Science.gov

Sample records for agricultural practices land

  1. Namibia specific climate smart agricultural land use practices: Challenges and opportunities for enhancing ecosystem services

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Talamondjila Naanda, Martha; Bloemertz, Lena

    2015-04-01

    Agriculture is a backbone for many African economies, with an estimated 70% of Africans active in agricultural production. The sector often does not only directly contribute to, but sustains food security and poverty reduction efforts. Sustaining this productivity poses many challenges, particularly to small scale subsistence farmers (SSF) in dry land areas and semi-arid countries like Namibia. SSF in northern central Namibia mix crop and livestock production on degraded semi-arid lands and nutrient-poor sandy soils. They are fully dependent on agricultural production with limited alternative sources of income. Mostly, their agricultural harvests and outputs are low, not meeting their livelihood needs. At the same time, the land use is often not sustainable, leading to degradation. The Namibia case reveals that addressing underlying economic, social and environmental challenges requires a combination of farm level-soil management practices with a shift towards integrated landscape management. This forms the basis for SSF to adopt sustainable land management practices while building institutional foundations, like establishing SSF cooperatives. One way in which this has been tested is through the concept of incentive-based motivation, i.e. payment for ecosystem services (PES), in which some of the beneficiaries pay, for instance for farmers or land users, who provide the services. The farmers provide these services by substituting their unsustainable land and soil management and adopting new (climate smart agricultural) land use practices. Climate Smart Agricultural land use practices (CSA-LUP) are one way of providing ecosystem services, which could be fundamental to long-term sustainable soil and land management solutions in Africa. There are few PES cases which have been systematically studied from an institutional development structure perspective. This study presents lessons evolving from the notion that direct participation and involvement of local people

  2. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition and structure of bacterial communities was examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profile...

  3. Discriminating the effects of agricultural land management practices on soil fungal communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structure of fungal communities was examined in soil subjected to five years of different agricultural land management and tomato production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of fungal rDNA internal transcribed spacer-1 (ITS-1) regions was used to create genomic...

  4. Effect of modifying land cover and long-term agricultural practices on the soil characteristics in native forest-land.

    PubMed

    Gol, Ceyhun; Dengiz, Orhan

    2008-09-01

    Natural forestland soils in the high land mountain ecosystems on the eastern Black sea region of Turkey are being seriously degraded and destructed due to intensive agricultural practices. In this study we examined four soil profiles selected from four sites in each of three adjacent land use types which are native forest, pasture and cultivated fields with corn and hazelnut to compare the soil physical, chemical and morphological properties modified after natural forestland transformation into cultivated land. Disturbed and undisturbed soil samples were collected from four sites. The effects of agricultural practices on soil properties taken from each three adjacent land use types were most clearly detected in the past 50 years with the land use change. Land use change and subsequent tillage practices resulted in significant decreases in organic matter, total porosity, total nitrogen and reduced soil aggregates stability. However, contents of available P were improved by application of phosphorous fertilizers in cultivated system. There was also a significant change in bulk density among cultivated, pasture and natural forest soils. Depending upon the increase in bulk density and disruption of pores by cultivation, total porosity decreased accordingly. The data show that long term continuous cultivation of the natural forest soils resulted in changes in physical and chemical characteristics of soils. PMID:19295064

  5. Modeling Soil Organic Carbon for Agricultural Land Use Under Various Management Practices

    NASA Astrophysics Data System (ADS)

    Kotamarthi, V. R.; Drewniak, B.; Song, J.; Prell, J.; Jacob, R. L.

    2009-12-01

    Bioenergy is generating tremendous interest as an alternative energy source that is both environmentally friendly and economically competitive. The amount of land designated for agriculture is expected to expand, including changes in the current distribution of crops, as demand for biofuels increases as a carbon neutral alternative fuel source. However, the influence of agriculture on the carbon cycle is complex, and varies depending on land use change and management practices. The purpose of this research is to integrate agriculture in the carbon-nitrogen based Community Land Model (CLM) to evaluate the above and below ground carbon storage for corn, soybean, and wheat crop lands. The new model, CLM-Crop simulates carbon allocation during four growth stages, a soybean nitrogen fixation scheme, fertilizer, and harvest practices. We present results from this model simulation, which includes the impact of a new dynamic roots module to simulate the changing root structure and depth with growing season based on the availability of water and nitrogen in the root zone and a retranslocation scheme to simulate redistribution of nitrogen from leaves, roots, and stems to grain during organ development for crop yields, leaf area index (LAI), carbon allocation, and changes in soil carbon budgets under various practices such as fertilizer and residue management. Simulated crop yields for corn, soybean and wheat are in general agreement with measurements. Initial model results indicate a loss of soil organic carbon over cultivated lands after removal of natural vegetation which continues in the following years. Soil carbon in crop lands is a strong function of the residue management and has the potential to impact crop yields significantly.

  6. Effect of land tenure and stakeholders attitudes on optimization of conservation practices in agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Piemonti, A. D.; Babbar-Sebens, M.; Luzar, E. J.

    2012-12-01

    Modeled watershed management plans have become valuable tools for evaluating the effectiveness and impacts of conservation practices on hydrologic processes in watersheds. In multi-objective optimization approaches, several studies have focused on maximizing physical, ecological, or economic benefits of practices in a specific location, without considering the relationship between social systems and social attitudes on the overall optimality of the practice at that location. For example, objectives that have been commonly used in spatial optimization of practices are economic costs, sediment loads, nutrient loads and pesticide loads. Though the benefits derived from these objectives are generally oriented towards community preferences, they do not represent attitudes of landowners who might operate their land differently than their neighbors (e.g. farm their own land or rent the land to someone else) and might have different social/personal drivers that motivate them to adopt the practices. In addition, a distribution of such landowners could exist in the watershed, leading to spatially varying preferences to practices. In this study we evaluated the effect of three different land tenure types on the spatial-optimization of conservation practices. To perform the optimization, we used a uniform distribution of land tenure type and a spatially varying distribution of land tenure type. Our results show that for a typical Midwestern agricultural watershed, the most optimal solutions (i.e. highest benefits for minimum economic costs) found were for a uniform distribution of landowners who operate their own land. When a different land-tenure was used for the watershed, the optimized alternatives did not change significantly for nitrates reduction benefits and sediment reduction benefits, but were attained at economic costs much higher than the costs of the landowner who farms her/his own land. For example, landowners who rent to cash-renters would have to spend ~120

  7. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices.

    PubMed

    Wu, Tiehang; Chellemi, Dan O; Graham, Jim H; Martin, Kendall J; Rosskopf, Erin N

    2008-02-01

    The composition and structure of bacterial communities were examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profiles that were analyzed with univariate and multivariate statistical methods. Five land management programs were initiated in July 2000: conventional, organic, continuous removal of vegetation (disk fallow), undisturbed (weed fallow), and bahiagrass pasture (Paspalum notatum var Argentine). Similar levels in the diversity of bacterial 16S rDNA amplicons were detected in soil samples collected from organically and conventionally managed plots 3 and 4 years after initiation of land management programs, whereas significantly lower levels of diversity were observed in samples collected from bahiagrass pasture. Differences in diversity were attributed to effects on how the relative abundance of individual amplicons were distributed (evenness) and not on the total numbers of bacterial 16S rDNA amplicons detected (richness). Similar levels of diversity were detected among all land management programs in soil samples collected after successive years of tomato (Lycopersicon esculentum) cultivation. A different trend was observed after a multivariate examination of the similarities in genetic composition among soil bacterial communities. After 3 years of land management, similarities in genetic composition of soil bacterial communities were observed in plots where disturbance was minimized (bahiagrass and weed fallow). The genetic compositions in plots managed organically were similar to each other and distinct from bacterial communities in other land management programs. After successive years of tomato cultivation and damage from two major hurricanes, only the composition of soil bacterial communities within organically managed plots continued to maintain a high degree of similarity

  8. Water quality and agricultural practices: the case study of southern Massaciuccoli reclaimed land (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Baneschi, Ilaria; Basile, Paolo; Cannavò, Silvia; Guidi, Massimo; Risaliti, Rosalba; Rossetto, Rudy; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    Owing to increasing anthropogenic impacts, lagoons and wetlands are being exposed to environmental degradation. Therefore, the sustainable management of these environmental resources is a fundamental issue to maintain either the ecosystems and the human activity. The Massaciuccoli Lake is a coastal lake of fresh to brackish water surrounded by a marsh, which drains a total catchment of about 114 km2. Large part of the basin has been reclaimed since 1930 by means of pumping stations forcing water from the drained areas into the lake. The system is characterized by: high complexity of the hydrological setting; subsidence of the peaty soils in the reclaimed area (2 to 3 m in 70 years), that left the lake perched; reclaimed land currently devoted mainly to conventional agriculture (e.g.: maize monoculture) along with some industrial sites, two sewage treatment plants and some relevant urban settlements; social conflicts among different land users because of the impact on water quality and quantity. The interaction between such a fragile natural system and human activities leads to an altered ecological status mainly due to eutrophication and water salinisation. Hence, the present work aims at identifying and assessing the sources of nutrients (phosphorous in particular) into the lake, and characterising land use and some socio-economic aspects focusing on agricultural systems, in order to set up suitable mitigation measures. Water quantity and quality in the most intensively cultivated sub-catchment, placed 0.5 to 3 m under m.s.l. were monitored in order to underlain the interaction between water and its nutrient load. Questionnaires and interviews to farmers were conducted to obtain information about agricultural practices, farm management, risks and constraints for farming activities. The available information about the natural system and land use were collected and organised in a GIS system: a conceptual model of surface water hydrodinamics was build up and 14

  9. Identification and prioritization of management practices to reduce methylmercury exports from wetlands and irrigated agricultural lands.

    PubMed

    McCord, Stephen A; Heim, Wesley A

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site. PMID:25566831

  10. Identification and Prioritization of Management Practices to Reduce Methylmercury Exports from Wetlands and Irrigated Agricultural Lands

    NASA Astrophysics Data System (ADS)

    McCord, Stephen A.; Heim, Wesley A.

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  11. Mitigating greenhouse gas emissions with agricultural land management changes: What practices hold the best potential?

    NASA Astrophysics Data System (ADS)

    Eagle, A. J.; Olander, L.; Rice, C. W.; Haugen-Kozyra, K.; Henry, L. R.; Baker, J. S.; Jackson, R. B.

    2010-12-01

    Agricultural land management practices within the United States have significant potential to mitigate greenhouse gases (GHGs) in voluntary market or regulatory contexts - by sequestering soil carbon or reducing N2O or CH4 emissions. Before these practices can be utilized in active protocols or within a regulatory or farm bill framework, we need confidence in our ability to determine their impact on GHG emissions. We develop a side-by-side comparison of mitigation potential and implementation readiness for agricultural GHG mitigation practices, with an extensive literature review. We also consider scientific certainty, environmental and social co-effects, economic factors, regional specificity, and possible implementation barriers. Biophysical GHG mitigation potential from agricultural land management activities could reach more than 500 Mt CO2e/yr in the U.S. (7.1% of annual emissions). Up to 75% of the total potential comes from soil C sequestration. Economic potential is lower, given necessary resources to incentivize on-farm adaptations, but lower cost activities such as no-till, fertilizer N management, and cover crops show promise for near-term implementation in certain regions. Scientific uncertainty or the need for more research limit no-till and rice water management in some areas; and technical or other barriers need to be addressed before biochar, advanced crop breeding, and agroforestry can be widely embraced for GHG mitigation. Significant gaps in the current research and knowledge base exist with respect to interactions between tillage and N2O emissions, and with fertilizer application timing impacts on N2O emissions.

  12. Variability of Total Below Ground Carbon Allocation amongst Common Agricultural Land Management Practices: a Case Study

    NASA Astrophysics Data System (ADS)

    Wacha, K. M.; Papanicolaou, T.; Wilson, C. G.

    2010-12-01

    Field measurements and numerical models are currently being used to estimate quantities of Total Belowground Carbon Allocation (TBCA) for three representative land uses, viz. corn, soybeans, and prairie bromegrass for CRP (Conservation Reserve Program) of an agricultural Iowa sub-watershed, located within the Clear Creek Watershed (CCW). Since it is difficult to measure TBCA directly, a mass balance approach has been implemented to estimate TBCA as follows: TBCA = FS + FE+ Δ(CS + CR + CL) - FA , where the term Fs denotes soil respiration; FE is the carbon content of the eroded/deposited soil; ΔCS, ΔCR, ΔCL denote the changes in carbon content of the mineral soil, plant roots, and litter layer, respectively; and FA is the above ground litter fall of dead plant material to the soil. The terms are hypothesized to have a huge impact on TBCA within agricultural settings due to intensive tillage practices, water-driven soil erosion/deposition, and high usage of fertilizer. To test our hypothesis, field measurements are being performed at the plot scale, replicating common agricultural land management practices. Soil respiration (FS) is being measured with an EGM-4 CO2 Gas Analyzer and SRC-1 Soil Respiration Chamber (PP Systems), soil moisture and temperature are recorded in the top 20 cm for each respective soil respiration measurement, and litter fall rates (FA) are acquired by collecting the residue in a calibrated pan. The change in carbon content of the soil (ΔCS), roots (ΔCR) and litter layer (ΔCL) are being analyzed by collecting soil samples throughout the life cycle of the plant. To determine the term FE for the three representative land management practices, a funnel collection system located at the plot outlet was used for collecting the eroded material after natural rainfall events. Field measurements of TBCA at the plot scale via the mass balance approach are used to calibrate the numerical agronomic process model DAYCENT, which simulates the daily

  13. Impact of conservation land management practices on soil microbial function in an agricultural watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Conservation Reserve Program (CRP) involves removing agricultural land from production and replanting with native vegetation for the purpose of reducing agriculture’s impact on the environment. In 2002, part of the Beasley Lake watershed in the Mississippi Delta was enrolled in CRP. In ad...

  14. Refining Operational Practice for Controlling Introduced European Rabbits on Agricultural Lands in New Zealand

    PubMed Central

    Latham, A. David M.; Latham, M. Cecilia; Nugent, Graham; Smith, James; Warburton, Bruce

    2016-01-01

    European rabbits (Oryctolagus cuniculus) pose a major threat to agricultural production and conservation values in several countries. In New Zealand, population control via poisoning is a frontline method for limiting rabbit damage, with large areas commonly treated using the metabolic toxin sodium fluoroacetate (‘1080’) delivered in bait via aerial dispersal. However, this method is expensive and the high application rates of the active ingredient cause public antipathy towards it. To guide reductions in cost and toxin usage, we evaluated the economics and efficacy of rabbit control using an experimental approach of sowing 1080-bait in strips instead of the commonly-used broadcast sowing method (i.e. complete coverage). Over a 4-year period we studied aerial delivery of 0.02% 1080 on diced carrot bait over ~3500 ha of rabbit-prone land in the North and South islands. In each case, experimental sowing via strip patterns using 10–15 kg of bait per hectare was compared with the current best practice of aerial broadcast sowing at 30–35 kg/ha. Operational kill rates exceeded 87% in all but one case and averaged 93–94% across a total of 19 treatment replicates under comparable conditions; there was no statistical difference in overall efficacy observed between the two sowing methods. We project that strip-sowing could reduce by two thirds the amount of active 1080 applied per hectare in aerial control operations against rabbits, both reducing the non-target poisoning risk and promoting cost savings to farming operations. These results indicate that, similarly to the recently-highlighted benefits of adopting strip-sowing for poison control of introduced brushtail possums (Trichosurus vulpecula) in New Zealand, aerial strip-sowing of toxic bait could also be considered a best practice method for rabbit control in pest control policy. PMID:27341209

  15. Agricultural Land Use and Best Management Practices to Control Nonpoint Water Pollution

    NASA Astrophysics Data System (ADS)

    Ripa, Maria Nicoletta; Leone, Antonio; Garnier, Monica; Porto, Antonio Lo

    2006-08-01

    In recent years, improvements in point-source depuration technologies have highlighted the problems regarding agricultural nonpoint (diffuse) sources, and this issue has become highly relevant from the environmental point of view. The considerable extension of the areas responsible for this kind of pollution, together with the scarcity of funds available to local managers, make minimizing the impacts of nonpoint sources on a whole basin a virtually impossible task. This article presents the results of a study intended to pinpoint those agricultural areas, within a basin, that contribute most to water pollution, so that operations aimed at preventing and/or reducing this kind of pollution can be focused on them. With this aim, an innovative approach is presented that integrates a field-scale management model, a simple regression model, and a geographic information system (GIS). The Lake Vico basin, where recent studies highlighted a considerable increase in the trophic state, mainly caused by phosphorus (P) compounds deriving principally from the intensive cultivation of hazelnut trees in the lake basin, was chosen as the study site. Using the management model Groundwater Loading Effects of Agricultural Management Systems (GLEAMS), the consequences, in terms of sediment yield and phosphorus export, of hazelnut tree cultivation were estimated on different areas of the basin with and without the application of a best management practice (BMP) that consists of growing meadow under the trees. The GLEAMS results were successively extended to basin scale thanks to the application of a purposely designed regression model and of a GIS. The main conclusions can be summarized as follows: The effectiveness of the above-mentioned BMP is always greater for erosion reduction than for particulate P reduction, whatever the slope value considered; moreover, the effectiveness with reference to both particulate P and sediment yield production decreases as the slope increases. The

  16. Agricultural land use and best management practices to control nonpoint water pollution.

    PubMed

    Ripa, Maria Nicoletta; Leone, Antonio; Garnier, Monica; Lo Porto, Antonio

    2006-08-01

    In recent years, improvements in point-source depuration technologies have highlighted the problems regarding agricultural nonpoint (diffuse) sources, and this issue has become highly relevant from the environmental point of view. The considerable extension of the areas responsible for this kind of pollution, together with the scarcity of funds available to local managers, make minimizing the impacts of nonpoint sources on a whole basin a virtually impossible task. This article presents the results of a study intended to pinpoint those agricultural areas, within a basin, that contribute most to water pollution, so that operations aimed at preventing and/or reducing this kind of pollution can be focused on them. With this aim, an innovative approach is presented that integrates a field-scale management model, a simple regression model, and a geographic information system (GIS). The Lake Vico basin, where recent studies highlighted a considerable increase in the trophic state, mainly caused by phosphorus (P) compounds deriving principally from the intensive cultivation of hazelnut trees in the lake basin, was chosen as the study site. Using the management model Groundwater Loading Effects of Agricultural Management Systems (GLEAMS), the consequences, in terms of sediment yield and phosphorus export, of hazelnut tree cultivation were estimated on different areas of the basin with and without the application of a best management practice (BMP) that consists of growing meadow under the trees. The GLEAMS results were successively extended to basin scale thanks to the application of a purposely designed regression model and of a GIS. The main conclusions can be summarized as follows: The effectiveness of the above-mentioned BMP is always greater for erosion reduction than for particulate P reduction, whatever the slope value considered; moreover, the effectiveness with reference to both particulate P and sediment yield production decreases as the slope increases. The

  17. Effects of agricultural land-management practices on water quality in northeastern Guilford County, North Carolina, 1985-90

    USGS Publications Warehouse

    Harned, D.A.

    1994-01-01

    The effects of different agricultural land- management practices on sediment, nutrients, and selected pesticides in surface water, and on nutrients and pesticides in ground water were studied in four small basins in the Piedmont of North Carolina. The basins included two adjacent basins in row-crop fields, a mixed land-use basin, and a forested basin. One of the row-crop fields was farmed using conservation land-management practices, including strip cropping, contour plowing, field borders, and grassed waterways. The other field was farmed using standard land- management practices, including continuous cropping, straight-row plowing, and ungrassed waterways. The sediment yield for the standard land-management basin was 2.3 times that for the conservation land-management basin, 14.1 times that for the mixed land-use basin, and 19.5 times that for the forested basin. Nutrient concentra- tions in surface water from the row-crop and mixed land-use basins were higher than those in surface water for the forested basin. Nutrient concentra- tions in soil water and ground water beneath the row-crop basins were lower than those in surface- water runoff for these basins. The lowest nutrient concentrations measured in the row-crop basins generally were in soil-water samples collected just below the root zone (3-foot depth) and in ground water. No significant differences in pesticide concentrations were identified between the surface-water runoff from the standard land- management basin and that from the conservation land-management basin. Concentrations of the soil pesticides isopropalin and flumetralin were higher in the standard land-management basin than in the conservation land-management basin.

  18. Quantifying the Impact of Agricultural Land Management Practices on Soil Carbon Dynamics at Different Temporal and Spatial Scales

    NASA Astrophysics Data System (ADS)

    Wilson, C. G.; Papanicolaou, T.; Wacha, K.

    2012-12-01

    Vast amounts of rich, organic topsoil are lost from agricultural landscapes each year through the combination of both tillage- and rainfall-induced erosion. The implications of these losses lead to soil and water quality degradation, as well as decreased biomass production and grain yields within a watershed. Further, the effects of land management practices on soil carbon can be felt at a much larger scale in terms of the global carbon cycle, where the interactions of carbon between the atmosphere, vegetation, and soil are highly dynamic. During tillage- and rainfall-induced erosion, organic material encapsulated within soil aggregates are dislodged and redistributed along the hillslope. Additionally, this redistribution increases decomposition rates and the release of carbon dioxide fluxes to the atmosphere by changing soil texture, bulk density, and water holding capacities, which are key parameters that affect microbial activity. In this ongoing study, the combination of extensive field data, geo-spatial tools, and a coupled erosion (Water Erosion Prediction Project) - biogeochemical (CENTURY) model were used to assess the soil carbon sequestration potential for representative crop rotations in a highly productive agricultural watershed, at various spatial and temporal scales. Total Belowground Carbon Allocation was selected as a metric to assess carbon sequestration because it implements a mass balance approach of the various carbon fluxes stemming from soil detachment (erosion/deposition), heterotrophic respiration from microbial decomposition, and plant production. The results from this study show that the use of conservation practices can sequester 35 g C/m2 within the soils of the studied watershed over a 2-year crop rotation. Extrapolating to the watershed scale shows that the system is a net sink of carbon. Providing accurate assessment of the carbon fluxes associated with agricultural land management practices can provide much insight to global climate

  19. Effects of Land Management Practices on Cold Region Hydrological Processes in an Agricultural Prairie Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Baulch, H. M.

    2013-12-01

    Conservation tillage including zero and reduced tillage, crop rotation and upstream reservoirs are commonly implemented as beneficial management practices (BMPs) in the Canadian Prairies. However, their effects are strongly dependent on interactions with cold region hydrological processes, such as wind redistribution of snow, snowmelt, infiltration to frozen soils and evaporation, due to strong coupling between land surface characteristics and hydrology. These interactions are poorly understood and few studies have investigated them using a physically-based modeling framework. In this study, we deploy a physically-based, semi-distributed cold regions hydrological model (CRHM) to investigate the impacts of land management practices in the South Tobacco Creek Basin (STC) which forms part of the Red River Basin in southern Manitoba, Canada. The STC (~73 km2) is set in a gently rolling landscape of low relief (~200 m). Detailed field data such as crop type, tillage practices, crop residue and planting and harvesting dates are available from 1995 and are used to parameterize the model. While the majority of parameters are specified a priori, we have manually calibrated roughness and initial soil water storage parameters to compare the simulations with runoff observations at multiple scales (upstream catchment, mid-basin gauge and outlet gauge) and snow observations during 2000-2001 water year. The calibrated model based on the 2000-2001 period is further evaluated over the 2001-2011 period, which includes high inter-annual variability. The results suggest good agreement between observations and simulations and provide insight into hydrological controls. Snowmelt runoff is a major contributor to streamflow while the contribution of summer rainfall runoff is highly variable. The evaporative fraction is high during dry years (2002-2004) indicating a vertical flux controlled mass balance while the runoff fraction dominates during wet years (2005-2011), suggesting overland

  20. Trade-off between water pollution prevention, agriculture profit, and farmer practice--an optimization methodology for discussion on land-use adjustment in China.

    PubMed

    Liu, Jianchang; Zhang, Luoping; Zhang, Yuzhen; Deng, Hongbing

    2015-01-01

    Agricultural decision-making to control nonpoint source (NPS) water pollution may not be efficiently implemented, if there is no appropriate cost-benefit analysis on agricultural management practices. This paper presents an interval-fuzzy linear programming (IFLP) model to deal with the trade-off between agricultural revenue, NPS pollution control, and alternative practices through land adjustment for Wuchuan catchment, a typical agricultural area in Jiulong River watershed, Fujian Province of China. From the results, the lower combination of practice 1, practice 2, practice 3, and practice 7 with the land area of 12.6, 5.2, 145.2, and 85.3 hm(2), respectively, could reduce NPS pollution load by 10%. The combination yields an income of 98,580 Chinese Yuan/a. If the pollution reduction is 15%, the higher combination need practice 1, practice 2, practice 3, practice 5, and practice 7 with the land area of 54.4, 23.6, 18.0, 6.3, and 85.3 hm(2), respectively. The income of this combination is 915,170 Chinese Yuan/a. The sensitivity analysis of IFLP indicates that the cost-effective practices are ranked as follows: practice 7 > practice 2 > practice 1 > practice 5 > practice 3 > practice 6 > practice 4. In addition, the uncertainties in the agriculture NPS pollution control system could be effectively quantified by the IFLP model. Furthermore, to accomplish a reasonable and applicable project of land-use adjustment, decision-makers could also integrate above solutions with their own experience and other information. PMID:25391462

  1. Effects of agricultural land-management practices on water quality in northeastern Guilford County, North Carolina, 1985-90

    USGS Publications Warehouse

    Harned, Douglas A.

    1995-01-01

    The effects of selected agricultural land-management practices on water quality were assessed in a comparative study of four small basins in the Piedmont province of North Carolina. Agricultural practices, such as tillage and applications of fertilizer and pesticides, are major sources of sediment, nutrients, and pesticides in surface water, and of nutrients and pesticides in ground water. The four study basins included two adjacent row-crop fields, a mixed land-use basin, and a forested basin. One of the row-crop fields (7.4 acres) was farmed by using conservation land-management (CLM) practices, which included strip cropping, contour plowing, field borders, and grassed waterways. The other row-crop field (4.8 acres) was farmed by using standard land-management (SLM) practices, which included continuous cropping, straight-row plowing without regard to land topography, and poorly maintained waterways. The mixed land-use basin (665 acres) was monitored to compare water quality in surface water as SLM practices were converted to CLM practices during the project. The forested basin (44 acres) provided background surface-water hydrologic and chemical-quality conditions. Surface-water flow was reduced by 18 percent by CLM practices compared to surface-water flow from the SLM practices basin. The thickness of the unsaturated zone in the row-crop basins ranged from a few feet to 25 feet. Areas with thick unsaturated zones have a greater capacity to intercept and store nutrients and pesticides than do areas with thinner zones. Sediment concentrations and yields for the SLM practices basin were considerably higher than those for the other basins. The median sediment concentration in surface water for the SLM basin was 3.4 times that of the CLM basin, 8.2 times that of the mixed land-use basin, and 38.4 times that of the forested basin. The total sediment yield for the SLM basin was 2.3 times that observed for the CLM basin, 14.1 times that observed for the mixed land

  2. Development of the Land-use and Agricultural Management Practice web-Service (LAMPS) for generating crop rotations in space and time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The Land-use and Agricultural Management Practices web-Service (LAMPS) provides crop rotation and management information for user-specified areas within...

  3. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    EPA Science Inventory

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  4. Impact of Agricultural Practice on Regional Climate in a CoupledLand Surface Mesoscale Model

    SciTech Connect

    Cooley, H.S.; Riley, W.J.; Torn, M.S.; He, Y.

    2004-07-01

    The land surface has been shown to form strong feedbacks with climate due to linkages between atmospheric conditions and terrestrial ecosystem exchanges of energy, momentum, water, and trace gases. Although often ignored in modeling studies, land management itself may form significant feedbacks. Because crops are harvested earlier under drier conditions, regional air temperature, precipitation, and soil moisture, for example, affect harvest timing, particularly of rain-fed crops. This removal of vegetation alters the land surface characteristics and may, in turn, affect regional climate. We applied a coupled climate(MM5) and land-surface (LSM1) model to examine the effects of early and late winter wheat harvest on regional climate in the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility in the Southern Great Plains, where winter wheat accounts for 20 percent of the land area. Within the winter wheat region, simulated 2 m air temperature was 1.3 C warmer in the Early Harvest scenario at mid-day averaged over the two weeks following harvest. Soils in the harvested area were drier and warmer in the top 10 cm and wetter in the 10-20 cm layer. Midday soils were 2.5 C warmer in the harvested area at mid-day averaged over the two weeks following harvest. Harvest also dramatically altered latent and sensible heat fluxes. Although differences between scenarios diminished once both scenarios were harvested, the short-term impacts of land management on climate were comparable to those from land cover change demonstrated in other studies.

  5. Hydrologic and land-energy feedbacks of agricultural water management practices

    NASA Astrophysics Data System (ADS)

    Ferguson, Ian M.; Maxwell, Reed M.

    2011-01-01

    Recent studies demonstrate strong interdependence between groundwater dynamics, land surface water and energy fluxes over some regions, including significant negative correlation between latent heat flux and groundwater depth. Other studies show that irrigation increases latent heat flux and decreases the Bowen ratio (ratio of sensible to latent heat flux), with subsequent feedbacks on local and regional climate. We use an integrated hydrologic model to evaluate impacts of groundwater pumping, irrigation, and combined pumping and irrigation on groundwater storage, land surface fluxes, and stream discharge over the Little Washita River watershed in the Southern Great Plains of North America. Pumping and irrigation are shown to impact simulated water and energy fluxes at local and watershed scales, with the magnitude of impacts governed by local water table depth. When pumping and irrigation are combined, irrigation has a dominant impact on spatially distributed surface energy processes while pumping has a dominant impact on basin-integrated hydrologic conditions.

  6. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  7. Public Progress, Data Management and the Land Grant Mission: A Survey of Agriculture Researchers' Practices and Attitudes at Two Land-Grant Institutions

    ERIC Educational Resources Information Center

    Fernandez, Peter; Eaker, Christopher; Swauger, Shea; Davis, Miriam L. E. Steiner

    2016-01-01

    This article reports results from a survey about data management practices and attitudes sent to agriculture researchers and extension personnel at the University of Tennessee Institute of Agriculture (UTIA) and the College of Agricultural Sciences and Warner College of Natural Resources at Colorado State University. Results confirm agriculture…

  8. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  9. Agricultural drainage practices in Ireland

    NASA Astrophysics Data System (ADS)

    Ryan, T. D.

    1986-02-01

    Agricultural drainage practices are reviewed under two main headings: arterial drainage of river catch-ments by developing main channels, and field drainage of smaller parcels of land using pipes and open trenches. The use of cost/benefit analysis on the arterial drainage program is considered and the inherent errors are discussed. Conservation of the environment is described as it applies to land-scaping, fisheries, and wildlife, and the drainage authorities are shown to have an enlightened attitude to proper preservation of the world around us.

  10. Carbon balance of Russian agricultural land

    NASA Astrophysics Data System (ADS)

    Schepaschenko, D.; Shvidenko, A.; Schepaschenko, M.

    2012-04-01

    Russia managed 218.7 mln ha agricultural land (2009) in accordance with national statistics (FSSS, 2011: http://www.gks.ru/dbscripts/Cbsd/DBInet.cgi#1). Among that, 91.75 mln ha is arable land; 92.05 mln ha - hayfield and pasture; 34.9 mln ha - abandoned arable and fallow. Abandoned arable area is not indicated directly in the statistics, but can be calculated as a difference between "arable" and "cultivated" area. We estimated carbon balance of agricultural land by accounting carbon fluxes. Carbon sink includes: net primary productivity (NPP), applying fertilizes and liming. Carbon losses include soil respiration (SR), harvest and lateral flux. The initial data (cultivated area and harvest distribution by regions and crop) was derived from national agriculture statistics (FSSS, 2011). NPP was estimated via harvest and set of regression models. Average NPP for agricultural land was estimated at 435 g C m-2 (530 g C m-2 for crops). Soil respiration was calculated by a model (Mukhortova et. al., 1011: http://www.iiasa.ac.at/Research/FOR/forest_cdrom/Articles/Mukhortova_2011_IBFRA_SR.pdf) developed for Russia which is based on all available empirical data and accounted for climatic parameters, soil type and management practice. Average SR of agricultural land is 344 g C m-2 (372 g C m-2 for the cropland). We applied the IPCC method (National inventory, 2010; IPCC, 2006) for fertilizer and lateral fluxes assessment. The total carbon balance of agricultural land is almost in equilibrium (-0.04 t C ha-1) in spite of arable land is a carbon source (-0.84 t C ha-1). The highest sink (1.21 t C ha-1) is provided by abandoned land. Carbon fluxes vary substantially depending on seasonal weather conditions. For example grains' NPP in 2010 (dry and hot summer in major agricultural regions of European Russia) was estimated at 32% less compare to 2009 and the total carbon balance of this land category decreased by order of magnitude. We used Russian land cover (Schepaschenko et al

  11. 12 CFR 619.9025 - Agricultural land.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Agricultural land. 619.9025 Section 619.9025 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DEFINITIONS § 619.9025 Agricultural land. Land improved or unimproved which is devoted to or available for the production of crops and...

  12. Agricultural land use change in the Northeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Census of Agriculture (http://www.agcensus.usda.gov/) provides county-level estimates of farm numbers, land use area and livestock and crop production every five years. In 2007, only eight of the 299 counties that make up the twelve Northeastern states had no agricultural land use. About 20...

  13. Modeling agriculture in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B.; Song, J.; Prell, J.; Kotamarthi, V. R.; Jacob, R.

    2012-12-01

    The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types - maize, soybean, and spring wheat - into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements. CLM-Crop yields were comparable with observations in some regions, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model - simulating agriculture in a realistic way, complete with fertilizer and residue management practices. Results are encouraging, with improved representation of human influences on the land surface and the potentially

  14. Modeling agriculture in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B.; Song, J.; Prell, J.; Kotamarthi, V. R.; Jacob, R.

    2013-04-01

    The potential impact of climate change on agriculture is uncertain. In addition, agriculture could influence above- and below-ground carbon storage. Development of models that represent agriculture is necessary to address these impacts. We have developed an approach to integrate agriculture representations for three crop types - maize, soybean, and spring wheat - into the coupled carbon-nitrogen version of the Community Land Model (CLM), to help address these questions. Here we present the new model, CLM-Crop, validated against observations from two AmeriFlux sites in the United States, planted with maize and soybean. Seasonal carbon fluxes compared well with field measurements for soybean, but not as well for maize. CLM-Crop yields were comparable with observations in countries such as the United States, Argentina, and China, although the generality of the crop model and its lack of technology and irrigation made direct comparison difficult. CLM-Crop was compared against the standard CLM3.5, which simulates crops as grass. The comparison showed improvement in gross primary productivity in regions where crops are the dominant vegetation cover. Crop yields and productivity were negatively correlated with temperature and positively correlated with precipitation, in agreement with other modeling studies. In case studies with the new crop model looking at impacts of residue management and planting date on crop yield, we found that increased residue returned to the litter pool increased crop yield, while reduced residue returns resulted in yield decreases. Using climate controls to signal planting date caused different responses in different crops. Maize and soybean had opposite reactions: when low temperature threshold resulted in early planting, maize responded with a loss of yield, but soybean yields increased. Our improvements in CLM demonstrate a new capability in the model - simulating agriculture in a realistic way, complete with fertilizer and residue management

  15. Land Grabbing and the Commodification of Agricultural Land in Africa

    NASA Astrophysics Data System (ADS)

    D'Odorico, P.; Rulli, M. C.

    2014-12-01

    The increasing global demand for farmland products is placing unprecedented pressure on the global agricultural system. The increasing demand can be met through either the intensification or the expansion of agricultural production at the expenses of other ecosystems. The ongoing escalation of large scale land acquisitions in the developing world may contribute to both of these two processes. Investments in agriculture have become a priority for a number of governments and corporations that are trying to expand their agricultural production while securing good profits. It is unclear however to what extent these investments are driving the intensification or the expansion of agriculture. In the last decade large scale land acquisitions by external investors have increased at unprecedented rates. This global land rush was likely enhanced by recent food crises, when prices skyrocketed in response to crop failure, new bioenergy policies, and the increasing demand for agricultural products by a growing and increasingly affluent human population. Corporations recognized the potential for high return investments in agricultural land, while governments started to enhance their food security by purchasing large tracts of land in foreign countries. It has been estimated that, to date, about 35.6 million ha of cropland - more than twice the agricultural land of Germany - have been acquired by foreign investors worldwide. As an effect of these land deals the local communities lose legal access to the land and its products. Here we investigate the effect of large scale land acquisition on agricultural intensification or expansion in African countries. We discuss the extent to which these investments in agriculture may increase crop production and stress how this phenomenon can greatly affect the local communities, their food security, economic stability and the long term resilience of their livelihoods, regardless of whether the transfer of property rights is the result of an

  16. Agricultural Land Conversion: Background and Issues.

    ERIC Educational Resources Information Center

    Furuseth, Owen J.

    1982-01-01

    Analyzes forces contributing to the conversion of agricultural land for other uses, causes for the depletion of the land, major issues surrounding the loss of farmland, and current policies designed to control haphazard land conversion. Concludes that the United States lacks a national farmland protection policy. (KC)

  17. Agriculture and land use issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large-scale biofuels development as a source of renewable energy will shift current dynamics in the agricultural sector that deliver food, feed, and fiber. This chapter examines the potential for modern agriculture to support a biofuels industry without comprimising its critical role for delivering ...

  18. PERCENT AGRICULTURAL LAND COVER ON STEEP SLOPES

    EPA Science Inventory

    Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type. High amounts of agriculture on steep slopes can increase the amount of soil erosion leading to increased sediment in ...

  19. Aspects of agricultural land use in Ireland

    NASA Astrophysics Data System (ADS)

    Lee, J.

    1986-02-01

    Ireland's soil regions consist largely of Luvisols, Cambisols, and Gleysols. Approximately 60% of Ireland's land area is subject to varying degrees of soil limitations. Twenty-five percent of the land area comprises wet lowland mineral soils. Ninety percent of Ireland's agricultural area comprises pasture, hay, and silage. Approximately 30% of the agricultural area is devoted to dairying, and 55% to cattle production. is devoted to dairying, and 55% to cattle production. Trends in agricultural land use indicate that tillage declined substantially while livestock showed a substantial increase particularly in the decade 1965 1975. Research concludes that over 2.8 million ha has a capacity to carry at least 100 LU/40 ha (100 acres). Levels of fertilizer use in Ireland are below EEC levels. The highest fertilizer use levels are associated with the eastern and southern areas of Ireland. Tillage crops occupy only 10% of the agricultural area, while they account for 26% of tertilizer and lime use.

  20. Agriculture, land use, and commercial biomass energy

    SciTech Connect

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  1. Agricultural lands preservation: a sociology of survival

    SciTech Connect

    White, T.S.

    1983-01-01

    This is a rural sociological study investigating the viability of agricultural lands use-values and rural communities in the context of the structure of US agriculture. It outlines the theoretical foundation, ideology, and praxis of a sociology of survival. It is undertaken within the framework of environmental sociology, which focuses on the dynamic interpenetration of social and biotic systems. The concepts of carrying capacity, sustained multiple-use yield, and land-use compatibility and their significance are discussed. The phenomenon of phantom carrying capacity is explored, and its ominous portent noted; but the astonishing potential of agricultural lands to produce huge net gains in use values and in real carrying capacity is affirmed. The theory of unlimited resources, substitution, and market-allocation is falsified. Absolute shortages of renewable and nonrenewable resources are documented, and the necessity for population control, conservation, expanded sustained-yield production, and social allocation is established.

  2. Agricultural land management options following large-scale environmental contamination.

    PubMed

    Vandenhove, Hildegarde; Turcanu, Catrinel

    2011-07-01

    The recent events at the Fukushima Daiichi nuclear power plant, in Japan, have raised questions about the accumulation of radionuclides in soils, the transfer in the food chain, and the possibility for restricted land use in the foreseeable future. This article summarizes what is generally understood about the application of agricultural countermeasures as a land management option to reduce the transfer of radionuclides in the food chain and to facilitate the return of potentially affected soils to agricultural practices in the vicinity of the Fukushima plant. PMID:21608113

  3. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    NASA Astrophysics Data System (ADS)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-09-01

    Detailed data on land use and land cover constitute important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly; however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in the agricultural mosaic catchment Haean in South Korea. We recorded the land cover types with additional information on agricultural practice. In this paper we introduce the data, their collection and the post-processing protocol. Furthermore, because it is important to quantitatively evaluate available land use and land cover products, we compared our data with the MODIS Land Cover Type product (MCD12Q1). During the studied period, a large portion of dry fields was converted to perennial crops. Compared to our data, the forested area was underrepresented and the agricultural area overrepresented in MCD12Q1. In addition, linear landscape elements such as waterbodies were missing in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research. The data are available at the public repository Pangaea (doi:110.1594/PANGAEA.823677).

  4. 43 CFR 3400.3-3 - Department of Agriculture lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Department of Agriculture lands. 3400.3-3 Section 3400.3-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...: General § 3400.3-3 Department of Agriculture lands. Subject to the provisions of § 3400.3-1, the...

  5. 43 CFR 3400.3-3 - Department of Agriculture lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Department of Agriculture lands. 3400.3-3 Section 3400.3-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...: General § 3400.3-3 Department of Agriculture lands. Subject to the provisions of § 3400.3-1, the...

  6. 43 CFR 3400.3-3 - Department of Agriculture lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Department of Agriculture lands. 3400.3-3 Section 3400.3-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...: General § 3400.3-3 Department of Agriculture lands. Subject to the provisions of § 3400.3-1, the...

  7. 43 CFR 3400.3-3 - Department of Agriculture lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Department of Agriculture lands. 3400.3-3 Section 3400.3-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...: General § 3400.3-3 Department of Agriculture lands. Subject to the provisions of § 3400.3-1, the...

  8. AGRICULTURAL BEST MANAGEMENT PRACTICE EFFECTIVENESS DATABASE

    EPA Science Inventory

    Resource Purpose:The Agricultural Best Management Practice Effectiveness Database contains the results of research projects which have collected water quality data for the purpose of determining the effectiveness of agricultural management practices in reducing pollutants ...

  9. Climate change - Agricultural land use - Food security

    NASA Astrophysics Data System (ADS)

    Nagy, János; Széles, Adrienn

    2015-04-01

    In Hungary, plougland decreased to 52% of its area by the time of political restructuring (1989) in comparison with the 1950s. Forested areas increased significantly (18%) and lands withdrawn from agricultural production doubled (11%). For today, these proportions further changed. Ploughlands reduced to 46% and forested areas further increased (21%) in 2013. The most significat changes were observed in the proportion of lands withdrawn from agricultural production which increased to 21%. Temperature in Hungary increased by 1°C during the last century and predictions show a further 2.6 °C increase by 2050. The yearly amount of precipitation significantly decreased from 640 mm to 560 mm with a more uneven temporal distribution. The following aspects can be considered in the correlation between climate change and agriculture: a) impact of agriculture on climate, b) future impact of climate change on agriculture and food supply, c) impact of climate change on food security. The reason for the significant change of climate is the accumulation of greenhouse gases (GHG) which results from anthropological activities. Between 2008 and 2012, Hungary had to reduce its GHG emission by 6% compared to the base period between 1985-1987. At the end of 2011, Hungarian GHG emission was 43.1% lower than that of the base period. The total gross emission was 66.2 million CO2 equivalent, while the net emission which also includes land use, land use change and forestry was 62.8 million tons. The emission of agriculture was 8.8 million tons (OMSZ, 2013). The greatest opportunity to reduce agricultural GHG emission is dinitrogen oxides which can be significantly mitigated by the smaller extent and more efficient use of nitrogen-based fertilisers (precision farming) and by using biomanures produced from utilised waste materials. Plant and animal species which better adapt to extreme weather circumstances should be bred and maintained, thereby making an investment in food security. Climate

  10. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    NASA Astrophysics Data System (ADS)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-04-01

    Detailed data on land use and land cover constitutes important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly, however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in an agricultural mosaic catchment Haean, South Korea. We recorded the land cover types with additional information on agricultural practice and make this data available at the public repository Pangaea (doi:10.1594/PANGAEA.823677). In this paper we introduce the data, its collection and the post-processing protocol. During the studied period, a large portion of dry fields was converted to perennial crops. A comparison between our dataset and MODIS Land Cover Type (MCD12Q1) suggested that the MODIS product was restricted in this area since it does not distinguish irrigated fields from general croplands. In addition, linear landscape elements such as water bodies were not detected in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research.

  11. Evaluation of Resources of Agricultural Lands Using Fuzzy Indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With ever increasing demands on agriculture, it is essential that we be able to adequately evaluate agriculture land resources. Recently, efforts have been undertaken to develop methods and tools for the purpose of evaluating agricultural land resources. However, to be successful, assessments need...

  12. Evaluation of Agricultural Land Suitability: Application of Fuzzy Indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The problem of evaluation of agricultural land suitability is considered as a fuzzy modeling task. The application of individual fuzzy indicators provides an opportunity for assessment of lsand suitability of lands as degree or grade of performance when the lands are used for agricultural purposes....

  13. Relative impacts of land-use, management intensity and fertilization on microbial community structure in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of agricultural land management practices on soil prokaryotic diversity have not been well described. Soil microbial communities under three agricultural management systems (conventionally tilled cropland, hayed pasture, and grazed pasture) and two fertilizer systems [inorganic fertilizer (I...

  14. Redistributive land and tenancy reform in Bangladesh agriculture.

    PubMed

    Taslim, M A

    1993-04-01

    Land is scarce and population dense in Bangladesh. Accordingly, there is great need to maximize agricultural production with intensive cultivation and the diffusion of modern technology. The realization of this goal, however, is impeded by the prevailing inequitable and inefficient structure of agricultural land tenure in which a few rural households hold the bulk of cultivatable land. Cropsharing and the system of land tenancy perpetuates low productivity and stagnation throughout the country. Development professionals, ruling politicians, and general populations in many countries under similar circumstances often suggest that share tenancy be abolished and tenants given ownership of tenanted plots, with large farms broken into smaller ones with an ultimate ceiling on farm size. The political and undertaken by new governments coming to power after violent social upheavals. Careful review reveals that such reform has hardly ever led to the establishment of prosperous and independent peasantries. Small family farms have instead become more dependent on the state and on off-farm employment. The rural elite is destroyed and a small peasant proprietorship dependent on the state is established which is ultimately controlled by the urban elite of the country; control over rural populations is reinforced. The dubious historical motivation for and results of land reform suggest that Bangladesh abandon its consideration in favor of promoting vocational training and education; providing research and extension services to agriculture for more rapid diffusion of high-yield innovations; mobilizing domestic resources to build up the infrastructure; fostering the development of private initiatives; and informing and advising about sustainable development practices to encourage their adoption so that an ecological balance may be maintained. PMID:12286575

  15. Reconstructing a century of agricultural land use and drivers of change from social and environmental records

    NASA Astrophysics Data System (ADS)

    Sangster, Heather; Smith, Hugh; Riley, Mark; Sellami, Haykel; Chiverrell, Richard; Boyle, John

    2016-04-01

    Changes to agricultural land use practices and climate represent serious challenges to the future management of rural landscapes. In Britain, the modern rural landscape may seem comparatively stable relative to the long history of human impact. However, there have been important changes linked to the intensification of agricultural practices during the last ca. 100 years and more recently improvements in land management designed to reduce impacts on land and water resources. Few studies attempt high-resolution spatial reconstruction of historic land use change, which is essential for understanding such human-environment interactions in the recent past. Specifically, the absence of detailed spatio-temporal records of agricultural land use/land cover change at the catchment-scale presents a challenge in assessing recent developments in land use policies and management. Here, we generate a high-resolution time-series of historic land use at the catchment-scale for hydrological modelling applications. Our reconstructions focus on three catchments in England ((1) Brotherswater (NE Lake District); (2) Crose Mere (Shropshire); (3) Loweswater (NW Lake District)) spanning a range of agricultural environments subject to different levels of land use change; from intensively-farmed lowlands to upland catchments subject to lower-intensity grazing. Temporal reconstructions of changes in land management practices and vegetation cover are based on historic aerial photography (1940s-2000s) and satellite-derived land cover maps (1990, 2000, and 2007), in combination with annual records of parish-level agricultural census data (1890s-1970s) and farmer interviews, in order to produce an integrated series of digital land cover and land practice maps. The datasets are coupled with composite temperature and precipitation series produced from a number of local stations. Combined, these spatio-temporal datasets allow a comprehensive assessment of land use and management change against the

  16. Reducing pollution in agriculture land, agroforestry and Common Agrarian Policy

    NASA Astrophysics Data System (ADS)

    Rosa Mosquera Losada, Maria; Santiago-Freijanes, José Javier; Ferreiro-Domínguez, Nuria; Rois, Mercedes; Rigueiro-Rodríguez, Antonio

    2015-04-01

    Reducing non-point source pollution in Europe is a key activity for the European institutions and citizens. Ensuring high quality food supply while environment is sustainable managed is a highly relevant in the European agriculture. New CAP tries to promote sustainability with the greening measures in Pillar I (EU payments) and Pillar II (EU-Country cofinanced payments). The star component of the Pillar I is the greening. The greening includes three types of activities related to crop rotation, maintenance of permanent pasture and the promotion of Ecological Focus Areas (EFA). Greening practices are compulsory in arable lands when they are placed in regions with low proportion of forests and when the owner has large farms. Among the EFA, there are several options that include agroforestry practices like landscape features, buffer strips, agroforestry, strips of eligible hectares along forest edges, areas with short rotation coppice. These practices promote biodiversity and the inclusion of woody vegetation that is able to increase the uptake of the excess of nutrients like N or P. USA Agriculture Department has also recognize the importance of woody vegetation around the arable lands to reduce nutrient pollution and promote biodiversity.

  17. Agricultural Land Use classification from Envisat MERIS

    NASA Astrophysics Data System (ADS)

    Brodsky, L.; Kodesova, R.

    2009-04-01

    This study focuses on evaluation of a crop classification from middle-resolution images (Envisat MERIS) at national level. The main goal of such Land Use product is to provid spatial data for optimisation of monitoring of surface and groundwater pollution in the Czech Republic caused by pesticides use in agriculture. As there is a lack of spatial data on the pesticide use and their distribution, the localisation can be done according to the crop cover on arable land derived from the remote sensing images. Often high resolution data are used for agricultural Land Use classification but only at regional or local level. Envisat MERIS data, due to the wide satellite swath, can be used also at national level. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. Methodology of a pixel-based MERIS classification applying an artificial neural-network (ANN) technique was proposed and performed at a national level, the Czech Republic. Five crop groups were finally selected - winter crops, spring crops, summer crops and other crops to be classified. Classification models included a linear, radial basis function (RBF) and a multi-layer percepton (MLP) ANN with 50 networks tested in training. The training data set consisted of about 200 samples per class, on which bootstrap resampling was applied. Selection of a subset of independent variables (Meris spectral channels) was used in the procedure. The best selected ANN model (MLP: 3 in, 13 hidden, 3 out) resulted in very good performance (correct classification rate 0.974, error 0.103) applying three crop types data set. In the next step data set with five crop types was evaluated. The ANN model (MLP: 5 in, 12 hidden, 5 out) performance was also very good (correct classification rate 0.930, error 0.370). The study showed, that while accuracy of about 80 % was achieved at pixel level when classifying only three crops, accuracy of about 70 % was achieved for five crop

  18. Digital spatial soil and land information for agriculture development

    NASA Astrophysics Data System (ADS)

    Sharma, R. K.; Laghathe, Pankaj; Meena, Ranglal; Barman, Alok Kumar; Das, Satyendra Nath

    2006-12-01

    Natural resource management calls for study of natural system prevailing in the country. In India floods and droughts visit regularly, causing extensive damages of natural wealth including agriculture that are crucial for sustenance of economic growth. The Indian Sub-continent drained by many major rivers and their tributaries where watershed, the hydrological unit forms a natural system that allows management and development of land resources following natural harmony. Acquisition of various kinds and levels of soil and land characteristics using both conventional and remote sensing techniques and subsequent development of digital spatial data base are essential to evolve strategy for planning watershed development programmes, their monitoring and impact evaluation. The multi-temporal capability of remote sensing sensors helps to update the existing data base which are of dynamic in nature. The paper outlines the concept of spatial data base development, generation using remote sensing techniques, designing of data structure, standardization and integration with watershed layers and various non spatial attribute data for various applications covering watershed development planning, alternate land use planning, soil and water conservation, diversified agriculture practices, generation of soil health card, soil and land reclamation, etc. The soil and land characteristics are vital to derive various interpretative groupings or master table that helps to generate the desired level of information of various clients using the GIS platform. The digital spatial data base on soils and watersheds generated by All India Soil and Land Use Survey will act as a sub-server of the main GIS based Web Server being hoisted by the planning commission for application of spatial data for planning purposes under G2G domain. It will facilitate e-governance for natural resource management using modern technology.

  19. Implication of Agricultural Land Use Change on Regional Climate Projection

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.

  20. Reuse of concentrated animal feeding operation wastewater on agricultural lands.

    PubMed

    Bradford, Scott A; Segal, Eran; Zheng, Wei; Wang, Qiquan; Hutchins, Stephen R

    2008-01-01

    Concentrated animal feeding operations (CAFOs) generate large volumes of manure and manure-contaminated wash and runoff water. When applied to land at agronomic rates, CAFO wastewater has the potential to be a valuable fertilizer and soil amendment that can improve the physical condition of the soil for plant growth and reduce the demand for high quality water resources. However, excess amounts of nutrients, heavy metals, salts, pathogenic microorganisms, and pharmaceutically active compounds (antibiotics and hormones) in CAFO wastewater can adversely impact soil and water quality. The USEPA currently requires that application of CAFO wastes to agricultural lands follow an approved nutrient management plan (NMP). A NMP is a design document that sets rates for waste application to meet the water and nutrient requirements of the selected crops and soil types, and is typically written so as to be protective of surface water resources. The tacit assumption is that a well-designed and executed NMP ensures that all lagoon water contaminants are taken up or degraded in the root zone, so that ground water is inherently protected. The validity of this assumption for all lagoon water contaminants has not yet been thoroughly studied. This review paper discusses our current level of understanding on the environmental impact and sustainability of CAFO wastewater reuse. Specifically, we address the source, composition, application practices, environmental issues, transport pathways, and potential treatments that are associated with the reuse of CAFO wastewater on agricultural lands. PMID:18765783

  1. The potential for agricultural land use change to reduce flood risk in a large watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed-scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, ...

  2. Agricultural Economics Students at Southern Land Grant Universities.

    ERIC Educational Resources Information Center

    Adrian, John L.; And Others

    Data were obtained in 1977 via mail questionnaires sent to students at all 1890 and 1860 Land Grant Universities in the South with programs in agriculture, to examine selected background characteristics and subjective perspectives of agricultural economics majors, compared with majors in production sciences and all agriculture curricula. The…

  3. The Influence of Perceptions of Practice Characteristics: An Examination of Agricultural Best Management Practice Adoption in Two Indiana Watersheds

    ERIC Educational Resources Information Center

    Reimer, Adam P.; Weinkauf, Denise Klotthor; Prokopy, Linda Stalker

    2012-01-01

    Agricultural best management practices (BMPs), or conservation practices, can help reduce nonpoint source pollution from agricultural lands, as well as provide valuable wildlife habitat. There is a large literature exploring factors that lead to a producer's voluntary adoption of BMPs, but there have been inconsistent findings. Generally, this…

  4. National land-cover data and national agricultural census estimates of agricultural land use in the northeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The landscape of the northeastern United States is diverse and patchy, a complex mixture of forest, agriculture, and developed lands. Many urgent social and environmental issues require spatially-referenced information on land use, a need filled by the National Land-Cover Data (NLCD). The accuracy o...

