Science.gov

Sample records for agricultural plant science

  1. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  2. Agricultural Mechanics Unit for Plant Science Core Curriculum. Volume 15, Number 4. Instructor's Guide.

    ERIC Educational Resources Information Center

    Linhardt, Richard E.; Hunter, Bill

    This instructor's guide is intended for use in teaching the agricultural mechanics unit of a plant science core curriculum. Covered in the individual units of the guide are the following topics: arc welding (following safety procedures, controlling distortion, selecting and caring for electrodes, identifying the material to be welded, and welding…

  3. Plant Biology Science Projects.

    ERIC Educational Resources Information Center

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  4. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science.

    PubMed

    Tan, Dun-Xian; Hardeland, Rudiger; Manchester, Lucien C; Korkmaz, Ahmet; Ma, Shuran; Rosales-Corral, Sergio; Reiter, Russel J

    2012-01-01

    The presence of melatonin in plants is universal. Evidence has confirmed that a major portion of the melatonin is synthesized by plants themselves even though a homologue of the classic arylalkylamine N-acetyltransferase (AANAT) has not been identified as yet in plants. Thus, the serotonin N-acetylating enzyme in plants may differ greatly from the animal AANAT with regard to sequence and structure. This would imply multiple evolutionary origins of enzymes with these catalytic properties. A primary function of melatonin in plants is to serve as the first line of defence against internal and environmental oxidative stressors. The much higher melatonin levels in plants compared with those found in animals are thought to be a compensatory response by plants which lack means of mobility, unlike animals, as a means of coping with harsh environments. Importantly, remarkably high melatonin concentrations have been measured in popular beverages (coffee, tea, wine, and beer) and crops (corn, rice, wheat, barley, and oats). Billions of people worldwide consume these products daily. The beneficial effects of melatonin on human health derived from the consumption of these products must be considered. Evidence also indicates that melatonin has an ability to increase the production of crops. The mechanisms may involve the roles of melatonin in preservation of chlorophyll, promotion of photosynthesis, and stimulation of root development. Transgenic plants with enhanced melatonin content could probably lead to breakthroughs to increase crop production in agriculture and to improve the general health of humans.

  5. Potato agriculture, late blight science, and the molecularization of plant pathology.

    PubMed

    Turner, R Steven

    2008-01-01

    By the mid-1980s nucleic-acid based methods were penetrating the farthest reaches of biological science, triggering rivalries among practitioners, altering relationships among subfields, and transforming the research front. This article delivers a "bottom up" analysis of that transformation at work in one important area of biological science, plant pathology, by tracing the "molecularization" of efforts to understand and control one notorious plant disease -- the late blight of potatoes. It mobilizes the research literature of late blight science as a tool through which to trace the changing typography of the research front from 1983 to 2003. During these years molecularization intensified the traditional fragmentation of the late blight research community, even as it dramatically integrated study of the causal organism into broader areas of biology. In these decades the pathogen responsible for late blight, the oomycete "Phytophthora infestans," was discovered to be undergoing massive, frightening, and still largely unexplained genetic diversification -- a circumstance that lends the episode examined here an urgency that reinforces its historiographical significance as a case-study in the molecularization of the biological sciences.

  6. Educational Plant Survey. The University of Florida Institute of Food and Agricultural Sciences on Campus--Alachua County. April 4-5, 1994.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    This report presents the results of a systematic study and evaluation of the existing educational plants of the University of Florida's Institute of Food and Agricultural Sciences (IFAS), along with a determination of future plant needs. Section 1 contains an introduction to the educational plant survey, including statutory foundations, procedural…

  7. Identification of Emerging Science Competencies in Agriculture. Vocational Education Research.

    ERIC Educational Resources Information Center

    Louisiana State Univ., Baton Rouge. School of Vocational Education.

    A research project identified new and emerging science concepts that should be taught in high school vocational agriculture. Agricultural scientists on an advisory panel identified the emerging science concepts. The majority were in the areas of plant science and animal science. Animal science was completely reorganized with greater emphasis on…

  8. Agricultural Science--Striving for Excellence.

    ERIC Educational Resources Information Center

    Budke, Wesley E.; And Others

    1991-01-01

    Six articles examine several of the critical components of program and personnel development in agricultural science including linkages between agriscience and natural resources teachers and high school science teachers, science in agriculture, biological science applications, and hydroponics. (JOW)

  9. Science of Agricultural Plants

    ERIC Educational Resources Information Center

    Murdock, Ashleigh Barbee, Ed.

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  10. Collaboration between Science and Agriculture Teachers

    ERIC Educational Resources Information Center

    Stephenson, Lee G.; Warnick, Brian K.; Tarpley, Rudy S.

    2008-01-01

    The focus of this descriptive study was to determine the type and frequency of collaborative activities occurring between agriculture teachers and science teachers who taught in schools with agricultural education programs. Additional foci of this study included determining the extent to which science and agriculture teachers value collaborative…

  11. Agricultural Education Science Activity--Nos. PS 1-6.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Agricultural Curriculum Materials Service.

    This packet contains six science learning activities that can be used in agricultural education courses. The activities cover these topics: (1) determining the effects of soil drainage on plant growth and development; (2) determining the effect of soil compaction on plant growth and development; (3) inoculating legume seeds to promote nodule…

  12. Integrating Science into the Agricultural Education Curriculum: Do Science and Agriculture Teachers Agree?

    ERIC Educational Resources Information Center

    Thompson, Gregory W.; Warnick, Brian K.

    2007-01-01

    Agriculture teachers and science teachers who taught in a high school with an agricultural education program were targeted for this study to determine and compare their perceptions of integrating science into agricultural education programs. The data indicate that while both groups have responded positively to the call to integrate science into…

  13. Science Laboratory Exercises for Vocational Agriculture Students.

    ERIC Educational Resources Information Center

    Thompson, Dale E.

    This manual provides learning activities for use in two vocational agriculture courses--ornamental horticulture I and agricultural technology I. These activities are intended as aids in the teaching of application of science principles. An introductory chart gives a summary of how vocational agriculture objectives match objectives of specific…

  14. Genetic Engineering of Plants. Agricultural Research Opportunities and Policy Concerns.

    ERIC Educational Resources Information Center

    Roberts, Leslie

    Plant scientists and science policymakers from government, private companies, and universities met at a convocation on the genetic engineering of plants. During the convocation, researchers described some of the ways genetic engineering may be used to address agricultural problems. Policymakers delineated and debated changes in research funding…

  15. Milk Processing Plant Employee. Agricultural Cooperative Training. Vocational Agriculture.

    ERIC Educational Resources Information Center

    Blaschke, Nolan; Page, Foy

    This course of study is designed for the vocational agricultural student enrolled in an agricultural cooperative part-time training program in the area of milk processing occupations. The course consists of 11 units, each with 4 to 13 individual topics that milk processing plant employees should know. Subjects covered by the units are the…

  16. Lessons from Women in the Agricultural Sciences.

    ERIC Educational Resources Information Center

    Rea, Jennette; And Others

    1989-01-01

    Discusses women who have made an impact in the agricultural sciences. Profiles Elizabeth Pickney, indigo; Jane Colden, botany; Harriet Strong, irrigation and flood control; Anna Comstock, nature studies; Alice Evans, bacteriology; Edith Patch, entomology; and Beatrix Potter, botany. (JOW)

  17. Expediting Agriculture Through Science Act

    THOMAS, 112th Congress

    Rep. Fincher, Stephen Lee [R-TN-8

    2011-05-26

    06/08/2011 Referred to the Subcommittee on Rural Development, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. Climate science: Agricultural greenhouse gases

    NASA Astrophysics Data System (ADS)

    Pollock, Chris

    2011-05-01

    Mitigating greenhouse gas emissions from agriculture is important and achievable. However, cutting emissions to meet the UK's legal targets for 2050 will bring technical and political challenges, and may affect food production.

  19. Science Achievement of Secondary Agricultural Education Students

    ERIC Educational Resources Information Center

    Clark, Sara Vicky

    2012-01-01

    The purposes of this quantitative descriptive and correlational study were to describe the science achievements of secondary agricultural education students and determine if the number of agricultural education courses passed, FFA involvement, and SAE participation would statistically significantly improve students' performance on science…

  20. Agriculture on Mars: Soils for Plant Growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  1. Plant ID. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant identification. Presented first are a series of questions and answers designed to convey general information about the scientific classification of plants. The following topics are among those discussed: main types of plants; categories of vascular plants; gymnosperms and…

  2. Plant biotechnology patents: applications in agriculture and medicine.

    PubMed

    Hefferon, Kathleen

    2010-06-01

    Recent advances in agricultural biotechnology have enabled the field of plant biology to move forward in great leaps and bounds. In particular, recent breakthroughs in molecular biology, plant genomics and crop science have brought about a paradigm shift of thought regarding the manner by which plants can be utilized both in agriculture and in medicine. Besides the more well known improvements in agronomic traits of crops such as disease resistance and drought tolerance, plants can now be associated with topics as diverse as biofuel production, phytoremediation, the improvement of nutritional qualities in edible plants, the identification of compounds for medicinal purposes in plants and the use of plants as therapeutic protein production platforms. This diversification of plant science has been accompanied by the great abundance of new patents issued in these fields and, as many of these inventions approach commercial realization, the subsequent increase in agriculturally-based industries. While this review chapter is written primarily for plant scientists who have great interest in the new directions being taken with respect to applications in agricultural biotechnology, those in other disciplines, such as medical researchers, environmental scientists and engineers, may find significant value in reading this article as well. The review attempts to provide an overview of the most recent patents issued for plant biotechnology with respect to both agriculture and medicine. The chapter concludes with the proposal that the combined driving forces of climate change, as well as the ever increasing needs for clean energy and food security will play a pivotal role in leading the direction for applied plant biotechnology research in the future.

  3. Plant Tissues. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant tissues. Presented first are an attention step and a series of questions and answers designed to convey general information about plant tissues and the effect of water and minerals on them. The following topics are among those discussed: reasons why water is important to plants,…

  4. Theme: The Role of Science in the Agricultural Education Curriculum.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  5. Commercial Pesticides Applicator Manual: Agriculture - Plant.

    ERIC Educational Resources Information Center

    Fitzwater, W. D.; And Others

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the agriculture-plant pest control category. The text discusses identification and control of insects, diseases, nematodes, and weeds of agricultural crops. Proper use of application equipment and safety…

  6. Report of the Panel on Pre-Professional Training in the Agricultural Sciences.

    ERIC Educational Resources Information Center

    Commission on Undergraduate Education in the Biological Sciences, Washington, DC.

    Summaries of the recommendations made by action committees established by the Panel on Pre-Professional Training in the Agricultural Sciences are made under the headings "Biological Subject Matter,""Mathematics," and "Physics." The action committees in Animal Sciences, Bioengineering, Food Sciences, Natural Resources, Plant and Soil Sciences, and…

  7. Who Needs Plants? Science (Experimental).

    ERIC Educational Resources Information Center

    Ropeik, Bernard H.; Kleinman, David Z.

    The basic elective course in introductory botany is designed for secondary students who probably will not continue study in plant science. The objectives of the course are to help the student 1) identify, compare and differentiate types of plants; 2) identify plant cell structures; 3) distinguish between helpful and harmful plants; 4) predict…

  8. Socioeconomic Impacts of Agricultural Processing Plants.

    ERIC Educational Resources Information Center

    Leistritz, F. Larry; Sell, Randall S.

    2001-01-01

    Studies in four North Dakota communities that had suffered economic and population decline in the 1980s examined the economic and community impacts of new agricultural processing plants in the late 1990s, including effects on residents' incomes, total and school-age population, needs for day care and community services, housing needs, public…

  9. Agricultural Plant Pest Control. Manual 93.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…

  10. The Importance of Agriculture Science Course Sequencing in High Schools: A View from Collegiate Agriculture Students

    ERIC Educational Resources Information Center

    Wheelus, Robin P.

    2009-01-01

    The objective of this study was to investigate the importance of Agriculture Science course sequencing in high schools, as a preparatory factor for students enrolled in collegiate agriculture classes. With the variety of courses listed in the Texas Essential Knowledge and Skills (TEKS) for Agriculture Science, it has been possible for counselors,…

  11. Plants & People: A Beneficial Relationship. Plant Life in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    In Plants & People: A Beneficial Relationship, viewers will develop an appreciation for plant life by learning how plants provide us with the oxygen, food, shelter, clothing and medicine that we need to survive. Discover how the science of agriculture has benefited humanity for thousands of years. Examine the complex relationships that have…

  12. Minnesota 4-H Science of Agriculture Challenge: Infusing Agricultural Science and Engineering Concepts into 4-H Youth Development

    ERIC Educational Resources Information Center

    Rice, Joshua E.; Rugg, Bradley; Davis, Sharon

    2016-01-01

    Youth involved in 4-H projects have been engaged in science-related endeavors for years. Since 2006, 4-H has invested considerable resources in the advancement of science learning. The new Minnesota 4-H Science of Agriculture Challenge program challenges 4-H youth to work together to identify agriculture-related issues in their communities and to…

  13. Use of antibiotics in plant agriculture.

    PubMed

    Stockwell, V O; Duffy, B

    2012-04-01

    Antibiotics are essential for control of bacterial diseases of plants, especially fire blight of pear and apple and bacterial spot of peach. Streptomycin is used in several countries; the use of oxytetracycline, oxolinic acid and gentamicin is limited to only a few countries. Springtime antibiotic sprays suppress pathogen growth on flowers and leaf surfaces before infection; after infection, antibiotics are ineffective. Antibiotics are applied when disease risk is high, and consequently the majority of orchards are not treated annually. In 2009 in the United States, 16,465 kg (active ingredient) was applied to orchards, which is 0.12% of the total antibiotics used in animal agriculture. Antibiotics are active on plants for less than a week, and significant residues have not been found on harvested fruit. Antibiotics have been indispensable for crop protection in the United States for more than 50 years without reports of adverse effects on human health or persistent impacts on the environment.

  14. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  15. Paths for World-Class Universities in Agricultural Science

    ERIC Educational Resources Information Center

    Liu, Zhimin; Kipchumba, Simon Kibet; Liu, Lu

    2016-01-01

    The top-ranking world-class universities in agricultural science denote those universities which are globally popular with agriculture-related subjects. The paper synthesizes the results of three different ranking scales (NTU, QS and ARWU) of top 50 universities in agriculture subject in 2013. The overlapped parts have been synchronized to derive…

  16. Biotechnology: An Assessment of Agricultural Science Teachers' Knowledge and Attitudes

    ERIC Educational Resources Information Center

    Mowen, Diana L.; Roberts, T. Grady; Wingenbach, Gary J.; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to explore agricultural science teachers' knowledge levels and attitudes toward biotechnology topics. The average agricultural science teacher in this study was a 37-year-old male who had taught for 12 years. He had a bachelor's degree and had lived or worked on a farm or ranch. He had not attended…

  17. Texas Agricultural Science Teachers' Attitudes toward Information Technology

    ERIC Educational Resources Information Center

    Anderson, Ryan; Williams, Robert

    2012-01-01

    The researchers sought to find the Agricultural Science teachers' attitude toward five innovations (Computer-Aided Design, Record Books, E-Mail Career Development Event Registration, and World Wide Web) of information technology. The population for this study consisted of all 333 secondary Agricultural science teachers from Texas FFA Areas V and…

  18. Agricultural Science and Mechanics I and II. An Instructional Guide for Agricultural Education. Revised.

    ERIC Educational Resources Information Center

    Virginia Polytechnic Inst. and State Univ., Blacksburg. Agricultural Education Program.

    This instructional guide contains guidelines and course outlines for a two- and three-year course in agricultural science and mechanics for students in grades 8, 9, and 10. Provided in the first 4 sections are course outlines for Agricultural Science and Mechanics I and II and references for use in each course. Each course outline contains an…

  19. Globalizing Agricultural Science and Education Programs for America.

    ERIC Educational Resources Information Center

    National Association of State Universities and Land Grant Colleges, Washington, DC.

    This document proposes an agenda for globalizing agricultural science and education which has implications for higher education, research, and extension programs at land-grant and similar universities. To enhance global competitiveness of U.S. agriculture through human resource development, institutions are urged to: globalize undergraduate and…

  20. Agricultural Science Fairs: Are Students Truly Learning from This Activity?

    ERIC Educational Resources Information Center

    Boleman, C. T.; Burrell, F., Jr.

    2003-01-01

    A pretest/posttest administered to 480 fourth-graders revealed an increase in correct responses for 9 of 10 questions following participation in an agricultural science fair. Significant increases were related to knowledge of how agriculture affects everyday life. A teacher survey (n=89) indicated that it was a positive learning experience but…

  1. Barriers, Support, and Collaboration: A Comparison of Science and Agriculture Teachers' Perceptions regarding Integration of Science into the Agricultural Education Curriculum

    ERIC Educational Resources Information Center

    Warnick, Brian K.; Thompson, Gregory W.

    2007-01-01

    This study is part of a larger investigation which focused on determining and comparing the perceptions of agriculture teachers and science teachers on integrating science into agricultural education programs. Science and agriculture teachers' perceptions of barriers to integrating science, the support of stakeholders, and collaboration between…

  2. Agricultural Education Science Activity--Nos. AS 1-4.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Agricultural Curriculum Materials Service.

    This packet contains four science learning activities on the subject of animal science that can be used in agricultural education courses. The activities cover these topics: (1) identifying internal parasites in domestic livestock; (2) the effect of feed preparation on feed palatability and consumption; (3) determining the absorption abilities of…

  3. Social Science Research on Biotechnology and Agriculture: A Critique.

    ERIC Educational Resources Information Center

    Buttel, Frederick H.

    1989-01-01

    Examines trends in social science research on biotechnology and agriculture. Discusses role of private industry's biotechnology "hype" in defining social science research policy in universities. Suggests that widespread promotion of biotechnology as "revolutionary" contributed to lack of academic scrutiny. Examines social…

  4. Increasing Knowledge in Social Science Among Agricultural Educators. Final Report.

    ERIC Educational Resources Information Center

    Jones, Joseph H., Jr.; And Others

    Social science concepts are presented as related parts of a systematic approach to understanding and predicting human behavior and implementing programs. This monograph was developed to improve the effectiveness of the change agent in agricultural education by increasing his knowledge in the area of social sciences relating to initiating and…

  5. The regulation of agricultural biotechnology: science shows a better way.

    PubMed

    Miller, Henry I

    2010-11-30

    National and international regulation of recombinant DNA-modified, or 'genetically engineered' (also referred to as 'genetically modified' or GM), organisms is unscientific and illogical, a lamentable illustration of the maxim that bad science makes bad law. Instead of regulatory scrutiny that is proportional to risk, the degree of oversight is actually inversely proportional to risk. The current approach to regulation, which captures for case-by-case review organisms to be field tested or commercialized according to the techniques used to construct them rather than their properties, flies in the face of scientific consensus. This approach has been costly in terms of economic losses and human suffering. The poorest of the poor have suffered the most because of hugely inflated development costs of genetically engineered plants and food. A model for regulation of field trials known as the 'Stanford Model' is designed to assess risks of new agricultural introductions - whether or not the organisms are genetically engineered, and independent of the genetic modification techniques employed. It offers a scientific, rational, risk-based basis for field trial regulations. Using this sort of model for regulatory review would not only better protect human health and the environment, but would also permit more expeditious development and more widespread use of new plants and seeds.

  6. Medicinal - Agricultural science in Vedic literature.

    PubMed

    Jakhmola, R K

    2012-01-01

    It is crystal clear from critical analysis of Vedic period literature that the man at that time was highly civilized, well educated and had developed adaptation with the nature. Man had established social, economic and political systems and he was aware that all the Dravyas on the earth have medicinal values and they may give results for physical and mental well being if utilized after research as per classics. In Vedas 3 types of medicinal Dravyas are discussed viz Khanija, Vanaspatika, Pranija which are discussed in Charaka Samhita and Sushruta Samhita in terms of Jangala, Oudbidha, Partheeva. Since ancient times with growth in population, agricultural profession also got encouragement resulting in highly developed resources, contamination free soil with its classification, soil types, rain, season and importance of time etc. had given due importance from agriculture point of view. Man had successfully understood the importance of agriculture for production of grain and medicinal herbs. Thus in this sector number of researches were carried out in Vedic period resulting in co-operation between natural resources, various resources related to agricultural profession, different types of methods for cultivation, preservation of grains and medicinal herbs, methods to improve production etc. were researched scientifically.

  7. Medicinal - Agricultural science in Vedic literature

    PubMed Central

    Jakhmola, R. K.

    2012-01-01

    It is crystal clear from critical analysis of Vedic period literature that the man at that time was highly civilized, well educated and had developed adaptation with the nature. Man had established social, economic and political systems and he was aware that all the Dravyas on the earth have medicinal values and they may give results for physical and mental well being if utilized after research as per classics. In Vedas 3 types of medicinal Dravyas are discussed viz Khanija, Vanaspatika, Pranija which are discussed in Charaka Samhita and Sushruta Samhita in terms of Jangala, Oudbidha, Partheeva. Since ancient times with growth in population, agricultural profession also got encouragement resulting in highly developed resources, contamination free soil with its classification, soil types, rain, season and importance of time etc. had given due importance from agriculture point of view. Man had successfully understood the importance of agriculture for production of grain and medicinal herbs. Thus in this sector number of researches were carried out in Vedic period resulting in co-operation between natural resources, various resources related to agricultural profession, different types of methods for cultivation, preservation of grains and medicinal herbs, methods to improve production etc. were researched scientifically. PMID:23049203

  8. Agricultural Science I. Supplementary Units. Instructor Information.

    ERIC Educational Resources Information Center

    Martin, Donna; And Others

    These supplementary units are designed to help students with special needs learn and apply agricultural skills in the areas of animal breeding, animal nutrition, leadership, and power tools. Specific competencies are listed as study questions at the beginning of each of the 10 self-paced and self-contained units. Skill sheets, activity sheets, and…

  9. Asexual Plant Reproduction. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    These lesson plans are intended for use in conducting classes on asexual plant reproduction. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about asexual plant reproduction/propagation. The following topics are among those discussed: plant reproduction methods,…

  10. Speaking of food: connecting basic and applied plant science.

    PubMed

    Gross, Briana L; Kellogg, Elizabeth A; Miller, Allison J

    2014-10-01

    The Food and Agriculture Organization (FAO) predicts that food production must rise 70% over the next 40 years to meet the demands of a growing population that is expected to reach nine billion by the year 2050. Many facets of basic plant science promoted by the Botanical Society of America are important for agriculture; however, more explicit connections are needed to bridge the gap between basic and applied plant research. This special issue, Speaking of Food: Connecting Basic and Applied Plant Science, was conceived to showcase productive overlaps of basic and applied research to address the challenges posed by feeding billions of people and to stimulate more research, fresh connections, and new paradigms. Contributions to this special issue thus illustrate some interactive areas of study in plant science-historical and modern plant-human interaction, crop and weed origins and evolution, and the effects of natural and artificial selection on crops and their wild relatives. These papers provide examples of how research integrating the basic and applied aspects of plant science benefits the pursuit of knowledge and the translation of that knowledge into actions toward sustainable production of crops and conservation of diversity in a changing climate.

  11. Sexual Plant Reproduction. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    These lesson plans are intended for use in conducting classes on sexual plant reproduction. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about sexual plant reproduction/propagation. The following topics are among those discussed: sexual and asexual plant…

  12. Agricultural Plant Pest Control. Bulletin 763.

    ERIC Educational Resources Information Center

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  13. Lunar base agriculture: Soils for plant growth

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Editor); Henninger, Donald L. (Editor)

    1989-01-01

    This work provides information on research and experimentation concerning various aspects of food production in space and particularly on the moon. Options for human settlement of the moon and Mars and strategies for a lunar base are discussed. The lunar environment, including the mineralogical and chemical properties of lunar regolith are investigated and chemical and physical considerations for a lunar-derived soil are considered. It is noted that biological considerations for such a soil include controlled-environment crop production, both hydroponic and lunar regolith-based; microorganisms and the growth of higher plants in lunar-derived soils; and the role of microbes to condition lunar regolith for plant cultivation. Current research in the controlled ecological life support system (CELSS) project is presented in detail and future research areas, such as the growth of higher research plants in CELSS are considered. Optimum plant and microbiological considerations for lunar derived soils are examined.

  14. Environmental and Agricultural Sciences. Georgia Core Standards for Occupational Clusters.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Occupational Studies.

    This document lists core standards and occupational knowledge amd skills that have been identified/validated by industry as necessary to all Georgia students in secondary-level environmental and agricultural sciences programs. First, foundation skills are grouped as follows: basic skills (reading, writing, arithmetic/mathematics, listening,…

  15. Agricultural Education Science Activity--Nos. SS 2-4.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Agricultural Curriculum Materials Service.

    This packet contains three science learning activities that can be used in agricultural education courses. The activities cover these topics: (1) determining the effects of soil particle size on capillary action; (2) measuring levels of eroded soil particles in streams; and (3) determining the effects of soil cover and texture on surface erosion.…

  16. Agricultural Science Lab Activities. Instructor Guide. Volume 27, Number 2.

    ERIC Educational Resources Information Center

    Thompson, Gregory W.; And Others

    This instructor guide contains 20 laboratory activities for grades 9-10 Agricultural Science I-II classes. The activities are cross-referenced to Missouri Core Competencies and Key Skills. The activities are organized into the following areas: introductory (microscope use); animal nutrition (absorption of nutrients, bacteria and disease, enzyme…

  17. Rhetorical Structure of Research Articles in Agricultural Science

    ERIC Educational Resources Information Center

    Shi, Huimin; Wannaruk, Anchalee

    2014-01-01

    Although the rhetorical structure of research articles (RA) has been extensively examined from individual sections to complete IMRD sections regarding different disciplines, no research has been addressed to the overall rhetorical structure of RAs as a whole entity in the field of agricultural science. In this study, we analyzed 45 agricultural…

  18. Agricultural Education Science Activity--Nos. AEM 1-4.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Agricultural Curriculum Materials Service.

    This packet contains four science learning activities that can be used in agricultural education courses. The activities cover these topics: (1) determining the effect of air pressure on fluid flow; (2) how lubrication and oil viscosity affect friction; (3) determining relative strengths of wood fasteners; and (4) determining the effects of…

  19. Workshop on Agricultural Air Quality: State of the science

    NASA Astrophysics Data System (ADS)

    Aneja, Viney P.; Blunden, Jessica; Roelle, Paul A.; Schlesinger, William H.; Knighton, Raymond; Niyogi, Dev; Gilliam, Wendell; Jennings, Greg; Duke, Clifford S.

    The first Workshop on Agricultural Air Quality: State of the Science was held at the Bolger Center in Potomac, Maryland from 4 to 8 June 2006. This international conference assembled approximately 350 people representing 25 nations from 5 continents, with disciplines ranging from atmospheric chemistry to soil science. The workshop was designed as an open forum in which participants could openly exchange the most current knowledge and learn about numerous international perspectives regarding agricultural air quality. Participants represented many stakeholder groups concerned with the growing need to assess agricultural impacts on the atmosphere and to develop beneficial policies to improve air quality. The workshop focused on identifying methods to improve emissions inventories and best management practices for agriculture. Workshop participants also made recommendations for technological and methodological improvements in current emissions measurement and modeling practices. The workshop commenced with a session on agricultural emissions and was followed by international perspectives from the United States, Europe, Australia, India, and South America. This paper summarizes the findings and issues of the workshop and articulates future research needs. These needs were identified in three general areas: (1) improvement of emissions measurement; (2) development of appropriate emission factors; and (3) implementation of best management practices (BMPs) to minimize negative environmental impacts. Improvements in the appropriate measurements will inform decisions regarding US farming practices. A need was demonstrated for a national/international network to monitor atmospheric emissions from agriculture and their subsequent depositions to surrounding areas. Information collected through such a program may be used to assess model performance and could be critical for evaluating any future regulatory policies or BMPs. The workshop concluded that efforts to maximize

  20. Plant gnotobiology: Epiphytic microbes and sustainable agriculture.

    PubMed

    Kutschera, Ulrich; Khanna, Rajnish

    2016-12-01

    In 1963, a monograph by Thomas D. Luckey entitled Germfree Life and Gnotobiology was published, with a focus on animals treated with microbes and reference to the work of Louis Pasteur (1822-1895). Here, we review the history and current status of plant gnotobiology, which can be traced back to the experiments of Jean-Baptiste Boussingault (1801-1887) published in 1838. Since the outer surfaces of typical land plants are much larger than their internal areas, embryophytes "wear their guts on the outside." We describe the principles of gnotobiological analyses, with reference to epiphytic metylobacteria, and sunflower (Helianthus annuus) as well as Arabidopsis as model dicots. Finally, a Californian field experiment aiming to improve crop yield in strawberries (Fragaria ananassa) is described to document the practical value of this novel research agenda.

  1. Research priorities for harnessing plant microbiomes in sustainable agriculture

    PubMed Central

    Soman, Chinmay; Wagner, Maggie R.; Friesen, Maren L.; Kremer, James; Bennett, Alison; Morsy, Mustafa; Eisen, Jonathan A.; Leach, Jan E.; Dangl, Jeffery L.

    2017-01-01

    Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes—i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance—into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host–microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply. PMID:28350798

  2. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture.

    PubMed

    Bhattacharyya, P N; Jha, D K

    2012-04-01

    Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The potentiality of PGPR in agriculture is steadily increased as it offers an attractive way to replace the use of chemical fertilizers, pesticides and other supplements. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. Recent progress in our understanding on the diversity of PGPR in the rhizosphere along with their colonization ability and mechanism of action should facilitate their application as a reliable component in the management of sustainable agricultural system. The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.

  3. An Instrumental Case Study of Effective Science Integration in a Traditional Agricultural Education Program

    ERIC Educational Resources Information Center

    Baker, Marshall A.; Bunch, J. C.; Kelsey, Kathleen D.

    2015-01-01

    The integration of science and agriculture has been discussed since the inception of agricultural education. However, the standards-based focus in public secondary education and changing climate of agriculture has brought science integration back to the forefront. Though research has indicated that the integration of science into agricultural…

  4. Stress Levels of Agricultural Science Cooperating Teachers and Student Teachers: A Repeated Measures Comparative Assessment

    ERIC Educational Resources Information Center

    McKim, Billy R.; Rayfield, John; Harlin, Julie; Adams, Andy

    2013-01-01

    This study compared job stress levels of Texas agricultural science cooperating teachers and Texas agricultural science student teachers across a semester. The research objectives included describing secondary agricultural science cooperating teachers and student teachers perceptions of stressors, by time of semester (beginning, middle, and end),…

  5. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    PubMed

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens.

  6. Science at Hampton Normal and Agricultural Institute, 1868-1893

    NASA Astrophysics Data System (ADS)

    Tucker, Linda Bart

    Science had a variety of uses at Hampton Normal and Agricultural Institute, a private, missionary school supported by northern whites and Virginia's black land grant school from 1872 to 1920. Samuel Chapman Armstrong, principal for the first twenty-five years (1868-1893), advocated not classical but scientific studies, primarily as applied science to improve lives and "civilize" blacks and Indians. Agriculture and mechanics were practiced in Hampton's industries, where students worked their way through school. They were organized for production rather than instruction, though Armstrong claimed that labor had a moral value and that practical experience was valuable learning. In contrast to works by James D. Anderson and Donald Spivey, this study stresses the pragmatic, business purposes of Hampton's industries rather than any ideological agenda. Problems with providing specialized facilities, apparatus, and teachers made it difficult for Hampton to provide rigorous, graded science instruction. Students learned of practical applications of science in agricultural lectures and in such classes as physiology. However, the curriculum was designed for teacher training, using broad, elementary science for general knowledge, to train minds, and to make adult remedial language lessons more effective. Not surprisingly, very few graduates pursued careers which required more than general science studies. Besides the utilitarian and disciplinary purposes, Hampton used science to discourage superstitious ideas in religion. Armstrong also argued for racially distinctive education for blacks and Indians on the basis of scientific ideas about cultural evolution and inheritance of the experience of past generations. In practice, however, Hampton teachers adapted mainstream tools and methods of instruction. Not all teachers shared Armstrong's racial views, and several demonstrated concern for students, confidence in their ability, and professional interest in advancing them as

  7. Cytogenetic changes induced by aqueous ferrofluids in agricultural plants

    NASA Astrophysics Data System (ADS)

    Răcuciu, Mihaela; Creangă, Dorina

    2007-04-01

    In this paper, the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of agricultural plants when cultivated in the presence of different concentrations of aqueous ferrofluid, ranging between 10 and 250 μL/L. The agricultural species ( Zea mays) with a major role in the life of people was chosen for the experimental project. The water-based ferrofluid was prepared following the chemical co-precipitation method, using tetramethylammonium hydroxide as magnetite core stabilizer. Microscopic investigations (cytogenetic tests) resulted in the evaluation of the mitotic and chromosomal aberration index. They appeared to increase following ferrofluid addition.

  8. Plant genetics, sustainable agriculture and global food security.

    PubMed

    Ronald, Pamela

    2011-05-01

    The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant-environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts-the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems.

  9. Toward Martian agriculture: responses of plants to hypobaria

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.; Barta, Daniel J.; Wheeler, Raymond M.

    2002-01-01

    The recent surge of interest in human missions to Mars has also generated considerable interest in the responses of plants to hypobaria (reduced atmospheric pressure), particularly among those in the advanced life support community. Potential for in situ resource utilization, challenges in meeting engineering constraints for mass and energy, the prospect of using lightweight plant growth structures on Mars, and the minimal literature on plant responses to low pressure all suggest much needed research in this area. However, the limited literature on hypobaria combined with previous findings on plant responses to atmospheric composition and established principles of mass transfer of gases suggest that some plants will be capable of tolerating and growing at pressures below 20 kPa; and for other species, perhaps as low as 5-10 kPa. In addition, normal and perhaps enhanced growth of many plants will likely occur at reduced partial pressures of oxygen (e.g., 5 kPa). Growth of plants at such low and partial pressures indicates the feasibility of cultivating plants in lightweight, transparent "greenhouses" on the surface of Mars or in other extraterrestrial or extreme environment locations. There are numerous, accessible terrestrial analogs for moderately low pressure ranges, but not for very low and extremely low atmospheric pressures. Research pertaining to very low pressures has been historically restricted to the use of vacuum chambers. Future research prospects, approaches, and priorities for plant growth experiments at low pressure are considered and discussed as they apply to prospects for Martian agriculture.

  10. Suppression of plant parasitic nematodes in the chinampa agricultural soils.

    PubMed

    Zuckerman, B M; Dicklow, M B; Coles, G C; Garcia-E, R; Marban-Mendoza, N

    1989-06-01

    Soil from the chinampa agricultural system in the Valley of Mexico suppressed damage by plant-parasitic nematodes to tomatoes and beans in greenhouse and growth chamber trials. Sterilization of the chinampa soil resulted in a loss of the suppressive effect, thereby indicating that one or more biotic factors were responsible for the low incidence of nematode damage. Nine organisms were isolated from chinampa soil, which showed antinematodal properties in culture. Naturally occurring populations of plant-parasitic nematodes were of lower incidence in chinampa soil than in Chapingo soil.

  11. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here.

  12. Plant Genetics, Sustainable Agriculture and Global Food Security

    PubMed Central

    Ronald, Pamela

    2011-01-01

    The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant–environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts—the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems. PMID:21546547

  13. Ontologies as integrative tools for plant science

    PubMed Central

    Walls, Ramona L.; Athreya, Balaji; Cooper, Laurel; Elser, Justin; Gandolfo, Maria A.; Jaiswal, Pankaj; Mungall, Christopher J.; Preece, Justin; Rensing, Stefan; Smith, Barry; Stevenson, Dennis W.

    2012-01-01

    Premise of the study Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the semantic web. Methods This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to plant science, with a detailed description of the Plant Ontology (PO). We discuss the challenges of building an ontology that covers all green plants (Viridiplantae). Key results Ontologies can advance plant science in four keys areas: (1) comparative genetics, genomics, phenomics, and development; (2) taxonomy and systematics; (3) semantic applications; and (4) education. Conclusions Bio-ontologies offer a flexible framework for comparative plant biology, based on common botanical understanding. As genomic and phenomic data become available for more species, we anticipate that the annotation of data with ontology terms will become less centralized, while at the same time, the need for cross-species queries will become more common, causing more researchers in plant science to turn to ontologies. PMID:22847540

  14. Metaproteome analysis of the microbial communities in agricultural biogas plants.

    PubMed

    Heyer, R; Kohrs, F; Benndorf, D; Rapp, E; Kausmann, R; Heiermann, M; Klocke, M; Reichl, U

    2013-09-25

    In biogas plants agricultural waste and energy crops are converted by complex microbial communities to methane for the production of renewable energy. In Germany, this process is widely applied namely in context of agricultural production systems. However, process disturbances, are one of the major causes for economic losses. In addition, the conversion of biomass, in particular of cellulose, is in most cases incomplete and, hence, insufficient. Besides technical aspects, a more profound characterization concerning the functionality of the microbial communities involved would strongly support the improvement of yield and stability in biogas production. To monitor these communities on the functional level, metaproteome analysis was applied in this study to full-scale agricultural biogas plants. Proteins were extracted directly from sludge for separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and subsequent identification with mass spectrometry. Protein profiles obtained with SDS-PAGE were specific for different biogas plants and often stable for several months. Differences of protein profiles were visualized by clustering, which allowed not only the discrimination between mesophilic and thermophilic operated biogas plants but also the detection of process disturbances such as acidification. In particular, acidification of a biogas plant was detected in advance by disappearance of major bands in SDS-PAGE. Identification of proteins from SDS-PAGE gels revealed that methyl CoM reductase, which is responsible for the release of methane during methanogenesis, from the order Methanosarcinales was significantly decreased. Hence, it is assumed that this enzyme might be a promising candidate to serve as a predictive biomarker for acidification.

  15. Assessing health in agriculture--towards a common research framework for soils, plants, animals, humans and ecosystems.

    PubMed

    Vieweger, Anja; Döring, Thomas F

    2015-02-01

    In agriculture and food systems, health-related research includes a vast diversity of topics. Nutritional, toxicological, pharmacological, epidemiological, behavioural, sociological, economic and political methods are used to study health in the five domains of soils, plants, livestock, humans and ecosystems. An idea developed in the early founding days of organic agriculture stated that the health of all domains is one and indivisible. Here we show that recent research reveals the existence and complex nature of such health links among domains. However, studies of health aspects in agriculture are often separated by disciplinary boundaries. This restrains the understanding of health in agricultural systems. Therefore we explore the opportunities and limitations of bringing perspectives together from the different domains. We review current approaches to define and assess health in agricultural contexts, comparing the state of the art of commonly used approaches and bringing together the presently disconnected debates in soil science, plant science, veterinary science and human medicine. Based on a qualitative literature analysis, we suggest that many health criteria fall into two paradigms: (1) the Growth Paradigm, where terms are primarily oriented towards continued growth; (2) the Boundary Paradigm, where terms focus on maintaining or coming back to a status quo, recognising system boundaries. Scientific health assessments in agricultural and food systems need to be explicit in terms of their position on the continuum between Growth Paradigm and Boundary Paradigm. Finally, we identify areas and concepts for a future direction of health assessment and research in agricultural and food systems.

  16. Are Teachers Ready to Integrate Science Concepts into Secondary Agriculture Programs?

    ERIC Educational Resources Information Center

    Scales, Jason; Terry, Robert, Jr.; Torres, Robert M.

    2009-01-01

    For the past two decades, the idea of integrating more science concepts into the secondary agriculture curriculum has gained support. The purpose of this study was to assess the confidence and competence of agriculture instructors to teach concepts related to science. The sample was derived from the population of agriculture instructors teaching…

  17. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  18. Current challenges and future perspectives of plant and agricultural biotechnology.

    PubMed

    Moshelion, Menachem; Altman, Arie

    2015-06-01

    Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture.

  19. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate...

  20. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate...

  1. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate...

  2. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate...

  3. Science Credit for Agriculture: Relationship between Perceived Effects and Teacher Support.

    ERIC Educational Resources Information Center

    Johnson, Donald M.

    1996-01-01

    Responses from 213 of 259 Arkansas agriculture teachers demonstrate strong support for granting science credit for agriculture. The most powerful predictors of support were perception of student benefits, enhancement of agriculture's status, and no adverse impact on existing agriculture programs. (SK)

  4. Agriculture's Role in K-12 Education: Proceedings of a Forum on the National Science Education Standards.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Board on Agriculture.

    The Board on Agriculture organized a Forum on Agriculture's Role in K-12 Education to provide an opportunity for agricultural professional societies to explore ways in which examples from agriculture, food, and environment systems can be used to enhance inquiry-based science education. Participants discussed how professional societies could…

  5. Science Experience Unit: Plant and Animal Adaptations.

    ERIC Educational Resources Information Center

    Ferguson-Florissant School District, Ferguson, MO.

    GRADES OR AGES: No mention. Appears to be upper elementary. SUBJECT MATTER: Science units--plants and animals. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 35 activities. It is mimeographed and staple-bound with a paper cover. OBJECTIVES AND ACTIVITIES: No objectives are mentioned. The activities suggested aim to recreate common…

  6. Science and agriculture policy at Land-Grant Institutions.

    PubMed

    Westendorf, M L; Zimbelman, R G; Pray, C E

    1995-06-01

    United States Department of Agriculture (USDA) funding of science and education at Land-Grant College institutions is in transition. The traditional "science pipeline" model linking basic science funding with the application of technology is in question as some policymakers dispute the premise that non-directed science results in benefits to society. Historically, research at USDA and Land-Grant institutions is much more directed than that funded by the National Science Foundation (NSF), National Institutes of Health (NIH), or Department of Energy (DOE). Nevertheless, there are calls for change at the USDA as well. An approach that both the Congress and the Executive branch are taking seeks to direct research dollars according to predetermined goals. This is being emphasized in part due to budget pressures and may force the system to struggle maintaining funding in constant dollars. Deficit cutters are first considering cutting "earmarked grants" for research and facilities at USDA and Land Grant Institutions. Savings in these categories may help to support modest increases in formula funding and competitive grants. Earmarked grants for research and facilities at the Cooperative State Research Service (CSRS) for Fiscal Year 1993 were approximately 26% of total appropriations and distributed to well over 100 specific line items. This level has increased from approximately 15% of CSRS appropriations in 1985. At the same time formula funding has remained static and competitive grants, although increasing, are below authorized levels. As state and federal budgets face pressure and as concerns from consumer and environmental groups are encountered, balancing the percentage of research dollars devoted to research intended to increase production efficiency and the percentage devoted to meeting concerns about food safety, pesticides, water quality, sustainability, animal welfare, and so on will be a challenge. Linking research priorities with producer and consumer needs

  7. The integrated web service and genome database for agricultural plants with biotechnology information.

    PubMed

    Kim, Changkug; Park, Dongsuk; Seol, Youngjoo; Hahn, Jangho

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage.

