geospatial technologies allow us to implement a spatially variable plan for agronomic inputs including seeding rate, cultivars, pesticides, herbicides, fertilizers, and water. Crop models are valuable tools to evaluate the impact of management strategies (e.g., cover crops, tile drains, and genetically-improved cultivars) on yield, soil carbon sequestration, leaching and greenhouse gas emissions. They can help farmers identify adaptation strategies to current and future climate conditions. In this paper I illustrate the key role that precision agriculture technologies (yield mapping technologies, within season soil and crop sensing), crop modeling and weather can play in dealing with the impact of climate variability on soil ecohydrologic processes. Case studies are presented to illustrate this concept.

  11. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. S.; Young, P. J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; van Noije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.

    2012-10-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). We calculate a~value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 0.40 W m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (47%), nitrogen oxides (29%), carbon monoxide (15%) and non-methane volatile organic compounds (9%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 0.042 W m-2 DU-1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (W m-2; relative to 1850 - add 0.04 W m-2 to make relative to 1750) for the Representative Concentration Pathways in 2030 (2100) of: RCP2.6: 0.31 (0.16); RCP4.5: 0.38 (0.26); RCP6.0: 0.33 (0.24); and RCP8.5: 0.42 (0.56). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport.

  12. An intercomparison study of tropospheric NO2 columns retrieved from MAX-DOAS and simulated by regional air quality models

    NASA Astrophysics Data System (ADS)

    Blechschmidt, Anne-Marlene

    2016-04-01

    Tropospheric NO2 is hazardous to human health and can lead to tropospheric ozone formation, eutrophication of ecosystems and acid rain production. It is therefore very important to accurately observe and simulate tropospheric NO2 on a regional and global scale. In the present study, MAX-DOAS tropospheric NO2 column retrievals from three European measurement stations are applied for validation of a regional model ensemble. In general, there is a good agreement between simulated and retrieved NO2 column values for individual MAX-DOAS measurements, indicating that the model ensemble does well represent the emission and tropospheric chemistry of NOx. However, the model ensemble tends to overestimate low and underestimate high tropospheric NO2 column values, respectively. Pollution transport towards the stations is on average well represented by the models. However, large differences can be found for individual pollution plumes. Seasonal cycles are overestimated by the model ensemble, which could point to problems in simulating photochemistry. While weekly cycles are reproduced well by the models, model performance is rather poor for diurnal cycles. In particular, simulated morning rush hour peaks are not confirmed by MAX-DOAS retrievals, which may result from inappropriate hourly scaling of NOx emissions, possibly combined with errors in chemistry. Our results demonstrate that a large number of validation points are available from MAX-DOAS data, which should therefore be used more extensively in future regional air quality modelling studies.

  13. Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; Zhang, K.; Ghan, S. J.; Easter, R. C.; Liu, X.; Stier, P.; Lee, Y. H.; Adams, P. J.; Tost, H.; Lelieveld, J.; Bauer, S. E.; Tsigaridis, K.; van Noije, T. P. C.; Strunk, A.; Vignati, E.; Bellouin, N.; Dalvi, M.; Johnson, C. E.; Bergman, T.; Kokkola, H.; von Salzen, K.; Yu, F.; Luo, G.; Petzold, A.; Heintzenberg, J.; Clarke, A.; Ogren, J. A.; Gras, J.; Baltensperger, U.; Kaminski, U.; Jennings, S. G.; O'Dowd, C. D.; Harrison, R. M.; Beddows, D. C. S.; Kulmala, M.; Viisanen, Y.; Ulevicius, V.; Mihalopoulos, N.; Zdimal, V.; Fiebig, M.; Hansson, H.-C.; Swietlicki, E.; Henzing, J. S.

    2014-05-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting

  14. Intercomparison and evaluation of aerosol microphysical properties among AeroCom global models of a range of complexity

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; Zhang, K.; Ghan, S. J.; Easter, R. C.; Liu, X.; Stier, P.; Lee, Y. H.; Adams, P. J.; Tost, H.; Lelieveld, J.; Bauer, S. E.; Tsigaridis, K.; van Noije, T. P. C.; Strunk, A.; Vignati, E.; Bellouin, N.; Dalvi, M.; Johnson, C. E.; Bergman, T.; Kokkola, H.; von Salzen, K.; Yu, F.; Luo, G.; Petzold, A.; Heintzenberg, J.; Clarke, A.; Ogren, J. A.; Gras, J.; Baltensperger, U.; Kaminski, U.; Jennings, S. G.; O'Dowd, C. D.; Harrison, R. M.; Beddows, D. C. S.; Kulmala, M.; Viisanen, Y.; Ulevicius, V.; Mihalopoulos, N.; Zdimal, V.; Fiebig, M.; Hansson, H.-C.; Swietlicki, E.; Henzig, J. S.

    2013-11-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by twelve global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean dataset simulates the global variation of the particle size distribution with a good degree of skill

  15. Preliminary ice shelf-ocean simulation results from idealized standalone-ocean and coupled model intercomparison projects (MIPs)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel

    2016-04-01

    The second Ice Shelf-Ocean MIP (ISOMIP+) and the first Marine Ice Sheet-Ocean MIP (MISOMIP1) prescribe a set of idealized experiments for ocean models with ice-shelf cavities and coupled ice sheet-ocean models, respectively. ISOMIP+ and MISOMIP1 were designed together with the third Marine Ice Sheet MIP (MISMIP+) with three main goals, namely that the MIPs should provide: a controlled forum for researchers to compare their model results with those from other models during model development. a path for testing components in the process of developing coupled ice sheet-ocean models. a basic setup from which a large variety of parameter and process studies can usefully be performed. The experimental design for the three MIPs is currently under review in Geoscientific Model Development (Asay-Davis et al. 2015, doi:10.5194/gmdd-8-9859-2015). We present preliminary results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (e.g. boundary-layer transfer coefficients, drag coefficients, vertical mixing parameterizations) for each models. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to how models would be tuned based on observations for non-idealized simulations. We also present a number of parameter studies based the MIP experiments. Again, using several models, we show that melt rates respond sub-linearly to both changes in the square root of the drag coefficient and the heat-transfer coefficient, and that melting is relatively insensitive to horizontal-mixing coefficients (perhaps because the resolution is sufficient to permit eddies) but more sensitive to vertical-mixing coefficients. We show that the choice of the equation of state (linear or nonlinear) does not have a significant impact as long as

  16. MODELING OF MACROSCALE AGRICULTURAL ELEMENTS IN PESTICIDE EXPOSURE

    EPA Science Inventory

    Yuma County, Arizona, is the site of year around agriculture. To understand the role of agricultural pesticide exposures experienced by children, urinary metabolite concentrations were compared with agricultural use of pesticides. The urinary metabolite and household data wer...

  17. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  18. Intercomparison and Evaluation of Global Aerosol Microphysical Properties among AeroCom Models of a Range of Complexity

    SciTech Connect

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; Zhang, Kai; Ghan, Steven J.; Easter, Richard C.; Liu, Xiaohong; Stier, P.; Lee, Y. H.; Adams, P. J.; Tost, H.; Lelieveld, J.; Bauer, S.; Tsigaridis, Kostas; van Noije, T.; Strunk, A.; Vignati, E.; Bellouin, N.; Dalvi, M.; Johnson, C. E.; Bergman, T.; Kokkola, H.; Von Salzen, Knut; Yu, Fangqun; Luo, Gan; Petzold, A.; Heintzenberg, J.; Clarke, A. D.; Ogren, J. A.; Gras, J.; Baltensperger, Urs; Kaminski, U.; Jennings, S. G.; O'Dowd, C. D.; Harrison, R. M.; Beddows, D. C.; Kulmala, M.; Viisanen, Y.; Ulevicius, V.; Mihalopoulos, Nikos; Zdimal, V.; Fiebig, M.; Hansson, H. C.; Swietlicki, E.; Henzing, J. S.

    2014-05-13

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by twelve global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the results suggest that most global aerosol microphysics models simulate the global variation of the particle size distribution

  19. Presentation of the EURODELTA III intercomparison exercise - evaluation of the chemistry transport models' performance on criteria pollutants and joint analysis with meteorology

    NASA Astrophysics Data System (ADS)

    Bessagnet, Bertrand; Pirovano, Guido; Mircea, Mihaela; Cuvelier, Cornelius; Aulinger, Armin; Calori, Giuseppe; Ciarelli, Giancarlo; Manders, Astrid; Stern, Rainer; Tsyro, Svetlana; García Vivanco, Marta; Thunis, Philippe; Pay, Maria-Teresa; Colette, Augustin; Couvidat, Florian; Meleux, Frédérik; Rouïl, Laurence; Ung, Anthony; Aksoyoglu, Sebnem; María Baldasano, José; Bieser, Johannes; Briganti, Gino; Cappelletti, Andrea; D'Isidoro, Massimo; Finardi, Sandro; Kranenburg, Richard; Silibello, Camillo; Carnevale, Claudio; Aas, Wenche; Dupont, Jean-Charles; Fagerli, Hilde; Gonzalez, Lucia; Menut, Laurent; Prévôt, André S. H.; Roberts, Pete; White, Les