  5. Adoption of Improved Agricultural Practices in Uruguay.

    ERIC Educational Resources Information Center

    Rucks, Carlos Alberto

    Conducted in Uruguay during 1965-68, this study compared adoption rates for selected agricultural practices between one area which received an extension program and one which did not; and sought relationships between selected characteristics of individual farmers and the adoption of new practices. Data came from interviews with 69 experimental and…

  6. Patterns of land use, extensification, and intensification of Brazilian agriculture.

    PubMed

    Dias, Lívia C P; Pimenta, Fernando M; Santos, Ana B; Costa, Marcos H; Ladle, Richard J

    2016-08-01

    Sustainable intensification of agriculture is one of the main strategies to provide global food security. However, its implementation raises enormous political, technological, and social challenges. Meeting these challenges will require, among other things, accurate information on the spatial and temporal patterns of agricultural land use and yield. Here, we investigate historical patterns of agricultural land use (1940-2012) and productivity (1990-2012) in Brazil using a new high-resolution (approximately 1 km(2) ) spatially explicit reconstruction. Although Brazilian agriculture has been historically known for its extensification over natural vegetation (Amazon and Cerrado), data from recent years indicate that extensification has slowed down and was replaced by a strong trend of intensification. Our results provide the first comprehensive historical overview of agricultural land use and productivity in Brazil, providing clear insights to guide future territorial planning, sustainable agriculture, policy, and decision-making. PMID:27170520

  7. A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes.

    PubMed

    Chandler, Richard B; King, David I; Raudales, Raul; Trubey, Richard; Chandler, Carlin; Chávez, Víctor Julio Arce

    2013-08-01

    Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land-sharing agricultural practices incorporate elements of native ecosystems into the production system itself. Although the conservation value of these systems has been extensively debated, empirical studies are lacking. We compared bird communities in shade coffee, a widely practiced land-sharing system in which shade trees are maintained within the coffee plantation, with bird communities in a novel, small-scale, land-sparing coffee-production system (integrated open canopy or IOC coffee) in which farmers obtain higher yields under little or no shade while conserving an area of forest equal to the area under cultivation. Species richness and diversity of forest-dependent birds were higher in the IOC coffee farms than in the shade coffee farms, and community composition was more similar between IOC coffee and primary forest than between shade coffee and primary forest. Our study represents the first empirical comparison of well-defined land sparing and land sharing production systems. Because IOC coffee farms can be established by allowing forest to regenerate on degraded land, widespread adoption of this system could lead to substantial increases in forest cover and carbon sequestration without compromising agricultural yield or threatening the livelihoods of traditional small farmers. However, we studied small farms (<5 ha); thus, our results may not generalize to large-scale land-sharing systems. Furthermore, rather than concluding that land sparing is generally superior to land sharing, we suggest that the optimal approach depends on the crop, local climate, and existing land-use patterns. PMID:23551570

  8. Early Agriculture: Land Clearance and Climate Effects

    NASA Astrophysics Data System (ADS)

    Ruddiman, W. F.

    2013-12-01

    In the 2003 AGU Emiliani Lecture, I proposed the 'early anthropogenic hypothesis' --the idea that major anthropogenic effects on greenhouse gases and climate occurred thousands of years before the industrial era. In the decade since then, several dozen published papers have argued its pros and cons. In the 2013 Tyndall History of Global Change Lecture I will update where matters now stand. I will show figures from the 2003 Climate Change paper that laid out the initial hypothesis, and then update subsequent evidence from ice-core drilling, archeology, and land-use histories. The primary claims in the 2003 hypothesis were these: (1) the CH4 rise since 5000 years ago is anthropogenic; (2) the CO2 rise since 7000 years ago is also anthropogenic; (3) the amount of carbon emitted from preindustrial deforestation was roughly twice the amount released during the industrial era; (4) global temperature would have been cooler by about 0.8oC by the start of the industrial era if agricultural CO2 and CH4 emissions had not occurred; (5) early anthropogenic warming prevented the inception of new ice sheets at high northern latitudes; and (6) pandemics and other population catastrophes during the last 2000 years caused CO2 decreases lasting decades to centuries. The new evidence shows that these claims have held up well. The late-Holocene CO2 and CH4 rises are anomalous compared to average gas trends during previous interglaciations of the last 800,000 years. Land-use models based on historical data simulate pre-industrial CO2 carbon releases more than twice the industrial amounts. Archeological estimates of CH4 emissions from expanding rice irrigation account for much of the late Holocene CH4 rise, even without including livestock emissions or biomass burning. Model simulations show that the large pre-industrial greenhouse-gas emissions indicated by these historical and archeological estimates would have warmed global climate by more than 1oC and prevented northern glacial

  9. ASSESSING EFFECTS OF ALTERNATIVE AGRICULTURAL PRACTICES ON WILDLIFE HABITAT IN IOWA, USA

    EPA Science Inventory

    A habitat-change model was used to compare past, present, and future land cover and management practices to assess potential impacts of alternative agricultural practices on wildlife in two agricultural watersheds, Walnut Creek and Buck Creek, in central Iowa, USA. This approach ...

  10. The Land Grant Colleges of Agriculture.

    ERIC Educational Resources Information Center

    Campbell, Rex R.

    1991-01-01

    Discusses the following alternatives for the colleges of agriculture: (1) continue the status quo; (2) specialize to serve the needs of a group not currently served by traditional colleges of agriculture; or (3) reduce the dependence on traditional clientele groups through more funding with grants from industries or governmental sources. Provides…

  11. Sustainable land use and agricultural soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable land use is the management of the natural environment and the built environment to conserve the resources that help to sustain the current human population of the area and that of future generations. This concept of sustainable land use requires an analysis of the existing resources, the...

  12. Changing landowners, changing ecosystem? Land-ownership motivations as drivers of land management practices.

    PubMed

    Sorice, Michael G; Kreuter, Urs P; Wilcox, Bradford P; Fox, William E

    2014-01-15

    Motivations for owning rural land are shifting from an agricultural-production orientation to a preference for natural and cultural amenities. Resultant changes in land management have significant implications for the type and distribution of landscape-level disturbances that affect the delivery of ecosystem services. We examined the relationship between motivations for owning land and the implementation of conservation land management practices by landowners in the Southern Great Plains of the United States. Using a mail survey, we classified landowners into three groups: agricultural production, multiple-objective, and lifestyle-oriented. Cross tabulations of landowner group with past, current, and future use of 12 different land management practices (related to prescribed grazing, vegetation management, restoration, and water management) found that lifestyle-oriented landowners were overall less likely to adopt these practices. To the degree that the cultural landscape of rural lands transitions from production-oriented to lifestyle-oriented landowners, the ecological landscape and the associated flow of ecosystem services will likely change. This poses new challenges to natural resource managers regarding education, outreach, and policy; however, a better understanding about the net ecological consequences of lower rates of adoption of conservation management practices requires consideration of the ecological tradeoffs associated with the changing resource dependency of rural landowners. PMID:24374464

  13. The potential for land sparing to offset greenhouse gas emissions from agriculture

    NASA Astrophysics Data System (ADS)

    Lamb, Anthony; Green, Rhys; Bateman, Ian; Broadmeadow, Mark; Bruce, Toby; Burney, Jennifer; Carey, Pete; Chadwick, David; Crane, Ellie; Field, Rob; Goulding, Keith; Griffiths, Howard; Hastings, Astley; Kasoar, Tim; Kindred, Daniel; Phalan, Ben; Pickett, John; Smith, Pete; Wall, Eileen; Zu Ermgassen, Erasmus K. H. J.; Balmford, Andrew

    2016-05-01

    Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing--increasing agricultural yields, reducing farmland area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the UK as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential--however, economic and implementation considerations might limit the degree to which this technical potential could be realized in practice.

  14. PERCENT AGRICULTURAL LAND COVER ON STEEP SLOPES (FUTURE)

    EPA Science Inventory

    Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type. High amounts of agriculture on steep slopes can increase the amount of soil erosion leading to increased sediment in ...

  15. A GIS-based hedonic price model for agricultural land

    NASA Astrophysics Data System (ADS)

    Demetriou, Demetris

    2015-06-01

    Land consolidation is a very effective land management planning approach that aims towards rural/agricultural sustainable development. Land reallocation which involves land tenure restructuring is the most important, complex and time consuming component of land consolidation. Land reallocation relies on land valuation since its fundamental principle provides that after consolidation, each landowner shall be granted a property of an aggregate value that is approximately the same as the value of the property owned prior to consolidation. Therefore, land value is the crucial factor for the land reallocation process and hence for the success and acceptance of the final land consolidation plan. Land valuation is a process of assigning values to all parcels (and its contents) and it is usually carried out by an ad-hoc committee. However, the process faces some problems such as it is time consuming hence costly, outcomes may present inconsistency since it is carried out manually and empirically without employing systematic analytical tools and in particular spatial analysis tools and techniques such as statistical/mathematical. A solution to these problems can be the employment of mass appraisal land valuation methods using automated valuation models (AVM) based on international standards. In this context, this paper presents a spatial based linear hedonic price model which has been developed and tested in a case study land consolidation area in Cyprus. Results showed that the AVM is capable to produce acceptable in terms of accuracy and reliability land values and to reduce time hence cost required by around 80%.

  16. Conversion of prime agricultural land to urban land uses in Kansas City

    NASA Technical Reports Server (NTRS)

    Shaklee, R. V.

    1976-01-01

    In an expanding urban environment, agriculture and urban land uses are the two primary competitors for regional land resources. As a result of an increasing awareness of the effects which urban expansion has upon the regional environment, the conversion of prime agricultural land to urban land uses has become a point of concern to urban planners. A study was undertaken for the Kansas City Metropolitan Region, to determine the rate at which prime agricultural land has been converted to urban land uses over a five year period from 1969 to 1974. Using NASA high altitude color infrared imagery acquired over the city in October, 1969 and in May, 1974 to monitor the extent and location of urban expansion in the interim period, it was revealed that 42% of that expansion had occurred upon land classified as having prime agricultural potential. This involved a total of 10,727 acres of prime agricultural land and indicated a 7% increase over the 1969 which showed that 35% of the urban area had been developed on prime agricultural land.

  17. Governance, agricultural intensification, and land sparing in tropical South America

    PubMed Central

    Ceddia, Michele Graziano; Bardsley, Nicholas Oliver; Gomez-y-Paloma, Sergio; Sedlacek, Sabine

    2014-01-01

    In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970–2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process. PMID:24799696

  18. Governance, agricultural intensification, and land sparing in tropical South America.

    PubMed

    Ceddia, Michele Graziano; Bardsley, Nicholas Oliver; Gomez-y-Paloma, Sergio; Sedlacek, Sabine

    2014-05-20

    In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970-2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process. PMID:24799696

  19. Mapping of agricultural land use from ERTS-1 digital data

    NASA Technical Reports Server (NTRS)

    Wilson, A. D.; Max, G. A.; Peterson, G. W.

    1973-01-01

    A study area was selected in Lancaster and Lebanon Counties, two of the major agricultural counties in Pennsylvania. This area was delineated on positive transparencies on MSS data collected on October 11, 1972 (1080-15185). Channel seven was used to delineate general land forms, drainage patterns, water and urban areas. Channel five was used to delineate highway networks. These identifiable features were useful aids for locating areas on the computer output. Computer generated maps were used to delineate broad land use categories, such as forest land, agricultural land, urban areas and water. These digital maps have a scale of approximately 1:24,000 thereby allowing direct comparison with U.S.G.S. 7.5 minute quadrangle sheets. Aircraft data were used as a form of ground truth useful for the delineation of land use patterns.

  20. Making it real: operationalizing soil C sequestration and GHG mitigation on agricultural lands

    NASA Astrophysics Data System (ADS)

    Paustian, Keith; Chambers, Adam; Easter, Mark; Lugato, Emanuele

    2015-04-01

    Land use and management account for roughly one-third of total anthropogenic greenhouse gases (GHGs) with about 10-12% coming from active management, primarily on agricultural lands and ca. 15-20% from land clearing and deforestation, which in many instances is tied to expansion of agricultural land use. Within this larger GHG source category of land use, soils play a significant role not only as a GHG source but also as a potential sink, through storing C in soil organic matter. However, despite 'being in the conversation' for many years, there has been relatively little engagement of agriculture, particularly with regards to soil management, in policies and programs for GHG mitigation. Now, that appears to be changing and there is increasing interest in 'bottom-up' strategies to incentivize agricultural management practices that sequester C in soils and reduce non-CO2 soil emissions, ranging from GHG offset projects within cap-and-trade systems, to inclusion of GHG emission reductions in 'green labeling' of agricultural products for consumers. In this paper, we review current knowledge of how soil management practices impact emissions and removals of GHGs and the current status of agricultural soil mitigation activities, in the US and globally. Critical areas for science support to further operationalize soil GHG mitigation strategies at local to national scales are discussed, including providing rigorous quantification technologies into the hands of management practitioners, providing estimates of impacts on productivity and costs associated with implementing mitigation practices, and gathering data on baseline practices and monitoring changes in practices over time.

  1. Integrated Assessment of Climate Change, Agricultural Land Use, and Regional Carbon Changes

    NASA Astrophysics Data System (ADS)

    MU, J.

    2014-12-01

    Changes in land use have caused a net release of carbon to the atmosphere over the last centuries and decades1. On one hand, agriculture accounts for 52% and 84% of global anthropogenic methane and nitrous oxide emissions, respectively. On the other hand, many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management2. From this perspective, land use change that reduces emissions and/or increases carbon sequestration can play an important role in climate change mitigation. As shown in Figure 1, this paper is an integrated study of climate impacts, land uses, and regional carbon changes to examine, link and assess climate impacts on regional carbon changes via impacts on land uses. This study will contribute to previous research in two aspects: impacts of climate change on future land uses under an uncertain future world and projections of regional carbon dynamics due to changes in future land use. Specifically, we will examine how land use change under historical climate change using observed data and then project changes in land use under future climate projections from 14 Global Climate Models (GCMs) for two emission scenarios (i.e., RCP4.5 and RCP8.5). More importantly, we will investigate future land use under uncertainties with changes in agricultural development and social-economic conditions along with a changing climate. By doing this, we then could integrate with existing efforts by USGS land-change scientists developing and parameterizing models capable of projecting changes across a full spectrum of land use and land cover changes and track the consequences on ecosystem carbon to provide better information for land managers and policy makers when informing climate change adaptation and mitigation policies.

  2. Analysing the impact of urban pressures on agricultural land

    NASA Astrophysics Data System (ADS)

    Aksoy, Ece; Schröder, Christoph; Fons, Jaume; Gregor, Mirko; Louwagie, Geertrui

    2015-04-01

    Land, and here in particular soil, is a finite and essentially non-renewable resource. EU-wide, land take, i.e. the increase of settlement area over time, consumes more than 1000 km2 annually of which half is actually sealed and, hence, lost under impermeable surfaces. Land take and in particular soil sealing has already been identified as one of the major soil threats in the 2006 EC Communication 'Towards a Thematic Strategy on Soil Protection' (Soil Thematic Strategy), and has been confirmed as such in the report on the implementation of this strategy. The aim of this study is to relate the potential of land for a particle use in a given region with the actual land use. This allows evaluating whether land (in particular the soil dimension) is used according to its (theoretical) potential. To this aim, the impact of a number of land cover flows related to urban development on soils with a good, average and poor production potential were assessed and mapped. Thus, the amount and quality (potentials and/or suitability for agricultural production) of agricultural land lost between the years 2000 and 2006 was identified. In addition, areas with high productivity potential around urban areas indicating areas of potential future land use conflicts for Europe were identified.

  3. New Jersey Land-Use Planning Techniques and Legislation. Agricultural Experiment Station Bulletin AE-338.

    ERIC Educational Resources Information Center

    Schneider, Lee D.

    In response to recent urban to rural migration trends and the development of rather piecemeal land use policies and practices by local, state, and Federal decision makers, the U.S. Department of Agriculture has established a regional project (NE-78) and this report reflects the first of three major project objectives (to describe and appraise…

  4. Factors Influencing Farmers' Expectations to Sell Agricultural Land for Non-Agricultural Uses

    ERIC Educational Resources Information Center

    Zollinger, Brett; Krannich, Richard S.

    2002-01-01

    In this study we identify factors that influence farmers' expectations to sell some or all of their farming operation in areas where the increase in the conversion of agricultural land has been relatively rapid. Findings indicate that the following factors increase farmers' propensity to sell some or all of the agricultural operation for…

  5. Spatial modeling of agricultural land use change at global scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  6. Interpretation of Pennsylvania agricultural land use from ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Wilson, A. D.

    1974-01-01

    The author has identified the following significant results. To study the complex agricultural patterns in Pennsylvania, a portion of an ERTS scene was selected for detailed analysis. Various photographic products were made and were found to be only of limited value. This necessitated the digital processing of the ERTS data. Using an unsupervised classification procedure, it was possible to delineate the following categories: (1) forest land with a northern aspect, (2) forest land with a southern aspect, (3) valley trees, (4) wheat, (5) corn, (6) alfalfa, grass, pasture, (7) disturbed land, (8) builtup land, (9) strip mines, and (10) water. These land use categories were delineated at a scale of approximately 1:20,000 on the line printer output. Land use delineations were also made using the General Electric IMAGE 100 interactive analysis system.

  7. Characterizing patterns of agricultural land use in Amazonia by merging satellite imagery and census data

    NASA Astrophysics Data System (ADS)

    Cardille, Jeffrey Alan

    In recent decades, millions of hectares of Amazonian primary forest, cerrado, and secondary forest have been cleared to support a dramatically increasing number of cattle and humans. With plans proposed for major new highways and utilities in the basin, development is highly likely to continue in coming years. Conversion to human use threatens to change the climate, ecosystems, and natural resources of Amazonia, and these effects are due not only to changes in land cover but to the land use management practices that follow. Unfortunately, we lack basin-wide information about land use across Amazonia. A key reason for this dearth of information is that earth-observing satellites designed to interpret land cover are prone to miss the land use changes within; in an area encompassing millions of square kilometers, it is impossible to visit more than a small portion of the study region to quantify land use activities. Agricultural censuses suggest a strategy to fill this gap: in Amazonia, they provide the only ground-surveyed land use information---yet because they are not easily reconciled with satellite-based land cover information, census data are underutilized. The research forming this dissertation presents a new, basin-wide depiction of land use in Amazonia by developing and applying new tools for understanding the past, current, and future impact of agricultural development. Specifically, this dissertation: (1) presents a new detailed understanding of the distribution and density of agricultural land use practices in Amazonia in the mid-1990s by fusing agricultural census data with satellite-derived land cover classifications; (2) assesses historical changes in agriculture of the previous decades; and (3) describes and applies new general techniques for the rapid update of land use data sets and maps using satellite imagery and census data. The fusion of census and satellite data described here advances our understanding by uniting the strengths of two distinct

  8. Land degradation causes and sustainable land management practices in southern Jordan

    NASA Astrophysics Data System (ADS)

    Khresat, Saeb

    2014-05-01

    Jordan is one of the world's most water-deficit countries with only about 4% of the total land area considered arable. As a consequence agricultural production is greatly constrained by limited natural resources. Therefore, a major challenge for the country is to promote the sustainable use of natural resources for agricultural purposes. This challenge is being made harder by the ongoing processes of degradation due to increased population pressure, which undermine any social and economic development gains. In the southern plains of Jordan, sustainability of farming practices has worsened in the past three decades, exacerbating pressure on land and increasing land degradation processes. Non-sustainable land use practices include improper ploughing, inappropriate rotations, inadequate or inexistent management of plant residues, overgrazing of natural vegetation, random urbanization, land fragmentation and over-pumping of groundwater. The root cause is the high population growth which exerts excessive pressure on the natural resources to meet increased food and income demand. The poorest farmers who are increasingly growing cereals on marginal areas. Wheat and barley are now grown with little to no rotation, with no nutrient replenishment, and at places avoiding even fallow. Small landholding sizes and topographic features of the area tend to oblige longitudinal mechanized tillage operations along the slopes. Overall, the constraints facing the deprived land users such as, poor access to technology, capital and organization are the factors that lead into unsustainable practices. The main bottlenecks and barriers that hinder mainstreaming of sustainable land management in Jordan can be grouped into three main categories: (i) Knowledge, (ii) Institutional and Governance, and (iii) Economic and Financial. In this case study, the key challenge was to create a knowledge base among local stakeholders - including planners, extension officers, NGO/community leaders, teachers

  9. Interactive boundary delineation of agricultural lands using graphics workstations

    NASA Technical Reports Server (NTRS)

    Cheng, Thomas D.; Angelici, Gary L.; Slye, Robert E.; Ma, Matt

    1992-01-01

    A review is presented of the computer-assisted stratification and sampling (CASS) system developed to delineate the boundaries of sample units for survey procedures. CASS stratifies the sampling units by land-cover and land-use type, employing image-processing software and hardware. This procedure generates coverage areas and the boundaries of stratified sampling units that are utilized for subsequent sampling procedures from which agricultural statistics are developed.

  10. Effects of agricultural conservation practices on oxbow lake watersheds in the Mississippi River alluvial plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, agricultural lands are considered to major sources of nonpoint source pollutants such as sediment, pesticides and nutrients in the United States. While conservation practices have been tested for their effectiveness in reducing agricultural related pollutants on test plot scales, they typ...

  11. Measures of the Effects of Agricultural Practices on Ecosystem Services

    SciTech Connect

    Dale, Virginia H; Polasky, Stephen

    2007-01-01

    Agriculture produces more than just crops. Agricultural practices have environmental impacts that affect a wide range of ecosystem services, including water quality, pollination, nutrient cycling, soil retention, carbon sequestration, and biodiversity conservation. In turn, ecosystem services affect agricultural productivity. Understanding the contribution of various agricultural practices to the range of ecosystem services would help inform choices about the most beneficial agricultural practices. To accomplish this, however, we must overcome a big challenge in measuring the impact of alternative agricultural practices on ecosystem services and of ecosystem services on agricultural production.

  12. Land-Sparing Agriculture Best Protects Avian Phylogenetic Diversity.

    PubMed

    Edwards, David P; Gilroy, James J; Thomas, Gavin H; Uribe, Claudia A Medina; Haugaasen, Torbjørn

    2015-09-21

    The conversion of natural habitats to farmland is a major driver of the global extinction crisis. Two strategies are promoted to mitigate the impacts of agricultural expansion on biodiversity: land sharing integrates wildlife-friendly habitats within farmland landscapes, and land sparing intensifies farming to allow the offset of natural reserves. A key question is which strategy would protect the most phylogenetic diversity--the total evolutionary history shared across all species within a community. Conserving phylogenetic diversity decreases the chance of losing unique phenotypic and ecological traits and provides benefits for ecosystem function and stability. Focusing on birds in the threatened Chocó-Andes hotspot of endemism, we tested the relative benefits of each strategy for retaining phylogenetic diversity in tropical cloud forest landscapes threatened by cattle pastures. Using landscape simulations, we find that land sharing would protect lower community-level phylogenetic diversity than land sparing and that with increasing distance from forest (from 500 to >1,500 m), land sharing is increasingly inferior to land sparing. Isolation from forest also leads to the loss of more evolutionarily distinct species from communities within land-sharing landscapes, which can be avoided with effective land sparing. Land-sharing policies that promote the integration of small-scale wildlife-friendly habitats might be of limited benefit without the simultaneous protection of larger blocks of natural habitat, which is most likely to be achieved via land-sparing measures. PMID:26344093

  13. Hyperspectral image classification for mapping agricultural tillage practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient classification framework for mapping agricultural tillage practice using hyperspectral remote sensing imagery is proposed, which has the potential to be implemented practically to provide rapid, accurate, and objective surveying data for precision agricultural management and appraisal f...

  14. Land Resources for Crop Production. Agricultural Economic Report Number 572.

    ERIC Educational Resources Information Center

    Hexem, Roger; Krupa, Kenneth S.

    About 35 million acres not being cultivated have high potential for crop use and 117 million more have medium potential, according to the 1982 National Resources Inventory (NRI) conducted by the U.S. Department of Agriculture. USDA committees evaluated the economic potential for converting land based on physical characteristics of the soil; size…

  15. USE OF SEWAGE SLUDGE ON AGRICULTURAL AND DISTURBED LANDS

    EPA Science Inventory

    Results of 8 field studies of long-term use of digested sewage on agricultural and disturbed lands are presented. The studies included: (1) response of corn grown on 3 soil types previously amended with annual sludge applications; (2) response of corn grown annually on Blount sil...

  16. Applications of WEPS and SWEEP to non-agricultural lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion by wind is a serious problem on agricultural lands throughout the United States and the world. Dust from wind erosion obscures visibility and pollutes the air. It fills road ditches where it can impact water quality, causes automobile accidents, fouls machinery, and imperils animal an...

  17. Agricultural land use mapping. [Pennsylvania, Montana, and Texas

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Wilson, A. D.

    1973-01-01

    The author has identified the following significant results. Agricultural areas were selected or analysis in southeastern Pennsylvania, north central Montana, and southern Texas. These three sites represent a broad range of soils, soil parent materials, climate, modes of agricultural operation, crops, and field sizes. In each of these three sites, ERTS-1 digital data were processed to determine the feasibility of automatically mapping agricultural land use. In Pennsylvania, forest land, cultivated land, and water were separable within a 25,000 acre area. Four classes of water were also classified and identified, using ground truth. A less complex land use pattern was analyzed in Hill County, Montana. A land use map was prepared shown alternating patterns of summer fallow and stubble fields. The location of farmsteads could be inferred, along with that of a railroad line. A river and a creek flowing into the river were discernible. Six categories of water, related to sediment content and depth, were defined in the reservoir held by the Fresno dam. These classifications were completed on a 150 square mile area. Analysis of the data from Texas is in its formative stages. A test site has been selected and a brightness map has been produced.

  18. Analysis of RapidEye imagery for agricultural land mapping

    NASA Astrophysics Data System (ADS)

    Sang, Huiyong; Zhang, Jixian; Zhai, Liang; Xie, Wenhan; Sun, Xiaoxia

    2015-12-01

    With the improvement of remote sensing technology, the spatial, structural and texture information of land covers are present clearly in high resolution imagery, which enhances the ability of crop mapping. Since the satellite RapidEye was launched in 2009, high resolution multispectral imagery together with wide red edge band has been utilized in vegetation monitoring. Broad red edge band related vegetation indices improved land use classification and vegetation studies. RapidEye high resolution imagery was used in this study to evaluate the potential of red edge band in agricultural land cover/use mapping using an objected-oriented classification approach. A new object-oriented decision tree classifier was introduced in this study to map agricultural lands in the study area. Besides the five bands of RapidEye image, the vegetation indexes derived from spectral bands and the structural and texture features are utilized as inputs for agricultural land cover/use mapping in the study. The optimization of input features for classification by reducing redundant information improves the mapping precision about 18% for AdaTree. WL decision tree, and 5% for SVM, the accuracy is over 90% for both classifiers.

  19. Computer-aided boundary delineation of agricultural lands

    NASA Technical Reports Server (NTRS)

    Cheng, Thomas D.; Angelici, Gary L.; Slye, Robert E.; Ma, Matt

    1989-01-01

    The National Agricultural Statistics Service of the United States Department of Agriculture (USDA) presently uses labor-intensive aerial photographic interpretation techniques to divide large geographical areas into manageable-sized units for estimating domestic crop and livestock production. Prototype software, the computer-aided stratification (CAS) system, was developed to automate the procedure, and currently runs on a Sun-based image processing system. With a background display of LANDSAT Thematic Mapper and United States Geological Survey Digital Line Graph data, the operator uses a cursor to delineate agricultural areas, called sampling units, which are assigned to strata of land-use and land-cover types. The resultant stratified sampling units are used as input into subsequent USDA sampling procedures. As a test, three counties in Missouri were chosen for application of the CAS procedures. Subsequent analysis indicates that CAS was five times faster in creating sampling units than the manual techniques were.

  20. 25 CFR 162.212 - When will the BIA advertise Indian land for agricultural leases?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false When will the BIA advertise Indian land for agricultural leases? 162.212 Section 162.212 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND... Indian land for agricultural leases? (a) We will generally advertise Indian land for agricultural...

  1. Ten-year assessment of agricultural management and land-use practices on pesticide loads and risk to aquatic biota of an oxbow lake in the Mississippi Delta, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current chapter examined the combined influence of changing row crop production, implementation of agricultural Best Management Practices (BMPs), and enrollment of 112 ha into Conservation Reserve Program (CRP) on pesticide contamination and potential risk to lake aquatic biota in a 914-ha Beasl...

  2. Application of Sludges and Wastewaters on Agricultural Land: A Planning and Educational Guide, MCD-35. Research Bulletin 1090.

    ERIC Educational Resources Information Center

    Knezek, Bernard D., Ed.; Miller, Robert H., Ed.

    This report addresses the application of agricultural processing wastes, industrial and municipal wastes on agricultural land as both a waste management and resource recovery and reuse practice. The document emphasizes the treatment and beneficial utilization of sludge and wastewater as opposed to waste disposal. These objectives are achieved…

  3. Practical application of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Phelps, R. A.

    1975-01-01

    Remote sensing program imagery from several types of platforms, from light aircraft to the LANDSAT (ERTS) satellites, have been utilized during the past few years, with preference for inexpensive imagery over expensive magnetic tapes. Emphasis has been on practical application of remote sensing data to increase crop yield by decreasing plant stress, disease, weeds and undesirable insects and by improving irrigation. Imagery obtained from low altitudes via aircraft provides the necessary resolution and complements but does not replace data from high altitude aircraft, Gemini and Apollo spacecraft, Skylab space station and LANDSAT satellites. Federal government centers are now able to supply imagery within about thirty days from data of order. Nevertheless, if the full potential of space imagery in practical agricultural operations is to be realized, the time span from date of imaging to user application needs to be shortened from the current several months to not more than two weeks.

  4. The economic potential of carbon sequestration in Californian agricultural land

    NASA Astrophysics Data System (ADS)

    Catala-Luque, Rosa

    This dissertation studies the potential success of a carbon sequestration policy based on payments to farmers for adoption of alternative, less intensive, management practices in California. Since this is a first approach from a Californian perspective, we focus on Yolo County, an important agricultural county of the State. We focus on the six more important crops of the region: wheat, tomato, corn, rice, safflower, and sunflower. In Chapter 1, we characterize the role of carbon sequestration in Climate Change policy. We also give evidence on which alternative management practices have greenhouse gas mitigation potential (reduced tillage, cover-cropping, and organic systems) based on a study of experimental sites. Chapter 2 advances recognizing the need for information at the field level, and describes the survey designed used to obtain data at the field level, something required to perform a complete integrated assessment of the issue. The survey design is complex in the sense that we use auxiliary information to obtain a control (subpopulation of conventional farmers)-case (subpopulation of innovative farmers) design with stratification for land use. We present estimates for population quantities of interest such as total variable costs, profits, managerial experience in different alternatives, etc. This information efficiently gives field level information for innovative farmers, a missing piece of information so far, since our sampling strategy required the inclusion with probability one of farmers identified as innovative. Using an agronomic process model (DayCent) for the sample and population units, we construct carbon mitigation cost curves for each crop and management observed. Chapter 3 builds different econometric models for cross-sectional data taking into account the survey design, and expanding the sample size constructing productivity potential under each alternative. Based on the yield productivity potential modeled for each unit, we conclude that a

  5. Spatially complex land change: The Indirect effect of Brazil's agricultural sector on land use in Amazonia.

    PubMed

    Richards, Peter D; Walker, Robert T; Arima, Eugenio Y

    2014-11-01

    Soybean farming has brought economic development to parts of South America, as well as environmental hopes and concerns. A substantial hope resides in the decoupling of Brazil's agricultural sector from deforestation in the Amazon region, in which case expansive agriculture need not imply forest degradation. However, concerns have also been voiced about the potential indirect effects of agriculture. This article addresses these indirect effects forthe case of the Brazilian Amazon since 2002. Our work finds that as much as thirty-two percent of deforestation, or the loss of more than 30,000 km(2) of Amazon forest, is attributable, indirectly, to Brazil's soybean sector. However, we also observe that the magnitude of the indirect impact of the agriculture sector on forest loss in the Amazon has declined markedly since 2006. We also find a shift in the underlying causes of indirect land use change in the Amazon, and suggest that land appreciation in agricultural regions has supplanted farm expansions as a source of indirect land use change. Our results are broadly congruent with recent work recognizing the success of policy changes in mitigating the impact of soybean expansion on forest loss in the Amazon. However, they also caution that the soybean sector may continue to incentivize land clearings through its impact on regional land markets. PMID:25492993

  6. Spatially complex land change: The Indirect effect of Brazil's agricultural sector on land use in Amazonia

    PubMed Central

    Richards, Peter D.; Walker, Robert T.; Arima, Eugenio Y.

    2014-01-01

    Soybean farming has brought economic development to parts of South America, as well as environmental hopes and concerns. A substantial hope resides in the decoupling of Brazil's agricultural sector from deforestation in the Amazon region, in which case expansive agriculture need not imply forest degradation. However, concerns have also been voiced about the potential indirect effects of agriculture. This article addresses these indirect effects forthe case of the Brazilian Amazon since 2002. Our work finds that as much as thirty-two percent of deforestation, or the loss of more than 30,000 km2 of Amazon forest, is attributable, indirectly, to Brazil's soybean sector. However, we also observe that the magnitude of the indirect impact of the agriculture sector on forest loss in the Amazon has declined markedly since 2006. We also find a shift in the underlying causes of indirect land use change in the Amazon, and suggest that land appreciation in agricultural regions has supplanted farm expansions as a source of indirect land use change. Our results are broadly congruent with recent work recognizing the success of policy changes in mitigating the impact of soybean expansion on forest loss in the Amazon. However, they also caution that the soybean sector may continue to incentivize land clearings through its impact on regional land markets. PMID:25492993

  7. Effect of land management on soil microbial properties in agricultural terraces of Eastern Spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; Cerdà, Artemi; Garcia-Orenes, Fuensanta

    2014-05-01

    Soil quality is important for the sustainable development of terrestrial ecosystems. Agricultural land management is one of most important anthropogenic activities that greatly alters soil characteristics, including physical, chemical, and microbiological properties. The unsuitable land management can lead to a soil fertility loss and to a reduction in the abundance and diversity of soil microorganisms. However, ecological practices and some organic amendments can promote the activities of soil microbial communities, and increase its biodiversity. The microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. In this study, a field experiment was performed at clay-loam agricultural soil with an orchard of orange trees in Alcoleja (eastern Spain) to assess the long-term effects of inorganic fertilizers (F), intensive ploughing (P) and sustainable agriculture (S) on the soil microbial biomass carbon (Cmic), enzyme activities (Urease, ß-glucosidase and phosphatase), basal soil repiration (BSR) and the relationship between them, and soil fertility in agro-ecosystems of Spain. Nine soil samples were taken from each agricultural management plot. In all the samples were determined the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic carbon, nitrogen, available phosphorus, aggregate stability, cation exchange capacity, phosphorous, pH, texture, carbonates, active limestone and as enzimatic activities: Urease, ß-glucosidase and phosphatase. The results showed a substantial level of differentiation in the microbial properties, in terms of management practices, which was highly associated with soil organic matter content. The most marked variation in the different parameters studied appears to be related to sustainable agriculture terrace. The management

  8. Automatic information extraction for land use and agricultural applications

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Thomas, D. T.

    1973-01-01

    Description of some current work in interpretation technique development for automatic computer-aided image information extraction related to various application areas, including land use mapping and agricultural survey and monitoring. In particular, the application of a fast template matching algorithm, employing the sequential similarity detection principle, to image registration, linear feature detection, and the extraction and enumeration of scene objects is discussed and illustrated.

  9. Carbon dynamics of contrasting agricultural practices

    NASA Astrophysics Data System (ADS)

    Ghee, Claire; Hallett, Paul; Neilson, Roy; Robinson, David; Paterson, Eric

    2013-04-01

    Application of organic amendments can improve soil quality and provide crop nutrients. To optimise these agricultural benefits from organic applications, the capacity of microbe-driven nutrient and carbon cycling must be understood and exploited. Consideration is therefore required of the complex interactions between the rhizosphere, microbial biomass and organic amendment. We hypothesise that the labile C present in root exudates of plants increases the mineralisation of organic matter in soil, constituting a mechanism to promote nutrient acquisition. This mechanism is known as the 'priming effect', but is poorly understood in the context of agricultural carbon and nutrient management. Field data from the Centre of Sustainable Cropping (CSC) research platform (Dundee, Scotland, UK) are utilised to build an understanding of soil C and N fluxes between contrasting agricultural practices. The field site uses a split-plot design to compare (i) compost amended soils with reduced tillage and chemical inputs and (ii) conventionally managed soils, reflective of current UK commercial arable practice. Significant differences (p= <0.001) were identified between compost amended and conventionally managed soils at field-scale with respect to soil microbial biomass (SMB), total organic carbon (TOC) and mineral nitrogen. Investigation into the priming effect within compost amended soils was subsequently undertaken under laboratory conditions. Stable isotope analysis and measurements of soil biotic parameters were used to quantify priming resulting from Spring Barley (Hordeum vulgare cv. Optic) cultivation for (i) unamended and (ii) municipal compost incorporated soils. Compost treatments comprised amendments of 25, 50 and 150 t/Ha and planted soils were compared with unplanted controls. Soil mesocosms were maintained under controlled environmental conditions within labelling chambers supplied continuously with 13C-depleted CO2. Throughout a 41-day incubation period, soil CO2

  10. SOCIOLOGICAL FACTORS IN THE ADOPTION OF AGRICULTURAL BEST MANAGEMENT PRACTICES

    EPA Science Inventory

    The primary goal of this research was to determine the relevant socioeconomic, demographic and agricultural factors that influence the adoption and maintenance of agricultural best management practices. A general theoretic model describing the adoption of technology was modified ...

  11. 25 CFR 162.201 - Must agricultural land be managed in accordance with a tribe's agricultural resource management...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... tribe's agricultural resource management plan? 162.201 Section 162.201 Indians BUREAU OF INDIAN AFFAIRS... Must agricultural land be managed in accordance with a tribe's agricultural resource management plan... and objectives in any agricultural resource management plan developed by the tribe, or by us in...

  12. A Spatial Data Model Desing For The Management Of Agricultural Data (Farmer, Agricultural Land And Agricultural Production)

    NASA Astrophysics Data System (ADS)

    Taşkanat, Talha; İbrahim İnan, Halil

    2016-04-01

    Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and

  13. Forests to fields. Restoring tropical lands to agriculture.

    PubMed

    Wood, D

    1993-04-01

    In discussing land use in tropical forest regions, there is an emphasis on the following topics: the need for the expansion of cropping areas, the precedent for use of the tropical forest for cropping based on past use patterns, the pressure from conservationists against cropping, debunking the mythology that forests are "natural" and refuting the claims that forest clearance is not reversible, the archeological evidence of past forest use for agricultural purposes, abandonment of tropical land to forest, and rotation of forest and field. The assumption is that the way to stop food importation is to increase crop production in the tropics. Crop production can be increased through 1) land intensification or clearing new land, 2) output per unit of land increases, or 3) reallocation to agriculture land previously cleared and overgrown with tropical forest. "Temporary" reuse of land, which reverted back to tropical forest, is recommended. This reuse would ease population pressure, and benefit bioconservation, while populations stabilize and further progress is made in international plant breeding. The land would eventually be returned to a forest state. Conservation of tropical forest areas should be accomplished, after an assessment has been made of its former uses. Primary forests need to identified and conversion to farming ceased. Research needs to be directed to understanding the process of past forest regeneration, and to devising cropping systems with longterm viability. The green revolution is unsuitable for traditional cropping systems, is contrary to demands of international funding agencies for sustainability, and is not affordable by most poor farmers. Only .48 million sq. km of closed forest loss was in tropical rainforests; 6.53 million sq. km was lost from temperate forests cleared for intensive small-scale peasant farming. The use of tropical forest land for farming has some benefits; crops in the wetter tropics are perennial, which would "reduce

  14. Land Conservation in an Evolving Agricultural Industry: Trade-offs to Consider

    NASA Astrophysics Data System (ADS)

    Baker, J. S.; Murray, B. C.; McCarl, B. A.; Jackson, R. B.

    2008-12-01

    This study analyzes the interactions of land conservation policy with biofuel expansion using an economic model of the U.S. forest and agricultural sectors. The world agricultural industry is changing rapidly under emerging market and policy-based pressures. An important driver in the U.S. is the Renewable Fuels Standard (RFS), which mandates significant expansion in biofuels production (up to 36 billion gallons/year by 2022). Traditional land conservation practices such as the Conservation Reserve Program (CRP) are at risk in this changing agricultural climate, as the opportunity costs of reverting to cropland continue to rise. Large- scale reversion of CRP acreage is likely to lead to substantial losses in soil carbon, biodiversity, soil erosion protection, and water quality. However, given the increased competition for land resources, continued efforts to maintain the CRP could induce land use change (LUC) and agricultural development from even more sensitive ecosystems, including native grasslands and forests. This study uses economic modeling to study CRP reversion and LUC under multiple scenarios, including: 1) Baseline assumptions of growth in world agricultural demand and energy prices, with and without CRP reversion; 2) Implementation of the RFS while maintaining the CRP; and 3) RFS with CRP reversion allowed. The study is done using the FASOMGHG model (Lee, McCarl et al, 2008), which is well suited for this analysis as it: 1) Depicts land use competition between crops, pasture, CRP, and forestry over a 100 year period 2) Contains comprehensive GHG accounting across the sectors, 3) Allows land in the CRP to revert to cultivation at an economically optimal rate as land values increase, and 4) Extensively models biofuel and conventional agricultural production possibilities. Results generated to date show significant reversion to cultivation, even under the baseline (36% of the total CRP stock by 2020). Implementing the RFS further pressures conservation

  15. 25 CFR 166.300 - How is Indian agricultural land managed?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How is Indian agricultural land managed? 166.300 Section 166.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.300 How is Indian agricultural land managed? Tribes,...

  16. Agricultural land-use change in a Mexican oligotrophic desert depletes ecosystem stability

    PubMed Central

    Hernández-Becerra, Natali; Tapia-Torres, Yunuen; Beltrán-Paz, Ofelia; Blaz, Jazmín; Souza, Valeria

    2016-01-01

    Background Global demand for food has led to increased land-use change, particularly in dry land ecosystems, which has caused several environmental problems due to the soil degradation. In the Cuatro Cienegas Basin (CCB), alfalfa production irrigated by flooding impacts strongly on the soil. Methods In order to analyze the effect of such agricultural land-use change on soil nutrient dynamics and soil bacterial community composition, this work examined an agricultural gradient within the CCB which was comprised of a native desert grassland, a plot currently cultivated with alfalfa and a former agricultural field that had been abandoned for over 30 years. For each site, we analyzed C, N and P dynamic fractions, the activity of the enzyme phosphatase and the bacterial composition obtained using 16S rRNA clone libraries. Results The results showed that the cultivated site presented a greater availability of water and dissolved organic carbon, these conditions promoted mineralization processes mediated by heterotrophic microorganisms, while the abandoned land was limited by water and dissolved organic nitrogen. The low amount of dissolved organic matter promoted nitrification, which is mediated by autotrophic microorganisms. The microbial N immobilization process and specific phosphatase activity were both favored in the native grassland. As expected, differences in bacterial taxonomical composition were observed among sites. The abandoned site exhibited similar compositions than native grassland, while the cultivated site differed. Discussion The results suggest that the transformation of native grassland into agricultural land induces drastic changes in soil nutrient dynamics as well as in the bacterial community. However, with the absence of agricultural practices, some of the soil characteristics analyzed slowly recovers their natural state. PMID:27602304

  17. [Ecological design of ditches in agricultural land consolidation: a review].

    PubMed

    Ye, Yan-mei; Wu, Ci-fang; Yu, Jing

    2011-07-01

    Agricultural land consolidation is a strong disturbance to farmland ecosystem. In traditional agricultural land consolidation, the main technical and economic indices for the design of ditches include the convenience for production and transportation, the allocation of water resources, and the improvement of water utilization, but short of ecological consideration, which has already affected the spread of agricultural species, caused the degradation of bio-habitat, and given obvious negative effects on the bio-competition mechanism, buffering and compensation capacity, and insect pests-resistance of farmland ecosystem. This paper summarized the functions of ecological ditches, and introduced the recent progress on the formations and construction designs of ecological ditches, tests of ecological engineering methods, and technologies and methods of choosing correct ecological materials. It was suggested that the future research should focus on the different functional requirements and specifications for different roads and ditches, and the characteristics and habitats of all the organisms and animals should be considered by the designers and constructors. Moreover, a comprehensive design which meets the ecological demands for the ditches' formations, structures, and regulatory sizes should be taken into account to solve the most of the problems listed above. PMID:22007475

  18. Biofuels production on abandoned and marginal agriculture lands in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Lobell, D. B.; Field, C. B.

    2008-12-01

    The location of biofuels agriculture land is a critical parameter for predicting biomass feedstock yields, land use emissions, and optimal plant varieties. Using abandoned and marginal agriculture lands to grow feedstocks for second-generation biofuels could provide a sustainable alternative to conventional biofuels production. These marginal areas are in a state of flux in the Midwestern U.S. where a 2007 surge in biofuels has contributed to competing land use demands including conventional biofuels crops, food agriculture, and conservation. Here we apply land use and agriculture data to consider the extent and productivity of abandoned and marginal lands in the Midwestern U.S. for production of second-generation biofuels.

  19. Stream Sediment Sources in Midwest Agricultural Basins with Land Retirement along Channel.

    PubMed

    Williamson, T N; Christensen, V G; Richardson, W B; Frey, J W; Gellis, A C; Kieta, K A; Fitzpatrick, F A

    2014-09-01

    Documenting the effects of agricultural land retirement on stream-sediment sources is critical to identifying management practices that improve water quality and aquatic habitat. Particularly difficult to quantify are the effects from conservation easements that commonly are discontinuous along channelized streams and ditches throughout the agricultural midwestern United States. Our hypotheses were that sediment from cropland, retired land, stream banks, and roads would be discernible using isotopic and elemental concentrations and that source contributions would vary with land retirement distribution along tributaries of West Fork Beaver Creek in Minnesota. Channel-bed and suspended sediment were sampled at nine locations and compared with local source samples by using linear discriminant analysis and a four-source mixing model that evaluated seven tracers: In, P, total C, Be, Tl, Th, and Ti. The proportion of sediment sources differed significantly between suspended and channel-bed sediment. Retired land contributed to channel-bed sediment but was not discernible as a source of suspended sediment, suggesting that retired-land material was not mobilized during high-flow conditions. Stream banks were a large contributor to suspended sediment; however, the percentage of stream-bank sediment in the channel bed was lower in basins with more continuous retired land along the riparian corridor. Cropland sediments had the highest P concentrations; basins with the highest cropland-sediment contributions also had the highest P concentrations. Along stream reaches with retired land, there was a lower proportion of cropland material in suspended sediment relative to sites that had almost no land retirement, indicating less movement of nutrients and sediment from cropland to the channel as a result of land retirement. PMID:25603248

  20. Modelling the effects of recent agricultural land use change on catchment flow and sediment generation

    NASA Astrophysics Data System (ADS)

    Escobar Ruiz, Veronica; Smith, Hugh; Blake, William

    2016-04-01

    Intensive agricultural practices can exacerbate runoff and soil erosion leading to detrimental impacts downstream. Physically-based models have previously been used to assess the impacts on flow and sediment transport in response to land use change, but there has been little investigation of the effect shorter-term changes linked to variations in the extent of cultivated land. The aim of this project is to quantify the impacts on flow generation and sediment transport of different catchment conditions related to both actual recent changes in agricultural land use as well as future change scenarios. To this end, a physically-based distributed hydrological model, SHETRAN was applied in the Blackwater catchment (12 km2) located in south-west England. Land cover was simulated on the basis of satellite-derived land cover maps (1990, 2000 and 2007) as well as a catchment-scale field survey (2011). Soils were represented in the model using five layers for five different soil types in which parameter values were varied in accordance with land use and literature values. Rainfall data (15 min) combined with monthly calculations of evapotranspiration using a simple temperature-based PE model were used to represent contemporary climatic conditions spanning 2010-2014. Calibration was undertaken for selected events during 2011 when land use information was concurrent with available flow and suspended sediment yield data. All land use simulations were then completed for the period 2010-2014 to enable the comparison of model outputs. This contribution will present preliminary results from these land use simulations alongside the effect of several future changes scenarios on catchment flow and sediment generation.

  1. Impacts of agricultural land use on biological integrity: A causal analysis

    USGS Publications Warehouse

    Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D.

    2011-01-01

    Agricultural land use has often been linked to nutrient enrichment, habitat degradation, hydrologic alteration, and loss of biotic integrity in streams. The U.S. Geological Survey's National Water Quality Assessment Program sampled 226 stream sites located in eight agriculture-dominated study units across the United States to investigate the geographic variability and causes of agricultural impacts on stream biotic integrity. In this analysis we used structural equation modeling (SEM) to develop a national and set of regional causal models linking agricultural land use to measured instream conditions. We then examined the direct, indirect, and total effects of agriculture on biotic integrity as it acted through multiple water quality and habitat pathways. In our nation-wide model, cropland affected benthic communities by both altering structural habitats and by imposing water quality-related stresses. Regionspecific modeling demonstrated that geographic context altered the relative importance of causal pathways through which agricultural activities affected stream biotic integrity. Cropland had strong negative total effects on the invertebrate community in the national, Midwest, and Western models, but a very weak effect in the Eastern Coastal Plain model. In theWestern Arid and Eastern Coastal Plain study regions, cropland impacts were transmitted primarily through dissolved water quality contaminants, but in the Midwestern region, they were transmitted primarily through particulate components of water quality. Habitat effects were important in the Western Arid model, but negligible in the Midwest and Eastern Coastal Plain models. The relative effects of riparian forested wetlands also varied regionally, having positive effects on biotic integrity in the Eastern Coastal Plain andWestern Arid region models, but no statistically significant effect in the Midwest. These differences in response to cropland and riparian cover suggest that best management practices and

  2. Combining agricultural practices key to elevating soil microbial activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of soil health is an emerging topic in applied ecology, specifically as it pertains to the agriculture, which utilizes approximately 40% of earth’s land. However, rigorous quantification of soil health and the services provided by soil organisms to support agriculture production (e.g., n...

  3. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  4. Standards and guidelines for the land application of mechanical pulp mill sludge to agricultural land

    SciTech Connect

    1999-11-01

    These standards and guidelines are intended for operations involving the application of pulp mill sludge on agricultural land in Alberta, with the rationale that the applied material is a good soil amendment. The objectives of the standards and guidelines are to ensure that the land application is conducted in a manner that protects human health and the environment, and to guide sludge generators and users by outlining the basis for application reviews and approval requirements pursuant to the Environmental Protection and Enhancement Act. The standards and guidelines cover such matters as definitions, sludge assessments, record keeping and reporting, soil suitability, and land application methods and procedures. The document also includes a summary of research studies and related reports on the benefits of sludge utilization on land.

  5. Draft standards and guidelines for the land application of mechanical pulp mill sludge to agricultural land

    SciTech Connect

    1998-09-01

    Mechanical pulp mill sludge consists primarily of water, wood fiber, biomass, and residual chemicals. Research has shown that application of sludge to land improves the nutrient status and physical properties of soil, resulting in enhanced plant growth. This report presents guidelines for operations involving the application of mechanical pulp mill sludge on agricultural land in Alberta. It lists the regulatory requirements for sludge generators, restrictions on land application, and record-keeping and reporting requirements; provides general information on sludge properties and parameters of interest, suitability of receiving soils and areas, and sludge application rates and frequencies. Research studies conducted in Alberta on the benefits of land application of mechanical pulp mill sludge are also summarized.

  6. Agricultural Development, Land Change, and Livelihoods in Tanzania's Kilombero Valley

    NASA Astrophysics Data System (ADS)

    Connors, John Patrick

    The Kilombero Valley lies at the intersection of a network of protected areas that cross Tanzania. The wetlands and woodlands of the Valley, as well as the forest of surrounding mountains are abundant in biodiversity and are considered to be critical areas for conservation. This area, however, is also the home to more than a half million people, primarily poor smallholder farmers. In an effort to support the livelihoods and food security of these farmers and the larger Tanzanian population, the country has recently targeted a series of programs to increase agricultural production in the Kilombero Valley and elsewhere in the country. Bridging concepts and methods from land change science, political ecology, and sustainable livelihoods, I present an integrated assessment of the linkages between development and conservation efforts in the Kilombero Valley and the implications for food security. This dissertation uses three empirical studies to understand the process of development in the Kilombero Valley and to link the priorities and perceptions of conservation and development efforts to the material outcomes in food security and land change. The first paper of this dissertation examines the changes in land use in the Kilombero Valley between 1997 and 2014 following the privatization of agriculture and the expansion of Tanzania's Kilimo Kwanza program. Remote sensing analysis reveals a two-fold increase in agricultural area during this short time, largely at the expense of forest. Protected areas in some parts of the Valley appear to be deterring deforestation, but rapid agricultural growth, particularly surrounding a commercial rice plantation, has led to loss of extant forest and sustained habitat fragmentation. The second paper focuses examines livelihood strategies in the Valley and claims regarding the role of agrobiodiversity in food security. The results of household survey reveal no difference or lower food security among households that diversify their

  7. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  8. Establishing sustainable GHG inventory systems in African countries for Agriculture and Land Use, Land-use Change and Forestry (LULUCF)

    NASA Astrophysics Data System (ADS)

    Wirth, T. C.; Troxler, T.