  8. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  9. Scaling Plant Phenology in Citizen Science Programs

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Richardson, A. D.; Kosmala, M.; Ward, D.; Bevington, K.

    2015-12-01

    In the past decade, there has been increasing interest in exploring phenology as a way to better understand how the natural world is responding to changing climates. Concurrently, there has been rapid growth in the collection and analysis of data by non-experts. So called 'citizen scientists' are collecting and analyzing data at unprecedented rates on a variety of topics including plant phenology. Through the development of online programs and activities, citizen science data is being collected at spatial and temporal scales that were previously not possible. Citizen science data vastly exceeds what scientists or land managers can collect or analyze on their own. As such, it provides opportunities for scaling both in terms of data collection and analysis. This presentation will focus on two plant phenology projects that involve citizen scientists in the data life cycle at different scales - Project BudBurst which is based on the collection of ground observations and Season Spotter which is based on the classification of remotely sensed landscape imagery. NEON's Project BudBurst (budburst.org) is a national citizen science program focused on the collection of observations of the timing of leafing, flowering, and fruiting in hundreds of plant species. The PhenoCam Network's Season Spotter (seasonspotter.org) engages individuals in the classification and annotation of a variety of vegetated landscape images via a new platform on Zooniverse. Citizen Science contributions to plant phenology are proving to be an invaluable tool that can be used to both validate existing and support development of new methods to extract phenology information from remotely sensed imagery including PhenoCam and satellite sources. This presentation will compare and contrast the contribution made to the study of plant phenology at multiple scales - ground observation data of individual plants and classification and annotation of data collected through a network do automated digital cameras.

  10. Global hunger: a challenge to agricultural, food, and nutritional sciences.

    PubMed

    Wu, Shiuan-Huei; Ho, Chi-Tang; Nah, Sui-Lin; Chau, Chi-Fai

    2014-01-01

    Hunger has been a concern for generations and has continued to plague hundreds of millions of people around the world. Although many efforts have been devoted to reduce hunger, challenges such as growing competitions for natural resources, emerging climate changes and natural disasters, poverty, illiteracy, and diseases are posing threats to food security and intensifying the hunger crisis. Concerted efforts of scientists to improve agricultural and food productivity, technology, nutrition, and education are imperative to facilitate appropriate strategies for defeating hunger and malnutrition. This paper provides some aspects of world hunger issues and summarizes the efforts and measures aimed to alleviate food problems from the food and nutritional sciences perspectives. The prospects and constraints of some implemented strategies for alleviating hunger and achieving sustainable food security are also discussed. This comprehensive information source could provide insights into the development of a complementary framework for dealing with the global hunger issue.

  11. Port wine landscape: railroads, phylloxera, and agricultural science.

    PubMed

    Macedo, Marta

    2011-01-01

    It is easy to understand why regions that produce very fine goods such as port wine tend to conceal technological and scientific inputs and praise the uniqueness of the terroir. This paper suggests that, during the last decades of the nineteenth century, viticulture in the Douro region of Portugal was as much a product of soil, local farming traditions, and individual entrepreneurship as it was of modern state science and national politics for agricultural improvement. the unprecedented public projects of building a railroad and fighting phylloxera permanently changed the land of port wine. Moreover, those engineering practices of rationalization, simplification, and standardization that were inscribed on Douro's landscape proved essential for the Portuguese experience of modernization and nation-building.

  12. Plant-Parasitic Nematodes in Maine Agricultural Soils

    PubMed Central

    Huettel, W N.; Francl, L. J.; Henn, A.; Bourgoin, T.

    1990-01-01

    In a survey of plant-parasitic nematodes associated with agricultural crops in nine Maine counties, 744 soil samples from 26 potential host plants were analyzed between November 1987 and January 1989. The most commonly encountered nematode genus was Pratylenchus, occurring in 85% of the samples from most crops, except blueberries and onions. Pratylenchus penetrans and P. crenatus were found commonly as species mixtures, with P. penetrans composing 40-80% of the mixture. Meloidogyne hapla was encountered in 16% of the samples in four counties, generally in potato rotations. Other nematodes encountered were Aphelenchoides spp., Criconemella curvature, Ditylenchus spp., Helicotylenchus pseudorobustus, H. digonicus, Heterodera trifolii, Paratylenchus projectus, Trichodorus spp., Tylenchorhynchus maximus, and Xiphinema americanum. Potato fields were the most heavily sampled and thus weighted the statewide results. PMID:19287791

  13. Role of transgenic plants in agriculture and biopharming.

    PubMed

    Ahmad, Parvaiz; Ashraf, Muhammad; Younis, Muhammad; Hu, Xiangyang; Kumar, Ashwani; Akram, Nudrat Aisha; Al-Qurainy, F

    2012-01-01

    At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role

  14. Operational results of an agricultural biogas plant equipped with modern instrumentation and automation.

    PubMed

    Wiese, J; Kujawski, O

    2008-01-01

    Agricultural biogas plants based on energy crops gain more and more importance because of numerous energetic, environmental and agricultural benefits. In contrast to older biogas plants, the newest generation of biogas plants is equipped with modern ICA equipment and reliable machines/engines. In this paper, the authors present technical details and operational results of a modern full-scale agricultural biogas plant using energy crops.

  15. The Gatsby Plant Science Summer School: Inspiring the Next Generation of Plant Science Researchers[OA

    PubMed Central

    Levesley, Aurora; Jopson, Juliet; Knight, Celia

    2012-01-01

    We provide evidence from a 5-year study to show that a single concerted effort at the start of undergraduate study can have a clear and lasting effect on the attitudes of students toward plant science. Attendance at a week-long residential plant science summer school in the first year of an undergraduate degree resulted in many students changing courses to include more plant science and increased numbers of graduates selecting plant-based PhDs. The evidence shows that the Gatsby Plant Science Summer School has increased the pool of high-quality plant science related PhD applicants in the UK and has had a positive impact on students’ career aspirations. The results are discussed within the context of enhancing the pipeline of future plant scientists and reversing the decline of this vulnerable and strategically important subject relevant to addressing food security and other major global challenges. We have shown that a single well-designed and timely intervention can influence future student behavior and as such offers a framework of potential use to other vulnerable disciplines. PMID:22534129

  16. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Food and agricultural sciences areas targeted for..., AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS... sciences areas targeted for National Needs Graduate and Postdoctoral Fellowship Grants Program...

  17. Agriculture in the developing world: Connecting innovations in plant research to downstream applications

    PubMed Central

    Delmer, Deborah P.

    2005-01-01

    Enhancing agricultural productivity in those areas of the world bypassed by the Green Revolution will require new approaches that provide incentives and funding mechanisms that promote the translation of new innovations in plant science into concrete benefits for poor farmers. Through better dialogue, plant breeders and laboratory scientists from both the public and private-sectors need to find solutions for the key constraints to crop production, many of which center around abiotic and biotic stresses. The revolution in plant genomics has opened up new perspectives and opportunities for plant breeders who can now apply molecular markers to assess and enhance diversity in their germplasm collections, to introgress valuable traits from new sources, and to identify genes that control key traits. Functional genomics is also providing another powerful route to the identification of such genes. The ability to introgress beneficial genes under the control of specific promoters through transgenic approaches is yet one more stepping stone in the path to targeted approaches to crop improvement, and the new sciences have identified a vast array of genes that have exciting potential for crop improvement. For a few crops with viable markets, such as maize and cotton, some of the traits developed by the private sector are already showing benefits for farmers of the developing world, but the public sector will need to develop new skills and overcome a number of hurdles to carry out similar efforts for other crops and traits useful to very poor farmers. PMID:16263937

  18. Attitudes, Educational, and Career Choices of Food and Agricultural Sciences Institute Participants

    ERIC Educational Resources Information Center

    Faulkner, Paula E.; Baggett, Connie D.; Bowen, Cathy F.; Bowen, Blannie E.

    2009-01-01

    Ethnic minority students traditionally pursue degrees and careers in the food and agricultural sciences at rates lower than their non-minority counterparts. To help improve upon this situation, the Food and Agricultural Sciences Institute (FASI) was created to expose academically talented high school students to opportunities within the food and…

  19. Test Item Construction and Validation: Developing a Statewide Assessment for Agricultural Science Education

    ERIC Educational Resources Information Center

    Rivera, Jennifer E.

    2011-01-01

    The State of New York Agriculture Science Education secondary program is required to have a certification exam for students to assess their agriculture science education experience as a Regent's requirement towards graduation. This paper focuses on the procedure used to develop and validate two content sub-test questions within a…

  20. Adoption of Information and Communication Technologies (ICTs) by Agricultural Science and Extension Teachers in Abuja, Nigeria

    ERIC Educational Resources Information Center

    Alabi, Olugbenga Omotayo

    2016-01-01

    This study examined adoption of Information and Communication Technologies (ICTs) by agricultural science and extension teachers in Abuja, Nigeria. Specifically, the objectives are to: identify the background and demographic characteristics of agricultural science and extension teachers in the study area; examine the factors influencing adoption…

  1. Examining iPod Use by Texas Agricultural Science and Technology Teachers

    ERIC Educational Resources Information Center

    Murphrey, Theresa Pesl; Miller, Kimberly A.; Roberts, T. Grady

    2009-01-01

    The purpose of this study was to establish baseline data regarding the adoption of iPods and similar technologies by agricultural science and technology teachers. The population consisted of all agricultural science and technology teachers in Texas. A sample of 310 was randomly drawn from the population. Study findings reveal that while…

  2. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture

    PubMed Central

    Masclaux-Daubresse, Céline; Daniel-Vedele, Françoise; Dechorgnat, Julie; Chardon, Fabien; Gaufichon, Laure; Suzuki, Akira

    2010-01-01

    Background Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. Scope An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. Conclusions This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising. PMID:20299346

  3. Plant-pathogen interactions: disease resistance in modern agriculture.

    PubMed

    Boyd, Lesley A; Ridout, Christopher; O'Sullivan, Donal M; Leach, Jan E; Leung, Hei

    2013-04-01

    The growing human population will require a significant increase in agricultural production. This challenge is made more difficult by the fact that changes in the climatic and environmental conditions under which crops are grown have resulted in the appearance of new diseases, whereas genetic changes within the pathogen have resulted in the loss of previously effective sources of resistance. To help meet this challenge, advanced genetic and statistical methods of analysis have been used to identify new resistance genes through global screens, and studies of plant-pathogen interactions have been undertaken to uncover the mechanisms by which disease resistance is achieved. The informed deployment of major, race-specific and partial, race-nonspecific resistance, either by conventional breeding or transgenic approaches, will enable the production of crop varieties with effective resistance without impacting on other agronomically important crop traits. Here, we review these recent advances and progress towards the ultimate goal of developing disease-resistant crops.

  4. Plant Science. IV-A-1 to IV-F-2. Basic V.A.I.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This packet contains six units of informational materials and transparency masters, with accompanying scripts, for teachers to use in a plant science course in vocational agriculture. Designed especially for use in Texas, the first unit introduces the course through the following topics: economic importance of major crops, major areas of…

  5. The Impact of Agricultural Science Education on Performance in a Biology Course

    NASA Astrophysics Data System (ADS)

    Ernest, Byron L.

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.

  6. Chemurgy: Using Science Innovatively to Save American Agriculture from Overproduction

    ERIC Educational Resources Information Center

    Permeswaran, Palani

    2010-01-01

    "A prosperous and productive agriculture is necessary to national and world peace and prosperity." This statement by Clinton Anderson, Secretary of Agriculture from 1945-1948, encapsulates the idea of chemurgy, the utilization of scientific research to discover new uses for agricultural surplus. In the late 1920s, chemurgists began looking at farm…

  7. LAILAPS: the plant science search engine.

    PubMed

    Esch, Maria; Chen, Jinbo; Colmsee, Christian; Klapperstück, Matthias; Grafahrend-Belau, Eva; Scholz, Uwe; Lange, Matthias

    2015-01-01

    With the number of sequenced plant genomes growing, the number of predicted genes and functional annotations is also increasing. The association between genes and phenotypic traits is currently of great interest. Unfortunately, the information available today is widely scattered over a number of different databases. Information retrieval (IR) has become an all-encompassing bioinformatics methodology for extracting knowledge from complex, heterogeneous and distributed databases, and therefore can be a useful tool for obtaining a comprehensive view of plant genomics, from genes to traits. Here we describe LAILAPS (http://lailaps.ipk-gatersleben.de), an IR system designed to link plant genomic data in the context of phenotypic attributes for a detailed forward genetic research. LAILAPS comprises around 65 million indexed documents, encompassing >13 major life science databases with around 80 million links to plant genomic resources. The LAILAPS search engine allows fuzzy querying for candidate genes linked to specific traits over a loosely integrated system of indexed and interlinked genome databases. Query assistance and an evidence-based annotation system enable time-efficient and comprehensive information retrieval. An artificial neural network incorporating user feedback and behavior tracking allows relevance sorting of results. We fully describe LAILAPS's functionality and capabilities by comparing this system's performance with other widely used systems and by reporting both a validation in maize and a knowledge discovery use-case focusing on candidate genes in barley.

  8. Plant Science in Reduced Gravity: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W.; Monje, Oscar; Wheeler, Raymond M.

    2012-01-01

    The effect of gravity on the growth and development of plants has been the subject of scientific investigation for over a century. The results obtained in space to test specific hypotheses on gravitropism, gene expression, seed formation, or growth rate are affected by both the primary effect of the microgravity and secondary effects of the spaceflight environment. The secondary effects of the spaceflight environment include physical effects arising from physical changes, such as the absence of buoyancy driven convective mixing, altered behavior of liquids and gases, and the environmental conditions in the spacecraft atmosphere. Thus, the design of biological experiments (e.g. cells, plants, animals, etc.) conducted in microgravity must account for changes in the physical forces, as well as the environmental conditions, imposed by the specific spaceflight vehicle and experimental hardware. In addition, researchers must become familiar with other aspects of spaceflight experiments: payload integration with hardware developers, safety documentation and crew procedures, and the logistics of conducting flight and ground controls. This report reviews the physical and environmental factors that directly and indirectly affect the results of plant science experiments in microgravity and is intended to serve as a guide in the design and implementation plant experiments in space.

  9. The Impact of Agricultural Science Education on Performance in a Biology Course

    ERIC Educational Resources Information Center

    Ernest, Byron L.

    2014-01-01

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's…

  10. Biostimulants in Plant Science: A Global Perspective

    PubMed Central

    Yakhin, Oleg I.; Lubyanov, Aleksandr A.; Yakhin, Ildus A.; Brown, Patrick H.

    2017-01-01

    This review presents a comprehensive and systematic study of the field of plant biostimulants and considers the fundamental and innovative principles underlying this technology. The elucidation of the biological basis of biostimulant function is a prerequisite for the development of science-based biostimulant industry and sound regulations governing these compounds. The task of defining the biological basis of biostimulants as a class of compounds, however, is made more complex by the diverse sources of biostimulants present in the market, which include bacteria, fungi, seaweeds, higher plants, animals and humate-containing raw materials, and the wide diversity of industrial processes utilized in their preparation. To distinguish biostimulants from the existing legislative product categories we propose the following definition of a biostimulant as “a formulated product of biological origin that improves plant productivity as a consequence of the novel or emergent properties of the complex of constituents, and not as a sole consequence of the presence of known essential plant nutrients, plant growth regulators, or plant protective compounds.” The definition provided here is important as it emphasizes the principle that biological function can be positively modulated through application of molecules, or mixtures of molecules, for which an explicit mode of action has not been defined. Given the difficulty in determining a “mode of action” for a biostimulant, and recognizing the need for the market in biostimulants to attain legitimacy, we suggest that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for the determination of a specific mode of action. While there is a clear commercial imperative to rationalize biostimulants as a discrete class of products, there is also a compelling biological case for the science-based development of, and

  11. Biostimulants in Plant Science: A Global Perspective.

    PubMed

    Yakhin, Oleg I; Lubyanov, Aleksandr A; Yakhin, Ildus A; Brown, Patrick H

    2016-01-01

    This review presents a comprehensive and systematic study of the field of plant biostimulants and considers the fundamental and innovative principles underlying this technology. The elucidation of the biological basis of biostimulant function is a prerequisite for the development of science-based biostimulant industry and sound regulations governing these compounds. The task of defining the biological basis of biostimulants as a class of compounds, however, is made more complex by the diverse sources of biostimulants present in the market, which include bacteria, fungi, seaweeds, higher plants, animals and humate-containing raw materials, and the wide diversity of industrial processes utilized in their preparation. To distinguish biostimulants from the existing legislative product categories we propose the following definition of a biostimulant as "a formulated product of biological origin that improves plant productivity as a consequence of the novel or emergent properties of the complex of constituents, and not as a sole consequence of the presence of known essential plant nutrients, plant growth regulators, or plant protective compounds." The definition provided here is important as it emphasizes the principle that biological function can be positively modulated through application of molecules, or mixtures of molecules, for which an explicit mode of action has not been defined. Given the difficulty in determining a "mode of action" for a biostimulant, and recognizing the need for the market in biostimulants to attain legitimacy, we suggest that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for the determination of a specific mode of action. While there is a clear commercial imperative to rationalize biostimulants as a discrete class of products, there is also a compelling biological case for the science-based development of, and

  12. Changing technologies offer new opportunities in the plant sciences(1.).

    PubMed

    Culley, Theresa M

    2013-01-01

    The plant sciences are now facing an unprecedented time in our history in which technology is advancing at a rapid pace, creating a wide variety of novel opportunities for our field. Applications in Plant Sciences is a new source for sharing exciting and innovative applications of new technologies that have the potential to propel plant research forward into the future.

  13. Gasification of agricultural residues in a demonstrative plant: corn cobs.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2014-12-01

    Biomass gasification couples the high power efficiency with the possibility of valuably using the byproducts heat and biochar. The use of agricultural wastes instead of woody feedstock extends the seasonal availability of biomasses. The downdraft type is the most used reactor but has narrow ranges of feedstock specifications (above all on moisture and particle size distribution), so tests on a demonstrative scale are conducted to prove the versatility of the gasifier. Measurements on pressure drops, syngas flow rate and composition are studied to assess the feasibility of such operations with corn cobs. Material and energy balances, and performance indexes are compared for the four tests carried out under different biomass loads (66-85 kg/h). A good operability of the plant and interesting results are obtained (gas specific production of 2 m3/kg, gas heating value 5.6-5.8 MJ/m3, cold gas efficiency in the range 66-68%, potential net power efficiency 21.1-21.6%).

  14. Sustainable agriculture and plant diseases: an epidemiological perspective.

    PubMed

    Gilligan, Christopher A

    2008-02-27

    The potential for modern biology to identify new sources for genetical, chemical and biological control of plant disease is remarkably high. Successful implementation of these methods within globally and locally changing agricultural environments demands new approaches to durable control. This, in turn, requires fusion of population genetics and epidemiology at a range of scales from the field to the landscape and even to continental deployment of control measures. It also requires an understanding of economic and social constraints that influence the deployment of control. Here I propose an epidemiological framework to model invasion, persistence and variability of epidemics that encompasses a wide range of scales and topologies through which disease spreads. By considering how to map control methods onto epidemiological parameters and variables, some new approaches towards optimizing the efficiency of control at the landscape scale are introduced. Epidemiological strategies to minimize the risks of failure of chemical and genetical control are presented and some consequences of heterogeneous selection pressures in time and space on the persistence and evolutionary changes of the pathogen population are discussed. Finally, some approaches towards embedding epidemiological models for the deployment of control in an economically plausible framework are presented.

  15. [African agriculture faced with global changes: researches and innovations based on ecological sciences].

    PubMed

    Masse, Dominique; Ndour Badiane, Yacine; Hien, Edmond; Akpo, Léonard-Élie; Assigbetsé, Komi; Bilgo, Ablassé; Diédhiou, Ibrahima; Hien, Victor; Lardy, Lydie

    2013-01-01

    In the context of environmental and socio-economic changes, the agriculture of Sub-Saharan African countries will have to ensure food security of the population, while reducing its environmental footprint. The biophysical and social systems of agricultural production are complex. Innovative agricultural practices will be based on an intensification of ecological processes that determine the functioning of the soil-plant system, farmers' fields and agro-ecosystems. This ecological engineering approach is useful to take up the challenge of Sub-Saharan agricultures in the future, as shown in researches conducted by IESOL International Joint Lab "Intensification of agricultural soils in West Africa" (ISRA, UCAD, TU, OU, INERA, IRD).

  16. Plant Content in the National Science Education Standards

    ERIC Educational Resources Information Center

    Hershey, David R.

    2005-01-01

    The National Science Education Standards (NSES) provides few resources for teaching about plants. To assure students understand and appreciate plants, the author advocates teaching about plants as a basic biological concept, avoiding animal chauvinism in biology coursework, correcting pseudoscience and anthropomorphisms about plants, and making…

  17. Teaching the Nature of Science in a Course in Sustainable Agriculture

    ERIC Educational Resources Information Center

    Cessna, Stephen; Neufeld, Douglas Graber; Horst, S. Jeanne

    2013-01-01

    Claims of the (non-)sustainability of a given agricultural practice generally hinge on scientific evidence and the reliability of that evidence, or at least the perception of its reliability. Advocates of sustainable agriculture may dismiss science as purely subjective, or at the other extreme, may inappropriately elevate scientific findings to…

  18. State of science of phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  19. Agricultural Science Teachers' Barriers, Roles, and Information Source Preferences for Teaching Biotechnology Topics

    ERIC Educational Resources Information Center

    Mowen, Diana L.; Wingenbach, Gary J.; Roberts, T. Grady; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to determine barriers, roles, and information source preferences for teaching agricultural biotechnology topics. Agricultural science teachers were described primarily as 37 year-old males who had taught for 12 years, had bachelor's degrees, and had lived or worked on a farm or ranch. Equipment was perceived as the…

  20. Urban Elementary Students' Conceptions of Learning Goals for Agricultural Science and Technology

    ERIC Educational Resources Information Center

    Trexler, Cary J.; Hess, Alexander J.; Hayes, Kathryn N.

    2013-01-01

    Nationally, both science and agricultural education professional organizations have identified agriculture as a fundamental technology to be studied by students, with the goal of achieving an understanding of the agri-food system necessary for democratic participation. Benchmarks representing the content that K-12 children need to understand about…

  1. Special Examination of the Institute of Food and Agricultural Sciences. Report.

    ERIC Educational Resources Information Center

    Houston, Rashada; King, Jeanine; McKee, Benny

    In response to a legislative request, the efficiency of program operations of the University of Floridas Institute of Food and Agricultural Sciences (IFAS) was evaluated using data from multiple sources. IFAS is the entity responsible for carrying out the University of Floridas land grant mission. IFAS offers programs in agriculture, family and…

  2. Exploring Resource Sharing between Secondary School Teachers of Agriculture and Science Departments Nationally.

    ERIC Educational Resources Information Center

    Dormody, Thomas J.

    1992-01-01

    A survey of 372 secondary agriculture teachers received 274 responses showing a majority of agriculture and science departments share resources, although at low levels. Many more predicted future sharing. Equipment and supplies were most often shared, instructional services least often. (SK)

  3. A Comparison of the Cognitive Behaviors Exhibited by Secondary Agriculture and Science Teachers

    ERIC Educational Resources Information Center

    Ulmer, Jonathan D.; Torres, Robert M.

    2007-01-01

    The purpose of this study was to investigate the level of cognitive behavior exhibited by secondary agriculture teachers and compare the behavior to science teachers. Teachers within the two groups were found to have similar attitudes toward teaching at higher levels of cognition. Agriculture teachers spent 83% of their time on lower-order…

  4. How a Serious Digital Game Affected Students' Animal Science and Mathematical Competence in Agricultural Education

    ERIC Educational Resources Information Center

    Bunch, J. C.; Robinson, J. Shane; Edwards, M. Craig; Antonenko, Pavlo D.

    2014-01-01

    The purpose of this study was to compare the effectiveness of the lecture and discussion teaching methods and digital game-based learning on student achievement in agriculture and mathematics regarding a unit on swine diseases in animal science courses offered through secondary agricultural education programs in Oklahoma. Three research questions…

  5. An Evaluation of Successful Collaboration among Agricultural Science Teachers and Extension Agents in Texas

    ERIC Educational Resources Information Center

    Murphrey, Theresa Pesl; Harlin, Julie F.; Rayfield, John

    2011-01-01

    The purpose of this research was to investigate collaboration between agricultural science teachers and Extension agents in Texas from the perspective of successful collaboration. Programs, leaders, and participants in both agricultural education and Extension can be impacted positively through collaboration. However, successful collaboration…

  6. Agriculture and Science Integration: A Pre-service Prescription for Contextual Learning.

    ERIC Educational Resources Information Center

    Balschweid, Mark A.; Thompson, Gregory W.; Cole, R. L.

    A pre-experimental, static-group comparison study explored effects of delivery of an integrated agriculture and science curriculum to six students in the 1996-97 agricultural education Master of Arts in Teaching (MAT) cohort at Oregon State University. The control group contained 15 members of the previous 5 cohorts currently teaching secondary…

  7. Toward a New Generation of Agricultural System Data, Models, and Knowledge Products: State of Agricultural Systems Science

    NASA Technical Reports Server (NTRS)

    Jones, James W.; Antle, John M.; Basso, Bruno; Boote, Kenneth J.; Conant, Richard T.; Foster, Ian; Godfray, H. Charles J.; Herrero, Mario; Howitt, Richard E.; Janssen, Sander; Keating, Brian A.; Munoz-Carpena, Rafael; Porter, Cheryl H.; Rosenzweig, Cynthia; Wheeler, Tim R.

    2016-01-01

    We review the current state of agricultural systems science, focusing in particular on the capabilities and limitations of agricultural systems models. We discuss the state of models relative to five different Use Cases spanning field, farm, landscape, regional, and global spatial scales and engaging questions in past, current, and future time periods. Contributions from multiple disciplines have made major advances relevant to a wide range of agricultural system model applications at various spatial and temporal scales. Although current agricultural systems models have features that are needed for the Use Cases, we found that all of them have limitations and need to be improved. We identified common limitations across all Use Cases, namely 1) a scarcity of data for developing, evaluating, and applying agricultural system models and 2) inadequate knowledge systems that effectively communicate model results to society. We argue that these limitations are greater obstacles to progress than gaps in conceptual theory or available methods for using system models. New initiatives on open data show promise for addressing the data problem, but there also needs to be a cultural change among agricultural researchers to ensure that data for addressing the range of Use Cases are available for future model improvements and applications. We conclude that multiple platforms and multiple models are needed for model applications for different purposes. The Use Cases provide a useful framework for considering capabilities and limitations of existing models and data.

  8. Testing the effect of a science-enhanced curriculum on the science achievement and agricultural competency of secondary agricultural education students

    NASA Astrophysics Data System (ADS)

    Haynes, James Christopher

    Scope and Method of Study. The purpose of this study was to determine if a science-enhanced curriculum produced by the Center for Agricultural and Environmental Research and Training (CAERT) taught in a secondary level animal science or horticulture course would improve students' understanding of selected scientific principles significantly, when compared to students who were instructed using a traditional curriculum. A secondary purpose was to determine the effect that the science-enhanced CAERT curriculum would have on students' agricultural knowledge when compared to students who were instructed using a traditional curriculum. The design of the study was ex post facto, causal comparative because no random assignment of the treatment group occurred. Findings and Conclusions. No statistically significant difference was found between the treatment and comparison groups regarding science achievement. However, the mean score of the treatment group was slightly larger than the comparison group indicating a slightly higher achievement level; a "Small" effect size (d = .16) for this difference was calculated. It was determined that a statistically significant difference (p < .05) existed in agriculture competency scores in animal science (p = .001) and horticulture (p = .000) as a result of the treatment. Moreover, this was considered to be a "very large" effect (d = 1.18) in animal science and a "large" effect (d = .92) in horticulture. When considering student achievement in science, this study found that the use of the science-enhanced CAERT curriculum did not result in a statistically significant increase (p < .05) in student performance as determined by the TerraNova3 science proficiency examination. However, students who were instructed using the CAERT curriculum scored better overall than those who were instructed using a "traditional" curriculum.

  9. Starting a learning progression for agricultural literacy: A qualitative study of urban elementary student understandings of agricultural and science education benchmarks

    NASA Astrophysics Data System (ADS)

    Hess, Alexander Jay

    Science and agriculture professional organizations have argued for agricultural literacy as a goal for K-12 public education. Due to the complexity of our modern agri-food system, with social, economic, and environmental concerns embedded, an agriculturally literate society is needed for informed decision making, democratic participation, and system reform. While grade-span specific benchmarks for gauging agri-food system literacy have been developed, little attention has been paid to existing ideas individuals hold about the agri-food system, how these existing ideas relate to benchmarks, how experience shapes such ideas, or how ideas change overtime. Developing a body of knowledge on students' agri-food system understandings as they develop across K-12 grades can ground efforts seeking to promote a learning progression toward agricultural literacy. This study compares existing perceptions held by 18 upper elementary students from a large urban center in California to agri-food system literacy benchmarks and examines the perceptions against student background and experiences. Data were collected via semi-structured interviews and analyzed using the constant comparative method. Constructivist theoretical perspectives framed the study. No student had ever grown their own food, raised a plant, or cared for an animal. Participation in school fieldtrips to farms or visits to a relative's garden were agricultural experiences most frequently mentioned. Students were able to identify common food items, but could not elaborate on their origins, especially those that were highly processed. Students' understanding of post-production activities (i.e. food processing, manufacturing, or food marketing) was not apparent. Students' understanding of farms reflected a 1900's subsistence farming operation commonly found in a literature written for the primary grades. Students were unaware that plants and animals were selected for production based on desired genetic traits. Obtaining

  10. Precision agricultural systems: a model of integrative science and technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the world of science research, long gone are the days when investigations are done in isolation. More often than not, science funding starts with one or more well-defined challenges or problems, judged by society as high-priority and needing immediate attention. As such, problems are not defined...

  11. Heat Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide the first of a series of six, contains teacher and student materials for a unit on heat energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades 8-10…

  12. Science Education in Two-Year Colleges: Agriculture and Natural Resources.

    ERIC Educational Resources Information Center

    Beckwith, Miriam M.

    Agricultural and natural resources education in two-year colleges is examined as revealed by a study of science education that involved: (1) a review of the literature, (2) an examination of 175 college catalogs and class schedules from colleges nationwide, and (3) a survey of 1,275 science teachers. Part I of the study report discusses…

  13. Electrical Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the fifth in a set of six, contains teacher and student materials for a unit on electrical energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades…

  14. Solar Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the third in a set of six, contains teacher and student materials for a unit on solar energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades 8-10…

  15. Revising and Updating the Animal Science Components of the Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Mannebach, Alfred J.; And Others

    This guide is intended for use in teaching Connecticut's revised animal science curriculum at regional vocational agriculture centers. Like its predecessor, this curriculum includes exploratory (intended for grades 9 and 10) and specialized (intended for grades 11 and 12) animal science units and is based on the following major areas of…

  16. Agriculture and Biology Teaching. Science and Technology Education Document Series 11.

    ERIC Educational Resources Information Center

    Rao, A. N.; Pritchard, Alan J.

    The six-chapter document is part of Unesco's Science and Technology Education Programme to encourage an international exchange of ideas and information on science and technology education. Chapters discuss: (1) development of agriculture (beginning and modern); (2) agroecosystems (land utilization, soils, food production, irrigation, and…

  17. Starting a Learning Progression for Agricultural Literacy: A Qualitative Study of Urban Elementary Student Understandings of Agricultural and Science Education Benchmarks

    ERIC Educational Resources Information Center

    Hess, Alexander Jay

    2010-01-01

    Science and agriculture professional organizations have argued for agricultural literacy as a goal for K-12 public education. Due to the complexity of our modern agri-food system, with social, economic, and environmental concerns embedded, an agriculturally literate society is needed for informed decision making, democratic participation, and…

  18. Climate-smart agriculture global research agenda: science for action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate Smart Agriculture (CSA) addresses the challenge of meeting the growing demand for food, fiber, or fuel, caused by population growth, changes in diet related to increases in per capita income, and the need for alternative energy sources, despite the changing climate and fewer opportunities fo...

  19. Plants. Learning in Science Project. Working Paper No. 24.

    ERIC Educational Resources Information Center

    Stead, Beverley

    One area explored in the second (in-depth) phase of the Learning in Science Project was "children's science," defined as views of the world and the meanings for words that children have and bring with them to science lessons. The investigation reported focuses on the concept of "plant" held by 29 students. Data were obtained by…

  20. Agricultural and science education: a socio-analysis of their intersection and positions within the educational field

    NASA Astrophysics Data System (ADS)

    Hains, Bryan J.; Hansen, Gary L.; Hustedde, Ronald J.

    2016-12-01

    It can be argued that agricultural science is one of the original forms of science education. However, over the past century, agricultural science education has habitually been perceived as an educational venue meant solely for production agriculturalists. When examining modern agricultural education we find it to be a minority within the broader field of science education, contradicting its historically stout scientific standing within the sciences. This educational shift leaves one to ponder the historic development of contemporary agricultural education. To gain deeper insight into these questions we reviewed the historical evolution of agricultural education within the United States. We then examined the professional habitus, or cultural nuances, associated with contemporary agricultural education. Next, we considered potential outcomes associated with the profession embracing post-modern perspectives within mainstream science and community-based education. Finally, we call for critical venues within agriculture education to question the status quo and challenge the acceptance of commonly held views.

  1. Agricultural and science education: a socio-analysis of their intersection and positions within the educational field

    NASA Astrophysics Data System (ADS)

    Hains, Bryan J.; Hansen, Gary L.; Hustedde, Ronald J.

    2017-03-01

    It can be argued that agricultural science is one of the original forms of science education. However, over the past century, agricultural science education has habitually been perceived as an educational venue meant solely for production agriculturalists. When examining modern agricultural education we find it to be a minority within the broader field of science education, contradicting its historically stout scientific standing within the sciences. This educational shift leaves one to ponder the historic development of contemporary agricultural education. To gain deeper insight into these questions we reviewed the historical evolution of agricultural education within the United States. We then examined the professional habitus, or cultural nuances, associated with contemporary agricultural education. Next, we considered potential outcomes associated with the profession embracing post-modern perspectives within mainstream science and community-based education. Finally, we call for critical venues within agriculture education to question the status quo and challenge the acceptance of commonly held views.

  2. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    PubMed

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  3. The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013

    NASA Astrophysics Data System (ADS)

    Remolina-Millán, Aduljay; Hernández-Arroyo, Emil

    2014-06-01

    The organizing committee of The International Congress of Mechanical Engineering and Agricultural Sciences - CIIMCA 2013 - are pleased to present CIIMCA-2013: the first international conference focused on subjects of materials science, mechanical engineering and renewable energy organized by Mechanical Engineering Faculty of the ''Universidad Pontificia Bolivariana'' in Bucaramanga, Colombia. This conference aims to be a place to produce discussions on whole topics of the congress, between the scientists of Colombia and the world. We strongly believe that knowledge is fundamental to the development of our countries. For that reason this multidisciplinary conference is looking forward to integrate engineering, agricultural science and nanoscience and nanotechnology to produce a synergy of this area of knowledge and to achieve scientific and technological developments. Agriculture is a very important topic for our conference; in Colombia, agricultural science needs more attention from the scientific community and the government. In the Faculty of Mechanical Engineering we are beginning to work on these issues to produce knowledge and improve the conditions in our country. The CIIMCA conference is a great opportunity to create interpersonal relationships and networks between scientists around the world. The interaction between scientists is very important in the process of the construction of knowledge. The general chairman encourages and invites you to make friends, relationships and participate strongly in the symposia and all program activities. PhD Aduljay Remolina-Millán Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Msc Emil Hernández-Arroyo Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress - CIIMCA Conference photograph Conference photograph 'Universidad Pontificia Bolivariana seccional Bucaramanga' host of the first International Mechanical Engineering and

  4. Potential alternative fuel sources for agricultural crops and plant components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The changing landscape of agricultural production is placing unprecedented demands on farmers as they face increasing global competition and greater natural resource conservation challenges. However, shrinking profit margins due to increasing input costs, particularly of fuel and fertilizer, can res...

  5. Comparing the Effectiveness of two Methods of Teaching Agricultural Science to Students in Vocational Agriculture.

    ERIC Educational Resources Information Center

    Williams, Twyman G., Jr.

    The effectiveness of visible recorded feedback responses in teaching scientific theory and principles to vocational agriculture students was studied. Specific objectives were to determine the value of group feedback to the teacher, the difference in learning retention between students with and without feedback, and the difference in efficient use…

  6. Using microbial community interactions within plant microbiomes to advance an evergreen agricultural revolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innovative plant breeding and technology transfer fostered the Green Revolution, which transformed agriculture worldwide by increasing grain yields in developing countries. The Green Revolution temporarily alleviated world hunger, but also reduced biodiversity, nutrient cycling, and carbon sequestr...

  7. Relationship between humanity and plant natural resources – in the context of food and agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture, the domestication, culture, and management of plants and animals, has led to profound social changes in human evolution and development; it can be considered as the basis for civilization. Roughly 12,000 years ago agriculture appeared independently in several parts of the world. A natur...

  8. NASA Applied Sciences' DEVELOP National Program: Summer 2010 Florida Agriculture

    NASA Technical Reports Server (NTRS)

    Cooley, Zachary C.; Billiot, Amanda; Lee, Lucas; McKee, Jake

    2010-01-01

    The main agricultural areas in South Florida are located within the fertile land surrounding Lake Okeechobee. The Atlantic Watershed monthly rainfall anomalies showed a weak but statistically significant correlation to the Oceanic Nino Index (ONI). No other watershed s anomalies showed significant correlations with ONI or the Southern Oscillation Index (SOI). During La Nina months, less sea breeze days and more disturbed days were found to occur compared to El Nino and neutral months. The increase in disturbed days can likely by attributed to the synoptic pattern during La Nina, which is known to be favorable for tropical systems to follow paths that affect South Florida. Overall, neither sea breeze rainfall patterns nor total rainfall patterns in South Florida s main agricultural areas were found to be strongly influenced by the El Nino Southern Oscillation during our study time.

  9. Agriculture

    EPA Pesticide Factsheets

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  10. Plant growth-promoting bacteria as inoculants in agricultural soils

    PubMed Central

    de Souza, Rocheli; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2015-01-01

    Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  11. Plant growth-promoting bacteria as inoculants in agricultural soils.

    PubMed

    Souza, Rocheli de; Ambrosini, Adriana; Passaglia, Luciane M P

    2015-12-01

    Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

  12. An investigation of the practice of scientific inquiry in secondary science and agriculture courses

    NASA Astrophysics Data System (ADS)

    Grady, Julie R.

    The purpose of this exploratory qualitative study was to investigate the practice of scientific inquiry in two secondary biology classes and one agriculture class from different schools in different communities. The focus was on teachers' interests and intentions for the students' participation in inquiry, the voices contributing to the inquiry, and students' opportunities to confront their conceptions of the nature of science (NOS). The Partnership for Research and Education in Plants (PREP) served as the context by providing students with opportunities to design and conduct original experiments to help elucidate the function(s) of a disabled gene in Arabidopsis thaliana . Transcripts of teacher and student semi-structured interviews, field notes of classroom observations and classroom conversations, and documents (e.g., student work, teacher handouts, school websites, PREP materials) were analyzed for evidence of the practice of scientific inquiry. Teachers were interested in implementing inquiry because of potential student learning about scientific research and because PREP supports course content and is connected to a larger scientific project outside of the school. Teachers' intentions regarding the implementation of inquiry reflected the complexity of their courses and the students' previous experiences. All inquiries were student-directed. The biology students' participation more closely mirrored the practice of scientists, while the agriculture students were more involved with the procedural display of scientific inquiry. All experiences could have been enhanced from additional knowledge-centered activities regarding scientific reasoning. No activities brought explicit attention to NOS. Biology activities tended to implicitly support NOS while the agriculture class activities tended to implicitly contradict NOS. Scientists' interactions contributed to implied support of the NOS. There were missed opportunities for explicit attention to NOS in all classes

  13. "What we need is a crop ecologist": ecology and agricultural science in Progressive-era America.

    PubMed

    Hersey, Mark D

    2011-01-01

    Though they are often seen as foils for each other, ecology and agricultural science co-evolved. With shared roots in late nineteenth-century botany, ecologists and agronomists fostered important connections during the Progressive era that have been largely overlooked despite a number of finely nuanced studies of ecology's origins. But if 'applied ecology' once effectively meant agriculture, over the course of the first decades of the twentieth century the relationship between ecology and scientific agriculture grew strained. Agriculturists narrowed their focus to increasing yields, and ecologists sought to establish their discipline as a distant theoretical science and so distanced themselves from its agricultural applications. By the end of World War I, the process of disciplinary specialization was well underway. In time, the two disciplines diverged so completely that the once vital connections between them were obscured and forgotten.

  14. Plant breeding for harmony between agriculture and the environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop improvements made since the 1950’s coupled with inexpensive agronomic inputs (fertilizers, herbicides, etc.) have resulted in agricultural production that has kept pace with population growth. Breeding programs primarily focus on improving a crop’s environmental adaptability and biotic stress t...

  15. Implementing agricultural phosphorus science and management to combat eutrophication.

    PubMed

    Kleinman, Peter J A; Sharpley, Andrew N; Withers, Paul J A; Bergström, Lars; Johnson, Laura T; Doody, Donnacha G

    2015-03-01

    Experience with implementing agricultural phosphorus (P) strategies highlights successes and uncertainty over outcomes. We examine case studies from the USA, UK, and Sweden under a gradient of voluntary, litigated, and regulatory settings. In the USA, voluntary strategies are complicated by competing objectives between soil conservation and dissolved P mitigation. In litigated watersheds, mandated manure export has not wrought dire consequences on poultry farms, but has adversely affected beef producers who fertilize pastures with manure. In the UK, regulatory and voluntary approaches are improving farmer awareness, but require a comprehensive consideration of P management options to achieve downstream reductions. In Sweden, widespread subsidies sometime hinder serious assessment of program effectiveness. In all cases, absence of local data can undermine recommendations from models and outside experts. Effective action requires iterative application of existing knowledge of P fate and transport, coupled with unabashed description and demonstration of tradeoffs to local stakeholders.

  16. Department of Agriculture, Animal and Plant Health Inspection Service

    MedlinePlus

    ... Blog Home Our Focus Animal Health Animal Welfare Biotechnology Business Services Civil Rights Emergency Response Imports & Exports ... Landing Page Popular Topics Animal Health Animal Welfare Biotechnology Emergency Response Imports & Exports International Services Plant Health ...