    2016-10-01

    The EURODELTA III exercise has facilitated a comprehensive intercomparison and evaluation of chemistry transport model performances. Participating models performed calculations for four 1-month periods in different seasons in the years 2006 to 2009, allowing the influence of different meteorological conditions on model performances to be evaluated. The exercise was performed with strict requirements for the input data, with few exceptions. As a consequence, most of differences in the outputs will be attributed to the differences in model formulations of chemical and physical processes. The models were evaluated mainly for background rural stations in Europe. The performance was assessed in terms of bias, root mean square error and correlation with respect to the concentrations of air pollutants (NO2, O3, SO2, PM10 and PM2.5), as well as key meteorological variables. Though most of meteorological parameters were prescribed, some variables like the planetary boundary layer (PBL) height and the vertical diffusion coefficient were derived in the model preprocessors and can partly explain the spread in model results. In general, the daytime PBL height is underestimated by all models. The largest variability of predicted PBL is observed over the ocean and seas. For ozone, this study shows the importance of proper boundary conditions for accurate model calculations and then on the regime of the gas and particle chemistry. The models show similar and quite good performance for nitrogen dioxide, whereas they struggle to accurately reproduce measured sulfur dioxide concentrations (for which the agreement with observations is the poorest). In general, the models provide a close-to-observations map of particulate matter (PM2.5 and PM10) concentrations over Europe rather with correlations in the range 0.4-0.7 and a systematic underestimation reaching -10 µg m-3 for PM10. The highest concentrations are much more underestimated, particularly in wintertime. Further evaluation of

  20. ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Ackerman, Andrew; Petch, Jon; Field, Paul; Hill, Adrian; McFarquhar, Greg; Xie, Shaocheng; Zhang, Minghua

    2010-01-01

    Specifications are provided for running a cloud-resolving model (CRM) and submitting results in a standardized format for inclusion in a n intercomparison study and archiving for public access. The simulated case study is based on measurements obtained during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) led by the U. S. department of Energy Atmospheric Radiation Measurement (ARM) program. The modeling intercomparison study is based on objectives developed in concert with the Stratospheric Processes And their Role in Climate (SPARC) program and the GEWEX cloud system study (GCSS) program. The Global Energy and Water Cycle Experiment (GEWEX) is a core project of the World Climate Research PRogramme (WCRP).

  1. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    NASA Astrophysics Data System (ADS)

    Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.

    2015-07-01

    Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.

  2. ESA Data User Element DUE PERMAFROST Circumpolar Remote Sensing Service for Permafrost - Evaluation Case Studies and Intercomparison with Regional Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Heim, Birgit; Bartsch, Annett; Elger, Kirsten; Rinke, Annette; Matthes, Heidrun; Zhou, Xu; Klehmet, Katharina; Rockel, Burkhardt; Lantuit, Hugues; Duguay, Claude

    2015-04-01

    initiated the use of EO-derived products for inter-comparison experiments. Within the REKLIM framework, the geophysical surface parameters simulated by regional climate models (RCMs) are spatio-temporally compared with the EO-derived products. Investigated products consist of those generated during the DUE Permafrost project as well as products from ESA DUE GlobSnow (Snow Extent and Snow Water Equivalent, Global Snow Monitoring for Climate Research, 2008-2011) and the MODIS albedo product (MOD 43). We compared the simulated fields of surface temperature and frozen/unfrozen ground state simulated by RCMs HIRHAM (circum-Arctic domain) and COSMO-CLM (Central Siberia) with the same fields derived from satellite remote sensing.

  3. Evaluation Case Studies and Intercomparison with Regional Climate Model Simulations based on the DUE PERMAFROST Circumpolar Remote Sensing Service for Permafrost

    NASA Astrophysics Data System (ADS)

    Heim, Birgit; Bartsch, Annett; Elger, Kirsten; Rinke, Annette; Matthes, Heidrun; Zhou, Xu; Klehmet, Katharina; Buchhorn, Marcel; Duguay, Claude

    2014-05-01

    -derived products for inter-comparison experiments. Within the REKLIM framework, the geophysical surface parameters simulated by regional climate models (RCMs) are spatio-temporally compared with the EO-derived products. Investigated products consist of those generated during the DUE Permafrost project as well as products from ESA DUE GlobSnow (Snow Extent and Snow Water Equivalent, Global Snow Monitoring for Climate Research, 2008-2011) and the MODIS albedo product (MOD 43). We compared the simulated fields of surface temperature and frozen/unfrozen ground state simulated by RCMs HIRHAM (circum-Arctic domain) and COSMO-CLM (Central Siberia) with the same fields derived from satellite remote sensing.

  4. Nitrogen and phosphorus retention in surface waters: an inter-comparison of predictions by catchment models of different complexity.

    PubMed

    Hejzlar, J; Anthony, S; Arheimer, B; Behrendt, H; Bouraoui, F; Grizzetti, B; Groenendijk, P; Jeuken, M H J L; Johnsson, H; Lo Porto, A; Kronvang, B; Panagopoulos, Y; Siderius, C; Silgram, M; Venohr, M; Zaloudík, J

    2009-03-01

    Nitrogen and phosphorus retention estimates in streams and standing water bodies were compared for four European catchments by a series of catchment-scale modelling tools of different complexity, ranging from a simple, equilibrium input-output type to dynamic, physical-based models: source apportionment, MONERIS, EveNFlow, TRK, SWAT, and NL-CAT. The four catchments represent diverse climate, hydrology, and nutrient loads from diffuse and point sources in Norway, the UK, Italy, and the Czech Republic. The models' retention values varied largely, with tendencies towards higher scatters for phosphorus than for nitrogen, and for catchments with lakes (Vansjø-Hobøl, Zelivka) compared to mostly or entirely lakeless catchments (Ouse or Enza, respectively). A comparison of retention values with the size of nutrient sources showed that the modelled nutrient export from diffuse sources was directly proportional to retention estimates, hence implying that the uncertainty in quantification of diffuse catchment sources of nutrients was also related to the uncertainty in nutrient retention determination. This study demonstrates that realistic modelling of nutrient export from large catchments is very difficult without a certain level of measured data. In particular, even complex process oriented models require information on the retention capabilities of water bodies within the receiving surface water system and on the nutrient export from micro-catchments representing the major types of diffuse sources to surface waters. PMID:19280036

  5. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Bernsten, T.; Bisiaux, M. M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, S.; Horowitz, L. W.; McConnell, J. R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, J.-H.

    2013-01-01

    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period.We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores

  6. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Berntsen, T.; Bisiaux, M. M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, S.; Horowitz, L. W.; McConnell, J. R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, J.-H.

    2013-03-01

    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores

  7. Intercomparison of Model Simulations of the Impact of 1997/98 El Nino on South American Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Zhou, Jiayu; Lau, K.-M.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The simulations of climatology and response of the South American summer monsoon (SASM) to the 1997/98 El Nino are investigated using six atmospheric general circulation models. Results show all models simulate the large-scale features of the SASM reasonably well. However, both stationary and seasonal components of the surface pressure are overestimated, resulting in an excessively strong SASM in the model climatology. The low-level northwesterly jet over eastern foothills of the Andes is not well resolved because of the coarse resolution of the models. Large rainfall simulation biases are found in association with the Andes and the Atlantic ITCZ, indicating model problems in handling steep mountains and parameterization of convective processes. The simulation of the 1997/98 El Nino impact on SASM is examined based on an ensemble of ten two-year (September 1996 - August 1998) integration. Results show that most models can simulate the large-scale tropospheric warming response over the tropical central Pacific, including the dynamic response of Rossby wave propagation of the Pacific-South America (PSA) pattern that influences remote areas. Deficiencies are found in simulating the regional impacts over South America. Model simulation fails to capture the southeastward expansion of anomalously warm tropospheric air. As a result, the upper tropospheric anomalous high over the subtropical Andes is less pronounced, and the enhancement of subtropical westerly jet is displaced 5deg-10deg equatorward compared to the observed. Over the Amazon basin, the shift of Walker cell induced by El Nino is not well represented, showing anomalous easterlies in both upper and lower troposphere.

  8. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble

    PubMed Central

    Dankers, Rutger; Arnell, Nigel W.; Clark, Douglas B.; Falloon, Pete D.; Fekete, Balázs M.; Gosling, Simon N.; Heinke, Jens; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20–45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5–30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies. PMID:24344290

  9. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble.

    PubMed

    Dankers, Rutger; Arnell, Nigel W; Clark, Douglas B; Falloon, Pete D; Fekete, Balázs M; Gosling, Simon N; Heinke, Jens; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-03-01

    Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20-45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5-30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.

  10. Intercomparison of observations and model aerosol parameters during two Saharan dust events over the southern United Kingdom

    NASA Astrophysics Data System (ADS)

    Buxmann, Joelle; Adam, Mariana; Ordonez, Carlos; Tilbee, Marie; Smyth, Tim; Claxton, Bernard; Sugier, Jacqueline; Agnew, Paul

    2015-04-01

    Saharan desert dust lifted by convection over the hot desert surface can reach high altitudes and be transported over great distances. In the UK, Saharan dust episodes occur several times a year, usually during the spring. Dust lifted by cyclonic circulation is often blown into the Atlantic and transported to the UK. This can result in a rapid degradation of air quality due to the increase in the levels of particulate matter (PM). The ability to model the transport and deposition of dust remains an important challenge in order to characterize different pollution events. We present a comparison of observed Aerosol Optical Depth (AOD) with modelled AOD from the Met Office Air Quality Unified Model (AQUM), performed for two dust events in March 2014 (at 380nm, 440nm, 870nm and 1020nm). The observations are derived from five sun photometers located in the southern UK at Exeter, Cardington, Bayfordbury, Chilbolton, and Plymouth. Correlations are investigated between model column integrated PM2.5 and PM10, and observed fine and coarse mode AOD from AERONET. Vertical profiles of attenuated backscatter and extinction from the Jenoptik Nimbus ceilometers part of the Met Office Laser Cloud Base Recorder (LCBR) network are investigated as well (see also session AS3.17/GI2.2 Lidar and Applications). The Met Office air quality model AQUM is an on-line meteorology, chemistry and aerosol modelling system. It runs at a resolution of 12km over a domain covering the UK and north-western Europe. Atmospheric composition modelling employs two-way coupling between aerosol and chemistry evolution, with explicit modelling of sulphate, nitrate, black carbon, organic carbon, biomass burning and wind-blown mineral dust aerosol components. Both the model and observations show an increase in AOD during the first period from 12 -13 March 2014. For example AOD levels of up to 0.52 for the 380nm channel were recorded by the sun photometer in Exeter. This is relatively high compared to average

  11. The future of the subsurface chlorophyll-a maximum in the Canada Basin—A model intercomparison

    NASA Astrophysics Data System (ADS)

    Steiner, N. S.; Sou, T.; Deal, C.; Jackson, J. M.; Jin, M.; Popova, E.; Williams, W.; Yool, A.