    2015-12-01

    As signatories to the United Nations Framework Convention on Climate Change (UNFCCC), developing countries are required to produce greenhouse gas (GHG) inventories every two years. For many developing countries, including many of those in Africa, this is a significant challenge as it requires establishing a robust and sustainable GHG inventory system. In order to help support these efforts, the U.S. Environmental Protection Agency (EPA) has worked in collaboration with the UNFCCC to assist African countries in establishing sustainable GHG inventory systems and generating high-quality inventories on a regular basis. The sectors we have focused on for these GHG inventory capacity building efforts in Africa are Agriculture and Land Use, Land-use Change and Forestry (LULUCF) as these tend to represent a significant portion of their GHG emissions profile and the data requirements and methodologies are often more complex than for other sectors. To support these efforts, the U.S. EPA has provided technical assistance in understanding the methods in the IPCC Guidelines, assembling activity data and emission factors, including developing land-use maps for representing a country's land base, and implementing the calculations. EPA has also supported development of various tools such as a Template Workbook that helps the country build the institutional arrangement and strong documentation that are necessary for generating GHG inventories on a regular basis, as well as performing other procedures as identified by IPCC Good Practice Guidance such as quality assurance/quality control, key category analysis and archiving. Another tool used in these projects and helps country's implement the methods from the IPCC Guidelines for the Agriculture and LULUCF sectors is the Agriculture and Land Use (ALU) tool. This tool helps countries assemble the activity data and emission factors, including supporting the import of GIS maps, and applying the equations from the IPPC Guidelines to

  9. Earthworm Preference Bioassays to Evaluate Land Management Practices.

    PubMed

    Bouldin, Jennifer L; Klasky, John W P; Green, V Steven

    2016-06-01

    Earthworm preference tests, especially in soil-dosed exposures, can be an informative tool for assessing land management practices. Agricultural management intended to increase crop yield and improve soil sustainability includes physical manipulation of topsoil through conventional tillage, reduced or no-tillage, and/or winter cover crops. Soil amendments include the addition of inorganic nitrogen or organic nitrogen derived from soil amendments including biosolids from sewage treatment plants, poultry litter, or locally available industrial effluent. This study used 48-h Eisenia fetida preference tests to assess impacts of agricultural management practices on soil macrofauna. Although in laboratory-dosed exposures, E. fetida preferred biosolid-dosed soils (80 %-95 % recovery) over control soils, the same results were not found with field soils receiving biosolid amendments (33 % recovery). Poultry litter-amended soils (68 % recovery) were preferred over control soils. No differences were measured between tilled fields and controls, and earthworms preferred control soils over those from fields with no-tillage and cover crops. Soil assessments through laboratory exposures such as these allows science-based agricultural management decisions to maintain or improve soil health. PMID:26873732

  10. Comparison of some quality properties of soils around land-mined areas and adjacent agricultural fields.

    PubMed

    Ozturkmen, Ali Rıza; Kavdir, Yasemin

    2012-03-01

    When agricultural lands are no longer used for agriculture and allowed to recover its natural vegetation, soil organic carbon can accumulate in the soil. Measurements of soil organic carbon and aggregate stability changes under various forms of land use are needed for the development of sustainable systems. Therefore, comparison of soil samples taken from both agricultural and nearby area close to land-mined fields where no agricultural practices have been done since 1956 can be a good approach to evaluate the effects of tillage and agriculture on soil quality. The objective of this study was to compare tillage, cropping and no tillage effects on some soil-quality parameters. Four different locations along the Turkey-Syria border were selected to determine effects of tillage and cropping on soil quality. Each location was evaluated separately because of different soil type and treatments. Comparisons were made between non-tilled and non-cropped fallow since 1956 and adjacent restricted lands that were tilled about every 2 years but not planted (T) or adjacent lands tilled and planted with wheat and lentil (P). Three samples were taken from the depths of 0-20 and 20-40 cm each site. Soil organic carbon (SOC), pH ,electrical conductivity, water soluble Ca(++), Mg(++), CO₃⁻² and HCO₃⁻, extractable potassium (K(+)) and sodium (Na(+)), soil texture, ammonium (NH₄⁺-N) and nitrate (NO(3)-N), extractable phosphorous and soil aggregate stability were determined. While the SOC contents of continuous tillage without cropping and continuous tillage and cropping were 2.2 and 11.6 g kg(-1), respectively, it was 30 g kg(-1) in non-tilled and non-planted site. Tillage of soil without the input of any plant material resulted in loss of carbon from the soil in all sites. Soil extractable NO(3)-N contents of non-tilled and non-cropped sites were greatest among all treatments. Agricultural practices increased phosphorus and potassium contents in the soil profile. P(2)O(5

  11. Multiscale Land surface feedbacks within agricultural and urban systems

    NASA Astrophysics Data System (ADS)

    Niyogi, D.

    2012-12-01

    This presentation will first discuss the interplay between agricultural landscapes and regional hydroclimatology with particular emphasis on the US Corn Belt. Results and experiences from studies underway as part of a multistate project (Making Climate Information Useful 2 Usable- U2U) will be summarized. The presentation will also highlight experiences regarding the different challenges in developing the regional assessment and guidance regarding sustainable futures. Study results will also be compared with findings from other geographical regions where agriculture - climate linkages are stretching the limits of sustainable water use. A vulnerability framework that can be considered for such agriculture - climate - water links will also be presented. The second issue the presentation will discuss relates to the urban land surface feedbacks and efforts underway to guide efforts related to greening as well as regional landuse planning. The complex links between city structures, urban layouts, and regional climate will be synthesized and the framework regarding a decision support system that is being developed will be presented. Salient points of the modeling efforts, data challenges, and the need for linking multiple disciplines will be presented with special focus on droughts and the need for considering complex multiscale coupled interactions within the analysis.

  12. Development and application of fuzzy indicator for assessment of agricultural land resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With ever increasing demands on agriculture, it is essential that we be able to adequately evaluate agriculture land resources. Recently, efforts have been undertaken to develop methods and tools for the purpose of evaluating agricultural land resources. However, to be successful, assessments need...

  13. Building factorial regression models to explain and predict nitrate concentrations in groundwater under agricultural land

    NASA Astrophysics Data System (ADS)

    Stigter, T. Y.; Ribeiro, L.; Dill, A. M. M. Carvalho

    2008-07-01

    SummaryFactorial regression models, based on correspondence analysis, are built to explain the high nitrate concentrations in groundwater beneath an agricultural area in the south of Portugal, exceeding 300 mg/l, as a function of chemical variables, electrical conductivity (EC), land use and hydrogeological setting. Two important advantages of the proposed methodology are that qualitative parameters can be involved in the regression analysis and that multicollinearity is avoided. Regression is performed on eigenvectors extracted from the data similarity matrix, the first of which clearly reveals the impact of agricultural practices and hydrogeological setting on the groundwater chemistry of the study area. Significant correlation exists between response variable NO3- and explanatory variables Ca 2+, Cl -, SO42-, depth to water, aquifer media and land use. Substituting Cl - by the EC results in the most accurate regression model for nitrate, when disregarding the four largest outliers (model A). When built solely on land use and hydrogeological setting, the regression model (model B) is less accurate but more interesting from a practical viewpoint, as it is based on easily obtainable data and can be used to predict nitrate concentrations in groundwater in other areas with similar conditions. This is particularly useful for conservative contaminants, where risk and vulnerability assessment methods, based on assumed rather than established correlations, generally produce erroneous results. Another purpose of the models can be to predict the future evolution of nitrate concentrations under influence of changes in land use or fertilization practices, which occur in compliance with policies such as the Nitrates Directive. Model B predicts a 40% decrease in nitrate concentrations in groundwater of the study area, when horticulture is replaced by other land use with much lower fertilization and irrigation rates.

  14. Delineating the Erosion-Potential of Agricultural Lands Within the Le Sueur Watershed Using Remotely Sensed Data and GIS

    NASA Astrophysics Data System (ADS)

    Maalim, F. K.; Melesse, A. M.; Thomas, A. R.; Belmont, P.; Azmera, L.; Jennings, C. E.

    2008-12-01

    The Le Sueur River, southern Minnesota, is the largest contributor of sediment to the Minnesota River, which is impaired for turbidity under Section 303d of the Clean Water Act. The agricultural fields within the Le Sueur River watershed were studied to assess their erosion potential and hence their contribution to the sediment loading problem in the study area. Soil type, slope, land cover and on-field land management practices were used to classify agricultural lands to determine their susceptibility to erosion. Field studies were conducted to determine the prevalent conditions that would be considered when analyzing the protection against erosion. Land cover types were identified and their geographic locations were noted for detection on sequential satellite images and mapping purposes. Land management practices were also identified in the field and their locations geo-registered. The slope profile of the Le Sueur watershed was derived from a Digital Elevation Model, while the seasonal land-cover was extrapolated from the land-cover ground-referencing exercise using satellite imagery. Soil maps of the different counties that constitute the Le Sueur watershed were also acquired and the spatial data was then integrated in a GIS to generate the erosion potential map. Plant physiology and morphology are important when developing a criterion for classifying land-cover types depending on the protection they confer against erosion. Land management practices influence the susceptibility of agricultural fields to erosion and these together with soil type and slope are useful erosion related properties on which to base the classification of the agricultural fields. Erosion potential is a dynamic aspect of agricultural lands and is a function of the combined prevalent factors. The set of factors used to study this aspect of agricultural lands were all very important but are by no means the only factors that should be considered when conducting such a study. The results

  15. The potential and sustainability of agricultural land use in a changing ecosystem in southern Greenland

    NASA Astrophysics Data System (ADS)

    Hunziker, Matthias; Caviezel, Chatrina; Kuhn, Nikolaus J.

    2015-04-01

    Southern Greenland currently experiences an increase in summer temperatures and a prolonged growing season (Masson-Delmotte et al. 2012), resulting in an increased potential regarding agricultural land use. Subsequently, the agricultural sector is expected to grow. Thereby, a higher hay production and grazing capacity is pursued by applying more efficient farming practices (Greenland Agriculture Advisory Board 2009). However, agricultural potential at borderline ecotones is not only influenced by factors like temperature and growing season but also by other ecologic parameters. In addition, the intensification of land use in the fragile boreal - tundra border ecotone has various environmental impacts (Perren et al. 2012; Normand et al. 2013). Already the Norse settlers practiced animal husbandry in southern Greenland between 986-1450 AD. Several authors mention the unadapted land use as main reason for the demise of the Norse in Greenland, as grazing pressure exceeded the resilience of the landscape and pasture economy failed (Fredskild 1988; Perren et al. 2012). During the field work in summer 2014, we compared the pedologic properties of already used hay fields, grazed land, birch woodland and barren, unused land around Igaliku (South Greenland), in order to estimate the potential and the sustainability of the land use in southern Greenland. Beside physical soil properties, nutrient condition of the different land use types, the shrub woodland and barren areas was analyzed. The results of the study show that the most suitable areas for intensive agricultural activity are mostly occupied. Further on, the fields, which were used by the Norse, seem to be the most productive sites nowadays. Less productive hay fields are characterized by a higher coarse fraction, leading to a reduced ability to store water and to an unfavorable nutrient status. An intensification of the agricultural land use by applying fertilizer would lead to an increased environmental impact

  16. A conceptual framework of agricultural land use planning with BMP for integrated watershed management.

    PubMed

    Qi, Honghai; Altinakar, Mustafa S

    2011-01-01

    Land use planning is an important element of the integrated watershed management approach. It not only influences the environmental processes such as soil and stream bed erosion, sediment and nutrient concentrations in streams, quality of surface and ground waters in a watershed, but also affects social and economic development in that region. Although its importance in achieving sustainable development has long been recognized, a land use planning methodology based on a systems approach involving realistic computational modeling and meta-heuristic optimization is still lacking in the current practice of integrated watershed management. The present study proposes a new approach which attempts to combine computational modeling of upland watershed processes, fluvial processes and modern heuristic optimization techniques to address the water-land use interrelationship in its full complexity. The best land use allocation is decided by a multi-objective function that minimizes sediment yields and nutrient concentrations as well as the total operation/implementation cost, while the water quality and the production benefits from agricultural exploitation are maximized. The proposed optimization strategy considers also the preferences of land owners. The runoff model AnnAGNPS (developed by USDA), and the channel network model CCHE1D (developed by NCCHE), are linked together to simulate sediment/pollutant transport process at watershed scale based on any assigned land use combination. The greedy randomized adaptive Tabu search heuristic is used to flip the land use options for finding an optimum combination of land use allocations. The approach is demonstrated by applying it to a demonstrative case study involving USDA Goodwin Creek experimental watershed located in northern Mississippi. The results show the improvement of the tradeoff between benefits and costs for the watershed, after implementing the proposed optimal land use planning. PMID:20863609

  17. Economic and Physical Modeling of Land Use in GCAM 3.0 and an Application to Agricultural Productivity, Land, and Terrestrial Carbon

    SciTech Connect

    Wise, Marshall A.; Calvin, Katherine V.; Kyle, G. Page; Luckow, Patrick; Edmonds, James A.

    2014-09-01

    We explore the impact of changes in agricultural productivity on global land use and terrestrial carbon using the new agriculture and land use modeling approach developed for Global Change Assessment Model (GCAM) version 3.0. This approach models economic land use decisions with regional, physical, and technological specificity while maintaining economic and physical integration with the rest of the GCAM model. Physical land characteristics and quantities are tracked explicitly, and crop production practices are modeled discretely to facilitate coupling with physical models. Economic land allocation is modeled with non-linear functions in a market equilibrium rather than through a constrained optimization. In this paper, we explore three scenarios of future agriculture productivity in all regions of the globe over this century, ranging from a high growth to a zero growth level. The higher productivity growth scenario leads to lower crop prices, increased production of crops in developing nations, preservation of global forested lands and lower terrestrial carbon emissions. The scenario with no productivity improvement results in higher crop prices, an expansion of crop production in the developed world, loss of forested lands globally, and higher terrestrial carbon emissions.

  18. Science and agriculture policy at Land-Grant Institutions.

    PubMed

    Westendorf, M L; Zimbelman, R G; Pray, C E

    1995-06-01

    United States Department of Agriculture (USDA) funding of science and education at Land-Grant College institutions is in transition. The traditional "science pipeline" model linking basic science funding with the application of technology is in question as some policymakers dispute the premise that non-directed science results in benefits to society. Historically, research at USDA and Land-Grant institutions is much more directed than that funded by the National Science Foundation (NSF), National Institutes of Health (NIH), or Department of Energy (DOE). Nevertheless, there are calls for change at the USDA as well. An approach that both the Congress and the Executive branch are taking seeks to direct research dollars according to predetermined goals. This is being emphasized in part due to budget pressures and may force the system to struggle maintaining funding in constant dollars. Deficit cutters are first considering cutting "earmarked grants" for research and facilities at USDA and Land Grant Institutions. Savings in these categories may help to support modest increases in formula funding and competitive grants. Earmarked grants for research and facilities at the Cooperative State Research Service (CSRS) for Fiscal Year 1993 were approximately 26% of total appropriations and distributed to well over 100 specific line items. This level has increased from approximately 15% of CSRS appropriations in 1985. At the same time formula funding has remained static and competitive grants, although increasing, are below authorized levels. As state and federal budgets face pressure and as concerns from consumer and environmental groups are encountered, balancing the percentage of research dollars devoted to research intended to increase production efficiency and the percentage devoted to meeting concerns about food safety, pesticides, water quality, sustainability, animal welfare, and so on will be a challenge. Linking research priorities with producer and consumer needs

  19. Cost of areal reduction of gulf hypoxia through agricultural practice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major share of the area of hypoxic growth in the Northern Gulf of Mexico has been attributed to nutrient run-off from agricultural fields, but no estimate is available for the cost of reducing Gulf hypoxic area using agricultural conservation practices. We apply the Soil and Water Assessment Tool ...

  20. Impacts of Land-Cover Change on Suspended Sediment Transport in Two Agricultural Watersheds

    USGS Publications Warehouse

    Schilling, K.E.; Isenhart, T.M.; Palmer, J.A.; Wolter, C.F.; Spooner, J.

    2011-01-01

    Suspended sediment is a major water quality problem, yet few monitoring studies have been of sufficient scale and duration to assess the effectiveness of land-use change or conservation practice implementation at a watershed scale. Daily discharge and suspended sediment export from two 5,000-ha watersheds in central Iowa were monitored over a 10-year period (water years 1996-2005). In Walnut Creek watershed, a large portion of land was converted from row crop to native prairie, whereas in Squaw Creek land use remained predominantly row crop agriculture. Suspended sediment loads were similar in both watersheds, exhibiting flashy behavior typical of incised channels. Modeling suggested that expected total soil erosion in Walnut Creek should have been reduced 46% relative to Squaw Creek due to changes in land use, yet measured suspended sediment loads showed no significant differences. Stream mapping indicated that Walnut Creek had three times more eroding streambank lengths than did Squaw Creek suggesting that streambank erosion dominated sediment sources in Walnut Creek and sheet and rill sources dominated sediment sources in Squaw Creek. Our results demonstrate that an accounting of all sources of sediment erosion and delivery is needed to characterize sediment reductions in watershed projects combined with long-term, intensive monitoring and modeling to account for possible lag times in the manifestation of the benefits of conservation practices on water quality. ?? 2011 American Water Resources Association.

  1. Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation

    PubMed Central

    Durán, América P.; Duffy, James P.; Gaston, Kevin J.

    2014-01-01

    Agroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America. Comparing different prioritization approaches, we also assess how the spatial overlap of priority areas changes. The exclusion of agricultural lands was detrimental to biodiversity representation, indicating that priority areas for agricultural production overlap with areas of relatively high occurrence of species. By contrast, exclusion of agricultural lands benefits representation of carbon storage within priority areas, as lands of high value for agriculture and carbon storage overlap little. When agricultural lands were included and equally weighted with biodiversity and carbon storage, a balanced representation resulted. Our findings suggest that with appropriate management, South American agroecosystems can significantly contribute to biodiversity conservation. PMID:25143040

  2. Agricultural land cover mapping in the context of a geographically referenced digital information system. [Carroll, Macon, and Gentry Counties, Missouri

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.

    1982-01-01

    The introduction of soil map information to the land cover mapping process can improve discrimination of land cover types and reduce confusion among crop types that may be caused by soil-specific management practices and background reflectance characteristics. Multiple dates of LANDSAT MSS digital were analyzed for three study areas in northern Missouri to produce cover types for major agricultural land cover classes. Digital data bases were then developed by adding ancillary data such as digitized soil and transportation network information to the LANDSAT-derived cover type map. Procedures were developed to manipulate the data base parameters to extract information applicable to user requirements. An agricultural information system combining such data can be used to determine the productive capacity of land to grow crops, fertilizer needs, chemical weed control rates, irrigation suitability, and trafficability of soil for planting.

  3. Determination of the Impact of Urbanization on Agricultural Lands using Multi-temporal Satellite Sensor Images

    NASA Astrophysics Data System (ADS)

    Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2015-12-01

    Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.

  4. Agriculture land suitability analysis evaluation based multi criteria and GIS approach

    NASA Astrophysics Data System (ADS)

    Bedawi Ahmed, Goma; Shariff, Abdul Rashid M.; Balasundram, Siva Kumar; Abdullah, Ahmad Fikri bin

    2016-06-01

    Land suitability evaluation (LSE) is a valuable tool for land use planning in major countries of the world as well as in Malaysia. However, previous LSE studies have been conducted with the use of biophysical and ecological datasets for the design of equally important socio-economic variables. Therefore, this research has been conducted at the sub national level to estimate suitable agricultural land for rubber crops in Seremban, Malaysia by application of physical variables in combination with widely employed biophysical and ecological variables. The objective of this study has been to provide an up-to date GIS-based agricultural land suitability evaluation (ALSE) for determining suitable agricultural land for Rubber crops in Malaysia. Biophysical and ecological factors were assumed to influence agricultural land use were assembled and the weights of their respective contributions to land suitability for agricultural uses were assessed using an analytic hierarchical process. The result of this study found Senawang, Mambau, Sandakan and Rantau as the most suitable areas for cultivating Rubber; whereas, Nilai and Labu are moderately suitable for growing rubber. Lenggeng, Mantin and Pantai are not suitable for growing rubber as the study foresaw potential environmental degradation of these locations from agricultural intensification. While this study could be useful in assessing the potential agricultural yields and potential environmental degradation in the study area, it could also help to estimate the potential conversion of agricultural land to non-agricultural uses.

  5. Water quality monitoring of an agricultural watershed lake: the effectiveness of agricultural best management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beasley Lake is an oxbow lake located in the Lower Mississippi Alluvial Plain (the Delta), a region of intensive agricultural activity. Due to intensive row-crop agricultural practices, the 915 ha watershed was sediment impaired when monitoring began in 1995 and was a candidate to assess the effect...

  6. An Analysis of Agricultural Mechanics Safety Practices in Agricultural Science Laboratories.

    ERIC Educational Resources Information Center

    Swan, Michael K.

    North Dakota secondary agricultural mechanics instructors were surveyed regarding instructional methods and materials, safety practices, and equipment used in the agricultural mechanics laboratory. Usable responses were received from 69 of 89 instructors via self-administered mailed questionnaires. Findings were consistent with results of similar…

  7. Ecologically asynchronous agricultural practice erodes sustainability of the Loess Plateau of China.

    PubMed

    Wang, Tianming; Wu, Jianguo; Kou, Xiaojun; Oliver, Chadwick; Mou, Pu; Ge, Jianping

    2010-06-01

    Sustainability of agricultural landscapes depends largely on land-use practices. As one of the most productive and widespread agricultural soils, loess is often deep and easily eroded, posing grand challenges for environmental sustainability around the world. One prime example is the Loess Plateau of China, which has been cultivated for more than 7500 years. Based on long-term data sets, this study demonstrates that the dominant agricultural practice, winter wheat cropping, continues to be the primary driver for the massive soil erosion and landscape modifications on the Loess Plateau. This traditional farming system is asynchronous with the dynamic rhythm between natural vegetation and climate in the region. In particular, the long summer fallow period for winter wheat fields is concurrent with the heavy-rainstorm season, which greatly accelerates soil erosion. Our finding indicates that common land-use practices that have lasted for thousands of years in China are not environmentally sustainable. Agriculture in this region has relied primarily on the continuous "mining" of the soil for the past several thousand years but does not have a one-thousand-year future because of myriad environmental and socioeconomic factors associated with soil erosion. To contain soil erosion and promote sustainability on the Loess Plateau, therefore, a change in the agricultural regime is needed to make sure that current and future agricultural practices follow the vegetation-climate rhythm. In addition, to achieve environmental, economic, and social sustainability in this region, multifunctional land-use planning is required to increase landscape diversity and functions (e.g., proper arrangement of crop fields, orchards, and protected areas). PMID:20597295

  8. 25 CFR 162.202 - How will tribal laws be enforced on agricultural land?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... regulating activities on agricultural land, including tribal laws relating to land use, environmental... restrictions on employee testimony set forth at 43 CFR Part 2, Subpart E; (ii) Constitute a waiver of the... 25 Indians 1 2010-04-01 2010-04-01 false How will tribal laws be enforced on agricultural...

  9. Relations between retired agricultural land, water quality, and aquatic-community health, Minnesota River Basin

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; McLees, James M.; Niemela, Scott L.

    2012-01-01

    The relative importance of agricultural land retirement on water quality and aquatic-community health was investigated in the Minnesota River Basin. Eighty-two sites, with drainage areas ranging from 4.3 to 2200 km2, were examined for nutrient concentrations, measures of aquatic-community health (e.g., fish index of biotic integrity [IBI] scores), and environmental factors (e.g., drainage area and amount of agricultural land retirement). The relation of proximity of agricultural land retirement to the stream was determined by calculating the land retirement percent in various riparian zones. Spearman's rho results indicated that IBI score was not correlated to the percentage of agricultural land retirement at the basin scale (p = 0.070); however, IBI score was correlated to retired land percentage in the 50- to 400-m riparian zones surrounding the streams (p < 0.05), indicating that riparian agricultural land retirement may have more influence on aquatic-community health than does agricultural land retirement in upland areas. Multivariate analysis of covariance and analysis of covariance models indicated that other environmental factors (such as drainage area and lacustrine and palustrine features) commonly were correlated to aquatic-community health measures, as were in-stream factors (standard deviation of water depth and substrate type). These results indicate that although agricultural land retirement is significantly related to fish communities as measured by the IBI scores, a combination of basin, riparian, and in-stream factors act together to influence IBI scores.

  10. Effects of conservation practices on fishes within agricultural watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation practices have been regularly implemented within agricultural watersheds in the United States without documentation of their impacts. The goal of the ARS Conservation Effects Assessment Project Watershed Assessment Study is to quantify the effect of conservation practices within 14 agri...

  11. Land-use practices in Ouro Preto do Oeste, Rondonia, Brazil

    SciTech Connect

    Pedlowski, M.A.; Dale, V.H.

    1992-09-01

    Road development and colonization projects have brought about wide-scale deforestation in the Brazilian Amazon. The state of Rondonia, located in the western Amazon Basin, best exemplifies the problems related to land-use changes because it has the highest rates of deforestation in the Amazon Basin. In order to identify the main land-use practices in Rondonia, interviews with local farmers were carried out in the central part of Rondonia, in the PIC (Integrated Colonization Project) Ouro Preto do Oeste. This is the oldest colonization project in the state. The governmental colonization programs attracted migrants to the area through the construction of roads and infrastructure necessary for the colonists to occupy the land for agricultural practices. The interviews were done on lots of the PIC Ouro Preto and in PAD Urupa to define the background of the colonists, their land-use practices, their economic situation, and their relationships with governmental institutions.

  12. Understanding the drivers of agricultural land use change in south-central Senegal

    USGS Publications Warehouse

    Wood, E. C.; Tappan, G. Gray; Hadj, Amadou

    2004-01-01

    Described is (1) the land use and land cover changes that have taken place in the Department of Velingara, an area of tropical dry woodland in south-central Senegal, (2) the biophysical and socio-economic drivers of those changes with an emphasis on transition to agricultural use, and (3) an assessment of the likelihood of intensification of agriculture in the Department. Results indicate that land devoted to agriculture, either in active cultivation or short-term fallow, is increasing. There is little evidence of agricultural intensification in most of Velingara, with extensification coming largely at the cost of reduction in both upland woodlands and riparian forest.

  13. Muddy Water and American Agriculture: How to Best Control Sedimentation From Agricultural Land?

    NASA Astrophysics Data System (ADS)

    Lovejoy, Stephen B.; Lee, John Gary; Beasley, David B.

    1985-08-01

    The role of agricultural sediment in water quality is well documented. While numerous policies have been advocated and initiated, it still appears to be a significant problem. The present analysis concentrates on the outcome of several policy alternatives in terms of sediment delivery and project costs. These results are obtained by combining social science investigation of probable farmer behavior under a variety of scenarios with a hydrologic simulation model which predicts the sediment delivery with different land uses. This integration of social science behavioral research with the hydrologic response simulation model provides a framework to assess the environmental effectiveness of alternative policies aimed at reducing sedimentation. While the results presented here are preliminary, this approach seems to offer great promise as a tool for federal, state and local conservation agencies in their efforts to efficiently and effectively use their limited resources to reduce soil loss.

  14. Regional Climate Change Impact on Agricultural Land Use in West Africa

    NASA Astrophysics Data System (ADS)

    Ahmed, K. F.; Wang, G.; You, L.

    2014-12-01

    Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes

  15. Assessment of the Adoption of Sustainable Agriculture Practices: Implications for Agricultural Education.

    ERIC Educational Resources Information Center

    Alonge, Adewale Johnson; Martin, Robert A.

    1995-01-01

    Surveyed farmers (115 of 150) were very positive about the profitability and compatibility of sustainable agriculture, although certain practices elicited negative reactions. They wanted research and development directed toward maximizing profitability and compatibility to facilitate their adoption of these practices. (SK)

  16. Effects of urban sprawl on agricultural land: a case study of Kahramanmaraş, Turkey.

    PubMed

    Doygun, Hakan

    2009-11-01

    The main objective of this study is to quantify areal loss of olive groves due to urban sprawl of the city of Kahramanmaraş, Turkey. Spatial changes were analysed by interpreting the digitized data derived from a black-white monoscopic aerial photograph taken in 1985, panchromatic IKONOS image of 2000 and two pan-sharpened Quickbird images of 2004 and 2006. Data obtained revealed that the area of olive groves decreased by 25% from 460.55 ha in 1985 to 344.46 in 2006, while the number of parcels increased from 170 to 445. Of the total areal loss, 60% was due to building constructions, with the rest being due to clear-cut for new residential gardens composed of exotic plants, new buildings, or new roads. Rapid population growth, increased land prices due to urban expansion, and abandonment of agricultural practices to construction of multi-storey buildings were the main causes of the process that transformed the olive groves into urbanized areas. Results pointed to an urgent need to (1) revise the national and municipal land management practices, (2) balance the gap between the short- and long-term economic benefits that urban and community development plans ignore, and (3) monitor land-use changes periodically by using high resolution satellite images. PMID:18951136

  17. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods

    SciTech Connect

    Kyle, G. Page; Luckow, Patrick; Calvin, Katherine V.; Emanuel, William R.; Nathan, Mayda; Zhou, Yuyu

    2011-12-12

    This report presents the data processing methods used in the GCAM 3.0 agriculture and land use component, starting from all source data used, and detailing all calculations and assumptions made in generating the model inputs. The report starts with a brief introduction to modeling of agriculture and land use in GCAM 3.0, and then provides documentation of the data and methods used for generating the base-year dataset and future scenario parameters assumed in the model input files. Specifically, the report addresses primary commodity production, secondary (animal) commodity production, disposition of commodities, land allocation, land carbon contents, and land values.

  18. Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.

    NASA Astrophysics Data System (ADS)

    Khresat, Saeb

    2016-04-01

    Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for

  19. LandSoil model application for erosion management in sustainable agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Follain, Stéphane; Raclot, Damien; Le Bissonnais, Yves

    2016-04-01

    Soil erosion and land degradation can lead to irreversible changes and landscape degradation. In order to achieve the sustainability of agricultural landscapes, the land use scenarios might be developed and tested for their erosion mitigation effects. Despite the importance of the long-term scenarios (which are complicated by predictability of climate change in a small scale, its effect on change in soil properties and crops, and the societal behaviour of individual players), the management decision have to be applied already now. Therefore the short-term and medium term scenarios to achieve the most effective soil management and the least soil erosion footprint are necessary to develop. With increasing importance of individual large erosion events, the event-based models, considering soil properties and landscape structures appears to be suitable. The LandSoil model (Ciampalini et al., 2012) - a landscape evolution model operating at the field/small catchment scale, have been applied in order to analyse the effect of different soil erosion mitigation and connectivity management practices in two different Mediterranean catchments. In the soil erosion scenarios the proposed measures targeted soil erosion on field or on catchment scale, and the effect of different extreme events on soil redistribution was evaluated under different spatial designs. Anna Smetanová has received the support of the AgreenSkills fellowship (under grant agreement n°267196). R. Ciampalini, S. Follain, Y. Le Bissonnais, LandSoil: A model for analysing the impact of erosion on agricultural landscape evolution, Geomorphology, 175-176, 2012, 25-37.

  20. Classification and Mapping of Agricultural Land for National Water-Quality Assessment

    USGS Publications Warehouse

    Gilliom, Robert J.; Thelin, Gail P.

    1997-01-01

    Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at

  1. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  2. Watershed scale influence of pesticide reduction practices on pesticides and fishes within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Implementation of pesticide reduction practices to reduce pesticide usage within agricultural watersheds has the potential to reduce pesticide concentrations within agricultural streams. The watershed scale influence of pesticide reduction practices on pesticides and the biota within agricultural he...

  3. Effects of conservation practices on fishes, amphibians, and reptiles within agricultural streams and wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation practices have been traditionally used to manage soil and water resources to improve agricultural production, and now include methods to reduce the environmental impacts of agriculture on streams and wetlands. These practices have been regularly implemented within agricultural watershed...

  4. Risk characterisation and management of sewage sludge on agricultural land--implications for the environment and the food-chain.

    PubMed

    Ross, A D; Lawrie, R A; Keneally, J P; Whatmuff, M S

    1992-08-01

    The disposal of sewage wastes may cause severe environmental problems as was graphically demonstrated with pollution on Sydney's ocean beaches in recent years. Sewage sludges contain valuable plant nutrients and organic matter which can improve the fertility and structure of the soil. However, human parasites, pathogenic micro-organisms and chemicals capable of causing soil contamination, phytotoxicity and residues in animal products may also be present. Although sewage sludge is frequently spread on agricultural land overseas, it is not common in Australia and most states do not have specific regulations to minimise risk and promote good practice. A sludge-to-land program began in the Sydney region in 1990. It follows guidelines written by NSW Agriculture to encourage beneficial agricultural use of sludge by adoption of environmentally sustainable practices. This article describes the major risks to the food-chain and the environment, which may be associated with applying sewage sludge to agricultural land. It summarises how the risks are managed, and where further research data are required. PMID:1530551

  5. Implications of agricultural land use change to ecosystem services in the Ganges delta.

    PubMed

    Islam, G M Tarekul; Islam, A K M Saiful; Shopan, Ahsan Azhar; Rahman, Md Munsur; Lázár, Attila N; Mukhopadhyay, Anirban

    2015-09-15

    Ecosystems provide the basis for human civilization and natural capital for green economy and sustainable development. Ecosystem services may range from crops, fish, freshwater to those that are harder to see such as erosion regulation, carbon sequestration, and pest control. Land use changes have been identified as the main sources of coastal and marine pollution in Bangladesh. This paper explores the temporal variation of agricultural land use change and its implications with ecosystem services in the Ganges delta. With time agricultural lands have been decreased and wetlands have been increased at a very high rate mainly due to the growing popularity of saltwater shrimp farming. In a span of 28 years, the agricultural lands have been reduced by approximately 50%, while the wetlands have been increased by over 500%. A large portion (nearly 40%) of the study area is covered by the Sundarbans which remained almost constant which can be attributed to the strict regulatory intervention to preserve the Sundarbans. The settlement & others land use type has also been increased to nearly 5%. There is a gradual uptrend of shrimp and fish production in the study area. The findings suggest that there are significant linkages between agricultural land use change and ecosystem services in the Ganges delta in Bangladesh. The continuous decline of agricultural land (due to salinization) and an increase of wetland have been attributed to the conversion of agricultural land into shrimp farming in the study area. Such land use change requires significant capital, therefore, only investors and wealthier land owners can get the higher profit from the land conversion while the poor people is left with the environmental consequences that affect their long-term lives and livelihood. An environmental management plan is proposed for sustainable land use in the Ganges delta in Bangladesh. PMID:25516384

  6. 12 CFR 614.4070 - Loans and chartered territory-Farm Credit Banks, agricultural credit banks, Federal land bank...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., agricultural credit banks, Federal land bank associations, Federal land credit associations, production credit associations, and agricultural credit associations. 614.4070 Section 614.4070 Banks and Banking FARM CREDIT... chartered territory—Farm Credit Banks, agricultural credit banks, Federal land bank associations,...

  7. 12 CFR 614.4070 - Loans and chartered territory-Farm Credit Banks, agricultural credit banks, Federal land bank...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., agricultural credit banks, Federal land bank associations, Federal land credit associations, production credit associations, and agricultural credit associations. 614.4070 Section 614.4070 Banks and Banking FARM CREDIT... chartered territory—Farm Credit Banks, agricultural credit banks, Federal land bank associations,...

  8. 25 CFR 166.100 - What special tribal policies will we apply to permitting on Indian agricultural lands?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... on Indian agricultural lands? 166.100 Section 166.100 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF... What special tribal policies will we apply to permitting on Indian agricultural lands? (a) When... Indian agricultural lands, the BIA will: (1) Waive the general prohibition against Indian...

  9. 25 CFR 166.100 - What special tribal policies will we apply to permitting on Indian agricultural lands?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... on Indian agricultural lands? 166.100 Section 166.100 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF... What special tribal policies will we apply to permitting on Indian agricultural lands? (a) When... Indian agricultural lands, the BIA will: (1) Waive the general prohibition against Indian...

  10. 25 CFR 166.100 - What special tribal policies will we apply to permitting on Indian agricultural lands?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... on Indian agricultural lands? 166.100 Section 166.100 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF... What special tribal policies will we apply to permitting on Indian agricultural lands? (a) When... Indian agricultural lands, the BIA will: (1) Waive the general prohibition against Indian...

  11. 25 CFR 166.100 - What special tribal policies will we apply to permitting on Indian agricultural lands?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... on Indian agricultural lands? 166.100 Section 166.100 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF... What special tribal policies will we apply to permitting on Indian agricultural lands? (a) When... Indian agricultural lands, the BIA will: (1) Waive the general prohibition against Indian...

  12. 25 CFR 166.100 - What special tribal policies will we apply to permitting on Indian agricultural lands?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... on Indian agricultural lands? 166.100 Section 166.100 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF... What special tribal policies will we apply to permitting on Indian agricultural lands? (a) When... Indian agricultural lands, the BIA will: (1) Waive the general prohibition against Indian...

  13. Knowledge Gained from Good Agricultural Practices Courses for Iowa Growers

    ERIC Educational Resources Information Center

    Shaw, Angela; Strohbehn, Catherine; Naeve, Linda; Domoto, Paul; Wilson, Lester

    2015-01-01

    Good Agricultural Practices (GAP) educational courses provide produce growers with the fundamental information for producing and processing safe produce. To determine the effectiveness of the current 7-hour GAP course provided in Iowa, growers were surveyed before and 7-14 days after the course to determine changes in knowledge and opinions.…

  14. Factors Influencing Practical Training Quality in Iranian Agricultural Higher Education

    ERIC Educational Resources Information Center

    Mojarradi, Gholamreza; Karamidehkordi, Esmail

    2016-01-01

    This paper presents an analysis of the factors influencing the practical training quality of agricultural higher education programmes from the senior students' perspective. The study was conducted in two public universities located in the north-west of Iran using a cross-sectional survey and structured interviews with a randomised sample of 254…

  15. The Meaning of Practices: Farmers' Conceptions in Agricultural Development Strategies

    ERIC Educational Resources Information Center

    Mathieu, Anne

    2004-01-01

    Agricultural development programs often produce unexpected results. This can be attributed to the fact that the target-farmers already have their own knowledge and competencies which, in turn, determine their practices. In order to be adopted, an innovation has first to be discussed, and then appropriated by a local group of farmers in their…

  16. Transformative optimisation of agricultural land use to meet future food demands.

    PubMed

    Koh, Lian Pin; Koellner, Thomas; Ghazoul, Jaboury

    2013-01-01

    The human population is expected to reach ∼9 billion by 2050. The ensuing demands for water, food and energy would intensify land-use conflicts and exacerbate environmental impacts. Therefore we urgently need to reconcile our growing consumptive needs with environmental protection. Here, we explore the potential of a land-use optimisation strategy to increase global agricultural production on two major groups of crops: cereals and oilseeds. We implemented a spatially-explicit computer simulation model across 173 countries based on the following algorithm: on any cropland, always produce the most productive crop given all other crops currently being produced locally and the site-specific biophysical, economic and technological constraints to production. Globally, this strategy resulted in net increases in annual production of cereal and oilseed crops from 1.9 billion to 2.9 billion tons (46%), and from 427 million to 481 million tons (13%), respectively, without any change in total land area harvested for cereals or oilseeds. This thought experiment demonstrates that, in theory, more optimal use of existing farmlands could help meet future crop demands. In practice there might be cultural, social and institutional barriers that limit the full realisation of this theoretical potential. Nevertheless, these constraints have to be weighed against the consequences of not producing enough food, particularly in regions already facing food shortages. PMID:24255807

  17. Estimating Agricultural Land Use Change in Karamoja, NE. Uganda Using Very High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Nakalembe, C. L.

    2013-12-01

    Land use information is useful for deriving biophysical variables for effective planning and management of natural resources. Land use information is also needed to understand negative environmental impacts of land use while maintaining economic and social benefits. Recent maps of land cover and land use have been generated for Africa at the continental scale from coarse resolution data (e.g. MODIS, Spot Vegetation, MERIS, and Landsat). In these map products, croplands and rangelands are generally poorly represented, particularly in semi-arid regions like Karamoja. Products derived from coarse resolution data also fail at mapping subsistence croplands and are limited in their use for extraction of land-cover specific temporal profiles for agricultural monitoring in the study area (Fritz, See, & Rembold, 2010). Given the subsistence nature of agriculture, most fields in Karamoja are very small that care not discernible from other land uses in coarse resolution data and data products such as FAO Africover2000. product derived from 30m Landsat data is one such product. There is a high level of disagreement and large errors of omission and omission due to the coarse resolution of the data used to derive the product. In addition population growth and policy changes in the region have resulted in a shift to agro-pastoralism and systematic expansion of cropland area since 2000. This research will produce an updated agricultural land use map for Karamoja. The land cover map will be used to estimate agricultural land use change in the region and as a filter to extract agricultural land use specific temporal profiles specific to agriculture to compare to crop statistics.

  18. Colleges of Agriculture at the Land Grant Universities. A Profile.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Board on Agriculture.

    The colleges of agriculture are confronting significant challenges to their future due to the changing role of farming in the United States and the corresponding changes in the interests of U.S. citizens in agriculture, i.e., the food, fiber, and natural resource complex. This publication is the first of two volumes by the Committee on the Future…

  19. Carbon sequestration in the agricultural lands of the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The problem climate change presents to Earth and its inhabitants is increasingly being accepted and clarified by the scientific community. In agriculture, the challenges of climate change include adaptive management to cope with the changing climate, and mitigation strategies to decrease agriculture...

  20. The effect of changes in agricultural practices on the density of Dermacentor reticulatus ticks.

    PubMed

    Mierzejewska, Ewa J; Alsarraf, Mohammed; Behnke, Jerzy M; Bajer, Anna

    2015-07-30

    The impact of agricultural practices/ activities on the environment has been falling in many areas of Europe due to the widespread exodus of inhabitants from rural areas. The associated abandonment of agricultural lands has enabled a wide range of wild animals to prosper in the countryside, including birds, ungulates and large carnivores. One consequence has been the increase in ticks and associated tick-borne diseases which now constitute a greater threat for public health than earlier. The aim of the present study was to compare tick densities in different habitats (pasture, meadow, fallow land, post-fire areas) to assess the impact of different agricultural practices on tick densities in vicinities close to human habitation. Between September 2011 and June 2014, 2985 Dermacentor reticulatus ticks were collected by conventional dragging, in the Mazowieckie (Mazovia) and Warmińsko-Mazurskie (Masuria) regions of Poland. In each region, 3 study sites were selected, each situated near surface water sources (i.e., ponds or canals). At each site, three neighboring habitats of surface area 150-600 m(2) were dragged: one on a cattle/horse pasture; the second on meadow; the third on fallow land (abandoned field or meadow), at least twice during each spring and autumn. Additionally, four post-fire areas (one in 2013 and three in 2014) were identified in the Mazowieckie region, and dragging was conducted there in spring and autumn, including in each case a 'control area' comprising intact unburned fallow land situated in close vicinity to the burned areas. Eight hundred D. reticulatus ticks were collected and the densities were compared by multifactorial ANOVA. The highest tick densities were recorded on the fallow lands, and the lowest - on the grazed pastures. Tick densities were up to 10 × times higher on the control sites compared to neighboring post-fire sites. PMID:26073110

  1. Agricultural land use and water quality in the upper St. Joseph River basin, Michigan

    USGS Publications Warehouse

    Cummings, T. Ray

    1978-01-01

    Land use in the upper St. Joseph River basin of south-central Michigan is primarily agricultural. In the 144-square-mile area, the chemical and physical characteristics of water are determined by the climate and soils, as well as by land conservation practices. Municipal waste discharges affect water quality at some locations, as do the larger lakes and ponds. Data indicate that mean discharge from the basin is 135 cubic feet per second. About half this flow is contributed to the St. Joseph River by three major tributaries: Beebe Creek (36 cubic feet per second); Sand Creek (24 cubic feet per second); and Soap Creek (13 cubic feet per second). Runoff from 21 drainage areas delineated for the investigation ranged from 0.22 to 4.07 cubic feet per second per square mile; both the higher and lower values are largely the result of naturally occurring inter- and intrabasin transfers of water. Suspended-sediment concentrations are low throughout the basin, rarely exceeding 100 milligrams per liter. Mean concentrations at four daily sampling stations on the major tributaries and on the St. Joseph River ranged from 9.7 milligrams per liter to 38 milligrams per liter. The maximum sediment yield was 182 pounds per acre per year. Deposition of sediment in five of the 21 areas resulted in a net loss of sediment transported, and thus ?negative? yields. Nitrogen and phosphorus concentrations do not vary greatly from site to site. Mean concentrations of total nitrogen at downstream sites on Beebe, Sand, and Soap Creeks, and on the St. Joseph River ranged from 1.5 to 1.8 milligrams per liter. About 90 percent of all nitrogen, and 66 percent of all phosphorus, is transported in solution. Land used principally for agriculture has a mean total nitrogen yield of 4.9 pounds per acre per year and a mean total phosphorus yield of 0.13 pounds per year. A comparison of total nitrogen and total phosphorus yields with type of agricultural use showed few relationships; nitrogen yield, however

  2. Inventory of wetlands and agricultural land cover in the upper Sevier River Basin, Utah

    NASA Technical Reports Server (NTRS)

    Jaynes, R. A.; Clark, L. D., Jr.; Landgraf, K. F. (Principal Investigator)

    1981-01-01

    The use of color infrared aerial photography in the mapping of agricultural land use and wetlands in the Sevier River Basin of south central utah is described. The efficiency and cost effectiveness of utilizing LANDSAT multispectral scanner digital data to augment photographic interpretations are discussed. Transparent overlays for 27 quadrangles showing delineations of wetlands and agricultural land cover were produced. A table summarizing the acreage represented by each class on each quadrangle overlay is provided.

  3. The impact of land management in agricultural catchments on groundwater pollution levels

    NASA Astrophysics Data System (ADS)

    Matysik, Magdalena

    2014-10-01

    Agricultural activity results in water pollution from nitrogen and phosphorus compounds. Increased concentrations of nitrogen compounds pose a threat to animal and human health. The purpose of this study was to determine the impact of agriculture in a catchment basin on the level of groundwater pollution from biogenic compounds. Spatial analysis of the land cover was conducted using a GIS and was based on data from the Corine Land Cover databases.

  4. Responses of forest cover and agricultural land changes to local and national drivers of land development in the Miombo Woodlands of western Tanzania

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Mustard, J. F.; Melillo, J. M.

    2013-12-01

    Among dry tropical forest ecosystems globally, the Miombo Woodlands of western Tanzania have experienced extensive forest cover changes in the past two decades that remain poorly understood at regional (100s km2) spatial scales. Recent studies have associated large areas of forest loss in the Miombo with agricultural activities, such as increased tobacco cultivation since the 1990s. However, the dynamics of forest regrowth and net changes in forest cover have not been well characterized. Landscape phenology is complex due to high seasonal and inter-annual variability in vegetation productivity, forest structure, smallholder land use practices, and fire dynamics. Improved characterization of forest and agricultural land cover phenology is needed to use remote sensing more effectively for studying land changes in the Miombo. This project assesses patterns of forest loss and regrowth, and analyzes their relationships to climate, landscape biophysical factors, and agricultural policies and activities in Tabora Province in western Tanzania, from 1990-2013. We develop new satellite remote sensing methods for mapping dry tropical forest and non-forest land cover, based on differences in their seasonal phenology patterns in Landsat imagery quantified using spectral mixture analysis (SMA). Using z-score metrics on SMA fraction images, we find that forest regions have significantly lower sums of substrate and non-photosynthetic vegetation pixel fractions than non-forest regions. We validate our algorithm with field data from 2012-2013 and show that it provides reasonable estimates of forest and non-forest land cover in analyses of imagery from single or multiple dates. Our main objectives are to evaluate whether patterns of forest loss and regrowth show spatial relationships with localized land use practices and environmental factors, or if land changes reflect influences of national to global-scale drivers. For local drivers, we examine if areas of forest loss and regrowth

  5. Assessment on the rates and potentials of soil organic carbon sequestration in agricultural lands in Japan using a process-based model and spatially explicit land-use change inventories - Part 2: Future potentials

    NASA Astrophysics Data System (ADS)

    Yagasaki, Y.; Shirato, Y.

    2014-08-01

    Future potentials of the sequestration of soil organic carbon (SOC) in agricultural lands in Japan were estimated using a simulation system we recently developed to simulate SOC stock change at country-scale under varying land-use change, climate, soil, and agricultural practices, in a spatially explicit manner. Simulation was run from 1970 to 2006 with historical inventories, and subsequently to 2020 with future scenarios of agricultural activity comprised of various agricultural policy targets advocated by the Japanese government. Furthermore, the simulation was run subsequently until 2100 while forcing no temporal changes in land-use and agricultural activity to investigate duration and course of SOC stock change at country scale. A scenario with an increased rate of organic carbon input to agricultural fields by intensified crop rotation in combination with the suppression of conversion of agricultural lands to other land-use types was found to have a greater reduction of CO2 emission by enhanced soil carbon sequestration, but only under a circumstance in which the converted agricultural lands will become settlements that were considered to have a relatively lower rate of organic carbon input. The size of relative reduction of CO2 emission in this scenario was comparable to that in another contrasting scenario (business-as-usual scenario of agricultural activity) in which a relatively lower rate of organic matter input to agricultural fields was assumed in combination with an increased rate of conversion of the agricultural fields to unmanaged grasslands through abandonment. Our simulation experiment clearly demonstrated that net-net-based accounting on SOC stock change, defined as the differences between the emissions and removals during the commitment period and the emissions and removals during a previous period (base year or base period of Kyoto Protocol), can be largely influenced by variations in future climate. Whereas baseline-based accounting, defined

  6. Quantify Effects of Integrated Land Management on Water Quality in Agricultural Landscape in South Fork Watershed, Iowa River

    NASA Astrophysics Data System (ADS)

    Ha, M.; Wu, M. M.

    2014-12-01

    Sustainable biofuel feedstock production — environmental sustainability and economic sustainability — may be achieved by using a multi-faceted approach. This study focuses on quantifying the water sustainability of an integrated landscaping strategy, by which current land use and land management, cropping system, agricultural Best Management Practices (BMPs), and economics play equal roles. The strategy was applied to the South Fork watershed, IA, including the tributaries of Tipton and Beaver Creeks, which expand to 800-km2 drainage areas. The watershed is an agricultural dominant area covered with row-crops production. On the basis of profitability, switchgrass was chosen as a replacement for row crops in low-productivity land. Areas for harvesting agricultural residue were selected on the basis of soil conservation principals. Double cropping with a cover crop was established to further reduce soil loss. Vegetation buffer strips were in place at fields and in riparian areas for water quality control, resource conservation, and eco service improvement. The Soil and Water Assessment Tool (SWAT) was applied to evaluate source reduction under various management schemes and land use changes. SWAT modeling incorporated 10-yr meteorological information, soil data, land slope classification, land use, four-year crop-rotation cycle, and management operations. Tile drain and pothole parameters were modeled to assess the fate and transport of nutrients. The influence of landscape management and cropping systems on nitrogen and phosphorus loadings, erosion process, and hydrological performance at the sub-watershed scale was analyzed and key factors identified. Results suggest strongly that incorporating agricultural BMPs and conservation strategies into integrated landscape management for certain energy crops in row-crop production regions can be economical and environmentally sustainable.

  7. Agricultural conservation planning framework: 1. Developing multi-practice watershed planning scenarios and assessing nutrient reduction potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We show that spatial data on soils, land use, and high-resolution topography, combined with knowledge of conservation practice effectiveness, can be leveraged to identify and assess alternatives to reduce nutrient discharge from small (HUC12) agricultural watersheds. Databases comprising soil attrib...

  8. Effects of Governance on Availability of Land for Agriculture and Conservation in Brazil.

    PubMed

    Sparovek, Gerd; Barretto, Alberto Giaroli de Oliveira Pereira; Matsumoto, Marcelo; Berndes, Göran

    2015-09-01

    The 2012 revision of the Brazilian Forest Act changed the relative importance of private and public governance for nature conservation and agricultural production. We present a spatially explicit land-use model for Brazilian agricultural production and nature conservation that considers the spatial distribution of agricultural land suitability, technological and management options, legal command, and control frameworks including the Atlantic Forest Law, the revised Forest Act, and the Amazonian land-titling, "Terra Legal," and also market-driven land use regulations. The model is used to analyze land use allocation under three scenarios with varying priorities among agricultural production and environmental protection objectives. In all scenarios, the legal command and control frameworks were the most important determinants of conservation outcomes, protecting at least 80% of the existing natural vegetation. Situations where such frameworks are not expected to be effective can be identified and targeted for additional conservation (beyond legal requirements) through voluntary actions or self-regulation in response to markets. All scenarios allow for a substantial increase in crop production, using an area 1.5-2.7 times the current cropland area, with much of new cropland occurring on current pastureland. Current public arrangements that promote conservation can, in conjunction with voluntary schemes on private lands where conversion to agriculture is favored, provide important additional nature conservation without conflicting with national agricultural production objectives. PMID:26241204

  9. Effects of agricultural practices on organic matter degradation in ditches

    PubMed Central

    Hunting, Ellard R.; Vonk, J. Arie; Musters, C.J.M.; Kraak, Michiel H.S.; Vijver, Martina G.

    2016-01-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems. PMID:26892243

  10. Effects of agricultural practices on organic matter degradation in ditches.

    PubMed

    Hunting, Ellard R; Vonk, J Arie; Musters, C J M; Kraak, Michiel H S; Vijver, Martina G

    2016-01-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems. PMID:26892243

  11. Maize production and land degradation: a Portuguese agriculture field case study

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Pato, João V.; Moreira, Pedro M.; Valério, Luís M.; Guilherme, Rosa; Casau, Fernando J.; Santos, Daniela; Keizer, Jacob J.; Ferreira, António J. D.

    2016-04-01

    While food security is a main challenge faced by human kind, intensive agriculture often leads to soil degradation which then can threaten productivity. Maize is one of the most important crops across the world, with 869 million tons produced worldwide in 2012/2013 (IGC 2015), of which 929.5 thousand tons in Portugal (INE 2014). In Portugal, maize is sown in April/May and harvest occurs generally in October. Conventional maize production requires high inputs of water and fertilizers to achieve higher yields. As Portuguese farmers are typically rather old (on average, 63 years) and typically have a low education level (INE 2014), sustainability of their land management practises is often not a principal concern. This could explain why, in 2009, only 4% of the Portuguese temporary crops were under no-tillage, why only 8% of the farmers performed soil analyses in the previous three years, and why many soils have a low organic matter content (INE 2014). Nonetheless, sustainable land management practices are generally accepted to be the key to reducing agricultural soil degradation, preventing water pollution, and assuring long-term crop production objectives and food security. Sustainable land management should therefore not only be a concern for policy makers but also for farmers, since land degradation will have negative repercussions on the productivity, thus, on their economical income. This paper aims to assess the impact of maize production on soil properties. The study focusses on an 8 ha maize field located in central Portugal, with a Mediterranean climate on a gently sloping terrain (<3%) and with a soil classified as Eutric Fluvisol. On the field, several experiments were carried out with different maize varieties as well as with different fertilizers (solid, liquid and both). Centre pivot irrigation was largely used. Data is available from 2003, and concerns crop yield, fertilization and irrigation practices, as well as soil properties assessed through

  12. Agricultural policy effects on land cover and land use over 30 years in Tartous, Syria, as seen in Landsat imagery

    NASA Astrophysics Data System (ADS)

    Ibrahim, Waad Youssef; Batzli, Sam; Menzel, W. Paul

    2014-01-01

    This study pursues a connection between agricultural policy and the changes in land use and land cover detected with remote sensing satellite data. One part of the study analyzes the Syrian agricultural policy, wherein, certain regional targets have been selected for annual citrus or greenhouse development along with tools of enforcement, support, and monitoring. The second part of the study investigates the utility of remote sensing (RS) and geographical information systems (GIS) to map land use land cover changes (LULC-Cs) in a time series of images from Landsat Thematic Mapper (TM) from 1987, 1998, 2006, and 2010 and Enhanced Thematic Mapper plus (ETM+) from 1999 to 2002. Several multispectral band analyses have been performed to determine the most suitable band combinations for isolating greenhouses and citrus farms. Supervised classification with maximum likelihood classifier has been used to produce precise land use land cover map. This research demonstrates that spatial relationship between LULC-Cs and agricultural policies can be determined through a science-based GIS/RS application to a time series of satellite images taken at the same time of the implemented policy.