  17. Beyond knowledge transfer: The social construction of autonomous academic science in university-industry agricultural biotechnology research collaborations

    NASA Astrophysics Data System (ADS)

    Biscotti, Dina Louise

    Autonomy is a social product. Although some might view autonomy as the absence of social interference in individual action, it is in fact produced through social institutions. It enables social actors to act; it is the justification for the allocation of enormous public resources into institutions classified as "public" or "nonprofit;" it can lead to innovation; and, significantly, it is key to the public acceptance of new technologies. In this dissertation, I analyze the social construction of autonomy for academic science in U.S. university-industry agricultural biotechnology research collaborations. University-industry relationships (UIRs) are a site of concern about the influence of commercial interests on academic science. Agricultural biotechnology is a contentious technology that has prompted questions about the ecological and public health implications of genetically-modified plants and animals. It has also spurred awareness of the industrialization of agriculture and accelerating corporate control of the global food system. Through analysis of in-depth interviews with over 200 scientists and administrators from nine U.S. research universities and thirty agricultural biotechnology companies, I find that both the academy and industry have a vested interest in the social construction of the academy as an autonomous space from which claims to objective, disinterested scientific knowledge can be made. These claims influence government regulation, as well as grower and public acceptance of agricultural biotechnology products. I argue that the social production of autonomy for academic science can be observed in narratives and practices related to: (1) the framing of when, how and why academic scientists collaborate with industry, (2) the meanings ascribed to and the uses deemed appropriate for industry monies in academic research, and (3) the dissemination of research results into the public domain through publications and patents. These narratives and practices

  18. Developments in the Curriculum for the Swedish MSc Programme in Agriculture.

    ERIC Educational Resources Information Center

    Malmfors, Birgitta; Nilsson, Kjell-Arne

    In Sweden, higher education in agriculture is provided exclusively by the Swedish University of Agricultural Sciences. The 130 students admitted to the Master of Science program in agriculture annually may choose to specialize in one of six specialty areas (plant science, animal science, food science, biotechnology, economics, and engineering),…

  19. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture.

    PubMed

    Berg, Gabriele

    2009-08-01

    Plant-associated microorganisms fulfill important functions for plant growth and health. Direct plant growth promotion by microbes is based on improved nutrient acquisition and hormonal stimulation. Diverse mechanisms are involved in the suppression of plant pathogens, which is often indirectly connected with plant growth. Whereas members of the bacterial genera Azospirillum and Rhizobium are well-studied examples for plant growth promotion, Bacillus, Pseudomonas, Serratia, Stenotrophomonas, and Streptomyces and the fungal genera Ampelomyces, Coniothyrium, and Trichoderma are model organisms to demonstrate influence on plant health. Based on these beneficial plant-microbe interactions, it is possible to develop microbial inoculants for use in agricultural biotechnology. Dependent on their mode of action and effects, these products can be used as biofertilizers, plant strengtheners, phytostimulators, and biopesticides. There is a strong growing market for microbial inoculants worldwide with an annual growth rate of approximately 10%. The use of genomic technologies leads to products with more predictable and consistent effects. The future success of the biological control industry will benefit from interdisciplinary research, e.g., on mass production, formulation, interactions, and signaling with the environment, as well as on innovative business management, product marketing, and education. Altogether, the use of microorganisms and the exploitation of beneficial plant-microbe interactions offer promising and environmentally friendly strategies for conventional and organic agriculture worldwide.

  20. Plants and Medicines. Third World Science.

    ERIC Educational Resources Information Center

    Jones, Natalie; Hughes, Wyn

    This unit, developed by the Third World Science Project, is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless fascination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere;…

  1. Drought Impacts on Ancient Maya Maize Agriculture Inferred from Isotopic Analyses of Plant Biomarkers

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2013-05-01

    There is increasing evidence suggesting that a series of droughts in the Maya lowlands of southeastern Mexico and northern Central America coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax hydrogen and carbon analyses in two lake sediment cores from the Yucatan and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change and assess drought impacts on maize agriculture In the Maya lowlands plant-wax hydrogen isotope ratios (δD) are controlled by the isotopic composition of precipitation and evapotranspiration, and are highly sensitive to changes in aridity. In this low-elevation tropical environment plant-wax carbon isotope ratios (δ13C) are largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δD would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analyses of plant-wax δD and δ13C from two lake sediment cores in the Maya lowlands indicate co-evolving changes in hydroclimate and C4 plant coverage over the past 4000 years. Compound-specific radiocarbon analyses of plant-waxes provide independent chronologies for these plant-wax stable isotope records, and plant-wax δD records developed using these chronologies agree closely with other regional records of hydroclimate change. Trends in plant-wax δD and δ13C diverge following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend

  2. [Biodegradation of agricultural plant residues by Fusarium oxysporum strains].

    PubMed

    Chepchak, T P; Kurchenko, I N; Iur'eva, E M

    2014-01-01

    The cellulolytic and endoglucanase activity of Fusarium oxysporum strains isolated from soil and plants in the media with plant waste as carbon source has been studied. It was established that the majority of studied strains were able to hydrolyze the filter paper, husk of sunflower seeds, wheat straw and corn stalks. Cellulolytic activity depended on the strain of microscopic fungi, type of substrate and duration of cultivation. The maximum cellulase activity 1 U/ml and the concentration of reducing sugars -0.875 mg/ml were found in soil strain F. oxysporum 420 in the medium with corn stalks. Endoglucanase activity of plant pathogenic strains was higher than that of soil ones.

  3. In pursuit of a science of agriculture: the role of statistics in field experiments.

    PubMed

    Parolini, Giuditta

    2015-09-01

    Since the beginning of the twentieth century statistics has reshaped the experimental cultures of agricultural research taking part in the subtle dialectic between the epistemic and the material that is proper to experimental systems. This transformation has become especially relevant in field trials and the paper will examine the British agricultural institution, Rothamsted Experimental Station, where statistical methods nowadays popular in the planning and analysis of field experiments were developed in the 1920s. At Rothamsted statistics promoted randomisation over systematic arrangements, factorisation over one-question trials, and emphasised the importance of the experimental error in assessing field trials. These changes in methodology transformed also the material culture of agricultural science, and a new body, the Field Plots Committee, was created to manage the field research of the agricultural institution. Although successful, the vision of field experimentation proposed by the Rothamsted statisticians was not unproblematic. Experimental scientists closely linked to the farming community questioned it in favour of a field research that could be more easily understood by farmers. The clash between the two agendas reveals how the role attributed to statistics in field experimentation defined different pursuits of agricultural research, alternately conceived of as a scientists' science or as a farmers' science.

  4. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    PubMed

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-06-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  5. Soil, Plant, and Crop Science. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This package contains an instructor's manual, an instructor's resource package, and a student workbook for a course in agricultural production and management as it relates to crop production. The module contains 17 units of instruction, each of which contains some or all of the following components: objective sheet, instructor's guide, information…

  6. Interdisciplinary research and training program in the plant sciences

    SciTech Connect

    Wolk, C.P.

    1991-01-01

    This document is the compiled progress reports from the Interdisciplinary Research and Training Program in the Plant Sciences funded through the MSU-DOE Plant Research Laboratory. Fourteen reports are included, covering topics such as the molecular basis of plant/microbe symbiosis, cell wall proteins and assembly, gene expression, stress responses, growth regulator biosynthesis, interaction between nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and membrane trafficking, regulation of lipid metabolism, the molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria and hormonal involvement in environmental control of plant growth. 132 refs. (MHB)

  7. Poisonous Plants. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Carter, Constance, Comp.

    There are a number of sources of information on the more than 700 species of plants, ferns, horsetails, and fungi that can cause toxic, though rarely fatal, reactions in humans and animals. This guide is intended for those who wish to review published materials on poisonous plants in the collections of the Library of Congress. It is not intended…

  8. Endangered Species (Plants). LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  9. Socio-Economic Background and Access to Internet as Correlates of Students' Achievement in Agricultural Science

    ERIC Educational Resources Information Center

    Adegoke, Sunday Paul; Osokoya, Modupe M.

    2015-01-01

    This study investigated access to internet and socio-economic background as correlates of students' achievement in Agricultural Science among selected Senior Secondary Schools Two Students in Ogbomoso South and North Local Government Areas. The study adopted multi-stage sampling technique. Simple random sampling was used to select 30 students from…

  10. Characteristics and Problems of Older Returning Students. College of Agricultural & Life Sciences Research Report.

    ERIC Educational Resources Information Center

    Flannery, Daniele; Apps, Jerold

    A study examined the barriers encountered by returning adult students and the potential change of those barriers over time. The 43 students constituting the survey population were enrolled in the graduate programs of the College of Agricultural and Life Sciences and the School of Education at the University of Wisconsin-Madison. Students had to be…

  11. Beef Production Unit for Agricultural Science I Core Curriculum. Instructor's Guide. AGDEX 420/10.

    ERIC Educational Resources Information Center

    Stewart, Bob R.; And Others

    This instructor's guide for a beef production unit contains five lessons that are designed to be taught in the Agricultural Science I core curriculum. Introductory materials include lists of performance objectives and competencies for the complete unit, suggestions for motivational technique/interest approach and evaluation, lists of references…

  12. Understanding the Information Needs of Academic Scholars in Agricultural and Biological Sciences

    ERIC Educational Resources Information Center

    Kuruppu, Pali U.; Gruber, Anne Marie

    2006-01-01

    This study investigates the information needs of faculty and graduate students in agricultural and biological sciences. Qualitative research methods, interviews and focus groups, were used to examine what types of information these scholars need for their research, teaching and learning, how they seek that information, and perceptions. The…

  13. Career Indecision Levels of Students Enrolled in a College of Agriculture and Life Sciences

    ERIC Educational Resources Information Center

    Esters, Levon T.

    2007-01-01

    The purpose of this study was to determine the level of career indecision of students enrolled in the College of Agriculture and Life Sciences at Iowa State University. A primary goal of this research was to explore the construct of career indecision using the three factor structure identified by Kelly and Lee (2002). The factors of interest in…

  14. Using the Discipline of Agricultural Engineering to Integrate Math and Science

    ERIC Educational Resources Information Center

    Foutz, Tim; Navarro, Maria; Hill, Roger B.; Thompson, Sidney A.; Miller, Kathy; Riddleberger, Deborah

    2011-01-01

    An outcome of a 1998 forum sponsored by the National Research Council was a recognition that topics related to food production and agriculture are excellent mechanisms for integrating science topics taught in the K-12 education system and for providing many avenues for inquiry based and project based learning. The engineering design process is…

  15. How Agricultural Science Trumps Rural Community in the Discourse of Selected U.S. History Textbooks

    ERIC Educational Resources Information Center

    Howley, Marged; Howley, Aimee; Eppley, Karen

    2013-01-01

    Using narrative from 6 high school American history textbooks published between 1956 and 2009, this study investigated changes in how textbook authors presented the topics of agricultural science, farming, and community. Although some critical discourse analyses have examined textbooks' treatment of different population groups (e.g., African…

  16. Undergraduate Involvement in Extracurricular Activities and Leadership Development in College of Agriculture and Life Sciences Students

    ERIC Educational Resources Information Center

    Foreman, Elizabeth A.; Retallick, Michael S.

    2012-01-01

    The purpose of this study was to identify and describe experiences of undergraduate extracurricular involvement that result in increased leadership development. Senior students in the College of Agriculture and Life Sciences at Iowa State University completed an online questionnaire about their extracurricular experiences. Leadership development…

  17. Sheep Production Unit for Agricultural Science I Core Curriculum. Instructor's Guide. AGDEX 430/10.

    ERIC Educational Resources Information Center

    Brzozowski, Richard J.; Stewart, Bob R.

    This instructor's guide for a sheep production unit contains six lessons that are designed to be taught in the Agricultural Science I core curriculum. Introductory materials include lists of performance objectives and competencies for the complete unit, suggestions for motivational technique/interest approach and evaluation, lists of references…

  18. Identification of Math and Science Concepts, Skills, and Experiences Provided in Vocational Agriculture in Texas.

    ERIC Educational Resources Information Center

    Briers, Gary E.; And Others

    A project was conducted to determine if the instructional materials for production agriculture classes taught in the public schools in Texas contained information that was relevant to the essential elements of mathematics and science at the secondary level. The project was carried out through a number of steps including (1) reviewing the state…

  19. Pre-Service Teachers' Knowledge and Teaching Comfort Levels for Agricultural Science and Technology Objectives

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; White, Judith McIntosh; Degenhart, Shannon; Pannkuk, Tim; Kujawski, Jenna

    2007-01-01

    Self-efficacy beliefs are defined as context-specific assessments of one's competence to perform specific tasks, influence one's efforts, persistence, and resilience to succeed in a given task. Such beliefs are important determinants when considering agricultural science teachers' subject matter knowledge, teaching comfort levels, and their…

  20. Effect of Computer-Based Multimedia Presentation on Senior Secondary Students' Achievement in Agricultural Science

    ERIC Educational Resources Information Center

    Olori, Abiola Lateef; Igbosanu, Adekunle Olusegun

    2016-01-01

    The study was carried out to determine the use of computer-based multimedia presentation on Senior Secondary School Students' Achievement in Agricultural Science. The study was a quasi-experimental, pre-test, post-test control group research design type, using intact classes. A sample of eighty (80) Senior Secondary School One (SS II) students was…

  1. Lead Agency Responsibilities to Keep Informed of Personnel Needs in the Food and Agricultural Sciences are not being Fully Met.

    DTIC Science & Technology

    1981-12-28

    General Foods Corp. - processors of packaged grocery products Hershey Foods Corp. - chocolates and confectionary products and pasta International...manpower development requirements for food and agricultural science personnel. FOOD AND AGRICULTURE ACT OF 1977 Future growth of agricultural productivity ...and increases in production , distribution., and consumption efficiency require a continuing supply of qualified graduates in the food and agricul

  2. The Role of Sandwich In-Service Program in Developing Agricultural Science Teachers in Delta State, Nigeria

    ERIC Educational Resources Information Center

    Ikeoji, Canice N.; Agwubike, Christian C.; Ideh, Victor

    2007-01-01

    This study examined the role of the sandwich in-service educational program of Delta State University, Abraka in developing agricultural science teachers in the state. Data were collected from 895 agricultural science teachers who completed the program between 1989-2004. However, response to the questionnaire was by 391 in-service agricultural…

  3. Agricultural Education as a Medium for the Transmission of Western Science during British Rule in Malaya, 1905-1957

    ERIC Educational Resources Information Center

    Arman, Ezwan; Mamat, Mohd Zufri; Hasbullah, Maisarah

    2016-01-01

    This paper traces the transmission of Western science through the agricultural education sector during the British colonial administration of Malaya. This education system included three levels: elementary, intermediate and the school of agriculture. To understand the process by which Western science was transmitted in Malaya, Basalla's model was…

  4. The Cultural Adaptation Process of Agricultural and Life Sciences Students on Short-Term Study Abroad Experiences

    ERIC Educational Resources Information Center

    Conner, Nathan William

    2013-01-01

    The purpose of this study was to explore how undergraduate students in a college of agricultural and life sciences experienced cultural adaptation during short-term study abroad programs. The specific objectives of this study were to describe how undergraduate students in the college of agricultural and life sciences experienced culture throughout…

  5. Agricultural Science and Technology Teachers' Perceptions of iPod and Mp3 Technology Integration into Curricular and Cocurricular Activities

    ERIC Educational Resources Information Center

    Murphrey, Theresa Pesl; Miller, Kimberly A.; Roberts, T. Grady

    2009-01-01

    The purpose of this study was to describe agricultural science and technology teachers' reaction to iPod and mp3 technology use and potential use in both curricular and cocurricular activities. A total of 112 unique respondents provided written responses to open-ended questions. Study findings reveal that agricultural science and technology…

  6. Design of System Scheme and Operationmechanism on Agricultural Science &Technology Information Service System `110'

    NASA Astrophysics Data System (ADS)

    Wu, Yongchang; Hu, Zhiquan; Xiao, Bilin; Li, Quanxin

    Agricultural science & technology information service system ‘110’ (ASTISS-110), connected through unitary telephone hotline as well as multipurpose service of the network, television and video etc, is one of the most characteristic content of the Chinese rural informatization. ASTISS-110 is a low cost and high efficiency way to make the agricultural science & technology achievements extension and achieve the combination of science & technology with farmers in the rural area. This paper would primary focus on the ASTISS-110 foundation and system principle. On basis of its main functions and system objectives, we put forward the combination of the ‘Sky- Land-People’ technical solution, and analyze the management operation mechanism from commonweal service, enterprise management and commercialization operation.

  7. A practical introduction to skeletons for the plant sciences.

    PubMed

    Bucksch, Alexander

    2014-08-01

    Before the availability of digital photography resulting from the invention of charged couple devices in 1969, the measurement of plant architecture was a manual process either on the plant itself or on traditional photographs. The introduction of cheap digital imaging devices for the consumer market enabled the wide use of digital images to capture the shape of plant networks such as roots, tree crowns, or leaf venation. Plant networks contain geometric traits that can establish links to genetic or physiological characteristics, support plant breeding efforts, drive evolutionary studies, or serve as input to plant growth simulations. Typically, traits are encoded in shape descriptors that are computed from imaging data. Skeletons are one class of shape descriptors that are used to describe the hierarchies and extent of branching and looping plant networks. While the mathematical understanding of skeletons is well developed, their application within the plant sciences remains challenging because the quality of the measurement depends partly on the interpretation of the skeleton. This article is meant to bridge the skeletonization literature in the plant sciences and related technical fields by discussing best practices for deriving diameters and approximating branching hierarchies in a plant network.

  8. A practical introduction to skeletons for the plant sciences1

    PubMed Central

    Bucksch, Alexander

    2014-01-01

    Before the availability of digital photography resulting from the invention of charged couple devices in 1969, the measurement of plant architecture was a manual process either on the plant itself or on traditional photographs. The introduction of cheap digital imaging devices for the consumer market enabled the wide use of digital images to capture the shape of plant networks such as roots, tree crowns, or leaf venation. Plant networks contain geometric traits that can establish links to genetic or physiological characteristics, support plant breeding efforts, drive evolutionary studies, or serve as input to plant growth simulations. Typically, traits are encoded in shape descriptors that are computed from imaging data. Skeletons are one class of shape descriptors that are used to describe the hierarchies and extent of branching and looping plant networks. While the mathematical understanding of skeletons is well developed, their application within the plant sciences remains challenging because the quality of the measurement depends partly on the interpretation of the skeleton. This article is meant to bridge the skeletonization literature in the plant sciences and related technical fields by discussing best practices for deriving diameters and approximating branching hierarchies in a plant network. PMID:25202645

  9. Islands of knowledge: science and agriculture in the history of Latin America and the Caribbean.

    PubMed

    Fernández Prieto, Leida

    2013-12-01

    This essay explores the participation of Latin America and the Caribbean in the construction and circulation of tropical agricultural science during the nineteenth century and the first half of the twentieth century. It uses the term "islands of knowledge" to underscore the idea that each producing region across the global tropics, including Latin America and the Caribbean, was instrumental in the creation, adoption, and application of scientific procedures. At the same time, it emphasizes the value of interchange and interconnection between these regions, as well as the many and heterogeneous local areas, for analyzing what it calls "global archipelago agricultural scientific knowledge." This focus challenges the traditional center/periphery hierarchy and opens it to a wider vision of science and practice in agriculture. This essay shows how writing in related areas of research--specifically, commodity histories, biological exchange studies, and knowledge exchange studies--introduces approaches and case studies that are useful for the history of tropical agricultural science. In particular, this work provides analytical frameworks for developing studies of exchanges across the Global South.

  10. Agricultural land-use history causes persistent loss of plant phylogenetic diversity.

    PubMed

    Turley, Nash E; Brudvig, Lars A

    2016-09-01

    Intensive land use activities, such as agriculture, are a leading cause of biodiversity loss and can have lasting impacts on ecological systems. Yet, few studies have investigated how land-use legacies impact phylogenetic diversity (the total amount of evolutionary history in a community) or how restoration activities might mitigate legacy effects on biodiversity. We studied ground-layer plant communities in 27 pairs of Remnant (no agricultural history) and Post-agricultural (agriculture abandoned >60 yr ago) longleaf pine savannas, half of which we restored by thinning trees to reinstate open savanna conditions. We found that agricultural history had no impact on species richness, but did alter community composition and reduce phylogenetic diversity by 566 million years/1,000 m(2) . This loss of phylogenetic diversity in post-agricultural savannas was due to, in part, a reduction in the average evolutionary distance between pairs of closely related species, that is, increased phylogenetic clustering. Habitat restoration increased species richness by 27% and phylogenetic diversity by 914 million years but did not eliminate the effects of agricultural land use on community composition and phylogenetic structure. These results demonstrate the persistence of agricultural legacies, even in the face of intensive restoration efforts, and the importance of considering biodiversity broadly when evaluating human impacts on ecosystems.

  11. Effectiveness of a Science Agricultural Summer Experience (SASE) in Recruiting Students to Natural Resources Management

    NASA Astrophysics Data System (ADS)

    Martinez, Edward; Lindline, Jennifer; Petronis, Michael S.; Pilotti, Maura

    2012-12-01

    The Bureau of Labor Statistics projects an increase in Natural Resource Management (NRM) jobs within the next 10 years due to baby-boomer retirements and a 12% increase in demand for these occupations. Despite this trend, college enrollment in NRM disciplines has declined. Even more critical is the fact that the soon-to-be-majority Hispanic population is underrepresented in NRM disciplines. The goal of the present study was to determine if an in-residence, two-week, summer science program for underrepresented minorities would not only increase interest in science, actual science knowledge, and perceived science knowledge, but also have an overall impact on underrepresented minority students' decisions to attend college, major in a scientific discipline and pursue a career in science. During a four-year period, 76 high school students participated in a Science Agricultural Summer Experience (SASE) in Northern New Mexico. A pre/post science-knowledge exam and satisfaction survey were administered to participants. We demonstrate that participants improved significantly ( p < .05) in all areas measured. In particular, comfort with science field and lab activities, science knowledge and perceived science knowledge were enhanced after exposure to the program. Students not only found science exciting and approachable after participation, but also exhibited increased interest in pursuing a degree and career in science. Of the 76 SASE participants within graduation age ( n = 44), all graduated from high school; and 86% enrolled in college. These findings suggest that the implemented SASE initiative was effective in recruiting and increasing the confidence and abilities of underrepresented minority students in science.

  12. Plant Economics, Science (Experimental): 5314.07.

    ERIC Educational Resources Information Center

    Basnett, Fred D.

    This unit of instruction was designed for the slow reader and terminal student, and consists of a study of the economic value of plants and a consideration of landscaping, gardening and horticulture for fun and profit. The booklet lists the relevant state-adopted texts and states the performance objectives for the unit. It provides an outline of…

  13. Pesticides residues and metals in plant products from agricultural area of Belgrade, Serbia.

    PubMed

    Ethorđević, Tijana; Ethurović, Rada

    2012-03-01

    The objective of study was to assess the levels of selected metals and pesticides in plant products from agricultural area of Belgrade, Serbia in order to indicate their possible sources and risks of contamination and to evaluate their sanitary probity and safety. The concentrations of cadmium, copper, iron, manganese, nickel, lead and zinc were below limits established by national and international regulations (maximum found concentrations were 0.028, 1.91, 11.16, 1.77, 0.605, 0.073 and 1.76 mg kg(-1) respectively). Only residue of one of examined pesticides was found in amount below MRL (bifenthrin 2.46 μg kg(-1)) in only one of analysed samples, while others were below detection limits. Obtained results indicate that crops from examined agricultural areas are unpolluted by contaminants used for plant protection and nutrition, indicating good agricultural practice regarding pesticides and fertilizer usage as well as moderate industrial production within examined areas.

  14. Pesticide Applicator Certification Training, Manual No. 1a: Agricultural Pest Control. a. Plant.

    ERIC Educational Resources Information Center

    Allen, W. A.; And Others

    This manual provides information needed to meet the minimum standards for certification as an applicator of pesticides in the agricultural plant pest control category. Adapted for the State of Virginia, the text discusses: (1) the basics of insecticides; (2) insect pests; (3) selection and calibration of applicator equipment; and (4) the proper…

  15. Mining the active proteome in plant science and biotechnology.

    PubMed

    Kołodziejek, Izabella; van der Hoorn, Renier A L

    2010-04-01

    Protein activity is essential functional information, yet difficult to predict from transcript or protein data. Activity-based protein profiling (ABPP) displays active proteins in proteomes using small molecule probes that irreversibly label proteins in their active state. Here, we review proof-of-concept ABPP studies in plant science. These studies displayed activities of dozens of plant cysteine proteases, lipases, methylesterases and the proteasome. ABPP in plants revealed differential protein activities in development and immunity and uncovered striking selectivity of pathogen-derived inhibitors and unexpected targets of commercial inhibitors. The unique, high-content information of ABPP and the robustness and simplicity of the assays will make ABPP a powerful tool in future plant science and biotechnology.

  16. Historical agriculture alters the effects of fire on understory plant beta diversity.

    PubMed

    Mattingly, W Brett; Orrock, John L; Collins, Cathy D; Brudvig, Lars A; Damschen, Ellen I; Veldman, Joseph W; Walker, Joan L

    2015-02-01

    Land-use legacies are known to shape the diversity and distribution of plant communities, but we lack an understanding of whether historical land use influences community responses to contemporary disturbances. Because human-modified landscapes often bear a history of multiple land-use activities, this contingency can challenge our understanding of land-use impacts on plant diversity. We address this contingency by evaluating how beta diversity (the spatial variability of species composition), an important component of regional biodiversity, is shaped by interactions between historical agriculture and prescribed fire, two prominent disturbances that are often coincident in terrestrial ecosystems. At three study locations spanning 450 km in the southeastern United States, we surveyed longleaf pine woodland understory plant communities across 232 remnant and post-agricultural sites with differing prescribed fire regimes. Our results demonstrate that agricultural legacies are a strong predictor of beta diversity, but the direction of this land-use effect differed among the three study locations. Further, although beta diversity increased with prescribed fire frequency at each study location, this effect was influenced by agricultural land-use history, such that positive fire effects were only documented among sites that lacked a history of agriculture at two of our three study locations. Our study not only highlights the role of historical agriculture in shaping beta diversity in a fire-maintained ecosystem but also illustrates how this effect can be contingent upon fire regime and geographic location. We suggest that interactions among historical and contemporary land-use activities may help to explain dissimilarities in plant communities among sites in human-dominated landscapes.

  17. Science for Agriculture and Rural Development in Low-Income Countries

    NASA Astrophysics Data System (ADS)

    Barros, Vicente

    2008-09-01

    During recent months, another sign of the global fragility to sustain the increasing human demand for resources has appeared with merciless cruelty. Increasing food prices, paradoxically driven to a large extent by the rapid economic growth of vast regions of the emerging world, are affecting hundreds of millions of the poorest people in Africa, Asia, and Latin America. As described in Science for Agriculture and Rural Development in Low-Income Countries, most of the poorest people in these low-income countries live in rural areas and are engaged in agriculture or related activities. Because many people in these areas are engaged in subsistence agriculture, they do not share in the added income derived from higher market prices for food.

  18. Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Proteomics.

    PubMed

    Popescu, George V; Noutsos, Christos; Popescu, Sorina C

    2016-01-01

    In modern plant biology, progress is increasingly defined by the scientists' ability to gather and analyze data sets of high volume and complexity, otherwise known as "big data". Arguably, the largest increase in the volume of plant data sets over the last decade is a consequence of the application of the next-generation sequencing and mass-spectrometry technologies to the study of experimental model and crop plants. The increase in quantity and complexity of biological data brings challenges, mostly associated with data acquisition, processing, and sharing within the scientific community. Nonetheless, big data in plant science create unique opportunities in advancing our understanding of complex biological processes at a level of accuracy without precedence, and establish a base for the plant systems biology. In this chapter, we summarize the major drivers of big data in plant science and big data initiatives in life sciences with a focus on the scope and impact of iPlant, a representative cyberinfrastructure platform for plant science.

  19. The impact of whole-plant instruction of preservice teachers' understanding of plant science principles

    NASA Astrophysics Data System (ADS)

    Hypolite, Christine Collins

    The purpose of this research was to determine how an inquiry-based, whole-plant instructional strategy would affect preservice elementary teachers' understanding of plant science principles. This study probed: what preservice teachers know about plant biology concepts before and after instruction, their views of the interrelatedness of plant parts and the environment, how growing a plant affects preservice teachers' understanding, and which types of activity-rich plant themes studies, if any, affect preservice elementary teachers' understandings. The participants in the study were enrolled in two elementary science methods class sections at a state university. Each group was administered a preinstructional test at the beginning of the study. The treatment group participated in inquiry-based activities related to the Principles of Plant Biology (American Society of Plant Biologists, 2001), while the comparison group studied those same concepts through traditional instructional methods. A focus group was formed from the treatment group to participate in co-concept mapping sessions. The participants' understandings were assessed through artifacts from activities, a comparison of pre- and postinstructional tests, and the concept maps generated by the focus group. Results of the research indicated that the whole-plant, inquiry-based instructional strategy can be applied to teach preservice elementary teachers plant biology while modeling the human constructivist approach. The results further indicated that this approach enhanced their understanding of plant science content knowledge, as well as pedagogical knowledge. The results also showed that a whole-plant approach to teaching plant science concepts is an instructional strategy that is feasible for the elementary school. The theoretical framework for this study was Human Constructivist learning theory (Mintzes & Wandersee, 1998). The content knowledge and instructional strategy was informed by the Principles of Plant

  20. A novel model for estimating organic chemical bioconcentration in agricultural plants

    SciTech Connect

    Hung, H.; Mackay, D.; Di Guardo, A.

    1995-12-31

    There is increasing recognition that much human and wildlife exposure to organic contaminants can be traced through the food chain to bioconcentration in vegetation. For risk assessment, there is a need for an accurate model to predict organic chemical concentrations in plants. Existing models range from relatively simple correlations of concentrations using octanol-water or octanol-air partition coefficients, to complex models involving extensive physiological data. To satisfy the need for a relatively accurate model of intermediate complexity, a novel approach has been devised to predict organic chemical concentrations in agricultural plants as a function of soil and air concentrations, without the need for extensive plant physiological data. The plant is treated as three compartments, namely, leaves, roots and stems (including fruit and seeds). Data readily available from the literature, including chemical properties, volume, density and composition of each compartment; metabolic and growth rate of plant; and readily obtainable environmental conditions at the site are required as input. Results calculated from the model are compared with observed and experimentally-determined concentrations. It is suggested that the model, which includes a physiological database for agricultural plants, gives acceptably accurate predictions of chemical partitioning between plants, air and soil.

  1. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    PubMed

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-04-29

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  2. Exploring Plant and Animal Content in Elementary Science Textbooks

    ERIC Educational Resources Information Center

    Schussler, Elisabeth E.; Link-Perez, Melanie A.; Weber, Kirk M.; Dollo, Vanessa H.

    2010-01-01

    Student knowledge about plants is typically less than student knowledge about animals. Textbooks are a commonly-used curriculum material in elementary grades and contain embedded cultural ideologies that may impact instruction. This study analyzed two nationally-syndicated elementary science textbook series to explore their presentation of plant…

  3. Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.

    ERIC Educational Resources Information Center

    Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.

    During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…

  4. Science Study Aids 4: Plant Pigments - Studies in Color Changes.

    ERIC Educational Resources Information Center

    McConnell, Bill; McCready, R. M.

    This publication is the fourth of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grades 9 through 12. It deals with physical factors that affect color changes in plant foods during processing and in the preparation of…

  5. Integrating NASA Earth Science Enterprise (ESE) Data Into Global Agricultural Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.

    2003-12-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to

  6. Teaching Introductory Life Science Courses in Colleges of Agriculture: Faculty Experiences

    ERIC Educational Resources Information Center

    Balschweid, Mark; Knobloch, Neil A.; Hains, Bryan J.

    2014-01-01

    Insignificant numbers of college students declaring STEM majors creates concern for the future of the U.S. economy within the global marketplace. This study highlights the educational development and teaching strategies employed by STEM faculty in teaching first-year students in contextualized life science courses, such as animal, plant, and food…

  7. Areas of increasing agricultural abandonment overlap the distribution of previously common, currently threatened plant species.

    PubMed

    Osawa, Takeshi; Kohyama, Kazunori; Mitsuhashi, Hiromune

    2013-01-01

    Human-driven land-use changes increasingly threaten biodiversity. In agricultural ecosystems, abandonment of former farmlands constitutes a major land-use shift. We examined the relationships between areas in which agriculture has been abandoned and the distribution records of threatened plant species across Japan. We selected 23 plant species that are currently identified as threatened but were previously common in the country as indicators of threatened plant species. The areas of abandoned farmlands within the distribution ranges of the indicator species were significantly larger than the proportion of abandoned farmland area across the whole country. Also, abandoned farmland areas were positively correlated with the occurrence of indicator species. Therefore, sections of agricultural landscape that are increasingly becoming abandoned and the distribution ranges of indicator species overlapped. These results suggest that abandoned farmland areas contain degraded or preferred habitats of threatened plant species. We propose that areas experiencing increased abandonment of farmland can be divided into at least two categories: those that threaten the existence of threatened species and those that provide habitats for these threatened species.

  8. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.

    PubMed

    Qin, Yuan; Druzhinina, Irina S; Pan, Xueyu; Yuan, Zhilin

    2016-11-15

    Soil salinization adversely affects plant growth and has become one of the major limiting factors for crop productivity worldwide. The conventional approach, breeding salt-tolerant plant cultivars, has often failed to efficiently alleviate the situation. In contrast, the use of a diverse array of microorganisms harbored by plants has attracted increasing attention because of the remarkable beneficial effects of microorganisms on plants. Multiple advanced '-omics' technologies have enabled us to gain insights into the structure and function of plant-associated microbes. In this review, we first focus on microbe-mediated plant salt tolerance, in particular on the physiological and molecular mechanisms underlying root-microbe symbiosis. Unfortunately, when introducing such microbes as single strains to soils, they are often ineffective in improving plant growth and stress tolerance, largely due to competition with native soil microbial communities and limited colonization efficiency. Rapid progress in rhizosphere microbiome research has revived the belief that plants may benefit more from association with interacting, diverse microbial communities (microbiome) than from individual members in a community. Understanding how a microbiome assembles in the continuous compartments (endosphere, rhizoplane, and rhizosphere) will assist in predicting a subset of core or minimal microbiome and thus facilitate synthetic re-construction of microbial communities and their functional complementarity and synergistic effects. These developments will open a new avenue for capitalizing on the cultivable microbiome to strengthen plant salt tolerance and thus to refine agricultural practices and production under saline conditions.

  9. Applied Agricultural Science and Mechanics 1 and 2. A Curriculum Guide for Agricultural Grades 9 and 10.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Occupational Education Curriculum Development.

    This curriculum guide is designed to provide students with opportunities to explore different careers related to agriculture, to develop basic skills and knowledge related to the agriculture industry, and to make an intelligent selection of the speciality fields in agriculture that they will pursue in the eleventh and twelvth grades. An…

  10. Agricultural anaerobic digestion power plants in Ireland and Germany: policy and practice.

    PubMed

    Auer, Agathe; Vande Burgt, Nathan H; Abram, Florence; Barry, Gerald; Fenton, Owen; Markey, Bryan K; Nolan, Stephen; Richards, Karl; Bolton, Declan; De Waal, Theo; Gordon, Stephen V; O'Flaherty, Vincent; Whyte, Paul; Zintl, Annetta

    2017-02-01

    The process of anaerobic digestion (AD) is valued as a carbon-neutral energy source, while simultaneously treating organic waste, making it safer for disposal or use as a fertilizer on agricultural land. The AD process in many European nations, such as Germany, has grown from use of small, localized digesters to the operation of large-scale treatment facilities, which contribute significantly to national renewable energy quotas. However, these large AD plants are costly to run and demand intensive farming of energy crops for feedstock. Current policy in Germany has transitioned to support funding for smaller digesters, while also limiting the use of energy crops. AD within Ireland, as a new technology, is affected by ambiguous governmental policies concerning waste and energy. A clear governmental strategy supporting on-site AD processing of agricultural waste will significantly reduce Ireland's carbon footprint, improve the safety and bioavailability of agricultural waste, and provide an indigenous renewable energy source. © 2016 Society of Chemical Industry.

  11. UNDERGRADUATE EDUCATION IN THE BIOLOGICAL SCIENCES FOR STUDENTS IN AGRICULTURE AND NATURAL RESOURCES, PROCEEDINGS OF A CONFERENCE.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    REPORTED ARE THE PROCEEDINGS OF A 1966 CONFERENCE WHICH DEALT WITH UNDERGRADUATE EDUCATIONAL NEEDS FOR STUDENTS IN AGRICULTURE AND NATURAL RESOURCES. THE 167 EDUCATORS (MOSTLY DEANS AND DIRECTORS OF RESIDENT INSTRUCTION) WHO PARTICIPATED IN THE CONFERENCE REPRESENTED AGRICULTURE, RENEWABLE NATURAL RESOURCES, THE BIOLOGICAL SCIENCES, AND…

  12. Undergraduate Education in the Sciences for Students in Agriculture and Natural Resources. Summary of Proceedings of Regional Conferences.

    ERIC Educational Resources Information Center

    Commission on Education in Agriculture and Natural Resources, Washington, DC.

    Following a national conference entitled, "Undergraduate Education in the Biological Sciences for Students in Agriculture and Natural Resources," four regional conferences ensued, bringing together teaching faculty members from agriculture, forestry, other natural resource areas, and biology. The papers presented at these regional meetings are…

  13. Not all GMOs are crop plants: non-plant GMO applications in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the time since the tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteri...

  14. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture.

    PubMed

    Pérez-García, Alejandro; Romero, Diego; de Vicente, Antonio

    2011-04-01

    The increasing demand for a steady, healthy food supply requires an efficient control of the major pests and plant diseases. Current management practices are based largely on the application of synthetic pesticides. The excessive use of agrochemicals has caused serious environmental and health problems. Therefore, there is a growing demand for new and safer methods to replace or at least supplement the existing control strategies. Biological control, that is, the use of natural antagonists to combat pests or plant diseases has emerged as a promising alternative to chemical pesticides. The Bacilli offer a number of advantages for their application in agricultural biotechnology. Several Bacillus-based products have been marketed as microbial pesticides, fungicides or fertilisers. Bacillus-based biopesticides are widely used in conventional agriculture, by contrast, implementation of Bacillus-based biofungicides and biofertilizers is still a pending issue.

  15. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture

    PubMed Central

    Reynolds, Olivia L.; Padula, Matthew P.; Zeng, Rensen; Gurr, Geoff M.

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a “beneficial substance”. This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels. PMID:27379104

  16. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    NASA Astrophysics Data System (ADS)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  17. Minority Summer Research Program in the Plant Sciences

    SciTech Connect

    Poff, Kenneth L.

    2004-08-12

    Gutierrez and Larcom (2000) suggest that ''According to the National Science Foundation/Division of Science Resources Studies in 1997, the percentage distribution of scientists and engineers in the labor force by race/ethnicity changed little between 1993 and 1997''. According to this report, Black, non-Hispanic went from 3.6 in 1993 to 3.4 in 1997. Hispanic went from 3.0 in 1993 to 3.1 in 1997; and American Indian/Alaskan Native stayed the same at 0.3 during the same period. The only exceptions were a slight increase in the percentage of Asian from 9.2 in 1993 to 10.4 in 1997, while a slight decrease in percentage White from 83.9 in 1993 to 82.8 in 1997. Overall, no major changes in minorities were present in the science and engineering fields during that period. These data shows that major efforts are needed in order to improve and achieve better results for diversity in the workplace (Gutierrez & Larcom, 2000). This does not mean that major steps have not been taken over this period. For example, the Minority Summer Research Program in Plant Sciences (also funded in part by NSF under the title, ''Undergraduate Researchers in Plant Sciences Program'') was established in an effort to enhance the diversity of the plant science community. The Minority Summer Research Program in Plant Sciences was designed to encourage members of underrepresented groups to seek career opportunities in the plant sciences. To achieve this end, the program contained several components with the primary focus on mentored research for undergraduate students. The research experience was provided during the summer months on the campus of Michigan State University in East Lansing, Michigan. At the end of the summer experience, each participant presented an oral report on their research, and submitted a written paper on the same topic. This was deliberately designed to mimic the plant science professions in which research leads to presentations in the form of reports, papers, etc. In addition

  18. From the USDA: Educating the Next Generation: Funding Opportunities in Food, Agricultural, Natural Resources, and Social Sciences Education

    PubMed Central

    Parker, Joyce E.; Wagner, David J.

    2016-01-01

    The National Institute of Food and Agriculture within the U.S. Department of Agriculture provides leadership, capacity, and funds to support the continuing development of a safe and competitive agricultural system. Many of the agency’s educational programs are led by the Division of Community and Education (DOCE). These programs span agricultural education, enhancing agricultural literacy through both formal and nonformal education. Here, we have highlighted funding opportunities within DOCE that enhance agricultural education and literacy by supporting the improvement of students’ critical communication, leadership skills, and experiential learning opportunities. Some of these programs include opportunities for which students can apply, while others focus on faculty applications. Opportunities faculty can apply for may support student-recruitment and student-retention techniques, curriculum development, innovative teaching methods, and institutional capacity-building programs. Overall, these programs foster a diverse workforce in agricultural science that matches the increasing diversity of the country. PMID:27587851

  19. Agricultural Production. An Administrative Guide for Agricultural Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    This basic instructional guide for an agricultural production program is one in a series of such guides for agricultural education. It is useful in developing and selecting instructional material and implementing competency-based education for a program directed toward helping students to become proficient in animal, plant, and soil sciences and…

  20. Agriculturally important yeasts: Biological control of field and postharvest diseases using yeast antagonists, and yeasts as pathogens of plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two important agricultural aspects of yeasts, control of plant diseases through application of yeasts as the control agent, and yeasts that are plant pathogens are reviewed. Yeasts as biocontrol organisms are presented first, followed by a discussion of some of the more common plant pathogenic yeas...

  1. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions.