    2016-01-01

    Six Earth system models and three ocean-ice-ecosystem models are analyzed to evaluate magnitude and depth of the subsurface Chl-a maximum (SCM) in the Canada Basin and ratio of surface to subsurface Chl-a in a future climate scenario. Differences in simulated Chl-a are caused by large intermodel differences in available nitrate in the Arctic Ocean and to some extent by ecosystem complexity. Most models reproduce the observed SCM and nitracline deepening and indicate a continued deepening in the future until the models reach a new state with seasonal ice-free waters. Models not representing a SCM show either too much nitrate and hence no surface limitation or too little nitrate with limited surface growth only. The models suggest that suppression of the nitracline and deepening of the SCM are caused by enhanced stratification, likely driven by enhanced Ekman convergence and freshwater contributions with primarily large-scale atmospheric driving mechanisms. The simulated ratio of near-surface Chl-a to depth-integrated Chl-a is slightly decreasing in most areas of the Arctic Ocean due to enhanced contributions of subsurface Chl-a. Exceptions are some shelf areas and regions where the continued ice thinning leaves winter ice too thin to provide a barrier to momentum fluxes, allowing winter mixing to break up the strong stratification. Results confirm that algorithms determining vertically integrated Chl-a from surface Chl-a need to be tuned to Arctic conditions, but likely require little or no adjustments in the future.

  12. Agricultural and Environmental Input Parameters for the Biosphere Model

    SciTech Connect

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-06-20

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.

  13. World agriculture and climate change: Current modeling issues

    SciTech Connect

    Darwin, R.

    1996-12-31

    Recent studies suggest that although global increases in temperature and changes in precipitation patterns during the next century will affect world agriculture, farmer adaptations are likely to prevent climate change from jeopardizing world food production. The costs and benefits of global climate change, however, are not equally distributed around the world. Agricultural production may increase in high latitude and alpine areas, but decrease in tropical and some other areas. Also, land use changes that accompany climate-induced shifts in cropland and permanent pasture are likely to raise additional social and environmental issues. Despite these advances, some important aspects of climate change have not been adequately simulated in global models. These include the effects that climate-induced changes in water resources are likely to have on agricultural production, the well-documented beneficial effects of higher concentrations of atmospheric carbon dioxide on plant growth and water use, and the cooling effects of tropospheric emissions of sulfur dioxide. In addition, past research generally relied on equilibrium climates based on a doubling of atmospheric carbon dioxide. Now, however, results from transient climate change experiments are available.

  14. AgBase: supporting functional modeling in agricultural organisms

    PubMed Central

    McCarthy, Fiona M.; Gresham, Cathy R.; Buza, Teresia J.; Chouvarine, Philippe; Pillai, Lakshmi R.; Kumar, Ranjit; Ozkan, Seval; Wang, Hui; Manda, Prashanti; Arick, Tony; Bridges, Susan M.; Burgess, Shane C.

    2011-01-01

    AgBase (http://www.agbase.msstate.edu/) provides resources to facilitate modeling of functional genomics data and structural and functional annotation of agriculturally important animal, plant, microbe and parasite genomes. The website is redesigned to improve accessibility and ease of use, including improved search capabilities. Expanded capabilities include new dedicated pages for horse, cat, dog, cotton, rice and soybean. We currently provide 590 240 Gene Ontology (GO) annotations to 105 454 gene products in 64 different species, including GO annotations linked to transcripts represented on agricultural microarrays. For many of these arrays, this provides the only functional annotation available. GO annotations are available for download and we provide comprehensive, species-specific GO annotation files for 18 different organisms. The tools available at AgBase have been expanded and several existing tools improved based upon user feedback. One of seven new tools available at AgBase, GOModeler, supports hypothesis testing from functional genomics data. We host several associated databases and provide genome browsers for three agricultural pathogens. Moreover, we provide comprehensive training resources (including worked examples and tutorials) via links to Educational Resources at the AgBase website. PMID:21075795

  15. Pathogen population dynamics in agricultural landscapes: the Ddal modelling framework.

    PubMed

    Papaïx, Julien; Adamczyk-Chauvat, Katarzyna; Bouvier, Annie; Kiêu, Kiên; Touzeau, Suzanne; Lannou, Christian; Monod, Hervé

    2014-10-01

    Modelling processes that occur at the landscape scale is gaining more and more attention from theoretical ecologists to agricultural managers. Most of the approaches found in the literature lack applicability for managers or, on the opposite, lack a sound theoretical basis. Based on the metapopulation concept, we propose here a modelling approach for landscape epidemiology that takes advantage of theoretical results developed in the metapopulation context while considering realistic landscapes structures. A landscape simulator makes it possible to represent both the field pattern and the spatial distribution of crops. The pathogen population dynamics are then described through a matrix population model both stage- and space-structured. In addition to a classical invasion analysis we present a stochastic simulation experiment and provide a complete framework for performing a sensitivity analysis integrating the landscape as an input factor. We illustrate our approach using an example to evaluate whether the agricultural landscape composition and structure may prevent and mitigate the development of an epidemic. Although designed for a fungal foliar disease, our modelling approach is easily adaptable to other organisms.

  16. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    NASA Astrophysics Data System (ADS)

    Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.

    2014-09-01

    Modelling soil thermal dynamics at high latitudes and altitudes requires representations of specific physical processes such as snow insulation, soil freezing/thawing, as well as subsurface conditions like soil water/ice content and soil texture type. We have compared six different land models (JSBACH, ORCHIDEE, JULES, COUP, HYBRID8, LPJ-GUESS) at four different sites with distinct cold region landscape types (i.e. Schilthorn-Alpine, Bayelva-high Arctic, Samoylov-wet polygonal tundra, Nuuk-non permafrost Arctic) to quantify the importance of physical processes in capturing observed temperature dynamics in soils. This work shows how a range of models can represent distinct soil temperature regimes in permafrost and non-permafrost soils. Snow insulation is of major importance for estimating topsoil conditions and must be combined with accurate subsoil temperature dynamics to correctly estimate active layer thicknesses. Analyses show that land models need more realistic surface processes (such as detailed snow dynamics and moss cover with changing thickness/wetness) as well as better representations of subsoil thermal dynamics (i.e. soil heat transfer mechanism and correct parameterization of heat conductivity/capacities).

  17. A model inter-comparison study of forest growth on two coastal and boreal forest landscapes in Canada

    NASA Astrophysics Data System (ADS)

    Bernier, P. Y.; Wang, Z.; Grant, R. F.; Arain, A.; Chen, B.; Chen, J.; Coops, N.; Govind, A.; Guindon, L.; Hember, R.; Kurz, W. A.; Peng, C.; Price, D. T.; Stinson, G.; Sun, J.; Trofymow, J. A.

    2009-05-01

    Projection of carbon stocks in Canada is presently accomplished using CBM-CFS3, an inventory-based model. We have performed a comparison exercise among 6 process-based models of forest growth (Can-IBIS, INTEC, ECOSYS, 3PG, TRIPLEX, CN-CLASS) and CBM-CFS3 as part of an effort to better capture inter-annual climate variability in the carbon accounting of Canada's forests. Comparisons were made on multi-decadal simulations for a Pacific Coastal Douglas-fir forest (2500ha, Oyster River, British Columbia) and a Boreal Black Spruce forest (3825ha, Chibougamau, Quebec). Models were initiated using reconstructions of forest composition and biomass from 1920 (Oyster River, OR) and 1928 (Chibougamau, CH), followed by transition to current forest composition as derived from recent forest inventories (OR 1999, CH 1998). Forest management events and natural disturbances over the simulation period were provided as maps and disturbance impacts on a number of carbon pools were simulated using the same transfer coefficients parameters as CBM-CFS3. Simulations were conducted from 1920 to 2006 for OR, and from 1928 to 1998 for CH. For CH, final above-ground tree biomass in 1998 was also extracted from the independent forest inventory. The coastal OR area initially contained about four times more ecosystem C than the boreal CH area. CBM- CFS3 simulations suggest a decline in ecosystem carbon by about 200 Mg C ha-1, dominated by a loss of biomass and woody debris C, over the 86-year period in OR as the entire area transitioned from coastal old- growth to second growth conditions. In CH, a smaller proportion of the area was affected by management and the CBM-CFS3 estimated a small net increase in total ecosystem C of about 11 Mg C ha-1 over 70 years, almost all attributed to increased biomass. Changes in tree biomass at CH were 10% less than estimates derived by difference between successive inventories. The source of this small simulation bias is attributable to the underlying growth

  18. Preindustrial to Present-Day Changes in Tropospheric Hydroxyl Radical and Methane Lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Naik, V.; Voulgarakis, A.; Fiore, A. M.; Horowitz, L. W.; Lamarque, J.-F.; Lin, M.; Prather, M. J.; Young, P. J.; Bergmann, D.; Cameron-Smith, P. J.; Cionni, I.; Collins, W. J.; Dalsoren, S. B.; Doherty, R.; Eyring, V.; Faluvegi, G.; Folberth, G. A.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; vanNoije, T. P. C.; Plummer, D. A.; Righi, M.; Rumbold, S. T.; Skeie, R.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Sudo, K.; Szopa, S.; Zeng, G.