  13. Relating management practices and nutrient export in agricultural watersheds of the United States

    USGS Publications Warehouse

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2012-01-01

    Relations between riverine export (load) of total nitrogen (N) and total phosphorus (P) from 133 large agricultural watersheds in the United States and factors affecting nutrient transport were evaluated using empirical regression models. After controlling for anthropogenic inputs and other landscape factors affecting nutrient transport-such as runoff, precipitation, slope, number of reservoirs, irrigated area, and area with subsurface tile drains-the relations between export and the area in the Conservation Reserve Program (CRP) (N) and conservation tillage (P) were positive. Additional interaction terms indicated that the relations between export and the area in conservation tillage (N) and the CRP (P) progressed from being clearly positive when soil erodibility was low or moderate, to being close to zero when soil erodibility was higher, to possibly being slightly negative only at the 90th to 95th percentile of soil erodibility values. Possible explanations for the increase in nutrient export with increased area in management practices include greater transport of soluble nutrients from areas in conservation tillage; lagged response of stream quality to implementation of management practices because of nitrogen transport in groundwater, time for vegetative cover to mature, and/or prior accumulation of P in soils; or limitations in the management practice and stream monitoring data sets. If lags are occurring, current nutrient export from agricultural watersheds may still be reflecting the influence of agricultural land-use practices that were in place before the implementation of these management practices.

  14. Agriculture, Food Production, and Rural Land Use in Advanced Placement® Human Geography

    ERIC Educational Resources Information Center

    Moseley, William G.; Watson, Nancy H.

    2016-01-01

    ''Agriculture, Food, and Rural Land Use" constitutes a major part of the AP Human Geography course outline. This article explores challenging topics to teach, emerging research trends in agricultural geography, and sample teaching approaches for concretizing abstract topics. It addresses content identified as "essential knowledge"…

  15. Restoring abandoned agricultural lands in arid environments: the tradeoffs between water availability and exotic species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods On a global basis, the area of abandoned agricultural land is growing. Modification of the environment for agriculture often results in degradation of the original ecosystem processes and a loss of the biotic and abiotic legacies necessary for recovery of the ecosystem. ...

  16. Advanced multispectral sensor requirements for remote sensing of agriculture and land cover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern agricultural and land cover monitoring programs require frequent data acquisitions and increased spectral resolution to acquire a greater number of parameters in a more accurate manner. Whereas hyperspectral sensors could provide the required information, agriculture's biggest need is for fr...

  17. As Land-Grant Law Turns 150, Students Crowd into Agriculture Colleges

    ERIC Educational Resources Information Center

    Biemiller, Lawrence

    2012-01-01

    On July 2, 1862, Abraham Lincoln signed Justin Morrill's second agriculture-school bill into law. Along with another measure he championed, in 1890, it created a system of land-grant colleges that rooted agriculture firmly in university research and helped democratize American higher education, creating institutions not for the sons and daughters…

  18. Does climatic variability influence agricultural land prices under differing uses? The Texas High Plains case

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Texas High Plains faces projections of increasing temperature and declining precipitation in the future on account of its semi-arid climate. This research evaluated the impact of climatic variability on agricultural land prices under different land uses in the Texas High Plains, employing the Ri...

  19. 25 CFR 162.202 - How will tribal laws be enforced on agricultural land?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... restrictions on employee testimony set forth at 43 CFR Part 2, Subpart E; (ii) Constitute a waiver of the...? 162.202 Section 162.202 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER... agricultural land? (a) Unless prohibited by federal law, we will recognize and comply with tribal...

  20. 25 CFR 162.202 - How will tribal laws be enforced on agricultural land?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... restrictions on employee testimony set forth at 43 CFR Part 2, Subpart E; (ii) Constitute a waiver of the...? 162.202 Section 162.202 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER... agricultural land? (a) Unless prohibited by federal law, we will recognize and comply with tribal...

  1. 25 CFR 162.202 - How will tribal laws be enforced on agricultural land?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... restrictions on employee testimony set forth at 43 CFR Part 2, Subpart E; (ii) Constitute a waiver of the....202 Section 162.202 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES... agricultural land? (a) Unless prohibited by federal law, we will recognize and comply with tribal...

  2. 25 CFR 162.202 - How will tribal laws be enforced on agricultural land?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... restrictions on employee testimony set forth at 43 CFR Part 2, Subpart E; (ii) Constitute a waiver of the...? 162.202 Section 162.202 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER... agricultural land? (a) Unless prohibited by federal law, we will recognize and comply with tribal...

  3. Barriers to the Adoption of Sustainable Agriculture on Rented Land: An Examination of Contesting Social Fields

    ERIC Educational Resources Information Center

    Carolan, Michael S.

    2005-01-01

    While over half of the cropland in the United States is rented, interest in land tenancy within sociological circles has been sporadic at best. In light of the prevalence of rented land in agriculture--particularly in the Midwest--it is vital that further research be conducted to investigate the effect that the rental relationship has upon the…

  4. Land cover, land use, and climate change impacts on agriculture in southern Vietnam

    NASA Astrophysics Data System (ADS)

    Kontgis, Caitlin

    Global environmental change is rapidly changing the surface of the Earth in varied and irrevocable ways. Across the world, land cover and land use have been altered to accommodate the needs of expanding populations, and climate change has required plant, animal, and human communities to adapt to novel climates. These changes have created unprecedented new ecosystems that affect the planet in ways that are not fully understood and difficult to predict. Of utmost concern is food security, and whether agro-ecosystems will adapt and respond to widespread changes so that growing global populations can be sustained. To understand how one staple food crop, rice, responds to global environmental change in southern Vietnam, this dissertation aims to accomplish three main tasks: (1) quantify the rate and form of urban and peri-urban expansion onto cropland using satellite imagery and demographic data, (2) track changes to annual rice paddy harvests using time series satellite data, and (3) model the potential effects of climate change on rice paddies by incorporating farmer interview data into a crop systems model. The results of these analyses show that the footprint of Ho Chi Minh City grew nearly five times between 1990 and 2012. Mismatches between urban development and population growth suggest that peri-urbanization is driven by supply-side investment, and that much of this form of land expansion has occurred near major transit routes. In the nearby Mekong River Delta, triple-cropped rice paddy area doubled between 2000 and 2010, from one-third to two-thirds of rice fields, while paddy area expanded by about 10%. These results illustrate the intensification of farming practices since Vietnam liberalized its economy, yet it is not clear whether such practices are environmentally sustainable long-term. Although triple-cropped paddy fields have expanded, future overall production is estimated to decline without the effects of CO2 fertilization. Temperatures are anticipated

  5. Determining agricultural land use scenarios in a mesoscale Bavarian watershed for modelling future water quality

    NASA Astrophysics Data System (ADS)

    Mehdi, B. B.; Ludwig, R.; Lehner, B.

    2012-06-01

    Land use scenarios are of primordial importance when implementing a hydrological model for the purpose of determining the future quality of water in a watershed. This paper provides the background for researching potential agricultural land use changes that may take place in a mesoscale watershed, for water quality research, and describes why studying the farm scale is important. An on-going study in Bavaria examining the local drivers of change in land use is described.

  6. Potential impact of climate and socioeconomic changes on future agricultural land use in West Africa

    NASA Astrophysics Data System (ADS)

    Farzan Ahmed, Kazi; Wang, Guiling; You, Liangzhi; Yu, Miao

    2016-02-01

    Agriculture is a key component of anthropogenic land use and land cover changes that influence regional climate. Meanwhile, in addition to socioeconomic drivers, climate is another important factor shaping agricultural land use. In this study, we compare the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa using a prototype land use projection (LandPro) algorithm. The algorithm is based on a balance between food supply and demand, and accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. The impact of human decision-making on land use is explicitly considered through multiple "what-if" scenarios. In the application to West Africa, future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. Without agricultural intensification, the climate-induced decrease in crop yield together with future increases in food demand is found to cause a significant increase in cropland areas at the expense of forest and grassland by the mid-century. The increase in agricultural land use is primarily climate-driven in the western part of West Africa and socioeconomically driven in the eastern part. Analysis of results from multiple scenarios of crop area allocation suggests that human adaptation characterized by science-informed decision-making can potentially minimize future land use changes in many parts of the region.

  7. Land use and land management effects on soil organic carbon stock in Mediterranean agricultural areas (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    INTRODUCTION Soils play a key role in the carbon geochemical cycle. Agriculture contributes to carbon sequestration through photosynthesis and the incorporation of carbon into carbohydrates. Soil management is one of the best tools for climate change mitigation. Small increases or decreases in soil carbon content due to changes in land use or management practices, may result in a significant net exchange of carbon between the soil carbon pool and the atmosphere. In the last decades arable crops (AC) have been transformed into olive grove cultivations (OG) or vineyards (V) in Mediterranean areas. A field study was conducted to determine long-term effects of land use change (LUC) (AC by OG and V) on soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification in Calcic-Chromic Luvisols (LVcc/cr) in Mediterranean conditions. MATERIAL AND METHODS An unirrigated farm in Montilla-Moriles (Córdoba, Spain) cultivated under conventional tillage (animal power with lightweight reversible plows and non-mineral fertilization or pesticides) was selected for study in 1965. In 1966, the farm was divided into three plots with three different uses (AC, OG and V). The preliminary analyses were realized in 1965 for AC (AC1), and the second analyses were realized in 2011 for AC (AC2 - winter crop rotation with annual wheat and barley, receiving mineral fertilization or pesticides), OG (annual passes with disk harrow and cultivator in the spring, followed by a tine harrow in the summer receiving mineral fertilization and weed control with residual herbicides), and V (with three or five chisel passes a year from early spring to early autumn with mineral fertilization or pesticides.). In all cases (AC1, AC2, OG and V) were collected soil entire profiles. Soil properties determined were: soil particle size, bulk density, SOC, TN, C:N ratio, stocks and SRs. The statistical significance of the differences in the variables between land use practices was tested using the

  8. Change in agricultural land use constrains adaptation of national wildlife refuges to climate change

    USGS Publications Warehouse

    Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

    2015-01-01

    Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

  9. Changes in climate variability with reference to land quality and agriculture in Scotland.

    PubMed

    Brown, Iain; Castellazzi, Marie

    2015-06-01

    Classification and mapping of land capability represents an established format for summarising spatial information on land quality and land-use potential. By convention, this information incorporates bioclimatic constraints through the use of a long-term average. However, climate change means that land capability classification should also have a dynamic temporal component. Using an analysis based upon Land Capability for Agriculture in Scotland, it is shown that this dynamism not only involves the long-term average but also shorter term spatiotemporal patterns, particularly through changes in interannual variability. Interannual and interdecadal variations occur both in the likelihood of land being in prime condition (top three capability class divisions) and in class volatility from year to year. These changing patterns are most apparent in relation to the west-east climatic gradient which is mainly a function of precipitation regime and soil moisture. Analysis is also extended into the future using climate results for the 2050s from a weather generator which show a complex interaction between climate interannual variability and different soil types for land quality. In some locations, variability of land capability is more likely to decrease because the variable climatic constraints are relaxed and the dominant constraint becomes intrinsic soil properties. Elsewhere, climatic constraints will continue to be influential. Changing climate variability has important implications for land-use planning and agricultural management because it modifies local risk profiles in combination with the current trend towards agricultural intensification and specialisation. PMID:25099211

  10. Effects of land-management practices on sediment yields in northeastern Guilford County, North Carolina

    USGS Publications Warehouse

    Hill, C.L.

    1991-01-01

    Streamflow, precipitation, and suspended-sediment data were collected from two small agricultural basins in the Piedmont province of North Carolina. The data were used to determine the effects of land-management practices on sediment yield. One basin of 7.4 acres represents best land-management practices with strip cropping, crop rotation, contour farming, and grassed waterways. The other basin of 4.8 acres represents standard land-management practices with down-slope row orientation, unmaintained grassed waterways, and without crop rotation. Data collected during the 1985-87 water years were used to develop regression equations to describe the relation between suspended-sediment discharge and water discharge. Data sets consisting of suspended-sediment concentrations and corresponding instantaneous water-discharge data were developed. There were two data sets from each basin, one representing data collected during the growing season, May through September, and the other representing data collected during the nongrowing season, October through April. Four regression equations were developed, one for each data set, and were tested for goodness-of-fit by use of graphical analysis, influence diagnostics, significance tests, and residuals analysis. Following acceptance of the four equations, the slope of each individual line was tested to determine if season was a significant variable. Seasonally, the average sediment yields (2.7 tons per acre) from the basin having best land-management practices were only about one-seventh of those (20 tons per acre) from the basin having standard land-management practices. Comparison of annual sediment yields in the agricultural basins against the yield from a nearby forested basin, which represents a nearly undisturbed basin, indicates a 10- to 100-fold increase in sediment yields from the study basins. The forested basin sediment yield was 0.1 ton per acre in the 1987 water year. Sheet erosion, which represents soil moving from high

  11. Agricultural employers' hiring and safety practices for adolescent workers.

    PubMed

    Lee, B C; Westaby, J D; Chyou, P H; Purschwitz, M A

    2007-01-01

    The goal of the "Safety Training for Employers and Supervisors of Adolescent Farmworkers" initiative is to improve the occupational health and safety knowledge and practices of agricultural employers and supervisors responsible for employees, ages 14 to 17 years. Surveys were sent to members of the National Council of Agricultural Employers and the Washington Growers League to measure attitudes regarding adolescent employees, current hiring and training practices, and future intentions. More than half of the respondents hire adolescents. Two-thirds were male, nearly three-quarters of the respondents had college or post-graduate degrees, and more than half were 50 years or older. The majority of respondents had positive perceptions of adolescents in terms of dependability, helpfulness, and work ethic. Among those who currently hire young workers, the most common reasons were to provide a job for children of friends and family and because they can work part-time to fill a labor demand. Among those not hiring adolescents, the most common reason was concern about child labor regulations and associated tasks (e.g., paperwork, monitoring hours). Respondents use a variety of safety training resources, especially posters and safety meetings. For the future, they expect to need more handout materials and training videos. Study results provide insights into barriers to the employment of young workers and suggest methods by which agricultural safety specialists can best assist those employers and producers who are willing to hire adolescents into agricultural work settings. PMID:17370911

  12. What Drives Indirect Land Use Change? How Brazil's Agriculture Sector Influences Frontier Deforestation

    PubMed Central

    Richards, Peter

    2015-01-01

    From 2000-2005 high returns to soybeans set off an unprecedented expansion of agricultural production across Brazil. The expansion occurred concurrently to a sharp rise in deforestation, leading academics and policy makers to question the extent and means by which the growing agricultural sector was driving regional forest loss. In this article we consider and question the underlying drivers of indirect land use change, namely the potential impact of soybean expansion on beef prices and of land use displacement, via migration. We then present field level results documenting the displacement process in northern Mato Grosso and western Pará States of the Amazon. Our results question the extent to which tropical Amazon deforestation is attributable to land use displacement; however, we argue that the agricultural sector may drive deforestation through other channels, namely through regional land markets. PMID:26985080

  13. No evidence of increased fire risk due to agricultural land abandonment in Sardinia (Italy)

    NASA Astrophysics Data System (ADS)

    Ricotta, C.; Guglietta, D.; Migliozzi, A.

    2012-05-01

    Different land cover types are related to different levels of fire hazard through their vegetation structure and fuel load composition. Therefore, understanding the relationships between landscape changes and fire behavior is of crucial importance for developing adequate fire fighting and fire prevention strategies for a changing world. In the last decades the abandonment of agricultural lands and pastoral activities has been the major driver of landscape transformations in Mediterranean Europe. As agricultural land abandonment typically promotes an increase in plant biomass (fuel load), a number of authors argue that vegetation succession in abandoned fields and pastures is expected to increase fire hazard. In this short paper, based on 28 493 fires in Sardinia (Italy) in the period 2001-2010, we show that there is no evidence of increased probability of fire ignition in abandoned rural areas. To the contrary, in Sardinia the decreased human impact associated with agricultural land abandonment leads to a statistically significant decrease of fire ignition probability.

  14. Climate benefits of changes in agricultural practices in the context of heat wave mitigation

    NASA Astrophysics Data System (ADS)

    Davin, E.; Seneviratne, S. I.; Ciais, P.; Olioso, A.; Wang, T.

    2014-12-01

    About half of the terrestrial biosphere is under direct human influence through land management (i.e., agricultural areas and managed forests). Changing management practices is therefore a promising avenue for climate change mitigation. The mitigation potential arising from changes in land management practices has been mainly evaluated in terms of carbon storage and GHG emissions [2]. On the other hand, these practices can also influence climate by altering the physical properties of the land surface, but these effects have received less attention so far. Here we show that peak temperatures during heat heaves can be attenuated through cropland albedo management [2]. We first present observational evidence that a substantial summer albedo increase can be obtained by switching from conventional to no-till agriculture. Then, using a regional climate model, we investigate the biogeophysical effect of a full conversion to no-till management over Europe. The cooling effect owing to albedo increase under no-till farming appears to be strongly amplified during warm events. This is due to the low cloud cover during these events, thus leading to a more efficient radiative cooling from albedo change. This implies a strong potential of no-till farming to mitigate heat wave impacts. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect remains the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 degrees. These findings strongly suggest that the biogeophysical effect of management practices should be considered in the design of climate mitigation policies involving land management. References:[1] Smith, P. et al. (2014): Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel

  15. Formation of Land Use Order in Hamamatsu City under the Original Criteria of the Farm Land Exclusion from the Agricultural Promotion Area

    NASA Astrophysics Data System (ADS)

    Arita, Hiroyuki; Miyazawa, Shingo

    While zoning has been practiced to prevent sprawling development and to preserve collective farmland under the Agriculture Promotion Act, The Agricultural Promotion Area (APA) has been reduced in area by the action of the Farm Land Exclusion from the APA (EAPA) aiming at urban-uses. Since the EAPA has a great impact on the regional land use, appropriate criteria application techniques ought to be formulated at the transaction level. However, most local governments seem to have no strategic measure so far. Hamamatsu city, meanwhile, has introduced a unique standard upon which approval of the EAPA aptitude is based in 2003. Since the number of EAPA registration was relatively large in Hamamatsu city owing to the zone bordering on the line of land which a building has erected the officials' willingness to establish an objective standard was high. In this research, we verified the effect of the criteria application over the land use ordering, and made proposals for improvement of the present state through the examination of the EAPA criterion application of Hamamatsu city.

  16. Application of Landsat data to map and monitor agricultural land cover

    NASA Astrophysics Data System (ADS)

    Erdenee, B.; Tana, Gegen; Tateishi, Ryutaro

    2010-11-01

    Agriculture is one of the major economic sectors of Mongolia and the country's economy is very much dependent on the development of agricultural production. Being the rural and poorest conditions of Mongolia, 60-90% of its labor force employed in agriculture and agricultural sector has a prominent economic role. Mongolian agriculture has been successful in increasing food grains production in the past, guided by the goals of self-sufficiency in the country. The satellite imagery has been effectively utilized for classifying land cover types and detecting land cover conditions. Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. Objective of this study to monitor in the agricultural land cover changes in the Tov aimag, as there is important agricultural producing area in Mongolia. We have developed approaches to map and monitor land cover and land use change across in the Tov aimag using multi-spectral image data. In this study, maximum likelihood supervised classification was applied to Landsat TM and ETM images acquired in 1989 and 2000, respectively, to map cropland area cover changes in the Tov aimag of Mongolia. A supervised classification was carried out on the six reflective bands (bands 1-5 and band 7) for the two images individually with the aid of ground based agricultural monitoring data. Results were then tested using ground check data.

  17. Application of Landsat data to map and monitor agricultural land cover

    NASA Astrophysics Data System (ADS)

    Erdenee, B.; Tana, Gegen; Tateishi, Ryutaro

    2009-09-01

    Agriculture is one of the major economic sectors of Mongolia and the country's economy is very much dependent on the development of agricultural production. Being the rural and poorest conditions of Mongolia, 60-90% of its labor force employed in agriculture and agricultural sector has a prominent economic role. Mongolian agriculture has been successful in increasing food grains production in the past, guided by the goals of self-sufficiency in the country. The satellite imagery has been effectively utilized for classifying land cover types and detecting land cover conditions. Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. Objective of this study to monitor in the agricultural land cover changes in the Tov aimag, as there is important agricultural producing area in Mongolia. We have developed approaches to map and monitor land cover and land use change across in the Tov aimag using multi-spectral image data. In this study, maximum likelihood supervised classification was applied to Landsat TM and ETM images acquired in 1989 and 2000, respectively, to map cropland area cover changes in the Tov aimag of Mongolia. A supervised classification was carried out on the six reflective bands (bands 1-5 and band 7) for the two images individually with the aid of ground based agricultural monitoring data. Results were then tested using ground check data.

  18. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses

    PubMed Central

    Sayer, Jeffrey; Sunderland, Terry; Ghazoul, Jaboury; Pfund, Jean-Laurent; Sheil, Douglas; Meijaard, Erik; Venter, Michelle; Boedhihartono, Agni Klintuni; Day, Michael; Garcia, Claude; van Oosten, Cora; Buck, Louise E.

    2013-01-01

    “Landscape approaches” seek to provide tools and concepts for allocating and managing land to achieve social, economic, and environmental objectives in areas where agriculture, mining, and other productive land uses compete with environmental and biodiversity goals. Here we synthesize the current consensus on landscape approaches. This is based on published literature and a consensus-building process to define good practice and is validated by a survey of practitioners. We find the landscape approach has been refined in response to increasing societal concerns about environment and development tradeoffs. Notably, there has been a shift from conservation-orientated perspectives toward increasing integration of poverty alleviation goals. We provide 10 summary principles to support implementation of a landscape approach as it is currently interpreted. These principles emphasize adaptive management, stakeholder involvement, and multiple objectives. Various constraints are recognized, with institutional and governance concerns identified as the most severe obstacles to implementation. We discuss how these principles differ from more traditional sectoral and project-based approaches. Although no panacea, we see few alternatives that are likely to address landscape challenges more effectively than an approach circumscribed by the principles outlined here. PMID:23686581

  19. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  20. Phenological Metrics Extraction for Agricultural Land-use Types Using RapidEye and MODIS

    NASA Astrophysics Data System (ADS)

    Xu, Xingmei; Doktor, Daniel; Conrad, Christopher

    2016-04-01

    Crop phenology involves the various agricultural events, such as planting, emergence, flowering, development of fruit and harvest. These phenological stages of a crop contain essential information for practical agricultural management, crop productivity estimation, investigations of crop-weather relationships, and also play an important role in improving agricultural land-use classification. In this study, we used MODIS and RapidEye images to extract phenological metrics in central Germany between 2010 and 2014. The Best Index Slope Extraction algorithm was used to remove undesirable data noise from Normalized Difference Vegetation Index (NDVI) time series of both satellite data before fast Fourier transformation was applied. Metrics optimization for phenology of major crops in the study area (winter wheat, winter barley, winter oilseed rape and sugar beet) and validation were performed with intensive ground observations from the German Weather Service (2010-2014) and our own measurements of BBCH code (Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und CHemische Industrie) (in 2014). We found that the dates with maximum NDVI have a close link to the heading stage of cereals (RMSE = 9.48 days for MODIS and RMSE = 13.55 days for RapidEye), and the dates of local half maximum during senescence period of winter crops was strongly related to ripeness stage (BBCH: 87) (RMSE = 8.87 days for MODIS and RMSE = 9.62 days for RapidEye). The root-mean-square errors (RMSE) of derived green up dates for both winter and summer crops were larger than 2 weeks, which was caused by limited number of good quality images during the winter season. Comparison between RapidEye and homogeneous MODIS pixels indicated that phenological metrics derived from both satellites were similar to the crop calendar in this region. We also investigated the influence of spatial aggregation of RapidEye-scale phenology to MODIS scale as well as the effect of decreasing the

  1. Carbon sequestration in agricultural lands of the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing concentrations of greenhouse gases has been identified as one of the most pressing modern-day environment issues. In agricultural systems, the sequestering of C in mostly soils is thought to be one of the best options for reducing atmospheric concentrations of one of the most important gree...

  2. AGRICULTURAL-REGIONAL LAND AND PEOPLE CONFERENCE. (TITLE SUPPLIED).

    ERIC Educational Resources Information Center

    FREEMAN, ORVILLE L.

    MIGRATION FROM FARMS CAN BE STOPPED. FARM LIFE CAN BE IMPROVED THROUGH DECENT HOUSING, THROUGH HEALTH, EDUCATION, AND PUBLIC SERVICES, AND THROUGH A COMBINATION OF PART-TIME EMPLOYMENT WITH PART-TIME AGRICULTURE. RURAL EMPLOYMENT CAN BE PROVIDED BY ENTERPRISES DEVELOPING RECREATIONAL RESOURCES AND SOIL AND WATER RESOURCES. ASSISTANCE PROGRAMS ARE…

  3. Managing for soil protection and bioenergy production on agricultural lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy systems are needed that can aid in meeting the growing energy demands of the expanding human population without sacrificing the long-term sustainability, productivity and quality of the underlying natural resources. Agriculture, like the forestry sector, will produce the feedstocks. While ...

  4. Targeting land-use change for nitratenitrogen load reductions in an agricultural watershed

    USGS Publications Warehouse

    Jha, M.K.; Schilling, K.E.; Gassman, P.W.; Wolter, C.F.

    2010-01-01

    The research was conducted as part of the USDA's Conservation Effects Assessment Project. The objective of the project was to evaluate the environmental effects of land-use changes, with a focus on understanding how the spatial distribution throughout a watershed influences their effectiveness.The Soil and Water AssessmentTool (SWAT) water quality model was applied to the Squaw Creek watershed, which covers 4,730 ha (11,683 ac) of prime agriculture land in southern Iowa. The model was calibrated (2000 to 2004) and validated (1996 to 1999) for overall watershed hydrology and for streamflow and nitrate loadings at the watershed outlet on an annual and monthly basis. Four scenarios for land-use change were evaluated including one scenario consistent with recent land-use changes and three scenarios focused on land-use change on highly erodible land areas, upper basin areas, and floodplain areas. Results for the Squaw Creek watershed suggested that nitrate losses were sensitive to land-use change. If land-use patterns were restored to 1990 conditions, nitrate loads may be reduced 7% to 47% in the watershed and subbasins, whereas converting row crops to grass in highly erodible land, upper basin, and floodplain areas would reduce nitrate loads by 47%, 16%, and 8%, respectively. These SWAT model simulations can provide guidance on how to begin targeting land-use change for nitrate load reductions in agricultural watersheds.

  5. Hermiston Agricultural Research and Extension Center Land Conveyance Act

    THOMAS, 113th Congress

    Sen. Wyden, Ron [D-OR

    2013-08-01

    07/30/2014 Committee on Energy and Natural Resources Senate Subcommittee on Public Lands, Forests, and Mining. Hearings held. With printed Hearing: S.Hrg. 113-433. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. Impact of land-use induced changes on agricultural productivity in the Huang-Huai-Hai River Basin

    NASA Astrophysics Data System (ADS)

    Jin, Gui; Li, Zhaohua; Wang, Zhan; Chu, Xi; Li, Zhihui

    The water resource allocation is greatly influenced by the land use, agricultural productivity and farmers' income. Therefore analyzing the impacts of land use changes on agricultural productivity and subsequent effects on farmer's income is an important basis of the further study on the management mechanism and optimal water resource allocation. Taking the Huang-Huai-Hai River Basin as the study area, this study examined the impacts of conversion from cultivated land to built-up land from 2000-2005 and 2005-2008. Then the agricultural productivity was estimated with the Estimation System for Agricultural Productivity model, and the changes in agricultural productivity caused by land conversion were analyzed. Thereafter, Simultaneous Equations Model was used to analyze the impacts of the conversion from cultivated land to built-up land on the agricultural productivity and subsequent effects on farmer's income. The results showed that: (1) The agricultural productivity was stable during the whole period, reaching about 2.84 ton/ha, 3.09 ton/ha and 2.80 ton/ha on average in 2000, 2005 and 2008, respectively, but the conversion from cultivated land to built-up land had important influence on the spatial pattern of agricultural productivity. (2) The land productivity, total power of agricultural machinery and the conversion from cultivated land to built-up land had an overall positive effect on the agricultural productivity. (3) The agricultural productivity and gross domestic product had positive influence on the farmers' income, while the cultivated land area per capita and percentage of farming employee had negative influence, indicating that the farmer's income was mainly contributed by non-agricultural income. These results in this study showed that optimal land use management can play an important role in promoting virtuous ecosystem cycle and sustainable socioeconomic development, which can also lay an important foundation for further research on the optimal

  7. Influence of management practices on microbial nitrogen cyclers in agricultural soils

    NASA Astrophysics Data System (ADS)

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; McMillan, Mary; Pereg, Lily

    2016-04-01

    Agricultural land management has great influences on soil properties, in particular on microbial communities, due to their sensitivity to the perturbations of the soils. This is even more relevant in Mediterranean agricultural areas under semi-arid conditions. The Mediterranean belt is suffering from an intense degradation of its soils due to the millennia of intense land use and due to unsustainable management practices. As a consequence this area is suffering from a depletion of N content. In this work we investigated the effect of several traditional agricultural management practices on specific functional groups related to the nitrogen cycle in the soil. A field experiment was performed with orchard orange trees (citrus sinesis) in Eastern Spain to assess the long-term effects of ploughing with inorganic fertilization (PI) and ecological practices (EP) (chipped pruned branches and weeds as well as manure from sheep and goats) on microbes that can undertake nitrogen fixation and denitrification. Nine samples of soil were taken from every treatment, near the drip irrigation point and in a zone without the influence of drip irrigation (between trees row), and total DNA extracted. DNA samples were stored at minus-20°C to be analysed by qPCR. Microbial populations involved in the N biochemical cycle were analysed by targeted amplification of key functional biomarker genes: the abundance of nifH (nitrogen fixation), nirS, nirK and nosZ (denitrification) detected by quantitative PCR (qPCR) has shown significant differences between treatments with higher abundance of all four genes in soils from ecological agricultural treatments. This may indicate that the ecological treatment created conditions that are more suitable for N cyclers in the soil and a better fertility and quality status of these soils.

  8. Manual for applying fluidized-bed-combustion residue to agricultural lands. Research report

    SciTech Connect

    Stout, W.L.; Hern, J.L.; Korcak, R.F.; Carlson, C.W.

    1988-08-01

    Atmospheric fluidized-bed combustion (AFBC) is a process that reduces sulfur emissions from coal-fired electric-generating plants. The residue from the process is a mixture of alkaline oxides, calcium sulfate, and coal ash constituent. Since 1976, USDA/ARS has investigated the potential agriculture use of the residue. The investigations comprised an extensive series of laboratory, greenhouse, field plot, and animal-feeding experiments. The best and safest use of AFBC residue in agriculture was as a substitute for agricultural lime. The report contains guidelines for appling AFBC residue to agricultural lands.

  9. 25 CFR 166.815 - How will the BIA determine the amount of damages to Indian agricultural land?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Indian agricultural land? 166.815 Section 166.815 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Trespass Penalties, Damages, and Costs § 166.815 How will the BIA determine the amount of damages to Indian agricultural land? We will determine the damages by...

  10. Use of agricultural land evaluation and site assessment in Linn County, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Huddleston, J. Herbert; Pease, James R.; Forrest, William G.; Hickerson, Hugh J.; Langridge, Russell W.

    1987-07-01

    Oregon state law requires each county in the state to identify agricultural land and enact policies and regulations to protect agricultural land use. State guidelines encourage the preservation of large parcels of agricultural land and discourage partitioning of agricultural land and construction of nonfarm dwellings in agricultural areas. A land evaluation and site assessment (LESA) system was developed in Linn County to aid in the identification of agricultural land and provide assistance to decision makers concerning the relative merits of requests to partition existing parcels of ricultural land and introduce nonagricultural uses. Land evaluation was determined by calculating soil potential ratings for each agricultural soil in the county based on the soil potentials for winter wheat, annual ryegrass, permanent pasture, and irrigated sweet corn. Soil potential ratings were expressed on a scale of 0 to 150 points. The land evaluation score for a parcel consists of the weighted average soil potential rating for all of the soils in the parcel, weighted by the percentage of each soil present in the parcel. Site assessment was based on the size of a parcel and on the amount of existing conflict between agricultural and nonagricultural uses, particularly rural residential uses, both adjacent to and in the vicinity of a parcel. Parcel size refers to both size in relation to a typical field and size in relation to a typical farm unit. Conflict takes into account the number of nonfarm dwellings within 1/4 mile (0.4 km) of a parcel, the amount of the perimeter that adjoins conflicting land uses, and the residential density adjacent to the parcel. Empirical scales were derived for assigning points to each of the site assessment factors. Both parcel size and conflict were worth 75 points in the model. For parcel size, 45 points were allocated to field size and 30 points to farm-unit size. For conflict, 30 points were allocated to nonfarm dwellings within 1/4 mile and 45

  11. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas.

    PubMed

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no-tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems may

  12. Structure, Composition and Metagenomic Profile of Soil Microbiomes Associated to Agricultural Land Use and Tillage Systems in Argentine Pampas

    PubMed Central

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P.

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no- tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems

  13. Trade-off analysis in the Northern Andes to study the dynamics in agricultural land use.

    PubMed

    Stoorvogel, J J; Antle, J M; Crissman, C C

    2004-08-01

    In this paper we hypothesize that land use change can be induced by non-linearities and thresholds in production systems that impact farmers' decision making. Tradeoffs between environmental and economic indicators is a useful way to represent dynamic properties of agricultural systems. The Tradeoff Analysis (TOA) System is software designed to implement the integrated analysis of tradeoffs in agricultural systems. The TOA methodology is based on spatially explicit econometric simulation models linked to spatially referenced bio-physical simulation models to simulate land use and input decisions. The methodology has been applied for the potato-pasture production system in the Ecuadorian Andes. The land use change literature often describes non-linearity in land use change as a result of sudden changes in the political (e.g. new agricultural policies) or environmental setting (e.g. earthquakes). However, less attention has been paid to the non-linearities in production systems and their consequences for land use change. In this paper, we use the TOA system to study agricultural land use dynamics and to find the underlying processes for non-linearities. Results show that the sources of non-linearities are in the properties of bio-physical processes and in the decision making-process of farmers. PMID:15246571

  14. Changes in Soil Microbial Community Structure Influenced by Agricultural Management Practices in a Mediterranean Agro-Ecosystem

    PubMed Central

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; Zornoza, Raul; Scow, Kate

    2013-01-01

    Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage. PMID:24260409

  15. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  16. Dynamic Agricultural Land Unit Profile Database Generation using Landsat Time Series Images

    NASA Astrophysics Data System (ADS)

    Torres-Rua, A. F.; McKee, M.

    2012-12-01

    Agriculture requires continuous supply of inputs to production, while providing final or intermediate outputs or products (food, forage, industrial uses, etc.). Government and other economic agents are interested in the continuity of this process and make decisions based on the available information about current conditions within the agriculture area. From a government point of view, it is important that the input-output chain in agriculture for a given area be enhanced in time, while any possible abrupt disruption be minimized or be constrained within the variation tolerance of the input-output chain. The stability of the exchange of inputs and outputs becomes of even more important in disaster-affected zones, where government programs will look for restoring the area to equal or enhanced social and economical conditions before the occurrence of the disaster. From an economical perspective, potential and existing input providers require up-to-date, precise information of the agriculture area to determine present and future inputs and stock amounts. From another side, agriculture output acquirers might want to apply their own criteria to sort out present and future providers (farmers or irrigators) based on the management done during the irrigation season. In the last 20 years geospatial information has become available for large areas in the globe, providing accurate, unbiased historical records of actual agriculture conditions at individual land units for small and large agricultural areas. This data, adequately processed and stored in any database format, can provide invaluable information for government and economic interests. Despite the availability of the geospatial imagery records, limited or no geospatial-based information about past and current farming conditions at the level of individual land units exists for many agricultural areas in the world. The absence of this information challenges the work of policy makers to evaluate previous or current

  17. Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics

    USGS Publications Warehouse

    Pervez, Md Shahriar; Brown, Jesslyn F.

    2010-01-01

    Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.

  18. Cost of areal reduction of gulf hypoxia through agricultural practice.

    PubMed

    Whittaker, Gerald; Barnhart, Bradley L; Srinivasan, Raghavan; Arnold, Jeffrey G

    2015-02-01

    A major share of the area of hypoxic growth in the Northern Gulf of Mexico has been attributed to nutrient run-off from agricultural fields, but no estimate is available for the cost of reducing Gulf hypoxic area using agricultural conservation practices. We apply the Soil and Water Assessment Tool using observed daily weather to simulate the reduction in nitrogen loading in the Upper Mississippi River Basin (UMRB) that would result from enrolling all row crop acreage in the Conservation Reserve Program (CRP). Nitrogen loadings at the outlet of the UMRB are used to predict Gulf hypoxic area, and net cash farm rent is used as the price for participation in the CRP. Over the course of the 42 year simulation, direct CRP costs total more than $388 billion, and the Inter-Governmental Task Force goal of hypoxic area less than 5000 square kilometers is met in only two years. PMID:25461017

  19. Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring

    NASA Astrophysics Data System (ADS)

    Brodsky, Lukas; Kodesova, Radka; Kodes, Vit

    2010-05-01

    classified: winter crops, spring crops, oilseed rape, legumes, summer and other crops. This study highlights operational potentials of high temporal full resolution MERIS images in agricultural land use monitoring. Practical application of this methodology is foreseen, among others, in the water quality monitoring. Effective pesticide monitoring relies also on spatial distribution of applied pesticides, which can be derived from crop - plant protection product relationship. Knowledge of areas with predominant occurrence of specific crop based on remote sensing data described above can be used for a forecast of probable plant protection product application, thus cost-effective pesticide monitoring. The remote sensing data used on a continuous basis can be used in other long-term water management issues and provide valuable data for decision makers. Acknowledgement: Authors acknowledge the financial support of the Ministry of Education, Youth and Sports of the Czech Republic (grants No. 2B06095 and No. MSM 6046070901). The study was also supported by ESA CAT-1 (ref. 4358) and SOSI projects (Spatial Observation Services and Infrastructure; ref. GSTP-RTDA-EOPG-SW-08-0004).

  20. Elbe river flood peaks and postwar agricultural land use in East Germany.

    PubMed

    van der Ploeg, R R; Schweigert, P

    2001-12-01

    Collectivization of farmland since the 1950s has changed the agricultural land use in former East Germany. Single fields on the collective farms became increasingly large and were cultivated with increasingly heavy farm equipment. This led to large-scale physical degradation of arable soils, enhancing the formation of surface runoff in periods with prolonged and excessive precipitation. The extent to which this development may have affected the discharge behavior of the main East German river, the Elbe, has so far not been studied. We analyzed the flood peaks of the Elbe during the past century (1900-2000). The flood discharge behavior of the Elbe has apparently changed significantly since the 1950s. Although climate changes may be involved, we conclude that the Elbe flood peaks, recorded since 1950, are related to the changes in postwar agricultural land use in former East Germany. To restore the degraded farmland soils, a change in agricultural land use may be necessary. PMID:11824225

  1. Current status and future potential of energy derived from Chinese agricultural land: a review.

    PubMed

    Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  2. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    PubMed Central

    Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  3. Likelihood of burrow flow in Canadian agricultural lands

    NASA Astrophysics Data System (ADS)

    Dadfar, Humaira; Allaire, Suzanne E.; van Bochove, Eric; Denault, Jean-Thomas; Thériault, Georges; Charles, Anaïs

    2010-05-01

    SummaryIndicators of risk of water contamination (IROWCs) by agricultural contaminants are developed to assess sustainability of agriculture. Burrow flow ( BF) is part of the transport hydrology algorithm used in IROWCs since it is a key pathway for sub-surface contaminant transport. The objectives of this study were to develop a methodology for predicting the likelihood of BF occurrence in agricultural soils across Canada at the landscape scale, and to determine its variation over a 25-year period (1981-2006). The BF algorithm considers the influence of climate, soil properties, and soil management on the likely frequency of BF and distribution of burrows ( B) made by Lumbricus terrestris L. Nova Scotia, Prince Edward Island, Ontario, Quebec, followed by New Brunswick, had the highest likelihood of BF due to favourable humidity, sufficient heat, medium-textured soils, and strong runoff during the growing season and spring thaw. Alberta and Saskatchewan are too dry to favour BF. Areas with high risk of BF fall within locations of high potential for lateral flow due to shallow soils, or to the presence of tile drainage, which may connect BF pathways to important water bodies such as the Great Lakes and the St-Lawrence River. Sensitivity analyses on threshold values used in the BF algorithm indicated that Manitoba is the most sensitive province to changes in precipitation, Quebec to temperature, Prince Edward Island to soil depth, and Ontario to manure application. The BF algorithm can be used as a simple tool to predict the likelihood of water and contaminant transport along earthworm burrows with data available across Canada. It will be upgraded with new data (e.g. climate change) and with an improved algorithm after statistical analyses and correlations with actual water quality data.

  4. Agricultural practices in grasslands detected by spatial remote sensing.

    PubMed

    Dusseux, Pauline; Vertès, Françoise; Corpetti, Thomas; Corgne, Samuel; Hubert-Moy, Laurence

    2014-12-01

    The major decrease in grassland surfaces associated with changes in their management that has been observed in many regions of the earth during the last half century has major impacts on environmental and socio-economic systems. This study focuses on the identification of grassland management practices in an intensive agricultural watershed located in Brittany, France, by analyzing the intra-annual dynamics of the surface condition of vegetation using remotely sensed and field data. We studied the relationship between one vegetation index (NDVI) and two biophysical variables (LAI and fCOVER) derived from a series of three SPOT images on one hand and measurements collected during field campaigns achieved on 120 grasslands on the other. The results show that the LAI appears as the best predictor for monitoring grassland mowing and grazing. Indeed, because of its ability to characterize vegetation status, LAI estimated from remote sensing data is a relevant variable to identify these practices. LAI values derived from the SPOT images were then classified based on the K-Nearest Neighbor (KNN) supervised algorithm. The results points out that the distribution of grassland management practices such as grazing and mowing can be mapped very accurately (Kappa index = 0.82) at a field scale over large agricultural areas using a series of satellite images. PMID:25182683

  5. Changes in soil fungal communities across a landscape of agricultural soil land-uses

    NASA Astrophysics Data System (ADS)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2012-12-01

    Agricultural management is a major driver of changes in soils and their resident microbial communities, but we do not yet have a clear picture of how agriculture affects soil fungi. This is an important gap in our knowledge since fungi play an important role in many soil processes. Previous research has suggested that organic management practices can lead to an increase in soil fungal community diversity, which could have impacts on soil processes and alter the long term trajectory of soil quality in agricultural systems. Also, the relationship between management effects, biogeography, and soil fungi is not clear. The biogeography of macroscopic species is well described by taxa-area relationships and distance decay models, and recent research has suggested that certain subsets of fungi (e.g. AMF, litter sapotrophs) demonstrate similar patterns. However there is little information on how soil fungi as a whole are distributed across a landscape with soils under different managements. The goal of this project was to examine how different management practices alter soil fungal communities across a landscape of agricultural fields in upstate NY. We asked several specific questions: 1) Do different types of agricultural land-uses lead to divergent or convergent communities of soil fungi? 2) If soil type is held constant, do soil fungal communities diverge with geographic distance? 3) What are the major fungal groups that change in response to soil management, and are they cosmopolitan or endemic across the landscape? We studied these questions across agricultural fields in upstate NY that ranged from conventional corn, organic grains/corn, and long-term pasture. We sampled four fields (conventional, 10 and 20 year organic, and pasture) that had identical soils types and ranged from 100 m to 4 km apart. We utilized a multiplexed pyrosequencing approach on genomic DNA to analyze the structure of the soils' fungal communities. This approach allowed us to study soil fungi

  6. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.

    PubMed

    Lemke, A M; Kirkham, K G; Lindenbaum, T T; Herbert, M E; Tear, T H; Perry, W L; Herkert, J R

    2011-01-01

    Best management practices (BMPs) are widely promoted in agricultural watersheds as a means of improving water quality and ameliorating altered hydrology. We used a paired watershed approach to evaluate whether focused outreach could increase BMP implementation rates and whether BMPs could induce watershed-scale (4000 ha) changes in nutrients, suspended sediment concentrations, or hydrology in an agricultural watershed in central Illinois. Land use was >90% row crop agriculture with extensive subsurface tile drainage. Outreach successfully increased BMP implementation rates for grassed waterways, stream buffers, and strip-tillage within the treatment watershed, which are designed to reduce surface runoff and soil erosion. No significant changes in nitrate-nitrogen (NO-N), total phosphorus (TP), dissolved reactive phosphorus, total suspended sediment (TSS), or hydrology were observed after implementation of these BMPs over 7 yr of monitoring. Annual NO-N export (39-299 Mg) in the two watersheds was equally exported during baseflow and stormflow. Mean annual TP export was similar between the watersheds (3.8 Mg) and was greater for TSS in the treatment (1626 ± 497 Mg) than in the reference (940 ± 327 Mg) watershed. Export of TP and TSS was primarily due to stormflow (>85%). Results suggest that the BMPs established during this study were not adequate to override nutrient export from subsurface drainage tiles. Conservation planning in tile-drained agricultural watersheds will require a combination of surface-water BMPs and conservation practices that intercept and retain subsurface agricultural runoff. Our study emphasizes the need to measure conservation outcomes and not just implementation rates of conservation practices. PMID:21712591

  7. US agricultural policy, land use change, and biofuels: are we driving our way to the next dust bowl?

    NASA Astrophysics Data System (ADS)

    Wright, Christopher K.

    2015-05-01

    Lark et al (2015 Environ. Res. Lett. 10 044003), analyze recent shifts in US agricultural land use (2008-2012) using newly-available, high-resolution geospatial information, the Cropland Data Layer. Cropland expansion documented by Lark et al suggests the need to reform national agricultural policies in the wake of an emerging, new era of US agriculture characterized by rapid land cover/land use change.

  8. Theme: Innovative Curriculum Ideas and Practices in Agricultural Education.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2002

    2002-01-01

    Fourteen theme articles discuss the following: curriculum ideas and innovations in agricultural education, agricultural literacy, Supervised Agricultural Experience, active learning, locating agricultural education resources, distance and web-based instruction, principles of forest management, professional development, and service learning. (JOW)

  9. Changes in population and agricultural land in conterminous United States counties, 1790 to 1997

    USGS Publications Warehouse

    Waisanen, Pamela J.; Bliss, Norman B.

    2002-01-01

    We have developed a data set of changes in population and agricultural land for the conterminous United States at the county level, resulting in more spatial detail than in previously available compilations. The purpose was to provide data on the timing of land conversion as an input to dynamic models of the carbon cycle, although a wide variety of applications exist for the physical, biological, and social sciences. The spatial data represent the appropriate county boundaries for each census year between 1790 and 1997, and the census attributes are attached to the appropriate spatial region. The resulting time series and maps show the history of population (1790-1990) and the history of agricultural development (1850-1997). The patterns of agricultural development reflect the influences of climate, soil productivity, increases in population size, variations in the general economy, and technological changes in the energy, transportation, and agricultural sectors.

  10. Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon

    PubMed Central

    Galford, Gillian L.; Soares-Filho, Britaldo; Cerri, Carlos E. P.

    2013-01-01

    The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes. PMID:23610175

  11. Mapping Evapotranspiration over Agricultural Land in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Huntington, J. L.; Guzman, A.; Johnson, L.; Morton, C.; Nemani, R. R.; Post, K. M.; Rosevelt, C.; Shupe, J. W.; Spellenberg, R.; Vitale, A.

    2015-12-01

    Recent advances in satellite mapping of evapotranspiration (ET) have made it possible to largely automate the process of mapping ET over large areas at the field-scale. This development coincides with recent drought events across the western U.S. which have intensified interest in mapping of ET and consumptive use to address a range of water management challenges, including resolving disputes over water rights, improving irrigation management, and developing sustainable management plans for groundwater resources. We present a case study for California that leverages two automated ET mapping capabilities to estimate ET at the field scale over agricultural areas in the California Central Valley. We utilized the NASA Earth Exchange and applied a python-based implementation of the METRIC surface energy balance model and the Satellite Irrigation Management Support (SIMS) system, which uses a surface reflectance-based approach, to map ET over agricultural areas in the Central Valley. We present estimates from 2014 from both approaches and results from a comparison of the estimates. Though theoretically and computationally quite different from each other, initial results from both approaches show good agreement overall on seasonal ET totals for 2014. We also present results from comparisons against ET measurements collected on commercial farms in the Central Valley and discuss implications for accuracy of the two different approaches. The objective of this analysis is to provide data that can inform planning for the development of sustainable groundwater management plans, and assist water managers and growers in evaluating irrigation demand during drought events.

  12. Validation of good agricultural practices (GAP) on Minnesota vegetable farms.

    PubMed

    Hamilton, Karin E; Umber, Jamie; Hultberg, Annalisa; Tong, Cindy; Schermann, Michele; Diez-Gonzalez, Francisco; Bender, Jeff B

    2015-02-01

    The United States Food and Drug Administration and the Department of Agriculture jointly published the "Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables," which is used as a basis for Good Agricultural Practices (GAP) audits. To understand barriers to incorporation of GAP by Minnesota vegetable farmers, a mail survey completed in 2008 was validated with visits to a subset of the farms. This was done to determine the extent to which actual practices matched perceived practices. Two hundred forty-six producers completed the mail survey, and 27 participated in the on-farm survey. Over 75% of the on-farm survey respondents produced vegetables on 10 acres or less and had 10 or fewer employees. Of 14 questions, excellent agreement between on-farm interviews and mail survey responses was observed on two questions, four questions had poor or slight agreement, and eight questions had no agreement. Ninety-two percent of respondents by mail said "they took measures to keep animals and pests out of packing and storage buildings." However, with the on-site visit only 45% met this requirement. Similarly, 81% of respondents by mail said "measures were taken to reduce the risk of wild and/or domestic animals entering into fruit and vegetable growing areas." With direct observation, 70% of farms actually had taken measures to keep animals out of the growing areas. Additional, on-farm assessments were done regarding employee hygiene, training, presence of animals, water sources, and composting practices. This validation study demonstrated the challenge of creating nonleading and concise questions that are not open to broad interpretation from the respondents. If mail surveys are used to assess GAP, they should include open-ended questions and ranking systems to better assess farm practices. To provide the most accurate survey data for educational purposes or GAP audits, on-farm visits are recommended. PMID:25564923

  13. Research Orientations and Sources of Influence: Agricultural Scientists in the U.S. Land-Grant System.

    ERIC Educational Resources Information Center

    Goldberger, Jessica R.

    2001-01-01

    Uses data from a 1995-96 national survey of agricultural scientists at land-grant universities to investigate the relative importance of 19 sources of influence on agricultural scientists engaged in six areas of agricultural research: productionist-oriented, sustainable agriculture, environmental, basic, consumer-oriented, and rural…

  14. A comparison of land-sharing and land-sparing strategies for plant richness conservation in agricultural landscapes.

    PubMed

    Egan, J Franklin; Mortensen, David A

    2012-03-01

    Strategies for conserving plant diversity in agroecosystems generally focus on either expanding land area in non-crop habitat or enhancing diversity within crop fields through changes in within-field management practices. In this study, we compare effects on landscape-scale species richness from such land-sharing or land-sparing strategies. We collected data in arable field, grassland, pasture, and forest habitat types (1.6 ha sampled per habitat type) across a 100-km2 region of farmland in Lancaster County, Pennsylvania, USA. We fitted species-area relationships (SARs) for each habitat type and then combined extrapolations from the curves with estimates of community overlap to estimate richness in a 314.5-ha landscape. We then modified these baseline estimates by adjusting parameters in the SAR models to compare potential effects of land-sharing and land-sparing conservation practices on landscape richness. We found that species richness of the habitat types showed a strong inverse relationship to the relative land area of each type in the region, with 89 species in arable fields (66.5% of total land area), 153 in pastures (6.7%), 196 in forests (5.2%), and 213 in grasslands (2.9%). Relative to the baseline scenario, major changes in the richness of arable fields produced gains in landscape-scale richness comparable to a conversion of 3.1% of arable field area into grassland habitat. Sensitivity analysis of our model indicated that relative gains from land sparing would be greatest in landscapes with a low amount of non-crop habitat in the baseline scenario, but that in more complex landscapes land sharing would provide greater gains. These results indicate that the majority of plant species in agroecosystems are found in small fragments of non-crop habitat and suggest that, especially in landscapes with little non-crop habitat, richness can be more readily conserved through land-sparing approaches. PMID:22611847

  15. Effects of agricultural conservation practices on N loads in the Mississippi-atchafalaya river basin.

    PubMed

    Santhi, C; Arnold, J G; White, M; Di Luzio, M; Kannan, N; Norfleet, L; Atwood, J; Kellogg, R; Wang, X; Williams, J R; Gerik, T

    2014-11-01

    A modeling framework consisting of a farm-scale model, Agricultural Policy Environmental Extender (APEX); a watershed-scale model, Soil and Water Assessment Tool (SWAT); and databases was used in the Conservation Effects Assessment Project to quantify the environmental benefits of conservation practices on cropland. APEX is used to simulate conservation practices on cultivated cropland and Conservation Reserve Program land to assess the edge-of-field water-quality benefits. Flow and pollutant loadings from APEX are input to SWAT. SWAT simulates the remaining noncultivated land and routes flow and loads generated from noncultivated land, point sources, and cropland to the basin outlet. SWAT is used for assessing the effects of practices on local and in-stream water-quality benefits. Each river basin is calibrated and validated for streamflow and loads at multiple gauging stations. The objectives of the current study are to estimate the effects of currently existing and additional conservation practices on total N (TN) loads in the Mississippi-Atchafalaya River Basin (MARB) and draw insights on TN load reductions necessary for reducing the hypoxic zone in the Gulf of Mexico. The effects of conservation practice scenarios on local and in-stream (riverine) water quality are evaluated. Model results indicate that conservation practices currently on cropland have reduced the TN losses to local waters between 20 and 59% in the six river basins within MARB and the TN load discharged to the Gulf by 17%. Further water-quality improvement can be obtained in the MARB with additional conservation treatment. PMID:25602207

  16. Detection and assessment of land use dynamics on Tenerife (Canary Islands): the agricultural development between 1986 and 2010

    NASA Astrophysics Data System (ADS)

    Günthert, Sebastian; Naumann, Simone; Siegmund, Alexander

    2012-10-01

    Since Spanish colonial times, the Canary Islands and especially Tenerife have always been used for intensive agriculture. Today almost 1/4 of the total area of Tenerife are agriculturally affected, whereas especially mountainous areas with suitable climate conditions are drastically transformed for agricultural use by building of large terraces. In recent years, political and economical developments lead to a further transformation process, especially inducted by an expansive tourism, which caused concentration- and intensification-tendencies of agricultural land use in lower altitudes as well as agricultural set-aside and rural exodus in the hinterland. The overall aim of the research at hand is to address the agricultural land use dynamics of the past decades, to statistically assess the causal reasons for those changes and to model the future agricultural land use dynamics on Tenerife. Therefore, an object-based classification procedure for recent RapidEye data (2010), Spot 4 (1998) as well as SPOT 1 (1986-88) imagery was developed, followed by a post classification comparison (PCC). Older agricultural fallow land or agricultural set-aside with a higher level of natural succession can hardly be acquired in the used medium satellite imagery. Hence, a second detection technique was generated, which allows an exact identification of the total agriculturally affected area on Tenerife, also containing older agricultural fallow land or agricultural set-aside. The method consists of an automatic texture-oriented detection and area-wide extraction of linear agricultural structures (plough furrows and field boundaries of arable land, utilised and non-utilised agricultural terraces) in current orthophotos of Tenerife. Once the change detection analysis is realised, it is necessary to identify the different driving forces which are responsible for the agricultural land use dynamics. The statistical connections between agricultural land use changes and these driving forces

  17. Decree No. 922 on land use and exercise of agricultural activities, 19 May 1989.

    PubMed

    1989-01-01

    The Bulgarian Decree 922, May 19, 1989, regulates land use and the exercise of agricultural activities. It stipulates in general that agricultural activities and land use will be based on the principles of company organization, ensuring the unity and indivisibility of socialist property and the variety of forms of land use and management, using collective farms and companies. Citizens may engage in agricultural activities without having a registered company; users of farmland must protect the environment; observe veterinary, plant protection, and sanitary hygiene regulations; and protect and improve soil fertility. Farms and other companies will carry out their activities under equal conditions, may sell their commodities may set up an association for the protection of their economic and social interests, and may establish agricultural stock exchanges and other cooperatives in accordance with stipulated procedures. Individual farms include an individual farmer or several farmers. Farmers may rent or purchase agricultural equipment without restriction as to model, capacity, or other features. Limitations apply on the number of workers employed on a nonseasonal basis. Farmers may form associations for specified purposes. Taxation is based on the general income tax law. Piece rate is a form of organization and payment of labor in agriculture; written agreements are required regarding wages, quality, quantity, deadlines, and supplies furnished. Lease contracts must be in writing, be registered by the municipal people's council at the location of the project, and contain specified information. PMID:12344303

  18. Topographic changes detection through Structure-from-Motion in agricultural lands affected by erosion processes

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Pradetto Sordo, Nicoletta; Burguet, Maria; Di Prima, Simone; Terol Esparza, Enric; Tarolli, Paolo; Cerdà, Artemi

    2016-04-01

    Throughout the world, soil erosion by water is a serious problem, especially in semi-arid and semi-humid areas (Cerdà et al., 2009; Cerdan et al., 2010; García-Ruiz, 2010). Although soil erosion by water consists of physical processes that vary significantly in severity and frequency according to when and where they occur, they are also strongly influenced by anthropic factors such as land-use changes on large scales and unsustainable farming practices (Boardman et al., 1990; Cerdà 1994; Montgomery, 2007). Tillage operations, combined with weather conditions, are recognized to primarily influence soil erosion rates. If, on one hand, tillage operations cause uniform changes based on the tool used, on the other, weather conditions, such as rainfalls, produce more random changes, less easily traceable (Snapir et al., 2014). Within this context, remote-sensing technologies can facilitate the detection and quantification of these topographic changes. In particular, a real opportunity and challenge is offered by the low-cost and flexible photogrammetric technique, called 'Structure-from-Motion' (SfM), combined with the use of smartphones (Micheletti et al., 2014; Prosdocimi et al., 2015). This represents a significant advance compared with more expensive technologies and applications (e.g. Terrestrial Laser Scanner - TLS) (Tarolli, 2014). This work wants to test the Structure from Motion to obtain high-resolution topography for the detection of topographic changes in agricultural lands affected by erosion processes. Two case studies were selected: i) a tilled plot characterized by bare soil and affected by rill erosion located in the hilly countryside of Marche region (central Italy), and ii) a Mediterranean vineyard located within the province of Valencia (south eastern Spain) where rainfall simulation experiments were carried out. Extensive photosets were obtained by using one standalone reflex digital camera and one smartphone built-in digital camera. Digital

  19. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. PMID:26196068

  20. Comparison of MODIS derived land use and land cover with Ministry of Agriculture reported statistics for India

    NASA Astrophysics Data System (ADS)

    Acharya, Prasenjit; Punia, Milap

    2013-01-01

    The purpose of the study is to evaluate the suitability of moderate-resolution imaging spectroradiometer (MODIS) data to study the land use land cover over India. The study is based on secondary data sets pertaining to forest, cropland, pasture, and barrenland obtained from Directorate of Economics and Statistics (DES) and MODIS (Terra) global land use land cover data yearly composite from 2002 to 2005. A family of statistical and mathematical techniques is adopted here in order to compare the MODIS data with DES statistics. The comparison at the country level shows estimated forest cover has least uncertainty compared to pasture and barrenland. Comparison at the state level, on the other hand, shows high degree of association between the data sets in cropland (R2=0.9), followed by forest cover and pastureland. Barrenland shows weakest association between DES and MODIS. The computed average accuracy in cropland shows a level of 84% and has been chosen as the best fitted land cover category among all land cover classes selected for the study. Hierarchical clustering of the MODIS cropland at the state level based on the estimated accuracy shows that, except for Andhra Pradesh, Tamilnadu, Haryana, West Bengal, Chhattisgarh, and Orissa, which are far off from the true estimate, the rest of the states are in closer correspondence of the cropland statistics reported by Ministry of Agriculture.