    PubMed

    Barber, Nicholas A; Kiers, E Toby; Theis, Nina; Hazzard, Ruth V; Adler, Lynn S

    2013-10-01

    Agricultural management has profound effects on soil communities. Activities such as fertilizer inputs can modify the composition of arbuscular mycorrhizal fungi (AMF) communities, which form important symbioses with the roots of most crop plants. Intensive conventional agricultural management may select for less mutualistic AMF with reduced benefits to host plants compared to organic management, but these differences are poorly understood. AMF are generally evaluated based on their direct growth effects on plants. However, mycorrhizal colonization also may alter plant traits such as tissue nutrients, defensive chemistry, or floral traits, which mediate important plant-insect interactions like herbivory and pollination. To determine the effect of AMF from different farming practices on plant performance and traits that putatively mediate species interactions, we performed a greenhouse study by inoculating Cucumis sativus (cucumber, Cucurbitaceae) with AMF from conventional farms, organic farms, and a commercial AMF inoculum. We measured growth and a suite of plant traits hypothesized to be important predictors of herbivore resistance and pollinator attraction. Several leaf and root traits and flower production were significantly affected by AMF inoculum. Both conventional and organic AMF reduced leaf P content but increased Na content compared to control and commercial AMF. Leaf defenses were unaffected by AMF treatments, but conventional AMF increased root cucurbitacin C, the primary defensive chemical of C. sativus, compared to organic AMF. These effects may have important consequences for herbivore preference and population dynamics. AMF from both organic and conventional farms decreased flower production relative to commercial and control treatments, which may reduce pollinator attraction and plant reproduction. AMF from both farm types also reduced seed germination, but effects on plant growth were limited. Our results suggest that studies only considering AMF

  2. Biochem-Env: a platform of biochemistry for research in environmental and agricultural sciences.

    PubMed

    Cheviron, Nathalie; Grondin, Virginie; Mougin, Christian

    2017-04-07

    Biochemical indicators are potent tools to assess ecosystem functioning under anthropic and global pressures. Nevertheless, additional work is needed to improve the methods used for the measurement of these indicators, and for a more relevant interpretation of the obtained results. To face these challenges, the platform Biochem-Env aims at providing innovative and standardized measurement protocols, as well as database and information system favoring result interpretation and opening. Its skills and tools are also offered for expertise, consulting, training, and standardization. In addition, the platform is a service of a French Research Infrastructure for Analysis and Experimentation on Ecosystems, for research in environmental and agricultural sciences.

  3. Study Guide for TCT in Agriculture.

    ERIC Educational Resources Information Center

    Sailors, Robert A.

    This study guide was specifically designed for individuals preparing to take the Georgia Teacher Certification Test (TCT) in agriculture. The agriculture test was developed by the National Evaluation Systems, Inc. and educators in Georgia. The test covers 13 subareas: (1) plant science; (2) crop management; (3) animal science; (4) livestock and…

  4. Agribusiness Management. The Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    These materials in agribusiness management for the Connecticut Vocational Agriculture Curriculum were designed for use in the following areas: Animal Science; Plant Science; Agricultural Mechanics; and Natural Resources and Aquaculture. Each unit of this competency-based guide contains title of unit, unit length, grade level, objectives, teacher…

  5. Environmental effects of planting energy crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  6. Environmental effects of planting biomass crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.E.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous. and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  7. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu.

    PubMed

    Padmapriya, S; Murugan, N; Ragavendran, C; Thangabalu, R; Natarajan, D

    2016-01-01

    The Pot culture experiment performed for phytoextraction potential of selected agricultural plants [millet (Eleusine coracana), mustard (Brassica juncea), jowar (Sorghum bicolor), black gram (Vigna mungo), pumpkin (Telfairia occidentalis)] grown in metal contaminated soils around the Salem region, Tamilnadu, India. Physiochemical characterization of soils, reported as low to medium level of N, P, K was found in test soils. The Cr content higher in mine soils than control and the values are 0.176 mg/L in Dalmia soil and 0.049 mg/L in Burn & Co soil. The germination rate low in mine soil than control soils (25 to 85%). The content of chlorophyll, carotenoid, carbohydrate and protein decreased in mine soils than control. The morphological parameters and biomass values decreased in experimental plants due to metal accumulation. Proline content increased in test plants and ranged from 0.113 mg g(-1) to 0.858 mg g(-1) which indicate the stress condition due to toxicity of metals. Sorghum and black gram plants reported as metal tolerant capacity. Among the plants, Sorghum produced good results (both biomass and biochemical parameters) which equal to control plant and suggests Sorghum plant is an ideal for remediation of metal contaminated soils.

  8. Imaging techniques for elements and element species in plant science.

    PubMed

    Wu, Bei; Becker, J Sabine

    2012-05-01

    Revealing the uptake, transport, localization and speciation of both essential and toxic elements in plants is important for understanding plant homeostasis and metabolism, subsequently, providing information for food and nutrient studies, agriculture activities, as well as environmental research. In the last decade, emerging techniques for elemental imaging and speciation analysis allowed us to obtain increasing knowledge of elemental distribution and availabilities in plants. Chemical imaging techniques include mass spectrometric methods such as secondary ionization mass spectrometry (SIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron-based techniques such as X-ray fluorescence spectroscopy (SRXRF), and so forth. On the other hand, X-ray absorption spectroscopy (XAS) based on synchrotron radiation is capable of in situ investigation of local atomic structure around the central element of interest. This technique can also be operated in tandem with SRXRF to image each element species of interest within plant tissue. In this review, the principles and state-of-the-art of these techniques regarding sample preparation, advantages and limitations, and improvement of sensitivity and spatial resolution are discussed. New results with respect to elemental distribution and speciation in plants revealed by these techniques are presented.

  9. Elementary student and prospective teachers' agri-food system literacy: Understandings of agricultural and science education's goals for learning

    NASA Astrophysics Data System (ADS)

    Trexler, Cary Jay

    1999-09-01

    Although rhetoric abounds in the agricultural education literature regarding the public's dearth of agri-food system literacy, problems arise when establishing educational interventions to help ameliorate illiteracy. Researchers do not fully know what individuals understand about the complex agri-food system. Hence, educational programs and curricula may focus on areas where students already possess well developed and scientifically accurate schemata, while ignoring other areas where incompatible or naive understandings persist. Democratic decisions about complex societal and environmental issues, such as trade-offs of our industrial agri-food system, require individuals to possess understandings of complex interrelationships. This exploratory qualitative study determines what two groups---elementary students and prospective elementary school teachers---understand about selected concepts foundational to agri-food system literacy. To ground the study in current national education curricular standards, a synthesis of both agricultural and science education benchmarks was developed. This helped structure interviews with the study's informants: nine elementary students and nine prospective elementary teachers. Analysis of discourse was based upon a conceptual change methodology. Findings showed that informant background and non-school experiences were linked to agri-food system literacy, while formal, in-school learning was not. For elementary students, high socio-economic status, gardening and not living in urban areas were correlates with literacy; the prospective teacher group exhibited similar trends. Informants understood that food came from farms where plants and animals were raised. For the majority, however, farms were described as large gardens. Additionally, informants lacked a clear understanding of the roles soil and fertilizers play in crop production. Further, few spoke of weeds as competitors with crops for growth requirements. Informants understood that

  10. Perceptions of the National Agriscience Teacher Ambassador Academy toward Integrating Science into School-Based Agricultural Education Curriculum

    ERIC Educational Resources Information Center

    Myers, Brian E.; Thoron, Andrew C.; Thompson, Gregory W.

    2009-01-01

    The purpose of this study was to determine perceptions of participants in the 2007 National Agriscience Teacher Ambassador Academy (NATAA) toward integrating science into the agricultural education curriculum. NATAA participants felt that students are more motivated to learn, better prepared in science, provided more opportunities to solve…

  11. Building Interdisciplinary Research and Communication Skills in the Agricultural and Climate Sciences

    NASA Astrophysics Data System (ADS)

    Johnson-Maynard, J.; Borrelli, K.; Wolf, K.; Bernacchi, L.; Eigenbrode, S.; Daley Laursen, D.

    2015-12-01

    Preparing scientists and educators to create and promote practical science-based agricultural approaches to climate change adaptation and mitigation is a main focus of the Regional Approaches to Climate Change (REACCH) project. Social, political and environmental complexities and interactions require that future scientists work across disciplines rather than having isolated knowledge of one specific subject area. Additionally, it is important for graduate students earning M.S. or Ph.D. degrees in agriculture and climate sciences to be able to communicate scientific findings effectively to non-scientific audiences. Unfortunately, university graduate curricula rarely adequately prepare students with these important skills. REACCH recognizes the need for graduate students to have thorough exposure to other disciplines and to be able to communicate information for outreach and education purposes. These priorities have been incorporated into graduate training within the REACCH project. The interdisciplinary nature of the project and its sophisticated digital infrastructure provide graduate students multiple opportunities to gain these experiences. The project includes over 30 graduate students from 20 different disciplines and research foci including agronomy, biogeochemistry, soil quality, conservation tillage, hydrology, pest and beneficial organisms, economics, modeling, remote sensing, science education and climate science. Professional develop workshops were developed and held during annual project meetings to enhance student training. The "Toolbox" survey (http://www.cals.uidaho.edu/toolbox/) was used to achieve effective interdisciplinary communication. Interdisciplinary extension and education projects were required to allow students to gain experience with collaboration and working with stakeholder groups. Results of student surveys and rubrics developed to gauge success in interdisciplinary research and communication may provide a helpful starting point for

  12. An online agricultural genetics course

    PubMed Central

    Moses, Vivian

    2014-01-01

    In this age of rapidly developing online learning, the advent of a series of talks and supplementary material devoted to genetics in agriculture from Henry Stewart Talks (http://hstalks.com/main/browse_talks.php?r=776&c=252) is welcome indeed. The series is designed for researchers and graduate students in the fields of genetics, plant science, animal science, agricultural science, food science, human nutrition and environmental science, advanced undergraduate students, policy makers and managers in public and private sectors, and continuing professional education/development. PMID:25437233

  13. 7 CFR Appendix A to Part 3434 - List of Agriculture-Related Fields

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Food Technology and Processing 01.1099, Food Science and Technology, Other 01.1101, Plant Sciences... FOOD AND AGRICULTURE HISPANIC-SERVING AGRICULTURAL COLLEGES AND UNIVERSITIES CERTIFICATION PROCESS Pt... and Wholesaling 01.0106, Agricultural Business Technology 01.0199, Agricultural Business...

  14. 7 CFR Appendix A to Part 3434 - List of Agriculture-Related Fields

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Food Technology and Processing 01.1099, Food Science and Technology, Other 01.1101, Plant Sciences... FOOD AND AGRICULTURE HISPANIC-SERVING AGRICULTURAL COLLEGES AND UNIVERSITIES CERTIFICATION PROCESS... and Wholesaling 01.0106, Agricultural Business Technology 01.0199, Agricultural Business...

  15. Migration of plant viruses: Time correlations with the agriculture history and human immigration.

    PubMed

    Ohshima, Kazusato

    2015-01-01

    In this review, I made the phylodynamic comparisons of three plant viruses, Turnip mosaic virus (TuMV), Cauliflower mosaic virus (CaMV) and Cucumber mosaic virus (CMV), using the genomic sequences of a large numbers of isolates collected worldwide. We analyzed these genomic nucleotide sequences, in combination with published sequences, to estimate the timescale and rate of evolution of the individual genes of TuMV, CaMV and CMV. The main hosts of the viruses are Brassicaceae crops. We also compared these estimates from complete sequences with those from which non-synonymous and invariate codons had been removed. Our analyses provided a preliminary definition of the present geographical structure of three plant virus populations in the world, and showed that the time of migration of three plant viruses correlate well with agriculture history and human immigration.

  16. Children and their 4-H animal projects: How children use science in agricultural activity

    NASA Astrophysics Data System (ADS)

    Emo, Kenneth Roy

    Many children are introduced to science through informal educational programs. 4-H, an educational youth program, has a history of introducing scientific practices into agriculture. The purpose of this ethnographically-driven case study is to examine how science informs the actions of children raising market animals in a 4-H project. For two years the researcher collected data on 4-H children with market animal projects. Observations, interviews, and artifacts gathered are interpreted using the framework of activity theory. This study provides evidence for how the context of an activity system influences individual actions. Rules developed by the organization guide the actions of children to incorporate physical and psychological tools of science into their project to achieve the object: producing animals of proper weight and quality to be competitive in the county fair. Children learn the necessary actions from a community of practitioners through which expertise is distributed. Children's learning is demonstrated by the way their participation in their project changes with time, from receiving assistance from others to developing expertise in which they provide assistance to others. The strength of this educational experience is how children apply specific tools of science in ways that provide meaning and relevancy to their 4-H activity.

  17. Agriculture--Agriculture Science--Seed Germination. Kit No. 51. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Cooper, Samuel

    An instructor's manual and student activity guide on seed germination are provided in this set of prevocational education materials which focuses on the vocational area of agriculture. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home economics,…

  18. Introduction to Agricultural Business Unit. Student Reference for Agricultural Science I Core Curriculum. [Volume 19, Number 20.

    ERIC Educational Resources Information Center

    Timko, Joseph J.; Birkenholz, Robert J.

    This student reference on agricultural business, designed to accompany the lessons outlined in the 1984 instructor's guide, "Introduction to Agricultural Business," has seven lessons: (1) introduction to agribusiness; (2) careers in agribusiness; (3) agribusiness in the community; (4) the role of the employee in an agribusiness; (5)…

  19. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape.

    PubMed

    Bowles, Timothy M; Hollander, Allan D; Steenwerth, Kerri; Jackson, Louise E

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid.

  20. History, achievements, and future challenges of Japanse Society of Soil Science and Plant Nutrition

    NASA Astrophysics Data System (ADS)

    Kosaki, Takashi

    2013-04-01

    Modern soil science was introduced just after the reformation of Japan in 1867 by Max Fesca, Oskar Kellner and other German teachers together with their Japanese students, who were traced back to Justus von Liebig and thus started studying and teaching soils based on agrogeology and agricultural chemistry. After the German teachers left, the graduates from agricultural colleges formed the Foundation of Agricultural Sciences in 1887, based on which the Society of the Science of Soil and Manure, Japan, was established in 1927. The research, education and extension activities then expanded to Korea, Manchuria and Inner Mongolia as well as Taiwan and Sakhalin in accordance with a military invasion to China and Southeast Asian countries until the end of WWII. After WWII together with the reformation guided by the General Headquarters (GHQ) of the Allied Forces, soils research and educational units increased in number in the universities and governmental institutions. The society started publication of the journal in English, "Soils and Plant Food" in 1955, which was renamed to "Soil Science and Plant Nutrition (SSPN)" in 1961. There formed a variety of discussion groups in the society such as soil microbiology, pedology, clay science, soil physics, plant physiology, and forest environment, which became independent in the 1960s. Economic growth of Japan in the 1970s accomplished self-sufficiency in rice production and extended the range of crop to grow, however, a variety of environmental issues came out. A new division was established in the society for solving soil-related environmental problems. The society became more involved in international activities and hosted a number of international conferences, workshops, etc., the most significant of which was the 14th International Congress of Soil Science at Kyoto in 1990. The society proposed there a regional organization to cope with the unique issues, e.g. improvement of paddy rice cultivation, for Asian countries and

  1. Report of the Action Committee on Plant and Soil Sciences.

    ERIC Educational Resources Information Center

    Schein, Martin W.

    Problems in agriculture in ten or twenty years will be dramatically different from present ones. The solutions to these problems will require the development of new agricultural or agriculturally related professions such as ecological engineering, space biology, marine agriculture, systems agriculture and industrial agriculture. Dealing with these…

  2. Minnesota Department of Education Agricultural Education Program Descriptions 01.0000-01.9095

    ERIC Educational Resources Information Center

    Minnesota Department of Education, 2004

    2004-01-01

    This document provides a brief compilation of descriptions of agricultural education programs linked to Career and Technical Education (CTE) initiative in Minnesota. Agriculture Exploration courses focus on the animal sciences, plant sciences, natural resource sciences, agricultural business and marketing, and leadership development. Agribusiness…

  3. The influence of plants on atmospheric methane in an agriculture-dominated landscape.

    PubMed

    Zhang, Xin; Lee, Xuhui; Griffis, Timothy J; Baker, John M; Erickson, Matt D; Hu, Ning; Xiao, Wei

    2014-07-01

    The primary objective of this study was to clarify the influence of crop plants on atmospheric methane (CH4) in an agriculture-dominated landscape in the Upper Midwest of the United States. Measurements were carried out at two contrasting scales. At the plant scale, CH4 fluxes from soybean and corn plants were measured with a laser-based plant chamber system. At the landscape scale, the land surface flux was estimated with a modified Bowen ratio technique using measurements made on a tall tower. The chamber data revealed a diurnal pattern for the plant CH4 flux: it was positive (an emission rate of 0.4±0.1 nmol m(-2) s(-1), average of soybean and corn, in reference to the unit ground area) during the day, and negative (an uptake rate of -0.8±0.8 nmol m(-2) s(-1)) during the night. At the landscape scale, the flux was estimated to be 14.8 nmol m(-2) s(-1) at night and highly uncertain during the day, but the available references and the flux estimates from the equilibrium methods suggested that the CH4 flux during the entire observation period was similar to the estimated nighttime flux. Thus, soybean and corn plants have a negligible role in the landscape-scale CH4 budget.

  4. Agricultural recycling of treatment-plant sludge: a case study for a vegetable-processing factory.

    PubMed

    Dolgen, Deniz; Alpaslan, M Necdet; Delen, Nafiz

    2007-08-01

    The present study evaluated the possibility of using the sludge produced by a vegetable-processing factory in agriculture. The sludge was amended with a soil mixture (i.e., a mixture of sand, soil, and manure) and was applied at 0, 165, 330, 495 and 660 t/ha to promote the growth of cucumbers. The effects of various sludge loadings on plant growth were assessed by counting plants and leaves, measuring stem lengths, and weighing the green parts and roots of the plants. We also compared heavy metal uptake by the plants for sludge loadings of 330, 495, and 660 t/ha with various recommended standards for vegetables. Our results showed that plant growth patterns were influenced to some extent by the sludge loadings. In general, the number of leaves, stem length, and dry weight of green parts exhibited a pronounced positive growth response compared with an unfertilized control, and root growth showed a lesser but still significant response at sludge loadings of 165 and 330 t/ha. The sludge application caused no significant increase in heavy metal concentrations in the leaves, though zinc (Zn) and iron (Fe) were found at elevated concentrations. However, despite the Zn and Fe accumulation, we observed no toxicity symptoms in the plants. This may be a result of cucumber's tolerance of high metal levels.

  5. Introductory animal science-based instruction influences attitudes on animal agriculture issues.

    PubMed

    Bobeck, E A; Combs, D K; Cook, M E

    2014-02-01

    The demographics of incoming university animal science majors have shifted from students with a farm background to urban students with no history of direct livestock contact. Research completed before the Internet was a central source of information indicated that incoming urban students tend to express no opinion or a neutral opinion regarding livestock agriculture issues. Due to the changing background of incoming students enrolled in introductory university-level animal science classes, we sought to determine 1) if livestock background (self-identified as raised in a farm or urban setting), sex, or animal science career interest influenced the opinions of incoming students regarding critical issues involving livestock farming practices and 2) if 15 wk of introductory animal science instruction changed student opinions. A total of 224 students were given 2 identical anonymous surveys (start and end of 15 wk) with 5 demographic questions and 9 animal issue statements. For each statement, students marked their opinion by placing a vertical line on a continuous 130 mm horizontal line, where a vertical line placed at 0 mm = strongly agree and 130 mm = strongly disagree. Data were analyzed by ANOVA to determine any significant effects of instruction, background, sex, and future career preference on survey responses. Before instruction, urban students were less agreeable than farm students that animal farming was moral and humane and that farmers are concerned about animal welfare and livestock are of value to society (P ≤ 0.05). Urban students were more likely than farm students to purchase organic foods or food based on environmental/welfare standards (P ≤ 0.05). Introductory animal science instruction resulted in students becoming more agreeable that animal farming was humane, farmers are concerned about animal welfare, and animal agriculture is a value to society (P ≤ 0.05). Postinstruction, students were more likely to buy food products based on price (P

  6. Agricultural Science in the Wild: A Social Network Analysis of Farmer Knowledge Exchange

    PubMed Central

    Wood, Brennon A.; Blair, Hugh T.; Gray, David I.; Kemp, Peter D.; Kenyon, Paul R.; Morris, Steve T.; Sewell, Alison M.

    2014-01-01

    Responding to demands for transformed farming practices requires new forms of knowledge. Given their scale and complexity, agricultural problems can no longer be solved by linear transfers in which technology developed by specialists passes to farmers by way of extension intermediaries. Recent research on alternative approaches has focused on the innovation systems formed by interactions between heterogeneous actors. Rather than linear transfer, systems theory highlights network facilitation as a specialized function. This paper contributes to our understanding of such facilitation by investigating the networks in which farmers discuss science. We report findings based on the study of a pastoral farming experiment collaboratively undertaken by a group of 17 farmers and five scientists. Analysis of prior contact and alter sharing between the group’s members indicates strongly tied and decentralized networks. Farmer knowledge exchanges about the experiment have been investigated using a mix of quantitative and qualitative methods. Network surveys identified who the farmers contacted for knowledge before the study began and who they had talked to about the experiment by 18 months later. Open-ended interviews collected farmer statements about their most valuable contacts and these statements have been thematically analysed. The network analysis shows that farmers talked about the experiment with 192 people, most of whom were fellow farmers. Farmers with densely tied and occupationally homogeneous contacts grew their networks more than did farmers with contacts that are loosely tied and diverse. Thematic analysis reveals three general principles: farmers value knowledge delivered by persons rather than roles, privilege farming experience, and develop knowledge with empiricist rather than rationalist techniques. Taken together, these findings suggest that farmers deliberate about science in intensive and durable networks that have significant implications for

  7. Noncrop flowering plants restore top-down herbivore control in agricultural fields.

    PubMed

    Balmer, Oliver; Pfiffner, Lukas; Schied, Johannes; Willareth, Martin; Leimgruber, Andrea; Luka, Henryk; Traugott, Michael

    2013-08-01

    Herbivore populations are regulated by bottom-up control through food availability and quality and by top-down control through natural enemies. Intensive agricultural monocultures provide abundant food to specialized herbivores and at the same time negatively impact natural enemies because monocultures are depauperate in carbohydrate food sources required by many natural enemies. As a consequence, herbivores are released from both types of control. Diversifying intensive cropping systems with flowering plants that provide nutritional resources to natural enemies may enhance top-down control and contribute to natural herbivore regulation. We analyzed how noncrop flowering plants planted as "companion plants" inside cabbage (Brassica oleracea) fields and as margins along the fields affect the plant-herbivore-parasitoid-predator food web. We combined molecular analyses quantifying parasitism of herbivore eggs and larvae with molecular predator gut content analysis and a comprehensive predator community assessment. Planting cornflowers (Centaurea cynanus), which have been shown to attract and selectively benefit Microplitis mediator, a larval parasitoid of the cabbage moth Mamestra brassicae, between the cabbage heads shifted the balance between trophic levels. Companion plants significantly increased parasitism of herbivores by larval parasitoids and predation on herbivore eggs. They furthermore significantly affected predator species richness. These effects were present despite the different treatments being close relative to the parasitoids' mobility. These findings demonstrate that habitat manipulation can restore top-down herbivore control in intensive crops if the right resources are added. This is important because increased natural control reduces the need for pesticide input in intensive agricultural settings, with cascading positive effects on general biodiversity and the environment. Companion plants thus increase biodiversity both directly, by introducing

  8. An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation.

    PubMed

    Chi-Ham, Cecilia L; Boettiger, Sara; Figueroa-Balderas, Rosa; Bird, Sara; Geoola, Josef N; Zamora, Pablo; Alandete-Saez, Monica; Bennett, Alan B

    2012-06-01

    The Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation. To address public sector's limited freedom-to-operate, or legal access to third-party rights, in the area of plant transformation, we describe PIPRA's patent 'pool' approach to develop open-access technologies for plant transformation which consolidate patent and tangible property rights in marker-free vector systems. The plant transformation system has been licensed and deployed for both commercial and humanitarian applications in the United States (US) and Africa, respectively.

  9. Towards personalized agriculture: what chemical genomics can bring to plant biotechnology.

    PubMed

    Stokes, Michael E; McCourt, Peter

    2014-01-01

    In contrast to the dominant drug paradigm in which compounds were developed to "fit all," new models focused around personalized medicine are appearing in which treatments are developed and customized for individual patients. The agricultural biotechnology industry (Ag-biotech) should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis, when wedded to accessible large chemical space, should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to "personalize" agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early stage research and development, a situation that has proven very fruitful for Big Pharma.

  10. Towards personalized agriculture: what chemical genomics can bring to plant biotechnology

    PubMed Central

    Stokes, Michael E.; McCourt, Peter

    2014-01-01

    In contrast to the dominant drug paradigm in which compounds were developed to “fit all,” new models focused around personalized medicine are appearing in which treatments are developed and customized for individual patients. The agricultural biotechnology industry (Ag-biotech) should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis, when wedded to accessible large chemical space, should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to “personalize” agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early stage research and development, a situation that has proven very fruitful for Big Pharma. PMID:25183965

  11. The plant breeding industry after pure line theory: Lessons from the National Institute of Agricultural Botany.

    PubMed

    Berry, Dominic

    2014-06-01

    In the early twentieth century, Wilhelm Johannsen proposed his pure line theory and the genotype/phenotype distinction, work that is prized as one of the most important founding contributions to genetics and Mendelian plant breeding. Most historians have already concluded that pure line theory did not change breeding practices directly. Instead, breeding became more orderly as a consequence of pure line theory, which structured breeding programmes and eliminated external heritable influences. This incremental change then explains how and why the large multi-national seed companies that we know today were created; pure lines invited standardisation and economies of scale that the latter were designed to exploit. Rather than focus on breeding practice, this paper examines the plant varietal market itself. It focusses upon work conducted by the National Institute of Agricultural Botany (NIAB) during the interwar years, and in doing so demonstrates that, on the contrary, the pure line was actually only partially accepted by the industry. Moreover, claims that contradicted the logic of the pure line were not merely tolerated by the agricultural geneticists affiliated with NIAB, but were acknowledged and legitimised by them. The history of how and why the plant breeding industry was transformed remains to be written.

  12. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health.

    PubMed

    Machado, J; Campos, A; Vasconcelos, V; Freitas, M

    2017-02-01

    Toxic cyanobacterial blooms are recognized as an emerging environmental threat worldwide. Although microcystin-LR is the most frequently documented cyanotoxin, studies on cylindrospermopsin have been increasing due to the invasive nature of cylindrospermopsin-producing cyanobacteria. The number of studies regarding the effects of cyanotoxins on agricultural plants has increased in recent years, and it has been suggested that the presence of microcystin-LR and cylindrospermopsin in irrigation water may cause toxic effects in edible plants. The uptake of these cyanotoxins by agricultural plants has been shown to induce morphological and physiological changes that lead to a potential loss of productivity. There is also evidence that edible terrestrial plants can bioaccumulate cyanotoxins in their tissues in a concentration dependent-manner. Moreover, the number of consecutive cycles of watering and planting in addition to the potential persistence of microcystin-LR and cylindrospermopsin in the environment are likely to result in groundwater contamination. The use of cyanotoxin-contaminated water for agricultural purposes may therefore represent a threat to both food security and food safety. However, the deleterious effects of cyanotoxins on agricultural plants and public health seem to be dependent on the concentrations studied, which in most cases are non-environmentally relevant. Interestingly, at ecologically relevant concentrations, the productivity and nutritional quality of some agricultural plants seem not to be impaired and may even be enhanced. However, studies assessing if the potential tolerance of agricultural plants to these concentrations can result in cyanotoxin and allergen accumulation in the edible tissues are lacking. This review combines the most current information available regarding this topic with a realistic assessment of the impact of cyanobacterial toxins on agricultural plants, groundwater quality and public health.

  13. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species.

    PubMed

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-Chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction.

  14. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage.

    PubMed

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M; Fahem, Amin

    2016-06-05

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90°C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min.

  15. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage

    NASA Astrophysics Data System (ADS)

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M.; Fahem, Amin

    2016-06-01

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90 °C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min.

  16. Uptake of airborne semivolatile organic compounds in agricultural plants: Field measurements of interspecies variability

    SciTech Connect

    Boehme, F.; Welsch-Pausch, K.; McLachlan, M.S.

    1999-06-01

    The accumulation of semivolatile organic compounds (SOCs) in plants is important because plants are the major vector of these compounds into terrestrial food chains and because plants play an important role in scavenging SOCs from the atmosphere and transferring them to the soil. Agricultural plants are of particular interest because they are a key link in the atmosphere-fodder-milk/beef food chain that accounts for much of background human exposure to persistent lipophilic organic pollutants such as PCBs and PCDD/Fs. In this study the accumulation of PCBs, PCDD/Fs, PAHs, and some chlorobenzenes was determined in eight grassland species as well as maize and sunflower leaves collected simultaneously at a semirural site in Central Europe. Air samples were collected at the same site during the growth of these plants, and the particle-bound and gaseous concentrations were determined. A newly developed interpretive framework was employed to analyze the data, and it was established whether the accumulation of a given compound was due primarily to equilibrium partitioning, kinetically limited gaseous deposition, or particle-bound deposition. The interspecies variability in uptake was then examined, and it was found that for those compounds which had accumulated primarily via kinetically limited gaseous deposition and particle-bound deposition the variation among the 10 species was generally a factor of <4.

  17. Metal uptake by agricultural plant species grown in sludge-amended soil following ecosystem restoration practices

    SciTech Connect

    Peles, J.D.; Barrett, G.W.; Brewer, S.R.

    1996-12-01

    The disposal of municipal sewage sludge is an important environmental problem presently facing society. Because sludge is rich in plant nutrients such as nitrogen and phosphorous, land application as a fertilizer has been proposed as a cost-effective means of disposal. This method of disposal, however, is frequently the subject of public health concern since municipal sludge may contain heavy metals that potentially could be introduced into the human food chain. This study examined metal concentrations in two agricultural species at a study site where ecosystem restoration practices (liming and tilling) had been conducted for 5 years following 11 years of sludge enrichment. 11 refs., 2 tabs.

  18. Introduction: contexts and concepts of adaptability and plasticity in 20th-century plant science.

    PubMed

    Baranski, Marci; Peirson, B R Erick

    2015-04-01

    Nowhere is the problem of understanding the complex linkages between organisms and their environments more apparent than in the science of plants. Today, efforts by scientists to predict and manage the biological consequences of shifting global and regional climates depend on understanding how organisms respond morphologically, physiologically, and behaviorally to changes in their environments. Investigating organismal "adaptability" (or "plasticity") is rarely straightforward, prompting controversy and discourse among and between ecologists and agricultural scientists. Concepts like agro-climatic adaptation, phenotypic plasticity, and genotype-environment interaction (GxE) are key to those debates, and their complex histories have imbued them with assumptions and meanings that are consequential but often opaque. This special section explores the diverse ways in which organismal adaptability has been conceptualized and investigated in the second half of the 20th century, and the multifarious political, economic, environmental, and intellectual contexts in which those conceptions have emerged and evolved. The papers in this section bring together perspectives from the histories of agriculture, population ecology, evolutionary theory, and plant physiology, cutting across Asian, North American, and British contexts. As a whole, this section highlights not only the diversity of meanings of "adaptability" and "plasticity," but also the complex linkages between those meanings, the scientific practices and technologies in which they are embedded, and the ends toward which those practices and technologies are employed.

  19. Global climate change and US agriculture

    NASA Technical Reports Server (NTRS)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  20. Geographic Variation of Plant Circadian Clock Function in Natural and Agricultural Settings.

    PubMed

    Greenham, Kathleen; Lou, Ping; Puzey, Joshua R; Kumar, Ganesh; Arnevik, Cindy; Farid, Hany; Willis, John H; McClung, C Robertson

    2017-02-01

    The increasing demand for improved agricultural production will require more efficient breeding for traits that maintain yield under heterogeneous environments. The internal circadian oscillator is essential for perceiving and coordinating environmental cues such as day length, temperature, and abiotic stress responses within physiological processes. To investigate the contribution of the circadian clock to local adaptability, we have analyzed circadian period by leaf movement in natural populations of Mimulus guttatus and domesticated cultivars of Glycine max. We detected consistent variation in circadian period along a latitudinal gradient in annual populations of the wild plant and the selectively bred crop, and this provides novel evidence of natural and artificial selection for circadian performance. These findings provide new support that the circadian clock acts as a central regulator of plant adaptability and further highlight the potential of applying circadian clock gene variation to marker-assisted breeding programs in crops.

  1. Effects of coal-fired thermal power plant discharges on agricultural soil and crop plants.

    PubMed

    Ajmal, M; Khan, M A

    1986-04-01

    The physicochemical properties of the upstream and downstream waters from the Upper Ganga canal, discharged cooling tower water, machine washings, and scrubber and bottom ash effluents of a 530 MW Kasimpur coal-fired thermal power plant have been determined, and their effects directly on fertile soil and indirectly on pea (Pisum sativam) and wheat (Triticum aestivum) crops have also been studied. The effluents were found to be alkaline in nature. The scrubber and bottom ash effluent was found to contain large amounts of solids and had high biochemical and chemical oxygen demands. All the effluents were found to be responsible for altering the chemical composition of the soil. The soils irrigated with the different effluents exhibited an increase in pH, organic matter, calcium carbonate, water-soluble salts, cation exchange capacity, electrical conductivity, and nitrogen and phosphorus contents while potassium content decreased, probably due to being leached to the lower layers of the soil. The effects of 100, 50, and 0% (tap water control) dilutions of cooling tower, machine washings, and scrubber and bottom ash effluents on the germination and growth of pea and wheat crops were also monitored. Using the undiluted effluents, there was 100% germination for both the crops when the irrigation was done with cooling tower effluent. The germination was restricted to 90% for the two crops when irrigated with machine washings effluent, and to 80 and 70% for pea and wheat, respectively, when irrigated with scrubber and bottom ash effluent. The samples of upstream and downstream canal water were also used for irrigating soils with and without crop plants in order to ascertain the impact of the effluents on the canal water and its subsequent effect on the crops. The soils irrigated with downstream canal water were found to contain slightly more calcium carbonate, phosphorus, and ammonia-nitrogen than those receiving upstream canal water. Though 100% germination was obtained

  2. Influence of planting grass filter strips on the structure and function of riparian habitats of agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass filter strips are strips of cool or warm season grasses planted adjacent to agricultural streams to reduce nutrient, pesticide, and sediment input. This conservation practice is the most frequently planted riparian buffer type in the United States. Previous studies have not evaluated how gra...

  3. Noncrop flowering plants restore top-down herbivore control in agricultural fields

    PubMed Central

    Balmer, Oliver; Pfiffner, Lukas; Schied, Johannes; Willareth, Martin; Leimgruber, Andrea; Luka, Henryk; Traugott, Michael

    2013-01-01

    Abstract Herbivore populations are regulated by bottom-up control through food availability and quality and by top-down control through natural enemies. Intensive agricultural monocultures provide abundant food to specialized herbivores and at the same time negatively impact natural enemies because monocultures are depauperate in carbohydrate food sources required by many natural enemies. As a consequence, herbivores are released from both types of control. Diversifying intensive cropping systems with flowering plants that provide nutritional resources to natural enemies may enhance top-down control and contribute to natural herbivore regulation. We analyzed how noncrop flowering plants planted as “companion plants” inside cabbage (Brassica oleracea) fields and as margins along the fields affect the plant–herbivore–parasitoid–predator food web. We combined molecular analyses quantifying parasitism of herbivore eggs and larvae with molecular predator gut content analysis and a comprehensive predator community assessment. Planting cornflowers (Centaurea cynanus), which have been shown to attract and selectively benefit Microplitis mediator, a larval parasitoid of the cabbage moth Mamestra brassicae, between the cabbage heads shifted the balance between trophic levels. Companion plants significantly increased parasitism of herbivores by larval parasitoids and predation on herbivore eggs. They furthermore significantly affected predator species richness. These effects were present despite the different treatments being close relative to the parasitoids’ mobility. These findings demonstrate that habitat manipulation can restore top-down herbivore control in intensive crops if the right resources are added. This is important because increased natural control reduces the need for pesticide input in intensive agricultural settings, with cascading positive effects on general biodiversity and the environment. Companion plants thus increase biodiversity both

  4. Combined hydrogen and carbon isotopes of plant waxes as an indicator of drought impacts on ancient Maya agriculture

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2012-12-01

    There is increasing evidence suggesting that a series of droughts in the Yucatan Peninsula coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax δD, δ13C, and Δ14C analyses in two lake sediment cores from southeastern Mexico and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change. Plant-wax specific Δ14C ages indicate a large input of pre-aged plant waxes into lake sediment. Comparison of plant-wax δD records with other regional hydroclimate proxy records suggest that plant-wax ages are evenly distributed around plant-wax radiocarbon ages, and that applying an age model based on plant-wax radiocarbon ages is appropriate for these lake sediments. We evaluate how differences in plant-wax age distributions influence stable isotope records to assess the age uncertainty associated with records of climate and vegetation change derived from plant-wax stable isotopes. In this low-elevation tropical environment plant-wax δ13C is largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δ13C would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analysis of plant-wax δD and δ13C from both lakes indicates increasingly divergent trends following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend to correspond with low plant-wax δ13C values and vice versa. This pattern is consistent with

  5. New Technologies for 21st Century Plant Science

    PubMed Central

    Ehrhardt, David W.; Frommer, Wolf B.

    2012-01-01

    Plants are one of the most fascinating and important groups of organisms living on Earth. They serve as the conduit of energy into the biosphere, provide food, and shape our environment. If we want to make headway in understanding how these essential organisms function and build the foundation for a more sustainable future, then we need to apply the most advanced technologies available to the study of plant life. In 2009, a committee of the National Academy highlighted the “understanding of plant growth” as one of the big challenges for society and part of a new era which they termed “new biology.” The aim of this article is to identify how new technologies can and will transform plant science to address the challenges of new biology. We assess where we stand today regarding current technologies, with an emphasis on molecular and imaging technologies, and we try to address questions about where we may go in the future and whether we can get an idea of what is at and beyond the horizon. PMID:22366161

  6. "Planting the Seeds of Science." Development and Evaluation of a New Flexible and Adaptable Early Childhood Science Resource

    ERIC Educational Resources Information Center

    Howitt, Christine

    2011-01-01

    "Planting the Seeds of Science" is a new early childhood science resource developed through a collaboration between science/engineering academics, early childhood teacher educators and early childhood pre-service teachers, with funding from the Australian Learning and Teaching Council. Based on best practice early childhood principles,…

  7. Potential assessment of establishing a renewable energy plant in a rural agricultural area.

    PubMed

    Su, Ming-Chien; Kao, Nien-Hsin; Huang, Wen-Jar

    2012-06-01

    An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.

  8. A Qualitative Study of Prospective Elementary Teachers' Grasp of Agricultural and Science Educational Benchmarks for Agricultural Technology.

    ERIC Educational Resources Information Center

    Trexler, Cary J.; Meischen, Deanna

    2002-01-01

    Interviews with eight preservice elementary teachers regarding benchmarks related to agricultural technology for food and fiber showed that those from rural areas had more complex understanding of the trade-offs in technology use; urban residents were more concerned with ethical dilemmas. Pesticide pollution was most understood, genetic…

  9. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape.

    PubMed

    Cole, R J; Holl, K D; Zahawi, R A

    2010-07-01

    outside of planted areas is strongly reduced. Planting design was more important for seed deposition than amount of forest cover within the surrounding 100- and 500-m radius areas. Establishing plantations and large islands facilitates the arrival of early-successional tree seeds and represents a broadly applicable strategy for increasing seed rain on abandoned agricultural lands. However, more intensive restoration approaches may be necessary for establishment of dispersal-limited species.

  10. Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds.

    PubMed

    Flohre, Andreas; Fischer, Christina; Aavik, Tsipe; Bengtsson, Jan; Berendse, Frank; Bommarco, Riccardo; Ceryngier, Piotr; Clement, Lars W; Dennis, Christopher; Eggers, Sönke; Emmerson, Mark; Geiger, Flavia; Guerrero, Irene; Hawro, Violetta; Inchausti, Pablo; Liira, Jaan; Morales, Manuel B; Oñate, Juan J; Pärt, Tomas; Weisser, Wolfgang W; Winqvist, Camilla; Thies, Carsten; Tscharntke, Teja

    2011-07-01

    Effects of agricultural intensification (AI) on biodiversity are often assessed on the plot scale, although processes determining diversity also operate on larger spatial scales. Here, we analyzed the diversity of vascular plants, carabid beetles, and birds in agricultural landscapes in cereal crop fields at the field (n = 1350), farm (n = 270), and European-region (n = 9) scale. We partitioned diversity into its additive components alpha, beta, and gamma, and assessed the relative contribution of beta diversity to total species richness at each spatial scale. AI was determined using pesticide and fertilizer inputs, as well as tillage operations and categorized into low, medium, and high levels. As AI was not significantly related to landscape complexity, we could disentangle potential AI effects on local vs. landscape community homogenization. AI negatively affected the species richness of plants and birds, but not carabid beetles, at all spatial scales. Hence, local AI was closely correlated to beta diversity on larger scales up to the farm and region level, and thereby was an indicator of farm- and region-wide biodiversity losses. At the scale of farms (12.83-20.52%) and regions (68.34-80.18%), beta diversity accounted for the major part of the total species richness for all three taxa, indicating great dissimilarity in environmental conditions on larger spatial scales. For plants, relative importance of alpha diversity decreased with AI, while relative importance of beta diversity on the farm scale increased with AI for carabids and birds. Hence, and in contrast to our expectations, AI does not necessarily homogenize local communities, presumably due to the heterogeneity of farming practices. In conclusion, a more detailed understanding of AI effects on diversity patterns of various taxa and at multiple spatial scales would contribute to more efficient agri-environmental schemes in agroecosystems.

  11. Concerns of early career agricultural science teachers and the perceived effectiveness of educator preparation programs in addressing those concerns

    NASA Astrophysics Data System (ADS)

    Pearson, Camilla E.

    Little is known about the concerns and needs of early career agricultural teachers associated with the various routes to certification and how these routes address those concerns. The purpose of this study is to determine how selected early career agriculture teachers perceive their teacher preparation program and how effective their programs were at addressing these concerns during their first year of teaching. The sample consisted of secondary agricultural teachers in Texas FFA Areas V and VI, who self-identified themselves as an early career agricultural teacher in their first 3 years of teaching. The first phase included a web-based survey administered to assess the concerns of early career agricultural teachers. Two Likert-type scales were used, and these were used to assess the perceived importance of problems faced by early career agricultural teachers and the frequency in which they encounter those problems. The second phase included a qualitative interview to better understand the perceived relationship between participants' undergraduate preparation, experiences in agriculture and related organizations, and other related activities in preparing them as agriculture science teachers. The teachers interviewed in this study indicated that overall, they were pleased with their preparation. Teacher educators from both programs should address the concerns presented from all teachers to further prepare them for issues faced by early career teachers because it is evident that these issues are not going away.