    2013-01-01

    We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore changes in present-day (2000) hydroxyl radical (OH) concentration and methane (CH4) lifetime relative to preindustrial times (1850) and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multi-model mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH) compared with the Southern Hemisphere (SH) for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42), in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO) concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north–south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34%). Despite large regional changes, the multi-model global mean (mass-weighted) OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx) emissions, and UV radiation due to decreases in stratospheric ozone), compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC) emissions). The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6%) indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the

  19. The Development of the Integrated Three-Component Model of Agricultural Education

    ERIC Educational Resources Information Center

    Croom, D. Barry

    2008-01-01

    This research project sought to determine the origin of the three-component model of agricultural education in the United States and provided a contextual base for future research into the three-component model for agricultural education. The study concluded that each of the three components of the agricultural education model originated at…

  20. Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China

    NASA Astrophysics Data System (ADS)

    Li, Shenshen; Yu, Chao; Chen, Liangfu; Tao, Jinhua; Letu, Husi; Ge, Wei; Si, Yidan; Liu, Yang

    2016-09-01

    China's large aerosol emissions have major impacts on global climate change as well as regional air pollution and its associated disease burdens. A detailed understanding of the spatiotemporal patterns of aerosol components is necessary for the calculation of aerosol radiative forcing and the development of effective emission control policy. Model-simulated and satellite-retrieved aerosol components can support climate change research, PM2.5 source appointment and epidemiological studies. This study evaluated the total and componential aerosol optical depth (AOD) from the GEOS-Chem model (GC) and the Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART), and the Multiangle Imaging Spectroradiometer (MISR) from 2006 to 2009 in China. Linear regression analysis between the GC and AErosol RObotic NETwork (AERONET) in China yielded similar correlation coefficients (0.6 daily, 0.71 monthly) but lower slopes (0.41 daily, 0.58 monthly) compared with those in the U.S. This difference was attributed to GC's underestimation of water-soluble AOD (WAOD) west of the Heihe-Tengchong Line, the dust AOD (DAOD) in the fall and winter, and the soot AOD (SAOD) throughout the year and throughout the country. GOCART exhibits the strongest dust estimation capability among all datasets. However, the GOCART soot distribution in the Northeast and Southeast has significant errors, and its WAOD in the polluted North China Plain (NCP) and the South is underestimated. MISR significantly overestimates the water-soluble aerosol levels in the West, and does not capture the high dust loadings in all seasons and regions, and the SAOD in the NCP. These discrepancies can mainly be attributed to the uncertainties in the emission inventories of both models, the poor performance of GC under China's high aerosol loading conditions, the omission of certain aerosol tracers in GOCART, and the tendency of MISR to misidentify dust and non-dust mixtures.

  1. Studies of HT and HTO Behavior in the Vicinity of Long-Term Emission Source: Model - Experiment Intercomparison

    SciTech Connect

    Golubev, A. V.; Aleinikov, A. Y.; Golubeva, V. N.; Khabibulin, M. M.; Glagolev, M. V.; Misatyuk, S. E.; Mavrin, S. V.; Belot, Y. A.; Raskob, W.; Tate, P. J.

    2003-02-24

    There are presented in the research results of HT and HTO deposition and the model of HT (HTO) atmosphere concentration in the vicinity of a long-term HT and HTO emission source. Scavenging of HTO by precipitations was studied in 6 field experiments. The site of the scavenging experiments was around a 30 m emission source. The sampling arcs were chosen at 150-300 m from the base of the source to minimize dry deposition on the precipitation collectors. Data of the scavenging experiments are presented. Kinetics of HT deposition to soil through its oxidation has been studied in laboratory conditions. The activity of HTO converted in the soil sample during a certain period of time was used to determine the oxidation rate. This rate varies, depending on the catalytic and/or biological activity of the soil material. Theoretical considerations have shown that the deposition rate can be expressed by the effective rate of oxidation, which formally corresponds to the first-order HT oxidation. HT deposition rates are reported. The model, used for assessments, takes into account atmospheric dispersion, deposition and reemission. The model of HTO wet deposition is taken into account kinetics of HTO exchange between vapor and liquid phase with parameters such as rain drop spectra, rain intensity, condensation-evaporation on drop's interface. Gauss type formulae for continuous emission source is used to calculate HTO atmospheric concentration. Meteorological data are used as input parameters for modeling. The data presented on HT deposition to soil and HTO washout by precipitation is required for assessment of consequences of HT (HTO) release into the atmosphere.

  2. Intercomparison of oil spill prediction models for accidental blowout scenarios with and without subsea chemical dispersant injection.

    PubMed

    Socolofsky, Scott A; Adams, E Eric; Boufadel, Michel C; Aman, Zachary M; Johansen, Øistein; Konkel, Wolfgang J; Lindo, David; Madsen, Mads N; North, Elizabeth W; Paris, Claire B; Rasmussen, Dorte; Reed, Mark; Rønningen, Petter; Sim, Lawrence H; Uhrenholdt, Thomas; Anderson, Karl G; Cooper, Cortis; Nedwed, Tim J

    2015-07-15

    We compare oil spill model predictions for a prototype subsea blowout with and without subsea injection of chemical dispersants in deep and shallow water, for high and low gas-oil ratio, and in weak to strong crossflows. Model results are compared for initial oil droplet size distribution, the nearfield plume, and the farfield Lagrangian particle tracking stage of hydrocarbon transport. For the conditions tested (a blowout with oil flow rate of 20,000 bbl/d, about 1/3 of the Deepwater Horizon), the models predict the volume median droplet diameter at the source to range from 0.3 to 6mm without dispersant and 0.01 to 0.8 mm with dispersant. This reduced droplet size owing to reduced interfacial tension results in a one to two order of magnitude increase in the downstream displacement of the initial oil surfacing zone and may lead to a significant fraction of the spilled oil not reaching the sea surface.

  3. Intercomparison of oil spill prediction models for accidental blowout scenarios with and without subsea chemical dispersant injection.

    PubMed

    Socolofsky, Scott A; Adams, E Eric; Boufadel, Michel C; Aman, Zachary M; Johansen, Øistein; Konkel, Wolfgang J; Lindo, David; Madsen, Mads N; North, Elizabeth W; Paris, Claire B; Rasmussen, Dorte; Reed, Mark; Rønningen, Petter; Sim, Lawrence H; Uhrenholdt, Thomas; Anderson, Karl G; Cooper, Cortis; Nedwed, Tim J

    2015-07-15

    We compare oil spill model predictions for a prototype subsea blowout with and without subsea injection of chemical dispersants in deep and shallow water, for high and low gas-oil ratio, and in weak to strong crossflows. Model results are compared for initial oil droplet size distribution, the nearfield plume, and the farfield Lagrangian particle tracking stage of hydrocarbon transport. For the conditions tested (a blowout with oil flow rate of 20,000 bbl/d, about 1/3 of the Deepwater Horizon), the models predict the volume median droplet diameter at the source to range from 0.3 to 6mm without dispersant and 0.01 to 0.8 mm with dispersant. This reduced droplet size owing to reduced interfacial tension results in a one to two order of magnitude increase in the downstream displacement of the initial oil surfacing zone and may lead to a significant fraction of the spilled oil not reaching the sea surface. PMID:26021288

  4. Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models

    NASA Astrophysics Data System (ADS)

    Han, Zhiwei; Ueda, Hiromasa; An, Junling

    In this study, MM5 predictions with five PBL parameterizations in combination with three land-surface models (LSMs) are intercompared and evaluated by using a wide variety of observations derived from WMO routine surface weather stations, TRACE-P aircraft experiments, intense radiosonde soundings and satellite measurements. Six scenarios with various PBL schemes and LSMs are designed to investigate the similarities and differences in model predictions. For near-surface variables, all scenarios yield good correlation between prediction and observation for 2 m-temperature (T2) and 2 m-water vapor mixing ratio (Q2), and relatively poor ones for wind fields. On average, T2 was consistently underpredicted by all scenarios, whereas Q2 was overpredicted by five of the six scenarios. It is found that the application of Noah land-surface model instead of the five-layer soil model is able to enhance the prediction accuracy of Q2. For 10 m-wind speed, the GSE scenario (Gayno-Seaman scheme with the five-layer soil model) produces somewhat smaller correlation, but better consistency in magnitude than those of the other scenarios. Model predictions are more consistent for upper air as a result of using FDDA reanalysis nudging and the reducing influence of underlying surface with altitude. All scenarios show the tendencies to underpredict temperature and to overpredict wind speed at altitudes <1 km and to underpredict wind speed at altitudes >3 km. The correlations for water vapor mixing ratio are much smaller at altitudes >3 km than that in the boundary layer. The differences in predicted PBL height among scenarios are large. GSE scenario performs best for phase (correlation), whereas PCX scenario (Pleim-Chang scheme with Pleim-Xiu LSM) produces the best statistics for magnitude of PBL height. Diurnal variation of PBL height over the western Pacific region during the study period is characterized by the typical day and night cycling superimposed by occasional expansion

  5. Application of WRF/Chem over East Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Xin; Wang, Litao; Zhang, Qiang; Duan, Fengkui; He, Kebin