  1. Climate change effects on soil organic carbon changes in agricultural lands of Spain

    NASA Astrophysics Data System (ADS)

    Álvaro-Fuentes, J.; Easter, M.; Arrúe, J. L.; Cantero-Martínez, C.; Paustian, K.

    2012-04-01

    Climate is a key factor to explain changes in soil organic carbon (SOC) at regional scales. Experimental data have showed that spatial and temporal changes in soil temperature and moisture modify microbial activity and thus SOC decomposition. Furthermore, precipitation amount and distribution have a main impact on crop growth and residue production. According to predictions based on atmosphere-ocean general circulation models (AOGCM) for the next decades in the Mediterranean region, air temperature will significantly increase and precipitation decrease with a significant impact on SOC turnover. However, in agricultural systems, the study of the impacts of climate on SOC dynamics is a complex task since climate effects will be determined by both soil characteristics and management practices. The establishment of soil monitoring networks within a specific region is a recommended approach to study the interactive effects of climate, management and soil on SOC changes. However, in large areas, the establishment and maintenance of these networks can imply significant cost and time. A lower cost and time consuming approach can be the use of soil organic matter (SOM) models. The use of process based SOM models linked to spatial data through geographical information systems (GIS) permits to integrate the spatial variability of the parameters that control SOM dynamics. This approach can be appropriate for Spanish conditions where the complex orography results in a large range of local climates. Moreover, the large agricultural heterogeneity in terms of management systems could have a noteworthy impact on the effects of climate on SOC turnover in Spanish agroecosystems. Thus, in this study we used the Century model to analyse the impact of climate on SOC changes in a representative area of 40498 km2 located in northeast Spain. The spatial distribution of the different land use categories and their change over time was obtained from the European Corine database. Soil

  2. Agricultural practices and irrigation water demand in Uttar Pradesh

    NASA Astrophysics Data System (ADS)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2013-12-01

    Changes in farming practices within Uttar Pradesh, particularly advances in irrigation technology, have led to a significant drop in water tables across the region. While the acquisition of monitoring data in India is a challenge, current water use practices point towards water overdraught. This is exacerbated by government and state policies and practices, including the subsidising of electricity, seeds and fertilizer, and an agreement to buy all crops grown, promoting the over use of water resources. Taking India's predicted population growth, increases in industrialisation and climate change into account, both farmland and the water resources it depends upon will be subject to increased pressures in the future. This research is centred around irrigation demands on water resources within Uttar Pradesh, and in particular, quantifying those demands both spatially and temporally. Two aspects of this will be presented; the quantification of irrigation water applied and the characterisation of the spatial heterogeneity of water use practices. Calculating the volumes of applied irrigation water in the absence of observed data presents a major challenge and is achieved here through the use of crop models. Regional crop yields provided by statistical yearbooks are replicated by the crop models AquaCrop and InfoCrop, and by doing so the amount of irrigation water needed to produce the published yields is quantified. In addition, proxy information, for example electrical consumption for agricultural use, is used to verify the likely volumes of water abstracted from tubewells. Statistical analyses of borehole distribution and the characterisation of the spatial heterogeneity of water use practices, particularly farmer decision making, collected during a field trip are also presented. The evolution of agricultural practices, technological advancement and water use for irrigation is reconstructed through the use of multiple regression and principle component analysis

  3. Impact of agricultural land management systems on soil microbial diversity and plant disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased diversity of fungal rDNA ITS-1 amplicons, as measured by the Shannon-Weiner index, was associated with land management practices that minimise soil disturbance (bahiagrass pasture and undisturbed weed fallow) when compared with organic or conventional land management systems. Diversity de...

  4. Hyperspectral image classification for mapping agricultural tillage practices

    NASA Astrophysics Data System (ADS)

    Ran, Qiong; Li, Wei; Du, Qian; Yang, Chenghai

    2015-01-01

    An efficient classification framework for mapping agricultural tillage practice using hyperspectral remote sensing imagery is proposed, which has the potential to be implemented practically to provide rapid, accurate, and objective surveying data for precision agricultural management and appraisal from large-scale remote sensing images. It includes a local region filter [i.e., Gaussian low-pass filter (GLF)] to extract spatial-spectral features, a dimensionality reduction process [i.e., local fisher's discriminate analysis (LFDA)], and the traditional k-nearest neighbor (KNN) classifier, and is denoted as GLF-LFDA-KNN. Compared to our previously used local average filter and adaptive weighted filter, the GLF also considers spatial features in a small neighborhood, but it emphasizes the central pixel itself and is data-independent; therefore, it can achieve the balance between classification accuracy and computational complexity. The KNN classifier has a lower computational complexity compared to the traditional support vector machine (SVM). After classification separability is enhanced by the GLF and LFDA, the less powerful KNN can outperform SVM and the overall computational cost remains lower. The proposed framework can also outperform the SVM with composite kernel (SVM-CK) that uses spatial-spectral features.

  5. Estimation of agricultural pesticide use in drainage basins using land cover maps and county pesticide data

    USGS Publications Warehouse

    Nakagaki, Naomi; Wolock, David M.

    2005-01-01

    A geographic information system (GIS) was used to estimate agricultural pesticide use in the drainage basins of streams that are studied as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. Drainage basin pesticide use estimates were computed by intersecting digital maps of drainage basin boundaries with an enhanced version of the National Land Cover Data 1992 combined with estimates of 1992 agricultural pesticide use in each United States county. This report presents the methods used to quantify agricultural pesticide use in drainage basins using a GIS and includes the estimates of atrazine use applied to row crops, small-grain crops, and fallow lands in 150 watersheds in the conterminous United States. Basin atrazine use estimates are presented to compare and analyze the results that were derived from 30-meter and 1-kilometer resolution land cover and county pesticide use data, and drainage basin boundaries at various grid cell resolutions. Comparisons of the basin atrazine use estimates derived from watershed boundaries, county pesticide use, and land cover data sets at different resolutions, indicated that overall differences were minor. The largest potential for differences in basin pesticide use estimates between those derived from the 30-meter and 1-kilometer resolution enhanced National Land Cover Data 1992 exists wherever there are abrupt agricultural land cover changes along the basin divide. Despite the limitations of the drainage basin pesticide use data described in this report, the basin estimates provide consistent and comparable indicators of agricultural pesticide application in surface-water drainage basins studied in the NAWQA Program.

  6. Agricultural land use intensity and its determinants: A case study in Taibus Banner, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Hao, Haiguang; Li, Xiubin; Tan, Minghong; Zhang, Jiping; Zhang, Huiyuan

    2015-06-01

    Based on rural household survey data from Taibus Banner, in the Inner Mongolia Autonomous Region, China, this study separately categorizes agricultural land use intensity into labor intensity, capital intensity, the intensity of labor-saving inputs, and the intensity of yield-increasing inputs, and then analyzes their determinants at the household level. The findings reveal that within the study area: (1) labor intensity is higher and capital intensity is lower than in the major grain-producing and economically developed areas of eastern and central China; (2) the most widely planted crops are those with the lowest labor intensity (oats) and capital intensity (benne); (3) there are marked differences in agricultural land use intensity among households; a major factor affecting land use decision-making is the reduced need for labor intensity for those households with high opportunity costs, such as those with income earned from non-farming activities which alleviates financial constraints and allows for increased capital intensity. As a result, these households invest more in labor-saving inputs; (4) households with a larger number of workers will allocate adequate time to manage their land and thus they will not necessarily invest more in labor-saving inputs. Those households with more land to manage tend to adopt an extensive cultivation strategy. Total income has a positive impact on capital intensity and a negative impact on labor intensity. Households that derive a higher proportion of their total income through farming are more reliant upon agriculture, which necessitates significant labor and yield-increasing inputs. Finally, the authors contend that policy makers should clearly recognize the impacts of non-farming employment on agricultural land use intensity. In order to ensure long-term food security and sustainable agricultural development in China, income streams from both farming and non-farming employment should be balanced.

  7. Agricultural Land Cover from Multitemporal C-Band SAR Data

    NASA Astrophysics Data System (ADS)

    Skriver, H.

    2013-12-01

    Henning Skriver DTU Space, Technical University of Denmark Ørsteds Plads, Building 348, DK-2800 Lyngby e-mail: hs@space.dtu.dk Problem description This paper focuses on land cover type from SAR data using high revisit acquisitions, including single and dual polarisation and fully polarimetric data, at C-band. The data set were acquired during an ESA-supported campaign, AgriSAR09, with the Radarsat-2 system. Ground surveys to obtain detailed land cover maps were performed during the campaign. Classification methods using single- and dual-polarisation data, and fully polarimetric data are used with multitemporal data with short revisit time. Results for airborne campaigns have previously been reported in Skriver et al. (2011) and Skriver (2012). In this paper, the short revisit satellite SAR data will be used to assess the trade-off between polarimetric SAR data and data as single or dual polarisation SAR data. This is particularly important in relation to the future GMES Sentinel-1 SAR satellites, where two satellites with a relatively wide swath will ensure a short revisit time globally. Questions dealt with are: which accuracy can we expect from a mission like the Sentinel-1, what is the improvement of using polarimetric SAR compared to single or dual polarisation SAR, and what is the optimum number of acquisitions needed. Methodology The data have sufficient number of looks for the Gaussian assumption to be valid for the backscatter coefficients for the individual polarizations. The classification method used for these data is therefore the standard Bayesian classification method for multivariate Gaussian statistics. For the full-polarimetric cases two classification methods have been applied, the standard ML Wishart classifier, and a method based on a reversible transform of the covariance matrix into backscatter intensities. The following pre-processing steps were performed on both data sets: The scattering matrix data in the form of SLC products were

  8. U.S. Biofuel Policies and Domestic Shifts in Agricultural Land Use and Water Balances

    NASA Astrophysics Data System (ADS)

    Teter, J.; Yeh, S.; Mishra, G. S.

    2014-12-01

    Policies promoting domestic biofuels production could lead to significant changes in cropping patterns. Types of direct and indirect land use change include: switching among crops (displacement), expanding cropped area (extensification), and altering water/soil management practices (e.g. irrigation, tillage) (intensification). Most studies of biofuels water use impacts calculate the water intensity of biofuels in liters of irrigated/total evapotranspired water per unit energy of biofuels. But estimates based on this approach are sensitive to assumptions (e.g. co-product allocation, system boundaries), and do not convey policy-relevant information, as highlighted by the issue of land use change. We address these shortcomings by adopting a scenario-based approach that combines economic modeling with crop-water modeling of major crops and biofuel feedstocks. This allows us to holistically compare differences in water balances across policy scenarios in an integrated economic/agricultural system. We compare high spatial resolution water balance estimates under three hypothetical policy scenarios: 1) a counterfactual no-policy scenario, 2) modified Renewable Fuels Standard mandates (M-RFS2), & 3) a national Low Carbon Fuel Standard plus a modified RFS2 scenario (LCFS+RFS2). Differences between scenarios in crop water balances (i.e. transpiration, evaporation, runoff, groundwater infiltration, & irrigation) are regional and are a function of changes in land use patterns (i.e. displacement, intensification, & extensification), plus variation in crop water-use characteristics. Cropped land area increases 6.2% and 1.6% under M-RFS2 and LCFS+RFS2 scenarios, respectively, by 2030. Both policy scenarios lead to reductions in net irrigation volumes nationally compared to the no-policy scenario, though more irrigation occurs in regions of the Midwest and West. The LCFS+RFS2 reduces net irrigation water use by 3.5 times more than M-RFS2. However, both policies drive

  9. Two Surface Temperature Retrieval Methods Compared Over Agricultural Lands

    NASA Technical Reports Server (NTRS)

    French, Andrew N.; Schmugge, Thomas J.; Jacob, Frederic; Ogawa, Kenta; Houser, Paul R. (Technical Monitor)

    2002-01-01

    Accurate, spatially distributed surface temperatures are required for modeling evapotranspiration (ET) over agricultural fields under wide ranging conditions, including stressed and unstressed vegetation. Modeling approaches that use surface temperature observations, however, have the burden of estimating surface emissivities. Emissivity estimation, the subject of much recent research, is facilitated by observations in multiple thermal infrared bands. But it is nevertheless a difficult task. Using observations from a multiband thermal sensor, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), estimated surface emissivities and temperatures are retrieved in two different ways: the temperature emissivity separation approach (TES) and the normalized emissivity approach (NEM). Both rely upon empirical relationships, but the assumed relationships are different. TES relies upon a relationship between the minimum spectral emissivity and the range of observed emissivities. NEM relies upon an assumption that at least one thermal band has a pre-determined emissivity (close to 1.0). The benefits and consequences of each approach will be demonstrated for two different landscapes: one in central Oklahoma, USA and another in southern New Mexico.

  10. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  11. Conceptual Model Linking Land Use to Human Consumption in the Agriculture Sector

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Bounoua, L.; Imhoff, M. L.; Karpman, K. J.

    2007-12-01

    Human activities are profoundly influenced by weather and climate. Agriculture is the most extensive and important uses of land, and is particularly sensitive to climate variability. In this talk we will present a conceptual model that seeks to integrate human appropriation of terrestrial net primary production (HANPP) with socio- economic models to explore the influence of commodities markets on land use decisions. Focusing on a single commodity as a building block, we explore the methodological and data requirements of the model, presenting the impact of precipitation, temperature, population and land use on food prices through a carbon-based calculation of supply and demand. We demonstrate the critical importance of accurate and temporally varying land use maps for models that integrate the social and biophysical spheres and show the mechanistic sensitivity of land use to change in the supply and demand ratio.

  12. Topographic changes detection through Structure-from-Motion in agricultural lands affected by erosion processes

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Pradetto Sordo, Nicoletta; Burguet, Maria; Di Prima, Simone; Terol Esparza, Enric; Tarolli, Paolo; Cerdà, Artemi

    2016-04-01

    Throughout the world, soil erosion by water is a serious problem, especially in semi-arid and semi-humid areas (Cerdà et al., 2009; Cerdan et al., 2010; García-Ruiz, 2010). Although soil erosion by water consists of physical processes that vary significantly in severity and frequency according to when and where they occur, they are also strongly influenced by anthropic factors such as land-use changes on large scales and unsustainable farming practices (Boardman et al., 1990; Cerdà 1994; Montgomery, 2007). Tillage operations, combined with weather conditions, are recognized to primarily influence soil erosion rates. If, on one hand, tillage operations cause uniform changes based on the tool used, on the other, weather conditions, such as rainfalls, produce more random changes, less easily traceable (Snapir et al., 2014). Within this context, remote-sensing technologies can facilitate the detection and quantification of these topographic changes. In particular, a real opportunity and challenge is offered by the low-cost and flexible photogrammetric technique, called 'Structure-from-Motion' (SfM), combined with the use of smartphones (Micheletti et al., 2014; Prosdocimi et al., 2015). This represents a significant advance compared with more expensive technologies and applications (e.g. Terrestrial Laser Scanner - TLS) (Tarolli, 2014). This work wants to test the Structure from Motion to obtain high-resolution topography for the detection of topographic changes in agricultural lands affected by erosion processes. Two case studies were selected: i) a tilled plot characterized by bare soil and affected by rill erosion located in the hilly countryside of Marche region (central Italy), and ii) a Mediterranean vineyard located within the province of Valencia (south eastern Spain) where rainfall simulation experiments were carried out. Extensive photosets were obtained by using one standalone reflex digital camera and one smartphone built-in digital camera. Digital

  13. Impacts of Forest and Agricultural Land Use on Stream Dissolved Organic Carbon During Storms

    NASA Astrophysics Data System (ADS)

    Oh, N. H.; Shin, Y.; Jeon, Y. J.; Lee, E. J.; Eom, J. S.; Kim, B.

    2015-12-01

    Although many studies have been conducted to evaluate the effects of land use on concentrations and compositions of dissolved organic carbon (DOC) in streams and rivers, the relationships are still not clear. To elucidate the impacts of forest and agricultural land use on stream DOC during storm events, we investigated concentrations, optical properties, δ13C, and Δ 14C of DOC in forest and agriculture dominated headwater streams in South Korea. Stream DOC concentrations were the highest in a forested subwatershed, and a significant positive correlation was observed between stream DOC concentrations and the proportion of forested area in watersheds, which was strengthened by increased rain intensity. Four PARAFAC components were extracted including terrestrial humic substances, terrestrial fulvic acids, microbial organic matter, and protein-like organic matter, all of which showed a positive correlation with stream DOC concentration although relative proportion of components were dependent on land use. While DOC in a forest stream was mostly composed of terrestrially derived and 14C-enriched, DOC in an agricultural stream included aged DOC up to ~1,000 years old. Although the impacts of hydrological changes due to irrigation, fertilizer use, and selected crop species were not examined, the results of this study suggest that agricultural land use can be a source of aged terrestrial DOC to streams during summer monsoon storms, potentially changing the balance of the regional carbon cycle.

  14. Restoring abandoned agricultural lands in cold desert shrublands: tradeoffs between water availability and invasive species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of abandoned agricultural lands to create sustainable ecosystems in arid and semi-arid ecosystems typically requires seeding or transplanting native species, improving plant-soil-water relations, and controlling invasive species. We asked if improving water relations via irrigation or su...

  15. Fugitive dust emissions from agricultural land within the Columbia Plateau, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Windblown dust originating from agricultural land has contributed to poor air quality within the Columbia Plateau region of the Pacific Northwest United States. In fact, the US EPA national ambient air quality standard for PM10 (particulates 10 µm or smaller in diameter) is exceeded each year in ea...

  16. LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico hypoxia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we discuss the importance of developing integrated assessment models to support the design and implementation of policies to address water quality problems associated with agricultural pollution. We describe a new modelling system, LUMINATE, which links land use decisions made at the...

  17. Benchmarking the performance of a land data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of land data assimilation systems to operational agricultural drought monitoring requires the development of (at least) three separate system sub-components: 1) a retrieval model to invert satellite-derived observations into soil moisture estimates, 2) a prognostic soil water balance...

  18. 25 CFR 166.103 - How will tribal laws be enforced on Indian agricultural land?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... appearance would not: (i) Be inconsistent with the restrictions on employee testimony set forth at 43 CFR... WATER GRAZING PERMITS Tribal Policies and Laws Pertaining to Permits § 166.103 How will tribal laws be enforced on Indian agricultural land? (a) Unless prohibited by federal law, we will recognize and...

  19. 25 CFR 166.103 - How will tribal laws be enforced on Indian agricultural land?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... appearance would not: (i) Be inconsistent with the restrictions on employee testimony set forth at 43 CFR... WATER GRAZING PERMITS Tribal Policies and Laws Pertaining to Permits § 166.103 How will tribal laws be enforced on Indian agricultural land? (a) Unless prohibited by federal law, we will recognize and...

  20. 25 CFR 166.103 - How will tribal laws be enforced on Indian agricultural land?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... appearance would not: (i) Be inconsistent with the restrictions on employee testimony set forth at 43 CFR... WATER GRAZING PERMITS Tribal Policies and Laws Pertaining to Permits § 166.103 How will tribal laws be enforced on Indian agricultural land? (a) Unless prohibited by federal law, we will recognize and...

  1. 25 CFR 166.103 - How will tribal laws be enforced on Indian agricultural land?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... appearance would not: (i) Be inconsistent with the restrictions on employee testimony set forth at 43 CFR... WATER GRAZING PERMITS Tribal Policies and Laws Pertaining to Permits § 166.103 How will tribal laws be enforced on Indian agricultural land? (a) Unless prohibited by federal law, we will recognize and...

  2. Global pattern of soil carbon losses due to the conversion of forests to agricultural land.

    PubMed

    Wei, Xiaorong; Shao, Mingan; Gale, William; Li, Linhai

    2014-01-01

    Several reviews have analyzed the factors that affect the change in soil organic C (SOC) when forest is converted to agricultural land; however, the effects of forest type and cultivation stage on these changes have generally been overlooked. We collated observations from 453 paired or chronosequential sites where forests have been converted to agricultural land and then assessed the effects of forest type, cultivation stage, climate factors, and soil properties on the change in the SOC stock and the SOC turnover rate constant (k). The percent decrease in SOC stocks and the turnover rate constants both varied significantly according to forest type and cultivation stage. The largest decrease in SOC stocks was observed in temperate regions (52% decrease), followed by tropical regions (41% decrease) and boreal regions (31% decrease). Climate and soil factors affected the decrease in SOC stocks. The SOC turnover rate constant after the conversion of forests to agricultural land increased with the mean annual precipitation and temperature. To our knowledge, this is the first time that original forest type was considered when evaluating changes in SOC after being converted to agricultural land. The differences between forest types should be considered when calculating global changes in SOC stocks. PMID:24513580

  3. Gender and Agricultural Science: Evidence from Two Surveys of Land-Grant Scientists.

    ERIC Educational Resources Information Center

    Buttel, Frederick H.; Goldberger, Jessica R.

    2002-01-01

    Analysis of surveys of land-grant agricultural scientists in 1979 and 1996 found significant gender differences in postdoctoral work experience, academic rank, employment of graduate students, book publication, and links with private industry. Gender differences were found in attitudes toward biotechnology and university-industry links, but not in…

  4. Evaluation of current state of agricultural land using problem-oriented fuzzy indicators in GIS environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current state of agricultural lands is defined under influence of processes in soil, plants and atmosphere and is described by observation data, complicated models and subjective opinion of experts. Problem-oriented indicators summarize this information in useful form for decision of the same specif...

  5. "Left High and Dry": Federal Land Policies and Pima Agriculture, 1860-1910

    ERIC Educational Resources Information Center

    Dejong, David H.

    2009-01-01

    The Akimel O'odham, or "River People" (Pima), have lived in the middle Gila River Valley for centuries, irrigating and cultivating the same land as their Huhugam ancestors did for millennia. Continuing their irrigated agricultural economy bequeathed to them by their Huhugam ancestors, the Pima leveraged a favorable geopolitical setting into a…

  6. LAND COVER MAPPING IN AN AGRICULTURAL SETTING USING MULTISEASONAL THEMATIC MAPPER DATA

    EPA Science Inventory

    A multiseasonal Landsat Thematic Mapper (TM) data set consisting of five image dates from a single year was used to characterize agricultural and related land cover in the Willamette River Basin (WRB) of western Oregon. Image registration was accomplished using an automated grou...

  7. Changing farmers' land management practices in the hills of Nepal.

    PubMed

    Paudel, G S; Thapa, G B

    2001-12-01

    This paper sheds light on changing farmers' land management practices in two mountain watersheds, with and without extemal assistance, in the western hills of Nepal. Information used in the analysis were obtained through a survey of 300 households, group discussion, key informant interviews, and field observation conducted during April-September 1999. Confronted with ever-decreasing landholding size due to a steadily growing population and scarcity of nonfarming employment opportunities, farmers in both watersheds have increasingly adopted assorted types of structural and biological measures to control soil erosion, landslides, gully expansion, and soil nutrient loss to maintain or even enhance land productivity. Adoption of guly control measures, construction of the retention walls, alley cropping, use of vegetative measures for landslide control, mulching, and use of green manure and chemical fertilizers are found significantly high in the project area due to the provision of technical and financial support, whereas composting is found significantly high in the nonproject area. Different from the traditionally held beliefs, population pressure on a finite land resource has brought positive change in land management. However, the experience from both watersheds indicates that there is limit to the extent that resource poor farmers can respond to land degradation without any extemal assistance. Required is the arrangement for appropriate polices and support services and facilities enabling farmers to adopt locationally suitable and economically attractive land management technologies. PMID:11915967

  8. Changing Farmers' Land Management Practices in the Hills of Nepal

    NASA Astrophysics Data System (ADS)

    Paudel, Giridhari Sharma; Thapa, Gopal B.

    2001-12-01

    This paper sheds light on changing farmers' land management practices in two mountain watersheds, with and without external assistance, in the western hills of Nepal. Information used in the analysis were obtained through a survey of 300 households, group discussion, key informant interviews, and field observation conducted during April-September 1999. Confronted with ever-decreasing landholding size due to a steadily growing population and scarcity of nonfarming employment opportunities, farmers in both watersheds have increasingly adopted assorted types of structural and biological measures to control soil erosion, landslides, gully expansion, and soil nutrient loss to maintain or even enhance land productivity. Adoption of gully control measures, construction of the retention walls, alley cropping, use of vegetative measures for landslide control, mulching, and use of green manure and chemical fertilizers are found significantly high in the project area due to the provision of technical and financial support, whereas composting is found significantly high in the nonproject area. Different from the traditionally held beliefs, population pressure on a finite land resource has brought positive change in land management. However, the experience from both watersheds indicates that there is limit to the extent that resource poor farmers can respond to land degradation without any external assistance. Required is the arrangement for appropriate polices and support services and facilities enabling farmers to adopt locationally suitable and economically attractive land management technologies.

  9. Sediment delivery from agricultural land to rivers via subsurface drainage

    NASA Astrophysics Data System (ADS)

    Chapman, A. S.; Foster, I. D. L.; Lees, J. A.; Hodgkinson, R. A.

    2005-10-01

    Diffuse sources of sediment and sediment-associated nutrients are of increasing environmental concern because of their impacts on receiving water courses. The aim of the research reported here was to monitor the outflow from four field (land) drains at two farms in the English Midlands in order to estimate the quantity of sediment delivered to the local rivers and the most likely sources and processes involved. A multiparameter sediment unmixing model was employed, using environmental magnetic, geochemical and radionuclide tracers in order to determine the most likely origin of sediments transported through the drains. Results demonstrated that there was a generally linear relationship between drainflow sediment loss and drainflow volume and that the majority (>70%) of the sediment exported from the drains was derived from topsoil. Macropore flow through heavily cracked soils is supported by the data to be the most likely means of sediment delivery to the drains. In one catchment, drains contributed over 50% of the annual sediment budget. Spatial and temporal variations in the sources of sediment reaching one drain outlet were investigated in detail. A link between soil moisture deficit (SMD) and the frequency of high-intensity rainfall events was used to explain the appearance and persistence of a new sediment source in this drain after October 1998. It is concluded that field drains have the potential to be significant conduits of sediment and agrochemicals in a wide variety of environments in the UK. It is also suggested that this potential may increase if projected climate change leads to more intense rainfall events and increases in SMD across a greater area of the UK.

  10. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  11. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano.

    PubMed

    le Polain de Waroux, Yann; Garrett, Rachael D; Heilmayr, Robert; Lambin, Eric F

    2016-04-12

    Growing demand for agricultural commodities is causing the expansion of agricultural frontiers onto native vegetation worldwide. Agribusiness companies linking these frontiers to distant spaces of consumption through global commodity chains increasingly make zero-deforestation pledges. However, production and land conversion are often carried out by less-visible local and regional actors that are mobile and responsive to new agricultural expansion opportunities and legal constraints on land use. With more stringent deforestation regulations in some countries, we ask whether their movements are determined partly by differences in land-use policies, resulting in "deforestation havens." We analyze the determinants of investment decisions by agricultural companies in the Gran Chaco and Chiquitano, a region that has become the new deforestation "hot spot" in South America. We test whether companies seek out less-regulated forest areas for new agricultural investments. Based on interviews with 82 companies totaling 2.5 Mha of properties, we show that, in addition to proximity to current investments and the availability of cheap forestland, lower deforestation regulations attract investments by companies that tend to clear more forest, mostly cattle ranching operations, and that lower enforcement attracts all companies. Avoiding deforestation leakage requires harmonizing deforestation regulations across regions and commodities and promoting sustainable intensification in cattle ranching. PMID:27035995

  12. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano

    PubMed Central

    le Polain de Waroux, Yann; Garrett, Rachael D.; Heilmayr, Robert; Lambin, Eric F.

    2016-01-01

    Growing demand for agricultural commodities is causing the expansion of agricultural frontiers onto native vegetation worldwide. Agribusiness companies linking these frontiers to distant spaces of consumption through global commodity chains increasingly make zero-deforestation pledges. However, production and land conversion are often carried out by less-visible local and regional actors that are mobile and responsive to new agricultural expansion opportunities and legal constraints on land use. With more stringent deforestation regulations in some countries, we ask whether their movements are determined partly by differences in land-use policies, resulting in “deforestation havens.” We analyze the determinants of investment decisions by agricultural companies in the Gran Chaco and Chiquitano, a region that has become the new deforestation “hot spot” in South America. We test whether companies seek out less-regulated forest areas for new agricultural investments. Based on interviews with 82 companies totaling 2.5 Mha of properties, we show that, in addition to proximity to current investments and the availability of cheap forestland, lower deforestation regulations attract investments by companies that tend to clear more forest, mostly cattle ranching operations, and that lower enforcement attracts all companies. Avoiding deforestation leakage requires harmonizing deforestation regulations across regions and commodities and promoting sustainable intensification in cattle ranching. PMID:27035995

  13. Forest to agriculture conversion in southern Belize: Implications for migrant land birds

    USGS Publications Warehouse

    Spruce, J.P.; Dowell, B.A.; Robbins, C.S.; Sader, S.A.

    1993-01-01

    Central America offers a suite of neotropical habitats vital to overwintering migrant land birds. The recent decline of many forest dwelling avian migrants is believed to be related in part to neotropical deforestation and land use change. However, spatio-temporal trends in neotropical habitat availability and avian migrant habitat use are largely unknown. Such information is needed to assess the impact of agriculture conversion on migrant land birds. In response, the USDI Fish and Wildlife Service and the University of Maine began a cooperative study in 1988 which applies remote sensing and field surveys to determine current habitat availability and avian migrant habitat use. Study sites include areas in Belize, Costa Rica, Guatemala and southern Mexico. Visual assessment of Landsat TM imagery indicates southern Belize forests are fragmented by various agricultural systems. Shifting agriculture is predominant in some areas, while permanent agriculture (citrus and mixed animal crops) is the primary system in others. This poster focuses on efforts to monitor forest to agriculture conversion in southern Belize using remote sensing, field surveys and GIS techniques. Procedures and avian migrant use of habitat are summarized.

  14. Runoff production in a small agricultural catchment in Lao PDR : influence of slope, land-use and observation scale.

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2009-04-01

    We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?

  15. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands.

    PubMed

    Li, Y R; Huang, G H; Li, Y F; Struger, J; Fischer, J D

    2003-01-01

    An integrated modeling system was developed to predict runoff losses of pesticides from agricultural lands. The system is an integration of a mathematical model, a database system, and a geographic information system. Information on soil type, land use, land slope, watershed boundaries, precipitation, pesticide usage, as well as physical and chemical properties of pesticides have been input to a GIS, managed through a database, and used for further modeling studies. The modeling outputs were in turn put into the database, such that runoff patterns along with pesticides losses could be further simulated by using a database management system. The final results could then be visualized through GIS. The developed modeling system was applied to the Kintore Creek Watershed, Ontario, Canada, for simulating losses of atrazine from agricultural lands. A water quality monitoring project was carried out from 1988 to 1992 in the watershed to detect conditions of surface water pollution due to the use of pesticides. The modeling outputs were verified through the monitoring data, demonstrating reasonable prediction accuracy. The result indicated that the model provides an effective means for forecasting pesticide runoff from agriculture lands. PMID:12578171

  16. Understanding Multifunctional Agricultural Land by Using Low Cost and Open Source Solutions to Quantify Ecosystem Function and Services

    NASA Astrophysics Data System (ADS)

    Forsmoo, Joel; Anderson, Karen; Brazier, Richard; Macleod, Kit; Wilkinson, Mark

    2016-04-01

    There is a need to advance our understanding of how the spatial structure of farmed landscapes contributes to the provision of functions and services. Agricultural land is of critical importance in NW Europe, covering large parts of NW Europe's temperate land. Moreover, these agricultural areas are primarily intensively managed, with a focus on maximizing food and fibre production. Such landscapes therefore can provide a wealth of ecosystem goods and services (ESs) including regulation of climate, erosion regulation, hydrology, water quality, nutrient cycling and biodiversity conservation. However, it has been shown they are key sources of sediment, phosphorous, nitrogen and storm runoff contributing to flooding, and therefore it is likely that most agricultural landscapes do not maximize the services or benefits that they might provide. The focus of this study is the spatio-temporal assessment of carbon sequestration (particularly through proxies such as above-ground biomass) and hydrological processes on agricultural land. Understanding and quantifying both of these is important to (a) inform payments for ecosystem services frameworks, (b) evaluate and improve carbon sequestration models, (c) manage the flood risk, (d) downstream water security and (e) water quality. Quantifying both of these ESs is dependent on data describing the fine spatial and temporal structure and function of the landscape. Common practice has been to use remote sensing techniques, e.g. satellites, providing coarse spatial resolution (around 30cm at 20° off nadir) and/or temporal resolution (around 5 days revisit time at <20° off nadir). In this paper we will explain how imaging data from lightweight and easily deployed unmanned aerial vehicles (UAVs) can be used to generate structure from motion (SFM) products describing the very fine detailed (<3 cm pixel resolution) structure of the agricultural environment. We will demonstrate how these products can be delivered using advanced free

  17. Radar monitoring of agricultural land use - Some problems and potentials at the local level.

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1971-01-01

    A study was made of some of the changing land use practices in a small area of the American Winter Wheat Belt as they might relate to remote sensing. In addition, interviews were conducted with farmers and local country agents in order to determine some of the needs regarding land use and farming practices as perceived by these people. A list of elements of land use is given which provides potential variables and parameters to be considered in interpreting radar imagery. The results of interviews provide a better concept of what potential remote sensing users at the primary level need and want.

  18. Breeding biology of Mottled Ducks on agricultural lands in southwestern Louisiana

    USGS Publications Warehouse

    Durham, R.S.; Afton, A.D.

    2006-01-01

    Breeding biology of Anas fulvigula maculosa (Mottled Ducks) has been described in coastal marsh and associated habitats, but little information is available for agricultural habitats in Louisiana. We located nests to determine nest-initiation dates and clutch sizes during the primary breeding season (February-May) in 1999 (n = 29) and 2000 (n = 37) on agricultural lands in southwestern Louisiana. In 1999, 60% of located nests were initiated between 22 March and 10 April, whereas in 2000, only 22% of nests were initiated during the same time period. Average clutch size was 0.9 eggs smaller in 2000 than in 1999. Annual differences in reproductive parameters corresponded with extremely dry conditions caused by low rainfall before the laying period in 2000. Flooded rice fields appear to be important loafing and feeding habitat of Mottled Ducks nesting in agricultural lands, especially during drought periods when other wetland types are not available or where natural wetlands have been eliminated.

  19. Agricultural and urban land use change analysis in Changping County, Beijing, using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Guo, Meng; Huang, Xiaoxia; Li, Hongga; Li, Xia; Ming, An

    Urban growth is regarded as a necessary transitional stage for a sustainable economy, but uncontrolled or arbitrary urban growth rapidly consumes rural resources and causes environmental pollution, ecological deterioration. In this paper, we developed a remote sensing and GIS-based integrated approach to monitor and analyze agricultural and urban spatial land use and ecological landscape change characteristics. In the proposed approach, multi-temporal satellite images from 1995 to 2010 were selected and classified to obtain land cover and use spatial changes. And GIS was used to analyze variation tendency for land use and ecological landscape indices. Experiments were performed in the Changping County, north of Beijing to analyze rapid urbanization effects in the past two decades, especially during the Beijing 2008 Olympic Games. The results indicate that there has been a notable urban growth and a visible loss about 38.8% in cropland, meanwhile dominated landscape structures and patterns have greatly changed from agriculture to urban in the study area.

  20. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  1. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2015-10-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  2. Denitrification potential of different land-use types in an agricultural watershed, lower Mississippi valley

    USGS Publications Warehouse

    Ullah, S.; Faulkner, S.P.

    2006-01-01

    Expansion of agricultural land and excessive nitrogen (N) fertilizer use in the Mississippi River watershed has resulted in a three-fold increase in the nitrate load of the river since the early 1950s. One way to reduce this nitrate load is to restore wetlands at suitable locations between croplands and receiving waters to remove run-off nitrate through denitrification. This research investigated denitrification potential (DP) of different land uses and its controlling factors in an agricultural watershed in the lower Mississippi valley (LMV) to help identify sites with high DP for reducing run-off nitrate. Soil samples collected from seven land-use types of an agricultural watershed during spring, summer, fall and winter were incubated in the laboratory for DP determination. Low-elevation clay soils in wetlands exhibited 6.3 and 2.5 times greater DP compared to high-elevation silt loam and low-elevation clay soils in croplands, respectively. DP of vegetated-ditches was 1.3 and 4.2 times that of un-vegetated ditches and cultivated soils, respectively. Soil carbon and nitrogen availability, bulk density, and soil moisture significantly affected DP. These factors were significantly influenced in turn by landscape position and land-use type of the watershed. It is evident from these results that low-elevation, fine-textured soils under natural wetlands are the best locations for mediating nitrate loss from agricultural watersheds in the LMV. Landscape position and land-use types can be used as indices for the assessment/modeling of denitrification potential and identification of sites for restoration for nitrate removal in agricultural watersheds. ?? 2006 Elsevier B.V. All rights reserved.

  3. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    NASA Astrophysics Data System (ADS)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    Sustainable production of agricultural commodities and growth of international trade in these goods are challenged as never before by supply-side constraints (such as climate change, water and land scarcity, and environmental degradation) and by demand-side dynamics (volatility in food and energy markets, the strengthening food-energy linkage, population growth, and income growth). On the one hand, the rapidly expanding demand can potentially create new market opportunities for agriculture. On the other hand, there are many threats to a sufficient response by the supply side to meet this growing and changing demand. Agricultural production systems in many countries are neither resource-efficient, nor producing according to their full potential. The stock of natural resources such as land, water, nutrients, energy, and genetic diversity is shrinking relative to demand, and their use must become increasingly efficient in order to reduce environmental impacts and preserve the planet's productive capacity. World energy prices have increased rapidly in recent years. At the same time, agriculture has become more energy-intensive. Higher energy costs have pushed up the cost of producing, transporting and processing agricultural commodities, driving up commodity prices. Higher energy costs have also affected water use and availability through increased costs of water extraction, conveyance and desalinization, higher demand for hydroelectric power, and increased cost of subsidizing water services. In the meantime, the development of biofuels has diverted increasing amounts of agricultural land and water resources to the production of biomass-based renewable energy. This more "intensified" linkage between agriculture and energy comes at a time when there are other pressures on the world's limited resources. The related high food prices, especially those in the developing countries, have led to setbacks in the poverty alleviation effort among the global community with more

  4. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  5. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    PubMed

    Hanson, Helena I; Palmu, Erkki; Birkhofer, Klaus; Smith, Henrik G; Hedlund, Katarina

    2016-01-01

    In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities. PMID:26730734

  6. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities

    PubMed Central

    Birkhofer, Klaus; Smith, Henrik G.; Hedlund, Katarina

    2016-01-01

    In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities. PMID:26730734

  7. Climate, Agriculture, Energy and the Optimal Allocation of Global Land Use

    NASA Astrophysics Data System (ADS)

    Steinbuks, J.; Hertel, T. W.

    2011-12-01

    The allocation of the world's land resources over the course of the next century has become a pressing research question. Continuing population increases, improving, land-intensive diets amongst the poorest populations in the world, increasing production of biofuels and rapid urbanization in developing countries are all competing for land even as the world looks to land resources to supply more environmental services. The latter include biodiversity and natural lands, as well as forests and grasslands devoted to carbon sequestration. And all of this is taking place in the context of faster than expected climate change which is altering the biophysical environment for land-related activities. The goal of the paper is to determine the optimal profile for global land use in the context of growing commercial demands for food and forest products, increasing non-market demands for ecosystem services, and more stringent GHG mitigation targets. We then seek to assess how the uncertainty associated with the underlying biophysical and economic processes influences this optimal profile of land use, in light of potential irreversibility in these decisions. We develop a dynamic long-run, forward-looking partial equilibrium framework in which the societal objective function being maximized places value on food production, liquid fuels (including biofuels), timber production, forest carbon and biodiversity. Given the importance of land-based emissions to any GHG mitigation strategy, as well as the potential impacts of climate change itself on the productivity of land in agriculture, forestry and ecosystem services, we aim to identify the optimal allocation of the world's land resources, over the course of the next century, in the face of alternative GHG constraints. The forestry sector is characterized by multiple forest vintages which add considerable computational complexity in the context of this dynamic analysis. In order to solve this model efficiently, we have employed the

  8. 25 CFR 162.205 - Can individual Indian landowners exempt their agricultural land from certain tribal leasing...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... agricultural land from certain tribal leasing policies? 162.205 Section 162.205 Indians BUREAU OF INDIAN... leasing policies? (a) Individual Indian landowners may exempt their agricultural land from the application of a tribal leasing policy of a type described in § 162.203(b) through (c) of this subpart, if...

  9. Impacts of Biofuel-Induced Agricultural Land Use Changes on Watershed Hydrology and Water Quality

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Zheng, H.

    2015-12-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin (RRNB), an international river basin shared by the US and Canada. The influence of the land use changes on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%. Potential impacts of the future biofuel crop scenarios on watershed hydrology and water quality in the RRNB were also simulated through integrated economic-hydrologic modeling.

  10. Hydrologic and water-quality impacts of agricultural land use changes incurred from bioenergy policies

    NASA Astrophysics Data System (ADS)

    Lin, Zhulu; Anar, Mohammad J.; Zheng, Haochi

    2015-06-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin, an international river basin shared by the US and Canada. The influence of the land use change on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%.

  11. Mapping Soil Organic Carbon Resources Across Agricultural Land Uses in Highland Lesotho Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Knight, J.; Adam, E.

    2015-12-01

    Mapping spatial patterns of soil organic carbon (SOC) using high resolution satellite imagery is especially important in inaccessible or upland areas that have limited field measurements, where land use and land cover (LULC) are changing rapidly, or where the land surface is sensitive to overgrazing and high rates of soil erosion and thus sediment, nutrient and carbon export. Here we outline the methods and results of mapping soil organic carbon in highland areas (~2400 m) of eastern Lesotho, southern Africa, across different land uses. Bedrock summit areas with very thin soils are dominated by xeric alpine grassland; terrace agriculture with strip fields and thicker soils is found within river valleys. Multispectral Worldview 2 imagery was used to map LULC across the region. An overall accuracy of 88% and kappa value of 0.83 were achieved using a support vector machine model. Soils were examined in the field from different LULC areas for properties such as soil depth, maturity and structure. In situ soils in the field were also evaluated using a portable analytical spectral device (ASD) in order to ground truth spectral signatures from Worldview. Soil samples were examined in the lab for chemical properties including organic carbon. Regression modeling was used in order to establish a relationship between soil characteristics and soil spectral reflectance. We were thus able to map SOC across this diverse landscape. Results show that there are notable differences in SOC between upland and agricultural areas which reflect both soil thickness and maturity, and land use practices such as manuring of fields by cattle. Soil erosion and thus carbon (nutrient) export is significant issue in this region, which this project will now be examining.

  12. Agricultural land cover mapping with the aid of digital soil survey data

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.

    1982-01-01

    A study is recounted which assessed the effect of stratifying multidate Landsat MSS data on land cover classification accuracy. The study area covered 49,184 ha (121,534 acres) in Gentry County in northwestern Missouri. A pixel-by-pixel comparison of the two land cover classifications with field-verified land cover indicated improvements in identification of all cover types when land areas were stratified by soils. The introduction of soil map information to the land cover mapping process can improve discrimination of land cover types and reduce confusion among crop types that may be caused by soil-specific management practices, soil-induced crop development differences, and background reflectance characteristics.

  13. Land use policy and agricultural water management of the previous half of century in Africa

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-12-01

    This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries' conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.

  14. Hydrological impacts of land-use change and agricultural policy in the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Macedo, M.; Coe, M. T.; Soares-Filho, B.; Ferreira, L. G.; Panday, P. K.

    2013-12-01

    Land-use change and climate variability are two of the most important forces driving changes to the surface water and energy balance in tropical ecosystems. Our analysis combines satellite-derived data on rainfall (CRU), evapotranspiration (MOD16), soil water storage (GRACE), and land cover (MOD12Q1) to understand the effect of past (2000-2012) land cover changes and climate variability on the water balance of the Brazilian Cerrado (savannah woodlands). Based on these historical relationships, we examine potential future land-use transitions from native Cerrado to pasturelands and mechanized agriculture, using the Brazilian Water Agency's (ANA) 12th order watersheds as our unit of analysis. In the Cerrado, these watersheds constitute nearly 37,500 units (mean area ~5,400 ha) and serve as a useful proxy for property-level land-use decisions. Our future scenarios evaluate the potential ramifications of recent changes in the Brazilian Forest Code, which we estimate may allow for legal deforestation of an additional 40 × 2 million hectares of native Cerrado. Our analysis indicates that historical land-cover changes have already caused a significant decrease in evapotranspiration, leading to a three-fold increase in discharge in small watersheds and a nearly 25% increase in large river basins like the Tocantins-Araguaia. As global demand for agricultural commodities continues to rise, it is likely that large-scale conversion of the Cerrado will continue or accelerate in the coming decade. Our research suggests that the cumulative impact of such large-scale land cover change may shift the water balance sufficiently to alter regional precipitation and deplete groundwater stores. Future research will focus on understanding the potential feedbacks of these large-scale hydrological changes on regional climate and agricultural productivity.

  15. Agricultural chemicals in groundwater of the midwestern United States: Relations to land use

    USGS Publications Warehouse

    Kolpin, D.W.

    1997-01-01

    To determine the relations between land use and concentrations of selected agricultural chemicals (nitrate, atrazine residue [atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) + deethylatrazinc (2-amino-4-chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro-6-ethylamino-s-triazine)], and alachlor residue [alachlor, [2-chloro-2′,6′-diethyl-N-(methoxymethyl) acetanilide] + alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid)] in groundwater, detailed land use information based on accurate measurements from aerial photographs for the 1991 growing season was obtained within a 2-km radius surrounding 100 wells completed in near-surface unconsolidated aquifers in the midwestern USA. The most significant land use factors to the agricultural chemicals examined were: nitrate (amount of irrigated crop production, positive relation), atrazine residue (amount of irrigated crop production, positive relation), and alachlor residue (amount of highly erodible land, inverse relation). The investigation of smaller buffer sizes (size of circular area around sampled wells) proved insightful for this study. Additional land use factors having significant relations to all three agricultural chemicals were identified using these smaller buffer radii. The most significant correlations (correlation maxima) generally occurred at ≤500-m for nitrate and ≥1000-m for atrazine residue and alachlor residue. An attempt to improve the statistical relations to land use by taking hydrologic considerations into account (removing land outside the estimated most probable recharge area from the statistical analysis) was not as successful as anticipated. Only 45% of the nitrate, 32% of the atrazine residue, and 20% of the alachlor residue correlations were improved by a consideration of the estimated most probable recharge area.

  16. Land application of coal combustion by-products: Use in agriculture and land reclamation. Final report

    SciTech Connect

    Horn, M.E.

    1995-06-01

    Land application of coal combustion by-products (CCBP) can prove beneficial for a number of reasons. The data presented in this survey provide a basis for optimizing the rates and timing of CCBP applications, selecting proper target soils and crops, and minimizing adverse effects on soil properties, plant responses, and groundwater quality.

  17. Watershed Analysis of Nitrate Transport as a Result of Agricultural Inputs for Varying Land Use/Land Cover and Soil Type

    NASA Astrophysics Data System (ADS)

    Scott, M. E.; Sykes, J. F.

    2006-12-01

    The Grand River Watershed is one of the largest watersheds in southwestern Ontario with an area of approximately 7000 square kilometers. Ninety percent of the watershed is classified as rural, and 80 percent of the watershed population relies on groundwater as their source of drinking water. Management of the watershed requires the determination of the effect of agricultural practices on long-term groundwater quality and to identify locations within the watershed that are at a higher risk of contamination. The study focuses on the transport of nitrate through the root zone as a result of agricultural inputs with attenuation due to biodegradation. The driving force for transport is spatially and temporally varying groundwater recharge that is a function of land use/land cover, soil and meteorological inputs that yields 47,229 unique soil columns within the watershed. Fertilizer sources are determined from Statistics Canada's Agricultural Census and include livestock manure and a popular commercial fertilizer, urea. Accounting for different application rates yields 60,066 unique land parcels of which 22,809 are classified as croplands where manure and inorganic fertilizes are directly applied. The transport for the croplands is simulated over a 14-year period to investigate the impact of seasonal applications of nitrate fertilizers on the concentration leaching from the root zone to the water table. Based on land use/land cover maps, ArcView GIS is used to define the location of fertilizer applications within the watershed and to spatially visualize data and analyze results. The large quantity of input data is stored and managed using MS-Access and a relational database management system. Nitrogen transformations and ammonium and nitrate uptake by plants and transport through the soil column are simulated on a daily basis using Visual Basic for Applications (VBA) within MS-Access modules. Nitrogen transformations within the soil column were simplified using

  18. Agricultural Literacy: Clarifying a Vision for Practical Application

    ERIC Educational Resources Information Center

    Powell, David; Agnew, David; Trexler, Cary

    2008-01-01

    "Agricultural literacy" is a working concept with considerable range in meaning and impact. An overview of agricultural literacy curricula shows complementary deductive and inductive approaches to the systematic incorporation of agricultural education in K-12 classrooms. Based on positions discussed at the 2005 Agricultural Literacy Special…

  19. Spatial and temporal predictions of agricultural land prices using DSM techniques.

    NASA Astrophysics Data System (ADS)

    Carré, F.; Grandgirard, D.; Diafas, I.; Reuter, H. I.; Julien, V.; Lemercier, B.