  12. Vitamin Deficiencies in Humans: Can Plant Science Help?[W

    PubMed Central

    Fitzpatrick, Teresa B.; Basset, Gilles J.C.; Borel, Patrick; Carrari, Fernando; DellaPenna, Dean; Fraser, Paul D.; Hellmann, Hanjo; Osorio, Sonia; Rothan, Christophe; Valpuesta, Victoriano; Caris-Veyrat, Catherine; Fernie, Alisdair R.

    2012-01-01

    The term vitamin describes a small group of organic compounds that are absolutely required in the human diet. Although for the most part, dependency criteria are met in developed countries through balanced diets, this is not the case for the five billion people in developing countries who depend predominantly on a single staple crop for survival. Thus, providing a more balanced vitamin intake from high-quality food remains one of the grandest challenges for global human nutrition in the coming decade(s). Here, we describe the known importance of vitamins in human health and current knowledge on their metabolism in plants. Deficits in developing countries are a combined consequence of a paucity of specific vitamins in major food staple crops, losses during crop processing, and/or overreliance on a single species as a primary food source. We discuss the role that plant science can play in addressing this problem and review successful engineering of vitamin pathways. We conclude that while considerable advances have been made in understanding vitamin metabolic pathways in plants, more cross-disciplinary approaches must be adopted to provide adequate levels of all vitamins in the major staple crops to eradicate vitamin deficiencies from the global population. PMID:22374394

  13. Animal Science Experts' Opinions on the Non-Technical Skills Secondary Agricultural Education Graduates Need for Employment in the Animal Science Industry: A Delphi Study

    ERIC Educational Resources Information Center

    Slusher, Wendy L.; Robinson, J. Shane; Edwards, M. Craig

    2010-01-01

    Non-technical, employability skills are in high demand for entry-level job-seekers. As such, this study sought to describe the perceptions of Oklahoma's animal science industry leaders as it related to the employability skills needed for entry-level employment of high school graduates who had completed coursework in Oklahoma's Agricultural, Food…

  14. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture.

    PubMed

    Huang, Li-Feng; Song, Liu-Xia; Xia, Xiao-Jian; Mao, Wei-Hua; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan

    2013-02-01

    Negative plant-soil feedbacks play an important role in soil sickness, which is one of the factors limiting the sustainable development of intensive agriculture. Various factors, such as the buildup of pests in the soil, disorder in physico-chemical soil properties, autotoxicity, and other unknown factors may contribute to soil sickness. A range of autotoxins have been identified, and these exhibit their allelopathic potential by influencing cell division, water and ion uptake, dark respiration, ATP synthesis, redox homeostasis, gene expression, and defense responses. Meanwhile, there are great interspecific and intraspecific differences in the uptake and accumulation of autotoxins, which contribute to the specific differences in growth in response to different autotoxins. Importantly, the autotoxins also influence soil microbes and vice versa, leading to an increased or decreased degree of soil sickness. In many cases, autotoxins may enhance soilborne diseases by predisposing the roots to infection by soilborne pathogens through a direct biochemical and physiological effect. Some approaches, such as screening for low autotoxic potential and disease-resistant genotypes, proper rotation and intercropping, proper soil and plant residue management, adoption of resistant plant species as rootstocks, introduction of beneficial microbes, physical removal of phytotoxins, and soil sterilization, are proposed. We discuss the challenges that we are facing and possible approaches to these.

  15. A Qualitative Study of Technology-Based Training in Organizations that Hire Agriculture and Life Sciences Students

    ERIC Educational Resources Information Center

    Bedgood, Leslie; Murphrey, Theresa Pesl; Dooley, Kim E.

    2008-01-01

    Technological advances have created unlimited opportunities in education. Training and technology have merged to create new methods referred to as technology-based training. The purpose of this study was to identify organizations that hire agriculture and life sciences students for positions involving technology-based training and identify…

  16. Home Influences on the Academic Performance of Agricultural Science Students in Ikwuano Local Government Area of Abia State, Nigeria

    ERIC Educational Resources Information Center

    Ndirika, Maryann C.; Njoku, U. J.

    2012-01-01

    This study was conducted to investigate the home influences on the academic performance of agricultural science secondary school students in Ikwuano Local Government Area of Abia State. The instrument used in data collection was a validated questionnaire structured on a two point rating scale. Simple random sampling technique was used to select…

  17. Status of Teaching Pre-Vocational Subjects in the Junior Secondary School Level (Agricultural Science and Home Economics)

    ERIC Educational Resources Information Center

    Ndem, J. U.; Akubue, B. N.

    2016-01-01

    This work assessed the status of teaching pre-vocational subjects in junior secondary school level. The study adopted descriptive survey method. The population of the study was 2,916, while the sample for the study was 215 pre-vocational teachers and agricultural science and home economics students. The study was carried out in Afikpo Education…

  18. An Examination of Pre-Service Agricultural Science Teachers' Interest and Participation in International Experiences: Motivations and Barriers

    ERIC Educational Resources Information Center

    Murphrey, Theresa Pesl; Lane, Katy; Harlin, Julie; Cherry, Audie

    2016-01-01

    The importance of creating global mindedness within pre-service agricultural science teachers through international experiences cannot be overstated. However, providing opportunities for international experiences and college students selecting to participate in these opportunities are two very different actions. Mechanisms must be put in place…

  19. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    PubMed

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s.

  20. Chris Lamb: a visionary leader in plant science.

    PubMed

    Dixon, Richard A

    2011-01-01

    Christopher John Lamb (1950-2009) made major contributions to the field of plant defense gene activation, particularly through his studies on signal transduction mechanisms. Between 1994 and 2004, he published a series of seminal papers that outlined the involvement of hydrogen peroxide, nitric oxide, lipid transfer proteins, and aspartic proteases as critical components of local and/or systemic resistance during plant-microbe interactions. Prior to this, he had been one of the first to establish the fact that induced defense responses resulted from transcriptional activation of sets of coordinately regulated genes. Chris obtained his B.S and PhD degrees in biochemistry from the University of Cambridge, United Kingdom, moving to the Botany School at the University of Oxford as a postdoctoral fellow in 1975 and to the Biochemistry Department in Oxford as a Departmental Demonstrator in 1978. He was appointed founding director of the Plant Biology Laboratory at the Salk Institute for Biological Studies in La Jolla, California in 1982, and occupied the last ten years of his life as Director of the John Innes Center, Norwich, United Kingdom. In spite of spending most of his career as a director at two of the world's most prestigious institutes, formal recognition of his achievements came late in life, with election to the Royal Society of London in 2008 and endowment of the honor of Commander of the British Empire (CBE) for his contributions to British plant science by Queen Elizabeth II in 2009. Sadly, Chris did not live to attend the official ceremony at which he would receive his CBE.

  1. Characteristics of “Abstracts of Science and Technology in Japan, Agro-Industries” and Related Agricultural Papers

    NASA Astrophysics Data System (ADS)

    Kamiya, Shukuko; Sasaki, Toshio

    Japan Agricultural Library Council has cooperated with JICST in making abstracts of “Abstracts of Science and Technology in Japan, Agro-Industries” published by JICST over these five years. Taking this opportunity of starting computerized edition of the Title and changing the coverage the author and others reviewed the abstracting work so far. The outline of the Title is first described. Then the number of journals and citations covered in it by subject are compared with those of Japan Agriculture Literature Article Index of which main users are agricultural scientists and researchers and which is used as reference tool of selecting papers to be included in English titles. The characteristics and points to be improved are explained. Characteristics of agriculture literature, which are seen through making English abstracts are also described.

  2. Microsatellite markers for Nuphar japonica (Nymphaeaceae), an aquatic plant in the agricultural ecosystem of Japan1

    PubMed Central

    Kondo, Toshiaki; Watanabe, Sonoko; Shiga, Takashi; Isagi, Yuji

    2016-01-01

    Premise of the study: Nuphar species (Nymphaeaceae) are representative aquatic plants in irrigation ponds in Japanese agricultural ecosystems. We developed 15 polymorphic microsatellite markers for N. japonica and confirmed their utility for its close relatives N. oguraensis var. akiensis and N. ×saijoensis, which originated from natural hybridization between N. japonica and N. oguraensis. Methods and Results: Genetic variation was characterized in 15 polymorphic loci in three populations of N. japonica. The average number of alleles per locus was 3.47 (range = 2−9; n = 32), and the average expected heterozygosity per locus was 0.84 (range = 0.5–1.0); 11 loci were amplified in N. oguraensis var. akiensis and 15 in N. ×saijoensis. Conclusions: The polymorphic microsatellite markers developed in this study will be useful for investigating the levels of genetic diversity within remnant populations of Nuphar taxa and could provide a valuable tool for conservation genetics of these taxa. PMID:28101435

  3. Evaluation of the micronutrient composition of plant foods produced by organic and conventional agricultural methods.

    PubMed

    Hunter, Duncan; Foster, Meika; McArthur, Jennifer O; Ojha, Rachel; Petocz, Peter; Samman, Samir

    2011-07-01

    The aim of the present analysis was to evaluate the micronutrient content of plant foods produced by organic and conventional agricultural methods. Studies were identified from a search of electronic databases (1980-2007, inclusive) as well as manual searches. A total of 66 studies (describing 1440 micronutrient comparisons) were identified. Thirty-three studies (908 comparisons) satisfied the screening criteria which considered cultivar, harvesting, and soil conditions. In studies that satisfied the screening criteria, the absolute levels of micronutrients were higher in organic foods more often than in conventional foods (462 vs 364 comparisons, P=0.002), and the total micronutrient content, expressed as a percent difference, was higher in organic (+5.7%, P<0.001) as compared to conventionally grown produce. The micronutrient content of food groups was more frequently reported to be higher for organic vegetables and legumes compared to their conventional counterparts (vegetables, 267 vs 197, P<0.001; legumes, 79 vs 46, P=0.004). This trend was supported by a mean percent difference in micronutrient content favoring organic vegetables (+5.9%, P<0.001) and legumes (+5.7%, P<0.001). Further research is required to determine the effect of organic agricultural methods on a broader range of nutrients and their potential impact on health.

  4. Agricultural origins from the ground up: archaeological approaches to plant domestication.

    PubMed

    Langlie, BrieAnna S; Mueller, Natalie G; Spengler, Robert N; Fritz, Gayle J

    2014-10-01

    The timing, geographical locations, causes, and consequences of crop domestication have long been major concerns of archaeologists, and agricultural origins and dispersals are currently more relevant than ever to scientists seeking solutions to elusive problems involving food insecurity and global health disparities. Perennial research issues that archaeologists continue to tackle include (1) thinking outside centers of origin that were based on limited and insufficient past knowledge; (2) distinguishing between single and multiple domestications of specific crops; (3) measuring the pace of domestication; and (4) decoupling domestication from agricultural economies. Paleoethnobotanists have expanded their toolkits to include analysis of ancient and modern DNA and have added increasingly sophisticated techniques in the field and the laboratory to derive precise chronological sequences to assess morphological changes in ancient and often fragmentary archaeobotanical remains and to correctly interpret taphonomy and context. Multiple lines of archaeological evidence are ideally brought together, and whenever possible, these are integrated with information from complementary sources. We discuss current perspectives and anthropological approaches to research that have as their goals the fuller and broader understanding of ancient farming societies, the plants that were domesticated, the landscapes that were created, and the culinary legacies that were passed on.

  5. Mechanisms for Enhancing Teachers' Effectiveness in the Implementation of Agricultural Science Programme in Secondary Schools in Afikpo Education Zone of Ebonyi State

    ERIC Educational Resources Information Center

    Ndem, Joseph Ukah

    2016-01-01

    Poor performance of students in agricultural science at the internal and external examinations has been attributed to ineffectiveness of the agricultural science teachers at the secondary schools in Afikpo education zone of Ebonyi State, therefore, this research determined the mechanisms for enhancing the teachers' effectiveness in the…

  6. Determining the Science, Agriculture and Natural Resource, and Youth Leadership Outcomes for Students Participating in an Innovative Middle School Agriscience Program

    ERIC Educational Resources Information Center

    Skelton, Peter; Stair, Kristin S.; Dormody, Tom; Vanleeuwen, Dawn

    2014-01-01

    The Memorial Middle School Agricultural Extension and Education Center (MMSAEEC) located in Las Vegas, New Mexico is a youth science center focusing on agriculture and natural resources. The purpose of this quasi-experimental study of the MMSAEEC teaching and learning model was to determine if differences exist in science achievement, agriculture…

  7. Plant Science. Instructor Guide [and] Student Reference. Volume 24, Numbers 3 and 4.

    ERIC Educational Resources Information Center

    Humphrey, John Kevin

    This document consists of two separately published guides for a course on plant science: an instructor's guide and a student's reference manual. Each part consists of eight lessons and cover the following topics: (1) importance of plants; (2) classification of plants; (3) plant growth factors; (4) weeds, diseases, insects; (5) germination; (6)…

  8. Organic farming benefits local plant diversity in vineyard farms located in intensive agricultural landscapes.

    PubMed

    Nascimbene, Juri; Marini, Lorenzo; Paoletti, Maurizio G

    2012-05-01

    The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.

  9. Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site.

    PubMed

    Ma, Ting Ting; Christie, Peter; Luo, Yong Ming; Teng, Ying

    2013-08-01

    The accumulation of phthalic acid esters (PAEs) in soil and plants in agricultural land near an electronic waste recycling site in east China has become a great threat to the neighboring environmental quality and human health. Soil and plant samples collected from land under different utilization, including fallow plots, vegetable plots, plots with alfalfa (Medicago sativa L.) as green manure, fallow plots under long-term flooding and fallow plots under alternating wet and dry periods, together with plant samples from relative plots were analyzed for six PAE compounds nominated as prior pollutants by USEPA. In the determined samples, the concentrations of six target PAE pollutants ranged from 0.31-2.39 mg/kg in soil to 1.81-5.77 mg/kg in various plants (dry weight/DW), and their bioconcentration factors (BCFs) ranged from 5.8 to 17.9. Health risk assessments were conducted on target PAEs, known as typical environmental estrogen analogs, based on their accumulation in the edible parts of vegetables. Preliminary risk assessment to human health from soil and daily vegetable intake indicated that DEHP may present a high-exposure risk on all ages of the population in the area by soil ingestion or vegetable consumption. The potential damage that the target PAE compounds may pose to human health should be taken into account in further comprehensive risk assessments in e-waste recycling sites areas. Moreover, alfalfa removed substantial amounts of PAEs from the soil, and its use can be considered a good strategy for in situ remediation of PAEs.

  10. Integrating Science in the Agriculture Curriculum: Agriculture Teacher Perceptions of the Opportunities, Barriers, and Impact on Student Enrollment

    ERIC Educational Resources Information Center

    Myers, Brian E.; Washburn, Shannon G.

    2008-01-01

    The essential nature of public school student performance on standardized examinations is becoming increasingly apparent. As schools across the nation are examined more closely based on the science achievement of students, career and technical education programs will be expected to contribute to this effort. Through the lens of Ajzen and Madden's…

  11. Interdisciplinary Research and Training Program in the Plant Sciences

    SciTech Connect

    Wolk, C.P.

    1992-01-01

    Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

  12. Developing nanotechnology for biofuel and plant science applications

    SciTech Connect

    Valenstein, Justin

    2012-01-01

    This dissertation presents the research on the development of mesoporous silica based nanotechnology for applications in biofuels and plant science. Mesoporous silica nanoparticles (MSNs) have been the subject of great interest in the last two decades due to their unique properties of high surface area, tunable pore size and particle morphology. The robust nature of the silica framework is easily functionalized to make the MSNs a promising option for selective separations. Also, the independent channels that form the pores of MSN have been exploited in the use of particles as platforms for molecular delivery. Pore size and organic functionality are varied to identify the ideal adsorbent material for free fatty acids (FFAs). The resulting material is able to sequester FFAs with a high degree of selectivity from a simulated solution and microalgal oil. The recyclability and industrial implications are also explored. A continuation of the previous material, further tuning of MSN pore size was investigated. Particles with a smaller diameter selectively sequester polyunsaturated free fatty acids (PUFAs) over monounsaturated FFAs and saturated FFAs. The experimental results were verified with molecular modeling. Mesoporous silica nanoparticle materials with a pore diameter of 10 nm (MSN-10) were decorated with small gold nanoparticles. The resulting materials were shown to deliver proteins and DNA into plant cells using the biolistic method.

  13. Assessing accuracy in citizen science-based plant phenology monitoring

    NASA Astrophysics Data System (ADS)

    Fuccillo, Kerissa K.; Crimmins, Theresa M.; de Rivera, Catherine E.; Elder, Timothy S.

    2015-07-01

    In the USA, thousands of volunteers are engaged in tracking plant and animal phenology through a variety of citizen science programs for the purpose of amassing spatially and temporally comprehensive datasets useful to scientists and resource managers. The quality of these observations and their suitability for scientific analysis, however, remains largely unevaluated. We aimed to evaluate the accuracy of plant phenology observations collected by citizen scientist volunteers following protocols designed by the USA National Phenology Network (USA-NPN). Phenology observations made by volunteers receiving several hours of formal training were compared to those collected independently by a professional ecologist. Approximately 11,000 observations were recorded by 28 volunteers over the course of one field season. Volunteers consistently identified phenophases correctly (91 % overall) for the 19 species observed. Volunteers demonstrated greatest overall accuracy identifying unfolded leaves, ripe fruits, and open flowers. Transitional accuracy decreased for some species/phenophase combinations (70 % average), and accuracy varied significantly by phenophase and species ( p < 0.0001). Volunteers who submitted fewer observations over the period of study did not exhibit a higher error rate than those who submitted more total observations. Overall, these results suggest that volunteers with limited training can provide reliable observations when following explicit, standardized protocols. Future studies should investigate different observation models (i.e., group/individual, online/in-person training) over subsequent seasons with multiple expert comparisons to further substantiate the ability of these monitoring programs to supply accurate broadscale datasets capable of answering pressing ecological questions about global change.

  14. Amino acid transporter mutants of Arabidopsis provides evidence that a non-mycorrhizal plant acquires organic nitrogen from agricultural soil.

    PubMed

    Ganeteg, Ulrika; Ahmad, Iftikhar; Jämtgård, Sandra; Aguetoni-Cambui, Camila; Inselsbacher, Erich; Svennerstam, Henrik; Schmidt, Susanne; Näsholm, Torgny

    2017-03-01

    Although organic nitrogen (N) compounds are ubiquitous in soil solutions, their potential role in plant N nutrition has been questioned. We performed a range of experiments on Arabidopsis thaliana genetically modified to enhance or reduce root uptake of amino acids. Plants lacking expression of the Lysine Histidine Transporter 1 (LHT1) displayed significantly lower contents of (13) C and (15) N label and of U-(13) C5 ,(15) N2 L-glutamine, as determined by liquid chromatography-mass spectrometry when growing in pots and supplied with dually labelled L-glutamine compared to wild type plants and LHT1-overexpressing plants. Slopes of regressions between accumulation of (13) C-labelled carbon and (15) N-labelled N were higher for LHT1-overexpressing plants than wild type plants, while plants lacking expression of LHT1 did not display a significant regression between the two isotopes. Uptake of labelled organic N from soil tallied with that of labelled ammonium for wild type plants and LHT1-overexpressing plants but was significantly lower for plants lacking expression of LHT1. When grown on agricultural soil plants lacking expression of LHT1 had the lowest, and plants overexpressing LHT1 the highest C/N ratios and natural δ(15) N abundance suggesting their dependence on different N pools. Our data show that LHT1 expression is crucial for plant uptake of organic N from soil.

  15. Agricultural approaches of remediation in the outside of the Fukushima Daiichi nuclear power plant

    SciTech Connect

    Sato, Nobuaki; Saso, Michitaka; Umeda, Miki; Fujii, Yasuhiko; Amemiya, Kiyoshi

    2013-07-01

    This paper outlines agricultural approaches of remediation activity done in contaminated areas around the Fukushima Daiichi Nuclear Power Plant. About the decontamination examination of contaminated areas, we have tried the land scale test of a rice field before and after planting by the use of currently recommended methods. Since farmers would carry out the land preparation by themselves, generation of secondary radioactive waste should be as low as possible through the decontamination works. For the radioactive nuclide migration control of rice by wet rice production, several types of decontamination methods such as zeolite addition and potassium fertilization in the soil have been examined. The results are summarized in the 4 following points. 1) Plowing and water discharge are effective for removing radioactive cesium from rice field. 2) Additional potassium fertilization is effective for reducing cesium radioactivity in the product. 3) No significant difference is observed with or without the zeolite addition. 4) Very low transfer factor of cesium from soil to brown rice has been obtained compared with literature values.

  16. Cupriavidus and Burkholderia species associated with agricultural plants that grow in alkaline soils.

    PubMed

    Estrada-de Los Santos, Paulina; Vacaseydel-Aceves, Nora Belinda; Martínez-Aguilar, Lourdes; Cruz-Hernández, María Antonia; Mendoza-Herrera, Alberto; Caballero-Mellado, Jesús

    2011-12-01

    The presence of Burkholderia, Cupriavidus, and Ralstonia species in northeastern Mexico was investigated. An analysis of the root surrounding soil from different agricultural plants led to the isolation of Burkholderia and Cupriavidus species but no Ralstonia strains. Most Cupriavidus species were unknown and grouped into two clusters according to ARDRA profiles. The 16S rRNA sequence analysis showed that the Cupriavidus isolates were highly related among them and with different Cupriavidus species with validated names. However, SDS-PAGE profiles were distinct among the different ARDRA profiles and to other Cupriavidus species examined, suggesting new species in the genus. This shows that Cupriavidus is more widely associated with plants than previously appreciated. The BCC isolate was 99% similar to B. cenocepacia by recA sequence analysis. Additionally, most Cupriavidus strains from the two largest groups grew on media containing up to 0.1 mg/ml of copper, 10.0 mg/ml arsenic and 1.0 mg/ml zinc. Burkholderia strains grew on media containing up to 10.0 mg/ml zinc, 5.0 mg/ml arsenic and 0.1 mg/ml copper.

  17. Agricultural Microbiology.

    ERIC Educational Resources Information Center

    Brill, Winston J.

    1981-01-01

    Elucidates strategies for applying microbiological techniques to traditional agricultural practices. Discusses the manipulation of microorganisms that live with plants and also the problems involved in the introduction of new genes into crop plants by recombinant DNA methods. (CS)

  18. PlantingScience: Fostering student research through scientific inquiry and online mentorship

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PlantingScience is an inquiry and science mentorship program, led by the Botanical Society of America and supported by 14 Scientific Society partners that brings together students (middle school through high school), plant scientists (as mentors), and teachers from across the nation. Using several l...

  19. Insights into plant size-density relationships from models and agricultural crops

    PubMed Central

    Deng, Jianming; Zuo, Wenyun; Wang, Zhiqiang; Fan, Zhexuan; Ji, Mingfei; Wang, Genxuan; Ran, Jinzhi; Zhao, Changming; Liu, Jianquan; Niklas, Karl J.; Hammond, Sean T.; Brown, James H.

    2012-01-01

    There is general agreement that competition for resources results in a tradeoff between plant mass, M, and density, but the mathematical form of the resulting thinning relationship and the mechanisms that generate it are debated. Here, we evaluate two complementary models, one based on the space-filling properties of canopy geometry and the other on the metabolic basis of resource use. For densely packed stands, both models predict that density scales as M−3/4, energy use as M0, and total biomass as M1/4. Compilation and analysis of data from 183 populations of herbaceous crop species, 473 stands of managed tree plantations, and 13 populations of bamboo gave four major results: (i) At low initial planting densities, crops grew at similar rates, did not come into contact, and attained similar mature sizes; (ii) at higher initial densities, crops grew until neighboring plants came into contact, growth ceased as a result of competition for limited resources, and a tradeoff between density and size resulted in critical density scaling as M−0.78, total resource use as M−0.02, and total biomass as M0.22; (iii) these scaling exponents are very close to the predicted values of M−3/4, M0, and M1/4, respectively, and significantly different from the exponents suggested by some earlier studies; and (iv) our data extend previously documented scaling relationships for trees in natural forests to small herbaceous annual crops. These results provide a quantitative, predictive framework with important implications for the basic and applied plant sciences. PMID:22586097

  20. Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries:Economic Plants and their Diseases, Pests and Weeds.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AgroAtlas is a comprehensive on-line bilingual reference on the geographic distribution of economic plants, their diseases, pests and weeds, and environmental factors that influence agricultural production through out the Former Soviet Union. Online users can read about and examine maps and ima...

  1. The mechanisms of plant stress mitigation by kaolin-based particle films and its applications in horticultural and agricultural crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kaolin-based particle films have utility in reducing insect, heat, light, and uv stress in plants due to the reflective nature of the particles. Particle films with a residue density of 1 to 3 g/ square meter have been evaluated in a range of crops and agricultural environments. The particle film ...

  2. Assessing the Effect of Using a Science-Enhanced Curriculum to Improve Agriculture Students' Science Scores: A Causal Comparative Study

    ERIC Educational Resources Information Center

    Haynes, J. Chris; Robinson, J. Shane; Edwards, M. Craig; Key, James P.

    2012-01-01

    The academic skills of today's teenagers are diminishing, and are a cause for concern. One of the academic areas in need of improvement is science. The purpose of this causal comparative study was to determine the effect that a science-enhanced, curriculum would have on students' achievement in science. The population for this study consisted of…

  3. JPRS Report, Science & Technology, USSR: Life Sciences

    DTIC Science & Technology

    2007-11-02

    SCIENCES CONTENTS AGRICULTURAL SCIENCE Inducing Resistance to Tobacco Mosaic and Type X Potato Virus in Plants by Double-Stranded RNA Isolated From...RESISTANCE TO TOBACCO MOSAIC AND TYPE X POTATO VIRUS IN PLANTS BY DOUBLE-STRANDED RNA ISOLATED FROM SACCHAROMYCES YEAST Vilnius TRUDY AKADEMII NAUK...to induce virus resistance in tobacco and datura plants has been established [4, 5J. It has also been shown that, when injected into leaves of

  4. Assessing accuracy in citizen science-based plant phenology monitoring.

    PubMed

    Fuccillo, Kerissa K; Crimmins, Theresa M; de Rivera, Catherine E; Elder, Timothy S

    2015-07-01

    In the USA, thousands of volunteers are engaged in tracking plant and animal phenology through a variety of citizen science programs for the purpose of amassing spatially and temporally comprehensive datasets useful to scientists and resource managers. The quality of these observations and their suitability for scientific analysis, however, remains largely unevaluated. We aimed to evaluate the accuracy of plant phenology observations collected by citizen scientist volunteers following protocols designed by the USA National Phenology Network (USA-NPN). Phenology observations made by volunteers receiving several hours of formal training were compared to those collected independently by a professional ecologist. Approximately 11,000 observations were recorded by 28 volunteers over the course of one field season. Volunteers consistently identified phenophases correctly (91% overall) for the 19 species observed. Volunteers demonstrated greatest overall accuracy identifying unfolded leaves, ripe fruits, and open flowers. Transitional accuracy decreased for some species/phenophase combinations (70% average), and accuracy varied significantly by phenophase and species (p < 0.0001). Volunteers who submitted fewer observations over the period of study did not exhibit a higher error rate than those who submitted more total observations. Overall, these results suggest that volunteers with limited training can provide reliable observations when following explicit, standardized protocols. Future studies should investigate different observation models (i.e., group/individual, online/in-person training) over subsequent seasons with multiple expert comparisons to further substantiate the ability of these monitoring programs to supply accurate broadscale datasets capable of answering pressing ecological questions about global change.

  5. Seasonal OVOC fluxes from an agricultural field planted with sugar beet

    NASA Astrophysics Data System (ADS)

    Custer, T. G.; Schade, G. W.

    2005-12-01

    Although agricultural crops are generally not strong isoprenoid emitters, they do emit a variety of other atmospherically significant species collectively known as oxygenated VOCs (OVOCs), such as methanol, acetaldehyde, or various hexenal and hexenol compounds. Many OVOCs have longer atmospheric lifetimes than isoprenoid compounds and can affect the atmosphere's oxidative potential at higher elevations and far from sources. We performed selected OVOC flux measurements for select species above an agricultural field planted with sugar beets ( B. vulgaris) in northern Germany in 2004 to better understand the magnitude and controls over these OVOC emissions. Virtual disjunct eddy covariance was used to measure fluxes beginning immediately following seeding and continuing until past harvest. A commercial PTR-MS provided mixing ratios of methanol (m/z 33), acetaldehyde (m/z 45), acetone (m/z 59), and the sum of the isoprene oxidation products methacrolein and methyl vinyl ketone (m/z 71) while 3D wind velocities were measured using a Gill R3 sonic anemometer. Here, we compare the fluxes of methanol and acetone over the growth cycle of sugar beet to plant development as measured by the leaf area index. Methanol fluxes ranged from approximately -0.05 to 0.15 mg C m-2 h-1 (mixing ratios from ~1 to 15 ppbv) and showed a clear diurnal cycle after the sugar beets established a significant leaf area. Acetone fluxes ranged from approximately -0.2 to 0.2 mg C m-2 h-1 (mixing ratios from ~0.2 to 3 ppb). Higher specific emissions were found during earlier growth stages. Methanol flux correlated strongly with latent heat flux (or alternatively, with canopy conductance derived from the latent heat flux), while acetone flux did not. Acetone flux was small compared to methanol flux and sugar beet is likely not a significant acetone emitter. Weekly measurements of soil OVOC exchange using a flux chamber showed that the soil may have contributed significantly to the overall flux values

  6. An introduction of internationalisation in food science doctoral program: a case study of Bogor Agricultural University, Indonesia.

    PubMed

    Hunaefi, D

    2010-01-01

    The Department of Food Science and Technology- Bogor Agricultural University (DFST-IPB), Indonesia is one of the oldest Departments of its kind in Indonesia. The Department has been founded since 1964 under the Faculty of Agricultural Engineering and Technology. The Department has a core competence in the area of food science and technology, particularly in the development of food chemistry, food microbiology, food process engineering, food analysis, food quality and safety. The Department offers educational programs: Undergraduate Program in Food Technology and Master as well as Doctorate Program in Food Science. The Master and Doctorate Program are enrolled by 35 students annually. Globalisation as a global phenomenon has been influencing DFST doctoral program as internationalization in response to globalization is a common feature in majority universities. Facing this challenge, DFST Doctorate Program's has made some efforts to provide students with international atmosphere, including having international guest lecturers, inviting prospective international students, and initiating join program with international universities. In addition, research focusing in tropical food and collaboration with international universities may need to be improved to widen the network, increase publication and place DFST doctorate program visible in the international forum. This paper is intended to reveal the perceived challenges of globalization for food science doctoral program (DFST-IPB) and to what extent and in what form internationalization has been achieved. However, it should be noted that this article is selective rather than comprehensive in reflecting on the internationalization process of food science doctoral program (DFST-IPB).

  7. Teaching Basic Science Environmentally. Concept: Plants Reproduce Their Own Kind.

    ERIC Educational Resources Information Center

    Busch, Phyllis

    1987-01-01

    Offers suggestions for spring activities focusing on plant reproduction both indoors and outdoors. Suggests planting seeds to observe, measure, and record effects of temperature, moisture, fertilizer. Recommends outdoor study of the horsetail plant. (NEC)

  8. The responding relationship between plants and environment is the essential principle for agricultural sustainable development on the globe.

    PubMed

    Zhou, Yi; Shao, Hong-Bo

    2008-04-01

    The mutual-responding relationship between plants and environment is involved in all life processes, which are the essential bases for different types of sustainable development on the globe, particularly the critical basis for agricultural sustainable development. How to regulate the above relationship between plants and the corresponding environment (in particular soil environment) is the key problem to modern sustainable agriculture development under global climate change, which is one of the hot topics in the field of plant biology. Detailed dissection of this responding relationship is also important for conducting global eco-environmental restoration and construction. Although powerful methodology and dataset related to genomics, post-genomics, and metabolomics have provided some insights into this relationship, crop physiological measures are also critical for crop full performance in field. With the increase of tested plants (including model plants) and development of integrated molecular biology, a complete understanding of the relationship at different scales under biotic and abiotic stresses will be accelerated. In the current paper, we will cover some important aspects in combination with the recent work from our laboratory and related advances reflected by international academic journals, as follows: plant physiological function performance under natural condition, plant gene regulatory network system under abiotic stresses, gene regulatory network system and drought resistance improvement, summary of the related work from our laboratory, conclusions, and acknowledgement.

  9. Biodiversity and Ecosystem Functioning: Exploring Principles of Ecology with Agricultural Plants

    ERIC Educational Resources Information Center

    Ruesink, Jennifer; O'Connor, Eileen; Sparks, Grace

    2006-01-01

    To date, little of the ecological research on biological diversity and ecosystem functioning has been carried out in agricultural systems, despite the fact that agriculture is a major contributor to loss of native habitats and species. However, agricultural research has demonstrated that polycultures of multiple crop species can have higher total…

  10. Hands-on Science. Delve Into the Secret Life of Plants.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    1998-01-01

    Three hands-on science activities teach students about plant processes that they normally cannot detect. A K-3 activity has students explore how the presence of water affects plant motion. Two grade 4-6 activities let students see the path water takes through leaves and has students investigate how and why water travels through plants. (SM)

  11. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy.

    PubMed

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  12. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy

    PubMed Central

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  13. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture.

    PubMed

    Li, Long; Tilman, David; Lambers, Hans; Zhang, Fu-Suo

    2014-07-01

    Despite increasing evidence that plant diversity in experimental systems may enhance ecosystem productivity, the mechanisms causing this overyielding remain debated. Here, we review studies of overyielding observed in agricultural intercropping systems, and show that a potentially important mechanism underlying such facilitation is the ability of some crop species to chemically mobilize otherwise-unavailable forms of one or more limiting soil nutrients such as phosphorus (P) and micronutrients (iron (Fe), zinc (Zn) and manganese (Mn)). Phosphorus-mobilizing crop species improve P nutrition for themselves and neighboring non-P-mobilizing species by releasing acid phosphatases, protons and/or carboxylates into the rhizosphere which increases the concentration of soluble inorganic P in soil. Similarly, on calcareous soils with a very low availability of Fe and Zn, Fe- and Zn-mobilizing species, such as graminaceous monocotyledonous and cluster-rooted species, benefit themselves, and also reduce Fe or Zn deficiency in neighboring species, by releasing chelating substances. Based on this review, we hypothesize that mobilization-based facilitative interactions may be an unsuspected, but potentially important mechanism enhancing productivity in both natural ecosystems and biodiversity experiments. We discuss cases in which nutrient mobilization might be occurring in natural ecosystems, and suggest that the nutrient mobilization hypothesis merits formal testing in natural ecosystems.

  14. Introduction and domestication of woody plants for sustainable agriculture in desert areas

    NASA Astrophysics Data System (ADS)

    Shelef, Oren; Soloway, Elaine; Rachmilevitch, Shimon

    2014-05-01

    plantation in arid conditions. 5) Balanites aegyptiaca is potentially a good biomass crop and good feed for grazers as goats. We illuminated differences related to drought tolerance between two distinct ecotypes. Attempts to develope sustainable agriculture based on local species will save resources (water, fertilizers, insecticides and herbicides), keep endangered plant species and enhance vegetation reestablishment.

  15. Career and Family Balance of Texas Agricultural Science Teachers by Gender

    ERIC Educational Resources Information Center

    Hainline, Mark S.; Ulmer, Jonathan D.; Ritz, Rudy R.; Burris, Scott; Gibson, Courtney D.

    2015-01-01

    With the high rates of agricultural teacher burnout and attrition in the United States, the need for teachers to strike a balance between their work and family responsibilities is imperative. The purpose of this research study was to explore the influence of gender on Texas agricultural teachers' perceived job obligations and family…

  16. Poultry Production for Agricultural Science I Core Curriculum. Instructor's Guide. Volume 19, Number 2.

    ERIC Educational Resources Information Center

    Timko, Joseph J.; Stewart, Bob R.

    This unit is designed to aid teachers in lesson planning in the secondary agricultural education curriculum in Missouri. Intended to be taught to ninth-grade students of vocational agriculture, the unit contains six lessons for developing competencies needed in poultry production. The lessons are as follows: (1) the importance of the poultry…

  17. Identifying the Predictors of Secondary School Performance in Agricultural Science in Nigeria

    ERIC Educational Resources Information Center

    Waheed, Olowa Olatomide

    2009-01-01

    Introduction: Increasing Awareness of the importance of vocational agricultural education has driven various regimes in government and Educators to embark on several review of agricultural curriculum at both secondary and tertiary institutions and as well provided policies and incentives towards motivating young ones to study and take agriculture…

  18. Rural Elementary Students' Understanding of Science and Agricultural Education Benchmarks Related to Meat and Livestock.

    ERIC Educational Resources Information Center

    Meischen, Deanna L.; Trexler, Cary J.

    2003-01-01

    Seven fifth-graders developed concept maps depicting their knowledge of meat product development. Despite their rural background, they lacked understanding of agriculture concepts and had mixed knowledge of agricultural literacy benchmarks concerning food products. Their language did not reflect scientific terminology in the benchmarks. (Contains…

  19. Green Plants. Life Science in Action. Teacher's Manual and Workbook.

    ERIC Educational Resources Information Center

    Friedland, Mary

    The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of life science. Six separate units…

  20. Agriculture Supplies & Services. Volume 1 of 3.

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    The first of three volumes included in a secondary agricultural supplies and services curriculum guide, this volume contains units of instruction in two major areas: (1) plant and soil science and (2) leadership (Future Farmers of America). Typical of the nineteen units included in the first section are the following: Plant Insect Control, Plant…

  1. All about Caring for Plants. Plant Life for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    What do plants require in order to survive? In All About Caring for Plants, join young plant enthusiasts as they investigate what plants need to grow from seedlings to healthy adult plants. Discover the basic necessities of a variety of plants, including sunlight, water, appropriate temperature and proper nutrients. Learn how to provide the proper…

  2. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.

    PubMed

    Kirchmann, Holger; Börjesson, Gunnar; Kätterer, Thomas; Cohen, Yariv

    2017-03-01

    The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic

  3. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States.

    PubMed

    Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff

    2015-12-01

    Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse

  4. Heavy metal accumulation in agricultural soils around a coal fired thermal power plant (Farakka) in India.

    PubMed

    Sengupta, Saswati; Chatterjee, Tamoghno; Ghosh, P B; Saha, Tapan

    2010-10-01

    Agricultural soils around the ash dumping sites of one of the largest thermal power plant (TPP) in India located at Farakka, West Bengal were assessed for some heavy metal (Pb, Cd, Cr, As, Cu, Zn, Ni and Fe) distribution in association with other physicochemical components and compared with the control soils collected from far away of TPP. The toxic group metals (Pb, Cd, Cr and As) were well differentiated by their higher values of variability and non-normal distribution from the biologically essential metals (Cu, Zn, Ni and Fe). The statistical analysis of the heavy metals revealed that the two probable sources (Eigen values) in affected soils are responsible for their distribution; the more dominant one contributed the toxic metals and less dominating source contributed the essential heavy metals. While in control soils, no distinct separation of sources of the metals were found out signifying that the natural common sources could play active role in metal distributions. Although EF (Enrichment Factor) values of toxic metals are higher with large fraction of anthropogenic sources, yet (Igeo) (Geo-accumulation Index) values indicate moderate to unpolluted condition of the soils in respect to Pb, Cd and As. The calculated PLI (Pollution Load Index) values (1.88) considering all the metals also support the findings. Since there are no other sources of industrial effluents in the study area except the TPP, it can be said that the enrichment of these metals is solely attributed to their input from the ash contamination. For this, considerable degree of enrichment of toxic group of metals occurred in these soils.

  5. Leadership Curriculum and Materials Used by High School Agricultural Science Teachers: A National Study of the Pre-"LifeKnowledge" Days

    ERIC Educational Resources Information Center

    Morgan, A. Christian; Fuhrman, Nicholas E.; King, Diana L.; Flanders, Frank B.; Rudd, Rick D.

    2013-01-01

    Agricultural science programs have provided many opportunities for leadership education through classroom, supervised agricultural experience (SAE), and FFA Organization activities. Past studies have focused on leadership developed through activities such as career development events (CDE), SAE activities, FFA Organization conventions, and other…

  6. The Effects of a Serious Digital Game on the Animal Science Competency, Mathematical Competency, Knowledge Transfer Ability, and Motivation of Secondary Agricultural Education Students

    ERIC Educational Resources Information Center

    Bunch, James Charles

    2012-01-01

    The purpose of this study was twofold: 1) to compare the effectiveness of two teaching methods (i.e., lecture/discussion and digital game-based learning) on student achievement in agriculture and mathematics regarding a unit on swine diseases in animal science courses offered through secondary agricultural education programs in Oklahoma; 2) to…

  7. Symposium introduction: the first joint American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The American Chemical Society (ACS) Agricultural and Food Chemistry Division (AGFD) and the ACS International Chemical Sciences Chapter in Thailand (ICSCT) worked together to stage the “1st Joint ACS AGFD - ACS ICSCT Symposium on Agricultural and Food Chemistry,” which was held in Bangkok, Thailand ...

  8. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    PubMed Central

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  9. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    PubMed

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-05-08

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.

  10. The Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Jones, James W.; Hatfield, Jerry L.; Antle, John M.; Ruane, Alexander C.; Mutter, Carolyn Z.

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.

  11. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production.

  12. Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Jones, J.; Hatfield, J.; Antle, J. M.; Mutter, C.; Ruane, A. C.

    2013-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. Currently, AgMIP has over 575 participants from more than 45 countries contributing their expertise to over 30 projects and activities. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models with a strong grounding in observations of current agricultural systems around the world. The performance of agricultural models in current climate forms a key basis for our understanding of how crops will respond to future climate changes, and thus AgMIP has a particular focus on extreme heat and drought. Climate, crop model, economics, and information technology protocols are used to guide coordinated AgMIP research activities around the world, along with cross-cutting themes that address aggregation, uncertainty, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other global trends. Research activities include ongoing crop-specific assessments (e.g., maize, wheat, sugarcane, rice) and improvement activities, global gridded crop and economic model intercomparisons, and many other initiatives that allow for the better evaluation of the impacts of climate change on agricultural production and food security around the world. AgMIP activities are improving the representation of crop response to changing carbon dioxide, temperature extremes, and water

  13. Agricultural Decision-Making In Indonesia With ENSO Variability: Integrating Climate Science, Risk Assessment, And Policy Analysis

    NASA Astrophysics Data System (ADS)

    Battisti, D. S.; Naylor, R. L.; Vimont, D. J.; Falcon, W. P.