    2016-01-01

    In this work, the application of the online-coupled Weather Research and Forecasting model with chemistry (WRF/Chem) version 3.3.1 is evaluated over East Asia for January, April, July, and October 2005 and compared with results from a previous application of an offline model system, i.e., the Mesoscale Model and Community Multiple Air Quality modeling system (MM5/CMAQ). The evaluation of WRF/Chem is performed using multiple observational datasets from satellites and surface networks in mainland China, Hong Kong, Taiwan, and Japan. WRF/Chem simulates well specific humidity (Q2) and downward longwave and shortwave radiation (GLW and GSW) with normalized mean biases (NMBs) within 24%, but shows moderate to large biases for temperature at 2-m (T2) (NMBs of -9.8% to 75.6%) and precipitation (NMBs of 11.4-92.7%) for some months, and wind speed at 10-m (WS10) (NMBs of 66.5-101%), for all months, indicating some limitations in the YSU planetary boundary layer scheme, the Purdue Lin cloud microphysics, and the Grell-Devenyi ensemble scheme. WRF/Chem can simulate the column abundances of gases reasonably well with NMBs within 30% for most months but moderately to significantly underpredicts the surface concentrations of major species at all sites in nearly all months with NMBs of -72% to -53.8% for CO, -99.4% to -61.7% for NOx, -84.2% to -44.5% for SO2, -63.9% to -25.2% for PM2.5, and -68.9% to 33.3% for PM10, and aerosol optical depth in all months except for October with NMBs of -38.7% to -16.2%. The model significantly overpredicts surface concentrations of O3 at most sites in nearly all months with NMBs of up to 160.3% and NO3- at the Tsinghua site in all months. Possible reasons for large underpredictions include underestimations in the anthropogenic emissions of CO, SO2, and primary aerosol, inappropriate vertical distributions of emissions of SO2 and NO2, uncertainties in upper boundary conditions (e.g., for O3 and CO), missing or inaccurate model representations (e

  6. DUE PERMAFROST: A Circumpolar Remote Sensing Service for Permafrost - Evaluation Case Studies and Intercomparison with Regional Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Heim, Birgit; Bartsch, Annett; Elger, Kirsten; Rinke, Annette; Klehmet, Katharina; Matthes, Heidrun; Gellhorn, Catrin; Buchhorn, Marcel; Soliman, Aiman; Duguay, Claude

    2013-04-01

    The ESA Data User Element (DUE) Permafrost project provides a Circumpolar remote sensing service for permafrost-related applications. The data products are freely downloadable (http://www.ipf.tuwien.ac.at/permafrost) and published at the PANGAEA World Data Centre (DUE Permafrost Project Consortium, 2012). Remote sensing products are land surface temperature, surface soil moisture, ground frozen/non frozen state, terrain parameters, land cover parameters, and surface waters. Snow parameters (snow extent and snow water equivalent) can be derived from the DUE project GlobSnow (http://www.globsnow.info). The time series of Circumpolar land surface temperature and surface soil moisture offer weekly and monthly averaged data products from 2007 to 2010, Circumpolar ground frozen/non frozen state is provided as daily dataset. The ongoing service will also include the time series of 2011 and 2012. The Circumpolar terrain and land cover products are static, e.g. the first Circumpolar Digital Elevation Model (DEM) north of 55° N with a spatial resolution of 100 m (S. Maurizio & T. Strozzi, 2012). Evaluation is crucial to test the scientific validity of the DUE Permafrost data products for high-latitude permafrost landscapes. The primary programme providing ground data is the Global Terrestrial Network for Permafrost (GTN-P) initiated by the International Permafrost Association (IPA) in the 1990s. The involvement of scientific stakeholders and the IPA, and the ongoing evaluation of the remote sensing derived products make the DUE Permafrost products widely accepted by the scientific community. Evaluation case studies of DUE Permafrost remote-sensing derived products (e.g., land surface temperature and ground frozen/non frozen state) show good agreement with ground data from GTN-P monitoring sites in Alaska and Siberia. The Helmholtz Climate Initiative REKLIM (Regionale Klimaänderungen/Regional climate change) is a climate research program where regional observations and

  7. An inter-comparison of soil moisture data products from satellite remote sensing and a land surface model

    NASA Astrophysics Data System (ADS)

    Fang, Li; Hain, Christopher R.; Zhan, Xiwu; Anderson, Martha C.

    2016-06-01

    Significant advances have been achieved in generating soil moisture (SM) products from satellite remote sensing and/or land surface modeling with reasonably good accuracy in recent years. However, the discrepancies among the different SM data products can be considerably large, which hampers their usage in various applications. The bias of one SM product from another is well recognized in the literature. Bias estimation and spatial correction methods have been documented for assimilating satellite SM product into land surface and hydrologic models. Nevertheless, understanding the characteristics of each of these SM data products is required for many applications where the most accurate data products are desirable. This study inter-compares five SM data products from three different sources with each other, and evaluates them against in situ SM measurements over 14-year period from 2000 to 2013. Specifically, three microwave (MW) satellite based data sets provided by ESA's Climate Change Initiative (CCI) (CCI-merged, -active and -passive products), one thermal infrared (TIR) satellite based product (ALEXI), and the Noah land surface model (LSM) simulations. The in-situ SM measurements are collected from the North American Soil Moisture Database (NASMD), which involves more than 600 ground sites from a variety of networks. They are used to evaluate the accuracies of these five SM data products. In general, each of the five SM products is capable of capturing the dry/wet patterns over the study period. However, the absolute SM values among the five products vary significantly. SM simulations from Noah LSM are more stable relative to the satellite-based products. All TIR and MW satellite based products are relatively noisier than the Noah LSM simulations. Even though MW satellite based SM retrievals have been predominantly used in the past years, SM retrievals of the ALEXI model based on TIR satellite observations demonstrate skills equivalent to all the MW satellite

  8. EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Intercomparison Between Modeled and Measured Sea Ice Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Stroeve, J.; Markus, T.; Cavalieri, D. J.; Maslanik, J.; Sturm, M.; Henrichs, J.; Gasiewski, A.; Klein, M.

    2004-01-01

    During March 2003, an extensive field campaign was conducted near Barrow, Alaska to validate AQUA Advanced Microwave Scanning Radiometer (AMSR) sea ice products. Field, airborne and satellite data were collected over three different types of sea ice: 1) first year ice with little deformation, 2) first year ice with various amounts of deformation and 3) mixed first year ice and multi-year ice with various degrees of deformation. The validation plan relies primarily on comparisons between satellite, aircraft flights and ground-based measurements. Although these efforts are important, key aspects such as the effects of atmospheric conditions, snow properties, surface roughness, melt processes, etc on the sea ice algorithms are not sufficiently well understood or documented. To improve our understanding of these effects, we combined the detailed, in-situ data collection from the 2003 field campaign with radiance modeling using a radiative transfer model to simulate the top of the atmosphere AMSR brightness temperatures. This study reports on the results of the simulations for a variety of snow and ice types and compares the results with the National Oceanographic and Atmospheric Administration Environmental Technology Laboratory Polarimetric Scanning Radiometer (NOAA) (ETL) (PSR) microwave radiometer that was flown on the NASA P-3.

  9. Linking knowledge and action through mental models of sustainable agriculture.

    PubMed

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-09-01

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer "mental models" of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems.

  10. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Fridlind, Ann M.; Zipser, Edward J.; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-01-01

    The Tropical Warm Pool.International Cloud Experiment (TWP ]ICE) provided extensive observational data sets designed to initialize, force, and constrain atmospheric model simulations. In this first of a two ]part study, precipitation and cloud structures within nine cloud ]resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Seven of nine simulations overestimate convective area by 20% or more leading to general overestimation of convective rainfall. This is balanced by underestimation of stratiform rainfall by 5% to 50% despite overestimation of stratiform area by up to 65% because of a preponderance of very low stratiform rain rates in all simulations. All simulations fail to reproduce observed radar reflectivity distributions above the melting level in convective regions and throughout the troposphere in stratiform regions. Observed precipitation ]sized ice reaches higher altitudes than simulated precipitation ]sized ice despite some simulations that predict lower than observed top ]of ]atmosphere infrared brightness temperatures. For the simulations that overestimate radar reflectivity aloft, graupel is the cause with one ]moment microphysics schemes whereas snow is the cause with two ]moment microphysics schemes. Differences in simulated radar reflectivity are more highly correlated with differences in mass mean melted diameter (Dm) than differences in ice water content. Dm is largely dependent on the mass ]dimension relationship and gamma size distribution parameters such as size intercept (N0) and shape parameter (m). Having variable density, variable N0, or m greater than zero produces radar reflectivities closest to those observed.

  11. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics

    SciTech Connect

    Varble, Adam; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher R.

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, co-located UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain published results showing a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rain water contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (μ) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes, but lower RWCs than observed. Two moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and thus, may have issues balancing raindrop formation, collision coalescence, and raindrop breakup. Assuming a μ of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing μ to have values greater than 0 may improve two-moment schemes. Under-predicted stratiform rain rates are associated with under-predicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. In addition to stronger convective updrafts than observed, limited domain size prevents a large, well-developed stratiform region from developing in CRMs, while a dry bias in ECMWF analyses does the same to the LAMs.

  12. Evaluation of Cloud-Resolving and Limited Area Model Intercomparison Simulations Using TWP-ICE Observations. Part 2 ; Precipitation Microphysics

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Zipser, Edward J.; Fridland, Ann M.; Zhu, Ping; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher

    2014-01-01

    Ten 3-D cloud-resolving model (CRM) simulations and four 3-D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, colocated UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rainwater contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (mu) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes but lower RWCs. Two-moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and, thus, may have issues balancing raindrop formation, collision-coalescence, and raindrop breakup. Assuming a mu of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing mu to have values greater than 0 may improve excessive size sorting in two-moment schemes. Underpredicted stratiform rain rates are associated with underpredicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. A limited domain size also prevents a large, well-developed stratiform region like the one observed from developing in CRMs, although LAMs also fail to produce such a region.