    2009-04-01

    Agricultural land prices highly impacts land accessibility to farmers and by consequence the evolution of agricultural landscapes (crop changes, land conversion to urban infrastructures…) which can turn to irreversible soil degradation. The economic value of agricultural land has been studied spatially, in every one of the 374 French Agricultural Counties, and temporally- from 1995 to 2007, by using data of the SAFER Institute. To this aim, agricultural land price was considered as a digital soil property. The spatial and temporal predictions were done using Digital Soil Mapping techniques combined with tools mainly used for studying temporal financial behaviors. For making both predictions, a first classification of the Agricultural Counties was done for the 1995-2006 periods (2007 was excluded and served as the date of prediction) using a fuzzy k-means clustering. The Agricultural Counties were then aggregated according to land price at the different times. The clustering allows for characterizing the counties by their memberships to each class centroid. The memberships were used for the spatial prediction, whereas the centroids were used for the temporal prediction. For the spatial prediction, from the 374 Agricultural counties, three fourths were used for modeling and one fourth for validating. Random sampling was done by class to ensure that all classes are represented by at least one county in the modeling and validation datasets. The prediction was done for each class by testing the relationships between the memberships and the following factors: (i) soil variable (organic matter from the French BDAT database), (ii) soil covariates (land use classes from CORINE LANDCOVER, bioclimatic zones from the WorldClim Database, landform attributes and landform classes from the SRTM, major roads and hydrographic densities from EUROSTAT, average field sizes estimated by automatic classification of remote sensed images) and (iii) socio-economic factors (population

  20. Best Management Practices for sediment control in a Mediterranean agricultural watershed

    NASA Astrophysics Data System (ADS)

    Abdelwahab, Ossama M. M.; Bingner, Ronald L.; Milillo, Fabio; Gentile, Francesco

    2015-04-01

    Soil erosion can lead to severe destruction of agricultural sustainability that affects not only productivity, but the entire ecosystem in the neighboring areas. Sediments transported together with the associated nutrients and chemicals can significantly impact downstream water bodies. Various conservation and management practices implemented individually or integrated together as a system can be used to reduce the negative impacts on agricultural watersheds from soil erosion. Hydrological models are useful tools for decision makers when selecting the most effective combination of management practices to reduce pollutant loads within a watershed system. The Annualized Agricultural Non-point Source (AnnAGNPS) pollutant loading management model can be used to analyze the effectiveness of diverse management and conservation practices that can control or reduce the impact of soil erosion processes and subsequent sediment loads in agricultural watersheds. A 506 km2 Mediterranean medium-size watershed (Carapelle) located in Apulia, Southern Italy was used as a case study to evaluate the model and best management practices (BMPs) for sediment load control. A monitoring station located at the Ordona bridge has been instrumented to continuously monitor stream flow and suspended sediment loads. The station has been equipped with an ultrasound stage meter and a stage recorder to monitor stream flow. An infrared optic probe was used to measure suspended sediment concentrations (Gentile et al., 2010 ). The model was calibrated and validated in the Carapelle watershed on an event basis (Bisantino et al., 2013), and the validated model was used to evaluate the effectiveness of BMPs on sediment reduction. Various management practices were investigated including evaluating the impact on sediment load of: (1) converting all cropland areas into forest and grass covered conditions; (2) converting the highest eroding cropland areas to forest or grass covered conditions; and (3

  1. Soil bacterial diversity changes in response to agricultural land use in semi-arid soils

    NASA Astrophysics Data System (ADS)

    Ding, Guo-Chun; Piceno, Yvette M.; Heuer, Holger; Weinert, Nicole; Dohrmann, Anja B.; Carrillo, Angel; Andersen, Gary L.; Castellanos, Thelma; Tebbe, Christoph C.; Smalla, Kornelia

    2013-04-01

    Natural scrublands in semi-arid deserts are increasingly being converted into agricultural lands. The long-term effect of such a transition in land use on soil bacterial communities was explored at two sites typical of semi-arid deserts in Mexico (Baja California). Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods - denaturing gradient gel electrophoresis (DGGE) and PhyloChip hybridization -employed to analyze 16S rRNA gene fragments amplified from total community DNA. DGGE analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. Soil parameters that differed between land uses were highly correlated with the community composition of taxa responding to land use. Variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses. The long term use for agriculture resulted in profound changes in the bacterial community composition and physicochemical characteristics of former scrublands, which may affect various soil ecosystem functions.

  2. A method for calculating a land-use change carbon footprint (LUC-CFP) for agricultural commodities - applications to Brazilian beef and soy, Indonesian palm oil.

    PubMed

    Persson, U Martin; Henders, Sabine; Cederberg, Christel

    2014-11-01

    The world's agricultural system has come under increasing scrutiny recently as an important driver of global climate change, creating a demand for indicators that estimate the climatic impacts of agricultural commodities. Such carbon footprints, however, have in most cases excluded emissions from land-use change and the proposed methodologies for including this significant emissions source suffer from different shortcomings. Here, we propose a new methodology for calculating land-use change carbon footprints for agricultural commodities and illustrate this methodology by applying it to three of the most prominent agricultural commodities driving tropical deforestation: Brazilian beef and soybeans, and Indonesian palm oil. We estimate land-use change carbon footprints in 2010 to be 66 tCO2 /t meat (carcass weight) for Brazilian beef, 0.89 tCO2 /t for Brazilian soybeans, and 7.5 tCO2 /t for Indonesian palm oil, using a 10 year amortization period. The main advantage of the proposed methodology is its flexibility: it can be applied in a tiered approach, using detailed data where it is available while still allowing for estimation of footprints for a broad set of countries and agricultural commodities; it can be applied at different scales, estimating both national and subnational footprints; it can be adopted to account both for direct (proximate) and indirect drivers of land-use change. It is argued that with an increasing commercialization and globalization of the drivers of land-use change, the proposed carbon footprint methodology could help leverage the power needed to alter environmentally destructive land-use practices within the global agricultural system by providing a tool for assessing the environmental impacts of production, thereby informing consumers about the impacts of consumption and incentivizing producers to become more environmentally responsible. PMID:24838193

  3. Dissolved Organic Carbon Export from Sacramento and San Joaquin River Watersheds as Impacted by Precipitation and Agricultural Land Use

    NASA Astrophysics Data System (ADS)

    Oh, N.; Pallud, C. E.

    2009-12-01

    Most of the agricultural activities in California occur within the Sacramento and San Joaquin River Basins, where, as a consequence, water quality as well as quantity have been significantly affected over the last century. Dissolved organic carbon (DOC) concentrations and fluxes from the Sacramento and San Joaquin River Basins have received much attention because riverine DOC flux is an important part of the carbon cycle connecting terrestrial and oceanic ecosystems and because DOC concentration can influence public health as a precursor of carcinogenic disinfectant byproducts (DBPs) such as trihalomethanes and haloacetic acids. Studies on the fate of DOC in watersheds and its relationship with land use are crucial to improve drinking water quality. Considering that water yield from a watershed is one of the main factors governing riverine DOC flux, it is essential to understand factors affecting riverine discharge from watersheds such as precipitation variability, wetland surface area, soil moisture content, and irrigation methods. We investigated the role of precipitation, crop species, and agricultural practices including flood irrigation on watershed water budget and DOC export from subwatersheds of the Sacramento and San Joaquin River Basins using GIS analysis. The preliminary results indicate that agricultural practices effect on DOC fluxes may deserve further attention due to its impacts on watershed water budget, which will be critical for watershed management of DBP precursors.

  4. Application of TABU Search Algorithm with a Coupled ANNAGNPS-CCHE1D Model to Optimize Agricultural Land Use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A principal contributor to soil erosion and nonpoint source pollution, agricultural activities have a major influence on the environmental quality of a watershed. Impact of agricultural activities on the quality of water resources can be minimized by implementing suitable agriculture land-use types....

  5. The Impact of Policy and Institutional Environment on Costs and Benefits of Sustainable Agricultural Land Uses: The Case of the Chittagong Hill Tracts, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rasul, Golam; Thapa, Gopal B.

    2007-08-01

    As in other mountain regions of Asia, agricultural lands in the Chittagong Hill Tracts (CHT) of Bangladesh are undergoing degradation due primarily to environmentally incompatible land-use systems such as shifting cultivation ( jhum) and annual cash crops. The suitable land-use systems such as agroforestry and timber tree plantation provide benefit to the society at large, but they might not provide attractive economic benefits to farmers, eventually constraining a wide-scale adoption of such land-use systems. Therefore, it is essential to evaluate agricultural land-use systems from both societal and private perspectives in the pursuit of promoting particularly environmentally sustainable systems. This article evaluated five major land-use systems being practiced in CHT, namely jhum, annual cash crops, horticulture, agroforestry, and timber plantation. The results of the financial analysis revealed the annual cash crops as the most attractive land use and jhum as the least attractive of the five land-use systems considered under the study. Horticulture, timber plantation, and agroforestry, considered to be suitable land-use systems particularly for mountainous areas, held the middle ground between these two systems. Annual cash crops provided the highest financial return at the cost of a very high rate of soil erosion. When the societal cost of soil erosion is considered, annual cash crops appear to be the most costly land-use system, followed by jhum and horticulture. Although financially less attractive compared to annual cash crops and horticulture, agroforestry and timber plantation are the socially most beneficial land-use systems. Findings of the alternative policy analyses indicate that there is a good prospect for making environmentally sustainable land-use systems, such as agroforestry and timber plantation, attractive for the farmers by eliminating existing legal and institutional barriers, combined with the provision of necessary support services and

  6. The agroecological matrix as alternative to the land-sparing/agriculture intensification model

    PubMed Central

    Perfecto, Ivette; Vandermeer, John

    2010-01-01

    Among the myriad complications involved in the current food crisis, the relationship between agriculture and the rest of nature is one of the most important yet remains only incompletely analyzed. Particularly in tropical areas, agriculture is frequently seen as the antithesis of the natural world, where the problem is framed as one of minimizing land devoted to agriculture so as to devote more to conservation of biodiversity and other ecosystem services. In particular, the “forest transition model” projects an overly optimistic vision of a future where increased agricultural intensification (to produce more per hectare) and/or increased rural-to-urban migration (to reduce the rural population that cuts forest for agriculture) suggests a near future of much tropical aforestation and higher agricultural production. Reviewing recent developments in ecological theory (showing the importance of migration between fragments and local extinction rates) coupled with empirical evidence, we argue that there is little to suggest that the forest transition model is useful for tropical areas, at least under current sociopolitical structures. A model that incorporates the agricultural matrix as an integral component of conservation programs is proposed. Furthermore, we suggest that this model will be most successful within a framework of small-scale agroecological production. PMID:20339080

  7. Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe

    NASA Astrophysics Data System (ADS)

    Prishchepov, Alexander V.; Radeloff, Volker C.; Baumann, Matthias; Kuemmerle, Tobias; Müller, Daniel

    2012-06-01

    Institutional settings play a key role in shaping land cover and land use. Our goal was to understand the effects of institutional changes on agricultural land abandonment in different countries of Eastern Europe and the former Soviet Union after the collapse of socialism. We studied ˜273 800 km2 (eight Landsat footprints) within one agro-ecological zone stretching across Poland, Belarus, Latvia, Lithuania and European Russia. Multi-seasonal Landsat TM/ETM + satellite images centered on 1990 (the end of socialism) and 2000 (one decade after the end of socialism) were used to classify agricultural land abandonment using support vector machines. The results revealed marked differences in the abandonment rates between countries. The highest rates of land abandonment were observed in Latvia (42% of all agricultural land in 1990 was abandoned by 2000), followed by Russia (31%), Lithuania (28%), Poland (14%) and Belarus (13%). Cross-border comparisons revealed striking differences; for example, in the Belarus-Russia cross-border area there was a great difference between the rates of abandonment of the two countries (10% versus 47% of abandonment). Our results highlight the importance of institutions and policies for land-use trajectories and demonstrate that radically different combinations of institutional change of strong institutions during the transition can reduce the rate of agricultural land abandonment (e.g., in Belarus and in Poland). Inversely, our results demonstrate higher abandonment rates for countries where the institutions that regulate land use changed and where the institutions took more time to establish (e.g., Latvia, Lithuania and Russia). Better knowledge regarding the effects of such broad-scale change is essential for understanding land-use change and for designing effective land-use policies. This information is particularly relevant for Northern Eurasia, where rapid land-use change offers vast opportunities for carbon balance and biodiversity

  8. Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI.

    PubMed

    Leip, Adrian; Britz, Wolfgang; Weiss, Franz; de Vries, Wim

    2011-11-01

    We calculated farm, land, and soil N-budgets for countries in Europe and the EU27 as a whole using the agro-economic model CAPRI. For EU27, N-surplus is 55 kg N ha(-1) yr(-1) in a soil budget and 65 kg N(2)O-N ha(-1) yr(-1) and 67 kg N ha(-1) yr(-1) in land and farm budgets, respectively. NUE is 31% for the farm budget, 60% for the land budget and 63% for the soil budget. NS values are mainly related to the excretion (farm budget) and application (soil and land budget) of manure per hectare of total agricultural land. On the other hand, NUE is best explained by the specialization of the agricultural system toward animal production (farm NUE) or the share of imported feedstuff (soil NUE). Total N input, intensive farming, and the specialization to animal production are found to be the main drivers for a high NS and low NUE. PMID:21420769

  9. River flow changes related to land and water management practices across the conterminous United States.

    PubMed

    Eng, Ken; Wolock, David M; Carlisle, Daren M

    2013-10-01

    The effects of land and water management practices (LWMP)--such as the construction of dams and roads--on river flows typically have been studied at the scale of single river watersheds or for a single type of LWMP. For the most part, assessments of the relative effects of multiple LWMP within many river watersheds across regional and national scales have been lacking. This study assesses flow alteration--quantified as deviation of several flow metrics from natural conditions--at 4196 gauged rivers affected by a variety of LWMP across the conterminous United States. The most widespread causes of flow changes among the LWMP considered were road density and dams. Agricultural development and wastewater discharges also were associated with flow changes in some regions. Dams generally reduced most attributes of flow, whereas road density, agriculture and wastewater discharges tended to be associated with increased flows compared to their natural condition. PMID:23827362

  10. River flow changes related to land and water management practices across the conterminous United States

    USGS Publications Warehouse

    Eng, Ken; Wolock, David M.; Carlisle, Daren M.

    2013-01-01

    The effects of land and water management practices (LWMP)—such as the construction of dams and roads—on river flows typically have been studied at the scale of single river watersheds or for a single type of LWMP. For the most part, assessments of the relative effects of multiple LWMP within many river watersheds across regional and national scales have been lacking. This study assesses flow alteration—quantified as deviation of several flow metrics from natural conditions—at 4196 gauged rivers affected by a variety of LWMP across the conterminous United States. The most widespread causes of flow changes among the LWMP considered were road density and dams. Agricultural development and wastewater discharges also were associated with flow changes in some regions. Dams generally reduced most attributes of flow, whereas road density, agriculture and wastewater discharges tended to be associated with increased flows compared to their natural condition.

  11. Follow-up and modeling of the land use in an intensive agricultural watershed in France

    NASA Astrophysics Data System (ADS)

    Corgne, Samuel; Barbier, Johann; Hubert-Moy, Laurence; Mercier, Gregoire; Solaiman, Basel

    2003-03-01

    In intensive agricultural regions, monitoring land use and cover change represents an important stake. Some land cover changes in agro-systems cause modifications in the management of land use that contribute to increase environmental problems, including an important degradation of water quality. In this context, the identification of land-cover dynamics at high spatial scales constitutes a prior approach for the restoration of water resources. The modeling approach used to study land use and cover changes at a field-scale is adapted from a vector change analysis method generally applied to assess land cover changes from regional to global scales. The main objective of this study is to identify vegetation changes at the field scale during winter, in relation with crop successions. Magnitude and direction of the vector of changes with remote sensing data and GIS, calculated on a small watershed located in Western France for a six-year period (1996-2001) indicate both intensity and nature of observed changes in this area. The results allow to qualify accurately (i.e. at the scale of the field) the type of changes, to quantify them and weigh up their intensity. Then, all the results are integrated in a probabilistic model to build-up a short time land use prediction.

  12. Environmental effects of growing short-rotation woody crops on former agricultural lands

    SciTech Connect

    Tolbert, V.R.; Thornton, F.C.; Joslin, J.D.

    1997-10-01

    Field-scale studies in the Southeast have been addressing the environmental effects of converting agricultural lands to biomass crop production since 1994. Erosion, surface water quality and quantity and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops are being compared. Nutrient cycling, soil physical changes and crop productivity are also being monitored at the three sites. Maximum sediment losses occurred in the spring and fall. Losses were greater from sweetgum planted without a cover crop than with a cover crop. Nutrient losses of N and P in runoff and subsurface water occurred primarily after spring fertilizer application.

  13. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    PubMed

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  14. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability

    PubMed Central

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K.

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  15. Changes in historical Iowa land cover as context for assessing the environmental benefits of current and future conservation efforts on agricultural lands

    USGS Publications Warehouse

    Gallant, Alisa L.; Sadinski, Walt; Roth, Mark F.; Rewa, Charles A.

    2011-01-01

    Conservationists and agriculturists face unprecedented challenges trying to minimize tradeoffs between increasing demands for food, fiber, feed, and biofuels and the resulting loss or reduced values of other ecosystem services, such as those derived from wetlands and biodiversity (Millenium Ecosystem Assessment 2005a, 2005c; Maresch et al. 2008). The Food, Conservation, and Energy Act of 2008 (Pub. L. 110-234, Stat. 923, HR 2419, also known as the 2008 Farm Bill) reauthorized the USDA to provide financial incentives for agricultural producers to reduce environmental impacts via multiple conservation programs. Two prominent programs, the Wetlands Reserve Program (WRP) and the Conservation Reserve Program (CRP), provide incentives for producers to retire environmentally sensitive croplands, minimize erosion, improve water quality, restore wetlands, and provide wildlife habitat (USDA FSA 2008a, 2008b; USDA NRCS 2002). Other conservation programs (e.g., Environmental Quality Incentives Program, Conservation Stewardship Program) provide incentives to implement structural and cultural conservation practices to improve the environmental performance of working agricultural lands. Through its Conservation Effects Assessment Project, USDA is supporting evaluation of the environmental benefits obtained from the public investment in conservation programs and practices to inform decisions on where further investments are warranted (Duriancik et al. 2008; Zinn 1997).

  16. Landuse and agricultural management practice web-service (LAMPS) for agroecosystem modeling and conservation planning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The USDA Natural Resources Conservation Service is developing a Land Management and Operation Database (LMOD) which contains potential model input, howe...

  17. Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt.

    PubMed

    Kühling, Insa; Broll, Gabriele; Trautz, Dieter

    2016-02-15

    The Western Siberian grain belt covers 1millionkm² in Asiatic Russia and is of global importance for agriculture. Massive land-use changes took place in that region after the dissolution of the Soviet Union and the collapse of the state farm system. Decreasing land-use intensity (LUI) in post-Soviet Western Siberia was observed on grassland due to declining livestock whilst on cropland trends of land abandonment reversed in the early 2000s. Recultivation of abandoned cropland as well as increasing fertilizer inputs and narrowing crop rotations led to increasing LUI on cropland during the last two decades. Beyond that general trend, no information is available about spatial distribution and magnitude but a crucial precondition for the development of strategies for sustainable land management. To quantify changes and patterns in LUI, we developed an intensity index that reflects the impacts of land-based agricultural production. Based on subnational yearly statistical data, we calculated two separate input-orientated indices for cropland and grassland, respectively. The indices were applied on two spatial scale: at seven provinces covering the Western Siberian grain belt (Altay Kray, Chelyabinsk, Kurgan, Novosibirsk, Omsk, Sverdlovsk and Tyumen) and at all districts of the central province Tyumen. The spatio-temporal analysis clearly showed opposite trends for the two land-use types: decreasing intensity on grassland (-0.015 LUI units per year) and intensification on cropland (+0.014 LUI units per year). Furthermore, a spatial concentration towards intensity centres occurred during transition from a planned to a market economy. A principal component analysis enabled the individual calculations of both land-use types to be combined and revealed a strong link between biophysical conditions and LUI. The findings clearly showed the need for having a different strategy for future sustainable land management for grassland (predominantly used by livestock of households

  18. Geomorphic response to agricultural land use in small fluvial systems - The role of landscape connectivity

    NASA Astrophysics Data System (ADS)

    Poeppl, R.; Keiler, M.; Glade, T.; Engage-Geomorphological Systems; Risk Research

    2010-12-01

    Nearly all river catchments are affected directly or indirectly by human actions, e.g. varying agricultural land use or interventions into to river course and flow lead to significant geomorphic changes. The rates of fluvial change are accelerating in many river catchments and public and institutional awareness of these changes and their consequences has grown. This trend leads to an increasing need for a deeper understanding of how the system elements are interrelated (connected) and how fluvial systems respond to human activities. Most of the studies relating to such topics focus on extrinsic (e.g. climatic) factors, although vegetation cover is one of the primary intrinsic factors on sediment yield to a river and even the most susceptible factor for human alterations. Furthermore, nearly all of the published studies are dealing with large rivers, disregarding the much more abundant smaller ones, which in sum do also influence larger rivers. The presented study contributes to gain a deeper understanding of how river systems geomorphologically respond to human activities. The focus in this study is on the importance of hillslope-channel connectivity relationships, as well as on connectivity relationships between the channel reaches in catchments with agricultural land use. Therefore, aerial photograph and airborne laserscan-interpretations were used to create detailed land use and river maps in order to gather current land use and river planform geometry conditions. The land use data was integrated to a GIS-related spatial soil erosion model so as to determine sources of fine sediment from eroding top soil in agricultural areas. Furthermore, a DEM-based multiple-flow model was applied to examine hillslope-channel connectivity relationships. River bed sediment composition, sediment embeddedness and in-channel accumulation of fine sediments were surveyed as potential indicators for geomorphic system response to agricultural land-use, as well as to determine

  19. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector.

    PubMed

    Bustamante, Mercedes; Robledo-Abad, Carmenza; Harper, Richard; Mbow, Cheikh; Ravindranat, Nijavalli H; Sperling, Frank; Haberl, Helmut; Pinto, Alexandre de Siqueira; Smith, Pete

    2014-10-01

    The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces

  20. The impact of land use on biological activity of agriculture soils. An State-of-the-Art

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; Cerdà, Artemi; García-Orenes, Fuensanta

    2014-05-01

    Biological activity is a crucial soil property affecting soil sustainability and crop production. The unsuitable land management can lead to a loss in soil fertility and a reduction in the abundance and diversity of soil microorganisms. This can be as a consequence of high erosion rates due to the mismanagement of farmers (Cerdà et al., 2009a). However ecological practices and some organic amendments can promote the activities of soil microbial communities, and increase its biodiversity (García-Orenes et al., 2010; 2013). The impact of land use in microbiological properties of agriculture soil are presented and discussed in this review. Biological activity is quantified by microbial soil communities and soil enzyme activities to interpret the effects of soil management practices (Morugán-Coronado et al., 2013). The aim of biological activity tests is to give a reliable description of the state of agricultural soils under the effect of different land uses. Numerous methods have been used to determine the impact of land uses on microbiological properties. The current used methods for detecting microbial diversity are based on molecular techniques centered on the 16S and 18S rRNA encoding sequences such as CLPP: community-level physiological profiles; T-RFLP: terminal restriction fragment length polymorphism; DGGE: denaturing gradient gel electrophoresis; OFRG: oligonucleotide fingerprinting of rRNA genes, ARISA: Automated Ribosomal intergenic spacer analysis, SSCP: single-strand conformation polymorphism. And techniques based on the cellular composition of the microbes such as PLFA: phospholipid fatty acid analysis. Other methods are based on the activity of microbes, for example, Cmic: microbial biomass carbon; SIR: substrate induced respiration; BSR: Basal soil respiration; qCO2 metabolic quotient; enzymatic activities (Urease, ß-glucosidase and phosphatase) (Deng, 2012). Agricultural land management can contribute to increased rates of erosion due to

  1. Impact of agricultural practices and river catchment characteristics on river and bathing water quality.

    PubMed

    Aitken, M N

    2003-01-01

    The objective was to investigate the potential risk of faecal indicator organism (FIO) bacteriological contamination of river catchments and coastal bathing waters from farm management practices and to develop practices to reduce the risk. A risk assessment on 117 farms was carried out in two river catchments in south-west Scotland. Manure storage facilities, farming practices, field conditions and catchment characteristics were assessed. River samples at 33 locations were regularly taken and analysed for FIOs. Available manure storage capacity and farm management practices are inadequate on a high proportion of farms and FIO contamination of watercourses was likely the result of effluent transported into watercourses due to non-collection or poor containment. In addition, surface run-off or leaching following land application of manure or intensive stocking in adverse conditions was a high risk on up to 50% of farms. The concentrations of FIOs in the streams of two sub-catchments with high livestock intensity was 4 to 8 times higher compared to the two sub-catchments which had a low livestock intensity. The majority of potential risks of agricultural pollution to watercourses may be eliminated through improved manure and dirty water management, forward planning of manure spreading activities and improved operational procedures. PMID:15137173

  2. Development of a regionally consistent geospatial dataset of agricultural lands in the Upper Colorado River Basin, 2007-10

    USGS Publications Warehouse

    Buto, Susan G.; Gold, Brittany L.; Jones, Kimberly A.

    2014-01-01

    Irrigation in arid environments can alter the natural rate at which salts are dissolved and transported to streams. Irrigated agricultural lands are the major anthropogenic source of dissolved solids in the Upper Colorado River Basin (UCRB). Understanding the location, spatial distribution, and irrigation status of agricultural lands and the method used to deliver water to agricultural lands are important to help improve the understanding of agriculturally derived dissolved-solids loading to surface water in the UCRB. Irrigation status is the presence or absence of irrigation on an agricultural field during the selected growing season or seasons. Irrigation method is the system used to irrigate a field. Irrigation method can broadly be grouped into sprinkler or flood methods, although other techniques such as drip irrigation are used in the UCRB. Flood irrigation generally causes greater dissolved-solids loading to streams than sprinkler irrigation. Agricultural lands in the UCRB mapped by state agencies at varying spatial and temporal resolutions were assembled and edited to represent conditions in the UCRB between 2007 and 2010. Edits were based on examination of 1-meter resolution aerial imagery collected between 2009 and 2011. Remote sensing classification techniques were used to classify irrigation status for the June to September growing seasons between 2007 and 2010. The final dataset contains polygons representing approximately 1,759,900 acres of agricultural lands in the UCRB. Approximately 66 percent of the mapped agricultural lands were likely irrigated during the study period.

  3. Linking carbon stock change from land-use change to consumption of agricultural products: Alternative perspectives.

    PubMed

    Goh, Chun Sheng; Wicke, Birka; Faaij, André; Bird, David Neil; Schwaiger, Hannes; Junginger, Martin

    2016-11-01

    Agricultural expansion driven by growing demand has been a key driver for carbon stock change as a consequence of land-use change (CSC-LUC). However, its relative role compared to non-agricultural and non-productive drivers, as well as propagating effects were not clearly addressed. This study contributed to this subject by providing alternative perspectives in addressing these missing links. A method was developed to allocate historical CSC-LUC to agricultural expansions by land classes (products), trade, and end use. The analysis for 1995-2010 leads to three key trends: (i) agricultural land degradation and abandonment is found to be a major (albeit indirect) driver for CSC-LUC, (ii) CSC-LUC is spurred by the growth of cross-border trade, (iii) non-food use (excluding liquid biofuels) has emerged as a significant contributor of CSC-LUC in the 2000's. In addition, the study demonstrated that exact values of CSC-LUC at a single spatio-temporal point may change significantly with different methodological settings. For example, CSC-LUC allocated to 'permanent oil crops' changed from 0.53 Pg C (billion tonne C) of carbon stock gain to 0.11 Pg C of carbon stock loss when spatial boundaries were changed from global to regional. Instead of comparing exact values for accounting purpose, key messages for policymaking were drawn from the main trends. Firstly, climate change mitigation efforts pursued through a territorial perspective may ignore indirect effects elsewhere triggered through trade linkages. Policies targeting specific commodities or types of consumption are also unable to quantitatively address indirect CSC-LUC effects because the quantification changes with different arbitrary methodological settings. Instead, it is recommended that mobilising non-productive or under-utilised lands for productive use should be targeted as a key solution to avoid direct and indirect CSC-LUC. PMID:27543749

  4. Land-use change affects water recycling in Brazil's last agricultural frontier.

    PubMed

    Spera, Stephanie A; Galford, Gillian L; Coe, Michael T; Macedo, Marcia N; Mustard, John F

    2016-10-01

    Historically, conservation-oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land-use and land-cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land-use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km(3) less (-3%) water than if the land cover had been native Cerrado vegetation. ET from single-cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double-cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December-May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system. PMID:27028754

  5. Selected veterinary pharmaceuticals in agricultural water and soil from land application of animal manure.

    PubMed

    Song, Wenlu; Ding, Yunjie; Chiou, Cary T; Li, Hui

    2010-01-01

    Veterinary pharmaceuticals are commonly administered to animals for disease control, and added into feeds at subtherapeutic levels to improve feeding efficiency. As a result of these practices, a certain fraction of the pharmaceuticals are excreted into animal manures. Land application of these manures contaminates soils with the veterinary pharmaceuticals, which can subsequently lead to contamination of surface and groundwaters. Information on the occurrence and fate of pharmaceuticals in soil and water is needed to assess the potential for exposure of at-risk populations and the impacts on agricultural ecosystems. In this study, we investigated the occurrence and fate of four commonly used veterinary pharmaceuticals (amprolium, carbadox, monensin, and tylosin) in a farm in Michigan. Amprolium and monensin were frequently detected in nearby surface water, with concentrations ranging from several to hundreds of nanograms per liter, whereas tylosin or carbadox was rarely found. These pharmaceuticals were more frequently detected in surface runoff during nongrowing season (October to April) than during growing season (May to September). Pharmaceuticals resulting from postharvest manure application appeared to be more persistent than those from spring application. High concentrations of pharmaceuticals in soils were generally observed at the sites where the respective concentrations in surface water were also high. For monensin, the ratios of soil-sorbed to aqueous concentrations obtained from field samples were within the order of the distribution coefficients obtained from laboratory studies. These results suggest that soil is a reservoir for veterinary pharmaceuticals that can be disseminated to nearby surface water via desorption from soil, surface runoff, and soil erosion. PMID:20830908

  6. Operational 333m Biophysical Products of the Copernicus Global Land Service for Agriculture Monitoring

    NASA Astrophysics Data System (ADS)

    Lacaze, R.; Smets, B.; Baret, F.; Weiss, M.; Ramon, D.; Montersleet, B.; Wandrebeck, L.; Calvet, J.-C.; Roujean, J.-L.; Camacho, F.

    2015-04-01

    The Copernicus Global Land service provides continuously a set of bio-geophysical variables describing, over the whole globe, the vegetation dynamic, the energy budget at the continental surface and some components of the water cycle. These generic products serve numerous applications including agriculture and food security monitoring. The portfolio of the Copernicus Global Land service contains Essential Climate Variables like the Leaf Area Index (LAI), the Fraction of PAR absorbed by the vegetation (FAPAR), the surface albedo, the Land Surface Temperature, the soil moisture, the burnt areas, the areas of water bodies, and additional vegetation indices. They are generated every hour, every day or every 10 days on a reliable automatic basis from Earth Observation satellite data. Beside this timely production, the available historical archives have been processed, using the same innovative algorithms, to get consistent time series as long as possible. All products are accessible, free of charge after registration through FTP/HTTP (land.copernicus.eu/global/>http://land.copernicus.eu/global/) and through the GEONETCast satellite distribution system. The evolution of the service towards the operations at 333m resolution is partly supported by the FP7/ImagineS project which focuses on the retrieval of LAI, FAPAR, fraction of vegetation cover and surface albedo from PROBA-V sensor data. The paper presents the innovations of the 333m biophysical products, make an overview of their current status, and introduce the next steps of the evolution of the Copernicus Global Land service.

  7. Modeling the impact of agricultural land use and management on US carbon budgets

    DOE PAGESBeta

    Drewniak, B. A.; Mishra, U.; Song, J.; Prell, J.; Kotamarthi, V. R.

    2014-09-22

    Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO2, depending on land management practices. The Community Land Model (CLM) provides a useful tool to explore how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continental Unitedmore » States over approximately a 170 year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual plots growing maize and soybean lost up to 65% of the carbon stored, compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5% and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.« less

  8. Modeling the impact of agricultural land use and management on US carbon budgets

    DOE PAGESBeta

    Drewniak, B. A.; Mishra, U.; Song, J.; Prell, J.; Kotamarthi, V. R.

    2015-04-09

    Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO2, depending on land management practices. The Community Land Model (CLM) provides a useful tool for exploring how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continental Unitedmore » States over approximately a 170-year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual subgrids (the equivalent of a field plot) growing maize and soybean lost up to 65% of the carbon stored compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5 and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.« less

  9. Modeling the impact of agricultural land use and management on US carbon budgets

    NASA Astrophysics Data System (ADS)

    Drewniak, B. A.; Mishra, U.; Song, J.; Prell, J.; Kotamarthi, V. R.

    2014-09-01

    Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO2, depending on land management practices. The Community Land Model (CLM) provides a useful tool to explore how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continental United States over approximately a 170 year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual plots growing maize and soybean lost up to 65% of the carbon stored, compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5% and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.

  10. Modeling the impact of agricultural land use and management on US carbon budgets

    NASA Astrophysics Data System (ADS)

    Drewniak, B. A.; Mishra, U.; Song, J.; Prell, J.; Kotamarthi, V. R.

    2015-04-01

    Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO2, depending on land management practices. The Community Land Model (CLM) provides a useful tool for exploring how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continental United States over approximately a 170-year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual subgrids (the equivalent of a field plot) growing maize and soybean lost up to 65% of the carbon stored compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5 and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.

  11. Promoting Sustainable Agricultural Practices Through Remote Sensing Education and Outreach

    NASA Astrophysics Data System (ADS)

    Driese, K. L.; Sivanpillai, R.

    2007-12-01

    Ever increasing demand for food and fiber calls for farm management strategies such as effective use of chemicals and efficient water use that will maximize productivity while reducing adverse impacts on the environment. Remotely sensed data collected by satellites are a valuable resource for farmers and ranchers for gaining insights about farm and ranch productivity. While researchers in universities and agencies have made tremendous advances, technology transfer to end-users has lagged, preventing the farmers from taking advantage of this valuable resource. To overcome this barrier, the Upper Midwest Aerospace Consortium (UMAC), a NASA funded program headed by the University of North Dakota, has been working with end-users to promote the use of remote sensing technology for sustainable agricultural practices. We will highlight the UMAC activities in Wyoming aimed at promoting this technology to sugar-beet farmers in the Big Horn Basin. To assist farmers who might not have a computer at home, we provide them to local county Cooperative Extension Offices pre-loaded with relevant imagery. Our targeted outreach activities have resulted in farmers requesting and using new and old Landsat images to identify growth anomalies and trends which have enabled them to develop management zones within their croplands.

  12. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands

    PubMed Central

    Mladenoff, David J.; Sahajpal, Ritvik; Johnson, Christopher P.; Rothstein, David E.

    2016-01-01

    Perennial cellulosic feedstocks may have potential to reduce life-cycle greenhouse gas (GHG) emissions by offsetting fossil fuels. However, this potential depends on meeting a number of important criteria involving land cover change, including avoiding displacement of agricultural production, not reducing uncultivated natural lands that provide biodiversity habitat and other valued ecosystem services, and avoiding the carbon debt (the amount of time needed to repay the initial carbon loss) that accompanies displacing natural lands. It is unclear whether recent agricultural expansion in the United States competes with lands potentially suited for bioenergy feedstocks. Here, we evaluate how recent land cover change (2008–2013) has affected the availability of lands potentially suited for bioenergy feedstock production in the U.S. Lake States (Minnesota, Wisconsin, Michigan) and its impact on other natural ecosystems. The region is potentially well suited for a diversity of bioenergy production systems, both grasses and woody biomass, due to the widespread forest economy in the north and agricultural economy in the south. Based on remotely-sensed data, our results show that between 2008 and 2013, 836,000 ha of non-agricultural open lands were already converted to agricultural uses in the Lake States, a loss of nearly 37%. The greatest relative changes occurred in the southern half that includes some of the most diverse cultivable lands in the country. We use transition diagrams to reveal gross changes that can be obscured if only net change is considered. Our results indicate that expansion of row crops (corn, soybean) was responsible for the majority of open land loss. Even if recently lost open lands were brought into perennial feedstock production, there would a substantial carbon debt. This reduction in open land availability for biomass production is closing the window of opportunity to establish a sustainable cellulosic feedstock economy in the Lake States as

  13. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands.

    PubMed

    Mladenoff, David J; Sahajpal, Ritvik; Johnson, Christopher P; Rothstein, David E

    2016-01-01

    Perennial cellulosic feedstocks may have potential to reduce life-cycle greenhouse gas (GHG) emissions by offsetting fossil fuels. However, this potential depends on meeting a number of important criteria involving land cover change, including avoiding displacement of agricultural production, not reducing uncultivated natural lands that provide biodiversity habitat and other valued ecosystem services, and avoiding the carbon debt (the amount of time needed to repay the initial carbon loss) that accompanies displacing natural lands. It is unclear whether recent agricultural expansion in the United States competes with lands potentially suited for bioenergy feedstocks. Here, we evaluate how recent land cover change (2008-2013) has affected the availability of lands potentially suited for bioenergy feedstock production in the U.S. Lake States (Minnesota, Wisconsin, Michigan) and its impact on other natural ecosystems. The region is potentially well suited for a diversity of bioenergy production systems, both grasses and woody biomass, due to the widespread forest economy in the north and agricultural economy in the south. Based on remotely-sensed data, our results show that between 2008 and 2013, 836,000 ha of non-agricultural open lands were already converted to agricultural uses in the Lake States, a loss of nearly 37%. The greatest relative changes occurred in the southern half that includes some of the most diverse cultivable lands in the country. We use transition diagrams to reveal gross changes that can be obscured if only net change is considered. Our results indicate that expansion of row crops (corn, soybean) was responsible for the majority of open land loss. Even if recently lost open lands were brought into perennial feedstock production, there would a substantial carbon debt. This reduction in open land availability for biomass production is closing the window of opportunity to establish a sustainable cellulosic feedstock economy in the Lake States as

  14. Designing impact assessments for evaluating ecological effects of agricultural conservation practices on streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation practices are regularly implemented within agricultural watersheds throughout the United States without evaluating their ecological impacts. Scientific evaluations documenting how habitat and aquatic biota within streams respond to these practices are needed for evaluating the effects o...

  15. Assessing the effect of agricultural land abandonment on bird communities in southern-eastern Europe.

    PubMed

    Zakkak, Sylvia; Radovic, Andreja; Nikolov, Stoyan C; Shumka, Spase; Kakalis, Lefteris; Kati, Vassiliki

    2015-12-01

    Agricultural land abandonment is recognized as a major environmental threat in Europe, being particularly pronounced in south-eastern Europe, where knowledge on its effects is limited. Taking the Balkan Peninsula as a case study, we investigated agricultural abandonment impact on passerine communities at regional level. We set up a standard methodology for site selection (70 sites) and data collection, along a well-defined forest-encroachment gradient that reflects land abandonment in four countries: Albania, Bulgaria, Croatia and Greece. Regardless the different socio-economic and political histories in the Balkans that led to diverse land abandonment patterns in space and time, rural abandonment had a consistent negative effect on bird communities, while regional-level analysis revealed patterns that were hidden at local level. The general trends were an increase of forest-dwelling bird species at the expense of farmland birds, the decline of overall bird species richness, as well as the decline of Species of European Conservation Concern (SPECs) richness and abundance. Many farmland bird species declined with land abandonment, whereas few forest species benefited from the process. In conclusion, our results support CAP towards hampering rural land abandonment and preserving semi-open rural mosaics in remote upland areas, using a suite of management measures carefully tailored to local needs. The maintenance of traditional rural landscapes should be prioritized in the Balkans, through the timely identification of HNV farmland that is most prone to abandonment. We also suggest that coordinated transnational research is needed, for a better assessment of conservation options in remote rural landscapes at European scale, including the enhancement of wild grazers' populations as an alternative in areas where traditional land management is rather unlikely to be re-established. PMID:26379254

  16. Effects of Privately Owned Land Management Practices on Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Getson, J. M.; Hutyra, L.; Short, A. G.; Templer, P. H.; Kittredge, D.

    2014-12-01

    An increasing fraction of the global population lives in urban settings. Understanding how the human-natural system couple and decouple biogeochemical cycles across urbanization gradients is crucial for human health and environmental sustainability. Natural processes of nutrient deposition, export, uptake, and internal cycling can be disrupted by human activities. Residential landscape management (e.g. composting, leaf litter collection, fertilizer application) interrupts these natural biogeochemical cycles; therefore, it is key to characterize these practices and their impacts. This study looks at private land management practices along a rural to urban gradient in Boston, Massachusetts. We used a mail survey instrument coupled with biogeochemical measurements and remote sensing derived estimates of aboveground biomass to estimate biogeochemical modifications associated with residential landscape management practices. We find parcel size influences management behavior, management practices differ for leaf litter and lawn clippings, and fertilizer application is unrelated to parcel size or degree of urban-ness. These management practices result in nutrient redistribution that differs with residential characteristics.

  17. Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975-2006 period.

    PubMed

    Barretto, Alberto G O P; Berndes, Göran; Sparovek, Gerd; Wirsenius, Stefan

    2013-06-01

    Does agricultural intensification reduce the area used for agricultural production in Brazil? Census and other data for time periods 1975-1996 and 1996-2006 were processed and analyzed using Geographic Information System and statistical tools to investigate whether and if so, how, changes in yield and stocking rate coincide with changes in cropland and pasture area. Complementary medium-resolution data on total farmland area changes were used in a spatially explicit assessment of the land-use transitions that occurred in Brazil during 1960-2006. The analyses show that in agriculturally consolidated areas (mainly southern and southeastern Brazil), land-use intensification (both on cropland and pastures) coincided with either contraction of both cropland and pasture areas, or cropland expansion at the expense of pastures, both cases resulting in farmland stability or contraction. In contrast, in agricultural frontier areas (i.e., the deforestation zones in central and northern Brazil), land-use intensification coincided with expansion of agricultural lands. These observations provide support for the thesis that (i) technological improvements create incentives for expansion in agricultural frontier areas; and (ii) farmers are likely to reduce their managed acreage only if land becomes a scarce resource. The spatially explicit examination of land-use transitions since 1960 reveals an expansion and gradual movement of the agricultural frontier toward the interior (center-western Cerrado) of Brazil. It also indicates a possible initiation of a reversed trend in line with the forest transition theory, i.e., agricultural contraction and recurring forests in marginally suitable areas in southeastern Brazil, mainly within the Atlantic Forest biome. The significant reduction in deforestation that has taken place in recent years, despite rising food commodity prices, indicates that policies put in place to curb conversion of native vegetation to agriculture land might be

  18. Mining Information form a Coupled Air Quality Model to Examine the Impacts of Agricultural Management Practices on Air and Groundwater Quality

    EPA Science Inventory

    Attributing nitrogen (N) in the environment to emissions from agricultural management practices is difficult because of the complex and inter-related chemical and biological reactions associated with N and its cascading effects across land, air and water. Such analyses are criti...

  19. Validation of SWEEP for contrasting agricultural land use types in the Tarim Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to aid in identifying land management practices with the potential to control soil erosion, models such as the Wind Erosion Prediction System (WEPS) have been developed to assess soil erosion. The objective of this study was to test the performance of the WEPS erosion submodel (the Single-e...

  20. Modeling the transfer of land and water from agricultural to urban uses in the Middle Rio Grande Basin, New Mexico.

    SciTech Connect

    Jarratt, Janet; Passell, Howard David; Kelly, Susan; Malczynski, Leonard A.; Chermak, Janie; Van Bloeman Waanders, Paul; McNamara, Laura A.; Tidwell, Vincent Carroll; Pallachula, Kiran; Turnley, Jessica Glicken; Kobos, Peter Holmes; Newman, Gretchen Carr

    2004-11-01

    lack of accuracy and completeness, water rights ownership was a poor indicator of water and land usage habits and patterns. We also found that commitment among users in the Middle Rio Grande Valley is to an agricultural lifestyle, not to a community or place. This commitment is conditioned primarily by generational cohort and past experience. If conditions warrant, many would be willing to practice the lifestyle elsewhere. A related finding was that sometimes the pressure to sell was not the putative price of the land, but the taxes on the land. These taxes were, in turn, a function of the level of urbanization of the neighborhood. This urbanization impacted the quality of the agricultural lifestyle. The project also yielded some valuable lessons regarding the model development process. A facilitative and collaborative style (rather than a top-down, directive style) was most productive with the inter-disciplinary , inter-institutional team that worked on the project. This allowed for the emergence of a process model which combined small, discipline- and/or task-specific subgroups with larger, integrating team meetings. The project objective was to develop a model that could be used to run test scenarios in which we explored the potential impact of different policy options. We achieved that objective, although not with the level of success or modeling fidelity which we had hoped for. This report only describes very superficially the results of test scenarios, since more complete analysis of scenarios would require more time and effort. Our greatest obstacle in the successful completion of the project was that required data were sparse, of poor quality, or completely nonexistent. Moreover, we found no similar modeling or research efforts taking place at either the state or local level. This leads to a key finding of this project: that state and local policy decisions regarding land use, development, urbanization, and water resource allocation are being made with minimal

  1. From Agricultural Extension to Capacity Development: Exploring the Foundations of an Emergent Form of Practice

    ERIC Educational Resources Information Center

    Lauzon, Al

    2013-01-01

    This essay argues that capacity development is a response to changes in the organization and practice of agricultural extension as these changes have excluded small resource farmers. In this essay I trace the changes in the organization of agricultural extension through to the emergence of the concept and practice of capacity development. The idea…

  2. College Students' View of Biotechnology Products and Practices in Sustainable Agriculture Systems

    ERIC Educational Resources Information Center

    Anderson, William A.

    2008-01-01

    Sustainable agriculture implies the use of products and practices that sustain production, protect the environment, ensure economic viability, and maintain rural community viability. Disagreement exists as to whether or not the products and practices of modern biotechnological support agricultural sustainability. The purpose of this study was to…

  3. Arbuscular mycorrhizal fungi diversity influenced by different agricultural management practices in a semi-arid Mediterranean agro-ecosystem

    NASA Astrophysics Data System (ADS)

    de Mar Alguacil, Maria; Torrecillas, Emma; Garcia-Orenes, Fuensanta; Torres, Maria Pilar; Roldan, Antonio

    2013-04-01

    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study a field experiment was performed at the El Teularet-Sierra de Enguera Experimental Station (eastern Spain) to assess the influence during a 6-yr period of different agricultural practices on the diversity of arbuscular mycorrhizal fungi (AMF). The management practices included residual herbicide use, ploughing, ploughing + oats, addition of oat straw mulch and a control (land abandonment). Adjacent soil under natural vegetation was used as a reference for local, high-quality soil and as a control for comparison with the agricultural soils under different management practices. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Thirty-six different phylotypes were identified, which were grouped in four families: Glomeraceae, Paraglomeraceae, Ambisporaceae and Claroideoglomeraceae. The first results showed significant differences in the distribution of the AMF phylotypes as consequence of the difference between agricultural management practices. Thus, the lowest diversity was observed for the plot that was treated with herbicide. The management practices including ploughing and ploughing + oats had similar AMF diversity. Oat straw mulching yielded the highest number of different AMF sequence types and showed the highest diversity index. Thus, this treatment could be more suitable in sustainable soil use and therefore protection of biodiversity.

  4. Productivity ranges of sustainable biomass potentials from non-agricultural land

    NASA Astrophysics Data System (ADS)

    Schueler, Vivian; Fuss, Sabine; Steckel, Jan Christoph; Weddige, Ulf; Beringer, Tim

    2016-07-01

    Land is under pressure from a number of demands, including the need for increased supplies of bioenergy. While bioenergy is an important ingredient in many pathways compatible with reaching the 2 °C target, areas where cultivation of the biomass feedstock would be most productive appear to co-host other important ecosystems services. We categorize global geo-data on land availability into productivity deciles, and provide a geographically explicit assessment of potentials that are concurrent with EU sustainability criteria. The deciles unambiguously classify the global productivity range of potential land currently not in agricultural production for biomass cultivation. Results show that 53 exajoule (EJ) sustainable biomass potential are available from 167 million hectares (Mha) with a productivity above 10 tons of dry matter per hectare and year (tD Mha‑1 a‑1), while additional 33 EJ are available on 264 Mha with yields between 4 and 10 tD M ha‑1 a‑1: some regions lose less of their highly productive potentials to sustainability concerns than others and regional contributions to bioenergy potentials shift when less productive land is considered. Challenges to limit developments to the exploitation of sustainable potentials arise in Latin America, Africa and Developing Asia, while new opportunities emerge for Transition Economies and OECD countries to cultivate marginal land.

  5. 25 CFR 162.239 - How will payment rights and obligations relating to agricultural land be allocated between the...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Condemnation awards. (b) An agricultural lease may provide for the tenant to assume certain cost-share or other payment obligations that have attached to the land through past farming and grazing operations, so long...

  6. 25 CFR 162.239 - How will payment rights and obligations relating to agricultural land be allocated between the...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Condemnation awards. (b) An agricultural lease may provide for the tenant to assume certain cost-share or other payment obligations that have attached to the land through past farming and grazing operations, so long...

  7. 25 CFR 162.239 - How will payment rights and obligations relating to agricultural land be allocated between the...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Condemnation awards. (b) An agricultural lease may provide for the tenant to assume certain cost-share or other payment obligations that have attached to the land through past farming and grazing operations, so long...

  8. 25 CFR 162.239 - How will payment rights and obligations relating to agricultural land be allocated between the...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Condemnation awards. (b) An agricultural lease may provide for the tenant to assume certain cost-share or other payment obligations that have attached to the land through past farming and grazing operations, so long...

  9. 25 CFR 162.239 - How will payment rights and obligations relating to agricultural land be allocated between the...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Condemnation awards. (b) An agricultural lease may provide for the tenant to assume certain cost-share or other payment obligations that have attached to the land through past farming and grazing operations, so long...

  10. Comparative study of model prediction of diffuse nutrient losses in response to changes in agricultural practices.

    PubMed

    Vagstad, N; French, H K; Andersen, H E; Behrendt, H; Grizzetti, B; Groenendijk, P; Lo Porto, A; Reisser, H; Siderius, C; Stromquist, J; Hejzlar, J; Deelstra, J

    2009-03-01

    This article presents a comparative study of modelled changes in nutrient losses from two European catchments caused by modifications in agricultural practices. The purpose was not to compare the actual models used, but rather to assess the uncertainties a manager may be faced with after receiving decision support from consultants using different models. Seven modelling teams were given the same data about two catchments and their management characteristics and were asked to model the same changes in management practices using the model of their own choice. This can potentially cause accumulated 'errors' due to differences in the modelling teams' interpretation of relevant processes and definitions of boundary conditions (inputs). The study was carried out within the framework of the EUROHARP project, which aimed at harmonising procedures for quantifying diffuse losses of nitrogen and phosphorus from agriculture. Models are important for assessing river basin management plans (RBMPs) as required e.g. under the EC Water Framework Directive and Action Plans under the EC Nitrates Directive. This article illustrates some challenges with respect to interpreting such modelling results. The selected management scenarios include changes in fertiliser application levels, changes in livestock numbers and changes in land-use and crop rotation systems. Seven models were applied for the same scenarios in the Enza catchment in Italy and the Zelivka catchment in the Czech Republic. All models had been calibrated and validated with respect to historical data of climatic conditions, water quality and discharge measurements. The modelling results reveal a variation in predicted effects of the management scenarios, causing different conclusions with respect to choice of best management practice for reducing nutrient losses. The study demonstrates that it is important that care is taken by modellers and involved decision makers throughout the entire modelling process, both with regard

  11. Using agricultural practices information for multiscale environmental assessment of phosphorus risk

    NASA Astrophysics Data System (ADS)

    Matos Moreira, Mariana; Lemercier, Blandine; Michot, Didier; Dupas, Rémi; Gascuel-Odoux, Chantal

    2015-04-01

    positively correlated with soil P contents. Also land use, crop rotation and livestock production system influenced P contents. The highest mean values of P were found in croplands and close to pig farms. The lowest mean values of P were found in pastures and nearby dairy farms. The spatial analysis showed that sand content, geophysical parameters and P input by organic fertilization were the most significant variables for the linear predictive model of extractable P contents. For total P, geophysical parameters and P balance had the highest importance for the respective linear predictive model. This study revealed that agricultural practices information plays a significant role in soil P distribution. Once controlling factors of P spatial distribution were identified, relationships could be extrapolated at regional scale using the National Soil Test Database providing information on extractable P content and available information on agricultural practices in order to improve predictions of total P content at regional scale. Lemercier B., Gaudin, L., Walter C., Aurousseau P., Arrouays D., Schvartz C., Saby N., Follain S., Abrassart J., 2008. Soil phosphorus monitoring at the regional level by means of a soil test database. Soil Use and Management, 24, 131-138.

  12. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields

    PubMed Central

    Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K.

    2011-01-01

    There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply

  13. Effectiveness of conservation agriculture practices on soil erosion processes in semi-arid areas of Zimbabwe

    NASA Astrophysics Data System (ADS)

    Chikwari, Emmanuel; Mhaka, Luke; Gwandu, Tariro; Chipangura, Tafadzwa; Misi Manyanga, Amos; Sabastian Matsenyengwa, Nyasha; Rabesiranana, Naivo; Mabit, Lionel

    2016-04-01

    - The application of fallout radionuclides (FRNs) in soil erosion and redistribution studies has gained popularity since the late 1980s. In Zimbabwe, soil erosion research was mostly based on conventional methods which included the use of erosion plots for quantitative measurements and erosion models for predicting soil losses. Only limited investigation to explore the possibility of using Caesium-137 (Cs-137) has been reported in the early 1990s for undisturbed and cultivated lands in Zimbabwe. In this study, the Cs-137 technique was applied to assess the impact of soil conservation practices on soil losses and to develop strategies and support effective policies that help farmers in Zimbabwe for sustainable land management. The study was carried out at the Makoholi research station 30 km north of the Masvingo region which is located 260 km south of Harare. The area is semi-arid and the study site comprises coarse loamy sands, gleyic lixisols. The conservation agriculture (CA) practices used within the area since 1988 include (i) direct seeding (DS) with mulch, (ii) CA basins with mulch, and (iii) 18 years direct seeding, left fallow for seven years and turned into conventional tillage since 2012 (DS/F/C). The Cs-137 reference inventory was established at 214 ± 16 Bq/m2. The mean inventories for DS, CA basins and DS/F/C were 195, 190 and 214 Bq/m2 respectively. Using the conversion Mass Balance Model 2 on the Cs-137 data obtained along transects for each of the practices, gross erosion rates were found to be 7.5, 7.3 and 2.6 t/ha/yr for direct seeding, CA basins and the DS/F/C while the net erosion rates were found to be 3.8, 4.6 and 0 t/ha/yr respectively. Sediment delivery ratios were 50%, 63% and 2% in the respective order. These preliminary results showed the effectiveness of DS over CA basins in erosion control. The efficiency of fallowing in controlling excessive soil loss was significant in the plot that started as DS for 18 years but left fallow for 7

  14. Reducing runoff and nutrient loss from agricultural land in the Lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Bouldin, J.; Teague, T.; Choate, J.

    2011-12-01

    The Lower Mississippi River Basin (LMRB) yields suspended sediment, total phosphorus, total nitrogen and silicate that are disproportionately high for the area. In addition, groundwater pumping of the alluvial aquifer has been deemed unsustainable under current practices. Much of the LMRB is used for large-scale agricultural production of primarily cotton, soybeans and rice. The incorporation of conservation practices may improve nutrient use efficiency and reduce runoff from agricultural fields. Three paired fields have been instrumented at the edge-of-field to quantify nutrients and runoff. The fields are located in northeastern Arkansas in the Little River Ditches and St. Francis watersheds. Nutrient use efficiency will be gained by utilizing variable rate fertilizer application technology. Reduced runoff will be gained through improved irrigation management. This study quantifies the runoff and nutrient loss from the first year of a 5-year study and will serve as a baseline for a comparative study of conservation practices employed on the paired fields.

  15. Agricultural Land Cover Dynamics on the Ganges-Brahmaputra Delta: 1988-2014

    NASA Astrophysics Data System (ADS)

    Sousa, D.; Chiu, S.; Mondal, D. R.; Small, C.