    2006-12-01

    We present our current research to show how climate science can be used to inform agricultural decision- making at the policy level. Our project, funded by the Human and Social Dimensions Program at NSF, focuses on Indonesia, where agricultural production is strongly influenced by the annual cycle of precipitation and by year-to-year variations in the annual cycle caused by El Nino-Southern Oscillation (ENSO) dynamics, and where the combined forces of ENSO and global warming are likely to have dramatic effects on agricultural production and food security for tens of millions of people. The two main goals of the research are: 1) to project the impacts of global warming on Indonesian agriculture by estimating changes in mean climate and climate variability (i.e., ENSO); and 2) to analyze how these projections (including relevant bands of uncertainty) can be used to inform agricultural decision-making processes. To accomplish the first goal, we developed a set of regional climate scenarios for Indonesia in the mid-21st century. These scenarios are developed using (i) the large-scale climate changes projected from the collection of climate models used in the IPCC process, (ii) select experiments with an atmospheric general circulation model, and (iii) a newly developed downscaling model that links the large-scale circulation to the regional scale climate. These scenarios are then used to assess the influence of global warming on the annual climate cycle and on ENSO-induced changes in precipitation and agricultural production in Indonesia. (The link between projected crop production and climate is established from our previous work). The second goal is accomplished by developing a risk assessment framework that links the probabilities of climate change to its potential consequences on agriculture, taking into account various adaptation measures, such as the development of drought tolerant crop varieties and irrigation investment. The model template we have designed and

  14. All about Plant & Animal Interdependency. Plant Life for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    Plants provide oxygen, food, shelter, medicine and more for all animals, including humans. In fact, people depend on plants for their very survival just as plants rely on animals! In All About Plant & Animal Interdependency, join aspiring botanists as they discover how plants and animals interrelate. Learn about the constant exchange of gases…

  15. All about Plant Adaptation. Plant Life for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    Plants can survive in even the harshest of environments, from the freezing Arctic to the arid desert. In All About Plant Adaptation, join young plant lovers as they uncover some of the amazing ways that plants have adapted over millions of years enabling them to survive almost anywhere on Earth. Discover how some plants living in cold, arctic…

  16. Plant available silicon in South-east Asian rice paddy soils - relevance of agricultural practice and of abiotic factors

    NASA Astrophysics Data System (ADS)

    Marxen, A.; Klotzbücher, T.; Vetterlein, D.; Jahn, R.

    2012-12-01

    Background Silicon (Si) plays a crucial role in rice production. Si content of rice plants exceeds the content of other major nutrients such as nitrogen, phosphorous or potassium. Recent studies showed that in some environments external supply of Si can enhance the growth of rice plants. Rice plants express specific Si transporters to absorb Si from soil solutions in form of silicic acid, which precipitates in tissue cells forming amorphous silica bodies, called phytoliths. The phytoliths are returned to soils with plant residues. They might be a main source of plant available silicic acid in soils. Aims In this study we assess the effects of rice paddy cultivation on the stocks of `reactive` Si fractions in mineral topsoils of rice paddy fields in contrasting landscapes. The `reactive` Si fractions are presumed to determine the release of plant-available silicic acid in soils. We consider the relevance of abiotic factors (mineral assemblage; soil weathering status) and agricultural practice for these fractions. Agricultural practices, which were assumed to affect the stocks of `reactive` Si were (i) the usage of different rice varieties (which might differ in Si demand), (ii) straw residue management (i.e., whether straw residues are returned to the fields or removed and used e.g. as fodder), and (iii) yield level and number of crops per year. Material and methods Soils (top horizon of about 0-20 cm depth) were sampled from rice paddy fields in 2 mountainous and 5 lowland landscapes of contrasting geologic conditions in Vietnam and the Philippines. Ten paddy fields were sampled per landscape. The rice paddy management within landscapes differed when different farmers and/or communities managed the fields. We analysed the following fractions of `reactive` Si in the soils: acetate-extractable Si (dissolved and easily exchangeable Si), phosphate-extractable Si (adsorbed Si), oxalate extractable Si (Si associated with poorly-ordered sesquioxides), NaOH extractable Si

  17. Employing native shrubs to improve agricultural potential of arid lands: Drawing on plants to draw water (Invited)

    NASA Astrophysics Data System (ADS)

    Dragila, M. I.; Kizito, F.; Dick, R.

    2009-12-01

    Even though soil moisture poses limits on landscape dynamics, plant communities within the landscape can also regulate the spatial distribution of moisture, thus creating a biofeedback system that advances the system towards a specific landscape order. This behavior is evident in arid climates where specific parameters, such as soil moisture, are close to sustainability limits and result in a distinct spatial distribution of plant communities. Understanding plant-soil water relationships can lead to management tools to improve landscape function. Plant-soil interactions that influence soil moisture include, local changes in soil texture when plants trap airborne soil particles, increases in organic matter content below their foliage, and root distribution. We specifically focus on a process commonly referred to as hydraulic redistribution wherein plant roots draw moisture vertically to the near surface, raising the potential for seed germination and maintenance through short drought periods. Two fieldwork sites in Senegal were used to investigate the role of native shrubs in controlling soil moisture movement, and in particular, using these native plants to enhance agricultural potential.

  18. The Science Workbook of Student Research Projects in Food - Agriculture - Natural Resources.

    ERIC Educational Resources Information Center

    Darrow, Edward E., Ed.

    This workbook provides descriptions of research projects for high school and middle school science teachers and students. The projects can be used as demonstrations in the laboratory or classroom to help teachers illustrate the practical application of basic science principles. They can also be used by students, under the guidance of the teachers,…

  19. Selected References and Aids for Teaching Animal Science to Students of Agricultural Education.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The resource guide for animal science education is divided into six subject areas: general animal science, beef, dairy, poultry, sheep, and swine. Within each of these areas, the guide provides bibliographic and availability data for relevant materials in the following forms: bulletins and circulars; textbooks; films, filmstrips, and slides; and…

  20. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity.

    PubMed

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M; El-Arabi, Tarek F; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2016-02-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity.

  1. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    PubMed

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability.

  2. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity

    PubMed Central

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M.; El-Arabi, Tarek F.; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2015-01-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization–confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. PMID:26705571

  3. Pupils' Ideas about Flowering Plants. Learning in Science Project (Primary). Working Paper No. 125.

    ERIC Educational Resources Information Center

    Biddulph, Fred

    The Learning in Science Project (Primary)--LISP(P)--investigated the ideas and interests children have about flowering plants (in particular whether these plants have a life cycle). Data were obtained from: individual interviews with children, ages 7- to 14-year-old (10 students for each age level), using the "interview-about-instances"…

  4. The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identify management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning m...

  5. Beta diversity at different spatial scales: plant communities in organic and conventional agriculture.

    PubMed

    Gabriel, Doreen; Roschewitz, Indra; Tscharntke, Teja; Thies, Carsten

    2006-10-01

    Biodiversity studies that guide agricultural subsidy policy have generally compared farming systems at a single spatial scale: the field. However, diversity patterns vary across spatial scales. Here, we examined the effects of farming system (organic vs. conventional) and position in the field (edge vs. center) on plant species richness in wheat fields at three spatial scales. We quantified alpha-, beta-, and gamma-diversity at the microscale in 800 plots, at the mesoscale in 40 fields, and at the macroscale in three regions using the additive partitioning approach, and evaluated the relative contribution of beta-diversity at each spatial scale to total observed species richness. We found that alpha-, beta-, and gamma-diversity were higher in organic than conventional fields and higher at the field edge than in the field center at all spatial scales. In both farming systems, beta-diversity at the meso- and macroscale explained most of the overall species richness (up to 37% and 25%, respectively), indicating considerable differences in community composition among fields and regions due to environmental heterogeneity. The spatial scale at which beta-diversity contributed the most to overall species richness differed between rare and common species. Total richness of rare species (present in < or = 5% of total samples) was mainly explained by differences in community composition at the meso- and macroscale (up to 27% and 48%, respectively), but only in organic fields. Total richness of common species (present in > or = 25% of total samples) was explained by differences in community composition at the micro- and mesoscale (up to 29% and 47%, respectively), i.e., among plots and fields, independent of farming system. Our results show that organic farming made the greatest contribution to total species richness at the meso (among fields) and macro (among regions) scale due to environmental heterogeneity. Hence, agri-environment schemes should exploit this large

  6. JPRS Report Science & Technology USSR: Life Sciences.

    DTIC Science & Technology

    2007-11-02

    USSRj LIFE SCIENCES CONTENTS AGRICULTURAL SCIENCE Inducing Resistance to Tobacco Mosaic and Type X Potato Virus in Plants by Double-Stranded RNA...BIOKHIMIYA, No 5, May 86) 12 Effects of Heme Ligands CO and Cyanide on Bacterial Luciferase Activity (V.S. Danilov, Yu.A. Malkov; BIOKHIMIYA, No 5...Effect of Purpuragitozide as Defensive Reaction of Plants to Tobacco Mosaic Virus Infection (I.T. Balashova, T.D. Verderevskaya, et al

  7. Learn about Life Science: Plants. [CD-ROM].

    ERIC Educational Resources Information Center

    2000

    This CD-ROM, designed for students in grades K-2, explores the world of plants. From small seeds to tall trees, students learn what plants are, what their parts are called, and what conditions they need to grow. Three extension activities include simple and part/whole matching exercises, a sequencing activity involving the dimension of time, and a…

  8. The World of Plants, Science (Experimental): 5311.13.

    ERIC Educational Resources Information Center

    Parcell, Louise

    This unit of instruction was designed as a survey course of the plant kingdom, including poisonous, ornamental, and edible plants of South Florida, their structures and functions. The booklet lists the relevant state-adopted texts and states the performance objectives for the unit. It provides an outline of the course content and suggests…

  9. Physiology of Plants, Science (Experimental): 5315.41.

    ERIC Educational Resources Information Center

    Gunn, William C.

    This unit of instruction deals with the physiological activities of plants. Attention is focused on the principles which underlie the activities of the typical green land plant. Emphasis is placed on biological processes such as photosynthesis, water transport, light responses, mineral nutrition, reproduction, and growth. The prerequisite for…

  10. Introduction to the Plant World, Science (Experimental): 5311.11.

    ERIC Educational Resources Information Center

    Payne, Leonard O.

    This unit of instruction was designed as a laboratory-oriented course for very low achievers to show how plants are involved in every aspect of their lives. Detailed practical experience in handling and investigating plants, and the use of films, models, and field trips are combined with basic minimal research to guide the student to a better…

  11. The use of biogas plant fermentation residue for the stabilisation of toxic metals in agricultural soils

    NASA Astrophysics Data System (ADS)

    Geršl, Milan; Šotnar, Martin; Mareček, Jan; Vítěz, Tomáš; Koutný, Tomáš; Kleinová, Jana

    2015-04-01

    Our department has been paying attention to different methods of soil decontamination, including the in situ stabilisation. Possible reagents to control the toxic metals mobility in soils include a fermentation residue (FR) from a biogas plant. Referred to as digestate, it is a product of anaerobic decomposition taking place in such facilities. The fermentation residue is applied to soils as a fertiliser. A new way of its use is the in situ stabilisation of toxic metals in soils. Testing the stabilisation of toxic metals made use of real soil samples sourced from five agriculturally used areas of the Czech Republic with 3 soil samples taken from sites contaminated with Cu, Pb and Zn and 2 samples collected at sites of natural occurrence of Cu, Pb and Zn ores. All the samples were analysed using the sequential extraction procedure (BCR) (determine the type of Cu, Pb and Zn bonds). Stabilisation of toxic metals was tested in five soil samples by adding reagents as follows: dolomite, slaked lime, goethite, compost and fermentation residue. A single reagent was added at three different concentrations. In the wet state with the added reagents, the samples were left for seven days, shaken twice per day. After seven days, metal extraction was carried out: samples of 10 g soil were shaken for 2 h in a solution of 0.1M NH4NO3 at a 1:2.5 (g.ml-1), centrifuged for 15 min at 5,000 rpm and then filtered through PTFE 0.45 μm mesh filters. The extracts were analysed by ICP-OES. Copper The best reduction of Cu concentration in the extract was obtained at each of the tested sites by adding dolomite (10 g soil + 0.3 g dolomite). The concentration of Cu in the leachate decreased to 2.1-18.4% compare with the leachate without addition. Similar results were also shown for the addition of fermentation residue (10 g soil + 1 g FR). The Cu concentration in the leachate decreased to 16.7-26.8% compared with the leachate without addition. Lead The best results were achieved by adding

  12. The Living Soil: Exploring Soil Science and Sustainable Agriculture with Your Guide, The Earthworm. Unit I.

    ERIC Educational Resources Information Center

    Weber, Eldon C.; And Others

    This instructional packet introduces students to soil biology, ecology, and specific farming practices that promote sustainable agriculture. It helps students to discover the role of earthworms in improving the environment of all other soil-inhabiting organisms and in making the soil more fertile. The activities (classroom as well as outdoor)…

  13. From sacred cows to sacrificial lambs: implementing agricultural phosphorus science and management to combat eutrophication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experience with implementing agricultural phosphorus (P) strategies highlights successes and uncertainty over outcomes. We examine case studies from the USA, UK, and Sweden to examine P management under voluntary, litigated and regulatory settings. In the USA, voluntary strategies to curtail P loadi...

  14. Science and Policy Issues: A Report of Citizen Concerns and Recommendations for American Agricultural Research.

    ERIC Educational Resources Information Center

    National Agricultural Research and Extension Users Advisory Board (USDA), Washington, DC.

    Two areas which will have far reaching consequences for the future of United States agriculture are discussed: (1) biotechnology; and (2) critical economic research in world trade and commodity supply management. Topics in the first area include: controversies related to biotechnology; the relative importance of health, safety, and environmental…

  15. Gender and Agricultural Science: Evidence from Two Surveys of Land-Grant Scientists.

    ERIC Educational Resources Information Center

    Buttel, Frederick H.; Goldberger, Jessica R.

    2002-01-01

    Analysis of surveys of land-grant agricultural scientists in 1979 and 1996 found significant gender differences in postdoctoral work experience, academic rank, employment of graduate students, book publication, and links with private industry. Gender differences were found in attitudes toward biotechnology and university-industry links, but not in…

  16. Gene flow in the green mirid, Creontiades dilutus (Hemiptera: Miridae), across arid and agricultural environments with different host plant species

    PubMed Central

    Hereward, J P; Walter, G H; DeBarro, P J; Lowe, A J; Riginos, C

    2013-01-01

    Creontiades dilutus (Stål), the green mirid, is a polyphagous herbivorous insect endemic to Australia. Although common in the arid interior of Australia and found on several native host plants that are spatially and temporally ephemeral, green mirids also reach pest levels on several crops in eastern Australia. These host-associated dynamics, distributed across a large geographic area, raise questions as to whether (1) seasonal fluctuations in population size result in genetic bottlenecks and drift, (2) arid and agricultural populations are genetically isolated, and (3) the use of different host plants results in genetic differentiation. We sequenced a mitochondrial COI fragment from individuals collected over 24 years and screened microsatellite variation from 32 populations across two seasons. The predominance of a single COI haplotype and negative Tajima D in samples from 2006/2007 fit with a population expansion model. In the older collections (1983 and 1993), a different haplotype is most prevalent, consistent with successive population contractions and expansions. Microsatellite data indicates recent migration between inland sites and coastal crops and admixture in several populations. Altogether, the data suggest that long-distance dispersal occurs between arid and agricultural regions, and this, together with fluctuations in population size, leads to temporally dynamic patterns of genetic differentiation. Host-associated differentiation is evident between mirids sampled from plants in the genus Cullen (Fabaceae), the primary host, and alternative host plant species growing nearby in arid regions. Our results highlight the importance of jointly assessing natural and agricultural environments in understanding the ecology of pest insects. PMID:23610626

  17. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils.

    PubMed

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred.

  18. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.

    PubMed

    Saleem, Muhammad; Arshad, Muhammad; Hussain, Sarfraz; Bhatti, Ahmad Saeed

    2007-10-01

    Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into alpha-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.

  19. Plant Biodiversity. Plant Life in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    What organisms have adapted to life in environments ranging from the ocean floor to desert sands, from frigid the tundra to the deepest, darkest jungle? None other than plants! From microscopic algae to the largest trees, millions of plant species have evolved in every habitat on the planet. In Plant Biodiversity, learn how plants developed in the…

  20. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: prospects for enhanced use in agriculture.

    PubMed

    Lu, Zhong-Xian; Zhu, Ping-Yang; Gurr, Geoff M; Zheng, Xu-Song; Read, Donna M Y; Heong, Kong-Luen; Yang, Ya-Jun; Xu, Hong-Xing

    2014-02-01

    Reduction of noncrop habitats, intensive use of pesticides and high levels of disturbance associated with intensive crop production simplify the farming landscape and bring about a sharp decline of biodiversity. This, in turn, weakens the biological control ecosystem service provided by arthropod natural enemies. Strategic use of flowering plants to enhance plant biodiversity in a well-targeted manner can provide natural enemies with food sources and shelter to improve biological control and reduce dependence on chemical pesticides. This article reviews the nutritional value of various types of plant-derived food for natural enemies, possible adverse effects on pest management, and the practical application of flowering plants in orchards, vegetables and field crops, agricultural systems where most research has taken place. Prospects for more effective use of flowering plants to maximize biological control of insect pests in agroecosystem are good but depend up on selection of optimal plant species based on information on the ecological mechanisms by which natural enemies are selectively favored over pest species.

  1. Reducing Our Carbon Footprint: Converting Plants to Fuel (LBNL Science at the Theater)

    ScienceCinema

    Somerville, Chris

    2016-07-12

    Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmental and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.

  2. Plant volatile-mediated signalling and its application in agriculture: successes and challenges.

    PubMed

    Pickett, John A; Khan, Zeyaur R

    2016-12-01

    856 I. 856 II. 857 III. 858 IV. 859 V. 860 VI. 862 VII. 863 VIII. 864 IX. 866 866 References 866 SUMMARY: The mediation of volatile secondary metabolites in signalling between plants and other organisms has long been seen as presenting opportunities for sustainable crop protection. Initially, exploitation of interactions between plants and other organisms, particularly insect pests, foundered because of difficulties in delivering, sustainably, the signal systems for crop protection. We now have mounting and, in some cases, clear practical evidence for successful delivery by companion cropping or next-generation genetic modification (GM). At the same time, the type of plant signalling being exploited has expanded to signalling from plants to organisms antagonistic to pests, and to plant stress-induced, or primed, plant-to-plant signalling for defence and growth stimulation.

  3. Contributions of agricultural plants and soils to N2O emission in a farmland

    NASA Astrophysics Data System (ADS)

    Li, J.; Lee, X.; Yu, Q.; Tong, X.; Qin, Z.; MacDonald, B.

    2011-06-01

    The goal of this study was to quantify the roles of plants and soil in the N2O budget of a cropland in North China. Plant and soil N2O fluxes were measured with transparent and dark plant chambers and soil chambers, respectively, in three adjacent fields of fertilized cotton, fertilized maize and unfertilized soybean. During the observation period, the soil flux was 448 ± 89, 230 ± 74 and 90 ± 14 μg N2O m-2 h-1 in cotton, maize and soybean fields, respectively. The plant flux was 54 ± 43 and 16 ± 41 μg N2O m-2 h-1, about 10 % and 26 % to the total ecosystem flux, for the cotton and the soybean field, respectively. Ignoring the contribution of plants would cause an obvious underestimation on the ecosystem N2O flux. The influence of sunlight on plant N2O flux was insignificant. However, in the cotton field, the responses of the plant N2O flux to air temperature and soil ammonium content were significant under sunlight but insignificant under darkness, suggesting that stomatal activity might influence the release process. In the cotton field, temperature sensitivity of plant N2O emission was 1.13, much lower than the value of soil flux (5.74). No relationship was found between plant N2O flux and soil nitrate content. It was implied that nitrate reduction in plants might not be the main source of plant N2O emission under field conditions. The seasonal patterns of the soil and plant N2O emissions were similarly affected by fertilization, indicating that plants might serve as a passive conduit transporting N2O produced in the soil.

  4. The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes.

    PubMed

    Kaplan, Ian; Dively, Galen P; Denno, Robert F

    2009-06-01

    The expression of plant defenses is thought to entail costs (e.g., the allocation of resources away from growth or reproduction) that constrain the evolution of plant genotypes maximally defended against herbivores. Although central to the ecological theory underlying plant-insect interactions at large, the concept of defense costs is particularly evident in agricultural crops where plants may be under simultaneous selection for enhanced growth and/or reproduction (i.e., yield) and anti-herbivore resistance traits that deter pests. In this study we investigate the role of trichomes as a resistance mechanism against a sap-feeding insect (the leafhopper, Empoasca fabae) on potato. Natural variation in trichome density among 17 potato cultivars was used to test for the role of trichomes as a putative defense against leafhoppers, and evidence of costs in trichome expression. Two different types of costs were explored: (1) allocation costs (i.e., the relationship between trichomes and yield), and (2) costs involving trade-offs with alternative defense strategies (e.g., tolerance). Although leafhopper abundance did not decrease as trichome density increased, leafhopper injury to potato plants (foliar necrosis) was negatively correlated with trichome density. As a result, the per capita effect of leafhopper adults and nymphs on foliar damage was lower on plants with high trichome densities. We found no evidence, however, for costs of expressing this resistance trait; trichomes were not correlated with either potato yield or tolerance to herbivory. Thus, selection for multiple plant defenses to alleviate the impact of pests in agronomic crops may indeed be possible without inherent losses in plant yield.

  5. Melatonin: Current Status and Future Perspectives in Plant Science

    PubMed Central

    Nawaz, Muhammad A.; Huang, Yuan; Bie, Zhilong; Ahmed, Waqar; Reiter, Russel J.; Niu, Mengliang; Hameed, Saba

    2016-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule with pleiotropic actions in different organisms. It performs many important functions in human, animals, and plants; these range from regulating circadian rhythms in animals to controlling senescence in plants. In this review, we summarize the available information regarding the presence of melatonin in different plant species, along with highlighting its biosynthesis and mechanisms of action. We also collected the available information on the effects of melatonin application on commercially important crops to improve their growth and development. Additionally, we have identified many new aspects where melatonin may have possible roles in plants, for example, its function in improving the storage life and quality of fruits and vegetables, its role in vascular reconnection during the grafting process and nutrient uptake from roots by modifying root architecture. Another potentially important aspect is the production of melatonin-rich food crops (cereals, fruits, and vegetables) through combination of conventional and modern breeding approaches, to increase plant resistance against biotic and abiotic stress, leading to improved crop yields, and the nutraceutical value of produce to solve food security issues. PMID:26793210

  6. Improving plant bioaccumulation science through consistent reporting of experimental data.

    PubMed

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments.

  7. Micro-PIXE in plant sciences: Present status and perspectives

    NASA Astrophysics Data System (ADS)

    Mesjasz-Przybyłowicz, Jolanta; Przybyłowicz, Wojciech J.

    2002-04-01

    Fundamental processes of plant physiology are affected or regulated by mineral nutrients. Hence understanding the mechanisms of nutrient uptake and their functions in plant metabolism is of fundamental importance in both basic and applied plant studies. The present knowledge of ion uptake mechanisms is based mostly on techniques for bulk analysis, including analysis of small (mg-sized) samples but without spatially resolved results. On the other hand, advanced studies of elemental transport at a cellular level are conducted using techniques with high and very high spatial resolution, but with low sensitivity for elemental analysis. Thus the results obtained are usually restricted to macronutrients or elements present in high quantities. There is a high demand for studies of the functions of trace elements. In addition, it is known that, depending on their concentrations, elements can play different roles in plant life. Studies related to elemental deficiency and toxicity, as well as environmental pollution, require accurate, fully quantitative methods with good spatial resolution. Ideally, these studies should be conducted on organs and tissues as far down as the cellular level. This is where micro-PIXE has been applied until present and can in the near future play a much more important role. Progress is subject to closer collaboration between plant biologists and the PIXE community in terms of addressing problems of specimen preparation, refinement of analytical protocols such as quantitative elemental mapping and the interpretation of results.

  8. Melatonin: Current Status and Future Perspectives in Plant Science.

    PubMed

    Nawaz, Muhammad A; Huang, Yuan; Bie, Zhilong; Ahmed, Waqar; Reiter, Russel J; Niu, Mengliang; Hameed, Saba

    2015-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule with pleiotropic actions in different organisms. It performs many important functions in human, animals, and plants; these range from regulating circadian rhythms in animals to controlling senescence in plants. In this review, we summarize the available information regarding the presence of melatonin in different plant species, along with highlighting its biosynthesis and mechanisms of action. We also collected the available information on the effects of melatonin application on commercially important crops to improve their growth and development. Additionally, we have identified many new aspects where melatonin may have possible roles in plants, for example, its function in improving the storage life and quality of fruits and vegetables, its role in vascular reconnection during the grafting process and nutrient uptake from roots by modifying root architecture. Another potentially important aspect is the production of melatonin-rich food crops (cereals, fruits, and vegetables) through combination of conventional and modern breeding approaches, to increase plant resistance against biotic and abiotic stress, leading to improved crop yields, and the nutraceutical value of produce to solve food security issues.

  9. Developing a Competency-Based Component for the Connecticut Vocational Agriculture Curriculum. Final Report.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    Competencies are identified for the four primary instructional areas of the Connecticut Vocational Agriculture Curriculum: plant science, agricultural mechanics, natural resources, and animal science. The competencies for each instructional area are divided into those for exploratory units generally appropriate for instruction at the…

  10. Plant oil renewable resources as green alternatives in polymer science.

    PubMed

    Meier, Michael A R; Metzger, Jürgen O; Schubert, Ulrich S

    2007-11-01

    The utilization of plant oil renewable resources as raw materials for monomers and polymers is discussed and reviewed. In an age of increasing oil prices, global warming and other environmental problems (e.g. waste) the change from fossil feedstock to renewable resources can considerably contribute to a sustainable development in the future. Especially plant derived fats and oils bear a large potential for the substitution of currently used petrochemicals, since monomers, fine chemicals and polymers can be derived from these resources in a straightforward fashion. The synthesis of monomers as well as polymers from plant fats and oils has already found some industrial application and recent developments in this field offer promising new opportunities, as is shown within this contribution. (138 references.)

  11. Infrared Spectroscopy as a Versatile Analytical Tool for the Quantitative Determination of Antioxidants in Agricultural Products, Foods and Plants

    PubMed Central

    Cozzolino, Daniel

    2015-01-01

    Spectroscopic methods provide with very useful qualitative and quantitative information about the biochemistry and chemistry of antioxidants. Near infrared (NIR) and mid infrared (MIR) spectroscopy are considered as powerful, fast, accurate and non-destructive analytical tools that can be considered as a replacement of traditional chemical analysis. In recent years, several reports can be found in the literature demonstrating the usefulness of these methods in the analysis of antioxidants in different organic matrices. This article reviews recent applications of infrared (NIR and MIR) spectroscopy in the analysis of antioxidant compounds in a wide range of samples such as agricultural products, foods and plants. PMID:26783838

  12. All about Plant Structure & Growth. Plant Life for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    How does a tiny seed sprout and grow into a towering tree? Join the kids from M.A.P.L.E as they learn about some of the incredible transformations that a plant goes through during its lifetime. In All About Plant Structure & Growth, uncover the secrets of roots, stems and leaves - structures that are vital to a plant's role as an energy…

  13. Plant Reproduction. Plant Life in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    Plants are vital to all other life on this planet - without them, there would be no food, shelter or oxygen. Luckily, over millions of years plants have developed many different features in order to survive and reproduce. In Plant Reproduction, students will discover that primitive mosses and algae are dependent upon water for their reproduction.…

  14. 78 FR 37200 - Plant Variety Protection Board; Open Teleconference Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... Agricultural Marketing Service Plant Variety Protection Board; Open Teleconference Meeting AGENCY: Agricultural... their opportunity to attend an open meeting of the Plant Variety Protection Board. DATES: July 31, 2013... FURTHER INFORMATION CONTACT: Ms. Jennifer Banks, Plant Variety Protection Office, Science and...

  15. Kansas Vocational Agriculture Education. Basic Core Curriculum I.

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    This secondary vocational agricultural curriculum guide is one of a set of four designated as the basic core of instruction for vocational agriculture programs in Kansas. Units of instruction are presented in six sections: (1) Orientation and Careers, (2) Leadership, (3) Supervised Experience Programs, (4) Animal Science, (5) Plant and Soil…

  16. THE USE OF CHEMICALS AS INSECTICIDES--PLANTS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 2.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THIS GUIDE IS ONE OF A SERIES DESIGNED TO PROVIDE GROUP INSTRUCTION AND INDIVIDUAL OCCUPATIONAL EXPERIENCE FOR POST-SECONDARY STUDENTS PREPARING FOR EMPLOYMENT AS AGRICULTURAL CHEMICAL TECHNICIANS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF STATE STUDY DATA. THE OBJECTIVES ARE TO DEVELOP (1) INTEREST, APPRECIATION, AND UNDERSTANDING…

  17. Marshner Review: Harnessing the rhizosphere microbiome through plant breeding and agricultural management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need to enhance the sustainability of intensive agricultural systems is widely recognized. One promising approach is to encourage beneficial functions provided by microorganisms to decrease the inputs of fertilizers and pesticides. However, tremendous uncertainty exists in how this might be best...

  18. Evaluation in STEM Online Graduate Degree Programs in Agricultural Sciences and Engineering

    ERIC Educational Resources Information Center

    Downs, Holly A.

    2014-01-01

    Demands for online graduate degrees have increased pressure on universities to launch web degrees quickly and, at times, without attending to their quality. Scarce research exists identifying what evaluation activities are being done by science, technology, engineering, and mathematics (STEM) online graduate degree programs that are accustomed to…

  19. Beef Production for Agricultural Science I Core Curriculum. Student Reference. AGDEX 420/10.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This student reference booklet is designed to accompany lessons outlined in the companion instructor's guide on beef production. Together, the student reference and instructor's guide form part of the Animal Science I core curriculum. This unit on beef production is divided into five lessons in these areas: selection of breeding stock, breeding…

  20. Proceedings of the frst joint american chemical society agricultural and food chemistry division – american chemical society international chemical sciences chapter in Thailand symposium on agricultural and food chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This Proceedings is a compilation of papers from contributed oral and poster presentations presented at the first joint symposium organized by the American Chemical Society Agricultural and Food Chemistry Division and the American Chemical Society International Chemical Sciences Chapter in Thailand ...

  1. Plants. Grade 1. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Anchorage School District, AK.

    This unit includes six lessons on plants for first graders. It provides a material list for 30 students, book list, unit introductions, schedules, and background information for teachers including evaluation and problem areas. Lessons include: (1) "Living and Non-Living Things"; (2) "Seeds and Other Things"; (3) "Sowing…

  2. Catalyzing plant science research with RNA-seq

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation DNA sequencing technologies are driving increasingly rapid, affordable and high resolution analyses of plant transcriptomes through sequencing of the associated cDNA populations; an analytical platform commonly referred to as RNA-sequencing (RNA-seq). Since its first adoption only a ...

  3. Environmental Science: Activities with Plants of the Southwest.

    ERIC Educational Resources Information Center

    Hackley, Sharon; Hackley, Mike

    In this book for students of all ages, the author introduces unusual recipe ideas for the prickly, odd, and pestiferous plants of the American southwestern desert. Students are involved in cooking activities designed to spark interest in ecology, trigger logical thinking, utilize math skills, and build sound environmental concepts. Care was taken…

  4. Unlocking the potential of lignocellulosic biomass through plant science.

    PubMed

    Marriott, Poppy E; Gómez, Leonardo D; McQueen-Mason, Simon J

    2016-03-01

    The aim of producing sustainable liquid biofuels and chemicals from lignocellulosic biomass remains high on the sustainability agenda, but is challenged by the costs of producing fermentable sugars from these materials. Sugars from plant biomass can be fermented to alcohols or even alkanes, creating a liquid fuel in which carbon released on combustion is balanced by its photosynthetic capture. Large amounts of sugar are present in the woody, nonfood parts of crops and could be used for fuel production without compromising global food security. However, the sugar in woody biomass is locked up in the complex and recalcitrant lignocellulosic plant cell wall, making it difficult and expensive to extract. In this paper, we review what is known about the major polymeric components of woody plant biomass, with an emphasis on the molecular interactions that contribute to its recalcitrance to enzymatic digestion. In addition, we review the extensive research that has been carried out in order to understand and reduce lignocellulose recalcitrance and enable more cost-effective production of fuel from woody plant biomass.

  5. Caesium-137 soil-to-plant transfer for representative agricultural crops of monocotyledonous and dicotyledonous plants in post-Chernobyl steppe landscape

    NASA Astrophysics Data System (ADS)

    Paramonova, Tatiana; Komissarova, Olga; Turykin, Leonid; Kuzmenkova, Natalia; Belyaev, Vladimir

    2016-04-01

    The accident at the Chernobyl nuclear power plant in 1986 had a large-scale action on more than 2.3 million hectares agricultural lands in Russia. The area of radioactively contaminated chernozems of semi-arid steppe zone with initial levels of Cs-137 185-555 kBq/m2 in Tula region received the name "Plavsky radioactive hotspot". Nowadays, after the first half-life period of Cs-137 arable chernozems of the region are still polluted with 3-6-fold excess above the radioactive safety standard (126-228 kBq/m2). Therefore, qualitative and quantitative characteristics of Cs-137 soil-to-plant transfer are currently a central problem for land use on the territory. The purpose of the present study was revealing the biological features of Cs-137 root uptake from contaminated arable chernozems by different agricultural crops. The components of a grass mixture growing at the central part of Plavsky radioactive hotspot with typical dicotyledonous and monocotyledonous plants - galega (Galega orientalis, Fabaceae family) and bromegrass (Bromus inermis, Gramineae family) respectively - were selected for the investigation, that was conducted during the period of harvesting in 2015. An important point was that the other factors influenced on Cs-137 soil-to-plant transfer - the level of soil pollution, soil properties, climatic conditions, vegetative phase, etc. - were equal. So, biological features of Cs-137 root uptake could be estimated the most credible manner. As a whole, general discrimination of Cs-137 root uptake was clearly shown for both agricultural crops. Whereas Cs-137 activity in rhizosphere 30-cm layer of arable chernozem was 371±74 Bq/kg (140±32 kBq/m2), Cs-137 activities in plant biomass were one-two orders of magnitude less, and transfer factor (TF) values (the ratio of the Cs-137 activities in vegetation and in soil) not exceeded 0.11. At the same time bioavailability of Cs-137 for bromegrass was significantly higher than for galega: TFs in total biomass of the

  6. Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia.

    PubMed

    Marković, Mirjana; Cupać, Svjetlana; Durović, Rada; Milinović, Jelena; Kljajić, Petar

    2010-02-01

    This study was aimed to assess the levels of selected heavy metals and pesticides in soil and plant products from an agricultural area of Belgrade, Serbia and to indicate possible sources and risks of contamination. Soil, vegetable, and fruit samples from the most important agricultural city areas were collected from July to November of 2006. Metal contents were determined by atomic absorption spectrometry, whereas pesticide residues were analyzed by gas chromatography-mass spectrometry after extraction performed using solid-phase microextraction technique. Soil characterization based on the determination of selected physical and chemical properties revealed heterogeneous soils belonging to different soil groups. The concentrations of lead, cadmium, copper, and zinc in soil samples do not exceed the limits established by national and international regulations. Residues of the herbicide atrazine were detected in three soil samples, with levels lower than the relevant limit. The presence of other herbicides, namely prometryn, chloridazon, acetochlor, flurochloridone, and napropamide, was registered in some soil samples as well. Among the insecticides investigated in the soil, fenitrothion and chlorpyrifos were the only ones detected. In most of the investigated vegetable samples from the Obrenovac area, Pb and Cd contents are higher in comparison with the maximum levels, indicating the emission of coal combustion products from local thermal power plants as a possible source of contamination. Residue levels of some herbicides and insecticides (metribuzin, trifluralin, pendimethalin, bifenthrin, chlorpyrifos, and cypermethrin) determined in tomato, pepper, potato, and onion samples from Slanci, Ovca, and Obrenovac areas are even several times higher than the maximum residue levels. Inappropriate use of these plant protection products is considered to be the most probable reason of contamination. Because increased levels of heavy metals and pesticide residues found in

  7. Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system.

    PubMed

    Baldotto, Lílian Estrela Borges; Olivares, Fábio Lopes

    2008-11-01

    Plant surfaces are a favourable niche for bacterial establishment, and hypothetically, plant species differ in their capacity to harbour epiphytic bacterial communities. This study was conducted to evaluate and describe the structural relationship of a bacterial community at the phyllosphere level with different plant species in a tropical ecosystem. Leaf blades of 47 plant species distributed in 27 botanical families were collected on a typical small Brazilian farm and prepared for observation under light and scanning electron microscopy. Naturally occurring bacteria were the most abundant settlers of the phylloplane, followed by fungal spore or hyphae. All plant species studied were colonized by phylloepiphytic bacteria, which were observed as solitary cells, microcolonies, and biofilms. However, independent of the family, the plant species differed in the pattern of phyllosphere colonization, as reflected in bacteria frequency and presence or absence of anatomical features that would favour the association. The phylloepiphytic bacteria were preferentially established on the following sites: epidermal cell wall junctions, glandular and nonglandular trichomes, veins, stomata, and epidermal cell wall surface. Profuse bacteria and fungi colonization was observed, at a level that was at least comparable with temperate regions. Interestingly, fungi seemed to alter the bacteria colonization pattern, most probably by microenvironmental modifications. The trichome type and density as well as the presence of epicuticular wax on the leaf blade surface seemed to be the most determinant anatomical features for the pattern of phyllosphere colonization. The presence of trichomes has a favourable, and epicuticular wax an unfavourable influence on the plant-bacteria interaction.

  8. A method of variable spacing for controlled plant growth systems in spaceflight and terrestrial agriculture applications

    NASA Technical Reports Server (NTRS)

    Knox, J.

    1986-01-01

    A higher plant growth system for Controlled Ecological Life Support System (CELSS) applications is described. The system permits independent movement of individual plants during growth. Enclosed within variable geometry growth chambers, the system allocates only the volume required by the growing plants. This variable spacing system maintains isolation between root and shoot environments, providing individual control for optimal growth. The advantages of the system for hydroponic and aeroponic growth chambers are discussed. Two applications are presented: (1) the growth of soybeans in a space station common module, and (2) in a terrestrial city greenhouse.

  9. Strategy for the Development of a Smart NDVI Camera System for Outdoor Plant Detection and Agricultural Embedded Systems

    PubMed Central

    Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe

    2013-01-01

    The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed. PMID:23348037

  10. Strategy for the development of a smart NDVI camera system for outdoor plant detection and agricultural embedded systems.

    PubMed

    Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe

    2013-01-24

    The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed.

  11. Priming against environmental challenges and proteomics in plants: Update and agricultural perspectives

    PubMed Central

    Tanou, Georgia; Fotopoulos, Vasileios; Molassiotis, Athanassios

    2012-01-01

    Priming is the cellular state in which the harmful effects of abiotic stress factors in plants are hindered by pre-exposure to a stimulus, thus resulting in greater survival. It is becoming increasingly evident that priming techniques (e.g., external application of natural or synthetic compounds in plants) can enhance the tolerance of crops to environmental stresses. Innovative systems biology approaches such as proteomics are currently recognized as essential tools to understand the molecular mechanisms underlying plant responses to environmental stimuli and priming phenomena. The few published proteomic studies on priming in the context of environmental stress identify key protein targets and signaling pathways which are being involved in the alleviation of negative effects of stress factors. Since priming is a very promising strategy in modern crop production management, further research is needed in order to establish the global picture of priming phenomena against environmental challenges as well as to characterize specific priming-related protein indicators in plants. PMID:22973291

  12. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil).

    PubMed

    Rodriguez-Iruretagoiena, Azibar; Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; Ramos, Claudete G; Oliveira, Marcos L S; Arana, Gorka; de Diego, Alberto; Madariaga, Juan Manuel; Silva, Luis F O

    2015-03-01

    Hazard element contamination coming from coal power plants is something obvious, but when this contamination is accompanied by other contamination sources, such as, urban, coal mining and farming activities the study gets complicated. This is the case of an area comprised in the southern part of Santa Catarina state (Brazil) with the largest private power plant generator. After the elemental analysis of 41 agricultural soils collected in an extensive area around the thermoelectric (from 0 to 47 km), the high presence of As, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sb, Sn, Tl, V and Zn was found in some specific areas around the power plant. Nevertheless, as the NWAC (Normalized-and-Weighted Average Concentration) confirmed, only soils from one site were classified as of very high concern due to the presence of potential toxic elements. This site was located within the sedimentation basin of the power plant. The spatial distribution obtained by kriging in combination with the analysis of the data by Principal Component Analysis (PCA) revealed three important hotspots in the area according to soil uses and geographic localization: the thermoelectric, its area of influence due to volatile compound deposition, and the area comprised between two urban areas. Farming practice turn out to be an important factor too for the quantity of hazard element stored in soils.

  13. Effects of fluoride emissions on enzyme activity in metabolism of agricultural plants

    SciTech Connect

    Moeri, P.B.

    1980-01-01

    The effects of fluoride on the activity of malatedehydrogenase (MDH) in rape seed and rye grass have been investigated. Fluoride, which has been absorbed from the air, seems to act differently from fluoride added to the soil. The action of airborne fluoride compounds resorbed by the plant on the activity of MDH significantly correlated with the distance from an aluminum plant, crop yield, and fluoride content. 5 references, 5 figures, 2 tables.

  14. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 5. Science Applications, Incorporated system requirements definition

    SciTech Connect

    Not Available

    1985-01-01

    This report sets forth the system requirements for a Solar Controlled-Environment Agriculture System (SCEAS) Project. In the report a conceptual baseline system description for an engineering test facility is given. This baseline system employs a fluid roof/roof filter in combination with a large storage tank and a ground water heat exchanger in order to provide cooling and heating as needed. Desalination is accomplished by pretreatment followed by reverse osmosis. Energy is provided by means of photovoltaics and wind machines in conjunction with storage batteries. Site and climatic data needed in the design process are given. System performance specifications and integrated system design criteria are set forth. Detailed subsystem design criteria are presented and appropriate references documented.

  15. Enhancing Drought Early Warning System for Sustainable Water Resources and Agricultural Management through Apllication of Space Science - Nigeria in Perspective

    NASA Astrophysics Data System (ADS)

    Okpara, J. N.; Akeh, L. E.; Anuforom, A. C.; Aribo, P. B.; Olayanju, S. O.