  13. Modeling a phosphorus credit trading program in an agricultural watershed.

    PubMed

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2014-10-01

    Water quality and economic models were linked to assess the economic and environmental benefits of implementing a phosphorus credit trading program in an agricultural sub-basin of Lake Okeechobee watershed, Florida, United States. The water quality model determined the effects of rainfall, land use type, and agricultural management practices on the amount of total phosphorus (TP) discharged. TP loadings generated at the farm level, reaching the nearby streams, and attenuated to the sub-basin outlet from all sources within the sub-basin, were estimated at 106.4, 91, and 85 mtons yr(-)(1), respectively. Almost 95% of the TP loadings reaching the nearby streams were attributed to agriculture sources, and only 1.2% originated from urban areas, accounting for a combined TP load of 87.9 mtons yr(-)(1). In order to compare a Least-Cost Abatement approach to a Command-and-Control approach, the most cost effective cap of 30% TP reduction was selected, and the individual allocation was set at a TP load target of 1.6 kg ha(-1) yr(-1) (at the nearby stream level). The Least-Cost Abatement approach generated a potential cost savings of 27% ($1.3 million per year), based on an optimal credit price of $179. Dairies (major buyer), ornamentals, row crops, and sod farms were identified as potential credit buyers, whereas citrus, improved pastures (major seller), and urban areas were identified as potential credit sellers. Almost 81% of the TP credits available for trading were exchanged. The methodology presented here can be adapted to deal with different forms of trading sources, contaminants, or other technologies and management practices.

  14. Modeling a phosphorus credit trading program in an agricultural watershed.

    PubMed

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2014-10-01

    Water quality and economic models were linked to assess the economic and environmental benefits of implementing a phosphorus credit trading program in an agricultural sub-basin of Lake Okeechobee watershed, Florida, United States. The water quality model determined the effects of rainfall, land use type, and agricultural management practices on the amount of total phosphorus (TP) discharged. TP loadings generated at the farm level, reaching the nearby streams, and attenuated to the sub-basin outlet from all sources within the sub-basin, were estimated at 106.4, 91, and 85 mtons yr(-)(1), respectively. Almost 95% of the TP loadings reaching the nearby streams were attributed to agriculture sources, and only 1.2% originated from urban areas, accounting for a combined TP load of 87.9 mtons yr(-)(1). In order to compare a Least-Cost Abatement approach to a Command-and-Control approach, the most cost effective cap of 30% TP reduction was selected, and the individual allocation was set at a TP load target of 1.6 kg ha(-1) yr(-1) (at the nearby stream level). The Least-Cost Abatement approach generated a potential cost savings of 27% ($1.3 million per year), based on an optimal credit price of $179. Dairies (major buyer), ornamentals, row crops, and sod farms were identified as potential credit buyers, whereas citrus, improved pastures (major seller), and urban areas were identified as potential credit sellers. Almost 81% of the TP credits available for trading were exchanged. The methodology presented here can be adapted to deal with different forms of trading sources, contaminants, or other technologies and management practices. PMID:24907668

  15. Watershed Modeling in areas with Intensive Agricultural Irrigation

    NASA Astrophysics Data System (ADS)

    Wyss, J. R.; Watson, B. J.

    2011-12-01

    Irrigation in agricultural intensive watersheds affects soil moisture content, plays a major role in the overall water balance and also influences the hydrologic regime. Historically, irrigation in watershed modeling has been very difficult to simulate and was simulated in one of three general ways. 1) irrigation water was withdrawan from the model and never applied to the land, 2) ignored and assumed insignificant and 3) input as a constant by modifying atmospheric forcing files. For the Loading Simulation Program C++ (LSPC) model developed for the Flint River Watershed in southwest Georgia, we received a summary report of a study conducted to determine irrigation application depth, as well as spatial mapping of irrigated fields in the state of Georgia. The summary report provided minimum, mean, and maximum irrigation depth for both surface water and groundwater sources and the spatial mapping provided over 10,300 irrigated fields located within the boundaries of the Flint River Watershed. With this information we were able to calculate irrigation volume applied to the land by source water type. We discuss how these data were incorporated into the LSPC watershed modeling effort and demonstrate the utility and function of the model for irrigation application. We also investigate impacts to water balance and the hydrologic regime through a series of scenarios in the agriculturally dominated landscape of Ichawaynochaway Creek (HUC 03130009). The scenarios compare and contrast our approach with 1) ignoring irrigation both application and water withdrawal, and 2) only withdrawing the water and not applying it back to the land. We demonstrate the importance of properly simulating irrigation application in heavily influenced areas. The approach we have taken is applicable in other areas in the southeastern United States or any area that is highly influenced by irrigation practices.

  16. Making Other Worlds: Modelling Past Interactions of Agriculture and Erosion

    NASA Astrophysics Data System (ADS)

    Wainwright, J.

    2012-04-01

    It is argued that the understanding of past agricultural erosion has been greatly simplified because conceptual or numerical models have been used that emphasize the technical aspects of the erosion process, fail to recognize the spatial and temporal scaling of the erosion, and especially ignore the idea that such erosion is the result of multiple, interacting decisions made by people. While there have been significant developments in the first two of these areas over the last decade, there has been little explicit recognition of the third of these limitations. This problem is a consequence of the very different disciplinary approaches that are needed. One method that can be used to address this limitation is that of agent-based modelling. Agent-based models permit an explicit representation of how individuals or groups of individuals interact with each other and their environment. Furthermore, environmental changes can be fed back into agent behaviour, and other potential controls such as climate variations can be assessed. The CYBEROSION modelling framework has been developed to take this approach and evaluate patterns of erosion due to past land-use decision-making. Examples will be drawn from case studies in the Neolithic and Bronze Age, largely from the Mediterranean region. The emphasis is on modelling as a heuristic approach to understanding, rather than necessarily as a predictive tool. In particular, it provides guidance in relation to which parts of existing discipline-bound knowledge are needed to produce an explicit, interdisciplinary understanding of patterns of landscape change as a result of changing agricultural practice. Results from the case studies demonstrate how complex spatio-temporal patterns of past erosion can arise from relatively simple, local interactions between people and their environment. To conclude, will also be an assessment of more modern examples, as well as of related literature in archaeology, and geoarchaeology, and a

  17. Desert Dust Satellite Retrieval Intercomparison

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; Brindley, H.; DeSouza-Mchado, S.; Deuze, J. L.; Diner, D.; Ducos, F.; Grey, W.; Hsu, C.; Kalashnikova, O. V.; Kahn, R.; North, P. R. J.; Salustro, C.; Smith, A.; Tanre, D.; Torres, O.; Veihelmann, B.

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify and understand the differences between current algorithms, and hence improve future retrieval algorithms. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as as20 sumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, at least as significant as these differences are sampling issues related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset.

  18. Application Of Colored Petri Net In Modeling Ofan Agricultural Enterprise Informationmanagement System

    NASA Astrophysics Data System (ADS)

    Zhang, Fangtian; Wang, Kaiyi; Sui, Jin; Liu, Chang; Liu, Zhongqiang

    Business system modeling of an agricultural enterprise is one of the difficulties in developing and researching an agricultural enterprise management information system. Given the inadequate description of concurrent and synchronal events in the traditional modeling methods, this paper presents a modeling method, which uses Colored Petri Net. The paper discusses the application of Colored Petri Net in system modeling with the example of an agricultural enterprise production management system model, and analyzes the feasibility and effectiveness of that model.

  19. A soil sampling intercomparison exercise for the ALMERA network.

    PubMed

    Belli, Maria; de Zorzi, Paolo; Sansone, Umberto; Shakhashiro, Abduhlghani; Gondin da Fonseca, Adelaide; Trinkl, Alexander; Benesch, Thomas

    2009-11-01

    Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a "reference site", aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.

  20. Linking knowledge and action through mental models of sustainable agriculture

    PubMed Central

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-01-01

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer “mental models” of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems. PMID:25157158

  1. Strategies and models for agricultural sustainability in developing Asian countries.

    PubMed

    Kesavan, P C; Swaminathan, M S

    2008-02-27

    The green revolution of the 1960s and 1970s which resulted in dramatic yield increases in the developing Asian countries is now showing signs of fatigue in productivity gains. Intensive agriculture practiced without adherence to the scientific principles and ecological aspects has led to loss of soil health, and depletion of freshwater resources and agrobiodiversity. With progressive diversion of arable land for non-agricultural purposes, the challenge of feeding the growing population without, at the same time, annexing more forestland and depleting the rest of life is indeed daunting. Further, even with food availability through production/procurement, millions of marginal farming, fishing and landless rural families have very low or no access to food due to lack of income-generating livelihoods. Approximately 200 million rural women, children and men in India alone fall in this category. Under these circumstances, the evergreen revolution (pro-nature, pro-poor, pro-women and pro-employment/livelihood oriented ecoagriculture) under varied terms are proposed for achieving productivity in perpetuity. In the proposed 'biovillage paradigm', eco-friendly agriculture is promoted along with on- and non-farm eco-enterprises based on sustainable management of natural resources. Concurrently, the modern ICT-based village knowledge centres provide time- and locale-specific, demand-driven information needed for evergreen revolution and ecotechnologies. With a system of 'farm and marine production by masses', the twin goals of ecoagriculture and eco-livelihoods are addressed. The principles, strategies and models of these are briefly discussed in this paper.

  2. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-11-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.

  3. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-06-01

    Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.

  4. Spatial modeling of agricultural land use change at global scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  5. Development of an Integrated Agricultural Planning Model Considering Climate Change

    NASA Astrophysics Data System (ADS)

    Santikayasa, I. P.