    2014-12-01

    We seek to understand spatiotemporal (ST) patterns of agricultural land cover dynamics on the lower Ganges-Brahmaputra Delta (GBD). Recent availability of accurately coregistered, radiometrically intercalibrated Landsat TM, ETM+ and OLI imagery collected since 1988 allows for synoptic scale ST analyses of vegetation phenology. We use multitemporal spectral mixture analysis of exoatmospheric reflectance to represent land cover and water bodies as continuous fields of soil and sediment substrates (S), vegetation (V), and dark surfaces (D; water & shadow). This study analyses 61 cloud-free Landsat acquisitions across two geographic scenes to identify ST patterns of winter cropping and interconversion between agricultural fields and ponds used for aquaculture. We also use MODIS 16-day EVI composite time series post-2000 and high spatial resolution imagery to extend and vicariously validate the Landsat-derived observations. We use temporal moment spaces (derived from temporal mean, standard deviation, and skewness) and temporal feature spaces (derived from spatial Principal Components) to characterize the full range of phenological patterns observed at 30 m scales throughout the lower delta. For each year with sufficient cloud-free coverage, we distinguish between areas with a high likelihood of use for aquaculture versus areas with a high likelihood of use for agriculture based on a combination of reflectance and phenology. From changes in these patterns we infer changes in land use on seasonal to interannual timescales. Many of the phenological patterns we observe occur on the scale of individual polders, suggesting decision making at community scales. While there appears to be considerable loss of agricultural land to aquaculture in many areas of the lower delta, we also observe intensification of dry season cropping in other areas. MODIS reveals frequent instances of both gradual and abrupt decreases in seasonal peak EVI as well as many localized instances of abrupt

  16. Research Needs for Carbon Management in Agriculture, Forestry and Other Land Uses

    NASA Astrophysics Data System (ADS)

    Negra, C.; Lovejoy, T.; Ojima, D. S.; Ashton, R.; Havemann, T.; Eaton, J.

    2009-12-01

    Improved management of terrestrial carbon in agriculture, forestry, and other land use sectors is a necessary part of climate change mitigation. It is likely that governments will agree in Copenhagen in December 2009 to incentives for improved management of some forms of terrestrial carbon, including maintaining existing terrestrial carbon (e.g., avoiding deforestation) and creating new terrestrial carbon (e.g., afforestation, soil management). To translate incentives into changes in land management and terrestrial carbon stocks, a robust technical and scientific information base is required. All terrestrial carbon pools (and other greenhouse gases from the terrestrial system) that interact with the atmosphere at timescales less than centuries, and all land uses, have documented mitigation potential, however, most activity has focused on above-ground forest biomass. Despite research advances in understanding emissions reduction and sequestration associated with different land management techniques, there has not yet been broad-scale implementation of land-based mitigation activity in croplands, peatlands, grasslands and other land uses. To maximize long-term global terrestrial carbon volumes, further development of relevant data, methodologies and technologies are needed to complement policy and financial incentives. The Terrestrial Carbon Group, in partnership with UN-REDD agencies, the World Bank and CGIAR institutions, is reviewing literature, convening leading experts and surveying key research institutions to develop a Roadmap for Terrestrial Carbon: Research Needs for Implementation of Carbon Management in Agriculture, Forestry and Other Land Uses. This work will summarize the existing knowledge base for emissions reductions and sequestration through land management as well as the current availability of tools and methods for measurement and monitoring of terrestrial carbon. Preliminary findings indicate a number of areas for future work. Enhanced information

  17. 25 CFR 166.314 - Can a permittee apply a conservation practice on permitted Indian land?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can a permittee apply a conservation practice on permitted Indian land? 166.314 Section 166.314 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management Conservation Practices and...

  18. A Study of Leasing Practices of Public School Lands in Colorado. Final Report.

    ERIC Educational Resources Information Center

    Cole, Stanley Mason

    Policies pertaining to three basic problems in land leasing practices are examined--(1) to compare income from leases on state school lands with income from leases of similar privately owned land, (2) to identify policies regarding the disposition of conflicting bids on state school land, and (3) to identify policies regarding subleasing school…

  19. NO X fluxes from three kinds of agricultural lands in the Yangtze Delta, China

    NASA Astrophysics Data System (ADS)

    Fang, Shuangxi; Mu, Yujing

    Static chamber method was adopted to measure the surface exchanges of NO and NO 2 between three kinds of agricultural lands and the atmosphere during spring-summer period in the Yangtze Delta, China. The average NO fluxes were 20.9, 27.4 and 21.4 ng N m -2 s -1, respectively, for cabbage (CA, cultivation of celery occurred along with cabbage), potato (PO) and soybean (SY) fields. The average NO 2 fluxes were -1.12, 0.93 and -0.68 ng N m -2 s -1, respectively, for the cabbage, potato and soybean fields. Apparently, negative linear correlation was found between the NO 2 fluxes from the CK plot (tilled conventionally but did not cultivate any seeds) and its ambient concentrations, and the compensation point was calculated to be 0.92 ppbv. The total NO emission from the vegetable lands and SY land in this region during spring-summer period was roughly estimated to be 15.9 Gg N, which accounted for about 11.2% of the estimated value of total NO emissions in the July of 1999 from Chinese agricultural fields.

  20. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management

    NASA Astrophysics Data System (ADS)

    Pugh, T. A. M.; Arneth, A.; Olin, S.; Ahlström, A.; Bayer, A. D.; Klein Goldewijk, K.; Lindeskog, M.; Schurgers, G.

    2015-12-01

    It is over three decades since a large terrestrial carbon sink (S T) was first reported. The magnitude of the net sink is now relatively well known, and its importance for dampening atmospheric CO2 accumulation, and hence climate change, widely recognised. But the contributions of underlying processes are not well defined, particularly the role of emissions from land-use change (E LUC) versus the biospheric carbon uptake (S L; S T = S L - E LUC). One key aspect of the interplay of E LUC and S L is the role of agricultural processes in land-use change emissions, which has not yet been clearly quantified at the global scale. Here we assess the effect of representing agricultural land management in a dynamic global vegetation model. Accounting for harvest, grazing and tillage resulted in cumulative E LUC since 1850 ca. 70% larger than in simulations ignoring these processes, but also changed the timescale over which these emissions occurred and led to underestimations of the carbon sequestered by possible future reforestation actions. The vast majority of Earth system models in the recent IPCC Fifth Assessment Report omit these processes, suggesting either an overestimation in their present-day S T, or an underestimation of S L, of up to 1.0 Pg C a-1. Management processes influencing crop productivity per se are important for food supply, but were found to have little influence on E LUC.

  1. Understanding the relative influence of climatic variations and agricultural management practices on crop yields at the US county level

    NASA Astrophysics Data System (ADS)

    Leng, G.; Zhang, X.; Huang, M.; Yang, Q.; Rafique, R.; Asrar, G.; Leung, L. R.

    2015-12-01

    Crop yields are largely determined by climate variations and agricultural management practices, such as irrigation, fertilization and residue management. Understanding the role of these factors in regulating crop yield variations is not only important for improved crop yield production, but also equally valuable for future crop yield prediction and food security assessments. Recently, the Community Land Model (CLM) has been augmented and evaluated for simulating corn, soybean and cereals at coarse aerial resolutions of 2 degrees (2000x2000 km). To better understand the underlying mechanisms controlling yield variations, we implemented and validated the agricultural version of CLM (CLM-crop) at a 0.125 degree resolution over the Conterminous United States (CONUS). We conducted a suite of numerical experiments to untangle the relative influence of climatic variations (temperature, precipitation, and radiation) and agricultural management practices on yield variations for the past 30 years at the US county level. Preliminary results show that the model with default parameter settings captures well the temporal variations in crop yields, as compared with the actual yield reported by the US Department of Agriculture (USDA). However, the magnitude of simulated crop yields is substantially higher, especially in the Mid-western US. We find that improved characterization of fertilizers and irrigation practices is key to model performance. Retrospectively (1979-2012), crop yields are more sensitive to changes in climate factors (such as temperature) than to changes in crop management practices. The results of this study advances understanding of the dominant factors in regulating the crop yield variations at the county level, which is essential for credible prediction of crop yields in a changing climate, under different agricultural management practices.

  2. Soil organic carbon fractionation for improving agricultural soil quality diagnosis in different management practices.

    NASA Astrophysics Data System (ADS)

    Trigalet, Sylvain; Chartin, Caroline; Kruger, Inken; Carnol, Monique; Van Oost, Kristof; van Wesemael, Bas

    2016-04-01

    Preserving ecosystem functions of soil organic matter (SOM) in soils is a key challenge. The need for an efficient diagnosis of SOM state in agricultural soils is a priority in order to facilitate the detection of changes in soil quality as a result of changes in management practices. The nature of SOM is complex and cannot readily be monitored due to the heterogeneity of its components. Assessment of the SOM level dynamics, typically characterized as the bulk soil organic carbon (SOC), can be refined by taking into account carbon pools with different turnover rates and stability. Fractionating bulk SOC in meaningful soil organic fractions helps to better diagnose SOC status. By separating carbon associated with clay and fine silt particles (stable carbon with slow turnover rate) and carbon non-associated with this fraction (labile and intermediate carbon with higher turnover rates), effects of management can be detected more efficiently at different spatial and temporal scales. Until now, most work on SOC fractionation has focused on small spatial scales along management or time gradients. The present case study focuses on SOC fractionation applied in order to refine the interpretation of organic matter turnover and SOC sequestration for regional units in Wallonia with comparable climate, management and, to a certain extent, soil conditions. In each unit, random samples from specific land uses are analyzed in order to assess the Normal Operative Ranges (NOR) of SOC fraction contents for each unit and land use combination. Thus, SOC levels of the different fractions of a specific field in a given unit can be compared to its corresponding NOR. It will help to better diagnose agricultural soil quality in terms of organic carbon compared to a bulk SOC diagnosis.

  3. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches.

    PubMed

    McLay, C D; Dragten, R; Sparling, G; Selvarajah, N

    2001-01-01

    enzyme assay. However, none of these soil properties were directly related to groundwater NO3(-)-N concentrations. Instead, the DRASTIC index (which ranks sites according to their risk of solute leaching) gave the best correlation with groundwater NO3(-)-N concentrations. The permeability of the vadose zone was the most important parameter. The three approaches used were all considered unsuitable for assessing nitrate concentrations of groundwater, although a best-fit combination of parameters measured was able to account for nearly half the variance in groundwater NO3(-)-N concentrations. We suggest that non-point source groundwater NO3(-)-N contamination in the region reflects the intensive agricultural practices, and that localised, site-specific, factors may affect NO3(-)-N concentrations in shallow groundwaters as much as the general land use in the surrounding area. PMID:11706792

  4. AnnAGNPS model as a potential tool for seeking adequate agriculture land management in Navarre (Spain)

    NASA Astrophysics Data System (ADS)

    Chahor, Y.; Giménez, R.; Casalí, J.

    2012-04-01

    Nowadays agricultural activities face two important challenges. They must be efficient from an economic point of view but with low environment impacts (soil erosion risk, nutrient/pesticide contamination, greenhouse gases emissions, etc.). In this context, hydrological and erosion models appear as remarkable tools when looking for the best management practices. AnnAGNPS (Annualized Agricultural Non Point Source Pollution) is a continuous simulation watershed-scale model that estimates yield and transit of surface water, sediment, nutrients, and pesticides through a watershed. This model has been successfully evaluated -in terms of annual runoff and sediment yield- in a small (around 200 ha) agricultural watershed located in central eastern part of Navarre (Spain), named Latxaga. The watershed is under a humid Sub-Mediterranean climate. It is cultivated almost entirely with winter cereals (wheat and barley) following conventional soil and tillage management practices. The remaining 15% of the watershed is covered by urban and shrub areas. The aim of this work is to evaluate in Latxga watershed the effect of potential and realistic changes in land use and management on surface runoff and sediment yield by using AnnAGNPS. Six years (2003 - 2008) of daily climate data were considered in the simulation. This dataset is the same used in the model evaluation previously made. Six different scenarios regarding soil use and management were considered: i) 60% cereals25% sunflower; ii) 60% cereals, 25% rapeseed; iii) 60% cereals, 25% legumes; iv) 60% cereals, 25% sunflower + rapeseed+ legumes, in equal parts; v) cereals, and alternatively different amount of shrubs (from 20% to 100% ); vi) only cereal but under different combinations of conventional tillage and no-tillage management. Overall, no significant differences in runoff generation were observed with the exception of scenario iii (in which legume is the main alternative crops), whit a slight increase in predicted

  5. Land use efficiency: anticipating future demand for land-sector greenhouse gas emissions abatement and managing trade-offs with agriculture, water, and biodiversity.

    PubMed

    Bryan, Brett A; Crossman, Neville D; Nolan, Martin; Li, Jing; Navarro, Javier; Connor, Jeffery D

    2015-11-01

    Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia's intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade-offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society's preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services. PMID:26147156

  6. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union

    NASA Astrophysics Data System (ADS)

    Griffiths, Patrick; Müller, Daniel; Kuemmerle, Tobias; Hostert, Patrick

    2013-12-01

    Widespread changes of agricultural land use occurred in Eastern Europe since the collapse of socialism and the European Union’s eastward expansion, but the rates and patterns of recent land changes remain unclear. Here we assess agricultural land change for the entire Carpathian ecoregion in Eastern Europe at 30 m spatial resolution with Landsat data and for two change periods, between 1985-2000 and 2000-2010. The early period is characterized by post-socialist transition processes, the late period by an increasing influence of EU politics in the region. For mapping and change detection, we use a machine learning approach (random forests) on image composites and variance metrics which were derived from the full decadal archive of Landsat imagery. Our results suggest that cropland abandonment was the most prevalent change process, but we also detected considerable areas of grassland conversion and forest expansion on non-forest land. Cropland abandonment was most extensive during the transition period and predominantly occurred in marginal areas with low suitability for agriculture. Conversely, we observed substantial recultivation of formerly abandoned cropland in high-value agricultural areas since 2000. Hence, market forces increasingly adjust socialist legacies of land expansive production and agricultural land use clusters in favorable areas while marginal lands revert to forest.

  7. Estimating potential wind erosion of agricultural lands in northern China using the Revised Wind Erosion Equation (RWEQ) and GIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fine materials emissions from severe wind-induced soil erosion have multiple impacts on land degradation and environmental pollution in the agro-pastoral ecotone in northern China (APEC). Assessment of wind erosion for the agricultural land management systems in APEC are needed to determine which sy...

  8. The challenge of climate change in Spain: Water resources, agriculture and land

    NASA Astrophysics Data System (ADS)

    Vargas-Amelin, Elisa; Pindado, Pablo

    2014-10-01

    Climate change effects are becoming evident worldwide, but some water scarce regions present higher vulnerability. Spain, located in the Mediterranean region, is expected for instance to be highly vulnerable given its unbalanced distribution between water resources availability and existing demands. This article presents an introduction to the main threats of climate change mainly on water resources, but it also assesses effects in interlinked areas such as agriculture, soil and land management. Contents focus on measures and initiatives promoted by the central government and address efforts to establish multi-sectoral coordinating bodies, specific adaptation plans and measures for the different sectors. The article highlights some political aspects, such as the complexity of involved competent authorities in water and land management, the need to strengthen public participation and the conflicts arising from the defence of regional interests. It also makes a link to current EU policies; summarises foreseeable problems derived from climate change effects, and provides some recommendations in the different areas covered.

  9. Evaluating Lignite-Derived Products (LDPs) for Agriculture - Does Research Inform Practice?

    NASA Astrophysics Data System (ADS)

    Patti, Antonio; Rose, Michael; Little, Karen; Jackson, Roy; Cavagnaro, Timothy

    2014-05-01

    . However, these growth benefits subsequently diminished over time. Insignificant growth benefits were observed for lucerne. The analysis of the literature and our own work indicates that it is difficult to account for all the possible variables where research is used to inform land management practices. Assisting farmers to conduct localised research in cooperative ventures is likely to bring about the best outcomes where site-specific research directly informs land management practices. 1. Michael T. Rose, Antonio F. Patti, Karen R. Little, Alicia L. Brown, W. Roy Jackson, Timothy R. Cavagnaro, A Meta-Analysis and Review of Plant-Growth Response to Humic Substances: Practical Implications for Agriculture, Advances in Agronomy, 2013, 124, 37-89

  10. Water and Land Limitations to Future Agricultural Production in the Middle East

    NASA Astrophysics Data System (ADS)

    Koch, J. A. M.; Wimmer, F.; Schaldach, R.

    2015-12-01

    Countries in the Middle East use a large fraction of their scarce water resources to produce cash crops, such as fruit and vegetables, for international markets. At the same time, these countries import large amounts of staple crops, such as cereals, required to meet the nutritional demand of their populations. This makes food security in the Middle East heavily dependent on world market prices for staple crops. Under these preconditions, increasing food demand due to population growth, urban expansion on fertile farmlands, and detrimental effects of a changing climate on the production of agricultural commodities present major challenges to countries in the Middle East that try to improve food security by increasing their self-sufficiency rate of staple crops.We applied the spatio-temporal land-use change model LandSHIFT.JR to simulate how an expansion of urban areas may affect the production of agricultural commodities in Jordan. We furthermore evaluated how climate change and changes in socio-economic conditions may influence crop production. The focus of our analysis was on potential future irrigated and rainfed production (crop yield and area demand) of fruit, vegetables, and cereals. Our simulation results show that the expansion of urban areas and the resulting displacement of agricultural areas does result in a slight decrease in crop yields. This leads to almost no additional irrigation water requirements due to the relocation of agricultural areas, i.e. there is the same amount of "crop per drop". However, taking into account projected changes in socio-economic conditions and climate conditions, a large volume of water would be required for cereal production in order to safeguard current self-sufficiency rates for staple crops. Irrigation water requirements are expected to double until 2025 and to triple until 2050. Irrigated crop yields are projected to decrease by about 25%, whereas there is no decrease in rainfed crop yields to be expected.

  11. Agricultural land-use mapping using very high resolution satellite images in Canary Islands

    NASA Astrophysics Data System (ADS)

    Labrador Garcia, Mauricio; Arbelo, Manuel; Evora Brondo, Juan Antonio; Hernandez-Leal, Pedro A.; Alonso-Benito, Alfonso

    Crop maps are a basic tool for rural planning and a way to asses the impact of politics and infrastructures in the rural environment. Thus, they must be accurate and updated. Because of the small size of the land fields in Canary Islands, until now the crop maps have been made by means of an intense and expensive field work. The tiny crop terraces do not allow the use of traditional medium-size resolution satellite images. The launch of several satellites with sub-meter spatial resolutions in the last years provides an opportunity to update land use maps in these fragmented areas. SATELMAC is a project financed by the PCT-MAC 2007-2013 (FEDER funds). One of the main objectives of this project is to develop a methodology that allows the use of very high resolution satellite images to automate as much as possible the updating of agricultural land use maps. The study was carried out in 3 different areas of the two main islands of the Canarian Archipelago, Tenerife and Gran Canaria. The total area is about 550 km2 , which includes both urban and rural areas. Multitemporal images from Geo-Eye 1 were acquired during a whole agricultural season to extract information about annual and perennial crops. The work includes a detailed geographic correction of the images and dealing with many adverse factors like cloud shadows, variability of atmospheric conditions and the heterogeneity of the land uses within the study area. Different classification methods, including traditional pixel-based methods and object-oriented approach, were compared in order to obtain the best accuracy. An intensive field work was carried out to obtain the ground truth, which is the base for the classification procedures and the validation of the results. The final results will be integrated into a cadastral vector layer.

  12. Scaling issues relating to phosphorus transfer from land to water in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Brazier, R. E.; Heathwaite, A. L.; Liu, S.

    2005-03-01

    Various scales of input data exist to parameterise diffuse pollution models for the UK. For screening methodologies such as the phosphorus indicators tool—PIT [Heathwaite, A.L., Sharpley, A.N., Bechmann, M., 2003a. The conceptual basis for a decision support framework to assess the risk of phosphorus loss at the field scale across Europe. Journal of Plant Nutrition and Soil Science 166, 1-12; Heathwaite, A.L., Burke, S., Quinn, P.F., 2003b. The nutrient export risk matrix (the NERM) for strategic application of biosolids to agricultural land. International Association for Hydrological Sciences Publication 285, 1-9], which is applied throughout England and Wales, some assessment of the implications of using input data derived at different scales must be made. This work is further driven by practical issues such as licensing costs and data availability, which mean that not all data are readily accessible for all end users. This paper represents a first step towards quantifying the 'value-added' to model predictions by using input data derived at three different scales: 50×50 m, 1×1 km and 5×5 km. Model runs using PIT were carried out against observed phosphorus water quality data from the River Start and River Gara, which are the main sub-catchments of Slapton Ley, a grade 1 National Nature Reserve in southwest England. Model runs for the main 46 km 2 Slapton catchment were also undertaken. The results show that some improvement in the ability of the model to capture the observed water quality behaviour may be made by using higher resolution DEM data, though these improvements may be outweighed by the extra data processing and computational time. Conversely, model runs driven by the 5 km data demonstrate consistent under-prediction for all three test catchments, which is perhaps not surprising given the greater degree of averaging underlying datasets at this scale. Results from the 1 km datasets provide the best agreement with observed water quality data, and

  13. Comparative study of heavy metals concentration in topsoil of urban green space and agricultural land uses.

    PubMed

    Mirzaei, Rouhollah; Teymourzade, Safiye; Sakizadeh, Mohamad; Ghorbani, Hadi

    2015-12-01

    The main objective of this study was to determine the concentration of cadmium, chromium, copper, nickel, lead, and zinc in surface soils of two land uses including agricultural and urban green space in Semnan Province, Iran. For this purpose, the soil samples of 27 urban green space and 47 agricultural fields were collected and analyzed. The correlation coefficients, analysis of variance, principal component analysis, cluster analysis, and geoaccumulation index were utilized to compare the mean values in the two land uses and pinpoint the possible sources of contamination in the study area. The average contents of Cd, Cu, Cr, Ni, Pb, and Zn in green space soils were 0.1, 24.9, 78.7, 28.2, 22.1, and 82.1 mg/kg, respectively, while the mean concentrations of Cd, Cu, Cr, Ni, Pb, and Zn in agricultural soils were 0.3, 24.3, 83.7, 33.3, 18.1, and 80.4 mg/kg, respectively. The mean concentrations of lead, copper, and zinc were higher in urban green space in comparison with those of agricultural fields, while it was vice versa for chromium, cadmium, and nickel. In general, significant, but weak, correlations were observed between Zn with Pb (r = 0.53) and Cu (r = 0.61) and Ni with Cr (r = 0.55) and Cu(r = 0.51). The main sources of contamination turned out to be both natural and anthropogenic as the results of correlation coefficients, principal component analysis, and cluster analysis showed. That is to say, chromium and nickel had emanated from natural while the sources of cadmium, lead, and zinc could be attributed to anthropogenic activities. For the case of copper, both natural and anthropogenic activities were influential; however, the role of human activities was more effective. The results of contamination assessment showed that heavy metal contamination in agricultural land use was higher than green space indicating the role of human activities in this respect. PMID:26559555

  14. The impact of land use on biological activity of agriculture soils. An State-of-the-Art

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; Cerdà, Artemi; García-Orenes, Fuensanta

    2014-05-01

    Biological activity is a crucial soil property affecting soil sustainability and crop production. The unsuitable land management can lead to a loss in soil fertility and a reduction in the abundance and diversity of soil microorganisms. This can be as a consequence of high erosion rates due to the mismanagement of farmers (Cerdà et al., 2009a). However ecological practices and some organic amendments can promote the activities of soil microbial communities, and increase its biodiversity (García-Orenes et al., 2010; 2013). The impact of land use in microbiological properties of agriculture soil are presented and discussed in this review. Biological activity is quantified by microbial soil communities and soil enzyme activities to interpret the effects of soil management practices (Morugán-Coronado et al., 2013). The aim of biological activity tests is to give a reliable description of the state of agricultural soils under the effect of different land uses. Numerous methods have been used to determine the impact of land uses on microbiological properties. The current used methods for detecting microbial diversity are based on molecular techniques centered on the 16S and 18S rRNA encoding sequences such as CLPP: community-level physiological profiles; T-RFLP: terminal restriction fragment length polymorphism; DGGE: denaturing gradient gel electrophoresis; OFRG: oligonucleotide fingerprinting of rRNA genes, ARISA: Automated Ribosomal intergenic spacer analysis, SSCP: single-strand conformation polymorphism. And techniques based on the cellular composition of the microbes such as PLFA: phospholipid fatty acid analysis. Other methods are based on the activity of microbes, for example, Cmic: microbial biomass carbon; SIR: substrate induced respiration; BSR: Basal soil respiration; qCO2 metabolic quotient; enzymatic activities (Urease, ß-glucosidase and phosphatase) (Deng, 2012). Agricultural land management can contribute to increased rates of erosion due to

  15. Impact of land use practices on faunal abundance, nutrient dynamics and biochemical properties of desert pedoecosystem.

    PubMed

    Tripathi, G; Sharma, B M

    2005-11-01

    Increased dependence of resource-poor rural communities on soils of low inherent fertility are the major problem of desert agroecosystem. Agrisilviculture practices may help to conserve the soil biota for maintaining essential soil properties and processes in harsh climate. Therefore, the impacts of different land use systems on faunal density, nutrient dynamics and biochemical properties of soil were studied in agrisilviculture system of Indian desert. The selected fields had trees (Zizyphus mauritiana, Prosopis cineraria, Acacia nilotica) and crops (Cuminum cyminum, Brassica nigra, Triticum aestivum) in different combinations. Populations of Acari, Myriapoda, Coleoptera, Collembola, other soil arthropods and total soil fauna showed significant changes with respect to different land use practices and tree species, indicating a strong relation between above and below ground biodiversity. The Coleoptera exhibited greatest association with all agrisilviculture fields. The Z. mauritiana system indicated highest facilitative effects (RTE value) on all groups of soil fauna. Soil temperature, moisture, organic carbon, nitrate- and ammonical-nitrogen, available phosphorus, soil respiration and dehydrogenase activity were greater under tree than that of tree plus cropping system. It showed accumulation of nitrate-nitrogen in tree field and more utilization by crops in cultivated lands. Positive and significant correlation among organic carbon, nitrate- and ammonical-nitrogen, phosphorus, soil respiration and dehydrogenase activity clearly reflects increase in soil nutrients with the increase in microbial and other biotic activity. P. cineraria field was the best pedoecosystem, while C. cyminum was the best winter crop for cultivation in desert agroforestry system for soil biological health and soil sustainability. The increase in organic carbon, soil nutrients and microbial activity is associated with the increase in soil faunal population which reflect role of soil fauna

  16. Midwest Climate and Agriculture - Monitoring Tillage Practices with NASA Remote Sensors

    NASA Astrophysics Data System (ADS)

    Makar, N. I.; Archer, S.; Rooks, K.; Sparks, K.; Trigg, C.; Lourie, J.; Wilkins, K.

    2011-12-01

    Concerns about climate change have driven efforts to reduce or offset greenhouse gas emissions. Agricultural activity has drawn considerable attention because it accounts for nearly twelve percent of total anthropogenic emissions. Depending on the type of tillage method utilized, farm land can be either a source or a sink of carbon. Conventional tillage disturbs the soil and can release greenhouse gases into the atmosphere. Conservational tillage practices have been advocated for their ability to sequester carbon, reduce soil erosion, maintain soil moisture, and increase long-term productivity. If carbon credit trading systems are implemented, a cost-effective, efficient tillage monitoring system is needed to enforce offset standards. Remote sensing technology can expedite the process and has shown promising results in distinguishing crop residue from soil. Agricultural indices such as the CAI, SINDRI, and LCA illuminate the unique reflectance spectra of crop residue and are thus able to classify fields based on percent crop cover. The CAI requires hyperspectral data, as it relies on narrow bands within the shortwave infrared portion of the electromagnetic spectrum. Although limited in availability, hyperspectral data has been shown to produce the most accurate results for detecting crop residue on the soil. A new approach to using the CAI was the focus of this study. Previously acquired field data was located in a region covered by a Hyperion swath and is thus the primary study area. In previous studies, ground-based data were needed for each satellite swath to correctly calibrate the linear relationship between the index values and the fraction of residue cover. We hypothesized that there should be a standard method which is able to convert index values into residue classifications without ground data analysis. To do this, end index values for a particular data set were assumed to be associated with end values of residue cover percentages. This method may prove

  17. Assessing sustainable land-use practices using geographic information systems

    NASA Astrophysics Data System (ADS)

    Davis, Amelie Y.

    Many prominent scientists have claimed that we need to develop environmentally sustainable practices otherwise societies may collapse. The use of Geographic Information Systems allows detailed studies that can cross disciplinary boundaries and lead to quantifiable statements as to the change of land use practices that took place in the past and those that may occur in the future. This dissertation focuses on two research topics. One that attempts to quantify the environmental consequences of parking lots located in the Midwest, USA. The other research topic focuses on the land area needed to support ethanol in the United States. In Tippecanoe County, Indiana, it was determined that parking lots occupied approximately 6.6% of the urban areas, that the area devoted to parking lots exceeded the area devoted to urban parks by a factor of 3, and that these parking lots contributed to increased runoff of pollutants. The parking lots of Tippecanoe County were estimated to be responsible for 46.5 thousand pounds of oil and grease released annually in runoff, as well as an increase of 240.6 thousand pounds of suspended solids, and 65.7 pounds of lead released when compared to pre-development conditions. A method that scales up the county wide study was also developed to determine the areal footprint of parking lots with the states of Illinois, Indiana, Michigan and Wisconsin. It was estimated that these four states allocate approximately 1260 square km of their land to parking lots and that this accounts for 4.97% of urban land use and over 43 million parking spaces, whereas the number of individuals in age of driving (adults over 18 years old) amounted to just over 25 million. Within the four states studied, states where urban sprawl was considered more prevalent were also states that had a higher proportion of their urban land devoted to parking lots. The second dissertation topic focused on using GIS to locate suitable sites for corn or cellulosic based ethanol

  18. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s

    PubMed Central

    Gibbs, H. K.; Ruesch, A. S.; Achard, F.; Clayton, M. K.; Holmgren, P.; Ramankutty, N.; Foley, J. A.

    2010-01-01

    Global demand for agricultural products such as food, feed, and fuel is now a major driver of cropland and pasture expansion across much of the developing world. Whether these new agricultural lands replace forests, degraded forests, or grasslands greatly influences the environmental consequences of expansion. Although the general pattern is known, there still is no definitive quantification of these land-cover changes. Here we analyze the rich, pan-tropical database of classified Landsat scenes created by the Food and Agricultural Organization of the United Nations to examine pathways of agricultural expansion across the major tropical forest regions in the 1980s and 1990s and use this information to highlight the future land conversions that probably will be needed to meet mounting demand for agricultural products. Across the tropics, we find that between 1980 and 2000 more than 55% of new agricultural land came at the expense of intact forests, and another 28% came from disturbed forests. This study underscores the potential consequences of unabated agricultural expansion for forest conservation and carbon emissions. PMID:20807750

  19. Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains.

    PubMed

    Vadrevu, Krishna; Lasko, Kristofer

    2015-01-15

    Agricultural fires in the Indo-Gangetic Plains (IGP) are a major cause of air pollution. In this study, we evaluate fire regimes and quantify the potential of agricultural residues in generating bioenergy that otherwise are subject to burning by local farmers in the region. For characterizing the fire regimes, we used MODIS satellite datasets in conjunction with IRS-AWiFS classified data. We collected crop statistical data for area, production, and yield for 31 different crops and mapped the bioenergy potential of agricultural residues. We also tested the MODIS net primary production (NPP) dataset potential for crop yield estimation and thereby bioenergy calculations. Results from land use-fire analysis suggested that 88.13% of fires occurred in agricultural areas. Relatively more fires and burnt areas were recorded during the winter rice residue burning season than the summer wheat residue burning season. Monte Carlo analysis suggested that nearly 16.5 Tg of crop residues are burned at 60% probability. MODIS NPP data could explain 62% of variation in field-level crop yield estimates. Our analysis revealed that in the IGP nearly 73.28 Tg of crop residue biomass is available for recycling. The energy equivalent from these residues is estimated to be 1110.77 PJ. From the residues, the biogas potential production is estimated to be 1165.1098 million m(3), the electric power potential at 20% efficiency is estimated at 61698.9 kWh, and the total bioethanol production potential at 21.0 billion liters. Results also highlight geographic locations of bioenergy resources in the IGP useful for energy planning. Controlling agricultural residue burning and promoting the bioenergy sector is an attractive "win-win" strategy in the IGP. PMID:24502932

  20. A comparison of forest and agricultural shallow groundwater chemical status a century after land use change.

    PubMed

    Kellner, Elliott; Hubbart, Jason A; Ikem, Abua

    2015-10-01

    Considering the increasing pace of global land use change and the importance of groundwater quality to humans and aquatic ecosystems, studies are needed that relate land use types to patterns of groundwater chemical composition. Piezometer grids were installed in a remnant bottomland hardwood forest (BHF) and a historic agricultural field (Ag) to compare groundwater chemical composition between sites with contrasting land use histories. Groundwater was sampled monthly from June 2011 to June 2013, and analyzed for 50 physiochemical metrics. Statistical tests indicated significant differences (p<0.05) between the study sites for 32 out of 50 parameters. Compared to the Ag site, BHF groundwater was characterized by significantly (p<0.05) lower pH, higher electrical conductivity, and higher concentrations of total dissolved solids and inorganic carbon. BHF groundwater contained significantly (p<0.05) higher concentrations of all nitrogen species except nitrate, which was higher in Ag groundwater. BHF groundwater contained significantly (p<0.05) higher concentrations of nutrients such as sulfur, potassium, magnesium, calcium, and sodium, relative to the Ag site. Ag groundwater was characterized by significantly (p<0.05) higher concentrations of trace elements such as arsenic, cadmium, cobalt, copper, molybdenum, nickel, and titanium. Comparison of shallow groundwater chemical composition with that of nearby receiving water suggests that subsurface concentration patterns are the result of contrasting site hydrology and vegetation. Results detail impacts of surface vegetation alteration on subsurface chemistry and groundwater quality, thereby illustrating land use impacts on the lithosphere and hydrosphere. This study is among the first to comprehensively characterize and compare shallow groundwater chemical composition at sites with contrasting land use histories. PMID:26005752

  1. Impact of Land-Use Intensity and Productivity on Bryophyte Diversity in Agricultural Grasslands

    PubMed Central

    Müller, Jörg; Klaus, Valentin H.; Kleinebecker, Till; Prati, Daniel; Hölzel, Norbert; Fischer, Markus

    2012-01-01

    While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity. PMID:23251563

  2. Application of Satellite Data for Early Season Assessment of Fallowed Agricultural Lands for Drought Impact Reporting

    NASA Astrophysics Data System (ADS)

    Rosevelt, C.; Melton, F. S.; Johnson, L.; Verdin, J. P.; Thenkabail, P. S.; mueller, R.; Zakzeski, A.; Jones, J.

    2013-12-01

    Rapid assessment of drought impacts can aid water managers in assessing mitigation options, and guide decision making with respect to requests for local water transfers, county drought disaster designations, or state emergency proclamations. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and land fallowing associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. Here we describe an approach for monthly mapping of land fallowing developed as part of a joint effort by USGS, USDA, and NASA to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of fallowed land from satellite data early in the season, we developed a decision tree algorithm and applied it to timeseries of normalized difference vegetation index (NDVI) data from Landsat TM, ETM+, and MODIS. Our effort has been focused on development of leading indicators of drought impacts in the March - June timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. This capability complements ongoing work by USDA to produce and publicly release within-season estimates of fallowed acreage from the USDA Cropland Data Layer. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted along transects across the Central Valley at more than 200 fields per month from March - June, 2013. Here we present the algorithm for mapping fallowed acreage early in the season along with results from the accuracy assessment, and discuss potential applications to other regions.

  3. Stochastic and recursive calibration for operational, large-scale, agricultural land and water use management models

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Kimball, J. S.; Jencso, K. G.

    2015-12-01

    Managing the impact of climatic cycles on agricultural production, on land allocation, and on the state of active and projected water sources is challenging. This is because in addition to the uncertainties associated with climate projections, it is difficult to anticipate how farmers will respond to climatic change or to economic and policy incentives. Some sophisticated decision support systems available to water managers consider farmers' adaptive behavior but they are data intensive and difficult to apply operationally over large regions. Satellite-based observational technologies, in conjunction with models and assimilation methods, create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents at seasonal scales.We present an integrated modeling framework that can be driven by satellite remote sensing to enable robust regional assessment and prediction of climatic and policy impacts on agricultural production, water resources, and management decisions. The core of this framework is a widely used model of agricultural production and resource allocation adapted to be used in conjunction with remote sensing inputs to quantify the amount of land and water farmers allocate for each crop they choose to grow on a seasonal basis in response to reduced or enhanced access to water due to climatic or policy restrictions. A recursive Bayesian update method is used to adjust the model parameters by assimilating information on crop acreage, production, and crop evapotranspiration as a proxy for water use that can be estimated from high spatial resolution satellite remote sensing. The data assimilation framework blends new and old information to avoid over-calibration to the specific conditions of a single year and permits the updating of parameters to track gradual changes in the agricultural system.This integrated framework provides an operational means of monitoring and forecasting what crops will be grown

  4. Utilizing NASA Earth Observations to Monitor Land Management Practices and the Development of Marshlands to Rice Fields in Rwanda

    NASA Astrophysics Data System (ADS)

    Dusabimana, M. R.; Blach, D.; Mwiza, F.; Muzungu, E.; Swaminathan, R.; Tate, Z.

    2014-12-01

    Rwanda, a small country with the highest population density in Sub-Saharan Africa, is one of the world's poorest countries. Although agriculture is the backbone of Rwandan economy, agricultural productivity is extremely low. Over 90 % of the population is engaged in subsistence farming and only 52 % of the total land surface area is arable. Of this land, approximately 165,000 hectares are marshlands, of which only 57 % has been cultivated. Rwandan government has invested in the advancement of agriculture with activities such as irrigation, marshland reclamation, and crop regionalization. In 2001, Ministry of Agriculture and Animal Resources (MINAGRI) released the Rural Sector Support Program (RSSP), which aimed at converting marshlands into rice fields at various development sites across the country. The focus of this project was to monitor rice fields in Rwanda utilizing NASA Earth observations such as Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager. Modified Normalized Difference Water Index (MNDWI) was used to depict the progress of marshland to rice field conversion as it highlights the presence of irrigated rice fields from the surrounding area. Additionally, Decision Support System for Agrotechnology Transfer (DSSAT) was used to estimate rice yield at RSSP sites. Various simulations were run to find perfect conditions for cultivating the highest yield for a given farm. Furthermore, soil erosion susceptibility masks were created by combining factors derived from ASTER, MERRA, and ground truth data using Revised Universal Soil Loss Equation (RUSLE). The end results, maps, and tutorials were delivered to the partners and policy makers in Rwanda to help make informed decisions. It can be clearly seen that Earth observations can be successfully used to monitor agricultural and land management practices as a cost effective method that will enable farmers to improve crop yield production and food security.

  5. Private Agricultural Extension System in Kenya: Practice and Policy Lessons

    ERIC Educational Resources Information Center

    Muyanga, Milu; Jayne, T. S.

    2008-01-01

    Private extension system has been at the centre of a debate triggered by inefficient public agricultural extension. The debate is anchored on the premise that the private sector is more efficient in extension service delivery. This study evaluates the private extension system in Kenya. It employs qualitative and quantitative methods. The results…

  6. Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters.

    PubMed

    Wittmer, I K; Bader, H-P; Scheidegger, R; Singer, H; Lück, A; Hanke, I; Carlsson, C; Stamm, C

    2010-05-01

    Biocides and pesticides are designed to control the occurrence of unwanted organisms. From their point of application, these substances can be mobilized and transported to surface waters posing a threat to the aquatic environment. Historically, agricultural pesticides have received substantially more attention than biocidal compounds from urban use, despite being used in similar quantities. This study aims at improving our understanding of the influence of mixed urban and agricultural land use on the overall concentration dynamics of biocides and pesticides during rain events throughout the year. A comprehensive field study was conducted in a catchment within the Swiss plateau (25 km(2)). Four surface water sampling sites represented varying combinations of urban and agricultural sources. Additionally, the urban drainage system was studied by sampling the only wastewater treatment plant (WWTP) in the catchment, a combined sewer overflow (CSO), and a storm sewer (SS). High temporal resolution sampling was carried out during rain events from March to November 2007. The results, based on more than 600 samples analyzed for 23 substances, revealed distinct and complex concentration patterns for different compounds and sources. Five types of concentration patterns can be distinguished: a) compounds that showed elevated background concentrations throughout the year (e.g. diazinon >50 ng L(-1)), indicating a constant household source; b) compounds that showed elevated concentrations driven by rain events throughout the year (e.g. diuron 100-300 ng L(-1)), indicating a constant urban outdoor source such as facades; c) compounds with seasonal peak concentrations driven by rain events from urban and agricultural areas (e.g. mecoprop 1600 ng L(-1) and atrazine 2500 ng L(-1) respectively); d) compounds that showed unpredictably sharp peaks (e.g. atrazine 10,000 ng L(-1), diazinon 2500 ng L(-1)), which were most probably due to improper handling or even disposal of products; and

  7. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    PubMed

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture. PMID:26086708

  8. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature

    NASA Astrophysics Data System (ADS)

    Marques da Silva, J. R.; Damásio, C. V.; Sousa, A. M. O.; Bugalho, L.; Pessanha, L.; Quaresma, P.

    2015-06-01

    Pest risk maps for agricultural use are usually constructed from data obtained from in-situ meteorological weather stations, which are relatively sparsely distributed and are often quite expensive to install and difficult to maintain. This leads to the creation of maps with relatively low spatial resolution, which are very much dependent on interpolation methodologies. Considering that agricultural applications typically require a more detailed scale analysis than has traditionally been available, remote sensing technology can offer better monitoring at increasing spatial and temporal resolutions, thereby, improving pest management results and reducing costs. This article uses ground temperature, or land surface temperature (LST), data distributed by EUMETSAT/LSASAF (with a spatial resolution of 3 × 3 km (nadir resolution) and a revisiting time of 15 min) to generate one of the most commonly used parameters in pest modeling and monitoring: "thermal integral over air temperature (accumulated degree-days)". The results show a clear association between the accumulated LST values over a threshold and the accumulated values computed from meteorological stations over the same threshold (specific to a particular tomato pest). The results are very promising and enable the production of risk maps for agricultural pests with a degree of spatial and temporal detail that is difficult to achieve using in-situ meteorological stations.

  9. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods

    PubMed Central

    Lages Barbosa, Guilherme; Almeida Gadelha, Francisca Daiane; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M.; Halden, Rolf U.

    2015-01-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors’ knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture. PMID:26086708

  10. Influence of integrated watershed-scale agricultural conservation practices on lake water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed-scale management efforts to improve conservation of water resources in agricultural watersheds depend upon the effectiveness of integrated multiple agricultural best management practices at this scale. This requires large-scale, long-term (>10 y) studies measuring key water quality paramet...

  11. Certified Organic Agriculture in Mexico: Market Connections and Certification Practices in Large and Small Producers

    ERIC Educational Resources Information Center

    Tovar, Laura Gomez; Martin, Lauren; Cruz, Manuel Angel Gomez; Mutersbaugh, Tad

    2005-01-01

    Certification within organic agriculture exhibits flexibility with respect to practices used to demonstrate that a product meets published quality standards. This case study of Mexican certified-organic agriculture finds two forms. Indigenous smallholders of southern Mexico undertake a low-input, process-oriented organic farming in which…

  12. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    PubMed Central

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha−1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  13. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    PubMed

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  14. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    NASA Astrophysics Data System (ADS)

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha‑1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  15. Land Use and Land Cover Change Modeling Using Remote Sensing and Soft Computing Approach to Assess Sugarcane Expansion Impacts in Tropical Agriculture

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Victoria, D.; Zullo, J., Jr.; Gomes, D.; Bayma-Silva, G.

    2014-12-01

    Agriculture is related with land-use/cover changes (LUCC) over large areas and, in recent years, increase in demand of ethanol fuel has been influence in expansion of areas occupied with corn and sugar cane, raw material for ethanol production. Nevertheless, there´s a concern regarding the impacts on food security, such as, decrease in areas planted with food crops. Considering that the LUCC is highly dynamic, the use of Remote Sensing is a tool for monitoring changes quickly and precisely in order to provide information for agricultural planning. In this work, Remote Sensing techniques were used to monitor the LUCC occurred in municipalities of São Paulo state- Brazil related with sugarcane crops expansion in order to (i) evaluate and quantify the previous land cover in areas of sugarcane crop expansion, and (ii) provide information to elaborate a future land cover scenario based on Self Organizing Map (SOM) approach. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey. The Landsat images were then segmented into homogeneous objects, with represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. The segmentation procedure resulted in polygons over the three time periods along twenty years (1990-2010). The land cover for each object was visually identified, based on its shape, texture and spectral characteristics. Land cover types considered were: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. SOM technique was used to estimate the values for the future land cover scenarios for the selected municipalities, using the information of land change provided by the remote sensing and data from official sources.

  16. Evaluation of GIS Technology in Assessing and Modeling Land Management Practices

    NASA Technical Reports Server (NTRS)

    Archer, F.; Coleman, T. L.; Manu, A.; Tadesse, W.; Liu, G.

    1997-01-01

    There is an increasing concern of land owners to protect and maintain healthy and sustainable agroecosystems through the implementation of best management practices (BMP). The objectives of this study were: (1) To develop and evaluate the use of a Geographic Information System (GIS) technology for enhancing field-scale management practices; (2) evaluate the use of 2-dimensional displays of the landscape and (3) define spatial classes of variables from interpretation of geostatistical parameters. Soil samples were collected to a depth of 2 m at 15 cm increments. Existing data from topographic, land use, and soil survey maps of the Winfred Thomas Agricultural Research Station were converted to digital format. Additional soils data which included texture, pH, and organic matter were also generated. The digitized parameters were used to create a multilayered field-scale GIS. Two dimensional (2-D) displays of the parameters were generated using the ARC/INFO software. The spatial distribution of the parameters evaluated in both fields were similar which could be attributed to the similarity in vegetation and surface elevation. The ratio of the nugget to total semivariance, expressed as a percentage, was used to assess the degree of spatial variability. The results indicated that most of the parameters were moderate spatially dependent Biophysical constraint maps were generated from the database layers, and used in multiple combination to visualize results of the BMP. Understanding the spatial relationships of physical and chemical parameters that exists within a field should enable land managers to more effectively implement BMP to ensure a safe and sustainable environment.

  17. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff.

    PubMed

    Paule-Mercado, M A; Ventura, J S; Memon, S A; Jahng, D; Kang, J-H; Lee, C-H

    2016-04-15

    While the urban runoff are increasingly being studied as a source of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in watershed with mixed land use and ongoing land use and land cover (LULC) change. In this study, Escherichia coli (EC) and fecal streptococcus (FS) were monitored from 2012 to 2013 in agricultural, mixed and urban LULC and analyzed according to the most probable number (MPN). Pearson correlation was used to determine the relationship between FIB and environmental parameters (physicochemical and hydrometeorological). Multiple linear regressions (MLR) were used to identify the significant parameters that affect the FIB concentrations and to predict the response of FIB in LULC change. Overall, the FIB concentrations were higher in urban LULC (EC=3.33-7.39; FS=3.30-7.36log10MPN/100mL) possibly because of runoff from commercial market and 100% impervious cover (IC). Also, during early-summer season; this reflects a greater persistence and growth rate of FIB in a warmer environment. During intra-event, however, the FIB concentrations varied according to site condition. Anthropogenic activities and IC influenced the correlation between the FIB concentrations and environmental parameters. Stormwater temperature (TEMP), turbidity, and TSS positively correlated with the FIB concentrations (p>0.01), since IC increased, implying an accumulation of bacterial sources in urban activities. TEMP, BOD5, turbidity, TSS, and antecedent dry days (ADD) were the most significant explanatory variables for FIB as determined in MLR, possibly because they promoted the FIB growth and survival. The model confirmed the FIB concentrations: EC (R(2)=0.71-0.85; NSE=0.72-0.86) and FS (R(2)=0.65-0.83; NSE=0.66-0.84) are predicted to increase due to urbanization. Therefore, these findings will help in stormwater monitoring strategies, designing the best management practice for FIB removal and as input data for stormwater models. PMID:26895037

  18. Evaluating alternative agricultural management practices for a minor agricultural watershed using the ADAPT method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a spatial-process based water quality model was calibrated (2001-2002) for flow, sediment, nitrate and phosphorus losses from the High Island Creek, a 3856 ha agricultural watershed located in south-central Minnesota. The calibrated model was used to evaluate alternative tillage and ...

  19. Interactive Effects of Storms, Drought, and Weekly Land Cover Changes on Water Quality Patterns in an Agricultural-dominated Subtropical Catchment in New Zealand

    NASA Astrophysics Data System (ADS)

    Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.

    2013-12-01

    Rivers are the funnels of landscapes, with the quality of water at the catchment outlet reflecting interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses. The impacts of changing climate and land cover on water quality are not straightforward; but instead, are set by the interaction of numerous landscape components at multiple spatiotemporal scales. In agricultural-dominated subtropical landscapes such as the Hoteo River Catchment in northern North Island of New Zealand, the land surface can be very dynamic, responding quickly to storms, drought, forest clearings, and grazing practices. In order to capture these short-term fluctuations, we created an 8-day land disturbance index for the catchment using MODIS Nadir BRDF-adjusted reflectance (NBAR) data (500 meter resolution) from 2000 to 2013. We also fused this time-series with Landsat TM/ETM surface reflectance data (30 meter resolution) to more precisely capture the location and extent of these land disturbances. This high-resolution land disturbance time-series was then compared to daily rainfall, daily river discharge, and monthly water samples to assess the effects of changing weather and land cover on a suite of water quality variables including water clarity, turbidity, ammonium (NH4), nitrate (NO3), total nitrogen (TN), dissolved reactive phosphate (DRP), total phosphorus (TP), and fecal coliforms. Forest clearings in the early part of our study period created the most intense land disturbances, which led to elevated turbidity and DRP during subsequent storms. Pasture areas during drought were also characterized by high disturbance indices, particularly in 2013 - the worst drought on record for northern New Zealand. Seasonal effects on land disturbance and water quality were also detected, especially for water clarity and turbidity. From 2011 to 2013, river discharge and turbidity from three sub-catchments were measured at 5-minute intervals to

  20. Watershed-scale Evapotranspiration Changed Little over 50 years of Agricultural Land Abandonment in Southern Michigan

    NASA Astrophysics Data System (ADS)

    Hamilton, S. K.; Hussain, M. Z.; Lowrie, C. J.

    2015-12-01

    The difference between precipitation and stream discharge over annual periods provides an indication of the total water loss to evaporation and evapotranspiration. The response of evaporative water loss to land cover change affects groundwater recharge, stream flow, and lake levels. This study examined the watershed water balance for Augusta Creek, which drains a 95-km2 glacial landscape in southwestern Michigan covered by cropland, grassland, forest, and wetlands. The climate is humid and temperate; between 1964-2014 the water-year precipitation averaged 948 mm and ranged from 695-1386 mm with no temporal trend. Over the study period the percentage of land in agriculture has decreased to about a third of its original extent, with abandoned lands gradually transitioning from old fields to woody vegetation. Comparison of precipitation on the upland watershed to baseflow discharge (USGS data; baseflow estimation by WHAT model) across the 50-year record shows that total evaporative water loss averaged 563 + 103 mm and ranged from 385-897 mm, with no apparent trend over the record. The evaporative water loss accounts for a mean + s.d. of 59 + 6% of precipitation (range, 48-70%). Evaporative water loss was positively related to total precipitation (r2 = 0.74. These results are interpreted using a Budyko plot framework to facilitate comparison with other settings. This water balance approach to infer evaporative water loss compares well with direct measurements in the same watershed since 2009 using eddy covariance (grasslands and crops) and soil moisture monitoring by time-domain reflectometry (grasslands, crops, and forest). Thus the evaporative water loss, which is predominantly by evapotranspiration, has been remarkably similar across a period of changing land cover, leaving a relatively consistent proportion for groundwater recharge and streamflow.

  1. Past agricultural land use and present-day fire regimes can interact to determine the nature of seed predation.

    PubMed

    Stuhler, John D; Orrock, John L

    2016-06-01

    Historical agriculture and present-day fire regimes can have significant effects on contemporary ecosystems. Although past agricultural land use can lead to long-term changes in plant communities, it remains unclear whether these persistent land-use legacies alter plant-consumer interactions, such as seed predation, and whether contemporary disturbance (e.g., fire) alters the effects of historical agriculture on these interactions. We conducted a study at 27 sites distributed across 80,300 ha in post-agricultural and non-agricultural longleaf pine woodlands with different degrees of fire frequency to test the hypothesis that past and present-day disturbances that alter plant communities can subsequently alter seed predation. We quantified seed removal by arthropods and rodents for Tephrosia virginiana and Vernonia angustifolia, species of conservation interest. We found that the effects of land-use history and fire frequency on seed removal were contingent on granivore guild and microhabitat characteristics. Tephrosia virginiana removal was greater in low fire frequency sites, due to greater seed removal by rodents. Although overall removal of V. angustifolia did not differ among habitats, rodents removed more seeds than arthropods at post-agricultural sites and non-agricultural sites with low fire frequencies, but not at non-agricultural sites with high fire frequencies. Land-use history and fire frequency also affected the relationship between microhabitat characteristics and removal of V. angustifolia. Our results suggest that historical agriculture and present-day fire regimes may alter seed predation by shifting the impact of rodent and arthropod seed predators among habitats, with potential consequences for the establishment of rare plant species consumed by one or both predators. PMID:26905418

  2. GEMAS: Geochemical Mapping of the agricultural and grasing land soils of Europe

    NASA Astrophysics Data System (ADS)

    Reimann, Clemens; Birke, Manfred; Demetriades, Alecos; Filzmoser, Peter; O'Connor, Patrick

    2014-05-01

    Geochemical Mapping of Agricultural and grazing land Soil (GEMAS) is a cooperative project between the Geochemistry Expert Group of EuroGeoSurveys and Eurometaux. During 2008 and until early 2009, a total of 2108 samples of agricultural (ploughed land, 0-20 cm, Ap-samples) and 2023 samples of grazing land (0-10 cm, Gr samples) soil were collected at a density of 1 site/2500 km2 each from 33 European countries, covering an area of 5,600,000 km2. All samples were analysed for 52 chemical elements following an aqua regia extraction, 41 elements by XRF (total), and soil properties, like CEC, TOC, pH (CaCl2), following tight external quality control procedures. In addition, the Ap soil samples were analysed for 57 elements in a mobile metal ion (MMI®) extraction, Pb isotopes and magnetic susceptibility. The results demonstrate that robust geochemical maps of Europe can be constructed based on low density sampling. The two independent sample materials, Ap and Gr, show very comparable distribution patterns across Europe. At the European scale, element distribution patterns are governed by natural processes, most often a combination of geology and climate. The geochemical maps reflect most of the known metal mining districts in Europe. In addition, a number of new anomalies emerge that may indicate mineral potential. The size of some anomalies is such that they can only be detected when mapping at the continental scale. For some elements completely new geological settings are detected. An anthropogenic impact at a much more local scale is discernible in the immediate vicinity of some major European cities (e.g., London, Paris) and some metal smelters. The impact of agriculture is visible for Cu (vineyard soil) and for some additional elements only in the mobile metal ion (MMI®) extraction. For several trace elements, deficiency issues are a larger threat to plant, animal, and finally human health at the European scale than toxicity. Taking the famous step back to see the

  3. Analyzing the Food-Fuel-Environment Tri-Lemma Facing World Agriculture: Global Land Use in the Coming Century

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Steinbuks, J.