    Enhancing Drought Early Warning System for Sustainable Water Resources and Agriculture Management through Application of Space Science - Nigeria in Perspective BY J N Okpara L E Akeh Anuforom P B Aribo and S O Olayanju Directorate of Applied Meteorological Services Nigerian Meteorological Agency NIMET P M B 615 Garki Abuja Nigeria e-mail underline Juddy Okpara yahoo co uk and underline tonycanuforom yahoo com underline Abstract This paper attempts to highlight the importance of drought early warning system in water resources and agricultural management in Nigeria Various studies have shown that the negative impacts of droughts and other forms of extreme weather phenomena can be substantially reduced by providing early warning on any impending weather extremes X-rayed in this study are the various techniques presently used by the Nigerian Meteorological Agency NIMET in generating information for meteorological Early Warning System EWS which are based on models that make use of ground-based raingauge data and sea surface temperatures SST Komuscu standardized precipitation index SPI inclusive These methods are often limited by such factors as network density of stations limited communication infrastructure human inefficiency etc NIMET is therefore embarking on the development of a new Satellite Agrometeorological Information System SAMIS-Nigeria for famine and drought early warning The system combines satellite data with raingauge data to give a range of

  16. Nanoscale science and technology with plant viruses and bacteriophages.

    PubMed

    Bittner, Alexander M; Alonso, José María; Górzny, Marcin L; Wege, Christina

    2013-01-01

    Nanoscale science refers to the study and manipulation of matter at the atomic and molecular scales, including nanometer-sized single objects, while nanotechnology is used for the synthesis, characterization, and for technical applications of structures up to 100 nm size (and more). The broad nature of the fields encompasses disciplines such as solid-state physics, microfabrication, molecular biology, surface science, organic chemistry and also virology. Indeed, viruses and viral particles constitute nanometer-sized ordered architectures, with some of them even able to self-assemble outside cells. They possess remarkable physical, chemical and biological properties, their structure can be tailored by genetic engineering and by chemical means, and their production is commercially viable. As a consequence, viruses are becoming the basis of a new approach to the manufacture of nanoscale materials, made possible only by the development of imaging and manipulation techniques. Such techniques reach the scale of single molecules and nanoparticles. The most important ones are electron microscopy and scanning probe microscopy (both awarded with the Nobel Prize in Physics 1986 for the engineers and scientists who developed the respective instruments). With nanotechnology being based more on experimental than on theoretical investigations, it emerges that physical virology can be seen as an intrinsic part of it.

  17. Survey of the World Agricultural Documentation Services, Draft; Prepared on Behalf of the FAO Panel of Experts on "AGRIS" (International Information System for the Agricultural Sciences and Technology).

    ERIC Educational Resources Information Center

    Buntrock, H.

    The purpose of the survey was: (1) to evaluate existing agricultural information services and (2) to propose possible frameworks for an improved world-wide agricultural information service. The principal statistical results of the survey are summarized in the following figures which are based on data collected in nearly all instances for the year…

  18. Art, science and mathematics: new approaches to animal health problems in the agricultural industry.

    PubMed

    Davies, G

    1985-09-14

    This article is about change; particularly the prospect for change in veterinary research during the last decade and a half of the 20th century. The title encapsulates the idea that veterinary medicine, if it is to be effective, periodically has to change its approach to solving animal health problems; that over the last century we have witnessed one major change, that from veterinary medicine as an art to veterinary medicine as a science, and that we are probably on the brink of another change, moving from a scientific or more correctly an experimental approach to a mathematical or observational approach.

  19. Plant & Animal Interdependency. Plant Life in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    In every ecosystem, organisms rely on each other in unique relationships that ensure each other's survival. In Plant & Animal Interdependency, find out how plants and animals interact, cooperate and compete. All living things have basic needs and depend on other living things to meet those needs. Discover why the constant exchange of nutrients and…

  20. Plant Structure & Growth. Plant Life in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    What if you could build a machine that could make it's own fuel, adapt to changing conditions, and generate priceless products like air and water? Over millions of years, vascular plants have developed roots, stems and leaves that work together to perform these feats, as well as provide energy for every living thing on Earth! In Plant Structure…

  1. Impact of biosolids and wastewater effluent application to agricultural land on corticosterone content in lettuce plants.

    PubMed

    Shargil, Dorit; Fine, Pinchas; Gerstl, Zev; Nitsan, Ido; Kurtzman, Daniel

    2016-01-15

    We studied corticosterone occurrence in lettuce plants grown on three biosolids amended soils under irrigation with either tap water or secondary wastewater effluent. Corticosterone was examined as it has possible implications for human health. It is a major glucocorticoid, and as such has an effect on regulation of metabolism, immune functions and stress response. The plants were grown in 220-L lysimeters packed with 3 soils which represent a wide range of physicochemical properties. Lettuce was grown in cycles (two in summer and two in winter) during 3 years, and in every spring season the sludges were re-applied. Corticosterone was quantified using ELISA and LCMS, and was found in the biosolids, tap water, wastewater effluent and lettuce plants. The respective ranges of concentrations were: 11-92 ng g(-1), 0.5-1.6 ng L(-1), 4.2-4.7 ng L(-1); and 1-900 ng g(-1) dry weight. A positive relationship was found between corticosterone concentrations in winter-grown lettuces and the plants fresh weight. The corticosterone content of the plants did not correspond with either the type of irrigation water or the biosolids type and rate of application or the soil properties.

  2. High throughput imaging and analysis for biological interpretation of agricultural plants and environmental interaction

    NASA Astrophysics Data System (ADS)

    Hong, Hyundae; Benac, Jasenka; Riggsbee, Daniel; Koutsky, Keith

    2014-03-01

    High throughput (HT) phenotyping of crops is essential to increase yield in environments deteriorated by climate change. The controlled environment of a greenhouse offers an ideal platform to study the genotype to phenotype linkages for crop screening. Advanced imaging technologies are used to study plants' responses to resource limitations such as water and nutrient deficiency. Advanced imaging technologies coupled with automation make HT phenotyping in the greenhouse not only feasible, but practical. Monsanto has a state of the art automated greenhouse (AGH) facility. Handling of the soil, pots water and nutrients are all completely automated. Images of the plants are acquired by multiple hyperspectral and broadband cameras. The hyperspectral cameras cover wavelengths from visible light through short wave infra-red (SWIR). Inhouse developed software analyzes the images to measure plant morphological and biochemical properties. We measure phenotypic metrics like plant area, height, and width as well as biomass. Hyperspectral imaging allows us to measure biochemcical metrics such as chlorophyll, anthocyanin, and foliar water content. The last 4 years of AGH operations on crops like corn, soybean, and cotton have demonstrated successful application of imaging and analysis technologies for high throughput plant phenotyping. Using HT phenotyping, scientists have been showing strong correlations to environmental conditions, such as water and nutrient deficits, as well as the ability to tease apart distinct differences in the genetic backgrounds of crops.

  3. The local view on the role of plant protection in sustainable agriculture in India.

    PubMed

    Jayaraj, S; Rabindra, R J

    1993-01-01

    Indiscriminate use of chemical insecticides has affected humans and their environment and contributed significantly to reduced productivity of crops. With the increasing realization of the importance of sustainable agriculture, the concept of integrated pest management (IPM) for sustainable agriculture has emerged. In the recent past entomologists and the farmers have identified methods of pest management that are ecologically non-disruptive and stable. Concurrently indigenous crop varieties with resistance to pests and diseases have been developed and cultivated. According to the principle of 'organic farming', several non-chemical methods have become popular among the local farmers. Simple cultural practices like increasing the seed rate to compensate for pest damage, adjusting the time of sowing to avoid pest damage, mulching, intercropping, trap cropping and crop rotation have been found to provide adequate protection from pest damage with no additional cost and without harmful effects on the environment. The age-old method of catch and kill is still being practised by farmers, particularly for cotton. Mechanical methods like the bow trap for control of rats and provision of tin sheets around coconut tree trunks to prevent rats damaging the nuts are still being adopted. The use of botanical materials such as the neem products for pest management has been well received almost all over the world. Biological control using the natural enemies of insect pests has become very popular among the farmers in the 1980s. The farmers who clamoured for chemical pesticides in the 1960s and 1970s are now disillusioned with these poisonous eco-destabilizing substances; they want sensible, biologically rational methods of IPM. Pest surveillance and monitoring play an important role in IPM for sustainable agriculture.

  4. Reclamation and agricultural reuse of wastewater: the experience of the Cagliari sewage treatment plant (Sardinia, Italy).

    PubMed

    Botti, P; Virdis, A; Solinas, G; Buscarinu, P; Ferralis, M; Marras, G; Spanu, P; Vacca, S

    2009-01-01

    In Sardinia, as in many other Mediterranean regions, recurrent droughts and climate change have dramatically reduced available water resources. As a result of this critical situation, in 1995 the Italian Government declared a state of emergency and drew up a program for financial support by the State and local authorities with the aim of reducing this serious deficit. One of the actions focused on reclaiming and reusing the effluent from the sewage treatment plant of Cagliari. This article reports on the multidisciplinary preliminary study performed by the Ente Acque della Sardegna (ENAS) to evaluate the suitability of reusing Is Arenas effluent for irrigation and on the operation of the tertiary treatment plant.

  5. Building political and financial support for science and technology for agriculture.

    PubMed

    Beachy, Roger N

    2014-04-05

    The high rate of return on investments in research and development in agriculture, estimated at between 20- and 40-fold, provides a strong rationale for increasing financial support for such research. Furthermore, the urgency to provide sufficient nutrition for a growing population amid growing demands for an expanding bioeconomy, while facing population growth and changing global weather patterns heightens the urgency to expand research and development in this field. Unfortunately, support by governments for research has increased at a fraction of the rate of increases in support of research for health, energy, etc. Although there have been significant increases in investments by the private sector over the past two decades, much of the foundational research that supports private-sector activities is generated in the public sector. To achieve the greatest benefits of breakthroughs in research, it may be necessary to reconfigure research funding and technology transfer mechanisms in order to more rapidly apply discoveries to local needs as well as to global challenges. Some changes will likely require significant organizational, administrative and operational changes in education and research institutions.

  6. Building political and financial support for science and technology for agriculture

    PubMed Central

    Beachy, Roger N.

    2014-01-01

    The high rate of return on investments in research and development in agriculture, estimated at between 20- and 40-fold, provides a strong rationale for increasing financial support for such research. Furthermore, the urgency to provide sufficient nutrition for a growing population amid growing demands for an expanding bioeconomy, while facing population growth and changing global weather patterns heightens the urgency to expand research and development in this field. Unfortunately, support by governments for research has increased at a fraction of the rate of increases in support of research for health, energy, etc. Although there have been significant increases in investments by the private sector over the past two decades, much of the foundational research that supports private-sector activities is generated in the public sector. To achieve the greatest benefits of breakthroughs in research, it may be necessary to reconfigure research funding and technology transfer mechanisms in order to more rapidly apply discoveries to local needs as well as to global challenges. Some changes will likely require significant organizational, administrative and operational changes in education and research institutions. PMID:24535386

  7. Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars.

    PubMed

    Kloss, Stefanie; Zehetner, Franz; Buecker, Jannis; Oburger, Eva; Wenzel, Walter W; Enders, Akio; Lehmann, Johannes; Soja, Gerhard

    2015-03-01

    Various biochar (BC) types have been investigated as soil amendment; however, information on their effects on trace element (TE) biogeochemistry in the soil-water-plant system is still scarce. In the present study, we determined aqua-regia (AR) and water-extractable TEs of four BC types (woodchips (WC), wheat straw (WS), vineyard pruning (VP), pyrolyzed at 525 °C, of which VP was also pyrolyzed at 400 °C) and studied their effects on TE concentrations in leachates and mustard (Sinapis alba L.) tissue in a greenhouse pot experiment. We used an acidic, sandy agricultural soil and a BC application rate of 3% (w/w). Our results show that contents and extractability of TEs in the BCs and effectuated changes of TE biogeochemistry in the soil-water-plant system strongly varied among the different BC types. High AR-digestable Cu was found in VP and high B contents in WC. WS had the highest impact on TEs in leachates showing increased concentrations of As, Cd, Mo, and Se, whereas WC application resulted in enhanced leaching of B. All BC types increased Mo and decreased Cu concentrations in the plant tissue; however, they showed diverging effects on Cu in the leachates with decreased concentrations for WC and WS, but increased concentrations for both VPs. Our results demonstrate that BCs may release TEs into the soil-water-plant system. A BC-induced liming effect in acidic soils may lead to decreased plant uptake of cationic TEs, including Pb and Cd, but may enhance the mobility of anionic TEs like Mo and As. We also found that BCs with high salt contents (e.g., straw-based BCs) may lead to increased mobility of both anionic and cationic TEs in the short term.

  8. Integrated validation of modeled plant growth, nitrogen- and water-fluxes in the agricultural used Rur catchment in Western Germany

    NASA Astrophysics Data System (ADS)

    Korres, Wolfgang; Klar, Christian; Reichenau, Tim; Fiener, Peter; Schneider, Karl

    2010-05-01

    Numerous studies have shown that agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil-moisture patterns in agroecosystems. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. Integrative validation of all three model components serves as a basis for modeling analysis of spatial soil moisture patterns. DANUBIA is parameterized and validated for the Rur catchment located in Western Germany. For integrative validation, an extensive three year dataset (2007 - 2009) of soil moisture- (TDR, FDR), plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was acquired. Plant measurements on an arable land test site were carried out biweekly. Measurements were conducted for winter wheat, maize and sugar beet during the growing season. Soil nitrogen and carbon measurements were taken before, during and after the growing season. Field averages of plant and soil parameters are derived from three individual measuring locations within each test field. Soil moisture was measured with three FDR soil moisture stations in 10 and 30 cm depth. In a grassland test site biomass measurements were carried out biweekly in 2009. Soil moisture was monitored at different locations in up to 60 cm soil depth using FDR- and TDR-stations. Meteorological data was measured with an eddy flux (arable land) and energy flux station (grassland test site). First results of point validation are in very good agreement with field measurements. Model results for winter wheat in 2007/2008 match field measurements well for both, the overall biomass (R2= 0.97, rel. RMSE = 16.8%, Nash Sutcliff - model efficiency ME = 0.96) as well as for

  9. Teaching about Animal, Plant, Living. Part 1. Learning in Science Project. Working Paper No. 31.

    ERIC Educational Resources Information Center

    Bell, Beverley, Ed.

    Presented is a guide for teaching activities produced as a result of a Learning in Science Project investigation which showed that children often have quite different meanings for the words "animal,""plant," and "living" than do scientists. Included are: (1) focus of instruction at different educational levels; (2) a…

  10. "Wildlife and Plants of the World": A Source for Both Science and Information Skills.

    ERIC Educational Resources Information Center

    Safford, Barbara Ripp

    2003-01-01

    Describes "Wildlife and Plants of the World," a multivolume encyclopedia set for third to seventh grades that is a basic science resource, and explains how it can be used by teachers and library media specialists to structure assignments that allow students to practice standard access skills that will transfer to other information resources. (LRW)

  11. Fruit and Vegetable Production Unit for Plant Science Core Curriculum. Instructor's Guide. Volume 16, Number 3.

    ERIC Educational Resources Information Center

    Stewart, Bob R.; Mullinix, Mark K.

    This curriculum guide, part of a plant science core curriculum, consists of materials for use in teaching a unit on fruit and vegetable production. Provided in the first part of the guide are a list of objectives, a bibliography, and a competency profile. The remainder of the guide consists of 11 lessons dealing with the following topics: planning…

  12. Undergraduate Education in the Plant and Soil Sciences, Proceedings of a Conference.

    ERIC Educational Resources Information Center

    Commission on Education in Agriculture and Natural Resources, Washington, DC.

    The proceedings of the 1967 Conference on Undergraduate Teaching in the Plant and Soil Sciences are presented in this publication. Seven individual presentations and reports from ten working groups review the adequacy and effectiveness of courses and curricula for undergraduate students; discuss instructional materials, methods, and equipment that…

  13. Inquiry in the Life Sciences: The Plant-in-a-Jar as a Catalyst for Learning

    ERIC Educational Resources Information Center

    Thompson, Stephen L.

    2007-01-01

    In this article, the author presents and discusses activities that use a phenomena-first, guided inquiry approach to teach important concepts related to plant function, as well as the history and nature of scientific inquiry. These activities are intended for use with students in grades 3-8, as well as in elementary science methods courses. The…

  14. A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declining plant biodiversity in agroecosystems has often been attributed to escalating use of chemical herbicides, but other changes in farming practice including the clearing of semi-natural habitat fragments confound the influence of herbicides. In this paper, we introduce a new approach to evalua...

  15. Introduction to the USDA-Agricultural Research Service Poisonous Plant Research Laboratory Special Rangelands Issue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS Poisonous Plant Research Labortory (PPRL) in Logan, UT will sponsor an edition of the magazine Rangelands. This paper provides a brief history and overview of the PPRL, mission statement, research objectives by CRIS, and the disciplines involved in the research....

  16. Integrating Phytoextraction and Biofortification: Fungal Accumulation of Selenium in Plant Materials from Phytoremediation of Agricultural Drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytomanagement of Se-polluted soil and water is one strategy that may be environmentally sustainable and cost-effective for soils and waters enriched with natural-occurring Se. Several plant species, including Indian mustard (Brassica juncea), pickleweed (Salicornia bigelovii), and other salt/S...

  17. Pollinating flies (Diptera): A major contribution to plant diversity and agricultural production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diptera are one of the three largest and most diverse animal groups of the world. As an often neglected, but important group of pollinators, they play a significant role in agrobiodiversity and biodiversity of plants everywhere. Flies are present in almost all habitats and biomes and for many food p...

  18. An Analysis of Occupational Titles and Competencies Needed in Agricultural Food Products Processing Plants.

    ERIC Educational Resources Information Center

    Smeltz, LeRoy C.

    To identify, rate, and cluster groups of competencies and occupational titles at entry and advance levels for occupations in five food products commodity areas, data were collected by interviews with personnel managers in 25 Pennsylvania food processing plants. Some findings were: (1) There were meaningful competency factor and occupational title…

  19. Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we argue for a research initiative on gene-for-gene (g-f-g) interactions between wheat and its parasites. One aim is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to biotic stress are integrated in an import...

  20. Citizen Science: linking the recent rapid advances of plant flowering in Canada with climate variability.

    PubMed

    Gonsamo, Alemu; Chen, Jing M; Wu, Chaoyang

    2013-01-01

    The timing of crucial events in plant life cycles is shifting in response to climate change. We use phenology records from PlantWatch Canada 'Citizen Science' networks to study recent rapid shifts of flowering phenology and its relationship with climate. The average first flower bloom day of 19 Canadian plant species has advanced by about 9 days during 2001-2012. 73% of the rapid and unprecedented first bloom day advances are explained by changes in mean annual national temperature, allowing the reconstruction of historic flower phenology records starting from 1948. The overall trends show that plant flowering in Canada is advancing by about 9 days per °C. This analysis reveals the strongest biological signal yet of climate warming in Canada. This finding has broad implications for niche differentiation among coexisting species, competitive interactions between species, and the asynchrony between plants and the organisms they interact with.

  1. What's in a Name: Differential Labelling of Plant and Animal Photographs in Two Nationally Syndicated Elementary Science Textbook Series

    ERIC Educational Resources Information Center

    Link-Perez, Melanie A.; Dollo, Vanessa H.; Weber, Kirk M.; Schussler, Elisabeth E.

    2010-01-01

    This study investigated plant and animal photographs in elementary science textbooks to discern whether there were disparities in the number of plant and animal photographs or in how those photographs were labelled. We examined the Life Science sections of two nationally syndicated (USA) textbook series. For each text, we identified the…

  2. Plant Hormones: How They Affect Root Formation.

    ERIC Educational Resources Information Center

    Reinhard, Diana Hereda

    This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…

  3. Analysis of the Inservice Needs of Agriscience/Agribusiness Teachers for Teaching Applied Agricultural Sciences in Louisiana. Vocational Education Curriculum Development.

    ERIC Educational Resources Information Center

    Louisiana State Univ., Baton Rouge.

    A survey of all 226 agriscience teachers in Louisiana sought to identify the areas of the revised agricultural science curriculum in which teachers needed increased knowledge and skills for teaching; 206 responses were received. A secondary purpose was to identify time schedules and types of presenters preferred by agriscience teachers for…

  4. The Effects of a Socioscientific Issues Instructional Model in Secondary Agricultural Education on Students' Content Knowledge, Scientific Reasoning Ability, Argumentation Skills, and Views of the Nature of Science

    ERIC Educational Resources Information Center

    Shoulders, Catherine Woglom

    2012-01-01

    The purpose of this study was to determine the effects of a socioscientific issues-based instructional model on secondary agricultural education students' content knowledge, scientific reasoning ability, argumentation skills, and views of the nature of science. This study utilized a pre-experimental, single group pretest-posttest design to assess…

  5. A Project to Develop an Associate of Science Degree Curriculum in Renewable Energy Resources and Applications in Agriculture. Final Report, July 1, 1980-June 30, 1981.

    ERIC Educational Resources Information Center

    Allen, Keith; Fielding, Marvin R.

    A project was conducted at State Fair Community College (SFCC) in Sedalia, Missouri, to develop an associate of science degree curriculum in renewable energy resources and their application in agriculture. A pilot study, designed to verify and rate the importance of 138 competencies in fuel alcohol production and to ascertain employment…

  6. Meeting the Needs of CALS Students for Computing Capabilities. Final Report of the Ad Hoc Committee on College of Agriculture and Life Sciences Student Computing Competencies.

    ERIC Educational Resources Information Center

    Monk, David; And Others

    The Ad Hoc Committee on the Cornell University (New York) College of Agriculture and Life Sciences (CALS) Student Computing Competencies was appointed in the fall of 1995 to determine (1) what all CALS undergraduate students should know about computing and related technologies; (2) how the college can make it possible for students to develop these…

  7. Perspectives and challenges in the future use of plant nutrients in tilled and mixed agricultural systems.

    PubMed

    Bergström, Lars; Goulding, Keith W T

    2005-06-01

    Producing an adequate quantity of healthy food without polluting the environment is a serious challenge for future agriculture around the world. The Food 21 research program in Sweden has researched all aspects--economic, environmental, and social--of sustainable farming systems. This paper presents some of the research from that and other relevant international research programs that have focused on better nutrient-use efficiency, especially for nitrogen and phosphorus. It shows that a range of sustainable solutions to nutrient-use efficiency exists, some of which are complex but some very simple. Government policies, including subsidies; research and technology; and public acceptance of farming practices all combine to create these solutions. Participatory approaches to knowledge transfer are needed, in which scientists, policy makers, farmers, advisers, and consumers exchange information and together build sustainable farming systems.

  8. Alkaloids from marine sponges as stimulators of initial stages of development of agricultural plants.

    PubMed

    Anisimov, Mikhail M; Chaikina, Elena L; Utkina, Natalia K

    2014-04-01

    Damirone A (1), damirone B (2), makaluvamine G (3), debromohymenialdisine (4), and dibromoagelaspongin (5) were examined for their ability to stimulate growth of seedling roots of barley (Hordeum vulgare L.), buckwheat (Fagopyrum esculentum Moench), corn (Zea mays L.), soy (Glycine max (L.) Merr.}, and wheat (Triticum aestivum L.). It was shown that the stimulatory effects depend on the chemical structure of the alkaloids and on the plant species. Compounds 1, 3, and 4 are efficient for growth of seedling roots of barley, compounds 2-5, at different concentrations, stimulate growth of buckwheat roots, and compound 5 stimulates growth of wheat roots. These compounds can be recommended for field study as plant growth stimulators.

  9. Influence of Merosesquiterpenoids from Marine Sponges on Seedling Root Growth of Agricultural Plants.

    PubMed

    Chaikina, Elena L; Utkina, Natalia K; Anisimov, Mikhail M

    2016-01-01

    The impact of the merosesquiterpenoids avarol (1), avarone (2), 18-methylaminoavarone (3), melemeleone A (4), isospongiaquinone (5), ilimaquinone (6), and smenoquinone (7), isolated from marine sponges of the Dictyoceratida order, was studied on the root growth of seedlings of buckwheat (Fagopyrumesculentum Moench), wheat (Triticumaestivum L.), soy (Glycine max (L.) Merr.), and barley (Hordeumvulgare L.). Compounds 2and 6 were effective for the root growth of wheat seedlings, compound 3 stimulated the root growth of seedlings of buckwheat and soy, compound 4 affected the roots of barley seedlings, and compound 5 stimulated the root growth of seedlings of buckwheat and barley. Compounds 1 and 7 showed no activity on the root growth of the seedlings of any of the studied plants. The stimulatory effect depends on the chemical structure of the compounds and the type of crop plant.

  10. Analysis of greenhouse gas emissions from 10 biogas plants within the agricultural sector.

    PubMed

    Liebetrau, J; Reinelt, T; Clemens, J; Hafermann, C; Friehe, J; Weiland, P

    2013-01-01

    With the increasing number of biogas plants in Germany the necessity for an exact determination of the actual effect on the greenhouse gas emissions related to the energy production gains importance. Hitherto the life cycle assessments have been based on estimations of emissions of biogas plants. The lack of actual emission evaluations has been addressed within a project from which the selected results are presented here. The data presented here have been obtained during a survey in which 10 biogas plants were analysed within two measurement periods each. As the major methane emission sources the open storage of digestates ranging from 0.22 to 11.2% of the methane utilized and the exhaust of the co-generation units ranging from 0.40 to 3.28% have been identified. Relevant ammonia emissions have been detected from the open digestate storage. The main source of nitrous oxide emissions was the co-generation unit. Regarding the potential of measures to reduce emissions it is highly recommended to focus on the digestate storage and the exhaust of the co-generation.

  11. Contaminated agricultural soils: Trace-elements speciation their phytoavailability and their uptake by flax plants

    NASA Astrophysics Data System (ADS)

    Legras, M.; Kharbouch, F.; Giron, F.; Bert, F.; Llorens, J.-M.

    2003-05-01

    Flax seeds are used in animal food because of their high content in Omega 3. A number of trace-elements (TEs) - essential as micronutrients, however toxic at supraoptimal concentrations - can accumulate in this plant at quantities incompatible with their introduction in food chain. In order to control this risk and evaluate the uptake of TEs, it is necessary to assess the contents of various species of TEs in soils and plants (each organ and total contents). We were mainly interested in evaluating the availability of Cd, Cu, Ni, Pb and Zn in soils on which flax were grown. Two situations have been compared: the first corresponds to fields into which some sewage sludge were brought in agronomie doses and the second corresponds to plots of land irrigated by waste water over a 100 years period. We are currently performing TEs extractions from soils and plants using different methods : the data of sequential and total extractions (assisted by microwaves) are presented. We have studied two flax varieties in four stages of culture (sowing, stage 10cm. tlowering, maturation). The content, speciation of TEs in soils as well as their transfer in flax seeds are discussed.

  12. Molecular characterization of nitrogen-fixing bacteria isolated from brazilian agricultural plants at São Paulo state

    PubMed Central

    Reinhardt, Érica. L.; Ramos, Patrícia L.; Manfio, Gilson P.; Barbosa, Heloiza R.; Pavan, Crodowaldo; Moreira-Filho, Carlos A.

    2008-01-01

    Fourteen strains of nitrogen-fixing bacteria were isolated from different agricultural plant species, including cassava, maize and sugarcane, using nitrogen-deprived selective isolation conditions. Ability to fix nitrogen was verified by the acetylene reduction assay. All potentially nitrogen-fixing strains tested showed positive hybridization signals with a nifH probe derived from Azospirillum brasilense. The strains were characterized by RAPD, ARDRA and 16S rDNA sequence analysis. RAPD analyses revealed 8 unique genotypes, the remaining 6 strains clustered into 3 RAPD groups, suggesting a clonal origin. ARDRA and 16S rDNA sequence analyses allowed the assignment of 13 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Azospirillum, Herbaspirillum, Pseudomonas and Enterobacteriaceae. Two strains were classified as Stenotrophomonas ssp. Molecular identification results from 16S rDNA analyses were also corroborated by morphological and biochemical data. PMID:24031239

  13. Bioethics Symposium: The ethical food movement: What does it mean for the role of science and scientists in current debates about animal agriculture?

    PubMed

    Croney, C C; Apley, M; Capper, J L; Mench, J A; Priest, S

    2012-05-01

    Contemporary animal agriculture is increasingly criticized on ethical grounds. Consequently, current policy and legislative discussions have become highly controversial as decision makers attempt to reconcile concerns about the impacts of animal production on animal welfare, the environment, and on the efficacy of antibiotics required to ensure human health with demands for abundant, affordable, safe food. Clearly, the broad implications for US animal agriculture of what appears to be a burgeoning movement relative to ethical food production must be understood by animal agriculture stakeholders. The potential effects of such developments on animal agricultural practices, corporate marketing strategies, and public perceptions of the ethics of animal production must also be clarified. To that end, it is essential to acknowledge that people's beliefs about which food production practices are appropriate are tied to diverse, latent value systems. Thus, relying solely on scientific information as a means to resolve current debates about animal agriculture is unlikely to be effective. The problem is compounded when scientific information is used inappropriately or strategically to advance a political agenda. Examples of the interface between science and ethics in regards to addressing currently contentious aspects of food animal production (animal welfare, antimicrobial use, and impacts of animal production practices on the environment) are reviewed. The roles of scientists and science in public debates about animal agricultural practices are also examined. It is suggested that scientists have a duty to contribute to the development of sound policy by providing clear and objectively presented information, by clarifying misinterpretations of science, and by recognizing the differences between presenting data vs. promoting their own value judgments in regard to how and which data should be used to establish policy. Finally, the role of the media in shaping public opinions

  14. Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology

    PubMed Central

    2011-01-01

    Eicosanoids are major players in the pathogenesis of several common diseases, with either overproduction or imbalance (e.g. between thromboxanes and prostacyclins) often leading to worsening of disease symptoms. Both the total rate of eicosanoid production and the balance between eicosanoids with opposite effects are strongly dependent on dietary factors, such as the daily intakes of various eicosanoid precursor fatty acids, and also on the intakes of several antioxidant nutrients including selenium and sulphur amino acids. Even though the underlying biochemical mechanisms have been thoroughly studied for more than 30 years, neither the agricultural sector nor medical practitioners have shown much interest in making practical use of the abundant high-quality research data now available. In this article, we discuss some specific examples of the interactions between diet and drugs in the pathogenesis and therapy of various common diseases. We also discuss, using common pain conditions and cancer as specific examples, how a better integration between agricultural science, nutrition and pharmacology could lead to improved treatment for important diseases (with improved overall therapeutic effect at the same time as negative side effects and therapy costs can be strongly reduced). It is shown how an unnaturally high omega-6/omega-3 fatty acid concentration ratio in meat, offal and eggs (because the omega-6/omega-3 ratio of the animal diet is unnaturally high) directly leads to exacerbation of pain conditions, cardiovascular disease and probably most cancers. It should be technologically easy and fairly inexpensive to produce poultry and pork meat with much more long-chain omega-3 fatty acids and less arachidonic acid than now, at the same time as they could also have a similar selenium concentration as is common in marine fish. The health economic benefits of such products for society as a whole must be expected vastly to outweigh the direct costs for the farming sector

  15. Impact of acid effluent from Kawah Ijen crater lake on irrigated agricultural soils: Soil chemical processes and plant uptake

    NASA Astrophysics Data System (ADS)

    van Rotterdam-Los, A. M. D.; Heikens, A.; Vriend, S. P.; van Bergen, M. J.; van Gaans, P. F. M.

    2008-12-01

    Volcanogenic contamination of irrigation water, caused by effluent from the hyperacid Ijen crater lake, has severely affected the properties of agricultural soils in East Java, Indonesia. From a comparison of acidified topsoil with subsoil and with top- and subsoil in a reference area, we identified processes responsible for changes in soil and soil solution chemistry induced by acid irrigation water, with emphasis on the nutrients Ca, Mg, Fe, and Mn, and on Al, which may become phytotoxic under acid conditions in soils. Compositional data for bulk soil composition and selective extractions with 1 M KCl and 0.2 M acid ammonium oxalate are used in a mass balance approach to specify element fluxes, including uptake by rice plants. The results show that input via irrigation water has produced an increase in the total aluminum content in the affected topsoil, which is of the same order of magnitude as the increase in labile Al. High bioavailability of Al, as reflected by concentrations in KCl extracts, is consistent with elevated concentrations observed in rice plants. In contrast, and despite the high input via irrigation water, Ca and Mg concentrations have decreased in all measured soil fractions through dissolution of amorphous phases and minerals, and through competition of Al for adsorption sites on the exchange complex and plant roots. Strong leaching is also evident for Fe and especially Mn. In terms of the overall mass balance of the topsoil, plant uptake of Al, Ca, Fe, Mg and Mn is negligible. If the use of acid irrigation would be stopped and the soil pH were to increase to values above 4.5, the observed phytotoxicity of Al will be halted. However, crops may then become fully dependent on the input from irrigation water or fertilizer for essential elements, due to the previous removal from the topsoil through leaching.

  16. Association of N2-fixing cyanobacteria and plants: towards novel symbioses of agricultural importance

    SciTech Connect

    Elhai, Jeff

    2001-06-25

    Some nitrogen-fixing cyanobacteria are able to form symbioses with a wide variety of plants. Nostoc 2S9B is unusual in its ability to infect the roots of wheat, raising the prospect of a productive association with an important crop plant. The goal of the project was to lay the groundwork for the use of novel associations between Nostoc and crops of agronomic importance, thereby reducing our reliance on nitrogenous fertilizer. Nostoc 2S9B was found to enter roots through mechanical damage of roots and reside primarily in intercellular spaces. The strain could also be incorporated into wheat calli grown in tissue culture. In both cases, the rate of nitrogen fixation by the cyanobacterium was higher than that of the same strain grown with no plant present. Artificial nodules induced by the action of hormone 2,4D were readily infected by Nostoc 2S9B, and the cyanobacteria within such nodules fixed nitrogen under fully aerobic conditions. The nitrogen fixed was shown to be incorporated into the growing wheat seedlings. Nostoc thus differs from other bacteria in its ability to fix nitrogen in para-nodules without need for artificially microaerobic conditions. It would be useful to introduce foreign DNA into Nostoc 2S9B in order to make defined mutations to understand the genetic basis of its ability to infect wheat and to create strains that might facilitate the study of the infection process. Transfer of DNA into the cyanobacterium appears to be limited by the presence of four restriction enzymes, with recognition sequences the same as BamHI, BglI, BsaHI, and Tth111I. Genes encoding methyltransferases that protect DNA against these four enzymes have been cloned into helper plasmids to allow transfer of DNA from E. coli to Nostoc 2S9B.

  17. The Basic Program of Vocational Agriculture in Louisiana. Ag I and Ag II (9th and 10th Grades). Volume III. Bulletin 1690-III.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide, the third volume of the series, outlines the basic program of vocational agriculture for Louisiana students in the ninth and tenth grades. Covered in the five units on plant science are growth processes of plants, cultural practices for plants, insects affecting plants, seed and plant selection, and diseases that affect…

  18. Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Nayek, S.; Saha, R. N.; Satpati, S.

    2008-08-01

    The present study deals with the characterization of effluent released from sponge iron industries and distribution of heavy metals in soil and macrophytes near to effluent discharge channel. Apart from this, accumulation of heavy metals in nearby soil and vegetation system irrigated with effluent-contaminated water is also the subject of this study. Physico-chemical analysis of effluent reveals that the concentration of total suspended solids (TSS), total hardness (TH), iron (Fe2+), and oil and grease are greater than the IS (1981) norms for discharge of water into inland water body. The soil along the sides of the effluent channel also shows higher concentration of heavy metals than the background soil. The enrichment of the heavy metals are in the order of Chromium (Cr) > Iron (Fe) > Manganese (Mn) > Zinc (Zn) > Copper (Cu) > Cadmium (Cd). Macrophytes growing along the sides of the effluent channel also show significant accumulation of heavy metals almost in the same order as accumulated in soil. Higher uptake of heavy metals by these varieties reveals that these species can be used for future phytoremediation. The effluent as well as contaminated water is extensively used for irrigation for growing vegetables like tomato ( Lycopersicon esculatum) in the surrounding areas. Heavy metal accumulation in this agricultural soil are in the sequence of Cr > Fe > Mn > Zn > Cu > Cd. More or less similar type of accumulation pattern are also found in tomato plants except Fe and Zn exceeding Cr and Mn. Transfer Factor of heavy metals from soil to tomato plants (TFS) shows average value of <1, suggesting less uptake of heavy metals from soil. Among the plant parts studied, fruit shows least accumulation. Although tomato plants show some phenotypic changes, the survival of tomato plants as well as least accumulation of metals in fruit reveals their tolerance to heavy metals. Therefore it may be suggested that this plant can be grown successfully in the heavy metal

  19. Assessment of energy potential from wetland plants along the minor channel network on an agricultural floodplain.

    PubMed

    Pappalardo, Salvatore Eugenio; Prosdocimi, Massimo; Tarolli, Paolo; Borin, Maurizio

    2015-02-01

    Renewable energy sources such as biomasses can play a pivotal role to ensure security of energy supply and reduce greenhouse gases through the substitution of fossil fuels. At present, bioenergy is mainly derived from cultivated crops that mirror the environmental impacts from the intensification of agricultural systems for food production. Instead, biomass from perennial herbaceous species growing in wetland ecosystems and marginal lands has recently aroused interest as bioenergy for electricity and heat, methane and 2nd-generation bioethanol. The aim of this paper is to assess, at local scale, the energy potential of wetland vegetation growing along the minor hydrographic network of a reclamation area in Northeast Italy, by performing energy scenarios for combustion, methane and 2nd-generation ethanol. The research is based on a cross-methodology that combines survey analyses in the field with a GIS-based approach: the former consists of direct measurements and biomass sampling, the latter of spatial analyses and scaling up simulations at the minor channel network level. Results highlight that biomass from riparian zones could represent a significant source of bioenergy for combustion transformation, turning the disposal problem to cut and store in situ wetland vegetation into an opportunity to produce sustainable renewable energy at local scale.

  20. Towards culturally relevant classroom science: a theoretical framework focusing on traditional plant healing

    NASA Astrophysics Data System (ADS)

    Mpofu, Vongai; Otulaja, Femi S.; Mushayikwa, Emmanuel

    2014-03-01

    A theoretical framework is an important component of a research study. It grounds the study and guides the methodological design. It also forms a reference point for the interpretation of the research findings. This paper conceptually examines the process of constructing a multi-focal theoretical lens for guiding studies that aim to accommodate local culture in science classrooms. A multi-focal approach is adopted because the integration of indigenous knowledge and modern classroom science is complex. The central argument in this paper is that a multi-focal lens accommodates the multifaceted nature of integrating indigenous knowledge and western oriented classroom science. The objective of the paper, therefore, is to construct a theoretical framework that can be used to guide and inform the integration of indigenous knowledge and western science at classroom science level. The traditional plant healing form of indigenous knowledge is used as a case study. The paper is important for raising the complexities, tensions and dilemmas inherent in the design and implementation of indigenous knowledge-science integrated curricula. An understanding of the issues raised will pave the way towards achieving culturally relevant classroom science.

  1. Investigating Plants: Hands-On, Low-Cost Laboratory Exercises in Plant Science.

    ERIC Educational Resources Information Center

    Sinclair, Thomas R.; Johnson, Marty

    This manual describes 14 hands-on exercises for middle school introductory biology courses that are designed to allow all students to be involved in self-discoveries about life and plant life in particular. The exercises were developed to supplement normal classroom activities by allowing students to initiate ongoing projects to investigate the…

  2. 78 FR 66892 - BASF Plant Science LP; Availability of Plant Pest Risk Assessment and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... Engineered for Herbicide Resistance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... designated as event BPS-CV127-9, which has been genetically engineered for resistance to herbicides in the... (Glycine max) designated as event BPS-CV127-9, which has been genetically engineered for resistance...

  3. Enhancement of the Initial Growth Rate of Agricultural Plants by Using Static Magnetic Fields.

    PubMed

    Kim, Seung C; Mason, Alex; Im, Wooseok

    2016-07-08

    Electronic devices and high-voltage wires induce magnetic fields. A magnetic field of 1,300-2,500 Gauss (0.2 Tesla) was applied to Petri dishes containing seeds of Garden Balsam (Impatiens balsamina), Mizuna (Brassica rapa var. japonica), Komatsuna (Brassica rapa var. perviridis), and Mescluns (Lepidium sativum). We applied magnets under the culture dish. During the 4 days of application, we observed that the stem and root length increased. The group subjected to magnetic field treatment (n = 10) showed a 1.4 times faster rate of growth compared with the control group (n = 11) in a total of 8 days (p <0.0005). This rate is 20% higher than that reported in previous studies. The tubulin complex lines did not have connecting points, but connecting points occur upon the application of magnets. This shows complete difference from the control, which means abnormal arrangements. However, the exact cause remains unclear. These results of growth enhancement of applying magnets suggest that it is possible to enhance the growth rate, increase productivity, or control the speed of germination of plants by applying static magnetic fields. Also, magnetic fields can cause physiological changes in plant cells and can induce growth. Therefore, stimulation with a magnetic field can have possible effects that are similar to those of chemical fertilizers, which means that the use of fertilizers can be avoided.

  4. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    PubMed

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of

  5. Principles of Biomedical Agriculture Applied to the Plant Family Theaceae To Identify Novel Interventions for Cancer Prevention and Control.

    PubMed

    Wang, Yijun; Yang, Yunqiu; Wei, Chaoling; Wan, Xiaochun; Thompson, Henry J

    2016-04-13

    Plant materials from the family Theaceae have been used for over a thousand years as integral components within the food systems of many globally distributed cultures and to treat a variety of human ailments. These markedly different uses remain of considerable interest in the 21st century. This perspective draws heavily from the agricultural and biomedical literature published using plant materials from the genus Camellia. Our objective is to provide a rationale and framework for broadening the scope of investigation of genera and species within Theaceae beyond Camellia sinensis to accelerate the development of a new generation of Theaceae-based pharmaceuticals/nutraceuticals and the more general enhancement of the food supply with Theaceae-containing products that affect the development of chronic diseases such as cancer. This will require a concerted effort to systematically capitalize on the rapidly growing knowledge of germplasm resources within Theaceae using metabolomic profiling in combination with in vivo and in vitro approaches. The successful translation of this research into products that affect human health will be facilitated by recognition of the agronomic factors that are critical in making hot water infusions generically referred to as tea as well as food products containing ground leaf powders.

  6. Environmental economics reality check: a case study of the Abanico Medicinal Plant and Organic Agriculture Microenterprise Project.

    PubMed

    Isla, Ana; Thompson, Shirley

    2003-01-01

    This paper presents a case study of the Abanico Medicinal Plant and Organic Agriculture Microenterprise Project in the Arenal Conservation Area, Costa Rica. Microenterprise is the Sustainable Development and the Women in Development model for gender equity and environment of the World Bank, International Monetary Fund and large non-government organizations, like the World Wildlife Fund-Canada. The authors of this paper argue that debt-for-nature investment in microenterprise and ecological economic models are not distinct from neoclassical economic and development models that created the environmental, social and cultural crises in the first place. This case study shows that the world market accommodates only one model of development: unsustainable export-oriented production based on flexible labour markets, low wages, indebtedness and low cost production. Working standards in those micro-enterprises are eroded due to many factors,including indebtedness. What happened at a national level in non-industrial countries with the international debt crisis is now mirrored in individual indebtedness through microenterprise. Is current development policy creating a new form of indentured servitude? Medicinal plants, prior to commodification, were a source of women's power and upon commodification in international development projects, are the source of their exploitation.