    2016-01-01

    The goal of this study is to develop an agriculture planning model in order to sustain the future water use under the estimation of crop water requirement, water availability and future climate projection. For this purpose, the Citarum river basin which is located in West Java - Indonesia is selected as the study area. Two emission scenarios A2 and B2 were selected. For the crop water requirement estimation, the output of HadCM3 AOGCM is statistically downscale using SDSM and used as the input for WEAP model developed by SEI (Stockholm Environmental Institute). The reliability of water uses is assessed by comparing the irrigation water demand and the water allocation for the irrigation area. The water supply resources are assessed using the water planning tool. This study shows that temperature and precipitation over the study area are projected to increase in the future. The water availability was projected to increase under both A2 and B2 emission scenarios in the future. The irrigation water requirement is expected to decrease in the future under A2 and B2 scenarios. By comparing the irrigation water demand and water allocation for irrigation, the reliability of agriculture water use is expected to change in the period of 2050s and 2080s while the reliability will not change in 2020s. The reliability under A2 scenario is expected to be higher than B2 scenario. The combination of WEAP and SDSM is significance to use in assessing and allocating the water resources in the region.

  6. Agricultural Education Early Field Experience through the Lens of the EFE Model

    ERIC Educational Resources Information Center

    Smalley, Scott W.; Retallick, Michael S.

    2012-01-01

    The purpose of this national study was to describe agricultural teacher education early field experience (EFE) practices using the EFE model. The population for this study was all agricultural education teacher preparation programs (N = 83) listed in the AAAE Directory of University Faculty in Agricultural Education. Data were collected via an…

  7. Modeling nitrate contamination of groundwater in agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Almasri, Mohammad N.; Kaluarachchi, Jagath J.

    2007-09-01

    SummaryThis paper presents and implements a framework for modeling the impact of land use practices and protection alternatives on nitrate pollution of groundwater in agricultural watersheds. The framework utilizes the national land cover database (NLCD) of the United State Geological Survey (USGS) grid and a geographic information system (GIS) to account for the spatial distribution of on-ground nitrogen sources and corresponding loadings. The framework employs a soil nitrogen dynamic model to estimate nitrate leaching to groundwater. These estimates were used in developing a groundwater nitrate fate and transport model. The framework considers both point and non-point sources of nitrogen across different land use classes. The methodology was applied for the Sumas-Blaine aquifer of Washington State, US, where heavy dairy industry and berry plantations are concentrated. Simulations were carried out using the developed framework to evaluate the overall impacts of current land use practices and the efficiency of proposed protection alternatives on nitrate pollution in the aquifer.

  8. Monitoring and modeling agricultural drought for famine early warning (Invited)

    NASA Astrophysics Data System (ADS)

    Verdin, J. P.; Funk, C.; Budde, M. E.; Lietzow, R.; Senay, G. B.; Smith, R.; Pedreros, D.; Rowland, J.; Artan, G. A.; Husak, G. J.; Michaelsen, J.; Adoum, A.; Galu, G.; Magadzire, T.; Rodriguez, M.

    2009-12-01

    The Famine Early Warning Systems Network (FEWS NET) makes quantitative estimates of food insecure populations, and identifies the places and periods during which action must be taken to assist them. Subsistence agriculture and pastoralism are the predominant livelihood systems being monitored, and they are especially drought-sensitive. At the same time, conventional climate observation networks in developing countries are often sparse and late in reporting. Consequently, remote sensing has played a significant role since FEWS NET began in 1985. Initially there was heavy reliance on vegetation index imagery from AVHRR to identify anomalies in landscape greenness indicative of drought. In the latter part of the 1990s, satellite rainfall estimates added a second, independent basis for identification of drought. They are used to force crop water balance models for the principal rainfed staple crops in twenty FEWS NET countries. Such models reveal seasonal moisture deficits associated with yield reduction on a spatially continuous basis. In 2002, irrigated crops in southwest Asia became a concern, and prompted the implementation of a gridded energy balance model to simulate the seasonal mountain snow pack, the main source of irrigation water. MODIS land surface temperature data are also applied in these areas to directly estimate actual seasonal evapotranspiration on the irrigated lands. The approach reveals situations of reduced irrigation water supply and crop production due to drought. The availability of MODIS data after 2000 also brought renewed interest in vegetation index imagery. MODIS NDVI data have proven to be of high quality, thanks to significant spectral and spatial resolution improvements over AVHRR. They are vital to producing rapid harvest assessments for drought-impacted countries in Africa and Asia. The global food crisis that emerged in 2008 has led to expansion of FEWS NET monitoring to over 50 additional countries. Unlike previous practice, these

  9. Pesticide fate modeling in soils with the crop model STICS: Feasibility for assessment of agricultural practices.

    PubMed

    Queyrel, Wilfried; Habets, Florence; Blanchoud, Hélène; Ripoche, Dominique; Launay, Marie

    2016-01-15

    Numerous pesticide fate models are available, but few of them are able to take into account specific agricultural practices, such as catch crop, mixing crops or tillage in their predictions. In order to better integrate crop management and crop growth in the simulation of diffuse agricultural pollutions, and to manage both pesticide and nitrogen pollution, a pesticide fate module was implemented in the crop model STICS. The objectives of the study were: (i) to implement a pesticide fate module in the crop model STICS; (ii) to evaluate the model performance using experimental data from three sites with different pedoclimatic contexts, one in The Netherlands and two in northern France; (iii) to compare the simulations with several pesticide fate models; and (iv) to test the impact of specific agricultural practices on the transfer of the dissolved fraction of pesticides. The evaluations were carried out with three herbicides: bentazone, isoproturon, and atrazine. The strategy applied in this study relies on a noncalibration approach and sensitivity test to assess the operating limits of the model. To this end, the evaluation was performed with default values found in the literature and completed by sensitivity tests. The extended version of the STICS named STICS-Pest, shows similar results with other pesticide fate models widely used in the literature. Moreover, STICS-Pest was able to estimate realistic crop growth and catch crop dynamic, which thus illustrate agricultural practices leading to a reduction of nitrate and a change in pesticide leaching. The dynamic plot-scale model, STICS-Pest is able to simulate nitrogen and pesticide fluxes, when the hydrologic context is in the validity range of the reservoir (or capacity) model. According to these initial results, the model may be a relevant tool for studying the effect of long-term agricultural practices on pesticide residue dynamics in soil and the associated diffuse pollution transfer.

  10. A GIS-based hedonic price model for agricultural land

    NASA Astrophysics Data System (ADS)

    Demetriou, Demetris

    2015-06-01

    Land consolidation is a very effective land management planning approach that aims towards rural/agricultural sustainable development. Land reallocation which involves land tenure restructuring is the most important, complex and time consuming component of land consolidation. Land reallocation relies on land valuation since its fundamental principle provides that after consolidation, each landowner shall be granted a property of an aggregate value that is approximately the same as the value of the property owned prior to consolidation. Therefore, land value is the crucial factor for the land reallocation process and hence for the success and acceptance of the final land consolidation plan. Land valuation is a process of assigning values to all parcels (and its contents) and it is usually carried out by an ad-hoc committee. However, the process faces some problems such as it is time consuming hence costly, outcomes may present inconsistency since it is carried out manually and empirically without employing systematic analytical tools and in particular spatial analysis tools and techniques such as statistical/mathematical. A solution to these problems can be the employment of mass appraisal land valuation methods using automated valuation models (AVM) based on international standards. In this context, this paper presents a spatial based linear hedonic price model which has been developed and tested in a case study land consolidation area in Cyprus. Results showed that the AVM is capable to produce acceptable in terms of accuracy and reliability land values and to reduce time hence cost required by around 80%.

  11. Inter-comparison of automatic rain gauges

    NASA Technical Reports Server (NTRS)

    Nystuen, Jeffrey A.

    1994-01-01

    The Ocean Acoustics Division (OAD) of the Atlantic Oceanographic and Meteorological Laboratory (AOML), in cooperation with NOAA/NESDIS and NASA, has deployed six rain gauges for calibration and intercomparison purposes. These instruments include: (1) a weighing rain gauge, (2) a RM Young Model 50202 capacitance rain gauge, (3) a ScTI ORG-705 (long path) optical rain gauge, (4) a ScTI ORG-105 (mini-ORG) optical rain gauge, (5) a Belfort Model 382 tipping bucket rain gauge, and (6) a Distromet RD-69 disdrometer. The system has been running continuously since July 1993. During this time period, roughly 150 events with maximum rainfall rate over 10 mm/hr and 25 events with maximum rainfall rates over 100 mm/hr have been recorded. All rain gauge types have performed well, with intercorrelations 0.9 or higher. However, limitations for each type of rain gauge have been observed.

  12. Agriflection: A Learning Model for Agricultural Extension in South Africa

    ERIC Educational Resources Information Center

    Worth, S. H.

    2006-01-01

    Prosperity--continuous and sustainable wealth creation--is an elusive goal in South African smallholder agriculture. This paper suggests that agricultural extension can facilitate realising this objective if an appropriate approach to extension can be developed. To develop such an approach requires that the definition of extension and the…

  13. Zoning of agricultural field using a fuzzy indicators model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for deciding how to subdivide a field into a few relatively homogenous zones is using applications of fuzzy sets theory. Data collected from a precision agriculture study in central Texas...

  14. Pinatubo Emulation in Multiple Models (POEMs): co-ordinated experiments in the ISA-MIP model intercomparison activity component of the SPARC Stratospheric Sulphur and it's Role in Climate initiative (SSiRC)

    NASA Astrophysics Data System (ADS)

    Lee, Lindsay; Mann, Graham; Carslaw, Ken; Toohey, Matthew; Aquila, Valentina

    2016-04-01

    The World Climate Research Program's SPARC initiative has a new international activity "Stratospheric Sulphur and its Role in Climate" (SSiRC) to better understand changes in stratospheric aerosol and precursor gaseous sulphur species. One component of SSiRC involves an intercomparison "ISA-MIP" of composition-climate models that simulate the stratospheric aerosol layer interactively. Within PoEMS each modelling group will run a "perturbed physics ensemble" (PPE) of interactive stratospheric aerosol (ISA) simulations of the Pinatubo eruption, varying several uncertain parameters associated with the eruption's SO2 emissions and model processes. A powerful new technique to quantify and attribute sources of uncertainty in complex global models is described by Lee et al. (2011, ACP). The analysis uses Gaussian emulation to derive a probability density function (pdf) of predicted quantities, essentially interpolating the PPE results in multi-dimensional parameter space. Once trained on the ensemble, a Monte Carlo simulation with the fast Gaussian emulator enabling a full variance-based sensitivity analysis. The approach has already been used effectively by Carslaw et al., (2013, Nature) to quantify the uncertainty in the cloud albedo effect forcing from a 3D global aerosol-microphysics model allowing to compare the sensitivy of different predicted quantities to uncertainties in natural and anthropogenic emissions types, and structural parameters in the models. Within ISA-MIP, each group will carry out a PPE of runs, with the subsequent analysis with the emulator assessing the uncertainty in the volcanic forcings predicted by each model. In this poster presentation we will give an outline of the "PoEMS" analysis, describing the uncertain parameters to be varied and the relevance to further understanding differences identified in previous international stratospheric aerosol assessments.

  15. Culturally relevant model program to prevent and reduce agricultural injuries.

    PubMed

    Helitzer, D L; Hathorn, G; Benally, J; Ortega, C

    2014-07-01

    Limited research has explored pesticide injury prevention among American Indian farmers. In a five-year agricultural intervention, a university-community partnership, including the University of New Mexico School of Medicine, New Mexico State University, Shiprock Area Cooperative Extension Service, and Navajo Nation communities, used a culturally relevant model to introduce and maintain safe use of integrated pest management techniques. We applied the Diffusion of Innovations theory and community-based approaches to tailor health promotion strategies for our intervention. In a longitudinal study with repeated measures, we trained six "model farmers" to be crop management experts in pesticide safety, application, and control. Subsequently, these model farmers worked with 120 farm families randomized into two groups: intervention (Group 1) and delayed intervention (Group 2). Measurements included a walk-through analysis, test of knowledge and attitudes, and yield analysis. Both groups demonstrated improvements in pesticide storage behaviors after training. Test scores regarding safety practices improved significantly: from 57.3 to 72.4 for Group 1 and from 52.6 to 76.3 for Group 2. Group 1 maintained their knowledge and safety practices after the intervention. Attitudes about pesticides and communication of viewpoints changed across the study years. With pesticides and fertilizer, the number of corn ears increased by 56.3% and yield (kg m(-2)) of alfalfa increased by 41.2%. The study combined traditional farming practices with culturally relevant approaches and behavior change theory to affect knowledge, safety practices, attitudes, communication channels, and crop yield. Storage behaviors, use of pesticides and safety and application equipment, and safety practice knowledge changed significantly, as did attitudes about social networking, social support, and the compatibility and relative advantage of pesticides for farms. PMID:25174150

  16. Culturally relevant model program to prevent and reduce agricultural injuries.

    PubMed

    Helitzer, D L; Hathorn, G; Benally, J; Ortega, C

    2014-07-01

    Limited research has explored pesticide injury prevention among American Indian farmers. In a five-year agricultural intervention, a university-community partnership, including the University of New Mexico School of Medicine, New Mexico State University, Shiprock Area Cooperative Extension Service, and Navajo Nation communities, used a culturally relevant model to introduce and maintain safe use of integrated pest management techniques. We applied the Diffusion of Innovations theory and community-based approaches to tailor health promotion strategies for our intervention. In a longitudinal study with repeated measures, we trained six "model farmers" to be crop management experts in pesticide safety, application, and control. Subsequently, these model farmers worked with 120 farm families randomized into two groups: intervention (Group 1) and delayed intervention (Group 2). Measurements included a walk-through analysis, test of knowledge and attitudes, and yield analysis. Both groups demonstrated improvements in pesticide storage behaviors after training. Test scores regarding safety practices improved significantly: from 57.3 to 72.4 for Group 1 and from 52.6 to 76.3 for Group 2. Group 1 maintained their knowledge and safety practices after the intervention. Attitudes about pesticides and communication of viewpoints changed across the study years. With pesticides and fertilizer, the number of corn ears increased by 56.3% and yield (kg m(-2)) of alfalfa increased by 41.2%. The study combined traditional farming practices with culturally relevant approaches and behavior change theory to affect knowledge, safety practices, attitudes, communication channels, and crop yield. Storage behaviors, use of pesticides and safety and application equipment, and safety practice knowledge changed significantly, as did attitudes about social networking, social support, and the compatibility and relative advantage of pesticides for farms.

  17. Modelling Approach to Assess Future Agricultural Water Demand

    NASA Astrophysics Data System (ADS)

    Spano, D.; Mancosu, N.; Orang, M.; Sarreshteh, S.; Snyder, R. L.

    2013-12-01

    The combination of long-term climate changes (e.g., warmer average temperatures) and extremes events (e.g., droughts) can have decisive impacts on water demand, with further implications on the ecosystems. In countries already affected by water scarcity, water management problems are becoming increasingly serious. The sustainable management of available water resources at the global, regional, and site-specific level is necessary. In agriculture, the first step is to compute how much water is needed by crops in regards to climate conditions. Modelling approach can be a way to compute crop water requirement (CWR). In this study, the improved version of the SIMETAW model was used. The model is a user friendly soil water balance model, developed by the University of California, Davis, the California Department of Water Resource, and the University of Sassari. The SIMETAW# model assesses CWR and generates hypothetical irrigation scheduling for a wide range of irrigated crops experiencing full, deficit, or no irrigation. The model computes the evapotranspiration of the applied water (ETaw), which is the sum of the net amount of irrigation water needed to match losses due to the crop evapotranspiration (ETc). ETaw is determined by first computing reference evapotranspiration (ETo) using the daily standardized Reference Evapotranspiration equation. ETaw is computed as ETaw = CETc - CEr, where CETc and CE are the cumulative total crop ET and effective rainfall values, respectively. Crop evapotranspiration is estimated as ETc = ETo x Kc, where Kc is the corrected midseason tabular crop coefficient, adjusted for climate conditions. The net irrigation amounts are determined from a daily soil water balance, using an integrated approach that considers soil and crop management information, and the daily ETc estimates. Using input information on irrigation system distribution uniformity and runoff, when appropriate, the model estimates the applied water to the low quarter of the

  18. Intercomparison of Retrospective Radon Detectors

    SciTech Connect

    Field, R W.; Steck, D J.; Parkhurst, Maryann ); Mahaffey, Judith A. ); Alavanja, M C.

    1998-11-01

    We performed both a laboratory and field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, Pb-210, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha emission of a Pb-210 decay product, Po-210. The detector's track density generation rate (tracks cm{sup -2} hr{sup -1}) is proportional to the surface alpha activity. In the absence of other strong sources of alpha emission in the glass, the implanted surface alpha activity should be proportional to the accumulated Po-210 and hence, the cumulative radon gas exposure. The goals of the intercomparison were to: (1) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, (2) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass implanted polonium activities, and (3) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted Po-210 activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type.

  19. Flood damage modeling based on expert knowledge: Insights from French damage model for agricultural sector

    NASA Astrophysics Data System (ADS)

    Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline

    2015-04-01

    In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. However, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving

  20. Flood damage modeling based on expert knowledge: Insights from French damage model for agricultural sector

    NASA Astrophysics Data System (ADS)

    Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline

    2014-05-01

    In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. Howerver, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving

  1. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    NASA Technical Reports Server (NTRS)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; Ponnusamy, Paramasivam; Rasnayaka, Herath; Singh, Harbir

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work

  2. A Conceptual Model of Intrapreneurship in the Iranian Agricultural Extension Organization: Implications for HRD

    ERIC Educational Resources Information Center

    Karimi, Asef; Malekmohamadi, Iraj; Daryani, Mahmoud Ahmadpour; Rezvanfar, Ahmad

    2011-01-01

    Purpose: This study seeks to build a conceptual model of agricultural extension intrapreneurship that discusses the concept and phenomenon of intrapreneurship as well as its prerequisites and outcomes. The proposed model is intended to depict the main factors that affect the phenomena of intrapreneurship within the agricultural extension…

  3. Model Course of Study for Agricultural Programs in Iowa. Preparing for the Future.

    ERIC Educational Resources Information Center

    Martin, Robert A.; And Others

    Each section contained in this packet is necessary for designing an effective program of agriculture education. The curriculum guide that is developed from this model should include the same sections. The model includes: (1) community description; (2) school description; (3) goals and objectives of education in agriculture; (4) evaluation policy;…

  4. Collaborative evaluation and market research converge: an innovative model agricultural development program evaluation in Southern Sudan.

    PubMed

    O'Sullivan, John M; O'Sullivan, Rita

    2012-11-01

    In June and July 2006 a team of outside experts arrived in Yei, Southern Sudan through an AID project to provide support to a local agricultural development project. The team brought evaluation, agricultural marketing and financial management expertise to the in-country partners looking at steps to rebuild the economy of the war ravaged region. A partnership of local officials, agricultural development staff, and students worked with the outside team to craft a survey of agricultural traders working between northern Uganda and Southern Sudan the steps approach of a collaborative model. The goal was to create a market directory of use to producers, government officials and others interested in stimulating agricultural trade. The directory of agricultural