    2011-12-01

    The number of people which the world must feed is expected to increase by another 3 billion people by 2100. When coupled with significant nutritional improvements for the 2.1 billion people currently living on less than $2/day, this translates into a very substantial rise in the demand for agricultural production. At the same time, the growing use of biomass for energy generation has introduced an important new source of industrial demand in agricultural markets. To compound matters, water, a key input into agricultural production, is rapidly diminishing in availability in large parts of the world and many soils are degrading. In addition, agriculture and forestry are increasingly envisioned as key sectors for climate change mitigation policy. Any serious attempt to reduce land-based emissions will involve changes in the way farming is conducted, as well as placing limits on the expansion of farming - particularly in the tropics, where most of the agricultural land conversion has come at the expense of forests, either directly, or indirectly via a cascading of land use requirements with crops moving into pasture and pasture into forest. Finally, agriculture and forestry are likely to be the economic sectors whose productivity is most sharply affected by climate change. In light of these challenges facing the global farm and food system, this paper will review the main sources of supply and demand for the world's cropland, and then provide a quantitative assessment of the impact of these forces on global land use over the coming century. The model incorporates forward looking behavior and examines competition between land used for ecosystem services, forestry, food and fuel. Explicit account is taken of emissions associated with both the intensive and extensive margins of agricultural expansion, as well as carbon sequestration and energy combustion. Key findings include: (a) energy prices and environmental policies will be increasingly important drivers of land use

  4. A spatially-explicit data driven approach to assess the effect of agricultural land occupation on species groups

    NASA Astrophysics Data System (ADS)

    Elshout, P.; van Zelm, R.; Karuppiah, R.; Laurenzi, I.; Huijbregts, M.

    2013-12-01

    Change of vegetation cover and increased land use intensity can directly affect the natural habitat and the wildlife it houses. The actual impact of agricultural land use is region specific as crops are grown under various climatic conditions and ways of cultivation and refining. Furthermore, growing a specific crop in a tropical region may require clearance of rainforest while the same crop may replace natural grasslands in temperate regions. Within life cycle impact assessment (LCIA), methods to address impacts of land use on a global scale are still in need of development. We aim to extend existing methods to improve the robustness of LCIA by allowing spatial differentiation of agricultural land use impacts. The goal of this study is to develop characterization factors for the direct impact of land use on biodiversity, which results from the replacement of natural habitat with farmland. The characterization factor expresses the change in species richness under crop cultivation compared to the species richness in the natural situation over a certain area. A second goal was to identify the differences in impacts caused by cultivation of different crop types, sensitivity of different taxonomic groups, and differences in natural land cover. Empirical data on species richness were collected from literature for both natural reference situations and agricultural land use situations. Reference situations were selected on an ecoregion or biome basis. We calculated characterization factors for four crop groups (oil palm, low crops, cereals, and perennial grasses), four species groups (arthropods, birds, mammals, vascular plants), and six biomes.

  5. Modeling the effect of terraces on land degradation in tropical upland agricultural area

    NASA Astrophysics Data System (ADS)

    Christanto, N.; Shrestha, D. P.; Jetten, V. G.; Setiawan, A.

    2012-04-01

    Java, the most populated Island in Indonesia, in the pas view decades suffer land degradation do to extreme weather, population pressure and landuse/cover change. The study area, Serayu sub-catchment, as part of Serayu catchment is one of the representative example of Indonesia region facing land use change and land degradation problem. The study attempted to simulate the effect of terraces on land degradation (Soil erosion and landslide hazard) in Serayu sub-catchment using deterministic modeling by means of PCRaster® simulation. The effect of the terraces on tropical upland agricultural area is less studied. This paper will discuss about the effect of terraces on land degradation assessment. Detail Dem is extremely difficult to obtain in developing country like Indonesia. Therefore, an artificial DEM which give an impression of the terraces was built. Topographical maps, Ikonos Image and average of height distribution based on field measurement were used to build the artificial DEM. The result is used in STARWARS model as an input. In combine with Erosion model and PROBSTAB, soil erosion and landslide hazard were quantified. The models were run in two different environment based on the: 1) normal DEM 2.) Artificial DEM (with terraces impression). The result is compared. The result shows that the models run in an artificial DEM give a significant increase on the probability of failure by 20.5%. In the other hand, the erosion rate has fall by 11.32% as compared to the normal DEM. The result of hydrological sensitivity analysis shows that soil depth was the most sensitive parameter. For the slope stability modeling, the most sensitive parameter was slope followed by friction angle and cohesion. The erosion modeling, the model was sensitive to the vegetation cover, soil erodibility followed by BD and KSat. Model validations were applied to assess the accuracy of the models. However, the results of dynamic modeling are ideal for land degradation assessment. Dynamic

  6. Testing the Runoff Tool in Sicilian vineyards: adopting best management practices to prevent agricultural surface runoff

    NASA Astrophysics Data System (ADS)

    Singh, Manpriet; Dyson, Jeremy; Capri, Ettore

    2016-04-01

    Over the last decades rainfall has become more intense in Sicily, making large proportions of steeply sloping agricultural land more vulnerable to soil erosion, mainly orchards and vineyards (Diodato and Bellocchi 2010). The prevention of soil degradation is indirectly addressed in the European Union's Water Framework Directive (2000/60/EC) and Sustainable Use Directive (2009/128/EC). As a consequence, new EU compliance conditions for food producers requires them to have tools and solutions for on-farm implementation of sustainable practices (Singh et al. 2014). The Agricultural Runoff and Best Management Practice Tool has been developed by Syngenta to help farm advisers and managers diagnose the runoff potential from fields with visible signs of soil erosion. The tool consists of 4 steps including the assessment of three key landscape factors (slope, topsoil permeability and depth to restrictive horizon) and 9 mainly soil and crop management factors influencing the runoff potential. Based on the runoff potential score (ranging from 0 to 10), which is linked to a runoff potential class, the Runoff Tool uses in-field and edge-of-the-field Best Management Practices (BMPs) to mitigate runoff (aligned with advice from ECPA's TOPPS-prowadis project). The Runoff tool needs testing in different regions and crops to create a number of use scenarios with regional/crop specific advice on BMPs. For this purpose the Tool has been tested in vineyards of the Tasca d'Almerita and Planeta wineries, which are large family-owned estates with long-standing tradition in viticulture in Sicily. In addition to runoff potential scores, Visual Soil Assessment (VSA) scores have been calculated to allow for a comparison between different diagnostic tools. VSA allows for immediate diagnosis of soil quality (a higher score means a better soil quality) including many indicators of runoff (Shepherd 2008). Runoff potentials were moderate to high in all tested fields. Slopes were classified as

  7. Temporal Beta Diversity of Bird Assemblages in Agricultural Landscapes: Land Cover Change vs. Stochastic Processes

    PubMed Central

    Baselga, Andrés; Bonthoux, Sébastien; Balent, Gérard

    2015-01-01

    Temporal variation in the composition of species assemblages could be the result of deterministic processes driven by environmental change and/or stochastic processes of colonization and local extinction. Here, we analyzed the relative roles of deterministic and stochastic processes on bird assemblages in an agricultural landscape of southwestern France. We first assessed the impact of land cover change that occurred between 1982 and 2007 on (i) the species composition (presence/absence) of bird assemblages and (ii) the spatial pattern of taxonomic beta diversity. We also compared the observed temporal change of bird assemblages with a null model accounting for the effect of stochastic dynamics on temporal beta diversity. Temporal assemblage dissimilarity was partitioned into two separate components, accounting for the replacement of species (i.e. turnover) and for the nested species losses (or gains) from one time to the other (i.e. nestedness-resultant dissimilarity), respectively. Neither the turnover nor the nestedness-resultant components of temporal variation were accurately explained by any of the measured variables accounting for land cover change (r2<0.06 in all cases). Additionally, the amount of spatial assemblage heterogeneity in the region did not significantly change between 1982 and 2007, and site-specific observed temporal dissimilarities were larger than null expectations in only 1% of sites for temporal turnover and 13% of sites for nestedness-resultant dissimilarity. Taken together, our results suggest that land cover change in this agricultural landscape had little impact on temporal beta diversity of bird assemblages. Although other unmeasured deterministic process could be driving the observed patterns, it is also possible that the observed changes in presence/absence species composition of local bird assemblages might be the consequence of stochastic processes in which species populations appeared and disappeared from specific localities in a

  8. Effects of conservation practices on phosphorus loss reduction from an Indiana agricultural watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses from agricultural lands have caused serious eutrophication problems, particularly in Lake Erie. However, techniques that can effectively reduce total and soluble phosphorus losses from croplands and drainage channels can be difficult to implement and gauge. This modeling study was ...

  9. 7 CFR 205.202 - Land requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Land requirements. 205.202 Section 205.202 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM...

  10. Prime agricultural land monitoring and assessment component of the California Integrated Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Tinney, L. R. (Principal Investigator); Streich, T.

    1981-01-01

    The use of digital LANDSAT techniques for monitoring agricultural land use conversions was studied. Two study areas were investigated: one in Ventura County and the other in Fresno County (California). Ventura test site investigations included the use of three dates of LANDSAT data to improve classification performance beyond that previously obtained using single data techniques. The 9% improvement is considered highly significant. Also developed and demonstrated using Ventura County data is an automated cluster labeling procedure, considered a useful example of vertical data integration. Fresno County results for a single data LANDSAT classification paralleled those found in Ventura, demonstrating that the urban/rural fringe zone of most interest is a difficult environment to classify using LANDSAT data. A general raster to vector conversion program was developed to allow LANDSAT classification products to be transferred to an operational county level geographic information system in Fresno.

  11. Arid Lands--A Study in Ecological Disaster

    ERIC Educational Resources Information Center

    Eckholm, Erik

    1977-01-01

    Reports that over-grazing and unsound agricultural practices are increasing the world-wide amount of uninhabitable land. Cites some practices which have been used to successfully reclaim arid land areas. (CP)

  12. Monitoring the impacts of urbanization and industrialization on the agricultural land and environment of the Torbali, Izmir region, Turkey.

    PubMed

    Kurucu, Yusuf; Chiristina, Nilüfer Küçükyilmaz

    2008-01-01

    The aim of this research is to determine agricultural land loss and environmental pollution caused by industrialization and urban sprawl using the Geographical Information System (GIS) and Remote Sensing technique (RS). Remotely sensed data is the most powerful tool for monitoring land use changes and GIS is the best way to store and reproduce various kinds of integrated data. Considering the rapid increase of population the loss of fertile agricultural soils is a very dangerous situation for the future of the country. Thus, people are living in the cities in (with adverse) conditions of insufficient drinking water, infrastructure problems, inadequate landscape and many unsolved (extreme) environmental problems. During the last 36 years, unplanned urbanization and industrialization have led to the use of agricultural areas for non-agricultural purposes in the Torbali (Izmir) region, which has the most fertile soils of the Aegean Region. Within this study, a database was created on the parameters of land loss and environmental pollution by means of field observation, interpretation of satellite images (ASTER), aerial photos(1/25.000 scale), topographic map, soil map, and 1/5.000 scale cadastral map. Results of previous researches and the archives of Torbali municipality were used as ancillary data. In the research, urbanization and industrialization of the town was studied by (using) GIS and RS between 1965 and 2001. Since 1965, 4,742,357 m2 agricultural land, mostly of first and second land use capability classes, has been lost due to unplanned urban and industrial developments. Urbanization and industrialization involved an area of which 58% was being used as irrigated lands, 25 % rain feed (rain fed lands)and 17 % for olive growing. PMID:17370130

  13. Environmental effects of planting biomass crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.E.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous. and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  14. Environmental effects of planting energy crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  15. Potential internal loading of phosphorus in a wetland constructed in agricultural land.

    PubMed

    Pant, H K; Reddy, K R

    2003-03-01

    Wetland construction on agricultural or dairy lands could result in solubilization of phosphorus (P) stored in soils and release to the water column. To study the extent of P flux during the start-up period of a constructed wetland, intact soil-cores from areas used for dairy operations, in Okeechobee, Florida, USA were obtained and flooded with adjacent creek water. In the first 28-day hydraulic-retention period, P concentration in the water column increased several fold due to rapid P flux from impacted soils. A continuous decrease in P flux to the water column until the third hydraulic retention cycle (initial influent P concentration 0.2 mgL(-1)), and constant thereafter suggest that the effect of initial influent P upon long-term P flux from soils could be limited. The initial release maybe due to high concentration of labile P in impacted soils; however, slow dissolution of relatively stable P pools could maintain a steady flux, well above of that observed from non-impacted soils. Water soluble P along with double acid-extractable magnesium explained 76% of the variability in cumulative P flux to the water column. Apparently, co-occurrence of active adsorption-desorption phenomena due to independent maintenance of equilibrium by individual P compounds regulates P dynamics of the water column. The results indicated that equilibrium P concentration of the water column of the wetland would be above 1.3 mgL(-1), which is well above the targeted P level in the water column of the Lake Okeechobee, one of the main water bodies in the area (0.04 mg PL(-1)). This suggests construction of wetlands in agricultural lands could result to substantial internal P loading. However, preventative measures including chemical amendments, establishment of vegetative communities or flushing the initially released P may potentially stabilize the system, and maintain P removal efficiency. PMID:12553971

  16. Landscape conditions predisposing grizzly bears to conflicts on private agricultural lands in the western USA

    USGS Publications Warehouse

    Wilson, S.M.; Madel, M.J.; Mattson, D.J.; Graham, J.M.; Merrill, T.

    2006-01-01

    We used multiple logistic regression to model how different landscape conditions contributed to the probability of human-grizzly bear conflicts on private agricultural ranch lands. We used locations of livestock pastures, traditional livestock carcass disposal areas (boneyards), beehives, and wetland-riparian associated vegetation to model the locations of 178 reported human-grizzly bear conflicts along the Rocky Mountain East Front, Montana, USA during 1986-2001. We surveyed 61 livestock producers in the upper Teton watershed of north-central Montana, to collect spatial and temporal data on livestock pastures, boneyards, and beehives for the same period, accounting for changes in livestock and boneyard management and beehive location and protection, for each season. We used 2032 random points to represent the null hypothesis of random location relative to potential explanatory landscape features, and used Akaike's Information Criteria (AIC/AICC) and Hosmer-Lemeshow goodness-of-fit statistics for model selection. We used a resulting "best" model to map contours of predicted probabilities of conflict, and used this map for verification with an independent dataset of conflicts to provide additional insights regarding the nature of conflicts. The presence of riparian vegetation and distances to spring, summer, and fall sheep or cattle pastures, calving and sheep lambing areas, unmanaged boneyards, and fenced and unfenced beehives were all associated with the likelihood of human-grizzly bear conflicts. Our model suggests that collections of attractants concentrated in high quality bear habitat largely explain broad patterns of human-grizzly bear conflicts on private agricultural land in our study area. ?? 2005 Elsevier Ltd. All rights reserved.

  17. Influence of agricultural practices on fruit quality of bell pepper.

    PubMed

    Abu-Zahra, T R

    2011-09-15

    An experiment was carried out under plastic house conditions to compare the effect of four fermented organic matter sources (cattle, poultry and sheep manure in addition to 1:1:1 mixture of the three organic matter sources) in which 4 kg organic matter m(-2) were used, with that of the conventional agriculture (chemical fertilizers) treatments on Marvello red pepper fruit quality, by using a Randomized Complete Block Design (RCBD) with four replicates. Pepper fruits characteristics cultivated in soil supplemented with manure were generally better than those from plants grown in soil only. Addition of animal manure increased bell pepper fruit content of soluble solids, ascorbic acid, total phenols, crude fibre and intensity of red color as compare with conventional agriculture that produced fruits with higher titratable acidity, water content, lycopene and bigger fruit size. In most cases of animal manure treatments, best results were obtained by the sheep manure treatment that produced the highest TSS, while the worst results were obtained by the poultry manure treatment that produced the smallest fruit and lowest fruit lycopene content. PMID:22518928

  18. An Initial Analysis of LANDSAT-4 Thematic Mapper Data for the Discrimination of Agricultural, Forested Wetland, and Urban Land Covers

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.

    1984-01-01

    An initial analysis of LANDSAT 4 Thematic Mapper (TM) data for the discrimination of agricultural, forested wetland, and urban land covers is conducted using a scene of data collected over Arkansas and Tennessee. A classification of agricultural lands derived from multitemporal LANDSAT Multispectral Scanner (MSS) data is compared with a classification of TM data for the same area. Results from this comparative analysis show that the multitemporal MSS classification produced an overall accuracy of 80.91% while the TM classification yields an overall classification accuracy of 97.06% correct.

  19. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping

    NASA Astrophysics Data System (ADS)

    Lucas, Richard; Rowlands, Aled; Brown, Alan; Keyworth, Steve; Bunting, Peter

    AimTo evaluate the use of time-series of Landsat sensor data acquired over an annual cycle for mapping semi-natural habitats and agricultural land cover. LocationBerwyn Mountains, North Wales, United Kingdom. MethodsUsing eCognition Expert, segmentation of the Landsat sensor data was undertaken for actively managed agricultural land based on Integrated Administration and Control System (IACS) land parcel boundaries, whilst a per-pixel level segmentation was undertaken for all remaining areas. Numerical decision rules based on fuzzy logic that coupled knowledge of ecology and the information content of single and multi-date remotely sensed data and derived products (e.g., vegetation indices) were developed to discriminate vegetation types based primarily on inferred differences in phenology, structure, wetness and productivity. ResultsThe rule-based classification gave a good representation of the distribution of habitats and agricultural land. The more extensive, contiguous and homogeneous habitats could be mapped with accuracies exceeding 80%, although accuracies were lower for more complex environments (e.g., upland mosaics) or those with broad definition (e.g., semi-improved grasslands). Main conclusionsThe application of a rule-based classification to temporal imagery acquired over selected periods within an annual cycle provides a viable approach for mapping and monitoring of habitats and agricultural land in the United Kingdom that could be employed operationally.

  20. Relation of nitrate concentrations in water to agricultural land use and soil type in Dakota County, Minnesota, 1990

    USGS Publications Warehouse

    Almendinger, James Edward

    1991-01-01

    Nitrate is commonly found in ground water in agricultural areas throughout the Midwest. The emphasis of this report is to relate differences in nitrate concentrations in ground water to agricultural land use and soil type. In addition, nitrate concentrations in streams, shallow ground water near the water table, and deeper ground water from 10 to 30 feet below the water table are tabulated for selected sites in Dakota County.

  1. Thermal Band Analysis of Agricultural Land Use and its Effects on Bioclimatic Comfort: The Case of Pasinler

    NASA Astrophysics Data System (ADS)

    Avdan, Uǧur; Demircioglu Yildiz, Nalan; Dagliyar, Ayse; Yigit Avdan, Zehra; Yilmaz, Sevgi

    2014-05-01

    Resolving the problems that arise due to the land use are not suitable for the purpose in the rural and urban areas most suitable for land use of parameters to be determined. Unintended and unplanned developments in the use of agricultural land in our country caused increases the losses by soil erosion. In this study, Thermal Band analysis is made in Pasinler city center with the aim of identifying bioclimatic comfort values of the different agricultural area. Satellite images can be applied for assessing the thermal urban environment as well as for defining heat islands in agricultural areas. In this context, temperature map is tried to be produced with land surface temperature (LST) analysis made on Landsat TM5 satellite image. The Landsat 5 images was obtained from USGS for the study area. Using Landsat bands of the study area was mapped by supervised classification with the maximum likelihood classification algorithm of ERDAS imagine 2011 software. Normalized Difference Vegetation Index (NDVI) image was produced by using Landsat images. The digital number of the Landsat thermal infrared band (10.40 - 12.50 µm) is converted to the spectral radiance. The surface emissivity was calculated by using NDVI. The spatial pattern of land surface temperature in the study area is taken to characterize their local effects on agricultural land. Areas having bioclimatic comfort and ecologically urbanized, are interpreted with different graphical presentation technics. The obtained results are important because they create data bases for sustainable urban planning and provide a direction for planners and governors. As a result of rapid changes in land use, rural ecosystems and quality of life are deteriorated and decreased. In the presence of increased building density, for the comfortable living of people natural and cultural resources should be analyzed in detail. For that reason, optimal land use planning should be made in rural area.

  2. Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land?

    PubMed

    Quilliam, Richard S; van Niekerk, Melanie A; Chadwick, David R; Cross, Paul; Hanley, Nick; Jones, Davey L; Vinten, Andy J A; Willby, Nigel; Oliver, David M

    2015-04-01

    Eutrophication is a major water pollution issue and can lead to excessive growth of aquatic plant biomass (APB). However, the assimilation of nutrients into APB provides a significant target for their recovery and reuse, and harvesting problematic APB in impacted freshwater bodies offers a complementary approach to aquatic restoration, which could potentially deliver multiple wider ecosystem benefits. This critical review provides an assessment of opportunities and risks linked to nutrient recovery from agriculturally impacted water-bodies through the harvesting of APB for recycling and reuse as fertilisers and soil amendments. By evaluating the economic, social, environmental and health-related dimensions of this resource recovery from 'waste' process we propose a research agenda for closing the loop on nutrient transfer from land to water. We identify that environmental benefits are rarely, if ever, prioritised as essential criteria for the exploitation of resources from waste and yet this is key for addressing the current imbalance that sees environmental managers routinely undervaluing the wider environmental benefits that may accrue beyond resource recovery. The approach we advocate for the recycling of 'waste' APB nutrients is to couple the remediation of eutrophic waters with the sustainable production of feed and fertiliser, whilst providing multiple downstream benefits and minimising environmental trade-offs. This integrated 'ecosystem services approach' has the potential to holistically close the loop on agricultural nutrient loss, and thus sustainably recover finite resources such as phosphorus from waste. PMID:25669857

  3. Farmers' Preferences for Future Agricultural Land Use Under the Consideration of Climate Change

    NASA Astrophysics Data System (ADS)

    Pröbstl-Haider, Ulrike; Mostegl, Nina M.; Kelemen-Finan, Julia; Haider, Wolfgang; Formayer, Herbert; Kantelhardt, Jochen; Moser, Tobias; Kapfer, Martin; Trenholm, Ryan

    2016-09-01

    Cultural landscapes in Austria are multifunctional through their simultaneous support of productive, habitat, regulatory, social, and economic functions. This study investigates, if changing climatic conditions in Austria will lead to landscape change. Based on the assumption that farmers are the crucial decision makers when it comes to the implementation of agricultural climate change policies, this study analyzes farmers' decision-making under the consideration of potential future climate change scenarios and risk, varying economic conditions, and different policy regimes through a discrete choice experiment. Results show that if a warming climate will offer new opportunities to increase income, either through expansion of cash crop cultivation or new land use options such as short-term rotation forestry, these opportunities will almost always be seized. Even if high environmental premiums were offered to maintain current cultural landscapes, only 43 % of farmers would prefer the existing grassland cultivation. Therefore, the continuity of characteristic Austrian landscape patterns seems unlikely. In conclusion, despite governmental regulations of and incentives for agriculture, climate change will have significant effects on traditional landscapes. Any opportunities for crop intensification will be embraced, which will ultimately impact ecosystem services, tourism opportunities, and biodiversity.

  4. Farmers' Preferences for Future Agricultural Land Use Under the Consideration of Climate Change.

    PubMed

    Pröbstl-Haider, Ulrike; Mostegl, Nina M; Kelemen-Finan, Julia; Haider, Wolfgang; Formayer, Herbert; Kantelhardt, Jochen; Moser, Tobias; Kapfer, Martin; Trenholm, Ryan

    2016-09-01

    Cultural landscapes in Austria are multifunctional through their simultaneous support of productive, habitat, regulatory, social, and economic functions. This study investigates, if changing climatic conditions in Austria will lead to landscape change. Based on the assumption that farmers are the crucial decision makers when it comes to the implementation of agricultural climate change policies, this study analyzes farmers' decision-making under the consideration of potential future climate change scenarios and risk, varying economic conditions, and different policy regimes through a discrete choice experiment. Results show that if a warming climate will offer new opportunities to increase income, either through expansion of cash crop cultivation or new land use options such as short-term rotation forestry, these opportunities will almost always be seized. Even if high environmental premiums were offered to maintain current cultural landscapes, only 43 % of farmers would prefer the existing grassland cultivation. Therefore, the continuity of characteristic Austrian landscape patterns seems unlikely. In conclusion, despite governmental regulations of and incentives for agriculture, climate change will have significant effects on traditional landscapes. Any opportunities for crop intensification will be embraced, which will ultimately impact ecosystem services, tourism opportunities, and biodiversity. PMID:27372660

  5. Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kraemer, Roland; Prishchepov, Alexander V.; Müller, Daniel; Kuemmerle, Tobias; Radeloff, Volker C.; Dara, Andrey; Terekhov, Alexey; Frühauf, Manfred

    2015-05-01

    During the Soviet Virgin Lands Campaign, approximately 23 million hectares (Mha) of Eurasian steppe grassland were converted into cropland in Northern Kazakhstan from 1954 to 1963. As a result Kazakhstan became an important breadbasket of the former Soviet Union. However, the collapse of the Soviet Union in 1991 triggered widespread agricultural abandonment, and much cropland reverted to grasslands. Our goal in this study was to reconstruct and analyze agricultural land-cover change since the eve of the Virgin Lands Campaign, from 1953 to 2010 in Kostanay Province, a region that is representative of Northern Kazakhstan. Further, we assessed the potential of currently idle cropland for re-cultivation. We reconstructed the cropland extent before and after the Virgin Lands Campaign using archival maps, and we mapped the agricultural land cover in the late Soviet and post-Soviet period using multi-seasonal Landsat TM/ETM+ images from circa 1990, 2000 and 2010. Cropland extent peaked at approximately 3.1 Mha in our study area in 1990, 38% of which had been converted from grasslands from 1954 to 1961. After the collapse of the Soviet Union, 45% of the Soviet cropland was abandoned and had reverted to grassland by 2000. After 2000, cropland contraction and re-cultivation were balanced. Using spatial logistic regressions we found that cropland expansion during the Virgin Lands Campaign was significantly associated with favorable agro-environmental conditions. In contrast, cropland expansion after the Campaign until 1990, as well as cropland contraction after 1990, occurred mainly in areas that were less favorable for agriculture. Cropland re-cultivation after 2000 was occurring on lands with relatively favorable agro-environmental conditions in comparison to remaining idle croplands, albeit with much lower agro-environmental endowment compared to stable croplands from 1990 to 2010. In sum, we found that cropland production potentials of the currently uncultivated areas are

  6. Seawater/Saline Agriculture for Energy, Warming, Water, Rainfall, Land, Food and Minerals

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis

    2006-01-01

    The combination of the incipient demise of cheap oil and increasing evidence of Global Warming due to anthropogenic fossil carbon release has reinvigorated the need for and efforts on Renewable energy sources, especially for transportation applications. Biomass/Bio-diesel appears to have many benefits compared to Hydrogen, the only other major renewable transportation fuel candidate. Biomass Production is currently limited by available arable land and fresh water. Halophyte Plants and seawater irrigation proffer a wholly new biomass production mantra using wastelands and very plentiful seawater. Such an approach addresses many-to-most of the major emerging Societal Problems including Land, Water, Food, Warming and Energy. For many reasons, including seawater agriculture, portions of the Sahara appear to be viable candidates for future Biomass Production. The apparent nonlinearity between vegetation cover and atmospheric conditions over North Africa necessitates serious coupled boundary layer Meteorology and Global Circulation Modeling to ensure that this form of Terra Forming is Favorable and to avoid adverse Unintended Consequences.

  7. Energy-conserving perennial agriculture for marginal land in southern Appalachia. Final technical report

    SciTech Connect

    Williams, G.

    1982-01-30

    USDA economists predict the end of surplus farm production in the US within this decade. More and more marginal land will be cropped to provide feed for the growing world population and to produce energy. Much of this potential cropland in Southern Appalachia is poorly suited to annual crops, such as corn. Perennial crops are much better suited to steep, rocky, and wet sites. Research was undertaken on the theoretical potentials of perennial species with high predicted yields of protein, carbohydrates, or oils. Several candidate staple perennial crops for marginal land in Southern Appalachia were identified, and estimates were made of their yields, energy input requirements, and general suitabilities. Cropping systems incorporating honeylocust, persimmon, mulberry, jujube, and beech were compared with corn cropping systems. It appears that these candidate staple perennials show distinct advantages for energy conservation and environmental preservation. Detailed economic analyses must await actual demonstration trials, but preliminary indications for ethanol conversion systems with honeylocust are encouraging. It is suggested that short-term loans to farmers undertaking this new type of agriculture would be appropriate to solve cash-flow problems.

  8. Improving Agricultural Drought Monitoring in East Africa with Unbiased Rainfall Fields and Detailed Land Surface Physics

    NASA Astrophysics Data System (ADS)

    McNally, A.; Yatheendradas, S.; Peters-Lidard, C. D.; Michaelsen, J.

    2010-12-01

    Monitoring drought is particularly challenging within rainfed agricultural and pastoral systems, where it can serve the greatest need. Such locations often have sparse or non-existent ground based measurements of precipitation, evapotranspiration (ET), and soil moisture. For more effective drought monitoring with limited hydroclimate observations, we simulate land surface states using the Community Noah Land Surface Model forced with different merged rainfall products inside a Land Information System (LIS). Using model outputs we will answer the questions: How sensitive are soil moisture and ET fields to differences in rainfall forcing and model physics? What are acceptable drought-specific tradeoffs between near-real time availability and skill of rainfall data? Preliminary results with the African Rainfall Estimation Algorithm Version 2 (RFE2.0) outperformed global products, suggesting that sub-global rainfall estimates are the way forward for regional drought monitoring. Specifically, the Noah model forced with RFE2.0 better resolved the heterogeneous patterns in crop stress than the Famine Early Warning System Network (FEWS NET) operational Water Requirement Satisfaction Index (WRSI) model. To further investigate the improvement in drought monitoring while maintaining timeliness, we unbias (using Africa specific climatology) the precipitation products from CPC Merged Analysis of Precipitation (CMAP), Tropical Rainfall Measurement Mission (TRMM), and RFE2.0. The skill (relative accuracy) and reliability (average agreement) of the unbiased rainfall are calculated against an unbiased precipitation product augmented with station data from Ethiopia and Kenya. Soil moisture and ET fields from Noah are compared to the operational FEWS NET WRSI, soil water anomaly index, and the World Food Program’s Crop and Food Security Assessment Mission reports. We anticipate that the unbiased rainfall fields will improve the accuracy, spatio-temporal resolution, and

  9. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  10. Environmental Effects of Agricultural Practices - Summary of Workshop Held on June 14-16, 2005

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    A meeting between the U.S. Geological Survey (USGS) and its partners was held June 14-16, 2005, in Denver, CO, to discuss science issues and needs related to agricultural practices. The goals of the meeting were to learn about the (1) effects of agricultural practices on the environment and (2) tools for identifying and quantifying those effects. Achieving these goals required defining the environmental concerns, developing scientific actions to address assessment of environmental effects, and creating collaborations to identify future research requirements and technical gaps. Five areas of concern were discussed-emerging compounds; water availability; genetically modified organisms; effects of conservation practices on ecosystems; and data, methods, and tools for assessing effects of agricultural practices.

  11. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    NASA Astrophysics Data System (ADS)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  12. Characterization of Dissolved Solids in Water Resources of Agricultural Lands near Manila, Utah, 2004-05

    USGS Publications Warehouse

    Gerner, Steven J.; Spangler, L.E.; Kimball, B.A.; Naftz, D.L.

    2006-01-01

    Agricultural lands near Manila, Utah, have been identified as contributing dissolved solids to Flaming Gorge Reservoir. Concentrations of dissolved solids in water resources of agricultural lands near Manila, Utah, ranged from 35 to 7,410 milligrams per liter. The dissolved-solids load in seeps and drains in the study area that discharge to Flaming Gorge Reservoir ranged from less than 0.1 to 113 tons per day. The most substantial source of dissolved solids discharging from the study area to the reservoir was Birch Spring Draw. The mean daily dissolved-solids load near the mouth of Birch Spring Draw was 65 tons per day. The estimated annual dissolved-solids load imported to the study area by Sheep Creek and Peoples Canals is 1,330 and 13,200 tons, respectively. Daily dissolved-solid loads discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the period July 1, 2004, to June 30, 2005, ranged from 90 to 289 tons per day with a mean of 142 tons per day. The estimated annual dissolved-solids load discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the same period was 51,900 tons. Of this 51,900 tons of dissolved solids, about 9,000 tons may be from a regional source that is not associated with agricultural activities. The salt-loading factor is 3,670 milligrams per liter or about 5.0 tons of dissolved solids per acre-foot of deep percolation in Lucerne Valley and 1,620 milligrams per liter or 2.2 tons per acre-foot in South Valley. The variation of 87Sr with strontium concentration indicates some general patterns that help to define a conceptual model of the processes affecting the concentration of strontium and the 87Sr isotopic ratio in area waters. As excess irrigation water percolates through soils derived from Mancos Shale, the 87Sr isotopic ratio (0.21 to 0.69 permil) approaches one that is typical of deep percolation from irrigation on Mancos Shale

  13. High-Resolution Biogeochemical Simulation Identifies Practical Opportunities for Bioenergy Landscape Intensification Across Diverse US Agricultural Regions

    NASA Astrophysics Data System (ADS)

    Field, J.; Adler, P. R.; Evans, S.; Paustian, K.; Marx, E.; Easter, M.

    2015-12-01

    The sustainability of biofuel expansion is strongly dependent on the environmental footprint of feedstock production, including both direct impacts within feedstock-producing areas and potential leakage effects due to disruption of existing food, feed, or fiber production. Assessing and minimizing these impacts requires novel methods compared to traditional supply chain lifecycle assessment. When properly validated and applied at appropriate spatial resolutions, biogeochemical process models are useful for simulating how the productivity and soil greenhouse gas fluxes of cultivating both conventional crops and advanced feedstock crops respond across gradients of land quality and management intensity. In this work we use the DayCent model to assess the biogeochemical impacts of agricultural residue collection, establishment of perennial grasses on marginal cropland or conservation easements, and intensification of existing cropping at high spatial resolution across several real-world case study landscapes in diverse US agricultural regions. We integrate the resulting estimates of productivity, soil carbon changes, and nitrous oxide emissions with crop production budgets and lifecycle inventories, and perform a basic optimization to generate landscape cost/GHG frontiers and determine the most practical opportunities for low-impact feedstock provisioning. The optimization is constrained to assess the minimum combined impacts of residue collection, land use change, and intensification of existing agriculture necessary for the landscape to supply a commercial-scale biorefinery while maintaining exiting food, feed, and fiber production levels. These techniques can be used to assess how different feedstock provisioning strategies perform on both economic and environmental criteria, and sensitivity of performance to environmental and land use factors. The included figure shows an example feedstock cost-GHG mitigation tradeoff frontier for a commercial-scale cellulosic

  14. Simulating the Effects of Irrigation over the U.S. in a Land Surface Model Based on Satellite Derived Agricultural Data

    NASA Technical Reports Server (NTRS)

    Ozdogan, Mutlu; Rodell, Matthew; Beaudoing, Hiroko Kato; Toll, David L.

    2009-01-01

    A novel method is introduced for integrating satellite derived irrigation data and high-resolution crop type information into a land surface model (LSM). The objective is to improve the simulation of land surface states and fluxes through better representation of agricultural land use. Ultimately, this scheme could enable numerical weather prediction (NWP) models to capture land-atmosphere feedbacks in managed lands more accurately and thus improve forecast skill. Here we show that application of the new irrigation scheme over the continental US significantly influences the surface water and energy balances by modulating the partitioning of water between the surface and the atmosphere. In our experiment, irrigation caused a 12% increase in evapotranspiration (QLE) and an equivalent reduction in the sensible heat flux (QH) averaged over all irrigated areas in the continental US during the 2003 growing season. Local effects were more extreme: irrigation shifted more than 100 W/m from QH to QLE in many locations in California, eastern Idaho, southern Washington, and southern Colorado during peak crop growth. In these cases, the changes in ground heat flux (QG), net radiation (RNET), evapotranspiration (ET), runoff (R), and soil moisture (SM) were more than 3 W/m(sup 2), 20 W/m(sup 2), 5 mm/day, 0.3 mm/day, and 100 mm, respectively. These results are highly relevant to continental- to global-scale water and energy cycle studies that, to date, have struggled to quantify the effects of agricultural management practices such as irrigation. Based on the results presented here, we expect that better representation of managed lands will lead to improved weather and climate forecasting skill when the new irrigation scheme is incorporated into NWP models such as NOAA's Global Forecast System (GFS).

  15. Assessing the benefits of grazing land conservation practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Department of Agriculture’s Conservation Effect Assessment Project (CEAP) was initiated in 2006 to quantify the environmental benefits of conservation on grazing lands. Strategy for the grazing land national assessment encompasses a 5 part process: National Assessment - Providing national s...

  16. Science in Action: Study Examines the Fate of Multiple Contaminants when Biosolids Are Applied to Agricultural Land

    EPA Science Inventory

    Biosolids are defined as sewage sludge that has been treated to meet federal and state regulations for land application. In the years since regulations were issued, wastewater treatment technologies and practices have changed and public concerns about the land application of bios...

  17. Investigating the effects of land management practices on rill erosion using a state-of-the-art laser scanner technique

    NASA Astrophysics Data System (ADS)

    Dermisis, D. C.; Papanicolaou, T.

    2009-12-01

    Rill erosion is a major form of soil and nutrient loss that affects the productivity of agricultural lands and threatens our environment. In this study, laboratory experiments are currently being conducted at a plot scale level to identify the effects that land management practices have on rill erosion processes and the fluxes of both water and sediment. Identification of the role that management practices has on erosion processes will lead to more sustainable agriculture practices, thus avoiding the loss of vital nutrients and reduction of the soil’s water-holding ability. A state-of-the-art laser scanner technique is utilized, providing an accurate spatial resolution of 0.5 mm. Based on this technique, a laser beam is projected vertically onto the bed surface while an infra-red camera detects the light spot reflected from the surface. Knowledge of the bed topography allows us to determine the associated drainage networks, flow direction, and stream segmentation via GIS (Geographic Information System) modeling. Results from this study advance the knowledge at the plot scale level while paving the way for larger scales such as catchment and watershed. Data sets obtained from this study will be used as input files for numerical models such as the CAESAR landscape evolution and erosion model and the physically based, distributed parameter Water Erosion Prediction Project (WEPP) model to assess the effects of environmental system changes on hydrologic and erosion processes.

  18. Evaluation of land use and water quality in an agricultural watershed in the USA indicates multiple sources of bacterial impairment.

    PubMed

    Wittman, Jacob; Weckwerth, Andrew; Weiss, Chelsea; Heyer, Sharon; Seibert, Jacob; Kuennen, Ben; Ingels, Chad; Seigley, Lynette; Larsen, Kirk; Enos-Berlage, Jodi

    2013-12-01

    Pathogens are the number one cause of impairments of assessed rivers and streams in the USA and pose a significant human health hazard. The Dry Run Creek Watershed in Northeast Iowa has been designated as impaired by the State of Iowa because of high levels of Escherichia coli bacteria. To investigate the nature of this impairment, land use and stream bank assessments were coupled with comprehensive water quality monitoring. Physical, chemical, and biological parameters were measured at 13 different sites in the watershed, including pH, temperature, conductivity, dissolved oxygen, turbidity, total Kjeldahl nitrogen, ammonia-N, nitrate + nitrite-N, total phosphorus, and E. coli. In addition, benthic macroinvertebrate communities were analyzed at seven sites, and optical brightener tests were performed late in the season. Results identified segments of the watershed that were more prominent contributors of E. coli, and correlations were observed between levels of E. coli and several chemical parameters, including ammonia-N, total Kjeldahl nitrogen, and total phosphorus. Interestingly, distinct sites emerged as more prominent contributors of these elements during rain vs. non-rain events, suggesting different types of sources. Both the amount of rainfall and the time elapsed between the rain event and the sampling influenced E. coli levels during wet weather conditions. Nitrate + nitrite-N displayed a unique response to rain events compared with the other parameters, suggesting a different delivery route. Analyses of benthic macroinvertebrate communities were consistent with pollution trends. Collectively, these data suggest distinct agriculturally related E. coli contributions, as well as specific areas and practices for water quality improvement strategies. This study can serve as a resource for evaluating agricultural watersheds that are impaired for bacteria. PMID:23873513

  19. Flooding of property by runoff from agricultural land in northwestern Europe

    NASA Astrophysics Data System (ADS)

    Boardman, John; Ligneau, Laurence; de Roo, Ad; Vandaele, Karel

    1994-08-01

    In the last twenty years there has been an increase in the incidence of flooding of property by runoff from agricultural land in many areas of northwestern Europe. These events take the form of inundations by soil-laden water associated with erision and the formation of ephemeral or talweg gullies developed in normally dry valley bottoms. Costs of such events may be considerable e.g. almost US$2M at Rottingdean, southern England, in 1987. These costs are largely borne by individual house occupants, insurance companies and local councils. The distribution of flooding is widespread but areas of high risk can be identified: the hilly area of central Belgium, parts of northern France, the South Downs in southern England and South-Limburg (the Netherlands). All these areas have silty, more or less loessial soils. Two types of flooding may be distinguished: winter flooding associated with wet soils and the cultivation of winter cereals, and summer flooding due to thunderstorm activity and runoff particularly from sugar beet, maize and potato crops. The distribution of these types of erosion varies in relation to the interaction between physical characteristics (soils and topography), climatic conditions and land use across the region. The reason for the recent increase in flooding events appears to be changes in land use, in the area of arable cropping, and the continued intensification of farming such as the use of chemical fertilizers, the decline in aggregate stability, the increase in the size of fields and compaction by farm vehicles. In some regions the risk of flooding has also increased because of expansion of urban areas in valley bottom locations. Communities have responded to the flooding hazard with emergency or protective measures usually involving engineered structures rather than land use change. The policy response to the increased risk of flooding has been very limited especially at the national and provincial level, the exception being plans developed

  20. Using knowledge of agricultural practices to enhance through-the-season interpretation of Landsat data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Pestre, C. R.

    1984-01-01

    Landsat data contain features that can be interpreted to produce information about crops, in support of crop estimation procedures. This paper considers ways in which detailed knowledge of agricultural practices and events might increase and improve the utilization of Landsat data in both the predictive and observational or measurement components of such procedures. Landsat observables related to agricultural practices and events throughout the cropping season are listed. Agricultural fields are identified as the preferred observational units for incorporating refined agricultural understanding, such as crop rotation patterns, into machine procedures. Uses of Landsat data from both prior seasons and the current season are considered, as is use of predictive models of crop appearance. The investigation of knowledge engineering systems tailored to through-the-season estimation problems is recommended for long range development.

  1. Functions on the Job in Relation to Data, People, and Things among Agricultural Students from Southern Land-Grant Universities

    ERIC Educational Resources Information Center

    Zekeri, Andrew A.; Warren, Rueben

    2013-01-01

    This paper uses data from a sample of agriculture graduates from selected land-grant universities in the south to examine workers' functions on the job in relation to data, people, and things as described in the Dictionary of Occupational Titles. Tabular analysis was conducted using gamma and Pearson's correlation as measures of…

  2. Potential pollutant sources in a Choptank River subwatershed: Influence of agricultural and residential land use and aqueous and atmospheric sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture and animal feeding operations have been implicated as sources of water pollution along the Choptank River, an estuary and tributary of the Chesapeake Bay. This study examined a subwatershed within the Choptank River watershed for effects of land use on water quality. Water and sediment...

  3. Soil water infiltration impacted by maize (zea mays) growth on sloping agricultural land of the loess plateau

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing infiltration rates of sloping agricultural land from arid and semiarid regions not only affects water supply and precipitation transformations in soil directly, but also impacts erosion intensity. This is extremely important to the Loess Plateau regions of Northwest China, where a majorit...

  4. Investigation of environmental change pattern in Japan. Observation of present state of agricultural land-use by analysing LANDSAT data

    NASA Technical Reports Server (NTRS)

    Maruyasu, T. (Principal Investigator); Hayashi, S.

    1977-01-01

    The author has identified the following significant results. Species and ages of grasses in pastures were identified, and soils were classified into several types using LANDSAT data. This data could be used in a wide area of cultivation, reclamation, or management planning on agricultural land.

  5. Selection criteria for water disinfection techniques in agricultural practices.

    PubMed

    Haute, Sam van; Sampers, Imca; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-01-01

    This paper comprises a selection tool for water disinfection methods for fresh produce pre- and postharvest practices. A variety of water disinfection technologies is available on the market and no single technology is the best choice for all applications. It can be difficult for end users to choose the technology that is best fit for a specific application. Therefore, the different technologies were characterized in order to identify criteria that influence the suitability of a technology for pre- or postharvest applications. Introduced criteria were divided into three principal components: (i) criteria related to the technology and which relate to the disinfection efficiency, (ii) attention points for the management and proper operation, and (iii) necessities in order to sustain the operation with respect to the environment. The selection criteria may help the end user of the water disinfection technology to obtain a systematic insight into all relevant aspects to be considered for preliminary decision making on which technologies should be put to feasibility testing for water disinfection in pre- and postharvest practices of the fresh produce chain. PMID:24279431

  6. Cost-Effective Allocation of Agricultural Best Management Practices

    NASA Astrophysics Data System (ADS)

    Arabi, M.; Govindaraju, R. S.; Engel, B. A.

    2007-12-01

    Implementation of conservation programs is perceived as being crucial for restoring and protecting waters and watersheds from nonpoint source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Herein, a novel optimization methodology is presented for deriving watershed-scale sediment and nutrient control plans that incorporate multiple, and often conflicting, objectives. The method combines the use of a watershed model (SWAT), representation of best management practices, an economic component, and a genetic algorithm-based spatial search procedure. For a small watershed in Indiana located in the Midwestern portion of the United States, selection and placement of best management practices by optimization was found to be nearly three times more cost-effective than targeting strategies for the same level of protection specified in terms of maximum monthly sediment, phosphorus, and nitrogen loads. Conversely, for the same cost, the optimization plan reduced the maximum monthly loads by a factor of two when compared to the targeting plan. The optimization methodology developed in this paper can facilitate attaining water quality goals at significantly lower costs than commonly used cost-share and targeting strategies.

  7. Land Lab Experiences in Sierra Leone and Illinois

    ERIC Educational Resources Information Center

    Swanson, Burton E.; Tucker, Sonny W.

    1978-01-01

    The agricultural education curriculum at Njala University College, University of Sierra Leone, is stressing practical farm experience programs on school land for students preparing to teach agriculture. In Illinois also the "land laboratories" concept appears to be effective in providing practical agricultural training. (MF)

  8. An Examination of Growing Trends in Land Tenure and Conservation Practice Adoption: Results from a Farmer Survey in Iowa

    NASA Astrophysics Data System (ADS)

    Varble, Sarah; Secchi, Silvia; Druschke, Caroline Gottschalk

    2016-02-01

    Tenants and part-owners are farming an increasing number of acres in the United States, while full-owners are farming fewer acres. This shift in ownership is a potential cause for concern because some previous research indicated that tenant and part-owner farmers were less likely to adopt conservation practices than farmers who owned the land they farmed. If that trend persists, ownership changes would signal a national drop in conservation adoption. Here we examine this issue using a survey of agricultural operators in the Clear Creek watershed in Iowa, a state with intensive agricultural production. We compare adoption of conservation practices, and preferences for conservation information sources and communication channels, between farmers who rent some portion of the land they farm (tenants and part-owners) and farmers who own all of the land they farm (full-owners). We find that renters are more likely to practice conservation tillage than full-owners, though they are less likely to rotate crops. In addition, renters report using federal government employees (specifically, Natural Resource Conservation Service and Farm Service Agency) as their primary sources of conservation information, while full-owners most frequently rely on neighbors, friends, and County Extension. These findings are significant for conservation policy because, unlike some past research, they indicate that renters are not resistant to all types of conservation practices, echoing recent studies finding an increase in conservation adoption among non-full-owners. Our results emphasize the importance of government conservation communication and can inform outreach efforts by helping tailor effective, targeted conservation strategies for owners and renters.

  9. An Examination of Growing Trends in Land Tenure and Conservation Practice Adoption: Results from a Farmer Survey in Iowa.

    PubMed

    Varble, Sarah; Secchi, Silvia; Druschke, Caroline Gottschalk

    2016-02-01

    Tenants and part-owners are farming an increasing number of acres in the United States, while full-owners are farming fewer acres. This shift in ownership is a potential cause for concern because some previous research indicated that tenant and part-owner farmers were less likely to adopt conservation practices than farmers who owned the land they farmed. If that trend persists, ownership changes would signal a national drop in conservation adoption. Here we examine this issue using a survey of agricultural operators in the Clear Creek watershed in Iowa, a state with intensive agricultural production. We compare adoption of conservation practices, and preferences for conservation information sources and communication channels, between farmers who rent some portion of the land they farm (tenants and part-owners) and farmers who own all of the land they farm (full-owners). We find that renters are more likely to practice conservation tillage than full-owners, though they are less likely to rotate crops. In addition, renters report using federal government employees (specifically, Natural Resource Conservation Service and Farm Service Agency) as their primary sources of conservation information, while full-owners most frequently rely on neighbors, friends, and County Extension. These findings are significant for conservation policy because, unlike some past research, they indicate that renters are not resistant to all types of conservation practices, echoing recent studies finding an increase in conservation adoption among non-full-owners. Our results emphasize the importance of government conservation communication and can inform outreach efforts by helping tailor effective, targeted conservation strategies for owners and renters. PMID:26514123

  10. A Statistical Assessment of the Impact of Agricultural Land Use Intensity on Regional Surface Water Quality at Multiple Scales

    PubMed Central

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-01-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO3-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (CODMn) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO3-N and CODMn, respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  11. A statistical assessment of the impact of agricultural land use intensity on regional surface water quality at multiple scales.

    PubMed

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-11-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO(3)-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (COD(Mn)) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO(3)-N and COD(Mn), respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  12. Global Agricultural Land Resources – A High Resolution Suitability Evaluation and Its Perspectives until 2100 under Climate Change Conditions

    PubMed Central

    Zabel, Florian; Putzenlechner, Birgitta; Mauser, Wolfram

    2014-01-01

    Changing natural conditions determine the land's suitability for agriculture. The growing demand for food, feed, fiber and bioenergy increases pressure on land and causes trade-offs between different uses of land and ecosystem services. Accordingly, an inventory is required on the changing potentially suitable areas for agriculture under changing climate conditions. We applied a fuzzy logic approach to compute global agricultural suitability to grow the 16 most important food and energy crops according to the climatic, soil and topographic conditions at a spatial resolution of 30 arc seconds. We present our results for current climate conditions (1981–2010), considering today's irrigated areas and separately investigate the suitability of densely forested as well as protected areas, in order to investigate their potentials for agriculture. The impact of climate change under SRES A1B conditions, as simulated by the global climate model ECHAM5, on agricultural suitability is shown by comparing the time-period 2071–2100 with 1981–2010. Our results show that climate change will expand suitable cropland by additionally 5.6 million km2, particularly in the Northern high latitudes (mainly in Canada, China and Russia). Most sensitive regions with decreasing suitability are found in the Global South, mainly in tropical regions, where also the suitability for multiple cropping decreases. PMID:25229634

  13. Analysis of Agricultural Land Use Change in the Middle Reach of the Heihe River Basin, Northwest China

    PubMed Central

    Fu, Li; Zhang, Lanhui; He, Chansheng

    2014-01-01

    The Heihe River Basin (HRB) is the second largest inland river basin in arid Northwest China. The expanding agricultural irrigation, growing industrialization, and increasing urban development in the middle reach have depleted much of the river flow to the lower reach, degrading the corresponding ecosystems. Since the enactment of the State Council of China’s new HRB water allocation policy in 2000 tremendous land use and land cover (LULC) changes have taken place to reduce water consumption in the middle reach and deliver more water downstream. This paper analyzes LULC changes during the period of 2000–2009 to understand how the changing land use patterns have altered water resource dynamics in the region. Results, while yet to be further verified in the field, show that from 2000 to 2009, urban, agricultural land, rangeland, and forest areas have increased, and barren area has decreased. Within the cropland, rice (a high water consumption crop) planting area decreased, while corn and wheat (relatively lower water consumption crops) planting areas increased. These changes in land use patterns, especially in the agricultural zones, have ensured the discharge of the required amount of water to the lower reach. PMID:24599043

  14. Has the conversion of natural wetlands to agricultural land increased the incidence and severity of damaging freezes in south Florida?

    USGS Publications Warehouse

    Marshall, C.H.; Pielke, R.A., Sr.; Steyaert, L.T.

    2004-01-01

    On several occasions, winter freezes have wrought severe destruction on Florida agriculture. A series of devastating freezes around the turn of the twentieth century, and again during the 1980s, were related to anomalies in the large-scale flow of the ocean-atmosphere system. During the twentieth century, substantial areas of wetlands in south Florida were drained and converted to agricultural land for winter fresh vegetable and sugarcane production. During this time, much of the citrus industry also was relocated to those areas to escape the risk of freeze farther to the north. The purpose of this paper is to present a modeling study designed to investigate whether the conversion of the wetlands to agriculture itself could have resulted in or exacerbated the severity of recent freezes in those agricultural areas of south Florida. For three recent freeze events, a pair of simulations was undertaken with the Regional Atmospheric Modeling System. One member of each pair employed land surface properties that represent pre-1900s (near natural) land cover, whereas the other member of each pair employed data that represent near-current land-use patterns as derived from analysis of Landsat data valid for 1992/93. These two different land cover datasets capture well the conversion of wetlands to agriculture in south Florida during the twentieth century. Use of current land surface properties resulted in colder simulated minimum temperatures and temperatures that remained below freezing for a longer period at locations of key agricultural production centers in south Florida that were once natural wetlands. Examination of time series of the surface energy budget from one of the cases reveals that when natural land cover is used, a persistent moisture flux from the underlying wetlands during the nighttime hours served to prevent the development of below-freezing temperatures at those same locations. When the model results were subjected to an important sensitivity factor, the

  15. An initial analysis of LANDSAT 4 Thematic Mapper data for the classification of agricultural, forested wetland, and urban land covers

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Anderson, J. E.; Brannon, D. P.; Hill, C. L.

    1982-01-01

    An initial analysis of LANDSAT 4 thematic mapper (TM) data for the delineation and classification of agricultural, forested wetland, and urban land covers was conducted. A study area in Poinsett County, Arkansas was used to evaluate a classification of agricultural lands derived from multitemporal LANDSAT multispectral scanner (MSS) data in comparison with a classification of TM data for the same area. Data over Reelfoot Lake in northwestern Tennessee were utilized to evaluate the TM for delineating forested wetland species. A classification of the study area was assessed for accuracy in discriminating five forested wetland categories. Finally, the TM data were used to identify urban features within a sm