  7. GEODATA: Information System Based on Geospatial for Early Warning Tracking and Analysis Agricultural Plant Diseases in Central Java

    NASA Astrophysics Data System (ADS)

    Prasetyo, S. Y. J.; Agus, Y. H.; Dewi, C.; Simanjuntak, B. H.; Hartomo, K. D.

    2017-03-01

    The Government of Indonesia is currently faced with the problems of food, especially rice. It needs in large numbers that have to import from neighboring countries. Actually, the Indonesian government has the ability to produce rice to meet national needs but is still faced with the problem of pest attack rice annually increasing extent. One of the factors is that geographically Indonesia located on the migration path of world rice insect pests (called BPH or Brown Planthoppers) (Nilaparvata lugens Stal.) It leads endemic status annually. One proposed strategy to be applied is to use an early warning system based on a specific region of the main pest population. The proposed information system called GEODATA. GEODATA is Geospatial Outbreak of Disease Tracking and Analysis. The system works using a library ESSA (Exponential Smoothing - Spatial Autocorrelation) developed in previous studies in Satya Wacana Christian University. GEODATA built to meet the qualifications required surveillance device by BMKG (Indonesian Agency of Meteorology, Climatology and Geophysics’ Central Java Provinces), BPTPH (Indonesian Agency of Plant Protection and Horticulture) Central Java Provinces, BKP-KP District Boyolali, Central Java, (Indonesian Agency of Food Security and Agriculture Field Supervisor, District Boyolali, Central Java Provinces) and farmer groups. GIS GEODATA meets the needs of surveillance devices that include: (1) mapping of the disease, (2) analysis of the dynamics of the disease, and (3) prediction of attacks / disease outbreaks in a particular region. GIS GEODATA is currently under implementation in the laboratory field observations of plant pest in Central Java province, Indonesia.

  8. Homogenizing and diversifying effects of intensive agricultural land-use on plant species beta diversity in Central Europe - A call to adapt our conservation measures.

    PubMed

    Buhk, Constanze; Alt, Martin; Steinbauer, Manuel J; Beierkuhnlein, Carl; Warren, Steven D; Jentsch, Anke

    2017-01-15

    The prevention of biodiversity loss in agricultural landscapes to protect ecosystem stability and functions is of major importance to stabilize overall diversity. Intense agriculture leads to a loss in species richness and homogenization of species pools, but the processes behind are poorly understood due to a lack of systematic case studies: The specific impacts by agriculture in contrast to other land-use creating open habitat are not studied as such landscapes hardly exist in temperate regions. Applying systematic grids, we compared the plant species distribution at the landscape scale between an active military training areas in Europe and an adjacent rather intensively used agricultural landscape. As the study areas differ mainly in the type of disturbance regime (agricultural vs. non-agricultural), differences in species pattern can be traced back more or less directly to the management. Species trait analyses and multiple measures of beta diversity were applied to differentiate between species similarities between plots, distance-decay, or nestedness. Contrary to our expectation, overall beta diversity in the agricultural area was not reduced but increased under agricultural. This was probably the result of species nestedness due to fragmentation. The natural process of increasing dissimilarity with distance (distance-decay) was suppressed by intense agricultural land-use, generalist and long-distance dispersers gained importance, while rare species lost continuity. There are two independent processes that need to be addressed separately to halt biodiversity loss in agricultural land. There is a need to conserve semi-natural open habitat patches of diverse size to favor poor dispersers and specialist species. At the same time, we stress the importance of mediating biotic homogenization caused by the decrease of distance-decay: The spread of long-distance dispersers in agricultural fields may be acceptable, however, optimized fertilizer input and erosion

  9. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2015-10-01

    Tests with vine pruning and rice husks were carried out in a demonstrative downdraft gasifier (350 kW), to prove the reactor operability, quantify the plant efficiency, and thus extend the range of potential energy feedstocks. Pressure drops, syngas flow rate and composition were monitored to study the material and energy balances, and performance indexes. Interesting results were obtained for vine pruning (syngas heating value 5.7 MJ/m(3), equivalent ratio 0.26, cold gas efficiency 65%, power efficiency 21%), while poorer values were obtained for rice husks (syngas heating value 2.5-3.8 MJ/m(3), equivalent ratio 0.4, cold gas efficiency 31-42%, power efficiency 10-13%). The work contains also a comparison with previous results (wood pellets, corn cobs, Miscanthus) for defining an operating diagram, based on material density and particle size and shape, and the critical zones (reactor obstruction, bridging, no bed buildup, combustion regime).

  10. The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences

    PubMed Central

    Merchant, Nirav; Lyons, Eric; Goff, Stephen; Vaughn, Matthew; Ware, Doreen; Micklos, David; Antin, Parker

    2016-01-01

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant’s platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses. PMID:26752627

  11. From the USDA: Educating the Next Generation--Funding Opportunities in Food, Agricultural, Natural Resources, and Social Sciences Education

    ERIC Educational Resources Information Center

    Parker, Joyce E.; Wagner, David J.

    2016-01-01

    The National Institute of Food and Agriculture within the U.S. Department of Agriculture provides leadership, capacity, and funds to support the continuing development of a safe and competitive agricultural system. Many of the agency's educational programs are led by the Division of Community and Education (DOCE). These programs span agricultural…

  12. Agriculture: Climate Change

    EPA Pesticide Factsheets

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  13. Agriculture: Land Use

    EPA Pesticide Factsheets

    Land Use and agriculture. Information about land use restrictions and incentive programs.Agricultural operations sometimes involve activities regulated by laws designed to protect water supplies, threatened or endangered plants and animals, or wetlands.

  14. Communities of endophytic sebacinales associated with roots of herbaceous plants in agricultural and grassland ecosystems are dominated by Serendipita herbamans sp. nov.

    PubMed

    Riess, Kai; Oberwinkler, Franz; Bauer, Robert; Garnica, Sigisfredo

    2014-01-01

    Endophytic fungi are known to be commonly associated with herbaceous plants, however, there are few studies focusing on their occurrence and distribution in plant roots from ecosystems with different land uses. To explore the phylogenetic diversity and community structure of Sebacinales endophytes from agricultural and grassland habitats under different land uses, we analysed the roots of herbaceous plants using strain isolation, polymerase chain reaction (PCR), transmission electron microscopy (TEM) and co-cultivation experiments. A new sebacinoid strain named Serendipita herbamans belonging to Sebacinales group B was isolated from the roots of Bistorta vivipara, which is characterized by colourless monilioid cells (chlamydospores) that become yellow with age. This species was very common and widely distributed in association with a broad spectrum of herbaceous plant families in diverse habitats, independent of land use type. Ultrastructurally, the presence of S. herbamans was detected in the cortical cells of Plantago media, Potentilla anserina and Triticum aestivum. In addition, 13 few frequent molecular operational taxonomic units (MOTUs) or species were found across agricultural and grassland habitats, which did not exhibit a distinctive phylogenetic structure. Laboratory-based assays indicate that S. herbamans has the ability to colonize fine roots and stimulate plant growth. Although endophytic Sebacinales are widely distributed across agricultural and grassland habitats, TEM and nested PCR analyses reinforce the observation that these microorganisms are present in low quantity in plant roots, with no evidence of host specificity.

  15. Communities of Endophytic Sebacinales Associated with Roots of Herbaceous Plants in Agricultural and Grassland Ecosystems Are Dominated by Serendipita herbamans sp. nov

    PubMed Central

    Riess, Kai; Oberwinkler, Franz; Bauer, Robert; Garnica, Sigisfredo

    2014-01-01

    Endophytic fungi are known to be commonly associated with herbaceous plants, however, there are few studies focusing on their occurrence and distribution in plant roots from ecosystems with different land uses. To explore the phylogenetic diversity and community structure of Sebacinales endophytes from agricultural and grassland habitats under different land uses, we analysed the roots of herbaceous plants using strain isolation, polymerase chain reaction (PCR), transmission electron microscopy (TEM) and co-cultivation experiments. A new sebacinoid strain named Serendipita herbamans belonging to Sebacinales group B was isolated from the roots of Bistorta vivipara, which is characterized by colourless monilioid cells (chlamydospores) that become yellow with age. This species was very common and widely distributed in association with a broad spectrum of herbaceous plant families in diverse habitats, independent of land use type. Ultrastructurally, the presence of S. herbamans was detected in the cortical cells of Plantago media, Potentilla anserina and Triticum aestivum. In addition, 13 few frequent molecular operational taxonomic units (MOTUs) or species were found across agricultural and grassland habitats, which did not exhibit a distinctive phylogenetic structure. Laboratory-based assays indicate that S. herbamans has the ability to colonize fine roots and stimulate plant growth. Although endophytic Sebacinales are widely distributed across agricultural and grassland habitats, TEM and nested PCR analyses reinforce the observation that these microorganisms are present in low quantity in plant roots, with no evidence of host specificity. PMID:24743185

  16. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils.

    PubMed

    Sharaff, Murali; Kamat, Shalmali; Archana, G

    2017-04-01

    Agricultural sites irrigated for long term with water polluted by industrial effluents containing heavy metals might adversely affect the soil microbial communities and crop yield. Hence it is important to study rhizobacterial communities and their metal tolerance in such affected agricultural fields to restore soil fertility and ecosystem. Present work deals with the study of rhizobacterial communities from plants grown in copper (Cu) contaminated agricultural fields along the industrial zone of Gujarat, India and are compared with communities from a Cu mine site. Microbial communities from rhizosphere soil samples varied in the magnitude of their Cu tolerance index indicating differences in long term pollution effects. Culture dependent denaturing gradient gel electrophoresis (CD-DGGE) of bacterial communities revealed the diverse composition at the sampling sites and a reduced total diversity due to Cu toxicity. Analysis of 16S rRNA gene diversity of Cu tolerant rhizobacteria revealed the predominance of Enterobacter spp. and Pseudomonas spp. under Cu stress conditions. Cu tolerant bacterial isolates that were able to promote growth of mung bean plants in vitro under Cu stress were obtained from these samples. Cu tolerant rhizobacterium P36 identified as Enterobacter sp. exhibited multiple plant growth promoting traits and significantly alleviated Cu toxicity to mung bean plants by reducing the accumulation of Cu in plant roots and promoted the plant growth in CuSO4 amended soils.

  17. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  18. Screening of different Trichoderma species against agriculturally important foliar plant pathogens.

    PubMed

    Prabhakaran, Narayanasamy; Prameeladevi, Thokala; Sathiyabama, Muthukrishnan; Kamil, Deeba

    2015-01-01

    Different isolates of Trichoderma were isolated from soil samples which were collected from different part of India. These isolates were grouped into four Trichoderma species viz., Trichoderma asperellum (Ta), T. harzianum (Th), T. pseudokoningii (Tp) and T. longibrachiatum (Tl) based on their morphological characters. Identification of the above isolates was also confirmed through ITS region analysis. These Trichoderma isolates were tested for in vitro biological control of Alternaria solani, Bipolaris oryzae, Pyricularia oryzae and Sclerotinia scierotiorum which cause serious diseases like early blight (target spot) of tomato and potato, brown leaf spot disease in rice, rice blast disease, and white mold disease in different plants. Under in vitro conditions, all the four species of Trichoderma (10 isolates) proved 100% potential inhibition against rice blast pathogen Pyracularia oryzae. T. harzianum (Th-01) and T. asperellum (Ta-10) were effective with 86.6% and 97.7%, growth inhibition of B. oryzae, respectively. Among others, T. pseudokoningii (Tp-08) and T. Iongibrachiatum (Tl-09) species were particularly efficient in inhibiting growth of S. sclerotiorum by 97.8% and 93.3%. T. Iongibrachiatum (TI-06 and TI-07) inhibited maximum mycelial growth of A. solani by 87.6% and 84.75. However, all the T. harzianum isolates showed significantly higher inhibition against S. sclerotiorum (CD value 9.430), causing white mold disease. This study led to the selection of potential Trichoderma isolates against rice blast, early blight, brown leaf spot in rice and white mold disease in different crops.

  19. Chemical Control of Plant Growth.

    ERIC Educational Resources Information Center

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  20. Local-scale spatial modelling for interpolating climatic temperature variables to predict agricultural plant suitability

    NASA Astrophysics Data System (ADS)

    Webb, Mathew A.; Hall, Andrew; Kidd, Darren; Minansy, Budiman

    2016-05-01

    Assessment of local spatial climatic variability is important in the planning of planting locations for horticultural crops. This study investigated three regression-based calibration methods (i.e. traditional versus two optimized methods) to relate short-term 12-month data series from 170 temperature loggers and 4 weather station sites with data series from nearby long-term Australian Bureau of Meteorology climate stations. The techniques trialled to interpolate climatic temperature variables, such as frost risk, growing degree days (GDDs) and chill hours, were regression kriging (RK), regression trees (RTs) and random forests (RFs). All three calibration methods produced accurate results, with the RK-based calibration method delivering the most accurate validation measures: coefficients of determination ( R 2) of 0.92, 0.97 and 0.95 and root-mean-square errors of 1.30, 0.80 and 1.31 °C, for daily minimum, daily maximum and hourly temperatures, respectively. Compared with the traditional method of calibration using direct linear regression between short-term and long-term stations, the RK-based calibration method improved R 2 and reduced root-mean-square error (RMSE) by at least 5 % and 0.47 °C for daily minimum temperature, 1 % and 0.23 °C for daily maximum temperature and 3 % and 0.33 °C for hourly temperature. Spatial modelling indicated insignificant differences between the interpolation methods, with the RK technique tending to be the slightly better method due to the high degree of spatial autocorrelation between logger sites.

  1. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    NASA Astrophysics Data System (ADS)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause

  2. Teaching change to local youth: Plant phenology, climate change and citizen science at Hakalau Forest National Wildlife Refuge

    NASA Astrophysics Data System (ADS)

    Litton, C. M.; Laursen, S. C.; Phifer, C.; Giardina, C. P.

    2012-12-01

    Plant phenology is a powerful indicator of how climate change affects native ecosystems, and also provides an experiential outdoor learning opportunity for promoting youth conservation education and awareness. We developed a youth conservation education curriculum, including both classroom and field components, for local middle and high school students from Hawaii. The curriculum is focused on linking plant phenology and climate change, with emphasis on ecologically and culturally important native trees and birds at Hakalau Forest National Wildlife Refuge (NWR), on the Island of Hawaii. In this curriculum, students: (i) visit Hakalau Forest NWR to learn about the ecology of native ecosystems, including natural disturbance regimes and the general concept of change in forest ecosystems; (ii) learn about human-induced climate change and its potential impact on native species; and (iii) collect plant phenology measurements and publish these data on the USA National Phenology Network website. This youth conservation education curriculum represents a close collaboration between Hakalau Forest NWR; the Friends of Hakalau Forest NWR; the College of Tropical Agriculture and Human Resources at the University of Hawaii at Manoa; the USDA Forest Service; and Imi Pono no Ka Aina, an environmental education and outreach program for the Three Mountain Alliance Watershed Partnership. In the Winter and Spring of 2011-2012, we developed classroom and field portions of the curriculum. In the Spring and Summer of 2012, we recruited four groups of participants, with a total of ~40 students, who visited the refuge to participate in the curriculum. Preliminary phenology observations based upon ~4 months of measurements show low to medium levels of flowering, fruiting and leaf flush. However, the real science value of this program will come over years to decades of accumulated student activity. From this, we anticipate the emergence of a unique tropical montane forest dataset on plant

  3. Development of instrumentation systems as a base for control of digestion process stability in full-scale agricultural and industrial biogas plants.

    PubMed

    Kujawski, O; Steinmetz, H

    2009-01-01

    This article deals with the analysis of instrumentation from three modern German full-scale biogas plants with different inputs and typical process engineering concepts for German conditions. The measured results from each plant and the suitability of the instrumentation used are evaluated and assessed. Conclusions are also made about improving the use and architecture of the instrumentation. The analysis results show which benefits and optimum combination of on-line and off-line instrumentation could result for the control and automation of industrial and agricultural biogas plants.

  4. 77 FR 31828 - Notice of Request for Revision of a Currently Approved Collection Application for Plant Variety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... Information or Comments: Contact Bernadette Thomas, Information Technology Specialist, Plant Variety Protection Office (PVPO), Science and Technology, AMS, Room 401, National Agricultural Library (NAL), 10301... and revision to the currently approved information collection ``Application for ] Plant...

  5. The Power Plant Mapping Student Project: Bringing Citizen Science to Schools

    NASA Astrophysics Data System (ADS)

    Tayne, K.; Oda, T.; Gurney, K. R.; O'Keeffe, D.; Petron, G.; Tans, P. P.; Frost, G. J.

    2014-12-01

    An emission inventory (EI) is a conventional tool to quantify and monitor anthropogenic emissions of greenhouse gases and air pollutants into the atmosphere. Gridded EI can visually show geographical patterns of emissions and their changes over time. These patterns, when available, are often determined using location data collected by regional governments, industries, and researchers. Datasets such as Carbon Monitoring and Action (CARMA, www.carma.org) are particularly useful for mapping emissions from large point sources and have been widely used in the EI community. The EI community is aware of potentially significant errors in the geographical locations of point sources, including power plants. The big challenge, however, is to review tens of thousands of power plant locations around the world and correct them where needed. The Power Plant Mapping Student Project (PPMSP) is a platform designed for students in 4th through 12th grade to improve the geographical location of power plants indicated in existing datasets to benefit international EI research. In PPMSP, we use VENTUS, a web-based platform (http://ventus.project.asu.edu/) that invites citizens to contribute power plant location data. Using VENTUS, students view scenes in the vicinity of reported power plant coordinates on Google Maps. Students either verify the location of a power plant or search for it within a designated radius using various indicators, an e-guide, and a power plant photo gallery for assistance. If the power plant cannot be found, students mark the plant as unverified. To assure quality for research use, the project contains multiple checkpoints and levels of review. While participating in meaningful research that directly benefits the EI research community, students are engaged in relevant science curricula designed to meet each grade level's Next Generation Science Standards. Students study energy, climate change, the atmosphere, and geographical information systems. The curricula is

  6. Science of Agricultural Mechanization

    ERIC Educational Resources Information Center

    Murdock, Ashleigh Barbee, Ed.

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  7. Science of Agricultural Environment

    ERIC Educational Resources Information Center

    Murdock, Ashleigh Barbee, Ed.

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  8. Science of Agricultural Animals

    ERIC Educational Resources Information Center

    Murdock, Ashleigh Barbee, Ed.

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  9. Improvements in agricultural sciences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This editorial provides insight on investigations regarding advancements in agri-food quality and testing of eco-friendly organic farming methodologies. The discussion elaborates on the advantages of recent farming techniques and their impact on improved crop yield, crop quality, and minimization of...

  10. NEEM: UNUSUALLY VERSATILE PLANT GENUS AZADIRACHTA WITH MANY USEFUL AND SO FAR INSUFFICIENTLY EXPLOITED PROPERTIES FOR AGRICULTURE, MEDICINE, AND INDUSTRY.

    PubMed

    Hummel, H E; Langner, S S; Leithold, G; Schmutterer, H

    2014-01-01

    Neem plants (Rutales: Meliaceae) are well known for their multitude of human benefits in various fields. Specifically well investigated are the Indian neem tree Azadirachta indica A. Juss., the Thai neem A. siamensis Val., the originally Malaysian/Philippinean neem A. excelsa (Jack) and, as a close relative, the Persian lilac, Melia azedarach. The major and most active natural products are azadirachtin, salannin, nimbin and marrangin from Azadirachta species, and azadirachtin analogues like meliantriol from Melia species. Neem fruits, leaves, bark, and roots have specific virtues. They have been traditionally exploited for a considerable part of human history and are documented in Sanskrit texts. Due to human activity in trade and travel both at land and sea, the plant species has been distributed around the globe and is cultivated in many tropical, and subtropical regions. A multitude of natural products of neem have been isolated, chemically characterized or identified, and investigated for their properties in the management of insects, Acarina, Crustacea, nematodes, bacteria, fungi, viruses and soil fertility (for reviews see Kraus, 2002; Schmutterer, 2002A; Rembold, 2002; Koul, 2004; Schmutterer and Huber, 2005; Kleeberg and Strang, 2009; Hummel et al., 2008, 2011, 2012). Neem products are virtually nontoxic, compatible with beneficial insects, pollinators and bees. They are environmentally benign, sustainable, renewable, and of a price affordable for developed countries. In conclusion, neem is a prime example of a natural resource with many beneficial applications in agriculture, human and veterinary medicine. So far, its use is practically free of resistance problems which are frustratingly prevalent in many areas of synthetic insecticide and drug development. Investigating more neem applications will increase future human welfare and health while being of general ecological benefit to the planet.

  11. Tracking Movement of Plant Carbon Through Soil to Water by Lignin Phenol Stable Carbon Isotope Composition in a Small Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Crooker, K.; Filley, T.; Six, J.; Frey, J.

    2005-12-01

    Few studies integrate land cover, soil physical structure, and aquatic physical fractions when investigating the fate of agricultural carbon in watersheds. In crop systems that involve rotations of soy (a C3 plant) and corn (a C4 plant) the large intrinsic differences in stable carbon isotope values and lignin plus cutin chemistry enable tracking of plant carbon movement from soil fractions to DOM and overland flow during precipitation events. In a small (~3Km2) agricultural basin in central Indiana, we studied plant carbon dynamics in a soy/corn agricultural rotation (2004-2005) to determine the relative inputs of these two plants to soil fractions and the resultant contributions to dissolved, colloidal, and particulate organic matter when mobilized. Using bulk isotope values the fraction of carbon derived from corn in macroaggregates (>250 micron), microaggregates (53-250 mm), and silts plus clays (<53 mm) ranged from 39, 49, to 42%, respectively. Unlike bulk analyses, compound specific isotope analysis of lignin in the soil fractions revealed a wide range of relative inputs among the monomers with cinnamyl phenols being almost exclusively (~ 93%) derived from corn. Syringyl phenols ranged from 75-56% corn and vanillyl phenols ranged from 37-40% corn carbon. The relative input among the fractions mirrors closely the comparative plant chemistry abundances between soy and corn. During export of DOM from the land to the stream the relative abundance of plant source varied with discharge (0.05-1.8 m3/sec) as increases in flow increased the relative export of corn-derived C from the fields. Over the full range of flows lignin phenols varied from 0.05 to 82% corn-derived with the greatest relative corn input for cinnamyl and syringyl carbon. The trend with stream discharge indicates a progressive movement of particulate corn residues with overland flow. Ongoing studies look to resolve contributions of algae, bacteria and terrestrial plants to soil fractions and their

  12. The emergence of modern statistics in agricultural science: analysis of variance, experimental design and the reshaping of research at Rothamsted Experimental Station, 1919-1933.

    PubMed

    Parolini, Giuditta

    2015-01-01

    During the twentieth century statistical methods have transformed research in the experimental and social sciences. Qualitative evidence has largely been replaced by quantitative results and the tools of statistical inference have helped foster a new ideal of objectivity in scientific knowledge. The paper will investigate this transformation by considering the genesis of analysis of variance and experimental design, statistical methods nowadays taught in every elementary course of statistics for the experimental and social sciences. These methods were developed by the mathematician and geneticist R. A. Fisher during the 1920s, while he was working at Rothamsted Experimental Station, where agricultural research was in turn reshaped by Fisher's methods. Analysis of variance and experimental design required new practices and instruments in field and laboratory research, and imposed a redistribution of expertise among statisticians, experimental scientists and the farm staff. On the other hand the use of statistical methods in agricultural science called for a systematization of information management and made computing an activity integral to the experimental research done at Rothamsted, permanently integrating the statisticians' tools and expertise into the station research programme. Fisher's statistical methods did not remain confined within agricultural research and by the end of the 1950s they had come to stay in psychology, sociology, education, chemistry, medicine, engineering, economics, quality control, just to mention a few of the disciplines which adopted them.

  13. The PlantLIBRA project: how we intend to innovate the science of botanicals.

    PubMed

    Bucchini, Luca; Rodarte, Alejandro; Restani, Patrizia

    2011-12-01

    The main aim of the EC-financed R&D project PlantLIBRA (PLANT food supplements: Levels of Intake, Benefit and Risk Assessment) is to foster the safe use of food supplements containing plants or botanical preparations, by enabling science-based decision making by regulators and stakeholders. To make informed decisions, competent authorities and industry need more accessible and quality-assured information, as well as better tools (e.g., databases) and procedures for safety and benefit assessments, supported by broadly accepted methodologies. Consequently, PlantLIBRA is working to develop, validate and disseminate data and methodologies for risk and benefit assessment of plant food supplements, and to implement sustainable international cooperation. International cooperation will help ensure the quality of botanicals imported in the EU. Moreover, the project will provide data on intake by conducting a harmonized consumption survey. Existing composition and safety data will be collated into a meta-database. New analytical data and methods will be investigated and validated. The consortium is working closely with competent authorities and stakeholders.

  14. Managing agricultural emissions to the atmosphere: State of the science, fate and mitigation, and identifying research gaps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of agriculture on regional air quality creates significant challenges to sustainability of food supplies and to the quality of national resources. Agricultural emissions to the atmosphere can lead to many nuisances, such as smog, haze, or offensive odors. They can also create more seriou...

  15. Recognising Differences in Weed and Crop Species Recognition Skills of Agriculture Students

    ERIC Educational Resources Information Center

    Burrows, Geoffrey E.

    2012-01-01

    Students in an agricultural science degree were surveyed to assess their ability to recognise plants of agricultural importance. The survey consisted of high quality images of 25 species. Students were surveyed at the start of their studies in first year, and at various times during their second year of studies. At the start of their studies…

  16. Changing High School Students' Conceptions of the Nature of Science: The Partnership for Research and Education in Plants (PREP)

    ERIC Educational Resources Information Center

    Brooks, Eric Dwayne

    2011-01-01

    This study investigated whether participation in the Partnership for Research and Education in Plants (PREP), a long-term authentic plant research project, in conjunction with explicit verses implicit instruction can change high school students' conceptions of the nature of science (NOS). The participants included a total of 134 students comprised…

  17. Teachers and Students Investigating Plants in Space. A Teacher's Guide with Activities for Life Sciences. Grades 6-12.

    ERIC Educational Resources Information Center

    Williams, Paul H.

    The Collaborative Ukrainian Experiment (CUE) was a joint mission between the United States and the Ukraine (Russia) whose projects were designed to address specific questions about prior plant science microgravity experiments. The education project that grew out of this, Teachers and Students Investigating Plants in Space (TSIPS), involved…

  18. What's in a Name: Differential labelling of plant and animal photographs in two nationally syndicated elementary science textbook series

    NASA Astrophysics Data System (ADS)

    Link-Pérez, Melanie A.; Dollo, Vanessa H.; Weber, Kirk M.; Schussler, Elisabeth E.

    2010-06-01

    This study investigated plant and animal photographs in elementary science textbooks to discern whether there were disparities in the number of plant and animal photographs or in how those photographs were labelled. We examined the Life Science sections of two nationally syndicated (USA) textbook series. For each text, we identified the photographs with plant and/or animal content and evaluated them for two features: (1) the subject of the photograph, and (2) the specificity of the label (name) provided. We found that photographs with animal subjects were more numerous than those with plant subjects; they also represented a greater diversity of animals and had a higher instance of repetition than did plant photographs. We also found a significant naming disparity: animal photographs were three times more likely to be provided with a specific label (common name) than were plant photographs. Not only were plant photographs less likely to be provided with a specific name for the plant (e.g. orchid or dandelion), but also they were commonly identified only by the name for a plant part (such as flower or leaf) or life-form (e.g. tree or shrub). To address the disparity revealed by this study, and to encourage student interest in and knowledge about plants, we recommend that educators go beyond textbooks to expose students to a diversity of named plants, and present plants as distinct organisms rather than as a collection of parts.

  19. United States Department of Agriculture-Agricultural Research Service research on alternatives to methyl bromide: pre-plant and post-harvest.

    PubMed

    Schneider, Sally M; Rosskopf, Erin N; Leesch, James G; Chellemi, Daniel O; Bull, Carolee T; Mazzola, Mark

    2003-01-01

    Methyl bromide is a widely used fumigant for both pre-plant and post-harvest pest and pathogen control. The Montreal Protocol and the US Clean Air Act mandate a phase-out of the import and manufacture of methyl bromide, beginning in 2001 and culminating with a complete ban, except for quarantine and certain pre-shipment uses and exempted critical uses, in January 2005. In 1995, ARS built on its existing programs in soil-borne plant pathology and post-harvest entomology and plant pathology to initiate a national research program to develop alternatives to methyl bromide. The focus has been on strawberry, pepper, tomato, perennial and nursery cropping systems for pre-plant methyl bromide use and fresh and durable commodities for post-harvest use. Recently the program has been expanded to include research on alternatives for the ornamental and cut flower cropping systems. An overview of the national research program is presented. Results from four specific research trials are presented, ranging from organic to conventional systems. Good progress on short-term alternatives is being made. These will be used as the foundation of integrated management systems which begin with pre-plant management decisions and continue through post-harvest processing.

  20. Perspective of the Science Advisor to the Waste Isolation Pilot Plant

    SciTech Connect

    WEART,WENDELL D.

    1999-09-03

    In 1975 Sandia National Laboratories (SNL) was asked by the predecessor to the Department of Energy to assume responsibility for the scientific programs necessary to assure the safe and satisfactory development of a geologic repository in the salt beds of southeast New Mexico. Sandia has continued in the role of Science Advisor to the Waste Isolation Pilot Plant (WIPP) to the present time. This paper will share the perspectives developed over the past 25 years as the project was brought to fruition with successful certification by the Environmental Protection Agency (EPA) on May 13, 1998 and commencement of operations on April 26, 1999.

  1. Improving the prediction of arsenic contents in agricultural soils by combining the reflectance spectroscopy of soils and rice plants

    NASA Astrophysics Data System (ADS)

    Shi, Tiezhu; Wang, Junjie; Chen, Yiyun; Wu, Guofeng

    2016-10-01

    Visible and near-infrared reflectance spectroscopy provides a beneficial tool for investigating soil heavy metal contamination. This study aimed to investigate mechanisms of soil arsenic prediction using laboratory based soil and leaf spectra, compare the prediction of arsenic content using soil spectra with that using rice plant spectra, and determine whether the combination of both could improve the prediction of soil arsenic content. A total of 100 samples were collected and the reflectance spectra of soils and rice plants were measured using a FieldSpec3 portable spectroradiometer (350-2500 nm). After eliminating spectral outliers, the reflectance spectra were divided into calibration (n = 62) and validation (n = 32) data sets using the Kennard-Stone algorithm. Genetic algorithm (GA) was used to select useful spectral variables for soil arsenic prediction. Thereafter, the GA-selected spectral variables of the soil and leaf spectra were individually and jointly employed to calibrate the partial least squares regression (PLSR) models using the calibration data set. The regression models were validated and compared using independent validation data set. Furthermore, the correlation coefficients of soil arsenic against soil organic matter, leaf arsenic and leaf chlorophyll were calculated, and the important wavelengths for PLSR modeling were extracted. Results showed that arsenic prediction using the leaf spectra (coefficient of determination in validation, Rv2 = 0.54; root mean square error in validation, RMSEv = 12.99 mg kg-1; and residual prediction deviation in validation, RPDv = 1.35) was slightly better than using the soil spectra (Rv2 = 0.42, RMSEv = 13.35 mg kg-1, and RPDv = 1.31). However, results also showed that the combinational use of soil and leaf spectra resulted in higher arsenic prediction (Rv2 = 0.63, RMSEv = 11.94 mg kg-1, RPDv = 1.47) compared with either soil or leaf spectra alone. Soil spectral bands near 480, 600, 670, 810, 1980, 2050 and

  2. The potential for tree planting strategies to reduce local and regional ecosystem impacts of agricultural ammonia emissions.

    PubMed

    Bealey, W J; Dore, A J; Dragosits, U; Reis, S; Reay, D S; Sutton, M A

    2016-01-01

    Trees are very effective at capturing both gaseous and particulate pollutants from the atmosphere. But while studies have often focussed on PM and NOx in the urban environment, little research has been carried out on the tree effect of capturing gaseous emissions of ammonia in the rural landscape. To examine the removal or scavenging of ammonia by trees a long-range atmospheric model (FRAME) was used to compare two strategies that could be used in emission reduction policies anywhere in the world where nitrogen pollution from agriculture is a problem. One strategy was to reduce the emission source strength of livestock management systems by implementing two 'tree-capture' systems scenarios - tree belts downwind of housing and managing livestock under trees. This emission reduction can be described as an 'on-farm' emission reduction policy, as ammonia is 'stopped' from dispersion outside the farm boundaries. The second strategy was to apply an afforestation policy targeting areas of high ammonia emission through two planting scenarios of increasing afforestation by 25% and 50%. Both strategies use trees with the aim of intercepting NH3 emissions to protect semi-natural areas. Scenarios for on-farm emission reductions showed national reductions in nitrogen deposition to semi-natural areas of 0.14% (0.2 kt N-NHx) to 2.2% (3.15 kt N-NHx). Scenarios mitigating emissions from cattle and pig housing gave the highest reductions. The afforestation strategy showed national reductions of 6% (8.4 kt N-NHx) to 11% (15.7 kt N-NHx) for 25% and 50% afforestation scenarios respectively. Increased capture by the planted trees also showed an added benefit of reducing long range effects including a decrease in wet deposition up to 3.7 kt N-NHx (4.6%) and a decrease in export from the UK up to 8.3 kt N-NHx (6.8%).

  3. Progress Towards an Interdisciplinary Science of Plant Phenology: Building Predictions Across Space, Time and Species Diversity

    NASA Technical Reports Server (NTRS)

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan

    2013-01-01

    Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.

  4. Progress towards an interdisciplinary science of plant phenology: building predictions across space, time and species diversity.

    PubMed

    Wolkovich, Elizabeth M; Cook, Benjamin I; Davies, T Jonathan

    2014-03-01

    Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.

  5. Processed vs. non-processed biowastes for agriculture: effects of post-harvest tomato plants and biochar on radish growth, chlorophyll content and protein production.

    PubMed

    Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle

    2015-04-21

    The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed.

  6. Processed vs. Non-Processed Biowastes for Agriculture: Effects of Post-Harvest Tomato Plants and Biochar on Radish Growth, Chlorophyll Content and Protein Production

    PubMed Central

    Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle

    2015-01-01

    The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed. PMID:25906472

  7. The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species.

    PubMed

    Booker, Fitzgerald; Muntifering, Russell; McGrath, Margaret; Burkey, Kent; Decoteau, Dennis; Fiscus, Edwin; Manning, William; Krupa, Sagar; Chappelka, Arthur; Grantz, David

    2009-04-01

    The productivity, product quality and competitive ability of important agricultural and horticultural plants in many regions of the world may be adversely affected by current and anticipated concentrations of ground-level ozone (O3). Exposure to elevated O3 typically results in suppressed photosynthesis, accelerated senescence, decreased growth and lower yields. Various approaches used to evaluate O3 effects generally concur that current yield losses range from 5% to 15% among sensitive plants. There is, however, considerable genetic variability in plant responses to O3. To illustrate this, we show that ambient O3 concentrations in the eastern United States cause substantially different levels of damage to otherwise similar snap bean cultivars. Largely undesirable effects of O3 can also occur in seed and fruit chemistry as well as in forage nutritive value, with consequences for animal production. Ozone may alter herbicide efficacy and foster establishment of some invasive species. We conclude that current and projected levels of O3 in many regions worldwide are toxic to sensitive plants of agricultural and horticultural significance. Plant breeding that incorporates O3 sensitivity into selection strategies will be increasingly necessary to achieve sustainable production with changing atmospheric composition, while reductions in O3 precursor emissions will likely benefit world food production and reduce atmospheric concentrations of an important greenhouse gas.

  8. Caracteristicas de los Estudiantes de Ciencias Agricolas y de Economia Domestica de la Universidad de Puerto Rico (Characteristics of the Agricultural Science and Home Economics Students of the University of Puerto Rico). Publicacion 135.

    ERIC Educational Resources Information Center

    Lube, Edna Droz; Calero, Reinaldo

    As part of a U.S. Department of Agriculture research project on young adults, a questionnaire was distributed in the fall of 1977 to all agriculture science and home economics students at the University of Puerto Rico in order to determine their personal and parental backgrounds; work, college, and high school experiences; life goals and attitudes…

  9. Agricultural Awareness Days: Integrating Agricultural Partnerships and STEM Education

    ERIC Educational Resources Information Center

    Campbell, Brian T.; Wilkinson, Carol A.; Shepherd, Pamela J.

    2014-01-01

    In the United States there is a need to educate young children in science, technology, and agriculture. Through collaboration with many agricultural groups, the Southern Piedmont Agricultural Research and Education Center has set up a program that works with 3rd grade students and teachers to reinforce the science that has been taught in the…

  10. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation.

    PubMed

    Chiumenti, Alessandro; da Borso, Francesco; Limina, Sonia

    2017-04-04

    For years, anaerobic digestion processes have been implemented for the management of organic wastes, agricultural residues, and animal manure. Wet anaerobic digestion still represents the most common technology, while dry fermentation, dedicated to the treatment of solid inputs (TS>20%) can be considered as an emerging technology, not in terms of technological maturity, but of diffusion. The first agricultural dry anaerobic digestion plant constructed in Italy was monitored from the start-up, for over a year. The plant was fed with manure and agricultural products, such as corn silage, triticale, ryegrass, alfalfa, and straw. Three Combined Heat and Power units, for a total installed power of 910kWe, converted biogas into thermal and electric energy. The monitoring included the determination of quality and quantity of input feedstocks, of digestate (including recirculation rate), of leachate, biogas quality (CH4, CO2, H2S), biogas yield, energy production, labor requirement for loading, and unloading operations. The results of the monitoring were compared to performance data obtained in several full scale wet digestion plants. The dry fermentation plant revealed a start-up phase that lasted several months, during which the average power resulted in 641kWe (70.4% of nominal power), and the last period the power resulted in 788kWe (86.6% of installed power). Improving the balance of the input, the dry fermentation process demonstrated biogas yields similar to wet anaerobic digestion, congruent to the energy potential of the biomasses used in the process. Furthermore, the operation of the plant required significant man labor, mainly related to loading and unloading of the anaerobic cells.

  11. Agricultural implications of the Fukushima nuclear accident

    PubMed Central

    Nakanishi, Tomoko M.

    2016-01-01

    More than 4 years has passed since the accident at the Fukushima Nuclear Power Plant. Immediately after the accident, 40 to 50 academic staff of the Graduate School of Agricultural and Life Sciences at the University of Tokyo created an independent team to monitor the behavior of the radioactive materials in the field and their effects on agricultural farm lands, forests, rivers, animals, etc. When the radioactive nuclides from the nuclear power plant fell, they were instantly adsorbed at the site where they first touched; consequently, the fallout was found as scattered spots on the surface of anything that was exposed to the air at the time of the accident. The adsorption has become stronger over time, so the radioactive nuclides are now difficult to remove. The findings of our study regarding the wide range of effects on agricultural fields are summarized in this report. PMID:27538845

  12. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    PubMed

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health.

  13. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  14. USU research helps agriculture enter the space age

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.

    1987-01-01

    Research at the Utah State University College of Agriculture that is relevant to the space life sciences is reviewed. Specific programs detailed are gravitropism of dicot stems, maximization of wheat yields for use in space exploration, and plant development processes in wheat in microgravity.

  15. Crop monitoring using remote sensing orientated for government decision making and agricultural management: a case study of China's soybean planting area estimation

    NASA Astrophysics Data System (ADS)

    Yang, Bangjie; Qian, Yonglan; Pei, Zhiyuan; Jiao, Xianfeng

    2006-12-01

    China is one of the main soybean production countries in the world and soybean is of great importance in agricultural industry, domestic consumption and international trade. In recent years, however, China has become the largest soybean importer in the world. Therefore timely credible information about soybean planting area and production is essential for government decision making and agricultural management on domestic consumption and international trade. Moreover, information on soybean planting and continuous planting location is critical for distributing farmer subsidies and production management. In this paper, an operational system based on multi-resolution remotely sensed data was developed for the soybean area inventory and continuous cropping area monitoring. A stratified sampling method is employed to extract and locate major soybean-planting regions, which are later surveyed using remote sensing data. At the same time, sub regions are constructed based on cropping systems in which remotely sensed data of different resolutions are applied for the soybean area estimation and replanting area location assessment.

  16. Crop and Soil Science. A Curriculum Guide for Idaho Vocational Agriculture Instructors. Volume 1 and Volume 2.

    ERIC Educational Resources Information Center

    Ledington, Richard L.

    The 24 units that comprise this crop and soil science curriculum guide are not geared to a particular age level and must be adapted to the students for whom they are used. Units 1 through 6 are general units covering topics common to soil science. Units 7 through 24 are units covering topics common to crop production. Each unit includes objectives…

  17. The Cinchona Program (1940-1945): science and imperialism in the exploitation of a medicinal plant.

    PubMed

    Cuvi, Nicolás

    2011-01-01

    During World War II, the United States implemented programs to exploit hundreds of raw materials in Latin America, many of them botanical. This required the participation of the country's scientific community and marked the beginning of intervention in Latin American countries characterized by the active participation of the United States in negotiations (and not only by private firms supported by the United States). Many federal institutions and companies were created, others were adapted, and universities, research centers and pharmaceutical companies were contracted. The programs undertaken by this coalition of institutions served to build and consolidate the dependence of Latin American countries on United States technology, to focus their economies on the extraction and development of resources that the United States could not obtain at home (known as "complementary") and to impede the development of competition. Latin American republics had been historically dependant on raw material exports (minerals and plants). But during World War II their dependence on U.S. loans, markets, science and technology reached record levels. One example of this can be appreciated through a careful examination of the Cinchona Program, implemented in the 1940s by US agencies in Latin America. This program for the extraction of a single medicinal plant, apart from representing a new model of scientific imperialism (subsequently renamed "scientific cooperation") was the most intensive and extensive scientific exploration of a single medicinal plant in the history of mankind.

  18. Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement

    PubMed Central

    Ronald, Pamela C.

    2014-01-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability. PMID:24915201

  19. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China.

    PubMed

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-11-10

    Xinjiang's agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991-2014. The agriculture belonged to the "low emissions and high efficiency" agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas.

  20. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-11-01

    Xinjiang’s agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991–2014. The agriculture belonged to the “low emissions and high efficiency” agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas.