Science.gov

Sample records for agricultural production system

  1. Agricultural Production.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This brochure describes the philosophy and scope of a secondary-level course in agricultural production. Addressed in the individual units of the course are the following topics: careers in agriculture and agribusiness, animal science and livestock production, agronomy, agricultural mechanics, supervised occupational experience programs, and the…

  2. Co-existence of agricultural production systems.

    PubMed

    Jank, Bernhard; Rath, Johannes; Gaugitsch, Helmut

    2006-05-01

    Strategies and best practices for the co-existence of GM and non-GM crops need to be developed and implemented with the participation of farmers and other stakeholders. According to the principle of 'subsidiarity', decisions should be made by the lowest authority possible. When applying this concept to the case of GM crops, the affected society should determine their use and management in a regional decision-making process. Public participation is better accomplished at a lower level, and democratic deficits in decision-making on GMOs are better resolved, enabling farmers to manage or avoid GM crops. Ultimately, voluntary GMO-free zones might be a tool for sustainable co-existence and GM-free production and GMO-free zones might create a specific image for marketing regional products and services, such as tourism. PMID:16545877

  3. Ohio Agricultural Business and Production Systems. Technical Competency Profile (TCP).

    ERIC Educational Resources Information Center

    Ray, Gayl M.; Kershaw, Isaac; Mokma, Arnie

    This document describes the essential competencies from secondary through post-secondary associate degree programs for a career in agricultural business and production systems. Following an introduction, the Ohio College Tech Prep standards and program, and relevant definitions are described. Next are the technical competency profiles for these…

  4. TECHNOLOGY, COMPLEXITY AND CHANGE IN AGRICULTURAL PRODUCTION SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technological advances have greatly impacted agricultural production. Some innovations have been specifically designed to address problems or shortcomings in current production practices, while others have been borrowed from other disciplines and adapted to agriculture. Many of the advances in agric...

  5. A GEO Global Agricultural Water Productivity Mapping System

    NASA Astrophysics Data System (ADS)

    Thenkabail, P. S.; Pozzi, W.; Miller, N. L.; Fekete, B.; Sheffield, J.; Dumenil-Gates, L.

    2009-12-01

    Agriculture is the main consumer of freshwater, and improved precision and accuracy of the terrestrial water cycle requires a more reliable way of monitoring agricultural water use and agricultural water productivity. Wisser et al 2008 reported that agricultural water consumption over the satellite-determined crop acreage (from AVHRR, SPOT VGT), particularly for India and China (Thenkabail et al 2006) was 30% higher than the commonly used Food and Agricultural Organization country-reported agricultural crop census data. We propose further quantification and clarification of this error through the following methodology: 1) greater accuracy in measuring actual area and precise spatial distribution of irrigated and rainfed cropland areas, along with identification of crop types and cropping intensities; 2) satellite monitoring of actual evapotranspiration (water use) by croplands; 3) reconciling agricultural plot information and evapotranspiration against calculated stores of water and water budgets, as derived from a Global Hydrologic Model Multi-Model Ensemble; and (d) modeling and pin-pointing areas of low and high water productivity (WP) to optimize agricultural water use and thus save large quanta of water. We propose producing global irrigated and rainfed areas at finer scales using Landsat 30 m imagery in fusion with MODIS 250 m imagery using the spectral matching technique (Thenkabail et al 2009). Crop water use (water transpired by the crop) and crop water productivity maps can be prepared for terrestrial areas, by using the surface energy balance model, in which evapotranspiration fraction is provided from Landsat ETM+ and\\or MODIS thermal data, combined with locally derived meteorological data such as wind speed, humidity, incoming radiation, and other surface values to derive turbulent diffusion and finally computing reference evapotranspiration (e.g., Penman-Montieth approach), so that sensible heat flux may be deducted from net radiation to derive

  6. Economic feasibility of agricultural alcohol production within a biomass system

    SciTech Connect

    Hertzmark, D.; Flaim, S.; Ray, D.; Parvin, G.

    1980-12-01

    The technical and economic feasibility of agricultural alcohol production in the United States is discussed. The beverage fermentation processes are compared and contrasted with the wet milling of corn, and alternative agricultural products for alcohol production are discussed. Alcohol costs for different fermentation methods and for various agricultural crops (corn, sugar cane, sugar beets, etc.) are presented, along with a brief discussion of US government policy implications. (JMT)

  7. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  8. External Economic Drivers and U.S. Agricultural Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S agriculture operates in a market driven economy. As with other businesses, agricultural producers respond to economic incentives and disincentives and make decisions to maximize their welfare. In this paper we examine external economic drivers that shape agricultural systems. Specifically, we c...

  9. Exploring agricultural production systems and their fundamental components with system dynamics modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex wa...

  10. Development and Implementation of Production Area of Agricultural Product Data Collection System Based on Embedded System

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Guo, Wei; Che, Yinchao; Zhang, Hao; Wang, Qiang; Ma, Xinming

    To solve problems in detecting the origin of agricultural products, this paper brings about an embedded data-based terminal, applies middleware thinking, and provides reusable long-range two-way data exchange module between business equipment and data acquisition systems. The system is constructed by data collection node and data center nodes. Data collection nodes taking embedded data terminal NetBoxII as the core, consisting of data acquisition interface layer, controlling information layer and data exchange layer, completing the data reading of different front-end acquisition equipments, and packing the data TCP to realize the data exchange between data center nodes according to the physical link (GPRS / CDMA / Ethernet). Data center node consists of the data exchange layer, the data persistence layer, and the business interface layer, which make the data collecting durable, and provide standardized data for business systems based on mapping relationship of collected data and business data. Relying on public communications networks, application of the system could establish the road of flow of information between the scene of origin certification and management center, and could realize the real-time collection, storage and processing between data of origin certification scene and databases of certification organization, and could achieve needs of long-range detection of agricultural origin.

  11. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A need to increase agricultural production across the world for food security appears to be at odds with the urgency to reduce agriculture’s negative environmental impacts. We suggest that a cause of this dichotomy is loss of diversity within agricultural systems at field, farm and landscape scales....

  12. Toward agricultural sustainability through integrated crop–livestock systems. II. Production responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping and animal production as two separately specialized agricultural systems has led to unacceptable deterioration of the environment due to (i) excessive concentration of nutrients and pathogens in livestock production systems and (ii) loss of natural biodiversity and excess...

  13. Toward systems-level analysis of agricultural production from crassulacean acid metabolism (CAM): scaling from cell to commercial production.

    PubMed

    Davis, Sarah C; Ming, Ray; LeBauer, David S; Long, Stephen P

    2015-10-01

    Systems-level analyses have become prominent tools for assessing the yield, viability, economic consequences and environmental impacts of agricultural production. Such analyses are well-developed for many commodity crops that are used for food and biofuel, but have not been developed for agricultural production systems based on drought-tolerant plants that use crassulacean acid metabolism (CAM). We review the components of systems-level evaluations, and identify the information available for completing such analyses for CAM cropping systems. Specific needs for developing systems-level evaluations of CAM agricultural production include: improvement of physiological models; assessment of product processing after leaving the farm gate; and application of newly available genetic tools to the optimization of CAM species for commercial production. PMID:26094655

  14. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    NASA Astrophysics Data System (ADS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Havlík, Petr; Herrero, Mario; Schmitz, Christoph; Rolinski, Susanne

    2015-09-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.

  15. Multispectral Imaging Systems for Airborne Remote Sensing to Support Agricultural Production Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing has shown promise as a tool for managing agricultural application and production. Earth-observing satellite systems have an advantage for large-scale analysis at regional levels but are limited in spatial resolution. High-resolution satellite systems have been available in recent year...

  16. Drivers Impacting the Adoption of Sustainable Agricultural Management Practices and Production Systems of the Northeast and Southeast U.S

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production responds to economic, social, environmental, and technological drivers operating both internal and external to the production system. These drivers influence producers’ decision making processes, and act to shape the individual production systems through modification of produ...

  17. Effects of agriculture production systems on nitrate and nitrite accumulation on baby-leaf salads

    PubMed Central

    Aires, Alfredo; Carvalho, Rosa; Rosa, Eduardo A S; Saavedra, Maria J

    2013-01-01

    Nitrate and nitrite are widespread contaminants of vegetables, fruits, and waters. The levels of these compounds are increased as a result of using organic wastes from chemical industries, domestic wastes, effluents, nitrogenous fertilizers, and herbicides in agriculture. Therefore, determining the nitrate and nitrite levels in biological, food, and environmental samples is important to protect human health and the environment. In this context, we set this study, in which we report the effect of production system (conventional and organic) on the accumulation of nitrates and nitrites in fresh baby-leaf samples. The average levels of the nitrate () and nitrite () contents in six different baby-leaf salads of a single species (green lettuce, red lettuce, watercress, rucola, chard, and corn salad) produced in organic and conventional agriculture system were evaluated. Spectrophotometric analytical method recently published was validated and used. Nitrates and nitrites were detected in all samples. The nitrates levels from organic production varied between 1.45 and 6.40 mg/kg fresh weight (FW), whereas those from conventional production ranged from 10.5 to 45.19 mg/kg FW. The nitrites content was lower than nitrates and ranged from 0.32 to 1.89 mg/kg FW in organic production system and between 0.14 and 1.41 mg/kg FW in conventional production system. Our results showed that the nitrate content was dependent on the agricultural production system, while for nitrites, this dependency was less pronounced. PMID:24804008

  18. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China*

    PubMed Central

    Guan, Fa-chun; Sha, Zhi-peng; Zhang, Yu-yang; Wang, Jun-feng; Wang, Chao

    2016-01-01

    Home courtyard agriculture is an important model of agricultural production on the Tibetan plateau. Because of the sensitive and fragile plateau environment, it needs to have optimal performance characteristics, including high sustainability, low environmental pressure, and high economic benefit. Emergy analysis is a promising tool for evaluation of the environmental-economic performance of these production systems. In this study, emergy analysis was used to evaluate three courtyard agricultural production models: Raising Geese in Corn Fields (RGICF), Conventional Corn Planting (CCP), and Pea-Wheat Rotation (PWR). The results showed that the RGICF model produced greater economic benefits, and had higher sustainability, lower environmental pressure, and higher product safety than the CCP and PWR models. The emergy yield ratio (EYR) and emergy self-support ratio (ESR) of RGICF were 0.66 and 0.11, respectively, lower than those of the CCP production model, and 0.99 and 0.08, respectively, lower than those of the PWR production model. The impact of RGICF (1.45) on the environment was lower than that of CCP (2.26) and PWR (2.46). The emergy sustainable indices (ESIs) of RGICF were 1.07 and 1.02 times higher than those of CCP and PWR, respectively. With regard to the emergy index of product safety (EIPS), RGICF had a higher safety index than those of CCP and PWR. Overall, our results suggest that the RGICF model is advantageous and provides higher environmental benefits than the CCP and PWR systems. PMID:27487808

  19. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China.

    PubMed

    Guan, Fa-Chun; Sha, Zhi-Peng; Zhang, Yu-Yang; Wang, Jun-Feng; Wang, Chao

    2016-08-01

    Home courtyard agriculture is an important model of agricultural production on the Tibetan plateau. Because of the sensitive and fragile plateau environment, it needs to have optimal performance characteristics, including high sustainability, low environmental pressure, and high economic benefit. Emergy analysis is a promising tool for evaluation of the environmental-economic performance of these production systems. In this study, emergy analysis was used to evaluate three courtyard agricultural production models: Raising Geese in Corn Fields (RGICF), Conventional Corn Planting (CCP), and Pea-Wheat Rotation (PWR). The results showed that the RGICF model produced greater economic benefits, and had higher sustainability, lower environmental pressure, and higher product safety than the CCP and PWR models. The emergy yield ratio (EYR) and emergy self-support ratio (ESR) of RGICF were 0.66 and 0.11, respectively, lower than those of the CCP production model, and 0.99 and 0.08, respectively, lower than those of the PWR production model. The impact of RGICF (1.45) on the environment was lower than that of CCP (2.26) and PWR (2.46). The emergy sustainable indices (ESIs) of RGICF were 1.07 and 1.02 times higher than those of CCP and PWR, respectively. With regard to the emergy index of product safety (EIPS), RGICF had a higher safety index than those of CCP and PWR. Overall, our results suggest that the RGICF model is advantageous and provides higher environmental benefits than the CCP and PWR systems. PMID:27487808

  20. Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems

    NASA Astrophysics Data System (ADS)

    Beusen, A. H. W.; Bouwman, A. F.; Heuberger, P. S. C.; Van Drecht, G.; Van Der Hoek, K. W.

    Here we present an uncertainty analysis of NH 3 emissions from agricultural production systems based on a global NH 3 emission inventory with a 5×5 min resolution. Of all results the mean is given with a range (10% and 90% percentile). The uncertainty range for the global NH 3 emission from agricultural systems is 27-38 (with a mean of 32) Tg NH 3-N yr -1, N fertilizer use contributing 10-12 (11) Tg yr -1 and livestock production 16-27 (21) Tg yr -1. Most of the emissions from livestock production come from animal houses and storage systems (31-55%); smaller contributions come from the spreading of animal manure (23-38%) and grazing animals (17-37%). This uncertainty analysis allows for identifying and improving those input parameters with a major influence on the results. The most important determinants of the uncertainty related to the global agricultural NH 3 emission comprise four parameters (N excretion rates, NH 3 emission rates for manure in animal houses and storage, the fraction of the time that ruminants graze and the fraction of non-agricultural use of manure) specific to mixed and landless systems, and total animal stocks. Nitrogen excretion rates and NH 3 emission rates from animal houses and storage systems are shown consistently to be the most important parameters in most parts of the world. Input parameters for pastoral systems are less relevant. However, there are clear differences between world regions and individual countries, reflecting the differences in livestock production systems.

  1. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    PubMed

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  2. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability

    PubMed Central

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K.

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  3. Vulnerability of Rehabilitated Agricultural Production Systems to Invasion by Nontarget Plant Species

    NASA Astrophysics Data System (ADS)

    Baer, Sara G.; Engle, David M.; Knops, Johannes M. H.; Langeland, Kenneth A.; Maxwell, Bruce D.; Menalled, Fabian D.; Symstad, Amy J.

    2009-02-01

    Vast areas of arable land have been retired from crop production and “rehabilitated” to improved system states through landowner incentive programs in the United States (e.g., Conservation and Wetland Reserve Programs), as well as Europe (i.e., Agri-Environment Schemes). Our review of studies conducted on invasion of rehabilitated agricultural production systems by nontarget species elucidates several factors that may increase the vulnerability of these systems to invasion. These systems often exist in highly fragmented and agriculturally dominated landscapes, where propagule sources of target species for colonization may be limited, and are established under conditions where legacies of past disturbance persist and prevent target species from persisting. Furthermore, rehabilitation approaches often do not include or successfully attain all target species or historical ecological processes (e.g., hydrology, grazing, and/or fire cycles) key to resisting invasion. Uncertainty surrounds ways in which nontarget species may compromise long term goals of improving biodiversity and ecosystem services through rehabilitation efforts on former agricultural production lands. This review demonstrates that more studies are needed on the extent and ecological impacts of nontarget species as related to the goals of rehabilitation efforts to secure current and future environmental benefits arising from this widespread conservation practice.

  4. Effects of agriculture production systems on nitrate and nitrite accumulation on baby-leaf salads.

    PubMed

    Aires, Alfredo; Carvalho, Rosa; Rosa, Eduardo A S; Saavedra, Maria J

    2013-01-01

    Nitrate and nitrite are widespread contaminants of vegetables, fruits, and waters. The levels of these compounds are increased as a result of using organic wastes from chemical industries, domestic wastes, effluents, nitrogenous fertilizers, and herbicides in agriculture. Therefore, determining the nitrate and nitrite levels in biological, food, and environmental samples is important to protect human health and the environment. In this context, we set this study, in which we report the effect of production system (conventional and organic) on the accumulation of nitrates and nitrites in fresh baby-leaf samples. The average levels of the nitrate ([Formula: see text]) and nitrite ([Formula: see text]) contents in six different baby-leaf salads of a single species (green lettuce, red lettuce, watercress, rucola, chard, and corn salad) produced in organic and conventional agriculture system were evaluated. Spectrophotometric analytical method recently published was validated and used. Nitrates and nitrites were detected in all samples. The nitrates levels from organic production varied between 1.45 and 6.40 mg/kg fresh weight (FW), whereas those from conventional production ranged from 10.5 to 45.19 mg/kg FW. The nitrites content was lower than nitrates and ranged from 0.32 to 1.89 mg/kg FW in organic production system and between 0.14 and 1.41 mg/kg FW in conventional production system. Our results showed that the nitrate content was dependent on the agricultural production system, while for nitrites, this dependency was less pronounced. PMID:24804008

  5. College Students' View of Biotechnology Products and Practices in Sustainable Agriculture Systems

    ERIC Educational Resources Information Center

    Anderson, William A.

    2008-01-01

    Sustainable agriculture implies the use of products and practices that sustain production, protect the environment, ensure economic viability, and maintain rural community viability. Disagreement exists as to whether or not the products and practices of modern biotechnological support agricultural sustainability. The purpose of this study was to…

  6. Adaptation to Interannual and Interdecadal Climate Variability in Agricultural Production Systems of the Argentine Pampas

    NASA Astrophysics Data System (ADS)

    Podestá, G. P.; Bert, F.; Weber, E.; Laciana, C.; Rajagopalan, B.; Letson, D.

    2007-05-01

    Agricultural ecosystems play a central role in world food production and food security, and involve one of the most climate-sensitive sectors of society-agriculture. We focus on crop production in the Argentine Pampas, one of the world's major agricultural regions. Climate of the Pampas shows marked variability at both interannual and decadal time scales. We explored the scope for adaptive management in response to climate information on interannual scales. We show that different assumptions about what decision makers are trying to achieve (i.e., their objective functions) may change what actions are considered as "optimal" for a given climate context. Optimal actions also were used to estimate the economic value of forecasts of an ENSO phase. Decision constraints (e.g., crop rotations) have critical influence on value of the forecasting system. Gaps in knowledge or misconceptions about climate variability were identified in open-ended "mental model" interviews. Results were used to design educational interventions. A marked increase in precipitation since the 1970s, together with new production technologies, led to major changes in land use patterns in the Pampas. Continuous cropping has widely replaced agriculture-pasture rotations. Nevertheless, production systems that evolved partly in response to increased rainfall may not be viable if climate reverts to a drier epoch. We use historical data to define a range of plausible climate trajectories 20-30 years hence. Regional scenarios are downscaled using semi-parametric weather generators to produce multiple realizations of daily weather consistent with decadal scenarios. Finally, we use the synthetic climate, crop growth models, and realistic models of decision-making under risk to compute risk metrics (e.g., probability of yields or profits being below a threshold). Climatically optimal and marginal locations show differential responses: probabilities of negative economic results are much higher in currently

  7. Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock

    SciTech Connect

    Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

    2007-04-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability of the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ag’s ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.

  8. Machine vision system: a tool for quality inspection of food and agricultural products.

    PubMed

    Patel, Krishna Kumar; Kar, A; Jha, S N; Khan, M A

    2012-04-01

    Quality inspection of food and agricultural produce are difficult and labor intensive. Simultaneously, with increased expectations for food products of high quality and safety standards, the need for accurate, fast and objective quality determination of these characteristics in food products continues to grow. However, these operations generally in India are manual which is costly as well as unreliable because human decision in identifying quality factors such as appearance, flavor, nutrient, texture, etc., is inconsistent, subjective and slow. Machine vision provides one alternative for an automated, non-destructive and cost-effective technique to accomplish these requirements. This inspection approach based on image analysis and processing has found a variety of different applications in the food industry. Considerable research has highlighted its potential for the inspection and grading of fruits and vegetables, grain quality and characteristic examination and quality evaluation of other food products like bakery products, pizza, cheese, and noodles etc. The objective of this paper is to provide in depth introduction of machine vision system, its components and recent work reported on food and agricultural produce. PMID:23572836

  9. Production and conservation results from a decade-long field-scale precision agriculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research is needed that simultaneously evaluates production and conservation outcomes of precision agriculture practices. From over a decade (1993-2003) of yield and soil mapping and water quality assessment, a multi-faceted, “precision agriculture system” (PAS) was developed and initiated in 2004 o...

  10. [Population dynamics, the development of agricultural systems, and agricultural production in the densely populated rural areas of Cameroon].

    PubMed

    Kelodjoue, S

    1989-06-01

    This comparative examination of changes in agrarian systems in 3 densely populated regions of Cameroon is intended to assess the role of demographic factors in agrarian changes and to permit prediction of future ability of the regions to continue supporting dense populations while providing a surplus for export to the rapidly growing cities. The 3 regions, Bamileke, Mont Mandaras, and the department of Lekie, are characterized by different climatic conditions, vegetation, soil types, and social organization. The total population of the 3 regions has increased from 1,278,644 in 1976 to 1,799,782 in 1987. High fertility rates seem to be the principal factor in this rapid growth. Despite very different systems of land tenure and crop regimes, the 3 areas have in common a serious lack of new lands capable of absorbing their surplus labor, and all have been greatly influenced by the introduction and spread of cash crops as their populations have come to see the land as a producer of income in addition to food, and have attempted to maximize their land holdings in conformity with their available labor and especially their desire for cash. In some areas land is no longer given to young men. Erosion and soil exhaustion are increasing. The spread of cash crops threatens the local food supply, and earnings tend to be invested in housed or wedding ceremonies rather than in increasing production. Population pressure has prompted colonization of new lands and migration to the cities or other rural areas, as well as appropriation of communal lands for private use. Conflicts over land are carried over into other areas of communal life. Underemployment of young men in some areas has led to delinquency. Efforts to intensify land use appear to be successful in the long run only where the soil is rich. Demographic pressure is a factor in the agrarian transformation of these areas, but it is only 1 of a number of factors of which the most important appears to be the entrance of the

  11. Animal and industrial by-products management strategies for sustainable agricultural production system and environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Repeated application of broiler (Gallus gallus domesticus) litter to agricultural lands often results in soil P and heavy metal accumulations, which may pose risks to water bodies. We evaluated six different application strategies on P, N and heavy metal losses from an established bermudagrass (Cyno...

  12. Exploring Agricultural Production Systems and Their Fundmental Components With Dynamic Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is changing due to transitions in consumer demands, input costs, and concerns for food safety and the environment. Agricultural systems are comprised of multidimensional components, are quantitative and qualitative, and interact in complex ways. We developed a dynamic modeling environmen...

  13. Magnitude of anthropogenic phosphorus storage in the agricultural production and the waste management systems at the regional and country scales.

    PubMed

    Chowdhury, Rubel Biswas; Chakraborty, Priyanka

    2016-08-01

    Based on a systematic review of 17 recent substance flow analyses of phosphorus (P) at the regional and country scales, this study presents an assessment of the magnitude of anthropogenic P storage in the agricultural production and the waste management systems to identify the potential for minimizing unnecessary P storage to reduce the input of P as mineral fertilizer and the loss of P. The assessment indicates that in case of all (6) P flow analyses at the regional scale, the combined mass of annual P storage in the agricultural production and the waste management systems is greater than 50 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while this is close to or more than 100 % in case of half of these analyses. At the country scale, in case of the majority (7 out of 11) of analyses, the combined mass of annual P storage in the agricultural production and the waste management systems has been found to be roughly equivalent or greater than 100 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while it ranged from 30 to 60 % in the remaining analyses. A simple scenario analysis has revealed that the annual storage of P in this manner over 100 years could result in the accumulation of a massive amount of P in the agricultural production and the waste management systems at both the regional and country scales. This study suggests that sustainable P management initiatives at the regional and country scales should put more emphasis on minimizing unwanted P storage in the agricultural production and the waste management systems. PMID:27278065

  14. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    NASA Technical Reports Server (NTRS)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  15. Partitioning of Evapotranspiration Using a Stable Water Isotope Technique in a High Temperature Agricultural Production System

    NASA Astrophysics Data System (ADS)

    Lu, X.; Liang, L.; Wang, L.; Jenerette, D.; Grantz, D. A.

    2015-12-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent the irrigation water is transpired by crops relative to being lost through evaporation will contribute to better management of increasingly limited agricultural water resources. In this study, we examined the evapotranspiration (ET) partitioning over a field of forage sorghum (S. bicolor) during a growing season with several irrigation cycles. In several field campaigns we used continuous measurements of near-surface variations in the stable isotopic composition of water vapor (δ2H). We employed custom built transparent chambers coupled with a laser-based isotope analyzer and used Keeling plot and mass balance methods for surface flux partitioning. The preliminary results show that δT is more enriched than δE in the early growing season, and becomes less enriched than δE later in the season as canopy cover increases. There is an increase in the contribution of transpiration to ET as (1) leaf area index increases, and (2) as soil surface moisture declines. These results are consistent with theory, and extend these measurements to an environment that experiences extreme soil surface temperatures. The data further support the use of chamber based methods with stable isotopic analysis for characterization of ET partitioning in challenging field environments.

  16. Agricultural production and stability of settlement systems in Upper Mesopotamia during the Early Bronze Age (third millennium BCE)

    NASA Astrophysics Data System (ADS)

    Kalayci, Tuna

    This study investigates the relationship between rainfall variation and rain-fed agricultural production in Upper Mesopotamia with a specific focus on Early Bronze Age urban settlements. In return, the variation in production is used to explore stability of urban settlement systems. The organization of the flow of agricultural goods is the key to sustaining the total settlement system. The vulnerability of a settlement system increases due to the increased demand for more output from agricultural lands. This demand is the key for the success of urbanization project. However, without estimating how many foodstuffs were available at the end of a production cycle, further discussions on the forces that shaped and sustained urban settlement systems will be lacking. While large scale fluctuations in the flow of agricultural products between settlements are not the only determinants of hierarchical structures, the total available agricultural yield for each urban settlement in a hierarchy must have influenced settlement relations. As for the methodology, first, Early Bronze Age precipitation levels are estimated by using modern day associations between the eastern Mediterranean coastal areas and the inner regions of Upper Mesopotamia. Next, these levels are integrated into a remote-sensing based biological growth model. Also, a CORONA satellite imagery based archaeological survey is conducted in order to map the Early Bronze Age settlement system in its entirety as well as the ancient markers of agricultural intensification. Finally, ancient agricultural production landscapes are modeled in a GIS. The study takes a critical position towards the traditionally held assumption that large urban settlements (cities) in Upper Mesopotamia were in a state of constant demand for food. The results from this study also suggest that when variations in ancient precipitation levels are translated into the variations in production levels, the impact of climatic aridification on ancient

  17. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    ScienceCinema

    Danuso, Francesco [University of Udine, Italy

    2010-01-08

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  18. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Joergensen, 1994) in which systems are modeled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  19. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  20. Teaching Diversified Organic Crop Production Using the Community Supported Agriculture Farming System Model

    ERIC Educational Resources Information Center

    Falk, Constance L.; Pao, Pauline; Cramer, Christopher S.

    2005-01-01

    An organic garden operated as a community supported agriculture (CSA) venture on the New Mexico State University (NMSU) main campus was begun in January 2002. Students enroll in an organic vegetable production class during spring and fall semesters to help manage and work on the project. The CSA model of farming involves the sale of shares to…

  1. A system's approach to assess the exposure of agricultural production to climate change and variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating the exposure of agriculture to climate variability and change can help us to understand the key vulnerability as well as improve the adaptive capacity which is important for increasing food production to feed the world’s increasing population. A number of indices are available in literat...

  2. Antimicrobial Resistance Profiles of Salmonella spp. from Agricultural Environments in Fruit Production Systems.

    PubMed

    Gomba, Annancietar; Chidamba, Lizyben; Korsten, Lise

    2016-09-01

    Foodborne disease outbreaks involving fresh produce have increased in recent years. The risk of infection from contaminated food is worsened by the increased prevalence of antibiotic-resistant strains. This study evaluated the prevalence of antibiotic resistance in Salmonella isolates (n = 263) from agricultural production systems through to the final packed product. Salmonella isolates were preliminarily identified by matrix-assisted laser desorption ionization-time-of-flight mass spectroscopy (MALDI-TOF MS) and API 20E and identities confirmed by invA gene polymerase chain reaction. Antimicrobial susceptibility was performed with 15 antimicrobial agents using the Kirby-Bauer disk diffusion test. Of the 263 Salmonella isolates assessed, 59.3% were resistant to one or more antimicrobials. The most frequently detected resistance was against chloramphenicol and kanamycin (46.7%), trimethoprim-sulfamethoxazole (28%), and streptomycin (14%), and the less frequently detected resistance was toward ampicillin (1.14%), amikacin (0.76%), and amoxicillin-clavulanic acid (0.38%). Multiple antimicrobial resistance (MAR) (resistance to ≥3 antibiotics) was found in 48.7% (76/156) isolates. The most common MAR phenotype was to chloramphenicol and trimethoprim/sulfamethoxazole-kanamycin (43.6%). Resistance to chloramphenicol, kanamycin, or trimethoprim/sulfamethoxazole was only observed in MAR phenotypes. All isolates were susceptible to ceftiofur, cefoxitin, ceftriaxone, ciprofloxacin, nalidixic acid, gentamicin, and tetracycline. This study confirms the importance of fresh produce production environments as potential reservoirs and fresh produce as carriers of antibiotic-resistant Salmonella spp. with significant clinical importance. Further studies to evaluate the actual level of health risk from these pathogens should include characterization of the antibiotic resistance determinant genes among the isolates. PMID:27294335

  3. The importance of animal cognition in agricultural animal production systems: an overview.

    PubMed

    Curtis, S E; Stricklin, W R

    1991-12-01

    To describe and then fulfill agricultural animals' needs, we must learn more about their fundamental psychological and behavioral processes. How does this animal feel? Is that animal suffering? Will we ever be able to know these things? Scientists specializing in animal cognition say that there are numerous problems but that they can be overcome. Recognition by scientists of the notion of animal awareness has been increasing in recent years, because of the work of Griffin and others. Feeling, thinking, remembering, and imagining are cognitive processes that are factors in the economic and humane production of agricultural animals. It has been observed that the animal welfare debate depends on two controversial questions: Do animals have subjective feelings? If they do, can we find indicators that reveal them? Here, indirect behavioral analysis approaches must be taken. Moreover, the linear additivity of several stressor effects on a variety of animal traits suggests that some single phenomenon is acting as a "clearinghouse" for many or all of the stresses acting on an animal at any given time, and this phenomenon might be psychological stress. Specific situations animals may encounter in agricultural production settings are discussed with respect to the animals' subjective feelings. PMID:1808193

  4. Irradiation of northwest agricultural products

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  5. Nitrogen mineralization in production agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the effects of N management and how it relates to the N cycle in soil ecosystems is essential to determining N availability. This manuscript describes the importance of N mineralization to production agriculture and introduces a special issue on “N Mineralization in Production Agricult...

  6. Potential economic benefits of adapting agricultural production systems to future climate change

    USGS Publications Warehouse

    Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.

    2010-01-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting

  7. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability.

    PubMed

    Kumar, Anil; Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh

    2015-10-01

    In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978

  8. Sustainable intensification in agricultural systems

    PubMed Central

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-01-01

    Background Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms ‘sustainable’ and ‘intensification’ is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. Scope and Conclusions This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural–environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and

  9. Irradiation of Northwest agricultural products

    SciTech Connect

    Eakin, D.E.; Tingey, G.L.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect control procedures are developed and followed. Due to the recognized potential benefits of irradiation, Pacific Northwest Laboratory (PNL) is conducting this program to evaluate the benefits of using irradiation on Northwest agricultural products under the US Department of Energy (DOE) Defense Byproducts Production and Utilization Program. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  10. Proceedings of the 30th Southern Conservation Agricultural Systems Conference and the 8th Annual Georgia Conservation Production Systems Training Conference, Tifton, Georgia, July 29-31, 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This 2008 conference to be held at the University of Georgia Tifton Campus Conference Center in Tifton, GA, on 29-31 July 2008, will be a joint effort of the 30th Southern Conservation Agricultural Systems Conference (SCASC) and the 8th Annual Conservation Production Systems Training Conference (CPS...

  11. VOCATIONAL AGRICULTURE RECORD BOOK FOR PRODUCTION AGRICULTURE.

    ERIC Educational Resources Information Center

    1966

    FORMS ARE PROVIDED FOR RECORDING FINANCIAL INFORMATION ABOUT SUPERVISED FARM PROGRAM ENTERPRISES BY INDIVIDUAL VOCATIONAL AGRICULTURE STUDENTS. THE BOOK IS DESIGNED ON AN ENTERPRISE BASIS AND PROVIDES SPACE FOR AGREEMENTS, INVENTORIES, EXPENSES, INCOME, SUMMARIES, AND ANALYSES. ASSISTANCE FOR TEACHERS USING THIS RECORD BOOK IS AVAILABLE IN "GUIDE…

  12. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture

    PubMed Central

    Cassman, Kenneth G.

    1999-01-01

    Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70–80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand. PMID:10339523

  13. Automated system for generation of soil moisture products for agricultural drought assessment

    NASA Astrophysics Data System (ADS)

    Raja Shekhar, S. S.; Chandrasekar, K.; Sesha Sai, M. V. R.; Diwakar, P. G.; Dadhwal, V. K.

    2014-11-01

    Drought is a frequently occurring disaster affecting lives of millions of people across the world every year. Several parameters, indices and models are being used globally to forecast / early warning of drought and monitoring drought for its prevalence, persistence and severity. Since drought is a complex phenomenon, large number of parameter/index need to be evaluated to sufficiently address the problem. It is a challenge to generate input parameters from different sources like space based data, ground data and collateral data in short intervals of time, where there may be limitation in terms of processing power, availability of domain expertise, specialized models & tools. In this study, effort has been made to automate the derivation of one of the important parameter in the drought studies viz Soil Moisture. Soil water balance bucket model is in vogue to arrive at soil moisture products, which is widely popular for its sensitivity to soil conditions and rainfall parameters. This model has been encoded into "Fish-Bone" architecture using COM technologies and Open Source libraries for best possible automation to fulfill the needs for a standard procedure of preparing input parameters and processing routines. The main aim of the system is to provide operational environment for generation of soil moisture products by facilitating users to concentrate on further enhancements and implementation of these parameters in related areas of research, without re-discovering the established models. Emphasis of the architecture is mainly based on available open source libraries for GIS and Raster IO operations for different file formats to ensure that the products can be widely distributed without the burden of any commercial dependencies. Further the system is automated to the extent of user free operations if required with inbuilt chain processing for every day generation of products at specified intervals. Operational software has inbuilt capabilities to automatically

  14. Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; F. McCabe, Matthew; Cescatti, Alessandro; A. Gitelson, Anatoly

    2015-12-01

    Leaf chlorophyll content (Chll) may serve as an observational proxy for the maximum rate of carboxylation (Vmax), which describes leaf photosynthetic capacity and represents the single most important control on modeled leaf photosynthesis within most Terrestrial Biosphere Models (TBMs). The parameterization of Vmax is associated with great uncertainty as it can vary significantly between plants and in response to changes in leaf nitrogen (N) availability, plant phenology and environmental conditions. Houborg et al. (2013) outlined a semi-mechanistic relationship between Vmax25 (Vmax normalized to 25 °C) and Chll based on inter-linkages between Vmax25, Rubisco enzyme kinetics, N and Chll. Here, these relationships are parameterized for a wider range of important agricultural crops and embedded within the leaf photosynthesis-conductance scheme of the Community Land Model (CLM), bypassing the questionable use of temporally invariant and broadly defined plant functional type (PFT) specific Vmax25 values. In this study, the new Chll constrained version of CLM is refined with an updated parameterization scheme for specific application to soybean and maize. The benefit of using in-situ measured and satellite retrieved Chll for constraining model simulations of Gross Primary Productivity (GPP) is evaluated over fields in central Nebraska, U.S.A between 2001 and 2005. Landsat-based Chll time-series records derived from the Regularized Canopy Reflectance model (REGFLEC) are used as forcing to the CLM. Validation of simulated GPP against 15 site-years of flux tower observations demonstrate the utility of Chll as a model constraint, with the coefficient of efficiency increasing from 0.91 to 0.94 and from 0.87 to 0.91 for maize and soybean, respectively. Model performances particularly improve during the late reproductive and senescence stage, where the largest temporal variations in Chll (averaging 35-55 μg cm-2 for maize and 20-35 μg cm-2 for soybean) are observed. While

  15. Meteorological risks, impacts on crop production systems and agricultural insurances in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, A.; Piccard, I.

    2012-04-01

    Devastating weather-related events recorded in recent years have captured the interest of the general public in Belgium. Extreme weather events such as droughts, heat stress, rain storms and floods are projected to increase both in frequency and magnitude with climate change. Since more than half of the Belgian territory is managed by the agricultural sector, extreme events have significant impacts on agro-ecosystem services and pose severe limitations to sustainable agricultural land management. The perspective of rising risk-exposure is exacerbated further by more limits to aid received for agricultural damage (amendments to EC Regulation 1857/2006) and an overall reduction of direct income support to farmers. Current knowledge gaps related to the occurrence of extreme events and the response of agro-ecosystems need to be addressed in conjunction with their vulnerability, resilience and adaptive possibilities. A chain of risks approach starts with assessing the likely frequency and magnitude of extreme meteorological events by means of probability density functions. Impacts are subsequently based on physically based models that provide information on the state of the damage at any given time and assist in understanding the links between different factors causing damage and in determining bio-physical vulnerability. The output of regional bio-physical models is compared with remote sensing based algorithms applied on SPOT-VGT temporal data. Crop damage and risk indicators are derived from remote sensing, meteorological records, crop modelling and agricultural statistics and compared to damage statistics obtained from the government-based agricultural disaster funds. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Spatio-temporal indicators of drought during the growing season and waterlogging at harvest showed the highest agreement with damage, followed by hail and frost. In general potatoes, flax and

  16. [Applicability of agricultural production systems simulator (APSIM) in simulating the production and water use of wheat-maize continuous cropping system in North China Plain].

    PubMed

    Wang, Lin; Zheng, You-fei; Yu, Qiang; Wang, En-li

    2007-11-01

    The Agricultural Production Systems Simulator (APSIM) was applied to simulate the 1999-2001 field experimental data and the 2002-2003 water use data at the Yucheng Experiment Station under Chinese Ecosystem Research Network, aimed to verify the applicability of the model to the wheat-summer maize continuous cropping system in North China Plain. The results showed that the average errors of the simulations of leaf area index (LAI), biomass, and soil moisture content in 1999-2000 and 2000-2001 field experiments were 27.61%, 24.59% and 7.68%, and 32.65%, 35.95% and 10.26%, respectively, and those of LAI and biomass on the soils with high and low moisture content in 2002-2003 were 26.65% and 14.52%, and 23.91% and 27.93%, respectively. The simulations of LAI and biomass accorded well with the measured values, with the coefficients of determination being > 0.85 in 1999-2000 and 2002-2003, and 0.78 in 2000-2001, indicating that APSIM had a good applicability in modeling the crop biomass and soil moisture content in the continuous cropping system, but the simulation error of LAI was a little larger. PMID:18260451

  17. Renewable energy: energy from agricultural products

    SciTech Connect

    Not Available

    1984-06-01

    This study discusses major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10% of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10% mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: Growing crops such as napier grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.

  18. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  19. Detecting transition in agricultural systems

    NASA Technical Reports Server (NTRS)

    Neary, P. J.; Coiner, J. C.

    1979-01-01

    Remote sensing of agricultural phenomena has been largely concentrated on analysis of agriculture at the field level. Concern has been to identify crop status, crop condition, and crop distribution, all of which are spatially analyzed on a field-by-field basis. A more general level of abstraction is the agricultural system, or the complex of crops and other land cover that differentiate various agricultural economies. The paper reports on a methodology to assist in the analysis of the landscape elements of agricultural systems with Landsat digital data. The methodology involves tracing periods of photosynthetic activity for a fixed area. Change from one agricultural system to another is detected through shifts in the intensity and periodicity of photosynthetic activity as recorded in the radiometric return to Landsat. The Landsat-derived radiometric indicator of photosynthetic activity appears to provide the ability to differentiate agricultural systems from each other as well as from conterminous natural vegetation.

  20. Agricultural Production. An Administrative Guide for Agricultural Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    This basic instructional guide for an agricultural production program is one in a series of such guides for agricultural education. It is useful in developing and selecting instructional material and implementing competency-based education for a program directed toward helping students to become proficient in animal, plant, and soil sciences and…

  1. Monitoring pathogens from irradiated agriculture products

    NASA Astrophysics Data System (ADS)

    Butterweck, Joseph S.

    The final food and environmental safety assessment of agriculture product irradiation can only be determined by product history. Product history will be used for future research and development, regulations, commercial practices and implementation of agriculture and food irradiation on a regional basis. The commercial irradiator treats large varieties and amounts of products that are used in various environments. It, in time, will generate a large data base of product history. Field product monitoring begins when food irradiation progresses from the pilot/demonstration phase to the commercial phase. At that time, it is important that there be in place a monitoring system to collect and analyze field data. The systems managers, public health authorities and exotic disease specialists will use this information to assess the reduction of food pathogens on the populace and the environment. The common sources of monitoring data are as follows: 1) Host Monitoring a) Medical Diagnosis b) Autopsy c) Serology Surveys 2) Environmental Monitoring a) Sentinel b) Pest Surveys/Microbial Counts c) Sanitary Inspections 3) Food Industries Quality Assurance Monitoring a) End Product Inspection b) Complaints c) Continual Use of the Product

  2. Precision agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture is a new farming practice that has been developing since late 1980s. It has been variously referred to as precision farming, prescription farming, site-specific crop management, to name but a few. There are numerous definitions for precision agriculture, but the central concept...

  3. NIR-LEDs lighting system for enhancing Brix distinction with saving energy to agricultural products

    NASA Astrophysics Data System (ADS)

    Lee, Kwang-Hoon; Lee, Dong-Kil; Kim, Yang-Gyu; Park, Ahn-Jin; Jang, Won-Geun; Park, Youngsik

    2014-05-01

    In this paper, the sugar content prediction determination system in optical non-contact type based on the near infrared light emitting diode (NIR-LED) lamp is proposed. As the result NIR-LED lamp reduced 86% of the energy consumption compared to the case of Halogen lamp in the same process of sugar content determination. And the result of prediction of sugar content by NIR-LED lamp is shown to as near the same level of Halogen lamp system.

  4. Modern methods and systems for precise control of the quality of agricultural and food production

    NASA Astrophysics Data System (ADS)

    Bednarjevsky, Sergey S.; Veryasov, Yuri V.; Akinina, Evgeniya V.; Smirnov, Gennady I.

    1999-01-01

    The results on the modeling of non-linear dynamics of strong continuous and impulse radiation in the laser nephelometry of polydisperse biological systems, important from the viewpoint of applications in biotechnologies, are presented. The processes of nonlinear self-action of the laser radiation by the multiple scattering in the disperse biological agro-media are considered. The simplified algorithms of the calculation of the parameters of the biological media under investigation are indicated and the estimates of the errors of the laser-nephelometric measurements are given. The universal high-informative optical analyzers and the standard etalon specimens of agro- objects make the technological foundation of the considered methods and systems.

  5. Women Farmers' Perceptions of the Economic Problems Influencing Their Productivity in Agricultural Systems: Meme Division of the Southwest Province, Cameroon.

    ERIC Educational Resources Information Center

    Endeley, Joyce B.

    Women farmers produce about 60% of the food in Cameroon, but face more problems and constraints than men in performing their agricultural activities. Cash crop farmers (mostly men) are the targeted beneficiaries of government and international aids, and have better access to extension services, loans, subsidized production input (herbicides,…

  6. Development of real-time line-scan hyperspectral imaging system for online agricultural and food product inspection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports a recent development of a line-scan hyperspectral imaging system for real-time multispectral imaging applications in agricultural and food industries. The hyperspectral imaging system consisted of a spectrograph, an EMCCD camera, and application software. The real-time multispectr...

  7. 46 CFR 111.105-45 - Vessels carrying agricultural products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Vessels carrying agricultural products. 111.105-45... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-45 Vessels carrying agricultural products. (a) The following areas are Class II, Division 1, (Zone 10 or Z) locations on...

  8. 46 CFR 111.105-45 - Vessels carrying agricultural products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Vessels carrying agricultural products. 111.105-45... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-45 Vessels carrying agricultural products. (a) The following areas are Class II, Division 1, (Zone 10 or Z) locations on...

  9. Opportunities for Industrial Uses of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The search for and development of non-fuel industrial uses of agricultural commodities is an ongoing endeavor. New technologies which can involve chemically, enzymatically, or genetically modifying agricultural products will be required in order to meet the requirements of the products of the futur...

  10. A Spatial Data Model Desing For The Management Of Agricultural Data (Farmer, Agricultural Land And Agricultural Production)

    NASA Astrophysics Data System (ADS)

    Taşkanat, Talha; İbrahim İnan, Halil

    2016-04-01

    Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and

  11. PRODUCTION OF XYLITOL FROM AGRICULTURAL HEMICELLULOSIC BIOMASS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of value-added co-products from agricultural biomass is an important economic driver for the success of a biorefinery approach to the production of ethanol and other fuels. During most ethanol production methods, significant amounts of hemicellulose by-products are produced which are...

  12. Agricultural Products: Program Planning Guide: Volume 4.

    ERIC Educational Resources Information Center

    Welton, Richard; Robb, Sam

    The program planning guide for agricultural products was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of meat and meat byproducts, dairy processing, fruit and vegetable…

  13. Agricultural Production: Program Planning Guide: Volume 1.

    ERIC Educational Resources Information Center

    Rich, William; Wood, Eugene

    The program planning guide for agricultural production was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of animal science, plant science, farm mechanics, and farm business…

  14. Agricultural Productivity Forecasts for Improved Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh; McNider, Richard; Moss, Donald; Alhamdan, Mohammad

    2010-01-01

    Water stresses on agricultural crops during critical phases of crop phenology (such as grain filling) has higher impact on the eventual yield than at other times of crop growth. Therefore farmers are more concerned about water stresses in the context of crop phenology than the meteorological droughts. However the drought estimates currently produced do not account for the crop phenology. US Department of Agriculture (USDA) and National Oceanic and Atmospheric Administration (NOAA) have developed a drought monitoring decision support tool: The U.S. Drought Monitor, which currently uses meteorological droughts to delineate and categorize drought severity. Output from the Drought Monitor is used by the States to make disaster declarations. More importantly, USDA uses the Drought Monitor to make estimates of crop yield to help the commodities market. Accurate estimation of corn yield is especially critical given the recent trend towards diversion of corn to produce ethanol. Ethanol is fast becoming a standard 10% ethanol additive to petroleum products, the largest traded commodity. Thus the impact of large-scale drought will have dramatic impact on the petroleum prices as well as on food prices. USDA's World Agricultural Outlook Board (WAOB) serves as a focal point for economic intelligence and the commodity outlook for U.S. WAOB depends on Drought Monitor and has emphatically stated that accurate and timely data are needed in operational agrometeorological services to generate reliable projections for agricultural decision makers. Thus, improvements in the prediction of drought will reflect in early and accurate assessment of crop yields, which in turn will improve commodity projections. We have developed a drought assessment tool, which accounts for the water stress in the context of crop phenology. The crop modeling component is done using various crop modules within Decision Support System for Agrotechnology Transfer (DSSAT). DSSAT is an agricultural crop

  15. Applications for Dielectric Properties of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of agricultural products for sensing moisture in grain and seed and their application in radio-frequency and microwave dielectric heating are discussed briefly. Values for the dielectric properties of a number of products, including grain, fruit, and poultry products...

  16. Integrated agricultural energy system

    NASA Astrophysics Data System (ADS)

    Taylor, R. M.

    1985-08-01

    The purpose of this program is to show New England farmers and other New England energy users how they can use alternative energy sources to reduce their energy cost and dependency on conventional sources. The project demonstrates alternative energy technologies in solar, alcohol and methane. Dissemination is planned through tours to be conducted by the Worcester County Extension Service. Most of these goals were completed as planned. A few things have yet to be completed. The solar panels and solar hot water tanks have to be installed. The fermenter's agitating and cooling system have to be secured inside the fermenter. Once these items are complete tours will begin early in the spring.

  17. Carbon Sequestration Potential of Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through proper management, agricultural systems (cropland, pasture, and forest) have the ability to remove carbon dioxide from the atmosphere and sequester it in soils and wood products. The carbon thus sequestered can help slow the increase in atmospheric carbon dioxide currently occurring as a res...

  18. SAR Agriculture Rice Production Estimation (SARPE)

    NASA Astrophysics Data System (ADS)

    Raimadoya, M.

    2013-12-01

    The study of SAR Agriculture Rice Production Estimation (SARPE) was held in Indonesia on 2012, as part of Asia-Rice Crop Estimation & Monitoring (Asia-RiCE), which is a component for the GEO Global Agricultural Monitoring (GEOGLAM) initiative. The study was expected to give a breakthrough result, by using radar technology and paradigm shift of the standard production estimation system from list frame to area frame approach. This initial product estimation system is expected to be refined (fine tuning) in 2013, by participating as part of Technical Demonstration Site (Phase -1A) of Asia-RICE. The implementation period of this initial study was from the date of March 12 to December 10, 2012. The implementation of the study was done by following the approach of the BIMAS-21 framework, which has been developed since 2008. The results of this study can be briefly divided into two major components, namely: Rice-field Baseline Mapping (PESBAK - Peta Sawah Baku) and Crop Growth Monitoring. Rice-fields were derived from the mapping results of the Ministry of Agriculture (Kemtan), and validated through Student Extension Campaign of the Faculty of Agriculture, Bogor Agricultural University (IPB). While for the crop growth, it was derived from the results of image analysis process. The analysis was done, either on radar/Radarsat-2 (medium resolution) or optical/ MODIS (low resolution), based on the Planting Calendar (KATAM) of Kemtan. In this case, the planting season II/2012-2013 of rice production centers in West Java Province (Karawang, Subang and Indramayu counties). The selection of crop season and county were entirely dependent on the quality of the available PESBAK and procurement process of radar imagery. The PESBAK is still in the form of block instead of fields, so it can not be directly utilized in this study. Efforts to improve the PESBAK can not be optimal because the provided satellite image (ECW format) is not the original one. While the procurement process of

  19. Dielectric properties of agricultural products and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of agricultural products for sensing moisture in grain and seed and their application in radio-frequency and microwave dielectric heating is discussed briefly. Values for the dielectric properties of a number of products, including grain and seed, fruits and vegetab...

  20. Climate and Agriculture: Challenges for Efficient Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate has always been and will continue to be an important factor in agricultural production. Evidence of this is apparent when looking at where plants or animals are distributed around the world and the variation among years in terms of grain, forage, vegetable, and fruit production. The recent r...

  1. 48 CFR 470.103 - United States origin of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the products of agricultural commodities acquired for use in international feeding and development... agricultural products. 470.103 Section 470.103 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE FOOD ASSISTANCE PROGRAMS COMMODITY ACQUISITIONS 470.103 United States origin of agricultural...

  2. 48 CFR 470.103 - United States origin of agricultural products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false United States origin of agricultural products. 470.103 Section 470.103 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE FOOD ASSISTANCE PROGRAMS COMMODITY ACQUISITIONS 470.103 United States origin of agricultural products. (a) Products of United States...

  3. Estrogenicity of agricultural by-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some Minnesota farms were found to have reduced conception rates in cattle receiving embryo transfers by a local veterinarian, and dietary components were called into question. Affected farms were feeding agricultural by-products, available in either a “shredded” form or a pelletized form. These by-...

  4. Torrefaction of agricultural by-products (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Torrefaction of biomass involves heating at 200°C-300°C under inert atmosphere to remove volatiles and produce materials with higher energy values and low moisture. Agricultural by-products, such as apple, grape, olive, and tomato pomaces as well as almond and walnut shells, were torrefied at differ...

  5. Aglite Lidar: A Portable Elastic Lidar System for Investigating Aerosol and Wind Motions at or Around Agricultural Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Aglite Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of Aglite is to map the concentration of PM10 and PM2.5 in aerosol plumes from agricultural and other sources. Aglite uses a high-repetition rate low-pulse energy...

  6. AGLITE Lidar: A Portable Elastic Lidar System for Investigating Aerosol and Wind Motions at or Around Agricultural Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AGLITE Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of AGLITE is to map the concentration of PM10 and PM2.5 in aerosol plumes from agricultural sources. AGLITE uses a high-repetition rate low-pulse-energy 3-wavelen...

  7. Farmers' perception on the importance of variegated grasshopper (Zonocerus variegatus (L.)) in the agricultural production systems of the humid forest zone of Southern Cameroon

    PubMed Central

    Kekeunou, Sévilor; Weise, Stephan; Messi, Jean; Tamò, Manuel

    2006-01-01

    Background Zonocerus variegatus (Linnaeus, 1758) (Orthoptera: Pyrgomorphidae) is known as an agricultural pest in West and Central Africa. However, its importance in the agricultural production system in Cameroon has not been investigated. The study assesses farmers' perception on the importance of Z. variegatus in the agricultural production systems of the humid forest zone of Southern Cameroon. Methods Research was carried out in 5 villages of each of three Agro-Ecological, Cultural and Demographic Blocks (AECD-Blocks) of the Forest Margin Benchmark Area (FMBA). In each village, a semi-structured survey was used; male and female groups of farmers were interviewed separately. Results Z. variegatus is present throughout the humid forest zone of Southern Cameroon, where it is ranked as the third most economically important insect pest of agriculture. In the farmers' opinion, Z. variegatus is a polyphagous insect with little impact on young perennial crops. The length of the pre-farming fallow does not affect Z. variegatus pest pressure in the following crops. The increased impact of the grasshopper observed today in the fields, compared to what existed 10 years ago is as a result of deforestation and increase in surface of herbaceous fallow. The damage caused by Z. variegatus is higher in fields adjacent to C. odorata and herbaceous fallows than in those adjacent to forests and shrubby fallows. The fight against this grasshopper is often done through physical methods carried out by hand, for human consumption. The farmers highlight low usage of the chemical methods and a total absence of biological and ecological methods. Conclusion Farmers' perception have contributed to understanding the status of Z. variegatus in the humid forest zone of Southern Cameroon. The results are in general similar to those obtained in other countries. PMID:16573815

  8. Agricultural Education Curriculum Guide. Agricultural Production and Management I. Course No. 6811. Agricultural Production and Management II. Course No. 6812.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    This document is designed for use by teachers of Agricultural Production and Management courses in North Carolina. It updates the competencies and content outlines from the previous guide. It lists core and optional competencies for two courses in seven areas as follows: leadership; supervised agricultural experience programs; animal science;…

  9. Health and safety risks in production agriculture.

    PubMed Central

    Von Essen, S G; McCurdy, S A

    1998-01-01

    Production agriculture is associated with a variety of occupational illnesses and injuries. Agricultural workers are at higher risk of death or disabling injury than most other workers. Traumatic injury commonly occurs from working with machinery or animals. Respiratory illness and health problems from exposures to farm chemicals are major concerns, and dermatoses, hearing loss, certain cancers, and zoonotic infections are important problems. Innovative means of encouraging safe work practices are being developed. Efforts are being made to reach all groups of farmworkers, including migrant and seasonal workers, farm youth, and older farmers. PMID:9795581

  10. Production of a raw material for energy production in agriculture

    NASA Astrophysics Data System (ADS)

    Hellstroem, G.

    1980-04-01

    The total amount of energy in products produced by Swedish agriculture was estimated to 80 TWH: 30 TWh for cereals, 15 TWh for grass and leguminosae, and 35 TWh for straw and other agricultural wastes. Of this production a large part will be used as food even in the future. New plants that would produce more energy than the ones traditionally grown in Sweden are discussed. Also other types of energy from agriculture are discussed such as methane from manure, methanol from gasification processes, and ethanol from fermentative processes. Costs were estimated from different alternatives.

  11. Evaluation of zinc oxide nanoparticle toxicity in sludge products applied to agricultural soil using multispecies soil systems.

    PubMed

    Fernández, María Dolores; Alonso-Blázquez, María Nieves; García-Gómez, Concepción; Babin, Mar

    2014-11-01

    To study the environmental impact of nanoparticles, the sludges of wastewater (WWTS) and water treatment (WTS) plants enriched with ZnO nanoparticles were added to agricultural soil, and the toxic effects of the nanoparticles were studied using a microcosm system based on the soil. The WWTS treated soils were characterised by statistically significant decreases (p<0.05) in Vicia sativa germination at the lowest (76.2%) and medium (95.2%) application rates, decreases in the fresh biomass for Triticum aestivum (19.5%), Raphanus sativus (64.1%), V. sativa (37.4%) and Eisenia fetida (33.6%) at the highest application rate and a dose-related significant increase (p<0.05) in earthworm mortality. In WTS amended soils, significant reductions (p<0.05) of the fresh biomass (17.2%) and the chlorophyll index (24.4%) for T. aestivum and the fresh biomass for R. sativus (31.4%) were only recorded at the highest application doses. In addition, the soil phosphatase enzymatic activity decreased significantly (p<0.05) in both WWTS (dose related) and WTS treatments. For water organisms, a slight inhibition of the growth of Chlorella vulgaris was observed (WWTS treated soils), along with statistically significant dose-related inhibition responses on total glutathione cell content, and statistically significant dose-related induction responses on the glutathione S-transferase enzyme activity and the reactive oxygen species generation on the RTG-2 fish cell line. PMID:25194764

  12. Development of real-time line-scan hyperspectral imaging system for online agricultural and food product inspection

    NASA Astrophysics Data System (ADS)

    Yoon, Seung Chul; Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Heitschmidt, Gerald W.

    2010-04-01

    This paper reports a recent development of a line-scan hyperspectral imaging system for real-time multispectral imaging applications in agricultural and food industries. The hyperspectral imaging system consisted of a spectrograph, an EMCCD camera, and application software. The real-time multispectral imaging with the developed system was possible due to (1) data binning, especially a unique feature of the EMCCD sensor allowing the access to non-contiguous multispectral bands, (2) an image processing algorithm designed for real-time multispectral imaging, and (3) the design and implementation of the real-time application software. The imaging system was developed as a poultry inspection instrument determining the presence of surface feces on poultry carcasses moving at commercial poultry processing line speeds up to 180 birds per minute. The imaging system can be easily modifiable to solve other real-time inspection/sorting problems. Three wavelengths at 517 nm, 565 nm and 802 nm were selected for real-time fecal detection imaging. The fecal detection algorithm was based on dual band ratios of 565nm/517nm and 802nm/517nm followed by thresholding. The software architecture was based on a ping pong memory and a circular buffer for the multitasking of image grabbing and processing. The software was written in Microsoft Visual C++. An image-based internal triggering (i.e. polling) algorithm was developed to determine the start and end positions of birds. Twelve chickens were used for testing the imaging system at two different speeds (140 birds per minute and 180 bird per minute) in a pilot-scale processing line. Four types of fecal materials (duodenum, ceca, colon and ingesta) were used for the evaluation of the detection algorithm. The software grabbed and processed multispectral images of the dimension 118 (line scans) x 512 (height) x 3 (bands) pixels obtained from chicken carcasses moving at the speed up to 180 birds per minute (a frame rate 286 Hz). Intensity

  13. Drought, Climate Change and Potential Agricultural Productivity

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Herrera-Estrada, J. E.; Caylor, K. K.; Wood, E. F.

    2011-12-01

    Drought is a major factor in agricultural productivity, especially in developing regions where the capacity for water resources management is limited and climate variability ensures that drought is recurrent and problematic. Recent events in East Africa are testament to this, where drought conditions that have slowly developed over multiple years have contributed to reduced productivity and ultimately food crises and famine. Prospects for the future are not promising given ongoing problems of dwindling water supplies from non-renewable sources and the potential for increased water scarcity and increased drought with climate change. This is set against the expected increase in population by over 2 billion people by 2050 and rise in food demand, coupled with changes in demographics that affect food choices and increases in non-food agriculture. In this talk we discuss the global variability of drought over the 20th century and recent years, and the projected changes over the 21st century, and how this translates into changes in potential agricultural productivity. Drought is quantified using land surface hydrological models driven by a hybrid reanalysis-observational meteorological forcing dataset. Drought is defined in terms of anomalies of hydroclimatic variables, in particular precipitation, evaporation and soil moisture, and we calculate changes in various drought characteristics. Potential agricultural productivity is derived from the balance of precipitation to crop water demand, where demand is based on potential evaporation and crop coefficients for a range of staple crops. Some regional examples are shown of historic variations in drought and potential productivity, and the estimated water deficit for various crops. The multitude of events over the past decade, including heat waves in Europe, fires in Russia, long-term drought in northern China, southeast Australia, the Western US and a series of droughts in the Amazon and Argentina, hint at the influence of

  14. Diffusion of innovative agricultural production systems for sustainable development of small islands: A methodological approach based on the science of complexity

    NASA Astrophysics Data System (ADS)

    Barbera, Guiseppe; Butera, Federico M.

    1992-09-01

    In order to develop small islands, not only must a vital agricultural system be maintained, but the range of opportunities for tourism must be increased with respect to both the seaside and the environmental features of the rural landscape. As an alternative to the traditional and economically declining ones, many innovative production processes can be identified, but their success depends on their interaction with the physical, biological, economic and social environment. In order to identify the main nodes and the most critical interactions, so as to increase the probability of success of a new productive process, a methodological approach based on the science of complexity is proposed for the cultivation of capers ( Capparis spinosa L.) on the island of Pantelleria. The methodology encompasses the identification of actors and factors involved. the quantitative evaluation of their interactions with the different stages of the productive process, and a quasiquantitative evaluation of the probability that the particular action will be performed successfully. The study of “traditional,” “modernized,” and “modernized-sustainable” processes, shows that the modernized-sustainable process offers mutually reinforcing opportunities in terms of an integrated development of high-quality agricultural products and the enhancement of environmental features, in conjunction with high-efficiency production techniques, in conjunction with high-efficiency production techniques, in a way that suits the development of Pantelleria. There is a high probability of failure, however, as a result of the large number of critical factors. Nevertheless, the present study indicates which activities will enhance the probability of successful innovation in the production process.

  15. Multiple Knowledges for Agricultural Production: Implications for the Development of Conservation Agriculture in Kenya and Uganda

    ERIC Educational Resources Information Center

    Moore, Keith M.; Lamb, Jennifer N.; Sikuku, Dominic Ngosia; Ashilenje, Dennis S.; Laker-Ojok, Rita; Norton, Jay

    2014-01-01

    Purpose: This article investigates the extent of multiple knowledges among smallholders and connected non-farm agents around Mount Elgon in Kenya and Uganda in order to build the communicative competence needed to scale up conservation agriculture production systems (CAPS). Design/methodology/approach: Our methodological approach examines local…

  16. Design and development of a LabVIEW-based LED-induced fluorescence spectroscopy system with applications in non-destructive quality assessment of agricultural products

    NASA Astrophysics Data System (ADS)

    Abbasi, Hamed; Nazeri, Majid; Mireei, Seyed Ahmad

    2016-01-01

    Over the past several years, the demand for high quality agricultural products has been remarkably increased. Thus, it is important to use non-destructive methods for product quality monitoring. LED-induced fluorescence spectroscopy has proved its potential for nondestructive detection of some defects in agricultural products, such as tissue browning and bruising. Due to such defects, changes in the polyphenol and chlorophyll contents occur which can be considered as the visible marks of decreasing fruit quality. In the present work, a fluorescence spectrometer (spectrofluorometer) controlled by LabVIEW software was designed and developed. In this spectrometer, a consumer-grade webcam was used as an imaging sensor. The spectrometer was able to measure the fluorescence spectra directly from the fruit and vegetable surface in the desired regions. To do so, the spectrometer was equipped with a suitable fiber-optic probe. The hardware solution was based on data acquisition working on the USB platform and controlled by the application running on the PC. In this system, light emitting diodes with different wavelengths were used as the excitation sources for inducing fluorescence spectra of some famous fruits and vegetables.

  17. Grasslands, Rangelands, and Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable agro-ecosystems are those systems whose production does not negatively affect energy flow, nutrient cycling or ecosystem services. We examined literature reports in each of these different arenas to determine if cellulosic biomass production in rangelands met these criteria. We focused...

  18. Agricultural R&D, technology and productivity.

    PubMed

    Piesse, J; Thirtle, C

    2010-09-27

    The relationships between basic and applied agricultural R&D, developed and developing country R&D and between R&D, extension, technology and productivity growth are outlined. The declining growth rates of public R&D expenditures are related to output growth and crop yields, where growth rates have also fallen, especially in the developed countries. However, growth in output value per hectare has not declined in the developing countries and labour productivity growth has increased except in the EU. Total factor productivity has generally increased, however it is measured. The public sector share of R&D expenditures has fallen and there has been rapid concentration in the private sector, where six multinationals now dominate. These companies are accumulating intellectual property to an extent that the public and international institutions are disadvantaged. This represents a threat to the global commons in agricultural technology on which the green revolution has depended. Estimates of the increased R&D expenditures needed to feed 9 billion people by 2050 and how these should be targeted, especially by the Consultative Group on International Agricultural Research (CGIAR), show that the amounts are feasible and that targeting sub-Saharan Africa (SSA) and South Asia can best increase output growth and reduce poverty. Lack of income growth in SSA is seen as the most insoluble problem. PMID:20713401

  19. Agricultural R&D, technology and productivity

    PubMed Central

    Piesse, J.; Thirtle, C.

    2010-01-01

    The relationships between basic and applied agricultural R&D, developed and developing country R&D and between R&D, extension, technology and productivity growth are outlined. The declining growth rates of public R&D expenditures are related to output growth and crop yields, where growth rates have also fallen, especially in the developed countries. However, growth in output value per hectare has not declined in the developing countries and labour productivity growth has increased except in the EU. Total factor productivity has generally increased, however it is measured. The public sector share of R&D expenditures has fallen and there has been rapid concentration in the private sector, where six multinationals now dominate. These companies are accumulating intellectual property to an extent that the public and international institutions are disadvantaged. This represents a threat to the global commons in agricultural technology on which the green revolution has depended. Estimates of the increased R&D expenditures needed to feed 9 billion people by 2050 and how these should be targeted, especially by the Consultative Group on International Agricultural Research (CGIAR), show that the amounts are feasible and that targeting sub-Saharan Africa (SSA) and South Asia can best increase output growth and reduce poverty. Lack of income growth in SSA is seen as the most insoluble problem. PMID:20713401

  20. Quality assurance of weather data for agricultural system model input

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...

  1. Agricultural production in Kikwawila village, southeastern Tanzania.

    PubMed

    Zehnder, A; Jeje, B; Tanner, M; Freyvogel, T A

    1987-06-01

    Food production, land utilisation and agricultural structures were surveyed at Kikwawila village, north of Ifakara (Kilombero District, Morogoro Region) in 1984. This study was part of a more comprehensive, longitudinal programme to investigate the health status of a rural community, aiming in particular at the interrelations between nutrition, parasitic infections, immunity and the environment. Out of 340 households, 100 were interviewed and their subsistence farming activities recorded. The soil was found to be of great variability, being fertile where it was of alluvial origin but of reduced potential where it was non-alluvial. In all, 70 plant species were registered as being cultivated, with rice, maize, cassava and beans providing the main staple food. Apart from a few exceptions, the fields were cultivated without any mechanization. The seasonal distribution of agricultural work is described, but no detailed workload analysis of the villagers with regard to age and sex has been performed. At the foot of the mountains, where artificial irrigation has been introduced, dry season cropping was practised in addition to the prevailing wet season farming, which rendered the cultivation of marketable crops (mainly tomatoes) possible. The farmers were found to be imaginative and capable of adapting to various conditions, irrespective of their tribal origins. Alternatively, the quality of the soil and the unreliable availability of water set limits to the potential of food production in the area. Although land is still available, it is becoming more scarce as the human population increases. The further impoverishment of the land represents an imminent danger. Therefore, top priority ought to be given to soil conservation, followed by intercropping and/or crop rotation, seed production and crop protection against game and pests. Means of implementing such measures are discussed. It is suggested that Community Agricultural Workers be installed, elected by the villagers

  2. Gender Differences in Access to Extension Services and Agricultural Productivity

    ERIC Educational Resources Information Center

    Ragasa, Catherine; Berhane, Guush; Tadesse, Fanaye; Taffesse, Alemayehu Seyoum

    2013-01-01

    Purpose: This article contributes new empirical evidence and nuanced analysis on the gender difference in access to extension services and how this translates to observed differences in technology adoption and agricultural productivity. Approach: It looks at the case of Ethiopia, where substantial investments in the extension system have been…

  3. Managing for soil protection and bioenergy production on agricultural lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy systems are needed that can aid in meeting the growing energy demands of the expanding human population without sacrificing the long-term sustainability, productivity and quality of the underlying natural resources. Agriculture, like the forestry sector, will produce the feedstocks. While ...

  4. Climate impacts on agriculture: Implications for crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 50 years present a challenge to crop production. Understanding these implications for agricultural crops is critical to being able to develop cropping systems which are resilient to stresses induced by ...

  5. Renewable energy: Energy from agricultural products

    NASA Astrophysics Data System (ADS)

    1984-06-01

    Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10 percent of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10 percent mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production. Wider applications will require either government incentives or genetic engineering of crops and improve efficiencies in conversion processes to lower costs.

  6. Global Agricultural Monitoring (GLAM) using MODAPS and LANCE Data Products

    NASA Astrophysics Data System (ADS)

    Anyamba, A.; Pak, E. E.; Majedi, A. H.; Small, J. L.; Tucker, C. J.; Reynolds, C. A.; Pinzon, J. E.; Smith, M. M.

    2012-12-01

    The Global Inventory Modeling and Mapping Studies / Global Agricultural Monitoring (GIMMS GLAM) system is a web-based geographic application that offers Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and user interface tools to data query and plot MODIS NDVI time series. The system processes near real-time and science quality Terra and Aqua MODIS 8-day composited datasets. These datasets are derived from the MOD09 and MYD09 surface reflectance products which are generated and provided by NASA/GSFC Land and Atmosphere Near Real-time Capability for EOS (LANCE) and NASA/GSFC MODIS Adaptive Processing System (MODAPS). The GIMMS GLAM system is developed and provided by the NASA/GSFC GIMMS group for the U.S. Department of Agriculture / Foreign Agricultural Service / International Production Assessment Division (USDA/FAS/IPAD) Global Agricultural Monitoring project (GLAM). The USDA/FAS/IPAD mission is to provide objective, timely, and regular assessment of the global agricultural production outlook and conditions affecting global food security. This system was developed to improve USDA/FAS/IPAD capabilities for making operational quantitative estimates for crop production and yield estimates based on satellite-derived data. The GIMMS GLAM system offers 1) web map imagery including Terra & Aqua MODIS 8-day composited NDVI, NDVI percent anomaly, and SWIR-NIR-Red band combinations, 2) web map overlays including administrative and 0.25 degree Land Information System (LIS) shape boundaries, and crop land cover masks, and 3) user interface tools to select features, data query, plot, and download MODIS NDVI time series.

  7. Agricultural use of a flue gas desulfurization by-product

    SciTech Connect

    Nelson, S. Jr.; Dick, W.; Chen, L.

    1998-07-01

    Few, if any, economical alternatives exist for operators of small coal-fired boilers that require a flue-gas desulfurization system which does not generate wastes. A new duct-injection technology called Fluesorbent has been developed to help fill this gap. Fluesorbent FGD was intentionally designed so that the saturated SO{sub 2}-sorbent materials would be valuable solid amendments for agricultural or turf-grass land. Agricultural and turf grass studies recently commenced using spent Fluesorbent materials from an FGD pilot program at an Ohio power plant. In the first year of testing, alfalfa yields on field plots with the FGS by-products were approximately 250% greater than on plots with no treatment, and about 40% greater than on plots treated with an equivalent amount of agricultural lime. Because the FGD by-products contained trace elements from included fly ash, the chemical composition of the alfalfa was significantly improved.

  8. Agricultural use of a flue gas desulfurization by-product

    SciTech Connect

    Nelson, S. Jr.; Dick, W.; Chen, L.

    1998-04-01

    Few, if any, economical alternatives exist for operators of small coal-fired boilers that require a flue-gas desulfurization system which does not generate wastes. A new duct-injection technology called {open_quotes}Fluesorbent{close_quotes} has been developed to help fill this gap. Fluesorbent FGD was intentionally designed so that the saturated SO{sub 2}-sorbent materials would be valuable soil amendments for agricultural or turf-grass land. Agricultural and turf grass studies recently commenced using spent Fluesorbent materials from an FGD pilot program at an Ohio power plant. In the first year of testing, alfalfa yields on field plots with the FGD by-products were approximately 250% greater than on plots with no treatment, and about 40% greater than on plots treated with an equivalent amount of agricultural lime. Because the FGD by-products contained trace elements from included fly ash, the chemical composition of the alfalfa was significantly improved.

  9. Agricultural use of a flue gas desulfurization by-product

    SciTech Connect

    Dick, W.; Chen, L.; Nelson, S. Jr.

    1998-12-31

    Few, if any, economical alternatives exist for operators of small coal-fired boilers that require a flue-gas desulfurization system which does not generate wastes. A new duct-injection technology called Fluesorbent has been developed to help fill this gap. Fluesorbent FGD was intentionally designed so that the saturated SO{sub 2}-sorbent materials would be valuable soil amendments for agricultural or turf-grass land. Agricultural and turf grass studies recently commenced using spent Fluesorbent materials from an FGD pilot program at an Ohio power plant. In the first year of testing, alfalfa yields on field plots with the FGD by-products were approximately 250% greater than on plots with no treatment, and about 40% greater than on plots treated with an equivalent amount of agricultural lime. Because the FGD by-products contained trace elements from included fly ash, the chemical composition of the alfalfa was significantly improved. Detailed yield and chemical data are presented.

  10. Carbon dynamics in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soil carbon (C) pool constitutes the largest reservoir of C in terrestrial ecosystems. Full accounting of C emissions and sequestration to obtain net C flux budgets for agriculture indicate that agricultural land can function as a net source or sink of C, depending on land use and management. Ad...

  11. Economic evaluation and conceptual design of optimal agricultural systems for production of food and energy. Final report

    SciTech Connect

    1982-03-01

    The major technical and economic considerations which determined the scope of the study and the structure of the linear programming (LP) models are discussed. Four models, each representing a typical crop, beef, dairy, or swine farm in conjunction with ethanol facilities are characterized by the same general behavioral and mathematical model structure. Specific activities, constraints, and data for each of the four models are presented. An overview of the model structure is provided in the context of the general scope and background assumptions, and of its LP implementation. Simulated initial conditions and outcomes are reported for typical Illinois farms. Policy implications are discussed as related to agriculture, energy, and inter-industry coordination. (MHR)

  12. Corn Production. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    Grace, Clyde, Jr.

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit contains nine lessons based upon competencies needed to maximize profits in corn production. The lessons cover opportunities for growing corn; seed selection; seedbed preparation; planting methods and practices; fertilizer rates and application;…

  13. Tobacco Production. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    Hughes, Mike; And Others

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit contains forty-one lessons based upon competencies needed to maximize profits in tobacco production. The lessons in this unit cover such topics as the importance of tobacco, selecting land for tobacco, soil analysis and treatment, selecting tobacco…

  14. Productivity limits and potentials of the principles of conservation agriculture.

    PubMed

    Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris

    2015-01-15

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the

  15. 7 CFR 735.105 - Care of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Licensing § 735.105 Care of agricultural products. Each warehouse operator must at all times, including during...

  16. Alcohol production from agricultural and forestry residues

    SciTech Connect

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  17. A GUIDE ON RECORD KEEPING AND ANALYSIS IN THE VOCATIONAL AGRICULTURE RECORD BOOK FOR PRODUCTION AGRICULTURE.

    ERIC Educational Resources Information Center

    DUNCAN, A.O.; TOBEN, GEORGE E.

    BASED UPON "VOCATIONAL AGRICULTURE RECORD BOOK FOR PRODUCTION AGRICULTURE," DEVELOPED DURING 1965, THIS GUIDE FOR VOCATIONAL AGRICULTURE TEACHERS AND STUDENTS ILLUSTRATES THE USE OF THE RECORD BOOK, EXPLAINS SELECTED FEATURES, AND PROVIDES ASSISTANCE WITH RECORD KEEPING AND ANALYSIS. IT WAS DEVELOPED UNDER A U.S. OFFICE OF EDUCATION (USOE)…

  18. Human health problems associated with current agricultural food production.

    PubMed

    Bhat, Ramesh V

    2008-01-01

    Scientific and technological developments in the agricultural sectors in the recent past has resulted in increased food production and at the same time led to certain public health concerns. Unseasonal rains at the time of harvest and improper post harvest technology often results in agricultural commodities being contaminated with certain fungi and results in the production of mycotoxins. Consumption of such commodities has resulted in human disease outbreaks. Naturally occurring toxins, inherently present in foods and either consumed as such or mixed up with grains, had been responsible for disease outbreaks. Other possible causes of health concern include the application of various agrochemicals such as pesticides and the use of antibiotics in aquaculture and veterinary practices. Foodborne pathogens entering the food chain during both traditional and organic agriculture pose a challenge to public health. Modern biotechnology, producing genetically modified foods, if not regulated appropriately could pose dangers to human health. Use of various integrated food management systems like the Hazard Analysis and critical control system approach for risk prevention, monitoring and control of food hazards are being emphasized with globalization to minimise the danger posed to human health from improper agricultural practices. PMID:18296310

  19. Women Participation in Agricultural Production: A Probit Analysis

    NASA Astrophysics Data System (ADS)

    Damisa, M. A.; Samndi, R.; Yohanna, M.

    Women play a very significant role in agricultural production in Nigeria. They are however accorded little attention. Inadequate information on the level of women participation in agriculture has helped to under estimate their importance in the economy and hence led to their neglect in policy issues. This study therefore employed the Probit analysis to investigate the determinants of women participation in agricultural production. It was found that the level of the disposable income, perception, tenure rights and the level of the contribution of the women to agriculture had significant impact on the women participation in agricultural production.

  20. Alcohol production from agricultural and forestry residues

    SciTech Connect

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  1. Sustainability of Agricultural Systems: Concept to Application

    EPA Science Inventory

    Agriculture not only feeds the planet, it also is the biggest overall factor affecting the environment. Thus, innovative sustainable farming systems that produce healthy food and protect the environment at the same time are very much needed. We, as agricultural engineers, need ...

  2. Agricultural Drainage Management Systems Task Force (ADMSTF)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Drainage Management Systems (ADMS) Task Force was initiated during a Charter meeting in the fall of 2002 by dedicated professional employees of Federal, State, and Local Government Agencies and Universities. The Agricultural Drainage Management (ADM) Coalition was established in 200...

  3. Traceability System For Agricultural Productsbased on Rfid and Mobile Technology

    NASA Astrophysics Data System (ADS)

    Sugahara, Koji

    In agriculture, it is required to establish and integrate food traceability systems and risk management systems in order to improve food safety in the entire food chain. The integrated traceability system for agricultural products was developed, based on innovative technology of RFID and mobile computing. In order to identify individual products on the distribution process efficiently,small RFID tags with unique ID and handy RFID readers were applied. On the distribution process, the RFID tags are checked by using the readers, and transit records of the products are stored to the database via wireless LAN.Regarding agricultural production, the recent issues of pesticides misuse affect consumer confidence in food safety. The Navigation System for Appropriate Pesticide Use (Nouyaku-navi) was developed, which is available in the fields by Internet cell-phones. Based on it, agricultural risk management systems have been developed. These systems collaborate with traceability systems and they can be applied for process control and risk management in agriculture.

  4. Sustainable Uses of FGD Gypsum in Agricultural Systems: Introduction.

    PubMed

    Watts, Dexter B; Dick, Warren A

    2014-01-01

    Interest in using gypsum as a management tool to improve crop yields and soil and water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur from combustion gases at coal-fired power plants, in major agricultural producing regions within the last two decades has attributed to this interest. Currently, published data on the long-term sustainability of FGD gypsum use in agricultural systems is limited. This has led to organization of the American Society of Agronomy's Community "By-product Gypsum Uses in Agriculture" and a special collection of nine technical research articles on various issues related to FGD gypsum uses in agricultural systems. A brief review of FGD gypsum, rationale for the special collection, overviews of articles, knowledge gaps, and future research directions are presented in this introductory paper. The nine articles are focused in three general areas: (i) mercury and other trace element impacts, (ii) water quality impacts, and (iii) agronomic responses and soil physical changes. While this is not an exhaustive review of the topic, results indicate that FGD gypsum use in sustainable agricultural production systems is promising. The environmental impacts of FGD gypsum are mostly positive, with only a few negative results observed, even when applied at rates representing cumulative 80-year applications. Thus, FGD gypsum, if properly managed, seems to represent an important potential input into agricultural systems. PMID:25602557

  5. Soil biota and agriculture production in conventional and organic farming

    NASA Astrophysics Data System (ADS)

    Schrama, Maarten; de Haan, Joj; Carvalho, Sabrina; Kroonen, Mark; Verstegen, Harry; Van der Putten, Wim

    2015-04-01

    Sustainable food production for a growing world population requires a healthy soil that can buffer environmental extremes and minimize its losses. There are currently two views on how to achieve this: by intensifying conventional agriculture or by developing organically based agriculture. It has been established that yields of conventional agriculture can be 20% higher than of organic agriculture. However, high yields of intensified conventional agriculture trade off with loss of soil biodiversity, leaching of nutrients, and other unwanted ecosystem dis-services. One of the key explanations for the loss of nutrients and GHG from intensive agriculture is that it results in high dynamics of nutrient losses, and policy has aimed at reducing temporal variation. However, little is known about how different agricultural practices affect spatial variation, and it is unknown how soil fauna acts this. In this study we compare the spatial and temporal variation of physical, chemical and biological parameters in a long term (13-year) field experiment with two conventional farming systems (low and medium organic matter input) and one organic farming system (high organic matter input) and we evaluate the impact on ecosystem services that these farming systems provide. Soil chemical (N availability, N mineralization, pH) and soil biological parameters (nematode abundance, bacterial and fungal biomass) show considerably higher spatial variation under conventional farming than under organic farming. Higher variation in soil chemical and biological parameters coincides with the presence of 'leaky' spots (high nitrate leaching) in conventional farming systems, which shift unpredictably over the course of one season. Although variation in soil physical factors (soil organic matter, soil aggregation, soil moisture) was similar between treatments, but averages were higher under organic farming, indicating more buffered conditions for nutrient cycling. All these changes coincide with

  6. Fuel alcohol production from agricultural lignocellulosic feedstocks

    SciTech Connect

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L. )

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa, kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.

  7. The Status of Human Nutrition and Agricultural Productivity.

    ERIC Educational Resources Information Center

    Wyse, Bonita; And Others

    1986-01-01

    The authors state that the U.S. Department of Agriculture should be considering productive alternatives for the American farmer, exploring ways to use or export the excess fat, and should be spending at least half of its resources to convince the consumers of the value they are getting from agricultural products. (CT)

  8. Agricultural Production. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.

    ERIC Educational Resources Information Center

    Batman, Kangan; Gadd, Nick; Lucas, Michele

    This publication contains the three communication skills units of the three levels of Support Materials for Agricultural Training (SMAT) in agricultural production: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner improve his or her written and spoken communication skills needed to deal with…

  9. Marketing Agricultural Products. Curriculum Guide Developed for Secondary and Post Secondary Agriculture Programs.

    ERIC Educational Resources Information Center

    Miller, W. Wade; And Others

    This curriculum guide can be used by secondary and postsecondary agriculture instructors for a semester course in marketing agricultural products or individual units can be incorporated in other courses. The curriculum guide consists of six units of study made up of two to eight lessons each. The units cover the following topics: (1) marketing…

  10. Fuel ethanol production from agricultural residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol is a renewable oxygenated fuel. In 2012, about 13.3 billion gallons of fuel ethanol was produced from corn in the USA which makes up 10% of gasoline supply. Various agricultural residues such as corn stover, wheat straw, rice straw and barley straw can serve as low-cost lignocellulosic fee...

  11. Alternative Agricultural Enterprises. Production, Management & Marketing.

    ERIC Educational Resources Information Center

    Fox, Linda Kirk; And Others

    These nine cooperative extension bulletins provide basic information on various alternative agricultural enterprises. Discussed in the first eight bulletins are the following topics: business ownership (sole proprietorship, partnership, incorporation, cooperatives); business and the family (goals, qualifications, ways of ensuring family support,…

  12. Secondary aerosol production from agricultural gas precursors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Increasing evidence from both laboratory and field work suggests that not only does ammonia produce secondary particulate matter, but some volatile org...

  13. Changes in Information Systems in Czech Agriculture

    ERIC Educational Resources Information Center

    Slavik, Milan

    2004-01-01

    A study carried out in 1998 (reported in the Journal of Agricultural Education and Extension, 2003) of the information systems used by farmers in the Czech Republic to access information and advice was repeated in 2003. The research aim was to assess whether, and how, the systems had changed during these five years. The perceived importance of 10…

  14. Mandatory Production Controls. Issues in Agricultural Policy. Agriculture Information Bulletin Number 520.

    ERIC Educational Resources Information Center

    Economic Research Service (USDA), Washington, DC.

    Mandatory restrictions on agricultural production continue to be suggested as an alternative policy for reducing price-depressing surplus production, increasing farm income, and cutting farm program costs. A mandatory production control program (MPCP) can be implemented through two methods: (1) acreage allotments, which restrict individual farmers…

  15. Policies for reduced deforestation and their impact on agricultural production

    PubMed Central

    Angelsen, Arild

    2010-01-01

    Policies to effectively reduce deforestation are discussed within a land rent (von Thünen) framework. The first set of policies attempts to reduce the rent of extensive agriculture, either by neglecting extension, marketing, and infrastructure, generating alternative income opportunities, stimulating intensive agricultural production or by reforming land tenure. The second set aims to increase either extractive or protective forest rent and—more importantly—create institutions (community forest management) or markets (payment for environmental services) that enable land users to capture a larger share of the protective forest rent. The third set aims to limit forest conversion directly by establishing protected areas. Many of these policy options present local win–lose scenarios between forest conservation and agricultural production. Local yield increases tend to stimulate agricultural encroachment, contrary to the logic of the global food equation that suggests yield increases take pressure off forests. At national and global scales, however, policy makers are presented with a more pleasant scenario. Agricultural production in developing countries has increased by 3.3–3.4% annually over the last 2 decades, whereas gross deforestation has increased agricultural area by only 0.3%, suggesting a minor role of forest conversion in overall agricultural production. A spatial delinking of remaining forests and intensive production areas should also help reconcile conservation and production goals in the future. PMID:20643935

  16. Policies for reduced deforestation and their impact on agricultural production.

    PubMed

    Angelsen, Arild

    2010-11-16

    Policies to effectively reduce deforestation are discussed within a land rent (von Thünen) framework. The first set of policies attempts to reduce the rent of extensive agriculture, either by neglecting extension, marketing, and infrastructure, generating alternative income opportunities, stimulating intensive agricultural production or by reforming land tenure. The second set aims to increase either extractive or protective forest rent and--more importantly--create institutions (community forest management) or markets (payment for environmental services) that enable land users to capture a larger share of the protective forest rent. The third set aims to limit forest conversion directly by establishing protected areas. Many of these policy options present local win-lose scenarios between forest conservation and agricultural production. Local yield increases tend to stimulate agricultural encroachment, contrary to the logic of the global food equation that suggests yield increases take pressure off forests. At national and global scales, however, policy makers are presented with a more pleasant scenario. Agricultural production in developing countries has increased by 3.3-3.4% annually over the last 2 decades, whereas gross deforestation has increased agricultural area by only 0.3%, suggesting a minor role of forest conversion in overall agricultural production. A spatial delinking of remaining forests and intensive production areas should also help reconcile conservation and production goals in the future. PMID:20643935

  17. FUEL ETHANOL PRODUCTION FROM AGRICULTURAL RESIDUES AND PROCESSING BYPRODUCTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2005, the production of fuel ethanol from corn starch reached 4.5 billion gallons in the U.S. Various agricultural residues such as corn stover and wheat straw, and agricultural processing byproducts such as corn fiber and rice hulls, can serve as low-cost lignocellulosic feedstocks for conversi...

  18. Conversion of agricultural by-products to methyl cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural residues are attractive raw materials for the production of industrial polymers because they are renewable and biodegradable, involve less toxic materials during manufacturing, add value to agricultural byproducts, and decrease the global dependence on petroleum-based feedstock. In this...

  19. Techniques for Measuring the Dielectric Properties of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectrics and dielectric properties of materials are defined generally, and methods for measuring dielectric properties of agricultural products are described for several frequency ranges from audio frequencies through microwave frequencies. These include measurement with impedance and admittance...

  20. The evolution of dielectric properties measurement techniques for agricultural products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The important applications for dielectric properties, or electric permittivities, of agricultural products are described and the evolution of techniques used for their measurement over frequencies ranging from audio to microwave ranges are described briefly. References are cited for further informat...

  1. Utilization of agricultural by-products in healthful food products: Organogelators, antioxidants, and spreadable products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was found that several agricultural by-products could be utilized for healthful food products. Three major applications that our research group has been focusing on will be discussed: 1) plant waxes for trans-fat free, low saturated fat-containing margarine and spread products, 2) extracts of cor...

  2. Soil Organic Matter in Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural systems, soil organic matter (SOM) has been recognized as an important source of nutrients and maintains favorable soil structure. Organic matter is considered a major binding agent that stabilizes soil aggregates. Soil aggregates especially, water stable aggregates, are important i...

  3. Impacts of Stratospheric Sulfate Geoengineering on Chinese Agricultural Production

    NASA Astrophysics Data System (ADS)

    Xia, L.; Robock, A.

    2012-12-01

    Possible food supply change is one of the most important concerns in the discussion of stratospheric sulfate geoengineering. In China, the high population density and strong summer monsoon influence on agriculture make this region sensitive to climate changes, such as reductions of precipitation, temperature, and solar radiation spurred by stratospheric sulfate injection. We used results from the Geoengineering Model Intercomparison Project G2 scenario to force the Decision Support System for Agrotechnology Transfer (DSSAT) crop model to predict crop yield changes from rice, maize, and winter wheat. We first evaluated the DSSAT model by forcing it with daily observed weather data and management practices for the period 1978-2008 for all the provinces in China, and compared the results to observations of the yields of the three major crops in China. We then created two 50-year sets of climate anomalies using the results from eight climate models, for 1%/year increase of CO2 and for G2 (1%/year increase of CO2 balanced by insolation reduction), and compared the resulting agricultural responses. Considering that geoengineering could happen in the future, we used two geoengineering starting years, 2020 and 2060. For 2020, we increased the mean temperature by 1°C and started the CO2 concentration at 410 ppm. For 2060, we increased temperature by 2°C and started the CO2 concentration at 550 ppm. Without changing agriculture technology, we find that compared to the control run, geoengineering with the G2 scenario starting in 2020 or 2060 would both moderately increase rice and winter wheat production due to the CO2 fertilization effect, but the increasing rates are different. However, as a C4 crop, without a significant CO2 fertilization effect, maize production would decrease slightly because of regional drought. Compared to the reference run, the three crops all have less heat stress in southern China and their yields increase, but in northern China cooler

  4. Fuel production potential of several agricultural crops

    SciTech Connect

    Mays, D.A.; Buchanan, W.; Bradford, B.N.

    1984-11-01

    Data collected on starch and sugar crops indicate that sweet potato and sweet sorghum have the best potential for alcohol production in the TVA area. Of the oil crops evaluated in this series of experiments only sunflower and okara appear to offer potential in the Tennessee Valley for oil production for fuel or other uses. 21 tabs.

  5. Equine Management and Production. Vocational Agriculture Education.

    ERIC Educational Resources Information Center

    Rudolph, James A.

    This basic core of instruction for equine management and production is designed to assist instructors in preparing students for successful employment or management of a one- or two-horse operation. Contents include seven instructional areas totaling seventeen units of instruction: (1) Orientation (basic horse production; handling and grooming;…

  6. Advanced Manufacturing and Value-added Products from US Agriculture

    NASA Technical Reports Server (NTRS)

    Villet, Ruxton H.; Child, Dennis R.; Acock, Basil

    1992-01-01

    An objective of the US Department of Agriculture (USDA) Agriculture Research Service (ARS) is to develop technology leading to a broad portfolio of value-added marketable products. Modern scientific disciplines such as chemical engineering are brought into play to develop processes for converting bulk commodities into high-margin products. To accomplish this, the extremely sophisticated processing devices which form the basis of modern biotechnology, namely, genes and enzymes, can be tailored to perform the required functions. The USDA/ARS is a leader in the development of intelligent processing equipment (IPE) for agriculture in the broadest sense. Applications of IPE are found in the production, processing, grading, and marketing aspects of agriculture. Various biotechnology applications of IPE are discussed.

  7. Effects of acid deposition on agricultural production

    SciTech Connect

    Moskowitz, P.D.; Medeiros, W.H.; Oden, N.L.; Thode, H.C. Jr.; Coveney, E.A.; Jacobson, J.S.; Rosenthal, R.E.; Evans, L.S.; Lewin, K.F.; Allen, F.L.

    1985-09-01

    A preliminary assessment, both qualitative and quantitative, was carried out on the effects of acid deposition on agriculture. An inventory was made of US crops exposed to different acid deposition levels in 1982. Most crops (valued at more than $50 billion) were exposed to annual average acid deposition levels greater than pH 4.6, but crops worth more than $220 billion were exposed to even lower pH levels. Published results of experiments on crop response to acid deposition have not identified any single crop as being consistently sensitive, and suggest that present levels of acidic precipitation in the US are not significantly affecting growth and yield of crops. Because relatively few experiments appropriate to a quantitative acid deposition assessment have been conducted, the quantitative section is necessarily based on a restricted data set. Corn, potatoes, and soybeans have been studied in experimental environments which simulate agronomic conditions and which have adequate statistical power for yield estimates; only some varieties of soybeans have demonstrated statistically significant sensitivity to acid deposition.

  8. Wastes and by-products - alternatives for agricultural use

    SciTech Connect

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  9. 7 CFR 205.310 - Agricultural products produced on an exempt or excluded operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Agricultural products produced on an exempt or excluded operation. 205.310 Section 205.310 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION...

  10. Global warming threatens agricultural productivity in Africa and South Asia

    NASA Astrophysics Data System (ADS)

    Sultan, Benjamin

    2012-12-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; Christensen et al 2007) has, with greater confidence than previous reports, warned the international community that the increase in anthropogenic greenhouse gases emissions will result in global climate change. One of the most direct and threatening impacts it may have on human societies is the potential consequences on global crop production. Indeed agriculture is considered as the most weather-dependent of all human activities (Hansen 2002) since climate is a primary determinant for agricultural productivity. The potential impact of climate change on crop productivity is an additional strain on the global food system which is already facing the difficult challenge of increasing food production to feed a projected 9 billion people by 2050 with changing consumption patterns and growing scarcity of water and land (Beddington 2010). In some regions such as Sub-Saharan Africa or South Asia that are already food insecure and where most of the population increase and economic development will take place, climate change could be the additional stress that pushes systems over the edge. A striking example, if needed, is the work from Collomb (1999) which estimates that by 2050 food needs will more than quintuple in Africa and more than double in Asia. Better knowledge of climate change impacts on crop productivity in those vulnerable regions is crucial to inform policies and to support adaptation strategies that may counteract the adverse effects. Although there is a growing literature on the impact of climate change on crop productivity in tropical regions, it is difficult to provide a consistent assessment of future yield changes because of large uncertainties in regional climate change projections, in the response of crops to environmental change (rainfall, temperature, CO2 concentration), in the coupling between climate models and crop productivity functions, and in the adaptation of

  11. Dielectric Properties of Agricultural Products and Some Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: The use of dielectric properties of agricultural products for sensing moisture in grain and seed and their application in radio-frequency and microwave dielectric heating is discussed briefly. Values for the dielectric properties of a number of products, including grain and seed, fruits ...

  12. Food and agricultural waste: Sources of carbon for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, wastes derived from agriculture products have met with limited success in the production of biofuels. Our objective in this report is to showcase a new and meaningful concept (called “avoidance”), to measure the environmental importance of converting these waste streams into energy. Agr...

  13. Utilizing Indigenous Knowledge Systems in Agricultural Education to Promote Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Williams, David L.; Muchena, Olivia N.

    1991-01-01

    Understanding and appreciation of indigenous knowledge systems (IKS) are essential for promoting sustainable agriculture development. IKS provides a cultural basis for nonformal agricultural programs that is absent in technology transfer approaches. (SK)

  14. Product distribution from pyrolysis of wood and agricultural residues

    SciTech Connect

    Di Blasi, C.; Signorelli, G.; Di Russo, C.; Rea, G.

    1999-06-01

    The pyrolysis characteristics of agricultural residues (wheat straw, olive husks, grape residues, and rice husks) and wood chips have been investigated on a bench scale. The experimental system establishes the conditions encountered by a thin (4 {times} 10{sup {minus}2} m diameter) packed bed of biomass particles suddenly exposed in a high-temperature environment, simulated by a radiant furnace. Product yields (gases, liquids, and char) and gas composition, measured for surface bed temperatures in the range 650--1000 K, reproduce trends already observed for wood. However, differences are quantitatively large. Pyrolysis of agricultural residues is always associated with much higher solid yields (up to a factor of 2) and lower liquid yields. Differences are lower for the total gas, and approximate relationships exist among the ratios of the main gas species yields, indicating comparable activation energies for the corresponding apparent kinetics of formation. However, while the ratios are about the same for wood chips, rice husks, and straw, much lower values are shown by olive and grape residues. Large differences have also been found in the average values of the specific devolatilization rates. The fastest (up to factors of about 1.5 with respect to wood) have been observed for wheat straw and the slowest (up to factors of 2) for grape residues.

  15. Ratite production as an agricultural enterprise.

    PubMed

    Gillespie, J M; Schupp, A R

    1998-11-01

    The ratite industry remains in the market introduction stage of evolution; basic information on markets and production is limited. It is uncertain when, or perhaps whether, either the ostrich or emu industries will progress to the market growth stage. Until significant expansion occurs, ratite operations are likely to be faced with low or even nonexistant profits. It is the authors' observation that the ostrich industry is making slow but significant progress toward introducing products into potential growth markets. The fact that ostrich products were in demand prior to the ostrich being introduced into North America has helped the industry. The future of the emu industry appears to be much less certain. In the authors' opinion, in order for the emu industry to become profitable and grow, significant promotion of emu meat and immediate resolution of the value of the oil must be achieved. Meat sales alone will not carry emu production as a profitable commercial enterprise. Veterinarians can derive significant conclusions from this information. Currently, ratite production is composed of firms generating losses or minimal profits. South African producers are receiving approximately the same amount for a slaughter ostrich as North American producers. It is unlikely that North American ostrich prices will increase significantly. Prices of ostrich breeders of $2,000 to $4,000 per pair and $400 to $450 for slaughter birds are likely to remain the same for some time. Given that world demand has increased at a slower rate than supply, prices may decrease further. Breeder and slaughter birds will continue to require significant veterinary care; however, the producer will be forced to perform more farm treatments, given the negligible margins. Based on the differences in efficiency of existing operations, there are ample opportunities for veterinarians and extension services to assist producers. Vertical coordination in the ratite industry may evolve slowly in the future

  16. Interactions of U.S. Agricultural Production with Climatic Stresses and Reactive Nitrogen

    NASA Astrophysics Data System (ADS)

    Gehl, R. J.; Robertson, G. P.; Bruulsema, T. W.; Kanter, D.; Mauzerall, D. L.; Rotz, C. A.; Williams, C. O.

    2011-12-01

    Agricultural production both contributes to and responds to climatic variations across spatial and temporal continuums. The agriculture sector is responsible for over 6% of total U.S. greenhouse gas emissions, primarily as methane (CH4) and nitrous oxide (N2O) gases emitted by agricultural activities. Agriculture activities specifically account for about 69% of U.S. N2O emissions, largely as a result of production practices including fertilizer management, cropping systems, and manure management. Fertilizers, together with manure and legume fixation, are the three main inputs of N to US agricultural soils. All three sources have been increasing over the past two decades, while the rate at which they are removed in the form of harvested crops has been increasing at a slightly slower rate. The outlook for continued large areas of cultivation in the U.S., specifically for corn production and supported by biofuel production goals, is a major factor in sustaining demand for N fertilizer. However, rising fertilizer prices and environmental pressures on producers are encouraging increased adoption of emerging technologies such as precision agriculture, cultivars with higher N use efficiency, and enhanced-efficiency N sources such as controlled-release forms or forms with urease or nitrification inhibitors. Crop productivity also responds to climatic changes, as crop growth is affected by variables including heat, drought, ozone (O3), and increased ambient carbon dioxide (CO2). We summarize sources and fates of N for cropping systems and intensive animal systems and assess how climate change will affect crop response to and recovery of N and subsequent cascading effects on Nr. The complex interactions between agricultural Nr and climate present opportunities for mitigation/adaption relative to N use. N fertilizer and manure management, tillage, technology, and decision support models provide significant opportunities for climate mitigation and adaption in U.S. agriculture

  17. Agricultural Production: Task Analysis for Livestock Production. Competency-Based Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    This task analysis guide is intended to help teachers and administrators develop instructional materials and implement competency-based education in the agricultural production program. Section 1 contains a validated task inventory for the livestock production portion of agricultural production IV and V. Tasks are divided into six duty areas:…

  18. Application Of Colored Petri Net In Modeling Ofan Agricultural Enterprise Informationmanagement System

    NASA Astrophysics Data System (ADS)

    Zhang, Fangtian; Wang, Kaiyi; Sui, Jin; Liu, Chang; Liu, Zhongqiang

    Business system modeling of an agricultural enterprise is one of the difficulties in developing and researching an agricultural enterprise management information system. Given the inadequate description of concurrent and synchronal events in the traditional modeling methods, this paper presents a modeling method, which uses Colored Petri Net. The paper discusses the application of Colored Petri Net in system modeling with the example of an agricultural enterprise production management system model, and analyzes the feasibility and effectiveness of that model.

  19. The global view: issues affecting US production agriculture.

    PubMed

    Goldsmith, Peter

    2010-07-01

    This paper discusses small events occurring among developing countries, particularly but not exclusively in Asia, and their subsequent large impacts on net food exporting countries in the world, particularly, but not exclusively, located in the Western hemisphere. A Green Revolution II is underway as a result where the world's agricultural system will produce more (output) with less (inputs). Agriculture will meet the rapidly growing demand for bio-based foods, fuels, feeds, and fiber while reducing input usage, preserving the natural environment, and maintaining native ecosystems. In turn agricultural workers will receive a health dividend as chemical usage falls, automation, metering, and sensing technologies rise, and exposure to harsh environmental, both natural and man-made, conditions is reduced. This paper was prepared for the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health Conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas. PMID:20665304

  20. [Determination of Butroxydim in Agricultural Products by LC-MS].

    PubMed

    Minatani, Tomiaki; Nagai, Hiroyuki; Tada, Hiroyuki; Goto, Kotaro; Nemoto, Satoru

    2015-01-01

    An analytical method for the determination of butroxydim in agricultural products by LC-MS was developed. Butroxydim was extracted with acetonitrile and an aliquot of the crude extract was cleaned up on an octadecyl silanized silica gel (C18) cartridge column (1,000 mg), followed by a salting-out step to remove water. Before purification on a silica gel (SI) cartridge column (690 mg), polar matrices were precipitated by adding ethyl acetate, n-hexane and anhydrous sodium sulfate successively. This process effectively removed caffeine and catechins and improved recovery when analyzing residual butroxydim in tea leaves. Recovery and repeatability were good; the relative standard deviations were less than 5% for all 12 tested agricultural products (brown rice, soybean, potato, spinach, cabbage, apple, orange, grapefruit, lemon, tomato, peas with pods, and tea). Average recoveries for 11 agricultural products, except for lemon, were 74-92%. PMID:26699270

  1. Career Preparation in Agricultural Production: A Curriculum Guide for High School Vocational Agriculture. Test Edition.

    ERIC Educational Resources Information Center

    McGhee, Max B., Comp.

    This curriculum guide in agricultural production is one of 10 guides developed as part of a vocational project stressing agribusiness, natural resources, and environmental protection. The scope of this guide includes four occupational subgroups: animal science, plant science, farm mechanics, and farm business management. It is meant as an aid to…

  2. Agricultural sectoral demand and crop productivity response across the world

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Cassidy, E. S.; Foley, J. A.

    2013-12-01

    With an increasing and increasingly affluent population, humans will need to roughly double agricultural production by 2050. Continued yield growth forms the foundation of all future strategies aiming to increase agricultural production while slowing or eliminating cropland expansion. However, a recent analysis by one of our co-authors has shown that yield trends in many important maize, wheat and rice growing regions have begun stagnating or declining from the highs seen during the green revolution (Ray et al. 2013). Additional research by our group has shown that nearly 50% of new agricultural production since the 1960s has gone not to direct human consumption, but instead to animal feed and other industrial uses. Our analysis for GLP looks at the convergence of these two trends by examining time series utilization data for 16 of the biggest crops to determine how demand from different sectors has shaped our land-use and intensification strategies around the world. Before rushing headlong into the next agricultural doubling, it would be prudent to first consult our recent agricultural history to better understand what was driving past changes in production. Using newly developed time series dataset - a fusion of cropland maps with historic agricultural census data gathered from around the world - we can examine yield and harvested area trends over the last half century for 16 top crops. We combine this data with utilization rates from the FAO Food Balance Sheet to see how demand from different sectors - food, feed, and other - has influenced long-term growth trends from the green revolution forward. We will show how intensification trends over time and across regions have grown or contracted depending on what is driving the change in production capacity. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428. doi:10.1371/journal.pone.0066428

  3. Biogenic carbon fluxes from global agricultural production and consumption

    SciTech Connect

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  4. Biogenic carbon fluxes from global agricultural production and consumption

    NASA Astrophysics Data System (ADS)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick; Kyle, G. Page; Zhang, Xuesong; Collatz, G. James; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange and spatially distributed to 0.05° resolution using Moderate Resolution Imaging Spectroradiometer satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which was respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of approximately 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  5. Agroecology and the Sustainable Production of Food and Fiber: Emergy Evaluation of Agriculture in the Montado

    EPA Science Inventory

    The silvopastoral, agricultural system of the montado in Southern Portugal is an example of the self-organization of an agroecological system adapted to the climate and soil conditions of the Mediterranean basin. This system with its consistent production of food, fiber, and ecos...

  6. Energy use in agriculture and the articulation of modes of production in Zimbabwe

    SciTech Connect

    Weiner, D.

    1986-01-01

    The political economy of energy utilization in Zimbabwe's agricultural sector is analyzed. The geography of agricultural energy use is assessed by tracing the articulation of modes of production through time. It is argued that in the production process, labor mediates between humans and the environment. The level of development of the productive forces indicates the intensity that labor applies energy to a given space. Production relations influence the rate and direction of energy flows. Hence, energy is a fundamental component of a mode of production. The linkage between energy use in farming and the articulation of modes of production is made through the conceptualization of distinct agricultural production systems consisting of social relations and productive forces, the relationship to the state, and access to natural resources. After independence came changes in state-peasant relations and industrialization of African production in high potential reserves. Changing social relations on settler farms has caused a rapid displacement of labor by capital at a time when national job creation is dangerously low. In the absence of significant land transfers, a contradictory distribution of agricultural energy resources will continue. New forms of uneven agricultural development are emerging.

  7. Food, Feed, or Fuel? Phosphorus Flows Embodied in US Agricultural Production and Trade

    NASA Astrophysics Data System (ADS)

    MacDonald, G.; Bennett, E.; Carpenter, S.

    2012-12-01

    Agricultural phosphorus (P) use is integral to sustainable food production and water quality regulation. Globalization of agricultural systems, changing diets, and increasing biofuel production pose new challenges for managing non-renewable P reserves, particularly in key agricultural producing regions such as the US. We used a detailed model of the US agricultural system to assess the quantity of mineral P fertilizers used to produce food crops, livestock, and biofuels relative to the P ultimately consumed in domestic diets. We also quantified linkages in fertilizer use between the US and its trading partners globally via agricultural trade. Feed and livestock production drove by far the largest demand for P fertilizers in the US (56% of all P use for domestic and imported products). Of the total mineral P inputs to US domestic agriculture in 2007 (1905 Gg P), 28% were retained in agricultural soils as surplus P, 40% were lost through processing and waste prior to consumption in human diets, while 10% were diverted directly to biofuel production. One quarter of P fertilizer in the US was required to produce exports, particularly major food and feed crops (corn, soybean, and wheat) that drove a large net P flux out of the country (338 Gg P) with strongly crop-specific effects on soil P imbalances nationally. However, US meat consumption involved considerable reliance on P fertilizer use in other countries to produce red meat imports linked primarily to soil P surpluses abroad. We show that changes in domestic farm management and consumer waste could together reduce the P fertilizer needed to produce food consumed in the US by half, which is comparable to the P fertilizer reduction attainable by cutting domestic meat consumption (44%). More effective distribution of P use for major crops nationally and greater recycling of all agricultural wastes is critical to using US phosphate rock reserves as efficiently as possible while maintaining export-oriented agriculture.

  8. Bioenergy systems report: The AID (Agency for International Development) approach. Using agricultural and forestry wastes for the production of energy in support of rural development

    SciTech Connect

    Not Available

    1989-04-01

    The Biomass Energy Systems and Technology project (BEST) seeks to integrate natural resources, private sector expertise, and financial support in order to convert biomass into marketable energy products at existing agro-processing facilities. This report documents BEST's approach to biomass promotion and includes sections on: the rationale for the project's commodity focus (sugar cane, rice, and wood); the relevant U.S. biomass experience with rice, cane, and wood residues, etc., which BEST draws upon; A.I.D.'s experience in the field application of rice, wood, and cane residue bioenergy systems; economic analyses of biomass systems (using examples from Indonesia and Costa Rica); research initiatives to develop off-season fuels for sugar mills, advanced biomass conversion systems, and energy efficiency in sugar factories; and the environmental aspects of biomass (including its ability to be used without increasing global warming).

  9. The Subtropical Grasslands LTAR: balancing agricultural production and conservation goals

    NASA Astrophysics Data System (ADS)

    Gomez-Casanovas, N.; Boughton, E.; Bernacchi, C.; DeLucia, E. H.; Sparks, J. P.; Silveira, M.; Boughton, R. K.; Swain, H.

    2015-12-01

    Subtropical grazing lands of peninsular Florida have been shaped by a long evolutionary history of lightning ignited fire followed by flooding resulting in a vast treeless prairie region in south-central Florida. In these grassland ecosystems fire return intervals are between 1-3 years. Beginning in the 1500's, Andalusian cattle began grazing in this region and the cattle industry began in earnest in the late 1800s/early 1900s. Today, Florida's prairie region is largely occupied by cow/calf ranch operations and also occupies the Northern Everglades watershed where water quality/quantity issues are at the forefront of environmental concerns. Florida ranches are characterized by a gradient of management intensities, ranging from sown pastures (most intensively managed) to semi-native pastures with a mix of introduced and native grasses, and rangeland (least managed ecosystem). Located at Archbold Biological Station, MacArthur Agro-ecology Research Center, and University of Florida Range Cattle Research Center (www.maerc.org; www.rcrec-ona.ifas.ufl.edu), a primary goal of the Subtropical Grasslands US Department of Agriculture Long-term Agro-Ecosystem Research LTAR is to balance intensification of sown pastures while enhancing management of native systems in a way that maximizes other ecosystem services (regulating, supporting, cultural, biodiversity). Here, we describe our proposed experimental design to compare ecosystem delivery from conventional and aspirational management regimes in sown pastures and native systems. Aspirational management goals are to (i) maximize productivity in sown pastures with a neutral effect on other ecosystem services, and (ii) manage native systems in a way that maximizes regulating, supporting, and biodiversity ecosystem services by utilizing patch burn grazing. Ultimately, we will determine if enhanced production in sown pasture under the aspirational management system can offset any reduction in productivity in semi

  10. Nitrogen balance as an indicator of the environmental impact: towards sustainable agricultural production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economics is a principle driver impacting management decisions in agricultural production systems. While increasing concern has focused on preserving the natural resource base to ensure continued support for future production, little emphasis has been placed on examining how drivers alter management...

  11. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    NASA Technical Reports Server (NTRS)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  12. Microbiological Production of Surfactant from Agricultural Residuals for IOR Application

    SciTech Connect

    Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn; Noah, Karl Scott; Thompson, David Neal

    2002-04-01

    Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2) convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.

  13. Agricultural Products Sales and Service Worker. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for agricultural products sales and service occupations. The list contains units (with and without subunits), competencies,…

  14. Factors Associated with Research Productivity of Agricultural Education Faculty.

    ERIC Educational Resources Information Center

    Kotrlik, Joe W.; Bartlett, James E., II; Higgins, Chadwick C.; Williams, Heather A.

    2002-01-01

    Factors influencing the research productivity of full-time agriculture professors (n=114) included the following: number of doctoral students advised to completion, self-perceptions of research confidence, and number of graduate assistant hours allocated. Not influential were percent of time on research, salary, age, gender, rank, or years in…

  15. Microwave sensing of quality attributes of agricultural and food products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave sensors for real-time characterization of agricultural and food products have become viable solutions with recent advances in the development of calibration methods and the availability of inexpensive microwave components. The examples shown here for grain, seed, and in-shell peanuts indic...

  16. Materials with Adsorptive Properties from Agricultural By-Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will summarize the use of agricultural by-products (e.g., animal manure and plant waste) as starting materials to adsorb environmental contaminants such as mercury from air, ammonia from air, metal ions from water, and chlorinated organics from water. The results show that the mat...

  17. Wheat and barley exposure to nanoceria: Implications for agricultural productivity

    EPA Science Inventory

    The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (Triticum aestivum) and barley (Hordeum vulgare L.) exposed to nanoceria (n...

  18. Farm Laboratory Aids Post-Secondary Instruction in Agricultural Production

    ERIC Educational Resources Information Center

    Statler, Larry L.; Juhl, R. J.

    1970-01-01

    Reports a farm laboratory of 1500 swine, 40 beef cattle, 52 sheep, a 300-crop acres, and a full line of leased new farm machinery for post-secondary agricultural production students. A student board of directors manages the demonstration farm. (DM)

  19. Electromagnetic radiation properties of foods and agricultural products

    SciTech Connect

    Mohsenin, N.N.

    1984-01-01

    In this book, the author examines the effects of the various regions of the electromagnetic radiation spectrum on foods and agricultural products. Among the regions of the electromagnetic radiation spectrum covered are high-energy beta and neutron particles, gamma-rays and X-rays, to lower-energy visible, near infrared, infrared, microwave and low-energy radiowaves and electric currents. Dr. Mohsenin applies these electromagnetic phenomena to food products such as fruits, vegetables, seeds, dairy products, meat and processed foods. Contents: Some Basic Concepts of Electromagnetic Radiation. Basic Instruments for Measurement of Optical Properties. Applications of Radiation in the Visible Spectrum. Color and its Measurement. Sorting for Color and Appearance. Near-Infrared and Infrared Radiation Applications. Applications of High-Energy Radiation. Related Concepts of Microwaves, Radiowaves, and Electric Currents. Measurement of Electrical Properties of Foods and Agricultural Products. Applications of Electrical Properties. Appendix, Cited References. Subject Index.

  20. Assessing Agricultural Vulnerability in India using NDVI Data Products

    NASA Astrophysics Data System (ADS)

    Kaushalya, R.; Praveen Kumar, V.; Shubhasmita, S.

    2014-11-01

    Impact of climate change on Indian rainfed agriculture was assessed using temporal NDVI data products from AVHRR and MODIS. Agricultural vulnerability was analysed using CV of Max NDVI from NOAA-AVHRR (15-day, 8 km) and MODIS-TERRA (16-day, 250 m) NDVI data products from 1982-2012. AVHRR dataset was found suitable for estimating regional vulnerability at state and agro-eco-sub-region (AESR) level while MODIS dataset was suitable for drawing district-level strategy for adaptation and mitigation. Methodology was developed to analyse NDVI variations with spatial pattern of rainfall using 10 X 10 girded data and spatially interpolating it to estimate Standard Precipitation Index. Study indicated large variations in vegetation dynamics across India owing to bio-climate and natural resource base. IPCC framework of vulnerability and exposure was used to identify vulnerable region extending from arid western India to semi-arid and dry sub-humid regions in central India and southern peninsula. This is a major agricultural region in the country with sizable human and livestock population with millions of marginal and small farm holdings. Exposure to climatic variability at local and regional levels have national implications and study indicated that over 122 districts extending over 110 mha was vulnerable to climate change that spread across 26 typical AESR in 11 states in India. Of the 74 mha under agriculture in the region, MODIS dataset indicated 47 mha as agriculturally vulnerable while coarser resolution of AVHRR dataset indicated a conservative estimate of 29 mha. First ever estimates of agricultural vulnerability for India indicates 20.4 to 33.1 % agricultural land under risk from climate change.

  1. Climate impacts on agriculture: Implications for crop production

    SciTech Connect

    Hatfield, Jerry L.; Boote, Kenneth J.; Kimball, B. A.; Ziska, Lewis A.; Izaurralde, Roberto C.; Ort, Don; Thomson, Allison M.; Wolfe, David W.

    2011-04-19

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 30 years present a challenge to crop production. This review focuses on the impact of temperature, CO2, and ozone on agronomic crops and the implications for crop production. Understanding these implications for agricultural crops is critical for developing cropping systems resilient to stresses induced by climate change. There is variation among crops in their response to CO2, temperature, and precipitation changes and, with the regional differences in predicted climate, a situation is created in which the responses will be further complicated. For example, the temperature effects on soybean could potentially cause yield reductions of 2.4% in the South but an increase of 1.7% in the Midwest. The frequency of years when temperatures exceed thresholds for damage during critical growth stages is likely to increase for some crops and regions. The increase in CO2 contributes significantly to enhanced plant growth and improved water use efficiency; however, there may be a downscaling of these positive impacts due to higher temperatures plants will experience during their growth cycle. A challenge is to understand the interactions of the changing climatic parameters because of the interactions among temperature, CO2, and precipitation on plant growth and development and also on the biotic stresses of weeds, insects, and diseases. Agronomists will have to consider the variations in temperature and precipitation as part of the production system if they are to ensure the food security required by an ever increasing population.

  2. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2006-06-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  3. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2005-11-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  4. Agricultural production and water use scenarios in Cyprus under global change

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  5. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  6. 3-D Imaging Systems for Agricultural Applications—A Review

    PubMed Central

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  7. Dairy Housing and Equipment. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    Colliver, Jewell B.

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit on dairy housing and equipment contains four lessons based upon competencies needed to be a dairy farmer. The lessons in this unit cover the maintenance of milking systems, the provision of adequate and economical housing for dairy animals, and the…

  8. Breeding Livestock. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    O'Bryan, Robert C.

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit on breeding livestock contains materials for use in teaching the importance of breeding, the physiology of livestock breeding, reproductive processes, sire selection, and breeding systems. Lessons on each of these competencies contain the following:…

  9. Food production, environmental protection, and health effects in Mexican agriculture.

    PubMed

    López de Alba, F

    1990-01-01

    In countries like Mexico, where the need to increase agricultural productivity to satisfy an ever-increasing population is great, attention to environmental problems is recent. However, current public concern has forced the administration to consider environmental protection as a key strategy in the development model. The purpose of this paper is to present the efforts being made by the country, the state of research, legislation, and regulations, and the level of participation by agrichemical producers in aiming to balance protection of the environment and development in the agricultural sector, including intensive use of mechanization and agrichemicals. PMID:2248254

  10. Energy production from forages (or American agriculture-back to the future)

    SciTech Connect

    Vogel, K.P.

    1996-03-01

    At the turn of the century, except for trains and water transport, the transportation and agriculture industries of the US were powered largely by herbaceous biomass, converted into usable energy by draft animals. The haylands and pasturelands now released from herbaceous biomass production were converted to grain production in many cases. This article makes the case for reconverting some of such lands to pasture/grasslands for both land and soil conservation and for use as a sustainable agricultural systems for fuel production from biomass. 21 refs., 4 tabs.

  11. Implications of climate mitigation for future agricultural production

    NASA Astrophysics Data System (ADS)

    Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-12-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ∼81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure

  12. Impact of land-use induced changes on agricultural productivity in the Huang-Huai-Hai River Basin

    NASA Astrophysics Data System (ADS)

    Jin, Gui; Li, Zhaohua; Wang, Zhan; Chu, Xi; Li, Zhihui

    The water resource allocation is greatly influenced by the land use, agricultural productivity and farmers' income. Therefore analyzing the impacts of land use changes on agricultural productivity and subsequent effects on farmer's income is an important basis of the further study on the management mechanism and optimal water resource allocation. Taking the Huang-Huai-Hai River Basin as the study area, this study examined the impacts of conversion from cultivated land to built-up land from 2000-2005 and 2005-2008. Then the agricultural productivity was estimated with the Estimation System for Agricultural Productivity model, and the changes in agricultural productivity caused by land conversion were analyzed. Thereafter, Simultaneous Equations Model was used to analyze the impacts of the conversion from cultivated land to built-up land on the agricultural productivity and subsequent effects on farmer's income. The results showed that: (1) The agricultural productivity was stable during the whole period, reaching about 2.84 ton/ha, 3.09 ton/ha and 2.80 ton/ha on average in 2000, 2005 and 2008, respectively, but the conversion from cultivated land to built-up land had important influence on the spatial pattern of agricultural productivity. (2) The land productivity, total power of agricultural machinery and the conversion from cultivated land to built-up land had an overall positive effect on the agricultural productivity. (3) The agricultural productivity and gross domestic product had positive influence on the farmers' income, while the cultivated land area per capita and percentage of farming employee had negative influence, indicating that the farmer's income was mainly contributed by non-agricultural income. These results in this study showed that optimal land use management can play an important role in promoting virtuous ecosystem cycle and sustainable socioeconomic development, which can also lay an important foundation for further research on the optimal

  13. ENGINEERING SACCHAROMYCES CEREVISIAE FOR ETHANOL PRODUCTION FROM AGRICULTURAL WASTE PRODUCTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research focusing on the production of alternative fuels has intensified due to increasing global demand for a limited oil supply. Fuel ethanol production in the U.S. amounted to 5 billion gallons for 2006 and is projected to increase. Most of the ethanol produced is currently from fermentation of...

  14. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS

  15. TMDL Implementation in Agricultural Landscapes: A Communicative and Systemic Approach

    NASA Astrophysics Data System (ADS)

    Jordan, Nicholas R.; Slotterback, Carissa Schively; Cadieux, Kirsten Valentine; Mulla, David J.; Pitt, David G.; Olabisi, Laura Schmitt; Kim, Jin-Oh

    2011-07-01

    Increasingly, total maximum daily load (TMDL) limits are being defined for agricultural watersheds. Reductions in non-point source pollution are often needed to meet TMDL limits, and improvements in management of annual crops appear insufficient to achieve the necessary reductions. Increased adoption of perennial crops and other changes in agricultural land use also appear necessary, but face major barriers. We outline a novel strategy that aims to create new economic opportunities for land-owners and other stakeholders and thereby to attract their voluntary participation in land-use change needed to meet TMDLs. Our strategy has two key elements. First, focused efforts are needed to create new economic enterprises that capitalize on the productive potential of multifunctional agriculture (MFA). MFA seeks to produce a wide range of goods and ecosystem services by well-designed deployment of annual and perennial crops across agricultural landscapes and watersheds; new revenue from MFA may substantially finance land-use change needed to meet TMDLs. Second, efforts to capitalize on MFA should use a novel methodology, the Communicative/Systemic Approach (C/SA). C/SA uses an integrative GIS-based spatial modeling framework for systematically assessing tradeoffs and synergies in design and evaluation of multifunctional agricultural landscapes, closely linked to deliberation and design processes by which multiple stakeholders can collaboratively create appropriate and acceptable MFA landscape designs. We anticipate that application of C/SA will strongly accelerate TMDL implementation, by aligning the interests of multiple stakeholders whose active support is needed to change agricultural land use and thereby meet TMDL goals.

  16. TMDL implementation in agricultural landscapes: a communicative and systemic approach.

    PubMed

    Jordan, Nicholas R; Slotterback, Carissa Schively; Cadieux, Kirsten Valentine; Mulla, David J; Pitt, David G; Olabisi, Laura Schmitt; Kim, Jin-Oh

    2011-07-01

    Increasingly, total maximum daily load (TMDL) limits are being defined for agricultural watersheds. Reductions in non-point source pollution are often needed to meet TMDL limits, and improvements in management of annual crops appear insufficient to achieve the necessary reductions. Increased adoption of perennial crops and other changes in agricultural land use also appear necessary, but face major barriers. We outline a novel strategy that aims to create new economic opportunities for land-owners and other stakeholders and thereby to attract their voluntary participation in land-use change needed to meet TMDLs. Our strategy has two key elements. First, focused efforts are needed to create new economic enterprises that capitalize on the productive potential of multifunctional agriculture (MFA). MFA seeks to produce a wide range of goods and ecosystem services by well-designed deployment of annual and perennial crops across agricultural landscapes and watersheds; new revenue from MFA may substantially finance land-use change needed to meet TMDLs. Second, efforts to capitalize on MFA should use a novel methodology, the Communicative/Systemic Approach (C/SA). C/SA uses an integrative GIS-based spatial modeling framework for systematically assessing tradeoffs and synergies in design and evaluation of multifunctional agricultural landscapes, closely linked to deliberation and design processes by which multiple stakeholders can collaboratively create appropriate and acceptable MFA landscape designs. We anticipate that application of C/SA will strongly accelerate TMDL implementation, by aligning the interests of multiple stakeholders whose active support is needed to change agricultural land use and thereby meet TMDL goals. PMID:21547434

  17. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems.

    PubMed

    Verbruggen, Erik; Toby Kiers, E

    2010-09-01

    The root systems of most agronomic crops are colonized by diverse assemblages of arbuscular mycorrhizal fungi (AMF), varying in the functional benefits (e.g. nutrient transfer, pathogen protection, water uptake) provided to hosts. Little is known about the evolutionary processes that shape the composition of these fungal assemblages, nor is it known whether more diverse assemblages are beneficial to crop productivity. In this review we aim to identify the evolutionary selection pressures that shape AMF diversity in agricultural systems and explore whether promotion of AMF diversity can convincingly be linked to increases in agricultural productivity and/or sustainability. We then ask whether farmers can (and should) actively modify evolutionary selection pressures to increase AMF functioning. We focus on three agriculturally imposed selection regimes: tillage, fertilization, and continuous monoculture. We find that the uniform nature of these practices strongly selects for dominance of few AMF species. These species exhibit predictable, generally non-beneficial traits, namely heavy investment in reproduction at the expense of nutrient scavenging and transfer processes that are beneficial for hosts. A number of focus-points are given based on empirical and theoretical evidence that could be utilized to slow down negative selection pressures on AMF functioning, therein increasing crop benefit. PMID:25567946

  18. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems

    PubMed Central

    Verbruggen, Erik; Toby Kiers, E

    2010-01-01

    The root systems of most agronomic crops are colonized by diverse assemblages of arbuscular mycorrhizal fungi (AMF), varying in the functional benefits (e.g. nutrient transfer, pathogen protection, water uptake) provided to hosts. Little is known about the evolutionary processes that shape the composition of these fungal assemblages, nor is it known whether more diverse assemblages are beneficial to crop productivity. In this review we aim to identify the evolutionary selection pressures that shape AMF diversity in agricultural systems and explore whether promotion of AMF diversity can convincingly be linked to increases in agricultural productivity and/or sustainability. We then ask whether farmers can (and should) actively modify evolutionary selection pressures to increase AMF functioning. We focus on three agriculturally imposed selection regimes: tillage, fertilization, and continuous monoculture. We find that the uniform nature of these practices strongly selects for dominance of few AMF species. These species exhibit predictable, generally non-beneficial traits, namely heavy investment in reproduction at the expense of nutrient scavenging and transfer processes that are beneficial for hosts. A number of focus-points are given based on empirical and theoretical evidence that could be utilized to slow down negative selection pressures on AMF functioning, therein increasing crop benefit. PMID:25567946

  19. An Obstacle Alerting System for Agricultural Application

    NASA Technical Reports Server (NTRS)

    DeMaio, Joe

    2003-01-01

    Wire strikes are a significant cause of helicopter accidents. The aircraft most at risk are aerial applicators. The present study examines the effectiveness of a wire alert delivered by way of the lightbar, a GPS-based guidance system for aerial application. The alert lead-time needed to avoid an invisible wire is compared with that to avoid a visible wire. A flight simulator was configured to simulate an agricultural application helicopter. Two pilots flew simulated spray runs in fields with visible wires, invisible wires, and no wires. The wire alert was effective in reducing wire strikes. A lead-time of 3.5 sec was required for the alert to be effective. The lead- time required was the same whether the pilot could see the wire or not.

  20. Production or Perish: Changing the Inequities of Agricultural Research Priorities.

    ERIC Educational Resources Information Center

    Friedland, William H.; Kappel, Tim

    Because of the decline of farm population and family farms, the increase in energy-intensivity, and concentration process in agriculture, a rising tide of criticism has focused on the land grant system and its role in encouraging scientific applications supporting these trends. A study was conducted to develop a strategy that would change…

  1. Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050.

    PubMed

    Bennetzen, Eskild H; Smith, Pete; Porter, John R

    2016-02-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2 -eq. yr(-1) and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop- and livestock-production, respectively. Except for the energy-use component of farming, emissions from all sources have increased less than agricultural production. Our projected business-as-usual range suggests that emissions may be further decoupled by 20-55% giving absolute agricultural emissions of 8.2-14.5 Pg CO2 -eq. yr(-1) by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food-system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis. PMID:26451699

  2. Implications of salinity pollution hotspots on agricultural production

    NASA Astrophysics Data System (ADS)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  3. Farming for Ecosystem Services: An Ecological Approach to Production Agriculture

    PubMed Central

    Philip Robertson, G.; Gross, Katherine L.; Hamilton, Stephen K.; Landis, Douglas A.; Schmidt, Thomas M.; Snapp, Sieglinde S.; Swinton, Scott M.

    2014-01-01

    A balanced assessment of ecosystem services provided by agriculture requires a systems-level socioecological understanding of related management practices at local to landscape scales. The results from 25 years of observation and experimentation at the Kellogg Biological Station long-term ecological research site reveal services that could be provided by intensive row-crop ecosystems. In addition to high yields, farms could be readily managed to contribute clean water, biocontrol and other biodiversity benefits, climate stabilization, and long-term soil fertility, thereby helping meet society's need for agriculture that is economically and environmentally sustainable. Midwest farmers—especially those with large farms—appear willing to adopt practices that deliver these services in exchange for payments scaled to management complexity and farmstead benefit. Surveyed citizens appear willing to pay farmers for the delivery of specific services, such as cleaner lakes. A new farming for services paradigm in US agriculture seems feasible and could be environmentally significant. PMID:26955069

  4. University degrees consistent with agricultural production in the European Union

    NASA Astrophysics Data System (ADS)

    Perdigones, Alicia; del Cerro, Jesus; Tarquis, Ana Maria; Benedicto, Susana; García, Jose Luis

    2013-04-01

    Degrees clearly oriented to rural and agricultural engineering are distinguished from the rest of the engineering areas by the need to involve the biological phenomena of engineering calculations. These degrees, which include subjects such as crop production, biotechnology and physics, among others, have evolved tremendously over the last ten years, implanting new curricula and introducing new specialties such as those dedicated to the environment or rural development, thereby adapting new social, economic and environmental aspects of each country. Currently being finalized to implement new titles in most Spanish universities, and in rest of Europe, following the guidelines set by Bologna. The process of elaboration of these degrees is complicated precisely because of the great variety of areas and subjects involved in these degrees. In this paper we study, for several countries of the European Union, the core subjects of the university degrees of agricultural engineering and the correlations between the core contents and the importance of the related uses of the soil in the different sectors of crop production (arable crops, horticulture, fruit growing, gardening, etc.) as well as other socio-economic criteria. The objective is to detect if the design of the core content is consistent in each country with the importance of the related socio-economic sector. Key-words: curriculum, crop production, agricultural engineer.

  5. Hazard map of agricultural products due to typhoons-an example of Bok-choy

    NASA Astrophysics Data System (ADS)

    Lin, Yong-Jun; Ma, Kuo-Chen; Lai, Jihn-Sung; Chang, Tsang-Jung; Tan, Yih-Chi

    2015-04-01

    The torrential rain and strong wind brought by typhoons usually cause huge damages to agricultural products. This study aims at hazard map of agricultural products due to typhoons. The factors affecting the hazard of agricultural products due to typhoons include the duration of flooding, flooding depth, wind speed, and rainfall intensity. High rainfall intensity and high wind speed may knock down the leaves or fruits of the plants. The long-duration of flooding or high flooding depth may chock the plant or rotten the roots. In order to get the information needed for making hazard map due to assumed scenarios, an overland flow simulations is performed for getting the duration of flooding and maximum flooding in the study area. The data of wind speed is obtained from metrological stations. Four levels of hazard are defined due to the characteristic of the chosen agricultural products- Bok-choy (such average height of mature Bok-choy). The final goal of this study is to establish a real-time hazard evaluation system for the specific agricultural products.

  6. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2013-01-01 2013-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  7. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2012-01-01 2012-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  8. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2014-01-01 2014-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  9. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2011-01-01 2011-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  10. The Impact of Using Alternative Forages on the Nutrient Value within Slurry and Its Implications for Forage Productivity in Agricultural Systems

    PubMed Central

    Crotty, Felicity V.; Fychan, Rhun; Theobald, Vince J.; Sanderson, Ruth; Chadwick, David R.; Marley, Christina L.

    2014-01-01

    Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense), lucerne (Medicago sativa) or kale (Brassica oleracea) would improve the yield of hybrid ryegrass (Lolium hybridicum), compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha−1) with 100 kg N ha−1 inorganic fertiliser; dry matter (DM) yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha−1 year−1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (P<0.001). The estimated relative fertiliser N equivalence (FNE) (fertiliser-N needed to produce same yield as slurry N), was greatest for lucerne (114 kg) >red clover (81 kg) >kale (44 kg) >ryegrass (26 kg ha−1 yr−1). These FNE values represent relative efficiencies of 22% (ryegrass), 52% (kale), 47% (red clover) and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P = 0.005). Soil magnesium levels in plots treated with legume slurry were higher than other treatments (P<0.001). Overall, slurries from ruminants fed alternative ensiled forages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks. PMID

  11. The impact of using alternative forages on the nutrient value within slurry and its implications for forage productivity in agricultural systems.

    PubMed

    Crotty, Felicity V; Fychan, Rhun; Theobald, Vince J; Sanderson, Ruth; Chadwick, David R; Marley, Christina L

    2014-01-01

    Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense), lucerne (Medicago sativa) or kale (Brassica oleracea) would improve the yield of hybrid ryegrass (Lolium hybridicum), compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha⁻¹) with 100 kg N ha⁻¹ inorganic fertiliser; dry matter (DM) yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha⁻¹ year-1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (P<0.001). The estimated relative fertiliser N equivalence (FNE) (fertiliser-N needed to produce same yield as slurry N), was greatest for lucerne (114 kg) >red clover (81 kg) >kale (44 kg) >ryegrass (26 kg ha⁻¹ yr⁻¹). These FNE values represent relative efficiencies of 22% (ryegrass), 52% (kale), 47% (red clover) and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P = 0.005). Soil magnesium levels in plots treated with legume slurry were higher than other treatments (P<0.001). Overall, slurries from ruminants fed alternative ensiled forages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks

  12. 76 FR 13973 - United States Warehouse Act; Processed Agricultural Products Licensing Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... example of a processed agricultural product is apple juice concentrate. In the past, USDA has issued USWA... agricultural products such as apple juice concentrate and other similar products. This proposal is in response... following questions: Should FSA offer a license for processed agricultural products such as apple...

  13. Bee Pollination in Agricultural Eco-Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many agricultural crops, bees play a vital role as pollinators, and this book discusses the interplay between bees, agriculture and the environment. Although honey bees are well recognized as pollinators, managed bumble bees and solitary bees are also critical for the successful pollination of c...

  14. Agricultural Extension, Collective Action and Innovation Systems: Lessons on Network Brokering from Peru and Mexico

    ERIC Educational Resources Information Center

    Hellin, Jon

    2012-01-01

    Purpose: New approaches to extension service delivery are needed that stimulate increased agricultural production, contribute to collective action and which also foster the emergence of agricultural innovation systems. Research in Peru and Mexico explores some of these new approaches. Design/methodology/approach: In both countries, a qualitative…

  15. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production

    ERIC Educational Resources Information Center

    Poffenbarger, Hanna

    2010-01-01

    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops…

  16. Trade-offs between agricultural production and biodiversity for biofuel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing energy demands and concerns for climate change have pushed forward the time line for biofuel production. However, the effect of large-scale biofuel production in the U.S. on the agricultural industry, primarily responsible for food production and livestock feed, and biodiversity levels of ma...

  17. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality.

    PubMed

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere. PMID:26070897

  18. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality

    NASA Astrophysics Data System (ADS)

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere.

  19. Quaternized agricultural by-products as anion exchange resins.

    PubMed

    Wartelle, Lynda H; Marshall, Wayne E

    2006-01-01

    The objectives of this study were the chemical modification of readily available, low-cost agricultural by-products to anion exchange resins and the selection of the best modified by-product for further use in anion removal. Resins were prepared through the quaternization of a series of 12 agricultural by-products with N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHMAC). Phosphate ion adsorption assays were conducted at pH 7 in order to compare adsorption properties among the by-products. Quaternized corn stover showed the highest phosphorus adsorption at 0.66 mmole/g. Since corn stover exhibited the best uptake of phosphate ion, it was compared to a commercially available, cellulose-based anion exchange resin. Additionally, adsorption capacities of quaternized corn stover for arsenate, chromate, and selenate were evaluated and adsorption efficiencies were determined in simulated wastewater samples. Our results indicate that modified corn stover demonstrates good adsorption uptake for arsenate and selenate and especially for chromate. PMID:16144735

  20. From LACIE to GEOGLAM: Integrating Earth Observations into Operational Agricultural Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.

    2012-12-01

    Earth observation data, owing to their synoptic, timely and repetitive coverage, have long been recognized as an indispensible tool for agricultural monitoring at local to global scales. Research and development over the past several decades in the field of agricultural remote sensing has led to considerable capacity for crop monitoring within the current operational monitoring systems. These systems are relied upon nationally and internationally to provide crop outlooks and production forecasts as the growing season progresses. This talk will discuss the legacy and current state of operational agricultural monitoring using earth observations. In the US, the National Aeronautics and Space Administration (NASA) and the US Department of Agriculture (USDA) have been collaborating to monitor global agriculture from space since the 1970s. In 1974, the USDA, NASA and National Oceanic and Atmospheric Administration (NOAA) initiated the Large Area Crop Inventory Experiment (LACIE) which demonstrated that earth observations could provide vital information on crop production, with unprecedented accuracy and timeliness, prior to harvest. This experiment spurred many agencies and researchers around the world to further develop and evaluate remote sensing technologies for timely, large area, crop monitoring. The USDA and NASA continue to closely collaborate. More recently they jointly initiated the Global Agricultural Monitoring Project (GLAM) to enhance the agricultural monitoring and the crop-production estimation capabilities of the USDA Foreign Agricultural Service by using the new generation of NASA satellite observations including from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. Internationally, in response to the growing calls for improved agricultural information, the Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted

  1. Integrated Emergy, Energy and Economic Evaluation of Rice and Vegetable Production Systems in Alluvial Paddy Fields: Implications for Agricultural Policy in China

    EPA Science Inventory

    China is the largest rice producing and consuming country in the world, but rice production has given way to the production of vegetables during the past twenty years. The government has been trying to stop this land-use conversion and increase the area in rice-vegetable rotation...

  2. [Discussion on agricultural product quality and safety problem from ecological view].

    PubMed

    Xiao, Ming; Dong, Nan; Lyu, Xin

    2015-08-01

    There are many different perspectives about the sustainable agriculture, which had been proposed since the last three decades in the world. While China's ecologists and agronomists proposed a similar concept named 'ecological agriculture'. Although ecological agriculture in China has achieved substantial progress, including theory, models and supporting technologies nearly several decades of practice and development, its application guidance still is not yet clear. The organic agriculture model proposed by European Union is popular, but it is limited in the beneficiary groups and the social and ecological responsibility. In this context, the article based on an ecological point of view, analyzed the shortcomings of ecological imbalance caused by a single mode of agricultural production and the negative impact on the quality of agricultural products, and discussed the core values of ecological agriculture. On this basis, we put forward the concept of sustainable security of agricultural products. Based on this concept, an agricultural platform was established under the healthy ecosysphere environment, and from this agricultural platform, agricultural products could be safely and sustainably obtained. Around the central value of the concept, we designed the agricultural sustainable and security production model. Finally, we compared the responsibility, benefiting groups, agronomic practices selection and other aspects of sustainable agriculture with organic agriculture, and proved the advancement of sustainable agricultural model in agricultural production quality and safety. PMID:26685623

  3. Can foraging behavior of Criollo cattle help increase agricultural production and reduce environmental impacts in the arid Southwest?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Longterm Agroecosystem Research Network (LTAR) was formed to help the nation’s agricultural systems simultaneously increase production and reduce environmental impacts. Eighteen networked sites are conducting a Common Experiment to understand the environmental and economic problems associated wi...

  4. The application of data mining technology in the quality and security of agricultural products

    NASA Astrophysics Data System (ADS)

    Li, Huaqin; Luo, Ying

    The quality and security of agricultural products is the hot issue with public attention in China and also one of the issues that Chinese government attaches great importance to. This paper describes the principle of data mining technology and based on the environmental information data of agricultural production and the quality-security testing data of agricultural products, analyses the application of data mining technology in the quality and security of agricultural products.

  5. Development of sensor systems for precision agriculture in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture (PA) is an information-based technology, using detailed information within an agricultural field to optimize production inputs on a spatially variable basis, maximize farm profit, and minimize environmental impact. Information collection and processing plays a very important ro...

  6. Impact of alcohol fuel production on agricultural markets

    SciTech Connect

    Gardiner, W.H.

    1986-01-01

    Production of alcohol from biomass feedstocks, such as corn, was given Federal and State support which resulted in alcohol production rising from 20 million gallons in 1979 to 430 million gallons in 1984. This study estimates the impacts of alcohol production from corn on selected agricultural markets. The tool of analysis was a three region (United States, the European Community and the rest of the world) econometric model of the markets for corn, soybeans, soybean meal, soybean oil, wheat and corn byproduct feeds. Three alternative growth paths for alcohol production (totalling 1.1, 2.0, and 3.0 billion gallons) were analyzed with the model in the context of three different trade environments. The results of this analysis indicate that alcohol production of 1.1 billion gallons by 1980 would have caused moderate adjustments to commodity markets while 3.0 billion gallons would have caused major adjustments. Corn prices rose sharply with increased alcohol production as did wheat prices but to a somewhat lesser extent. The substitution of corn for soybeans on the supply side was not sufficient to offset the demand depressing effects of corn byproduct feeds on soybean meal which translated into slightly lower soybean prices. A quota limiting imports of corn gluten feed into the EC to three million tons annually would cause reductions in export earnings for corn millers.

  7. Integration of agricultural and energy system models for biofuel assessment

    EPA Science Inventory

    This paper presents a coupled modeling framework to capture the dynamic linkages between agricultural and energy markets that have been enhanced through the expansion of biofuel production, as well as the environmental impacts resulting from this expansion. The framework incorpor...

  8. Vocational Training and Agricultural Productivity: Evidence from Rice Production in Vietnam

    ERIC Educational Resources Information Center

    Ulimwengu, John; Badiane, Ousmane

    2010-01-01

    The paper examines the impact of farmers' educational attainment on agricultural productivity. More specifically, it evaluates how farmers with vocational training perform compared to those with traditional educational training. A stochastic production frontier and inefficiency effects model is estimated using nationally representative household…

  9. Real-Time N2O Gas Detection System for Agricultural Production Using a 4.6-μm-Band Laser Source Based on a Periodically Poled LiNbO3 Ridge Waveguide

    PubMed Central

    Tokura, Akio; Asobe, Masaki; Enbutsu, Koji; Yoshihara, Toshihiro; Hashida, Shin-nosuke; Takenouchi, Hirokazu

    2013-01-01

    This article describes a gas monitoring system for detecting nitrous oxide (N2O) gas using a compact mid-infrared laser source based on difference-frequency generation in a quasi-phase-matched LiNbO3 waveguide. We obtained a stable output power of 0.62 mW from a 4.6-μm-band continuous-wave laser source operating at room temperature. This laser source enabled us to detect atmospheric N2O gas at a concentration as low as 35 parts per billion. Using this laser source, we constructed a new real-time in-situ monitoring system for detecting N2O gas emitted from potted plants. A few weeks of monitoring with the developed detection system revealed a strong relationship between nitrogen fertilization and N2O emission. This system is promising for the in-situ long-term monitoring of N2O in agricultural production, and it is also applicable to the detection of other greenhouse gases. PMID:23921829

  10. Toward agricultural sustainability through integrated crop–livestock systems. III. Social aspects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping and animal production as two separately specialized agricultural systems has led to unacceptable deterioration of the environment due to (i) excessive concentration of nutrients and pathogens in livestock production systems and (ii) loss of natural biodiversity and excess...

  11. Integrating Sensory/Actuation Systems in Agricultural Vehicles

    PubMed Central

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  12. Integrating sensory/actuation systems in agricultural vehicles.

    PubMed

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  13. Agricultural Education: Key to Providing Broader Opportunities for Third World Women in Production Agriculture.

    ERIC Educational Resources Information Center

    Lelle, Mark A.; Holt, Barbara A.

    1987-01-01

    The authors focus on providing opportunities for women in Third World countries in agriculture. A review of the body of knowledge in agricultural development and of the issues surrounding current world food crises is included. (CH)

  14. 7 CFR 205.201 - Organic production and handling system plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Organic production and handling system plan. 205.201 Section 205.201 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS...

  15. Production of bioethanol using agricultural waste: Banana pseudo stem

    PubMed Central

    Ingale, Snehal; Joshi, Sanket J.; Gupte, Akshaya

    2014-01-01

    India is amongst the largest banana (Musa acuminata) producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g%) gave maximum ethanol (17.1 g/L) with yield (84%) and productivity (0.024 g%/h) after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production. PMID:25477922

  16. Quantification of isotopic turnover in agricultural systems

    NASA Astrophysics Data System (ADS)

    Braun, A.; Auerswald, K.; Schnyder, H.

    2012-04-01

    The isotopic turnover, which is a proxy for the metabolic rate, is gaining scientific importance. It is quantified for an increasing range of organisms, from microorganisms over plants to animals including agricultural livestock. Additionally, the isotopic turnover is analyzed on different scales, from organs to organisms to ecosystems and even to the biosphere. In particular, the quantification of the isotopic turnover of specific tissues within the same organism, e.g. organs like liver and muscle and products like milk and faeces, has brought new insights to improve understanding of nutrient cycles and fluxes, respectively. Thus, the knowledge of isotopic turnover is important in many areas, including physiology, e.g. milk synthesis, ecology, e.g. soil retention time of water, and medical science, e.g. cancer diagnosis. So far, the isotopic turnover is quantified by applying time, cost and expertise intensive tracer experiments. Usually, this comprises two isotopic equilibration periods. A first equilibration period with a constant isotopic input signal is followed by a second equilibration period with a distinct constant isotopic input signal. This yields a smooth signal change from the first to the second signal in the object under consideration. This approach reveals at least three major problems. (i) The input signals must be controlled isotopically, which is almost impossible in many realistic cases like free ranging animals. (ii) Both equilibration periods may be very long, especially when the turnover rate of the object under consideration is very slow, which aggravates the first problem. (iii) The detection of small or slow pools is improved by large isotopic signal changes, but large isotopic changes also involve a considerable change in the input material; e.g. animal studies are usually carried out as diet-switch experiments, where the diet is switched between C3 and C4 plants, since C3 and C4 plants differ strongly in their isotopic signal. The

  17. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?

    PubMed

    Meier, Matthias S; Stoessel, Franziska; Jungbluth, Niels; Juraske, Ronnie; Schader, Christian; Stolze, Matthias

    2015-02-01

    Comprehensive assessment tools are needed that reliably describe environmental impacts of different agricultural systems in order to develop sustainable high yielding agricultural production systems with minimal impacts on the environment. Today, Life Cycle Assessment (LCA) is increasingly used to assess and compare the environmental sustainability of agricultural products from conventional and organic agriculture. However, LCA studies comparing agricultural products from conventional and organic farming systems report a wide variation in the resource efficiency of products from these systems. The studies show that impacts per area farmed land are usually less in organic systems, but related to the quantity produced impacts are often higher. We reviewed 34 comparative LCA studies of organic and conventional agricultural products to analyze whether this result is solely due to the usually lower yields in organic systems or also due to inaccurate modeling within LCA. Comparative LCAs on agricultural products from organic and conventional farming systems often do not adequately differentiate the specific characteristics of the respective farming system in the goal and scope definition and in the inventory analysis. Further, often only a limited number of impact categories are assessed within the impact assessment not allowing for a comprehensive environmental assessment. The most critical points we identified relate to the nitrogen (N) fluxes influencing acidification, eutrophication, and global warming potential, and biodiversity. Usually, N-emissions in LCA inventories of agricultural products are based on model calculations. Modeled N-emissions often do not correspond with the actual amount of N left in the system that may result in potential emissions. Reasons for this may be that N-models are not well adapted to the mode of action of organic fertilizers and that N-emission models often are built on assumptions from conventional agriculture leading to even greater

  18. 7 CFR 735.106 - Excess storage and transferring of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE AGENCY, DEPARTMENT OF AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Licensing § 735.106 Excess storage and transferring of agricultural products. (a) If at any time a warehouse operator stores an agricultural product in a warehouse subject to a...

  19. A Landscape Perspective on Sustainability of Agricultural Systems

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Kaffka, Stephen R; Langeveld, J.W.A.

    2013-01-01

    Landscape sustainability of agricultural systems considers effects of farm activities on social, economic, and ecosystem services at local and regional scales. Sustainable agriculture entails: defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior. A landscape perspective is useful because landscape ecology provides theory and methods for dealing with spatial heterogeneity, scaling, integration, and complexity. To implement agricultural sustainability, we propose adopting a systems perspective, recognizing spatial heterogeneity, addressing the influences of context, and integrating landscape-design principles. Topics that need further attention at local and regional scales include (1) protocols for quantifying material and energy flows; (2) effects of management practices; (3) incentives for enhancing social, economic, and ecosystem services; (4) integrated landscape planning and management; (5) monitoring and assessment; (6) effects of societal demand; and (7) consistent and holistic policies for promoting agricultural sustainability.

  20. Productivity of Premodern Agriculture in the Cucuteni-Trypillia Area.

    PubMed

    Shukurov, Anvar; Sarson, Graeme; Videiko, Mykhailo; Henderson, Kate; Shiel, Robert; Dolukhanov, Pavel; Pashkevich, Galina

    2015-07-01

    We present paleoeconomy reconstructions for premodern agriculture, selecting, wherever required, features and parameter values specific for the Cucuteni-Trypillia cultural unity (CTU; 5,400-2,700 BC, mostly the territory of modern Ukraine, Moldova, and Romania). We verify the self-consistency and viability of the archaeological evidence related to all major elements of the agricultural production cycle within the constraints provided by environmental and technological considerations. The starting point of our analysis is the paleodiet structure suggested by archaeological data, stable isotope analyses of human remains, and palynology studies in the CTU area. We allow for the archeologically attested contributions of domesticated and wild animal products to the diet, develop plausible estimates of the yield of ancient cereal varieties cultivated with ancient techniques, and quantify the yield dependence on the time after initial planting and on rainfall (as a climate proxy). Our conclusions involve analysis of the labor costs of various seasonal parts of the agricultural cycle of both an individual and a family with a majority of members that do not engage in productive activities that require physical fitness, such as tillage. Finally, we put our results into the context of the exploitation territory and catchment analysis, to project various subsistence strategies into the exploitation territory of a farming settlement. The simplest economic complex based on cereals and domestic and wild animal products, with fallow cropping, appears to be capable of supporting an isolated, relatively small farming settlement of 50-300 people (2-10 ha in area) even without recourse to technological improvements such as the use of manure fertilizer. Our results strongly suggest that dairy products played a significant role in the dietary and labor balance. The smaller settlements are typical of the earliest Trypillia A stage but remain predominant at the later stages. A larger

  1. Virtual water flows in the international trade of agricultural products of China.

    PubMed

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. PMID:26994788

  2. Phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  3. Integrating NASA Earth Science Enterprise (ESE) Data Into Global Agricultural Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.

    2003-12-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to

  4. Market assessment of photovoltaic power systems for agricultural applications worldwide

    NASA Astrophysics Data System (ADS)

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-11-01

    Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  5. Market assessment of photovoltaic power systems for agricultural applications worldwide

    NASA Technical Reports Server (NTRS)

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-01-01

    Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  6. Against the Grain: The Influence of Changing Agricultural Management on the Earth System

    NASA Astrophysics Data System (ADS)

    Foley, J. A.

    2007-12-01

    The rise of modern agriculture was one of the most transformative events in human history, and has forever changed our relationship to the natural world. By clearing tropical forests, practicing subsistence agriculture on marginal lands and intensifying industrialized farmland production, agricultural practices are changing the worldês landscapes in pervasive ways. In the past decade, we have made tremendous progress in monitoring agricultural expansion from satellites, and modeling associated environmental impacts. In the past decade, the Earth System Science research community has begun to recognize the importance of agricultural lands, particularly as they continue expanding at the expense of important natural ecosystems, potentially altering the planetês carbon cycle and climate. With the advent of new remote sensing and global modeling methods, several efforts have documented the expansion of agricultural lands, the corresponding loss of natural ecosystems, and how this may influence the earth system. But the geographic expansion of agricultural lands is not the whole story. While significant agricultural expansion (or extensification) has occurred in the past few decades, the intensification of agricultural practices Ð under the aegis of the -Green Revolution" Ð has dramatically altered the relationship between humans and environmental systems across the world. Simply put, many of the worldês existing agricultural lands are being used much more intensively as opportunities for agricultural expansion are being exhausted elsewhere. In the last 40 years, global agricultural production has more than doubled Ð although global cropland has increased by only 12% Ð mainly through the use of high yielding varieties of grain, increased reliance on irrigation, massive increases in chemical fertilization, and increased mechanization. Indeed, in the past 40 years there has been a 700% increase in global fertilizer use and a 70% increase in irrigated cropland area

  7. Overview of advances in water management in agricultural production:Sensor based irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technological advances in irrigated agriculture are crucial to meeting the challenge of increasing demand for agricultural products given limited quality and quantity of water resources for irrigation, impacts of climate variability, and the need to reduce environmental impacts. Multidisciplinary ap...

  8. Emerging technologies in ethanol production. Agriculture information bulletin

    SciTech Connect

    Hohmann, N.; Rendleman, C.M.

    1993-01-01

    The fuel ethanol industry is poised to adopt a wide range of technologies that would reduce costs at every stage of the production process. Improved enzymes and fermenter designs can reduce the time needed to convert corn to ethanol and lower capital costs. Membrane filtration can allow the recovery of high-value coproducts such as lactic acid. Adoption of these and other innovations in the next 5 years is expected in new ethanol plants constructed to cope with new demand resulting from Clean Air Act stipulations for cleaner burning fuel. Biomass (agricultural residues, municipal and yard waste, energy crops like switchgrass) can also be converted to ethanol, although commercial-scale ventures are limited by current technology. While biomass requires more handling and sorting before conversion, those costs may be offset by the abundance of biomass relative to corn.

  9. Biodiversity of Aspergillus species in some important agricultural products

    PubMed Central

    Perrone, G.; Susca, A.; Cozzi, G.; Ehrlich, K.; Varga, J.; Frisvad, J.C.; Meijer, M.; Noonim, P.; Mahakarnchanakul, W.; Samson, R.A.

    2007-01-01

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A. flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different species in relation to their different adaptation to environmental and geographical conditions, and to their potential toxigenicity. Here we analyzed the biodiversity of ochratoxin producing species occurring on two important crops: grapes and coffee, and the genetic diversity of A. flavus populations occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A. ibericus, and A. uvarum. Similar studies on the Aspergillus species occurring on coffee beans have evidenced in the last five years that A. carbonarius is an important source of ochratoxin A in coffee. Four new species within the black aspergilli were also identified in coffee beans: A. sclerotioniger, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus. The genetic diversity within A. flavus populations has been widely studied in relation to their potential aflatoxigenicity and morphological variants L- and S-strains. Within A. flavus and other Aspergillus species capable of aflatoxin production, considerable diversity is found. We summarise the main recent achievements in the diversity of the aflatoxin gene cluster in A. flavus populations, A. parasiticus and the non

  10. Rethinking the history of modern agriculture: British pig production, c.1910-65.

    PubMed

    Woods, Abigail

    2012-01-01

    This article uses a study of pig production in Britain, c.1910-65, to rethink the history of modern agriculture and its implications for human-animal relationships. Drawing on literature written by and for pig producers and experts, it challenges existing portrayals of a unidirectional, post-Second World War shift from traditional small-scale mixed farming to large, specialized, intensive systems. Rather, 'factory-style' pig production was already established in Britain by the 1930s, and its fortunes waxed and waned over time in relation to different kinds of outdoor production, which was still prominent in the mid-1960s. In revealing that the progressive proponents of both indoor and outdoor methods regarded them as modern and efficient, but defined and pursued these values in quite different ways, the article argues for a more historically situated understanding of agricultural modernity. Analysis reveals that regardless of their preferred production system, leading experts and producers were keen to develop what they considered to be natural methods that reflected the pig's natural needs and desires. They perceived pigs as active, sentient individuals, and believed that working in harmony with their natures was essential, even if this was, ultimately, for commercial ends. Such views contradict received accounts of modern farming as a utilitarian enterprise, concerned only with dominating and manipulating nature. They are used to argue that a romantic, moral view of the pig did not simply pre-date or emerge in opposition to modern agriculture, but, rather, was integral to it. PMID:23045887

  11. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By-products are produced in significant amounts from crop residues such as pecan shells (PC), peanut shells (PS), and cotton gin (CG) trash. These residues can be used to produce biochar suitable for use in agricultural soil to sequester carbon and enhance plant growth by supplying and retaining nut...

  12. The commercial use of gamma facilities in North and South America for agriculture product processing

    NASA Astrophysics Data System (ADS)

    Butterweck, Joseph S.

    1993-07-01

    The treatment of agriculture and food products with ionizing radiation has been proven to be safe, effective, economical, and according to consumer surveys, the end product is better. However, commercial implementation of food irradiation has been slow because the following: 1. The lack of profit incentives 2. The failure of the political system to deal with antinuclear groups 3. The failure of public health authorities to actively support this technologyFood irradiation cannot be considered successfully implemented until the commercial industry is making a profit by the use of this technology. Use of this technology will: (1) reduce food borne infections (FBI); (2) decrease the hazards of the use of antibiotics in livestock and poultry production; (3) reduce the need for agriculture quarantine procedures; and (4) increase shelf-life of perishable foods. However, only (1) and (3) are being considered as economic alternative by the present day's food industry. Previously, agriculture has focused on technology that would increase production and reduce costs. Today this is rapidly changing to implementing technology that markets a product the consumer wants and is perceived as being safer and environmental responsible.

  13. WEBGIS based CropWatch online agriculture monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.

    2015-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked

  14. Career Preparation in Agricultural Products (Food Processing): A Curriculum Guide for High School Vocational Agriculture. Test Edition.

    ERIC Educational Resources Information Center

    Moore, Eddie A.

    This curriculum guide in agricultural products (food processing) is one of 10 guides developed as part of a vocational project stressing agribusiness, natural resources, and environmental protection. The scope of this guide includes three occupational subgroups: meat, fish, poultry; dairy (milk) products; fruits and vegetables. It is meant as an…

  15. Use of transgenic seeds in Brazilian agriculture and concentration of agricultural production to large agribusinesses.

    PubMed

    Marinho, C D; Martins, F J O; Amaral Júnior, A T; Gonçalves, L S A; Amaral, S C S; de Mello, M P

    2012-01-01

    We identified the commercial releases of genetically modified organisms (GMOs) in Brazil, their characteristics, the types of genetic transformation used, and the companies responsible for the development of these GMOs, classifying them into two categories: private companies, subdivided into multinational and national, and public institutions. The data came from the data bank of the national registration of cultivars and the service of national protection of cultivars of the Ministry of Agriculture, Fishing and Supply (MAPA). This survey was carried out from 1998 to February 12, 2011. Until this date, 27 GMOs had been approved, including five for soybean, 15 for maize and seven for cotton cultivars. These GMOs have been used for the development of 766 cultivars, of which, 305 are soybean, 445 are maize, and 13 are cotton cultivars. The Monsato Company controls 73.2% of the transgenic cultivars certified by the MAPA; a partnership between Dow AgroSciences and DuPont accounts for 21.4%, and Syngenta controls 4.96%. Seed supply by these companies is almost a monopoly supported by law, giving no choice for producers and leading to the fast replacement of conventional cultivars by transgenic cultivars, which are expensive and exclude small producers from the market, since seeds cannot be kept for later use. This situation concentrates production in the hands of a few large national agribusiness entrepreneurs. PMID:22869542

  16. Grassland production under global change scenarios for New Zealand pastoral agriculture

    NASA Astrophysics Data System (ADS)

    Keller, E. D.; Baisden, W. T.; Timar, L.; Mullan, B.; Clark, A.

    2014-10-01

    We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand models to simulate pastoral agriculture and to make land-use change, intensification of agricultural activity and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1-2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report also show national increases of 1-2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3 and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasise that CO2 fertilisation and N-cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of decoupled land-use change scenarios: the Biome-BGC data products at a national or regional level can be re

  17. The Role of Aerospace Technology in Agriculture. The 1977 Summer Faculty Fellowship Program in Engineering Systems Design

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.

  18. Systems in peril: Climate change, agriculture and biodiversity in Australia

    NASA Astrophysics Data System (ADS)

    Cocklin, Chris; Dibden, Jacqui

    2009-11-01

    This paper reflects on the interplay amongst three closely linked systems - climate, agriculture and biodiversity - in the Australian context. The advance of a European style of agriculture has imperilled Australian biodiversity. The loss and degradation of biodiversity has, in turn, had negative consequences for agriculture. Climate change is imposing new pressures on both agriculture and biodiversity. From a policy and management perspective, though, it is possible to envisage mitigation and adaptation responses that would alleviate pressures on all three systems (climate, agriculture, biodiversity). In this way, the paper seeks to make explicit the important connections between science and policy. The paper outlines the distinctive features of both biodiversity and agriculture in the Australian context. The discussion then addresses the impacts of agriculture on biodiversity, followed by an overview of how climate change is impacting on both of these systems. The final section of the paper offers some commentary on current policy and management strategies that are targeted at mitigating the loss of biodiversity and which may also have benefits in terms of climate change.

  19. Weather based risks and insurances for agricultural production

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2015-04-01

    Extreme weather events such as frost, drought, heat waves and rain storms can have devastating effects on cropping systems. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The principle of return periods or frequencies of natural hazards is adopted in many countries as the basis of eligibility for the compensation of associated losses. For adequate risk management and eligibility, hazard maps for events with a 20-year return period are often used. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The impact of extreme weather events particularly during the sensitive periods of the farming calendar therefore requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event in the farming calendar. Physically based crop models such as REGCROP (Gobin, 2010) assist in understanding the links between different factors causing crop damage. Subsequent examination of the frequency, magnitude and impacts of frost, drought, heat stress and soil moisture stress in relation to the cropping season and crop sensitive stages allows for risk profiles to be confronted with yields, yield losses and insurance claims. The methodology is demonstrated for arable food crops, bio-energy crops and fruit. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. Though average yields have risen continuously due to technological advances, there is no evidence that relative tolerance to adverse weather events has improved. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.

  20. SALSA: a simulation tool to assess ecological sustainability of agricultural production.

    PubMed

    Eriksson, Ingrid Strid; Elmquist, Helena; Nybrant, Thomas

    2005-06-01

    In order to assess the ecological sustainability of agricultural production systems, there is a need for effective tools. We describe an environmental systems analysis tool called SALSA (Systems Ana/ysis for Sustainable Agriculture). It consists of substance/material flow models in which the simulation results are interpreted with life-cycle assessment methodology. The application of SALSA is demonstrated in a case study in which three different ways of producing pigs are compared with respect to energy input and the environmental impacts of global warming, eutrophication, and acidification. The scenario that combined a low-protein diet without soy meal with an improved manure-management technique with low nitrogen losses was the best for all impact categories studied. The strength of the SALSA models was their capacity to capture consequences of management options that had an influence on several processes on a farm, which enabled the type of complex studies we describe. PMID:16092274

  1. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  2. 49 CFR 1300.5 - Additional publication requirement for agricultural products and fertilizer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... agricultural products and fertilizer. 1300.5 Section 1300.5 Transportation Other Regulations Relating to... fertilizer. (a) With respect to transportation of agricultural products (including grain, as defined in 7 U.S.C. 75, and all products thereof) and fertilizer, a rail carrier shall publish, make available,...

  3. 49 CFR 1300.5 - Additional publication requirement for agricultural products and fertilizer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... agricultural products and fertilizer. 1300.5 Section 1300.5 Transportation Other Regulations Relating to... fertilizer. (a) With respect to transportation of agricultural products (including grain, as defined in 7 U.S.C. 75, and all products thereof) and fertilizer, a rail carrier shall publish, make available,...

  4. 49 CFR 1300.5 - Additional publication requirement for agricultural products and fertilizer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... agricultural products and fertilizer. 1300.5 Section 1300.5 Transportation Other Regulations Relating to... fertilizer. (a) With respect to transportation of agricultural products (including grain, as defined in 7 U.S.C. 75, and all products thereof) and fertilizer, a rail carrier shall publish, make available,...

  5. 49 CFR 1300.5 - Additional publication requirement for agricultural products and fertilizer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... agricultural products and fertilizer. 1300.5 Section 1300.5 Transportation Other Regulations Relating to... fertilizer. (a) With respect to transportation of agricultural products (including grain, as defined in 7 U.S.C. 75, and all products thereof) and fertilizer, a rail carrier shall publish, make available,...

  6. 49 CFR 1300.5 - Additional publication requirement for agricultural products and fertilizer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... agricultural products and fertilizer. 1300.5 Section 1300.5 Transportation Other Regulations Relating to... fertilizer. (a) With respect to transportation of agricultural products (including grain, as defined in 7 U.S.C. 75, and all products thereof) and fertilizer, a rail carrier shall publish, make available,...

  7. 7 CFR 205.310 - Agricultural products produced on an exempt or excluded operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Labels, Labeling, and... excluded operation as a certified organic operation, or (2) Be represented as a certified organic product or certified organic ingredient to any buyer. (b) An agricultural product organically produced...

  8. 7 CFR 205.310 - Agricultural products produced on an exempt or excluded operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Labels, Labeling, and... excluded operation as a certified organic operation, or (2) Be represented as a certified organic product or certified organic ingredient to any buyer. (b) An agricultural product organically produced...

  9. 7 CFR 205.310 - Agricultural products produced on an exempt or excluded operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Labels, Labeling, and... excluded operation as a certified organic operation, or (2) Be represented as a certified organic product or certified organic ingredient to any buyer. (b) An agricultural product organically produced...

  10. 7 CFR 205.310 - Agricultural products produced on an exempt or excluded operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Labels, Labeling, and... excluded operation as a certified organic operation, or (2) Be represented as a certified organic product or certified organic ingredient to any buyer. (b) An agricultural product organically produced...

  11. Rainwater harvesting to enhance water productivity of rainfed agriculture in the semi-arid Zimbabwe

    NASA Astrophysics Data System (ADS)

    Kahinda, Jean-marc Mwenge; Rockström, Johan; Taigbenu, Akpofure E.; Dimes, John

    Zimbabwe’s poor are predominantly located in the semi-arid regions and rely on rainfed agriculture for their subsistence. Decline in productivity, scarcity of arable land, irrigation expansion limitations, erratic rainfall and frequent dry spells, among others cause food scarcity. The challenge faced by small-scale farmers is to enhance water productivity of rainfed agriculture by mitigating intra-seasonal dry spells (ISDS) through the adoption of new technologies such as rainwater harvesting (RWH). The paper analyses the agro-hydrological functions of RWH and assesses its impacts (at field scale) on the crop yield gap as well as the Transpirational Water Productivity ( WPT). The survey in six districts of the semi-arid Zimbabwe suggests that three parameters (water source, primary use and storage capacity) can help differentiate storage-type-RWH systems from “conventional dams”. The Agricultural Production Simulator Model (APSIM) was used to simulate seven different treatments (Control, RWH, Manure, Manure + RWH, Inorganic Nitrogen and Inorganic Nitrogen + RWH) for 30 years on alfisol deep sand, assuming no fertiliser carry over effect from season to season. The combined use of inorganic fertiliser and RWH is the only treatment that closes the yield gap. Supplemental irrigation alone not only reduces the risks of complete crop failure (from 20% down to 7% on average) for all the treatments but also enhances WPT (from 1.75 kg m -3 up to 2.3 kg m -3 on average) by mitigating ISDS.

  12. Application of principles of integrated agricultural systems: results from farmer panels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Integrated Agricultural Systems working group comprised of USDA-ARS scientists is examining different agricultural systems from various geographic regions of the United States to determine fundamental principles that underlie successful integrated agricultural systems. Our hypothesis is that prin...

  13. Case Analysis of Farm Agriculture Machinery Informatization Management Network System

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Wang, Xi; Zhuang, Weidong

    In the process of China's agricultural modernization, especially agricultural machinery modernization, in terms of equipment, we've chose the way that foreign imports (and domestic research) with the combination of self-developed, in the software, it is difficult to fully apply this approach, the specific reasons are: the modernization of China's agriculture development model is diversified, it is difficult to find a unified management model, even in the scale of operations of the representative state-owned farms and the abroad farms are also very different management models. Due to various types of growth models of biological complexity, diverse climatic and geographical environment factors, coupled with the characteristics such as long cycle of agricultural production, high input, high-risk, and decentralized management, industrial management mode it is very difficult to apply. Moreover, the application of modern management tools is also difficult to quantify the benefits, leading to the current research and application are in a state of comparatively dropped behind.

  14. Cross-country disparity in agricultural productivity: quantifying the role of modern seed adoption.

    PubMed

    O'Gorman, Melanie; Pandey, Manish

    2010-01-01

    Inequality of agricultural labour productivity across the developing world has increased substantially over the past 40 years. This article asks: to what extent did the diffusion of Green Revolution seed varieties contribute to increasing agricultural labour productivity disparity across the developing countries? We find that 22 per cent of cross-country variation in agricultural labour productivity can be attributed to the diffusion of high-yielding seed varieties across countries, and that the impact of such diffusion differed significantly across regions. We discuss the implications of these findings for policy directed at increasing agricultural labour productivity in the developing world. PMID:21280414

  15. Evaluation of the Precision Agricultural Landscape Modeling System (PALMS) in the Semiarid Texas Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  16. Multispectral Imaging Systems for Airborne Remote Sensing to Support Site-Specific Agricultural Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing has shown promise as a tool for site-specific management in agricultural application and production. Earth-observing satellite systems have an advantage for large-scale analysis at regional levels but are limited in spatial resolution. High-resolution satellite systems have been avail...

  17. Evaluation of the precision agricultural landscape modeling system (PALMS) in the semiarid Texas southern high plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  18. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2008-11-26

    Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process. PMID:18942836

  19. Application of methane fermentation technology into organic wastes in closed agricultural system

    NASA Astrophysics Data System (ADS)

    Endo, Ryosuke; Kitaya, Yoshiaki

    Sustainable and recycling-based systems are required in space agriculture which takes place in an enclosed environment. Methane fermentation is one of the most major biomass conversion technologies, because (1) it provides a renewable energy source as biogas including methane, suitable for energy production, (2) the nutrient-rich solids left after digestion can be used as compost for agriculture. In this study, the effect of the application of methane fermentation technology into space agriculture on the material and energy cycle was investigated.

  20. Phosphorus cycling in Montreal's food and urban agriculture systems.

    PubMed

    Metson, Geneviève S; Bennett, Elena M

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities' P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents' relationship to, and understanding of, the food system and increases their acceptance of composting. PMID:25826256

  1. Writing Sensors on Solid Agricultural Products for In Situ Detection.

    PubMed

    Tang, Wenzhi; Wu, Jian; Ying, Yibin; Liu, Yuan

    2015-11-01

    This study reports on direct analysis of agricultural products. An easy and environmentally friendly method for the fabrication of electrochemical sensors on solid samples is developed, and it enables in situ detection of electroactive molecules without sample extraction. Fabrication of the sensor involves writing two electrode inks on the sample. The inks are made by mixing chitosan with graphite powder (2:1, v/w) and silver powder (1:2, v/w), respectively. The written electrode can become solidified within 5 min at room temperature. The porous structure of the sensor makes the solution accessible to the surface of sample under the electrode, thereby enabling the detection without sample extraction. This sensor was used for in situ detection of methyl parathion and nitrite. The practical performance was evaluated using Fuji apple, Chinese chives, and Chinese cabbage. By writing the electrochemical sensor on solid samples, this method avoids the time-consuming and complicated sample extraction and provides a simple and green analytical strategy for on-site application. PMID:26455570

  2. Market assessment of photovoltaic power systems for agricultural applications worldwide

    SciTech Connect

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-11-01

    This report integrates and extrapolates worldwide the results of the agricultural sector PV market assessments conducted in the Philippines, Nigeria, Mexico, Morocco, and Colombia. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand-alone mode. The study focused on the needs of low- and middle-income countries. The major conclusions derived from the studies were as follows: PV will be competitive in applications requiring 2 - 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 - 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, significant agriculture sector market for PV exists; however the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market-related factors influencing the potential for US PV sales are: lack of awareness; high first costs; shortage of long-term capital; competition from German, French and Japanese companies who have their governments support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  3. Representative Agricultural Pathways and Climate Impact Assessment for Pacific Northwest Agricultural Systems

    NASA Astrophysics Data System (ADS)

    MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.

    2013-12-01

    Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.

  4. Ultimate drivers of native biodiversity change in agricultural systems

    PubMed Central

    Norton, David A; Reid, Nick; Young, Laura

    2013-01-01

    The ability to address land degradation and biodiversity loss while maintaining the production of plant and animal products is a key global challenge. Biodiversity decline as a result of vegetation clearance, cultivation, grazing, pesticide and herbicide application, and plantation establishment, amongst other factors, has been widely documented in agricultural ecosystems. In this paper we identify six ultimate drivers that underlie these proximate factors and hence determine what native biodiversity occurs in modern agricultural landscapes; (1) historical legacies; (2) environmental change; (3) economy; (4) social values and awareness; (5) technology and knowledge; and (6) policy and regulation. While historical legacies and environmental change affect native biodiversity directly, all six indirectly affect biodiversity by influencing the decisions that land managers make about the way they use their land and water resources. Understanding these drivers is essential in developing strategies for sustaining native biodiversity in agricultural landscapes into the future. PMID:26834971

  5. APPLICATIONS OF AGRICULTURAL SYSTEM MODELS IN ASSESSING AND MANAGING CONTAMINATION OF THE SOIL-WATER-ATMOSPHERE CONTINUUM IN AGRICULTURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last three decades, there has been a growing public concern about the adverse effects of modern agriculture on environmental quality and soil-water resources. In the mid-1980's, the USDA, Agricultural Research Service (ARS) identified the need for models of whole agricultural systems that wi...

  6. Application of Agricultural System Models in Assessing and Managing Contamination of Soil-Water-Atmosphere Continuum in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last three decades, there has been a growing public concern about the adverse effects of modern agriculture on environmental quality and soil-water resources. In the mid-1980s, the USDA, Agricultural Research Service (ARS) identified the need for models of whole agricultural systems th...

  7. Toward a Sustainable Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Future trends in population growth, energy use, climate change, and globalization will challenge agriculturists to develop innovative production systems that are highly productive and environmentally sound. Furthermore, future agricultural production systems must possess an inherent capacity to adap...

  8. An Interoperable, Agricultural Information System Based on Satellite Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Chiu, Long; Doraiswamy, Paul; Kempler, Steven; Liu, Zhong; Pham, Long; Rui, Hualan

    2005-01-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of US. agricultural products and for global food security. The Goddard Space Flight Center Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide satellite remote sensing data products (e.g., rainfall) and services. The data products will include crop condition and yield prediction maps, generated from a crop growth model with satellite data inputs, in collaboration with the USDA Agricultural Research Service. The AIS will enable the remote, interoperable access to distributed data, by using the GrADS-DODS Server (GDS) and by being compliant with Open GIS Consortium standards. Users will be able to download individual files, perform interactive online analysis, as well as receive operational data flows. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as those of the USDA Foreign Agricultural Service and the U.N. World Food Program.

  9. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  10. SOIL QUALITY IN ORGANIC AGRICULTURAL SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Building and maintaining soil quality is the basis for successful organic farming. However, before developing a soil management plan focused on soil quality in organic systems, farmers should become knowledgeable regarding the overall philosophies, legalities, and marketing opportunities in organic ...

  11. A speech recognition system for data collection in precision agriculture

    NASA Astrophysics Data System (ADS)

    Dux, David Lee

    Agricultural producers have shown interest in collecting detailed, accurate, and meaningful field data through field scouting, but scouting is labor intensive. They use yield monitor attachments to collect weed and other field data while driving equipment. However, distractions from using a keyboard or buttons while driving can lead to driving errors or missed data points. At Purdue University, researchers have developed an ASR system to allow equipment operators to collect georeferenced data while keeping hands and eyes on the machine during harvesting and to ease georeferencing of data collected during scouting. A notebook computer retrieved locations from a GPS unit and displayed and stored data in Excel. A headset microphone with a single earphone collected spoken input while allowing the operator to hear outside sounds. One-, two-, or three-word commands activated appropriate VBA macros. Four speech recognition products were chosen based on hardware requirements and ability to add new terms. After training, speech recognition accuracy was 100% for Kurzweil VoicePlus and Verbex Listen for the 132 vocabulary words tested, during tests walking outdoors or driving an ATV. Scouting tests were performed by carrying the system in a backpack while walking in soybean fields. The system recorded a point or a series of points with each utterance. Boundaries of points showed problem areas in the field and single points marked rocks and field corners. Data were displayed as an Excel chart to show a real-time map as data were collected. The information was later displayed in a GIS over remote sensed field images. Field corners and areas of poor stand matched, with voice data explaining anomalies in the image. The system was tested during soybean harvest by using voice to locate weed patches. A harvester operator with little computer experience marked points by voice when the harvester entered and exited weed patches or areas with poor crop stand. The operator found the

  12. Sustainable uses of FGD gypsum in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in using gypsum as a management tool to improve crop yields and soil/water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur (S) from combustion gases at coal-fired power plants, in major agricultural...

  13. Grassland production under global change scenarios for New Zealand pastoral agriculture

    NASA Astrophysics Data System (ADS)

    Keller, E. D.; Baisden, W. T.; Timar, L.; Mullan, B.; Clark, A.

    2014-05-01

    We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand (LURNZ) models to simulate pastoral agriculture and to make land-use change, intensification and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1-2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report (AR4) also show national increases of 1-2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3% and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasize that CO2 fertilisation and N cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of Decoupled Land-Use Change Scenarios (DLUCS): the Biome-BGC data products at a national or regional level can be re

  14. A Food Systems Approach To Healthy Food And Agriculture Policy.

    PubMed

    Neff, Roni A; Merrigan, Kathleen; Wallinga, David

    2015-11-01

    Food has become a prominent focus of US public health policy. The emphasis has been almost exclusively on what Americans eat, not what is grown or how it is grown. A field of research, policy, and practice activities addresses the food-health-agriculture nexus, yet the work is still often considered "alternative" to the mainstream. This article outlines the diverse ways in which agriculture affects public health. It then describes three policy issues: farm-to-school programming, sustainability recommendations in the Dietary Guidelines for Americans, and antibiotic use in animal agriculture. These issues illustrate the progress, challenges, and public health benefits of taking a food systems approach that brings together the food, agriculture, and public health fields. PMID:26526249

  15. Biofuels production on abandoned and marginal agriculture lands in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Lobell, D. B.; Field, C. B.

    2008-12-01

    The location of biofuels agriculture land is a critical parameter for predicting biomass feedstock yields, land use emissions, and optimal plant varieties. Using abandoned and marginal agriculture lands to grow feedstocks for second-generation biofuels could provide a sustainable alternative to conventional biofuels production. These marginal areas are in a state of flux in the Midwestern U.S. where a 2007 surge in biofuels has contributed to competing land use demands including conventional biofuels crops, food agriculture, and conservation. Here we apply land use and agriculture data to consider the extent and productivity of abandoned and marginal lands in the Midwestern U.S. for production of second-generation biofuels.

  16. Mississippi Curriculum Framework for Agriculture Production (Program CIP: 01.0301--Agricultural Prod. Workers & Mgrs.). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for agriculture production I and II. Presented first are a program…

  17. Sustaining the Earth's watersheds, agricultural research data system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  18. Private Agricultural Extension System in Kenya: Practice and Policy Lessons

    ERIC Educational Resources Information Center

    Muyanga, Milu; Jayne, T. S.

    2008-01-01

    Private extension system has been at the centre of a debate triggered by inefficient public agricultural extension. The debate is anchored on the premise that the private sector is more efficient in extension service delivery. This study evaluates the private extension system in Kenya. It employs qualitative and quantitative methods. The results…

  19. Flexible production systems

    NASA Astrophysics Data System (ADS)

    Chudakov, A. D.; Shchetinin, D. D.

    1986-03-01

    Flexible production systems are a technological tool design to automate multiple product line manufacturing. Flexible production systems provide an efficient means of organizing combined equipment operations and bring the production organization nearer to an unmanned arrangement or one requiring a limited number of workers. This is achieved by intensifying and automating manufacturing processes; coordinating the automated processes involved in warehousing and materials transport to maintain a tight production path; and using computers to automate production preparation and production control. The prerequisites for a change to these new production structures include numerical control NC tools and machining centers, power connection points for robots, automated conveying and warehousing systems controlled by microelectronic devices and control computer complexes consisting primarily of microprocessor-based units capable of controlling equipment via a direct connection and on a real-time basis. The types of flexible production systems in operation are divided into three groups: (1) flexible automated lines (GAL), (2) flexible production modules (GPM); and (3) flexible production complexes (GPK).

  20. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae. PMID:24599393

  1. The impact of climate extremes on US agricultural production and the buffering impacts of irrigation

    NASA Astrophysics Data System (ADS)

    Troy, Tara J.; Kipgen, Chinpihoi; Pal, Indrani

    2014-05-01

    In recent years, droughts and floods have occurred over many of the major growing regions of the world, resulting in decreased agricultural production and increased global food prices. Many climate projections call for more frequent extreme events, which could have significant impacts on agricultural yields and water resources in irrigated agricultural regions. In order to better understand the potential impact of climate extremes and the spatial heterogeneity of those impacts, we examine the associations between climate and irrigated and rain fed crop yields, focusing on four main staple crops: wheat, rice, soy, and maize. Because the United States has high spatial resolution data for both yields and weather variables, the analysis focuses on the impact of multiple extremes over these four crops in the US using statistical methods that do not require any assumptions of functional relationships between yields and weather variables. Irrigated and rain fed agricultural yields are analyzed separately to understand the role irrigation plays either as a buffering against climate variability and extremes such as drought, heat waves, and extended dry spells or a mechanism that leads to varied relationships between extremes of climate and yield fluctuations. These results demonstrate that irrigation has varying effects depending on the region, growing season timing, crop type, and type of climate extreme. This work has important implications for future planning of the coupled water-food system and its vulnerabilities to climate.

  2. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  3. 12 CFR 614.4530 - Special loans, production credit associations and agricultural credit associations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Special loans, production credit associations and agricultural credit associations. 614.4530 Section 614.4530 Banks and Banking FARM CREDIT..., production credit associations and agricultural credit associations. Under policies approved by the...

  4. 12 CFR 614.4530 - Special loans, production credit associations and agricultural credit associations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Special loans, production credit associations and agricultural credit associations. 614.4530 Section 614.4530 Banks and Banking FARM CREDIT..., production credit associations and agricultural credit associations. Under policies approved by the...

  5. How can we harness quantitative genetic variation in crop root systems for agricultural improvement?

    PubMed

    Topp, Christopher N; Bray, Adam L; Ellis, Nathanael A; Liu, Zhengbin

    2016-03-01

    Root systems are a black box obscuring a comprehensive understanding of plant function, from the ecosystem scale down to the individual. In particular, a lack of knowledge about the genetic mechanisms and environmental effects that condition root system growth hinders our ability to develop the next generation of crop plants for improved agricultural productivity and sustainability. We discuss how the methods and metrics we use to quantify root systems can affect our ability to understand them, how we can bridge knowledge gaps and accelerate the derivation of structure-function relationships for roots, and why a detailed mechanistic understanding of root growth and function will be important for future agricultural gains. PMID:26911925

  6. Agricultural Model for the Nile Basin Decision Support System

    NASA Astrophysics Data System (ADS)

    van der Bolt, Frank; Seid, Abdulkarim

    2014-05-01

    To analyze options for increasing food supply in the Nile basin the Nile Agricultural Model (AM) was developed. The AM includes state-of-the-art descriptions of biophysical, hydrological and economic processes and realizes a coherent and consistent integration of hydrology, agronomy and economics. The AM covers both the agro-ecological domain (water, crop productivity) and the economic domain (food supply, demand, and trade) and allows to evaluate the macro-economic and hydrological impacts of scenarios for agricultural development. Starting with the hydrological information from the NileBasin-DSS the AM calculates the available water for agriculture, the crop production and irrigation requirements with the FAO-model AquaCrop. With the global commodity trade model MAGNET scenarios for land development and conversion are evaluated. The AM predicts consequences for trade, food security and development based on soil and water availability, crop allocation, food demand and food policy. The model will be used as a decision support tool to contribute to more productive and sustainable agriculture in individual Nile countries and the whole region.

  7. Livestock Judging. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    Smith, Anthony

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit on livestock judging contains materials based on five competencies needed to be a livestock producer. The following competencies are covered: general preparation for livestock judging, selection, and evaluation; judging, selection, and evaluation of…

  8. Feeding Livestock. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    Johnson, Boyd C.

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit on feeding livestock contains nine lessons based upon competencies needed to be a livestock producer. The lessons in this unit cover the importance of good feeding practices, the identification of nutritional needs and the composition of feeds for…

  9. Safeguarding production agriculture and natural ecosystems against biological terrorism. A U.S. Department of Agriculture emergency response framework.

    PubMed

    Sequeira, R

    1999-01-01

    Foreign pest introductions and outbreaks represent threats to agricultural productivity and ecosystems, and, thus, to the health and national security of the United States. It is advisable to identify relevant techniques and bring all appropriate strategies to bear on the problem of controlling accidentally and intentionally introduced pest outbreaks. Recent political shifts indicate that the U.S. may be at increased risk for biological terrorism. The existing emergency-response strategies of the Animal and Plant Health Inspection Services (APHIS) will evolve to expand activities in coordination with other emergency management agencies. APHIS will evolve its information superstructure to include extensive application of simulation models for forecasting, meteorological databases and analysis, systems analysis, geographic information systems, satellite image analysis, remote sensing, and the training of specialized cadres within the emergency-response framework capable of managing the necessary information processing and analysis. Finally, the threat of key pests ranked according to perceived risk will be assessed with mathematical models and "what-if" scenarios analyzed to determine impact and mitigation practices. An infrastructure will be maintained that periodically surveys ports and inland regions for the presence of exotic pest threats and will identify trend abnormalities. This survey and monitoring effort will include cooperation from industry groups, federal and state organizations, and academic institutions. PMID:10681969

  10. Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits.

    PubMed

    Babbar, Neha; Dejonghe, Winnie; Gatti, Monica; Sforza, Stefano; Elst, Kathy

    2016-08-01

    Pectin containing agricultural by-products are potential sources of a new class of prebiotics known as pectic oligosaccharides (POS). In general, pectin is made up of homogalacturonan (HG, α-1,4-linked galacturonic acid monomers) and rhamnogalacturonan (RG, alternate galacturonic acid and rhamnose backbone with neutral side chains). Controlled hydrolysis of pectin containing agricultural by-products like sugar beet, apple, olive and citrus by chemical, enzymatic and hydrothermal can be used to produce oligo-galacturonides (GalpOS), galacto-oligosaccharides (GalOS), rhamnogalacturonan-oligosaccharides (RGOS), etc. However, extensive research is needed to establish the role of POS, both as a prebiotic as well as therapeutic agent. This review comprehensively covers different facets of POS, including the nature and chemistry of pectin and POS, potential agricultural residual sources of pectin, pre-treatment methods for facilitating selective extraction of pectin, identification and characterization of POS, health benefits and important applications of POS in food and feed. This review has been compiled to establish a platform for future research in the purification and characterization of POS and for in vivo and in vitro studies of important POS, so that they could be commercially exploited. PMID:25641325

  11. Project AProWa: a national view on managing trade-offs between agricultural production and conservation of aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Dietzel, Anne; Rahn, Eric; Stamm, Christian

    2014-05-01

    Swiss agriculture is legally committed to fulfill several, partially conflicting goals such as agricultural production on the one hand and the conservation of natural resources on the other hand. In the context of the research project AProWa ("Agricultural Production and Water"), the relationships between the production aspect and the conservation of aquatic ecosystems is analyzed with a holistic approach. Agricultural production and the protection of water resources have high potential for conflicts: Farmers use ground and surface water to irrigate their fields. On the other hand, drainage systems enable the production on otherwise unfavorably wet soils. These in turn often affect ground water recharge and divert precipitation directly into surface waters, which changes their hydrological regime. Typically, drainage systems also elevate the input of nutrients and pesticides into the water bodies. In general, applied fertilizers, plant protection products, veterinary drugs and phytohormones of cultivated plants are introduced into the ground and surface waters through different processes such as drift, leaching, runoff, preferential flow or erosion. They influence the nutrient cycles and ecological health of aquatic systems. The nutrient and pesticide loss processes themselves can be altered by tillage operations and other agricultural practices. Furthermore, the competition for space can lead to additional conflicts between agriculture and the protection of aquatic ecosystems. For example, channelized or otherwise morphologically changed rivers do not have a natural discharge pattern and are often not suitable for the local flora and fauna; but naturally meandering rivers need space that cannot be used for agriculture. In a highly industrialized and densely populated country like Switzerland, all these potential conflicts are of importance. Although it is typically seen as a water-rich country, local and seasonal overexploitation of rivers through water extraction

  12. Life cycle assessment based evaluation of regional impacts from agricultural production at the Peruvian coast.

    PubMed

    Bartl, Karin; Verones, Francesca; Hellweg, Stefanie

    2012-09-18

    Crop and technology choices in agriculture, which largely define the impact of agricultural production on the environment, should be considered in agricultural development planning. A life cycle assessment of the dominant crops produced in a Peruvian coastal valley was realized, in order to establish regionalized life cycle inventories for Peruvian products and to provide the basis for a regional evaluation of the impacts of eutrophication, acidification, human toxicity, and biodiversity loss due to water use. Five scenarios for the year 2020 characterized by different crop combinations and irrigation systems were considered as development options. The results of the regional assessment showed that a business-as-usual scenario, extrapolating current trends of crop cultivation, would lead to an increase in nitrate leaching with eutrophying effects. On the other hand, scenarios of increased application of drip irrigation and of mandarin area expansion would lead to a decrease in nitrate leaching. In all scenarios the human toxicity potential would decrease slightly, while an increase in irrigation water use would benefit the biodiversity of a nearby groundwater-fed wetland. Comparisons with results from other studies confirmed the importance of regionalized life cycle inventories. The results can be used as decision support for local farmers and authorities. PMID:22894858

  13. The roles and values of wild foods in agricultural systems

    PubMed Central

    Bharucha, Zareen; Pretty, Jules

    2010-01-01

    Almost every ecosystem has been amended so that plants and animals can be used as food, fibre, fodder, medicines, traps and weapons. Historically, wild plants and animals were sole dietary components for hunter–gatherer and forager cultures. Today, they remain key to many agricultural communities. The mean use of wild foods by agricultural and forager communities in 22 countries of Asia and Africa (36 studies) is 90–100 species per location. Aggregate country estimates can reach 300–800 species (e.g. India, Ethiopia, Kenya). The mean use of wild species is 120 per community for indigenous communities in both industrialized and developing countries. Many of these wild foods are actively managed, suggesting there is a false dichotomy around ideas of the agricultural and the wild: hunter–gatherers and foragers farm and manage their environments, and cultivators use many wild plants and animals. Yet, provision of and access to these sources of food may be declining as natural habitats come under increasing pressure from development, conservation-exclusions and agricultural expansion. Despite their value, wild foods are excluded from official statistics on economic values of natural resources. It is clear that wild plants and animals continue to form a significant proportion of the global food basket, and while a variety of social and ecological drivers are acting to reduce wild food use, their importance may be set to grow as pressures on agricultural productivity increase. PMID:20713393

  14. Analysis And Assistant Planning System Ofregional Agricultural Economic Inform

    NASA Astrophysics Data System (ADS)

    Han, Jie; Zhang, Junfeng

    For the common problems existed in regional development and planning, we try to design a decision support system for assisting regional agricultural development and alignment as a decision-making tool for local government and decision maker. The analysis methods of forecast, comparative advantage, liner programming and statistical analysis are adopted. According to comparative advantage theory, the regional advantage can be determined by calculating and comparing yield advantage index (YAI), Scale advantage index (SAI), Complicated advantage index (CAI). Combining with GIS, agricultural data are presented as a form of graph such as area, bar and pie to uncover the principle and trend for decision-making which can't be found in data table. This system provides assistant decisions for agricultural structure adjustment, agro-forestry development and planning, and can be integrated to information technologies such as RS, AI and so on.

  15. MULTIFUNCTIONALITY OF AGRICULTURE AND FARMING SYSTEM DESIGN: PERSPECTIVES FROM THE UNITED STATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming systems are linked across three scales within the agricultural landscape. At each of these scales there are four functional aspects: i) production; ii) economics; iii) environment; and iv) multiple or alternative uses that link scales and endpoints. These linkages are observed in watershed...

  16. Modeling GHG Emissions and Carbon Changes in Agricultural and Forest Systems to Guide Mitigation and Adaptation: Synthesis and Future Needs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production systems and land use change for agriculture and forestry are important sources of anthropogenic greenhouse gas (GHG) emissions. Recent commitments by the European Union, the United States, and China to reduce GHG emissions highlight the need to improve estimates of current em...

  17. Strengthening Agricultural Education and Training in Sub-Saharan Africa from an Innovation Systems Perspective: A Case Study of Mozambique

    ERIC Educational Resources Information Center

    Davis, Kristin E.; Ekboir, Javier; Spielman, David J.

    2008-01-01

    This paper examines how post-secondary agricultural education and training (AET) in sub-Saharan Africa can contribute to agricultural development by strengthening the capacity to innovate--to introduce new products and processes that are socially or economically relevant to smallholder farmers and other agents. Using the AET system in Mozambique…

  18. Photovoltaic applications definition and photovoltaic system definition study in the agricultural sector. Volume 2: Technical results

    NASA Astrophysics Data System (ADS)

    Mengel, R. W.; Nadolski, T. P.; Sparks, D. C.; Young, S. K.; Yingst, A.

    1980-05-01

    This volume describes the technical results of the study of potential photovoltaic (P/V) applications in US agriculture. The results presented address all technical aspects of the program and include a summary of agricultural energy consumption. The objectives of the technical effort reported were to: (1) identify and characterize agricultural energy demands that can effectively use P/V power systems; (2) develop effective P/V system designs for the four most promising applications; (3) determine performance and cost estimates for the designs; and (4) recommend systems for early test and demonstration and critical issues requiring further systems studies. The farms chosen for conceptual design include; (1) poultry layer farm, (2) hog production farm, (3) beef feedlot, and (4) year round vegetable farm.

  19. Carbon footprint of dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions and their potential impact on global warming has become an important national and international concern. Dairy production systems along with all other types of animal agriculture are recognized as a source of GHG. Although little information exists on the net GHG emiss...

  20. Transformation and Transport Processes of Nitrogen in Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transformation and transport processes of nitrogen (N) in agricultural systems are discussed and information is provided on overall reservoir sizes for N. Nitrogen is ubiquitous in the environment and is required for the survival of all living things. It is also one of the most important essen...

  1. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  2. Land Resources for Crop Production. Agricultural Economic Report Number 572.

    ERIC Educational Resources Information Center

    Hexem, Roger; Krupa, Kenneth S.

    About 35 million acres not being cultivated have high potential for crop use and 117 million more have medium potential, according to the 1982 National Resources Inventory (NRI) conducted by the U.S. Department of Agriculture. USDA committees evaluated the economic potential for converting land based on physical characteristics of the soil; size…

  3. Agricultural Production and Business Management: Volume 1 (Crops).

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    The curriculum guide is the first part of a two-year program developed as part of revision of the total agricultural education curriculum in South Carolina. The project was designed to implement the following changes: (1) provide a more comprehensive vocational offering; (2) place a greater emphasis on behavioral objectives; (3) place a greater…

  4. Production of Agricultural Commodities in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are approaching the time when the needs of the world must be met using sustainable methods. Agriculture will be at the forefront of this movement and will help us to meet the food and feed needs of an ever growing population and it will play at least a part of the environmentally friendly energy...

  5. Factors affecting the dielectric properties of agricultural and food products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of materials are defined, and the major factors that influence these properties of agricultural and food materials, namely, frequency of the applied radio-frequency and microwave electric fields, water content, temperature, and density of the materials are discussed on the bas...

  6. Agricultural Production and Business Management: Volume 2 (Livestock).

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    The curriculum guide is the second part of a two-year program developed as part of a revision of the total agricultural education curriculum in South Carolina. The project was designed to implement the following changes: (1) provide a more comprehensive vocational offering; (2) place a greater emphasis on behavioral objectives; (3) place a greater…

  7. Introduction to Agricultural Products and Processing. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document consists of the teacher's guide to a module designed to teach high school students entry-level job competencies in the new areas of agriculture that are now emerging. The module, one of a series of publications designed to identify these new competencies, contains 11 instructional units that cover the following topics: trends in…

  8. An environmental impact assessment system for agricultural R and D

    SciTech Connect

    Rodrigues, Geraldo Stachetti; Campanhola, Clayton; Kitamura, Paulo Choji

    2003-03-01

    A strategic planning process has been implemented at the Brazilian Agricultural Research Agency (Embrapa) to introduce sustainable agriculture concepts in all steps of Research and Development (R and D). An essential part of the devised mission statement called for the impact assessment of all technology innovation resulting from R and D, under field conditions (ex-post). However, methods for impact assessment of technology innovations at the farmstead level appropriate for the institutional context were lacking. The environmental impact assessment (EIA) system (AMBITEC-AGRO) developed to attend that demand is composed by a set of weighing matrices constructed in an electronic spreadsheet. Impact indicators are evaluated in the field in an interview/survey, and weighed according to their spatial scale and importance toward effecting environmental impacts. The results of these weighing procedures are expressed graphically in the assessment spreadsheets. Finally, the indicator evaluations are composed into an Environmental Impact Index for the agricultural technology innovation.

  9. Belle II production system

    NASA Astrophysics Data System (ADS)

    Miyake, Hideki; Grzymkowski, Rafal; Ludacka, Radek; Schram, Malachi

    2015-12-01

    The Belle II experiment will record a similar quantity of data to LHC experiments and will acquire it at similar rates. This requires considerable computing, storage and network resources to handle not only data created by the experiment but also considerable amounts of simulated data. Consequently Belle II employs a distributed computing system to provide the resources coordinated by the the DIRAC interware. DIRAC is a general software framework that provides a unified interface among heterogeneous computing resources. In addition to the well proven DIRAC software stack, Belle II is developing its own extension called BelleDIRAC. BelleDIRAC provides a transparent user experience for the Belle II analysis framework (basf2) on various environments and gives access to file information managed by LFC and AMGA metadata catalog. By unifying DIRAC and BelleDIRAC functionalities, Belle II plans to operate an automated mass data processing framework named a “production system”. The Belle II production system enables large-scale raw data transfer from experimental site to raw data centers, followed by massive data processing, and smart data delivery to each remote site. The production system is also utilized for simulated data production and data analysis. Although development of the production system is still on-going, recently Belle II has prepared prototype version and evaluated it with a large scale simulated data production. In this presentation we will report the evaluation of the prototype system and future development plans.

  10. Modelling and analysis of inventory replenishment for perishable agricultural products with buyer-seller collaboration

    NASA Astrophysics Data System (ADS)

    Shen, Dongjie; Lai, K. K.; Leung, Stephen C. H.; Liang, Liang

    2011-07-01

    In this article, we study the inventory replenishment model for perishable agricultural products in a simple two-level supply chain. Collaborative forecasting is introduced into the inventory replenishment decisions to avoid overstocking and understocking of agricultural products, and to maximise profits. We analyse the model with ordering cost, holding cost, shortage cost, deterioration cost and opportunity lost cost of perishable agricultural products. Extensive numerical analysis is carried out to study the performance of the inventory policy. The optimal replenishment policy that minimises the total cost can be obtained from the model. It has demonstrated that the supply chain cost decreases with supplier and retailer's collaborative forecasting.

  11. Rapid assessment methods of resilience for natural and agricultural systems.

    PubMed

    Torrico, Juan C; Janssens, Marc J J

    2010-12-01

    The resilience, ecological function and quality of both agricultural and natural systems were evaluated in the mountainous region of the Atlantic Rain Forest of Rio de Janeiro through Rapid Assessment Methods. For this goal new indicators were proposed, such as eco-volume, eco-height, bio-volume, volume efficiency, and resilience index. The following agricultural and natural systems have been compared according: (i) vegetables (leaf, fruit and mixed); (ii) citrus; (iii) ecological system; (iv) cattle, (v) silvo-pastoral system, (vi) forest fragment and (vii) forest in regeneration stage (1, 2 and 3 years old). An alternative measure (index) of resilience was proposed by considering the actual bio-volume as a function of the potential eco-volume. The objectives and hypotheses were fulfilled; it is shown that there does exist a high positive correlation between resilience index, biomass, energy efficiency and biodiversity. Cattle and vegetable systems have lowest resilience, whilst ecological and silvo-pastoral systems have greatest resilience. This new approach offers a rapid, though valuable assessment tool for ecological studies, agricultural development and landscape planning, particularly in tropical countries. PMID:21152779

  12. A productivity measurement system

    SciTech Connect

    Sweet, R.H.; Blain, D.A.

    1988-01-01

    The system for measuring productivity of the EG and G Idaho, Inc., Drafting Group was developed at the Idaho National Engineering Laboratory. The Productivity Measurement System, built on relational data base management software, provides up-to-date information on the productivity of the Drafting Group, the drafting units, and the individual Drafters. The system was developed using data collected in the Drafters Time and Activities Log and Task Baseline Agreement (TBA) that was input to the data base. Using these data, an average usage rate in hours per square foot of drawing, CAD and Manual, was established. This provided a benchmark for management reports that are depicted graphically for ease of trend analyses. In addition, the system provides each drafter an indicator as to where they stand in relation to their peers, and all of the information provided leads to more accurate drafting estimates. 11 figs.

  13. Assessing Change in Agricultural Productivity Caused by Drought and Conflict in Northern Syria using Landsat Imagery.

    NASA Astrophysics Data System (ADS)

    Girgin, T.; Ozdogan, M.

    2015-12-01

    Until recently, agricultural production in Syria has been an important source of revenue and food security for the country. At its peak, agriculture in Syria accounted for 25 percent of the country's GDP. In 2014, Syrian agriculture accounted for less than 5 percent of the GDP. This decline in agricultural productivity is the cause of a 3-year long drought that started in 2007, followed by a still-ongoing conflict that started in mid-2011. Using remote sensing tools, this paper focuses on the impact that the 2007-2010 drought had on agricultural production, as well as the impact that the ongoing conflict had on the agricultural production in northern Syria. Remote sensing is a powerful and great solution to study regions of the world that are hard-to-reach due to conflict and/or other limitations. It is particularly useful when studying a region that inaccessible due to an ongoing conflict, such as in northern Syria. Using multi-temporal Landsat 5 and Landsat 8 images from August 2006, 2010 and 2014 and utilizing the neural networks algorithm, we assessed for agricultural output change in northern Syria. We conclude that the ongoing Syrian conflict has had a bigger impact on the agricultural output in northern Syria than the 3-year long drought.

  14. Poultry Production for Agricultural Science I Core Curriculum. Instructor's Guide. Volume 19, Number 2.

    ERIC Educational Resources Information Center

    Timko, Joseph J.; Stewart, Bob R.

    This unit is designed to aid teachers in lesson planning in the secondary agricultural education curriculum in Missouri. Intended to be taught to ninth-grade students of vocational agriculture, the unit contains six lessons for developing competencies needed in poultry production. The lessons are as follows: (1) the importance of the poultry…

  15. Activated Carbon Derived from Fast Pyrolysis Liquids Production of Agricultural Residues and Energy Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis is a thermochemical method that can be used for processing energy crops such as switchgrass, alfalfa, soybean straw, corn stover as well as agricultural residuals (broiler litter) for bio-oil production. Researchers with the Agriculture Research Service (ARS) of the USDA developed a 2...

  16. Grassland-cropping rotations: An avenue for agricultural diversification to reconcile high production with environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity...

  17. Study of Factors Influencing Research Productivity of Agriculture Faculty Members in Iran

    ERIC Educational Resources Information Center

    Hedjazi, Yousef; Behravan, Jaleh

    2011-01-01

    The purpose of this research is to analyze the relationship between individual, institutional and demographic characteristics on one hand and the research productivity of agriculture faculty members on the other. The statistical population of the research comprises 280 academic staff in agricultural faculties all over Tehran Province. The data…

  18. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGENCY, DEPARTMENT OF AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Licensing § 735.110 Conditions for delivery of agricultural products. (a) In the absence of a lawful excuse, a warehouse operator will, without unnecessary delay, deliver the...

  19. Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns.

    PubMed

    Anyamba, Assaf; Small, Jennifer L; Britch, Seth C; Tucker, Compton J; Pak, Edwin W; Reynolds, Curt A; Crutchfield, James; Linthicum, Kenneth J

    2014-01-01

    We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations. PMID:24658301

  20. Iron: The Forgotten Driver of Nitrous Oxide Production in Agricultural Soil

    PubMed Central

    Zhu, Xia; Silva, Lucas C. R.; Doane, Timothy A.; Horwath, William R.

    2013-01-01

    In response to rising interest over the years, many experiments and several models have been devised to understand emission of nitrous oxide (N2O) from agricultural soils. Notably absent from almost all of this discussion is iron, even though its role in both chemical and biochemical reactions that generate N2O was recognized well before research on N2O emission began to accelerate. We revisited iron by exploring its importance alongside other soil properties commonly believed to control N2O production in agricultural systems. A set of soils from California's main agricultural regions was used to observe N2O emission under conditions representative of typical field scenarios. Results of multivariate analysis showed that in five of the twelve different conditions studied, iron ranked higher than any other intrinsic soil property in explaining observed emissions across soils. Upcoming studies stand to gain valuable information by considering iron among the drivers of N2O emission, expanding the current framework to include coupling between biotic and abiotic reactions. PMID:23555906

  1. Recent Weather Extremes and Impacts on Agricultural Production and Vector-Borne Disease Outbreak Patterns

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Small, Jennifer L.; Britch, Seth C.; Tucker, Compton J.; Pak, Edwin W.; Reynolds, Curt A.; Crutchfield, James; Linthicum, Kenneth J.

    2014-01-01

    We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused,10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.

  2. The Potential of Pigeonpea (Cajanus cajan) for Producing Important Components of Renewable Energy and Agricultural Products

    NASA Astrophysics Data System (ADS)

    Gwata, E.

    2012-04-01

    In agricultural systems, sustainable crop production is critical in meeting both environmental requirements and the limitations of drought imposed by the effects of global warming. The inputs for crop production and end use of the products should determine the choice of a crop particularly in environments prone to droughts. The objective of this paper is to highlight why a multi-purpose grain legume such as pigeonpea is an ideal crop that can be utilized for producing renewable energy. Firstly, it is highly tolerant to drought and does not require additional soil moisture after the seedling growth stage. The deep tape root extracts moisture and nutrients from deep layers of the soil concomitantly allowing for efficient nutrient recycling. The piscidic acid which is exuded from the roots enhances the solubilization of phosphorus in order to make it available for plant uptake. Secondly, the grain of pigeonpea is suitable for both human food and feedstocks. The grain is rich in oil, vitamins, minerals and protein. The grain can also be used for producing biofuel. In many countries particularly in the developing world, the stover is used as fuel wood or building (roofing) material, thus alleviating pressure on forest products. The crop is grown without the application of inorganic fertilizers as it can fix atmospheric nitrogen symbiotically in its root nodules. Pigeonpea is also ratoonable, producing two or more harvests per season. In addition, it is grown in mixed cropping systems thus optimizing land use. In these regards, pigeonpea is sustainable and environmentally friendly choice for agricultural production of food and energy balance.

  3. Evaluating multiple indices of agricultural water use efficiency and productivity to improve comparisons between sites and trends

    NASA Astrophysics Data System (ADS)

    Levy, M. C.

    2012-12-01

    Approximately 70% of global available freshwater supplies are used in the agricultural sector. Increased demands for water to meet growing population food requirements, and expected changes in the reliability of freshwater supplies due to climate change, threaten the sustainability of water supplies worldwide - not only on farms, but in connected cities and industries. Researchers concerned with agricultural water use sustainability use a variety of theoretical and empirical measures of efficiency and productivity to gain insight into the sustainability of agricultural water use. However, definitions of measures, or indices, vary between different natural and political boundaries, across regions, states and nations and between their respective research, industry, and environmental groups. Index development responds to local data availability and local agendas, and there is debate about the validity of various indices. However, real differences in empirical index measures are not well-understood across the multiple disciplines that study agricultural water use, including engineering and hydrology, agronomy, climate and soil sciences, and economics. Nevertheless reliable, accessible, and generalizable indices are required for planners and policymakers to promote sustainable water use systems. This study synthesizes a set of water use efficiency and productivity indices based on academic, industry and government literature in California and Australia, two locations with similarly water-stressed and valuable agricultural industries under pressure to achieve optimal water use efficiency and productivity. Empirical data at the irrigation district level from the California San Joaquin Valley and Murray Darling Basin states of Victoria and New South Wales in Australia are used to compute indices that estimate efficiency, yield productivity, and economic productivity of agricultural water use. Multiple index estimates of same time-series data demonstrate historical spread

  4. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  5. Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast

    DOE PAGESBeta

    Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui; Nair, Sujithkumar Surendran

    2016-02-11

    Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance inmore » regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.« less

  6. Greenhouse gas budget of agricultural systems: real possibility or dream?

    NASA Astrophysics Data System (ADS)

    Neftel, A.; Ammann, C.; Calanca, P.; Fuhrer, J.; Leifeld, J.; Jocher, M.; Volk, M.

    2003-04-01

    It is now widely accepted that emission of greenhouse gases (GHG) by human activities are causing an increase of global mean temperature. Model calculations have shown that the rate of increase might have a decisive influence on the stability of the climate. It is therefore crucial to slow down the increase of GHG concentrations in the atmosphere. Storage of carbon in the terrestrial biosphere is mentioned as one possibility in the Kyoto protocol. Mitigation options to decrease GHG emissions in agricultural systems as well as to increase carbon stock in agricultural soils are in discussion. The quantification and verification of the GHG budget is a prerequisite to establish a trade within the Kyoto protocol. On the scientific level this comes down to a greenhouse gas budget for agricultural systems. Comparability and interpretation of GHG budgets depends on an appropriate and consistent choice of the considered system, especially the system boundaries. In this presentation we discuss the feasibility of such a budget for a the smallest unit: the yearly budget of grassland system. Differences between GHG budget and carbon budget will be assessed.

  7. Development of a Global Agricultural Hotspot Detection and Early Warning System

    NASA Astrophysics Data System (ADS)

    Lemoine, G.; Rembold, F.; Urbano, F.; Csak, G.

    2015-12-01

    The number of web based platforms for crop monitoring has grown rapidly over the last years and anomaly maps and time profiles of remote sensing derived indicators can be accessed online thanks to a number of web based portals. However, while these systems make available a large amount of crop monitoring data to the agriculture and food security analysts, there is no global platform which provides agricultural production hotspot warning in a highly automatic and timely manner. Therefore a web based system providing timely warning evidence as maps and short narratives is currently under development by the Joint Research Centre. The system (called "HotSpot Detection System of Agriculture Production Anomalies", HSDS) will focus on water limited agricultural systems worldwide. The automatic analysis of relevant meteorological and vegetation indicators at selected administrative units (Gaul 1 level) will trigger warning messages for the areas where anomalous conditions are observed. The level of warning (ranging from "watch" to "alert") will depend on the nature and number of indicators for which an anomaly is detected. Information regarding the extent of the agricultural areas concerned by the anomaly and the progress of the agricultural season will complement the warning label. In addition, we are testing supplementary detailed information from other sources for the areas triggering a warning. These regard the automatic web-based and food security-tailored analysis of media (using the JRC Media Monitor semantic search engine) and the automatic detection of active crop area using Sentinel 1, upcoming Sentinel-2 and Landsat 8 imagery processed in Google Earth Engine. The basic processing will be fully automated and updated every 10 days exploiting low resolution rainfall estimates and satellite vegetation indices. Maps, trend graphs and statistics accompanied by short narratives edited by a team of crop monitoring experts, will be made available on the website on a

  8. Changes in Soil Chemistry and Agricultural Return Flow in an Integrated Seawater Agriculture System (ISAS) Demonstration in Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Ning, Q.; Matiin, W. A.; Ahmad, F.

    2012-12-01

    Growing halophytes using Integrated Seawater Agriculture Systems (ISAS) offers a sustainable solution for the generation of biomass feedstock for carbon neutral biofuels - halophytes do not enter the foodchain and they do not compete with food-crops for natural resources. A field demonstration of ISAS in the coastal regions of Abu Dhabi, UAE, scheduled to start in 2013, will likely face a number of region-specific challenges not encountered in past demonstrations of ISAS at coastal locations in Mexico and Eritrea. The arid climate, unique soil chemistry (evaporite deposits, especially gypsum), and hypersaline coastal hydrogeology of Abu Dhabi will affect long-term halophyte agricultural productivity when Arabian Gulf seawater is applied to coastal soils as part of ISAS. Therefore, the changes in irrigation return flow quality and soil chemistry must be monitored closely over time to establish transient salt and water balances in order to assess the sustainability of ISAS in the region. As an initial phase of the ISAS demonstration project, numerical modeling of different seawater loadings onto coastal soils was conducted to estimate the chemical characteristics of soil and the irrigation return flow over time. These modeling results will be validated with field monitoring data upon completion of one year of ISAS operation. The results from this study could be used to (i) determine the optimal saline water loading that the soils at the ISAS site can tolerate, (ii) potential for sodicity of the soil with saline water application, (iii) impacts of land application of saline water on underlying coastal groundwater, and (iv) develop strategies to control soil water activities in favor of halophyte agricultural productivity.

  9. Increasing Labour Productivity in Agriculture and Its Implications

    ERIC Educational Resources Information Center

    van den Ban, Anne

    2011-01-01

    In order to profit from the economic growth in their society farmers can (1) increase the yields of their crops and animals, (2) switch to the production of high value products for which there is an increasing demand in the market, (3) increase the labour productivity on their farm, (4) find non-farm sources of income for some or all of their…

  10. Agricultural biodiversity, social-ecological systems and sustainable diets.

    PubMed

    Allen, Thomas; Prosperi, Paolo; Cogill, Bruce; Flichman, Guillermo

    2014-11-01

    The stark observation of the co-existence of undernourishment, nutrient deficiencies and overweight and obesity, the triple burden of malnutrition, is inviting us to reconsider health and nutrition as the primary goal and final endpoint of food systems. Agriculture and the food industry have made remarkable advances in the past decades. However, their development has not entirely fulfilled health and nutritional needs, and moreover, they have generated substantial collateral losses in agricultural biodiversity. Simultaneously, several regions are experiencing unprecedented weather events caused by climate change and habitat depletion, in turn putting at risk global food and nutrition security. This coincidence of food crises with increasing environmental degradation suggests an urgent need for novel analyses and new paradigms. The sustainable diets concept proposes a research and policy agenda that strives towards a sustainable use of human and natural resources for food and nutrition security, highlighting the preeminent role of consumers in defining sustainable options and the importance of biodiversity in nutrition. Food systems act as complex social-ecological systems, involving multiple interactions between human and natural components. Nutritional patterns and environment structure are interconnected in a mutual dynamic of changes. The systemic nature of these interactions calls for multidimensional approaches and integrated assessment and simulation tools to guide change. This paper proposes a review and conceptual modelling framework that articulate the synergies and tradeoffs between dietary diversity, widely recognised as key for healthy diets, and agricultural biodiversity and associated ecosystem functions, crucial resilience factors to climate and global changes. PMID:25068204

  11. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help?

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Knox, Jerry W.; Ozdogan, Mutlu; Gumma, Murali Krishna; Congalton, Russell G.; Wu, Zhuoting; Milesi, Cristina; Finkral, Alex; Marshall, Mike; Mariotto, Isabella; You, Songcai; Giri, Chandra; Nagler, Pamela

    2012-01-01

    of changing dietary consumption patterns, a changing climate and the growing scarcity of water and land (Beddington, 2010). The impact from these changes wi ll affect the viability of both dryland subsistence and irrigated commodity food production (Knox, et al., 2010a). Since climate is a primary determinant of agricultural productivity, any changes will influence not only crop yields, but also the hydrologic balances, and supplies of inputs to managed farming systems as well as potentially shifting the geographic location for specific crops . Unless concerted and collective action is taken, society risks worldwide food shortages, scarcity of water resources and insufficient energy. This has the potential to unleash public unrest, cross-border conflicts and migration as people flee the worst-affected regions to seck refuge in "safe havens", a situation that Beddington described as the "perfect storm" (2010).

  12. REDUCING THE ENVIRONMENTAL IMPACT OF AGRICULTURAL AND NON-AGRICULTURAL SYSTEMS: MITIGATING OFF-SITE TRANSPORT OF PESTICIDES WITH RUNOFF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality surveys have detected numerous pesticides in surface waters of urban and agricultural areas. The intense use of pesticides in highly managed turf systems and agriculture is of concern due to their potential adverse effects on the quality of surface waters, impacting drinking water reso...

  13. Fields of dreams: Agriculture, economy and nature in Midwest United States biofuel production

    NASA Astrophysics Data System (ADS)

    Gillon, Sean Thomas

    This work explores the social and ecological dimensions of recent biofuel production increases in the United States (US), focusing on the case of Iowa. Biofuels are proposed to mitigate the greenhouse gas emissions that cause climate change, improve US energy security, and support rural economies. Little research has examined how increased US Midwestern biofuels production will change social and ecological outcomes at farm and regional levels or interact with broader governance processes at the nexus of agriculture, energy and environment. These broad questions guide my research: (1) How does biofuel production reconfigure agricultural practice and landscapes in Iowa? (2) What are the costs, benefits and risks of increased biofuels production as seen by farmers and rural residents, and how do these factors influence farmer decisions about agriculture and conservation practice? (3) How and with what effects are biofuels initiatives constituted as a form of environmental governance through scientific knowledge and practice and political economic dynamics? To address these questions, this research integrates both qualitative and quantitative methods, drawing on a political ecological approach complemented by agroecological analysis and theoretical insights from geographical analyses of nature-society relations. Quantitative analysis focuses on changing land use patterns in agriculture and conservation practice in Iowa. Qualitative methods include extensive interviews, participant observation, and policy and document analyses. Fieldwork focused on Northeastern Iowa to understand regional changes in agricultural and conservation practice, the renegotiated position of farmers in agriculture and biofuel production, and biofuel industry development. I find that biofuel production presents significant social and ecological challenges for rural places of production. Longstanding, unequal political economic relations in industrialized agriculture limit rural economic benefits

  14. A Decision Support System for Climate Change Adaptation in Rainfed Sectors of Agriculture for Central Europe

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Berki, Imre; Drüszler, Áron; Eredics, Attila; Gálos, Borbála; Illés, Gábor; Móricz, Norbert; Rasztovits, Ervin; Czimber, Kornél

    2013-04-01

    • Background and aims: Rainfed sectors of agriculture such as nature-close forestry, non-irrigated agriculture and animal husbandry on nature-close pastures are threatened by projected climate change especially in low-elevation regions in Southeast Europe, where precipitation is the limiting factor of production and ecosystem stability. Therefore the importance of complex, long term management planning and of land use optimization is increasing. The aim of the Decision Support System under development is to raise awareness and initiate preparation for frequency increase of extreme events, disasters and economic losses in the mentioned sectors. • Services provided: The Decision Support System provides GIS-supported information about the most important regional and local risks and mitigation options regarding climate change impacts, projected for reference periods until 2100 (e.g. land cover/use and expectable changes, potential production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.). The projections are referring first of all on biological production (natural produce), but the System includes also social and economic consequences. • Methods: In the raster based system, the latest image processing technology is used. We apply fuzzy membership functions, Support Vector Machine and Maximum Likelihood classifier. The System is developed in the first step for a reference area in SW Hungary (Zala county). • Novelty: The coherent, fine-scale regional system integrates the basic information about present and projected climates, extremes, hydrology and soil conditions and expected production potential for three sectors of agriculture as options for land use and conservation. • Funding: The development of the Decision Support System "Agrárklíma" is supported by TÁMOP-4.2.2.A-11/1/KONV and 4.2.2.B-10/1-2010-0018 "Talentum" joint EU-national research projects. Keywords: climate change

  15. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided. PMID:26995933

  16. Optimization based trade-off analysis of biodiesel crop production for managing a German agricultural catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural production, the existence of multiple trade-offs among several conflicting objectives, such as food production, water quantity, water quality, biodiversity and ecosystem services, is well known. However, quantification of the trade-offs among objectives in bioenergy crop production i...

  17. Peering into the Secrets of Food and Agricultural Co-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scanning electron microscopy is a useful tool for directing product development and is equally important for developing products from food crops and co-products from the agricultural waste after harvest. The current trend in food research is to produce foods that are fast to prepare and/or ready to ...

  18. 78 FR 27953 - Notification of Proposed Production Activity, CNH America, LLC, Subzone 59B, (Agricultural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... Foreign-Trade Zones Board Notification of Proposed Production Activity, CNH America, LLC, Subzone 59B, (Agricultural Equipment Production); Grand Island, Nebraska The Lincoln Foreign-Trade Inc., grantee of FTZ 59, submitted a notification of proposed production activity to the FTZ Board on behalf of CNH America,...

  19. Monitoring Agricultural Production in Primary Export Countries within the framework of the GEOGLAM Initiative

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.; Vermote, E.

    2012-12-01

    Up to date, reliable, global, information on crop production prospects is indispensible for informing and regulating grain markets and for instituting effective agricultural policies. The recent price surges in the global grain markets were in large part triggered by extreme weather events in primary grain export countries. These events raise important questions about the accuracy of current production forecasts and their role in market fluctuations, and highlight the deficiencies in the state of global agricultural monitoring. Satellite-based earth observations are increasingly utilized as a tool for monitoring agricultural production as they offer cost-effective, daily, global information on crop growth and extent and their utility for crop production forecasting has long been demonstrated. Within this context, the Group on Earth Observations developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted by the G20 as part of the action plan on food price volatility and agriculture. The goal of GEOGLAM is to enhance agricultural production estimates through the use of Earth observations. This talk will explore the potential contribution of EO-based methods for improving the accuracy of early production estimates of main export countries within the framework of GEOGLAM.

  20. Ethanol and agriculture: Effect of increased production on crop and livestock sectors. Agricultural economic report

    SciTech Connect

    House, R.; Peters, M.; Baumes, H.; Disney, W.T.

    1993-05-01

    Expanded ethanol production could increase US farm income by as much as $1 billion (1.4 percent) by 2000. Because corn is the primary feedstock for ethanol, growers in the Corn Belt would benefit most from improved ethanol technology and heightened demand. Coproducts from the conversion process (corn gluten meal, corn gluten feed, and others) compete with soybean meal, soybean growers in the South may see revenues decline. The US balance of trade would improve with increased ethanol production as oil import needs decline.

  1. Projecting groundwater declines and agricultural production through 2110 in the High Plains Aquifer of Kansas

    NASA Astrophysics Data System (ADS)

    Steward, D. R.; Bruss, P. J.; Yang, X.; Staggenborg, S. A.; Welch, S. M.; Apley, M. D.

    2013-12-01

    Groundwater pumping supports vibrant agricultural production in the High Plains Aquifer region of Kansas, and yet, persistent aquifer depletion threatens the long-term prospects and the capacity to help feed to world's population. A new model is presented to project changes in groundwater storage and agricultural production into the future using methodology recently developed by the authors (Steward et al. 2013). This vertically integrated model directly relates groundwater pumping to corn production and feed for cattle production. Estimates are provided for the time to aquifer depletion, the rate of recharge, and the time it would take to completely refill a depleted aquifer. Estimates are also projected into the future for corn and cattle production. Scenario analysis shows the impacts of reduced pumping today on future groundwater stores and on agricultural production. This knowledge is important for society to balance groundwater use across the demands of the present with the needs of the future.

  2. Production Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    This production systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, domains and objectives, a course description, and a content outline. The guide contains 30 modules on the following topics: production…

  3. Organic watermelon production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing perception by consumers that organic food tastes better and is healthier continues to expand the demand for organically produced crops. Research investigating certified organic production requires a systems approach to determine the optimum combination of individual components to max...

  4. Innovating blackberry production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article provides an overview of progress made on the blackberry production system at the Appalachian Fruit Research Station in Kearneysville, WV. Several lines of research have made a significant positive impact to the blackberry industry as the new technology has have been successfully transf...

  5. Fumonisins B1 and B2 in agricultural products consumed in South Korea: an exposure assessment.

    PubMed

    Seo, Eunkyoung; Yoon, Yohan; Kim, Kyeongyeol; Shim, Won-Bo; Kuzmina, Nina; Oh, Keum-Soon; Lee, Jong-Ok; Kim, Dong-Sul; Suh, Junghyuck; Lee, Soo-Hyung; Chung, Kee-Hey; Chung, Duck-Hwa

    2009-02-01

    To survey fumonisins B1 (FB1) and B2 (FB2) in agricultural products consumed in South Korea and provide an exposure assessment, ground samples were extracted (80% MeOH), filtered (0.2 microm), and cleaned up. After evaporation, dry residues were reconstituted in 50% MeOH, and a 50-micro1 aliquot of this sample was mixed with 200 micro1 of o-phthaldialdehyde for derivatization. The derivatives were analyzed with a high-performance liquid chromatography system equipped with a fluorescence detector. For validation of the detection procedure, linearity, accuracy, precision, detection limit, and quantification limit were determined. The validated detection method was then used to survey fumonisins in white rice, brown rice, barley, barley tea, beer, wheat flour, millet, dried corn, corn flour, corn tea, canned corn, popcorn, and breakfast cereal. Retention times for FB1 and FB2 standards were 7 and 18 min, respectively. Linearity (R2 = 0.99995 to 0.99998), accuracy (81.47 to 108.83%), precision (2.35 to 5.77), detection limit (25 ng/g or ng/ml), and quantification limit (37 ng/g or ng/ml) indicated that this procedure is capable of quantifying fumonisins in agricultural products. Only FB1-positive samples (5.12%, three dried corn samples and five corn flour samples) were found at 90.89 to 439.67 ng/g. According the survey results, an estimated daily intake of FB1 and FB2 in Korea was 0.087 ng/kg of body weight per day. These results indicate that continuous monitoring of these mycotoxins is necessary to establish appropriate risk assessment, and the maximum tolerable daily intake of fumonisins in Korea is lower than the 2 microg/kg set by the Joint Food and Agriculture Organization-World Health Organization Expert Committee. PMID:19350995

  6. Atmospheric deposition of nitrogen: Potential benefits to agricultural production

    SciTech Connect

    Coveney, E.A.; Medeiros, W.H.; Moskowitz, P.D.

    1986-11-01

    Effects of indirect fertilization on agricultural lands by atmospheric deposition are examined for the four most valuable crops in the US: corn, soybean, wheat, and pasture grasses. A literature search was conducted to find suitable dose-response functions for the effects of fertilization on yield of each crop. Predicted yield changes were computed from the deposition of nitrogen to the soil in addition to nitrogen applied in accordance with current agronomic practices using these dose-response functions. Low to high nitrogen inputs from atmospheric deposition (1 to 7 kg/ha) are expected to increase the average yield of corn by 0.2 to 1.1%, soybean by 0.1 to 0.7%, wheat by 0.1 to 0.4%, and pasture grasses by 1.6 to 14%. Pasture land is predicted to receive the greatest impact because it is usually unfertilized.

  7. Product amount and quality monitoring in agricultural fields with remote sensing satellite and radio-control helicopter

    NASA Astrophysics Data System (ADS)

    Arai, Kohei

    Product amount and quality monitoring in agricultural fields with remote sensing satellite and radio-control helicopter is proposed. In particular, tealeaves and rice crop quality and amoujnt monitorings are peoposed as examples. Nitrogen rich tealeaves tasts good. Therefore, quality of tealeaves can be estimated with nitrogen content which is related with near infrared reflectance of the tealeves in concern. Also, rice crop quality depends on protein content in rice grain which is related to near infrared reflectance of rice leaves. Therefore, product quality can be estimated with observation of near infrared reflectance of the leaves in concern. Near infared reflectance is provided by near infrared radiometers onboard remote sensing satellites and by near infrared cameras onboard radio-control helicopter. This monitoring system is applicable to the other agricultural plant products. Through monitoring near ingfrared reflectance, it is possible to estimate quality as well as product amount.

  8. Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas.

    PubMed

    Fujiwara, T

    2012-01-01

    Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources. PMID:22828292

  9. Utilization of industrial and agricultural by-products for fungal amylase production.

    PubMed

    Mahmoud, S A; Abdel-Hafez, A M; Mashhoor, W A; Refaat, A A

    1978-01-01

    Attempts were made for using industrial and agricultural by-products and wastes as carbon and nitrogen sources in fermentation medium for alpha-amylase production by Aspergillus niger NRRL-337. The original carbon source of the basal medium was replaced by one of the following materials: rice bran, wheat bran, corn bran, corn starch, cane molasses, and glucose syrup. Rice bran proved to be the best carbon source that secured the highest amylase activity. The nitrogen source of the basal medium was then replaced by different cheap materials, viz: dried yeast, corn steep liquor, gluten-30, gluten-50, and corn steep precipitate. Corn steep precipitate proved to be superior in amylase production. In consideration of these results an economical medium that secured high activity, containing the following ingredients, was suggested: 2.5% corn steep precipitate, 7.2% rice bran, 0.1% MgSO4, 0.1% KH2PO4, and 0.1% CaCO3. From this medium fungal amylase was precipitated and purified. The pure enzyme gave the highest activity at 40 degrees C and pH 4.3. PMID:28620

  10. Food vs. water: the magnitude and range of global tradeoffs in agricultural production and impact

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Flörke, M.; Mueller, N. D.; Foley, J. A.

    2013-12-01

    Water is integral to agricultural production, and agriculture is by far the largest human use of water, so food security and water sustainability are inexorably linked. When water goes to food production, however, the benefits and costs are not uniformly distributed across the globe. We quantify the magnitude and global range of the multidimensional tradeoffs among food production, water consumption, and water quality impairment. To evaluate the productivity of water consumption in agriculture, we quantified the magnitude and global range of crop water productivity, the amount of food produced per unit of water consumed, for 16 major food crops (Brauman et al., 2013). We now expand on this, contextualizing the impact of high or low water productivity with information about water availability. Using outputs from the WaterGAP3 model (Flörke et al., 2013, Verzano et al. 2012), we map the burden of agricultural water consumption on total water availability. To incorporate impacts of agriculture on water quality, we include areas of excess nutrient application (Mueller et al., 2012). The integrated information about yield, water consumption, water availability, and nutrient application shows that benefits and impacts to water quantity and quality are not evenly distributed. Analogous to previous investigations of 'yield gaps,' which identified areas where biophysical conditions are sufficient for achieving yields higher than those that are attained (Licker et al., 2010), we show that in many places, for the given impacts to water, food production could be increased.

  11. Agriculture and food systems in sub-Saharan Africa in a 4°C+ world.

    PubMed

    Thornton, Philip K; Jones, Peter G; Ericksen, Polly J; Challinor, Andrew J

    2011-01-13

    Agricultural development in sub-Saharan Africa faces daunting challenges, which climate change and increasing climate variability will compound in vulnerable areas. The impacts of a changing climate on agricultural production in a world that warms by 4°C or more are likely to be severe in places. The livelihoods of many croppers and livestock keepers in Africa are associated with diversity of options. The changes in crop and livestock production that are likely to result in a 4°C+ world will diminish the options available to most smallholders. In such a world, current crop and livestock varieties and agricultural practices will often be inadequate, and food security will be more difficult to achieve because of commodity price increases and local production shortfalls. While adaptation strategies exist, considerable institutional and policy support will be needed to implement them successfully on the scale required. Even in the 2°C+ world that appears inevitable, planning for and implementing successful adaptation strategies are critical if agricultural growth in the region is to occur, food security be achieved and household livelihoods be enhanced. As part of this effort, better understanding of the critical thresholds in global and African food systems requires urgent research. PMID:21115516

  12. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  13. Abatement costs of soil conservation in China's Loess Plateau: balancing income with conservation in an agricultural system.

    PubMed

    Hou, Lingling; Hoag, Dana L K; Keske, Catherine M H

    2015-02-01

    This study proposes the use of marginal abatement cost curves to calculate environmental damages of agricultural systems in China's Loess Plateau. Total system costs and revenues, management characteristics and pollution attributes are imputed into a directional output distance function, which is then used to determine shadow prices and abatement cost curves for soil and nitrogen loss. Marginal abatement costs curves are an effective way to compare economic and conservation tradeoffs when field-specific data are scarce. The results show that sustainable agricultural practices can balance soil conservation and agricultural production; land need not be retired, as is current policy. PMID:25463565

  14. Should pollution reductions count as productivity gains for agriculture?

    SciTech Connect

    Smith, V.K.

    1998-08-01

    Productivity changes have been used to gauge economic performance for at least fifty years. Because productivity measures have been so closely linked to changes in living standards, it is natural to ask whether net increases in marketed outputs are the only things that should count as gains to the standard of living. The articles by Faere and Grosskopf (FG) and Gollop and Swinand (GS) consider several different technical aspects of addressing this question. The purpose of this article is to comment on their proposals. Both articles implicitly accept the notion that changes in commodities that are not available in markets should be considered in evaluating performance. Faere and Grosskopf focus on how they should be valued in the productivity indexes, while Gollop and Swinand define conditions when pollution reductions can be allowed to count. The best overall summary of this comment on both papers repeat an overworked phrase--the devil is in the details.

  15. Multiscale Land surface feedbacks within agricultural and urban systems

    NASA Astrophysics Data System (ADS)

    Niyogi, D.

    2012-12-01

    This presentation will first discuss the interplay between agricultural landscapes and regional hydroclimatology with particular emphasis on the US Corn Belt. Results and experiences from studies underway as part of a multistate project (Making Climate Information Useful 2 Usable- U2U) will be summarized. The presentation will also highlight experiences regarding the different challenges in developing the regional assessment and guidance regarding sustainable futures. Study results will also be compared with findings from other geographical regions where agriculture - climate linkages are stretching the limits of sustainable water use. A vulnerability framework that can be considered for such agriculture - climate - water links will also be presented. The second issue the presentation will discuss relates to the urban land surface feedbacks and efforts underway to guide efforts related to greening as well as regional landuse planning. The complex links between city structures, urban layouts, and regional climate will be synthesized and the framework regarding a decision support system that is being developed will be presented. Salient points of the modeling efforts, data challenges, and the need for linking multiple disciplines will be presented with special focus on droughts and the need for considering complex multiscale coupled interactions within the analysis.

  16. Implementation of Wireless Sensor Networks Based Pig Farm Integrated Management System in Ubiquitous Agricultural Environments

    NASA Astrophysics Data System (ADS)

    Hwang, Jeonghwan; Lee, Jiwoong; Lee, Hochul; Yoe, Hyun

    The wireless sensor networks (WSN) technology based on low power consumption is one of the important technologies in the realization of ubiquitous society. When the technology would be applied to the agricultural field, it can give big change in the existing agricultural environment such as livestock growth environment, cultivation and harvest of agricultural crops. This research paper proposes the 'Pig Farm Integrated Management System' based on WSN technology, which will establish the ubiquitous agricultural environment and improve the productivity of pig-raising farmers. The proposed system has WSN environmental sensors and CCTV at inside/outside of pig farm. These devices collect the growth-environment related information of pigs, such as luminosity, temperature, humidity and CO2 status. The system collects and monitors the environmental information and video information of pig farm. In addition to the remote-control and monitoring of the pig farm facilities, this system realizes the most optimum pig-raising environment based on the growth environmental data accumulated for a long time.

  17. The role of precision agriculture in food production and security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variability in production represents a multidimensional problem. Variability occurs among years induced by weather variation, within fields induced by soil variation, and across years and within fields induced by the legacy of management decisions and their interactions with the weather during the g...

  18. PRODUCTION OF BIODIESEL FROM ALGAE APPLIED TO AGRICULTURAL WASTEWATER TREATMENT

    EPA Science Inventory

    With increasing dependence on foreign oil, escalating energy prices, and persistent air and water pollution associated with energy production, the U.S. is in need of a clean-burning renewable energy sources. Biodiesel is a rapidly expanding alternative fuel that has the po...

  19. Bovine mammary stem cells: Cell biology meets production agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  20. Flue gas desulfurization (FGD) products use on agricultural land

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over half of the electricity used in the U.S. is presently produced by burning coal. Currently 114 m mt/year of coal combustion by products (CCP) are produced when coal is burned for generation of electricity. Only about 43% of CCPs currently produced in the U.S. are utilized. Opportunities should b...

  1. Agricultural water requirements for commercial production of cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  2. Production and Modification of Sophorolipids from Agricultural Feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As petroleum prices and environmental concerns continue to raise, interest in bio-based materials, that may act as substitutes for or additives to currently used products, is becoming increasingly popular. Biosurfactants, particularly glycolipids, are one class of molecule that is receiving added a...

  3. Near-infrared hyperspectral imaging for quality analysis of agricultural and food products

    NASA Astrophysics Data System (ADS)

    Singh, C. B.; Jayas, D. S.; Paliwal, J.; White, N. D. G.

    2010-04-01

    Agricultural and food processing industries are always looking to implement real-time quality monitoring techniques as a part of good manufacturing practices (GMPs) to ensure high-quality and safety of their products. Near-infrared (NIR) hyperspectral imaging is gaining popularity as a powerful non-destructive tool for quality analysis of several agricultural and food products. This technique has the ability to analyse spectral data in a spatially resolved manner (i.e., each pixel in the image has its own spectrum) by applying both conventional image processing and chemometric tools used in spectral analyses. Hyperspectral imaging technique has demonstrated potential in detecting defects and contaminants in meats, fruits, cereals, and processed food products. This paper discusses the methodology of hyperspectral imaging in terms of hardware, software, calibration, data acquisition and compression, and development of prediction and classification algorithms and it presents a thorough review of the current applications of hyperspectral imaging in the analyses of agricultural and food products.

  4. Operational 333m Biophysical Products of the Copernicus Global Land Service for Agriculture Monitoring

    NASA Astrophysics Data System (ADS)

    Lacaze, R.; Smets, B.; Baret, F.; Weiss, M.; Ramon, D.; Montersleet, B.; Wandrebeck, L.; Calvet, J.-C.; Roujean, J.-L.; Camacho, F.

    2015-04-01

    The Copernicus Global Land service provides continuously a set of bio-geophysical variables describing, over the whole globe, the vegetation dynamic, the energy budget at the continental surface and some components of the water cycle. These generic products serve numerous applications including agriculture and food security monitoring. The portfolio of the Copernicus Global Land service contains Essential Climate Variables like the Leaf Area Index (LAI), the Fraction of PAR absorbed by the vegetation (FAPAR), the surface albedo, the Land Surface Temperature, the soil moisture, the burnt areas, the areas of water bodies, and additional vegetation indices. They are generated every hour, every day or every 10 days on a reliable automatic basis from Earth Observation satellite data. Beside this timely production, the available historical archives have been processed, using the same innovative algorithms, to get consistent time series as long as possible. All products are accessible, free of charge after registration through FTP/HTTP (system. The evolution of the service towards the operations at 333m resolution is partly supported by the FP7/ImagineS project which focuses on the retrieval of LAI, FAPAR, fraction of vegetation cover and surface albedo from PROBA-V sensor data. The paper presents the innovations of the 333m biophysical products, make an overview of their current status, and introduce the next steps of the evolution of the Copernicus Global Land service.

  5. Sod Production and Marketing. Instructional Materials Developed for Iowa Vocational Agriculture Teachers.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    Developed for use by vocational agriculture teachers in Iowa, this instructional unit provides information about the growing and marketing of sod for lawns. This document is one of three manuals making up a single package. (The other two are Christmas Tree Production and Marketing and Sod Production and Marketing). The manual includes an…

  6. A Grape Production Guide for Vocational Agriculture Instructors in Washington. Final Report.

    ERIC Educational Resources Information Center

    Padelford, Stewart L.; Cvancara, Joseph G., Ed.

    This curriculum guide is intended to provide vocational agriculture instructors with an up-to-date resource dealing with grape production in Washington. Addressed in the individual units of the guide are the following topics: the history of grape production; grape types important to Washington; site selection for a vineyard; establishment and…

  7. Agricultural production and nutrient runoff in the Corn Belt: Assessing dynamic environmental performance

    EPA Science Inventory

    Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in re...

  8. Specialty Animal Production Curriculum Guide for Vocational Agriculture/Agribusiness. Curriculum Development. Bulletin No. 1806.

    ERIC Educational Resources Information Center

    University of Southwestern Louisiana, Lafayette.

    This curriculum guide was developed to aid vocational agriculture/agribusiness teachers in Louisiana in improving their instruction and to provide students with the opportunity to obtain skills and knowledge in the production of nontraditional specialty animals. The guide covers the techniques of production, management, care, and marketing of…

  9. Hot Spots and Hot Moments of Methylmercury Production Associated With Agricultural and Non-agricultural Wetlands of the Yolo Bypass Wildlife Area, California

    NASA Astrophysics Data System (ADS)

    Marvin-Dipasquale, M.; Windham-Myers, L.; Agee, J. L.; Kakouros, E.; Cox, M. H.; Fleck, J.; Alpers, C. N.; Stephenson, M.

    2008-12-01

    The Yolo Bypass Wildlife Area (YBWA) is part of the larger Yolo Bypass floodwater protection zone associated with the Sacramento River and the Sacramento-San Joaquin Delta, in California. While mercury contamination is widespread throughout the region due to historic mining practices, the Yolo Bypass is responsible for a high proportion of the aqueous methylmercury (MeHg) entering the Delta, and biota from the Yolo Bypass are particularly elevated in toxic MeHg. Land use in the YBWA includes seasonally flooded agricultural fields (white rice, wild rice, fallow fields), and permanently and seasonally flooded non-agricultural wetlands used for resident and migratory waterfowl. Mercury biogeochemistry was examined in 0-2 cm surface sediment, as a function of habitat type, wetland management, and agricultural practices during the 2007-08 crop year. In permanently flooded wetlands, MeHg concentrations varied within a narrow range (ca. 0.5-1.5 ng/g dry wt) throughout the study period. In contrast, the three types of agricultural fields had higher MeHg concentrations throughout the rice-growing season (June-Sept; ca. 1.5-3.5 ng/g), and exhibited the highest levels (ca. 3.3-6.3 ng/g) in the post-harvest winter period (Dec-Feb). Further, naturally dried sediment, sampled during July '08 from post-harvest drained fallow agricultural fields (prior to reflooding) had MeHg concentrations that were also quite elevated (3.1 +/- 1.5 ng/g). This suggests that the initial elevated concentrations of overlying water MeHg, sometimes measured soon after flooding previously dried fields, may be related to the release of MeHg formed during the previous wet season and trapped in dried sediment, as opposed to being MeHg newly produced by bacteria upon soil rewetting. These results indicate that the 'hot spots and hot moments' associated with MeHg production in this system are linked to hydrologic manipulations (wetting and drying) in the agricultural fields, and that the practice of post

  10. Design of a solar controlled environment agriculture system (SCEAS)

    SciTech Connect

    Landstrom, D.K.; Stickford, G.H.; Talbert, S.G.; Wilkinson, W.H.

    1983-06-01

    The overall objective of the SCEAS project was to integrate advanced greenhouse agriculture technology with various energy sources and innovative cooling/ventilation concepts to demonstrate technical and economic feasibility of these facilities in several climatic regions where conventional greenhouse technology will not permit yearround growing of certain crops. The designed facility is capable of high yields of practically any crop, even temperaturesensitive vegetables such as lettuce, in extremely hostile external environments. The recirculation and ventilation system provides considerable flexibility in precise control of temperature and humidity throughout the year and in reducing water and energy consumption.

  11. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  12. Agricultural Research Service

    MedlinePlus

    ... Quality Review Office of Technology Transfer National Program Research Areas Animal Production and Protection Crop Production and Protection Natural Resources and Sustainable Agricultural Systems Nutrition, Food Safety, and Quality Overseas ...

  13. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  14. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity

    USGS Publications Warehouse

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.

    2014-01-01

    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.

  15. The historical impact of climate extremes on global agricultural production and trade

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Pal, I.; Block, P. J.; Lall, U.

    2011-12-01

    How does climate variability at interannual time scales impact the volume and prices of key agricultural products on the global market? Do concurrent climate shocks in major breadbaskets of the world have serious impacts on global stocks and food prices? To what extent may irrigated agriculture or food storage buffer such impacts? Is there evidence of such impacts and/or buffering in the publicly available historical data? This talk explores these questions through empirical data analysis. During the past two years, we have seen drought in China, Europe, and Russia and floods in the United States and Australia. In this study, we examine the relationship between climate and crop yields, focusing on three main grain staples: wheat, rice, and maize. To do this, we use global production, trade, and stock data from the Food and Agricultural Organization and the United States Department of Agriculture for agriculture information and gridded observations of temperature and precipitation from 1960 through 2008. We focus on the impact of climate shocks (extreme temperatures, drought, and floods) on the agricultural production for the top exporting countries and quantify how these shocks propagate through the country's exports, imports, and grain stocks in order to understand the effect climate variability and extremes have on global food security. The ability to forecast these climate shocks at seasonal to longer lead times would significantly improve our ability to cope with perturbations in the global food supply, and we evaluate the ability of current models to produce skillful seasonal forecasts over the major grain producing regions.

  16. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  17. 46 CFR 111.105-45 - Vessels carrying agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-45 Vessels carrying... directions except when there is an intervening barrier, such as a bulkhead or deck. Note to §...

  18. The Development of a Web-service-based On-demand Global Agriculture Drought Information System

    NASA Astrophysics Data System (ADS)

    Deng, M.; Di, L.; Han, W.; Yagci, A.; Peng, C.

    2011-12-01

    The growing demand on detailed and accurate assessments of agriculture drought from local to global scales has made drought monitoring and forecasting a hot research topic in recent years. However, many challenges in this area still remain. One of such challenges is to how to let world-wide decision makers obtain accurate and timely drought information. Current agriculture drought information systems in the world are limited in many aspects, such as only regional or country level coverage, very coarse spatial and temporal resolutions, no on-demand drought information product generation and download services, no online analysis tools, no interoperability with other systems, and ineffective agriculture drought monitoring and forecasting. Leveraging the latest advances in geospatial Web service, interoperability and cyber-infrastructure technologies and the availability of near real-time global remote sensing data, we aims at providing a solution to those problems by building an open, interoperable, standard-compliant, and Web-service-based global agriculture drought monitoring and forecasting system (GADMFS) (http://gis.csiss.gmu.edu/GADMFS/). GADMFS will provide world-wide users with timely, on-demand, and ready-to-use agricultural drought data and information products as well as improved global agriculture drought monitoring, prediction and analysis services. For the monitoring purpose, the system lively links to near real-time satellite remote sensing data sources from NASA and NOAA and relies on drought related remotely sensed physical and biophysical parameters, such as soil moisture and drought-related vegetation indices (VIs, e.g., NDVI) to provide the current conditions of global agricultural drought at high resolutions (up to 500m spatial and daily temporal) to world-wide users on demand. For drought prediction, the system utilizes a neural network based modeling algorithm, trained with current and historic vegetation-based and climate-based drought index

  19. Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production

    PubMed Central

    Rosa, Silvina M.; Simonetti, Leandro; Duval, Matías E.; Galantini, Juan A.; Bedano, José C.; Wall, Luis G.; Erijman, Leonardo

    2012-01-01

    The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non

  20. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    NASA Astrophysics Data System (ADS)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  1. Agricultural conversion reduces biospheric vegetation productivity in the absence of external inputs

    NASA Astrophysics Data System (ADS)

    Smith, W. K.; Cleveland, C. C.; Reed, S.; Running, S. W.

    2013-12-01

    Increasing global population, energy demand, and standard of living has driven humanity to co-opt a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. Here, we explored the impact of global-scale agricultural production on a basic resource fundamental to life on Earth: global terrestrial vegetation growth (net primary production; NPP). First, we compared current rates of agricultural NPP - derived from crop-specific agricultural statistics - with rates of natural NPP - derived from satellite measurements. Next, we disaggregated our results by climate zone, conversion type, crop type, management intensity, and region to identify where agricultural conversion has driven significant degradation of biospheric NPP. At the global-scale, our data indicate that agricultural conversion has resulted in a ~7% reduction in biospheric NPP (ΔNPP), although the impact varied widely at the pixel level. Positive ΔNPP values, signifying an increase in NPP due to agricultural conversion, occurred only in areas receiving significant external water and nutrient inputs (i.e., intensively managed areas). Conversely, negative ΔNPP values, signifying a reduction in NPP due to agricultural conversion, occurred over ~90% of agricultural lands globally, with the largest reductions in areas formerly occupied by tropical forests and savannas (71% and 66% reductions in NPP, respectively). Without new global-scale policies that explicitly consider changes in NPP due to land cover conversion, future demand-driven increases in agricultural output - likely dependent on some level of expansion into natural ecosystems - could continue to drive net declines in biospheric NPP, with potential detrimental consequences for global carbon storage. A spatially explicit estimate of the effect of agricultural land cover conversion on natural primary production for 20 staple crops. ΔNPP was estimated independently for a) irrigated, b) high input, c) low

  2. Vegetable Production System (Veggie)

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Smith, Trent M.

    2016-01-01

    The Vegetable Production System (Veggie) was developed by Orbital Technologies Corp. to be a simple, easily stowed, and high growth volume yet low resource facility capable of producing fresh vegetables on the International Space Station (ISS). In addition to growing vegetables in space, Veggie can support a variety of experiments designed to determine how plants respond to microgravity, provide real-time psychological benefits for the crew, and conduct outreach activities. Currently, Veggie provides the largest volume available for plant growth on the ISS.

  3. Systems and methods for autonomously controlling agricultural machinery

    DOEpatents

    Hoskinson, Reed L.; Bingham, Dennis N.; Svoboda, John M.; Hess, J. Richard

    2003-07-08

    Systems and methods for autonomously controlling agricultural machinery such as a grain combine. The operation components of a combine that function to harvest the grain have characteristics that are measured by sensors. For example, the combine speed, the fan speed, and the like can be measured. An important sensor is the grain loss sensor, which may be used to quantify the amount of grain expelled out of the combine. The grain loss sensor utilizes the fluorescence properties of the grain kernels and the plant residue to identify when the expelled plant material contains grain kernels. The sensor data, in combination with historical and current data stored in a database, is used to identify optimum operating conditions that will result in increased crop yield. After the optimum operating conditions are identified, an on-board computer can generate control signals that will adjust the operation of the components identified in the optimum operating conditions. The changes result in less grain loss and improved grain yield. Also, because new data is continually generated by the sensor, the system has the ability to continually learn such that the efficiency of the agricultural machinery is continually improved.

  4. A Compendium of Transfer Factors for Agricultural and Animal Products

    SciTech Connect

    Staven, Lissa H.; Napier, Bruce A.; Rhoads, Kathleen; Strenge, Dennis L.

    2003-06-02

    Transfer factors are used in radiological risk assessments to estimate the amount of radioactivity that could be present in a food crop or organism based on the calculated concentration in the source medium (i.e., soil or animal feed). By calculating the concentration in the food, the total intake can be estimated and a dose calculated as a result of the annual intake. This report compiles transfer factors for radiological risk assessments, using common food products, including meats, eggs, and plants. Transfer factors used were most often selected from recommended values listed by national or international organizations for use in radiological food chain transport calculations. Several methods of estimation and extrapolation were used for radionuclides not listed in the primary information sources. Tables of transfer factors are listed by element and information source for beef, eggs, fish, fruit, grain, leafy vegetation, milk, poultry, and root vegetables.

  5. Poverty, Income distribution and the analysis of agricultural products.

    PubMed

    Tyler, G J

    1979-01-01

    In spite of the World Bank's well intentioned objective of eliminating rural povery, an application of the most recent social cost-benefit methodology explained in a World Bank research publication will not weed out projects that lead to an increased poverty problem. The project that is examined is the introduction of tractors into Pakistan in the late 1960s. The project appeared to be successful on economic efficiency grounds, increased aggregate output and productivity, but had negative side effects on employment and the incomes of the poorer sections of the population. Projects that are economically efficient, increase the incomes of the poor, and do not significantly increase the incomes of the richer groups are ideal but difficult to achieve. The implication of those projects is a redistribution of internal wealth. PMID:12261246

  6. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    SciTech Connect

    Cabraal, R.A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The following subjects are included: demographic overview;Philippine development plans; financing of energy, agriculture and development projects; potential photovoltaic applications in Philippine agriculture; market assessment; and business environment. The applications cover fish/prawn hatchery operations, irrigation, maintenance facilities, grinding and milling, fish cultivation, salt production, ice manufacture, and agricultural extension services. (MHR)

  7. Climate impacts on agriculture: Implications for forage and rangeland production

    SciTech Connect

    Izaurralde, Roberto C.; Thomson, Allison M.; Morgan, Jack; Fay, Philip; Polley, Wayne; Hatfield, Jerry L.

    2011-04-19

    Projections of temperature and precipitation patterns across the United States during the next 50 years anticipate a 1.5 to 2°C warming and a slight increase in precipitation as a result of global climate change. There have been relatively few studies of climate change impacts on pasture and rangeland (grazingland) species compared to those on crop species, despite the economic and ecological importance of the former. Here we review the literature on pastureland and rangeland species to rising CO2 and climate change (temperature, and precipitation) and discuss plant and management factors likely to influence pastureland and rangeland responses to change (e.g., community composition, plant competition, perennial growth habit, seasonal productivity, and management methods). Overall, the response of pasture species to increased [CO2] is consistent with the general response of C3 and C4 type vegetation, although significant exceptions exist. Both pastureland and rangeland species should exhibit an acceleration of metabolism and development due to earlier onset of spring green-up and longer growing seasons. However, in the studies reviewed here, C3 pasture species increased their photosynthetic rates by up to 40% while C4 species exhibited no increase in photosynthesis. In general, it is expected that increases in [CO2] and precipitation would enhance rangeland net primary production (NPP) while increased air temperatures would either increase or decrease NPP. Much of this uncertainty in response is due to uncertain future projections of precipitation, both globally and regionally. For example, if annual precipitation changes little or declines, rangeland plant response to warming temperatures and rising [CO2] may be neutral or may decline due to increased water stress. This review reveals the need for comprehensive studies of climate change impacts on the pasture ecosystem including grazing regimes, mutualistic relationships (e.g., plant roots-nematodes; N

  8. Validation of an HPLC Analytical Method for Determination of Biogenic Amines in Agricultural Products and Monitoring of Biogenic Amines in Korean Fermented Agricultural Products.

    PubMed

    Yoon, Hyeock; Park, Jung Hyuck; Choi, Ari; Hwang, Han-Joon; Mah, Jae-Hyung

    2015-09-01

    An HPLC analytical method was validated for the quantitative determination of biogenic amines in agricultural products. Four agricultural foods, including apple juice, Juk, corn oil and peanut butter, were selected as food matrices based on their water and fat contents (i.e., non-fatty liquid, non-fatty solid, fatty liquid and fatty solid, respectively). The precision, accuracy, recovery, limit of detection (LOD) and quantification (LOQ) were determined to test the validity of an HPLC procedure for the determination of biogenic amines, including tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine, in each matrix. The LODs and LOQs for the biogenic amines were within the range of 0.01~0.10 mg/kg and 0.02~0.31 mg/kg, respectively. The relative standard deviation (RSD) of intraday for biogenic amine concentrations ranged from 1.86 to 5.95%, whereas the RSD of interday ranged from 2.08 to 5.96%. Of the matrices spiked with biogenic amines, corn oil with tyramine and Juk with putrescine exhibited the least accuracy of 84.85% and recovery rate of 89.63%, respectively, at the lowest concentration (10 mg/kg). Therefore, the validation results fulfilled AOAC criteria and recommendations. Subsequently, the method was applied to the analysis of biogenic amines in fermented agricultural products for a total dietary survey in Korea. Although the results revealed that Korean traditional soy sauce and Doenjang contained relatively high levels of histamine, the amounts are of no concern if these fermented agricultural products serve as condiments. PMID:26483889

  9. Validation of an HPLC Analytical Method for Determination of Biogenic Amines in Agricultural Products and Monitoring of Biogenic Amines in Korean Fermented Agricultural Products

    PubMed Central

    Yoon, Hyeock; Park, Jung Hyuck; Choi, Ari; Hwang, Han-Joon

    2015-01-01

    An HPLC analytical method was validated for the quantitative determination of biogenic amines in agricultural products. Four agricultural foods, including apple juice, Juk, corn oil and peanut butter, were selected as food matrices based on their water and fat contents (i.e., non-fatty liquid, non-fatty solid, fatty liquid and fatty solid, respectively). The precision, accuracy, recovery, limit of detection (LOD) and quantification (LOQ) were determined to test the validity of an HPLC procedure for the determination of biogenic amines, including tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine, in each matrix. The LODs and LOQs for the biogenic amines were within the range of 0.01~0.10 mg/kg and 0.02~0.31 mg/kg, respectively. The relative standard deviation (RSD) of intraday for biogenic amine concentrations ranged from 1.86 to 5.95%, whereas the RSD of interday ranged from 2.08 to 5.96%. Of the matrices spiked with biogenic amines, corn oil with tyramine and Juk with putrescine exhibited the least accuracy of 84.85% and recovery rate of 89.63%, respectively, at the lowest concentration (10 mg/kg). Therefore, the validation results fulfilled AOAC criteria and recommendations. Subsequently, the method was applied to the analysis of biogenic amines in fermented agricultural products for a total dietary survey in Korea. Although the results revealed that Korean traditional soy sauce and Doenjang contained relatively high levels of histamine, the amounts are of no concern if these fermented agricultural products serve as condiments. PMID:26483889

  10. Oil cakes - a by-product of agriculture industry as a fortificant in bakery products.

    PubMed

    Behera, Satyabadi; Indumathi, K; Mahadevamma, S; Sudha, M L

    2013-11-01

    Groundnut cake (GNC) and soybean cake (SBC) by-product of agriculture industry had protein and protein digestibility in the range of 42.7-50.5 and 71.3-76.8%, respectively. Polyphenols present in GNC and SBC were cholorogenic acid, syringic acid and p-coumaric acid. The number of bands separated in soybean meal was greater than the bands observed in GNC flour as seen in SDS-PAGE pattern, respectively. SEM of groundnut flour showed distension of protein bodies due to roasting of the oil cakes. The water absorption of wheat flour GNC blends decreased from 59.2 to 57.3% and increased in wheat flour SBC blends from 59.2 to 68.3% with an increase in oil cake from 0 to 20%. With increase in either GNC or SBC, the biscuits became harder. Addition of glycerol monostearate and sodium stearoyl lactylate in combination with 20% blend of GNC/SBC decreased the breaking strength values and increased the sensory parameters of the biscuits. Nutritionally rich biscuits were thus prepared by incorporating GNC/SBC. PMID:23742142

  11. Solar Grade Silicon from Agricultural By-products

    SciTech Connect

    Richard M. Laine

    2012-08-20

    In this project, Mayaterials developed a low cost, low energy and low temperature method of purifying rice hull ash to high purity (5-6Ns) and converting it by carbothermal reduction to solar grade quality silicon (Sipv) using a self-designed and built electric arc furnace (EAF). Outside evaluation of our process by an independent engineering firm confirms that our technology greatly lowers estimated operating expenses (OPEX) to $5/kg and capital expenses (CAPEX) to $24/kg for Sipv production, which is well below best-in-class plants using a Siemens process approach (OPEX of 14/kg and CAPEX of $87/kg, respectively). The primary limiting factor in the widespread use of photovoltaic (PV) cells is the high cost of manufacturing, compared to more traditional sources to reach 6 g Sipv/watt (with averages closer to 8+g/watt). In 2008, the spot price of Sipv rose to $450/kg. While prices have since dropped to a more reasonable $25/kg; this low price level is not sustainable, meaning the longer-term price will likely return to $35/kg. The 6-8 g Si/watt implies that the Sipv used in a module will cost $0.21-0.28/watt for the best producers (45% of the cost of a traditional solar panel), a major improvement from the cost/wafer driven by the $50/kg Si costs of early 2011, but still a major hindrance in fulfilling DOE goal of lowering the cost of solar energy below $1/watt. The solar cell industry has grown by 40% yearly for the past eight years, increasing the demand for Sipv. As such, future solar silicon price spikes are expected in the next few years. Although industry has invested billions of dollars to meet this ever-increasing demand, the technology to produce Sipv remains largely unchanged requiring the energy intensive, and chlorine dependent Siemens process or variations thereof. While huge improvements have been made, current state-of-the-art industrial plant still use 65 kWh/kg of silicon purified. Our technology offers a key distinction to other technologies as it

  12. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators.

    PubMed

    Trivedi, Pankaj; Delgado-Baquerizo, Manuel; Anderson, Ian C; Singh, Brajesh K

    2016-01-01

    Agricultural intensification is placing tremendous pressure on the soil's capacity to maintain its functions leading to large-scale ecosystem degradation and loss of productivity in the long term. Therefore, there is an urgent need to find early indicators of soil health degradation in response to agricultural management. In recent years, major advances in soil meta-genomic and spatial studies on microbial communities and community-level molecular characteristics can now be exploited as 'biomarker' indicators of ecosystem processes for monitoring and managing sustainable soil health under global change. However, a continental scale, cross biome approach assessing soil microbial communities and their functional potential to identify the unifying principles governing the susceptibility of soil biodiversity to land conversion is lacking. We conducted a meta-analysis from a dataset generated from 102 peer-reviewed publications as well as unpublished data to explore how properties directly linked to soil nutritional health (total C and N; C:N ratio), primary productivity (NPP) and microbial diversity and composition (relative abundance of major bacterial phyla determined by next generation sequencing techniques) are affected in response to agricultural management across the main biomes of Earth (arid, continental, temperate and tropical). In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties. However, main effects of agriculture on soil properties and productivity were biome-dependent. Our meta-analysis provides evidence on the predictable nature of the microbial community responses to vegetation type. This knowledge can be exploited in future for developing a new set of indicators for primary productivity and soil

  13. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators

    PubMed Central

    Trivedi, Pankaj; Delgado-Baquerizo, Manuel; Anderson, Ian C.; Singh, Brajesh K.

    2016-01-01

    Agricultural intensification is placing tremendous pressure on the soil’s capacity to maintain its functions leading to large-scale ecosystem degradation and loss of productivity in the long term. Therefore, there is an urgent need to find early indicators of soil health degradation in response to agricultural management. In recent years, major advances in soil meta-genomic and spatial studies on microbial communities and community-level molecular characteristics can now be exploited as ‘biomarker’ indicators of ecosystem processes for monitoring and managing sustainable soil health under global change. However, a continental scale, cross biome approach assessing soil microbial communities and their functional potential to identify the unifying principles governing the susceptibility of soil biodiversity to land conversion is lacking. We conducted a meta-analysis from a dataset generated from 102 peer-reviewed publications as well as unpublished data to explore how properties directly linked to soil nutritional health (total C and N; C:N ratio), primary productivity (NPP) and microbial diversity and composition (relative abundance of major bacterial phyla determined by next generation sequencing techniques) are affected in response to agricultural management across the main biomes of Earth (arid, continental, temperate and tropical). In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties. However, main effects of agriculture on soil properties and productivity were biome-dependent. Our meta-analysis provides evidence on the predictable nature of the microbial community responses to vegetation type. This knowledge can be exploited in future for developing a new set of indicators for primary productivity and

  14. Ethanol production from agricultural wastes using Sacchromyces cervisae

    PubMed Central

    Irfan, Muhammad; Nadeem, Muhammad; Syed, Quratualain

    2014-01-01

    The main objective of this study was production of ethanol from three lignocellulosic biomasses like sugarcane bagasse, rice straw and wheat straw by Sacchromyces cervisae. All the three substrates were ground to powder form (2 mm) and pretreated with 3%H2O2 + 2% NaOH followed by steaming at 130 °C for 60 min. These substrates were hydrolyzed by commercial cellulase enzyme. The whole fermentation process was carried out in 500 mL Erlenmeyer flask under anaerobic conditions in submerged fermentation at 30 °C for three days of incubation period. FTIR analysis of the substrates indicated significant changes in the alteration of the structure occurred after pretreatment which leads to efficient saccharification. After pretreatment the substrates were hydrolyzed by commercial cellulase enzyme and maximum hydrolysis was observed in sugarcane bagasse (64%) followed by rice straw (40%) and wheat straw (34%). Among all these tested substrates, sugarcane bagasse (77 g/L) produced more ethanol as compared to rice straw (62 g/L) and wheat straw (44 g/L) using medium composition of (%) 0.25 (NH4)2SO4, 0.1 KH2PO4, 0.05 MgSO4, 0.25 Yeast extract by S. cervisae. PMID:25242928

  15. Steam drying of industrial and agricultural products and wastes

    SciTech Connect

    Frame, G.B.; Galland, K.V.; Svensson, C.

    1983-03-01

    A new drying technique has been developed by MoDo-Chemetics and Chalmers of Technology in Sweden. Steam drying utilizes the drying capacity of superheated steam to remove moisture from porous material such as pulp or hog fuel. The first commercial dryer based on this technique was installed at Rockhammar Bruk in Sweden, where wood pulp is dried from 60% to 12% moisture content. Two commercial-size units are presently under construction, one for drying of hog fuel from 50% to 35% moisture content for on-the-grate firing in the power boiler and one for drying of sugar-beet pulp from 80% to 10% moisture content. This new technique can be applied in the drying of materials used in the production of waterboard, fiberboard, and hardboard, drying of peat, distillers grain residue, orange and pineapple pulp, grape and apple pomace, and cotton linters, for various end uses including cattlefeed and the use of residues as combustible material in small boilers. The energy-recovery aspects of the steam dryer are very important. Energy recovery in a useful form of more than 85% of the input to the dryer is feasible. 4 figures, 2 tables. (DP)

  16. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa - A review

    NASA Astrophysics Data System (ADS)

    Biazin, Birhanu; Sterk, Geert; Temesgen, Melesse; Abdulkedir, Abdu; Stroosnijder, Leo

    Agricultural water scarcity in the predominantly rainfed agricultural system of sub-Saharan Africa (SSA) is more related to the variability of rainfall and excessive non-productive losses, than the total annual precipitation in the growing season. Less than 15% of the terrestrial precipitation takes the form of productive ‘green’ transpiration. Hence, rainwater harvesting and management (RWHM) technologies hold a significant potential for improving rainwater-use efficiency and sustaining rainfed agriculture in the region. This paper outlines the various RWHM techniques being practiced in SSA, and reviews recent research results on the performance of selected practices. So far, micro-catchment and in situ rainwater harvesting techniques are more common than rainwater irrigation techniques from macro-catchment systems. Depending on rainfall patterns and local soil characteristics, appropriate application of in situ and micro-catchment techniques could improve the soil water content of the rooting zone by up to 30%. Up to sixfold crop yields have been obtained through combinations of rainwater harvesting and fertiliser use, as compared to traditional practices. Supplemental irrigation of rainfed agriculture through rainwater harvesting not only reduces the risk of total crop failure due to dry spells, but also substantially improves water and crop productivity. Depending on the type of crop and the seasonal rainfall pattern, the application of RWHM techniques makes net profits more possible, compared to the meagre profit or net loss of existing systems. Implementation of rainwater harvesting may allow cereal-based smallholder farmers to shift to diversified crops, hence improving household food security, dietary status, and economic return. The much needed green revolution and adaptations to climate change in SSA should blend rainwater harvesting ideals with agronomic principles. More efforts are needed to improve the indigenous practices, and to disseminate best

  17. Differences in Aquatic Communities Between Wetlands Created by an Agricultural Water Recycling System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of an agricultural water recycling system known as the wetland reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to s...

  18. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  19. Hyperspectral imaging for safety inspection of food and agricultural products

    NASA Astrophysics Data System (ADS)

    Lu, Renfu; Chen, Yud-Ren

    1999-01-01

    Development of effective food inspection systems is critical in successful implementation of the hazard analysis and critical control points (HACCP) program. Hyperspectral imaging or imaging spectroscopy, which combines techniques of imaging and spectroscopy to acquire spatial and spectral information simultaneously, has great potential in food quality and safety inspection. This paper reviewed the basic principle and features of hyperspectral imaging and its hardware and software implementation. The potential areas of application for hyperspectral imaging in food quality and safety inspection were identified and its limitations were discussed. A hyperspectral imaging system developed for research in food quality and safety inspection was described. Experiments were performed to acquire hyperspectral images from four classes of poultry carcasses: normal, cadaver, septicemia, and tumor. Noticeable differences in the spectra of the relative reflectance and its second difference in the wavelengths between 430 nm and 900 nm were observed between wholesome and unwholesome carcasses. Differences among the three classes of unwholesome carcasses were also observed from their respective spectra. These results showed that hyperspectral imaging can be an effective tool for safety inspection of poultry carcasses.

  20. Ergonomic risks and musculoskeletal disorders in production agriculture: recommendations for effective research to practice.

    PubMed

    Kirkhorn, Steven R; Earle-Richardson, Giulia; Banks, R J

    2010-07-01

    Musculoskeletal disorders (MSDs) are increasingly recognized as a significant hazard of agricultural occupation. In agricultural jobs with significant physical labor, MSDs are typically the most frequently reported injury. Although not as lethal as tractor roll-overs, MSDs can result in disability, lost work time, and increased production costs. MSDs increase production costs as a result of worker absence, medical and insurance costs, decreased work capacity, and loss of employees to turnover and competition from other less physically demanding industries. This paper will provide an overview of what is currently known about MSDs in agriculture, including high-risk commodities, tasks and work practices, and the related regulatory factors and workers' compensation costs. As agricultural production practices evolve, the types of MSDs also change, as do ergonomic risk factors. One example is the previous higher rates of knee and hip arthritis identified in farmers in stanchion dairies evolving into upper extremity tendonitis, arthritis, and carpal tunnel syndrome now found in milking technicians in dairy milking parlors. This paper summarizes the presentation, "Musculoskeletal Disorders in Labor-Intensive Operations," at the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas. The primary focus of the paper is to address current research on ergonomic solutions for MSDs in agriculture. These include improved tools, carts or equipment, as well as work practices. One of the key challenges in this area pertains to measurement, due to the fact that musculoskeletal strain is a chronic condition that can come and go, with self-reported pain as its only indicator. Alternative measurement methods will be discussed. Finally, the implementation of research into practice is reviewed, with an emphasis on best

  1. [How to promote birth planning in the wake of transfer of agricultural production responsibility to the work crew].

    PubMed

    1981-04-01

    Mianzhu County is among Sichuan Province's more successful counties in family planning. Following Marx's theory of the 2-fold character of production, Mianzhu County in 1980 simultaneously transferred both agricultural production and family planning work to the work crew by implementing "double transfer of responsiblity," thereby mobilizing cadres and people to understand both time material production and human reproduction, i.e., "grains, money and people." Last year when the agricultural production responsiblity system was established and production was contracted to the work crew, it was decided to transfer both production and birth quotas to the work crew through a system of monetary rewards for sucessful family planning and fines for unplanned births. Results from the double responsiblity system show that: the grain production kept up with 1979 levels; the rate of natural population increase dropped from 1979's 4.1/1000 to 1.57/1000 in 1980; the single-child family rate was 94%; the multiple child family rate was .3/1000; the rate of applications for the Single Child Certificate was 97.5%. At first the work crew felt that their repsonsibility was production and that family planning was a personal matter. But after extensive propaganda efforts to teach Marxist population theory and to stress the need to control population, the work crew realized that family planning is everyone's concern just as production is everyone's concern. With the "double transfer or responsiblity," the working relationship among communes, production brigades, production teams, and work crews improved, and advocacy of the single-child family was strengthened and expanded. PMID:12266520

  2. PESTICIDE PRODUCT INFORMATION SYSTEM (PPIS)

    EPA Science Inventory

    The Pesticide Product Information System (PPIS) contains information concerning all pesticide products registered in the United States. It includes registrant name and address, chemical ingredients, toxicity category, product names, distributor brand names, site/pest uses, pestic...

  3. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    NASA Astrophysics Data System (ADS)

    Johnston, Matt; Licker, R.; Foley, J.; Holloway, T.; Mueller, N. D.; Barford, C.; Kucharik, C.

    2011-07-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap—essentially improving global yields to median levels—the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike—helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  4. Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico.

    PubMed

    McCullough, Ellen B; Matson, Pamela A

    2016-04-26

    Knowledge systems-networks of linked actors, organizations, and objects that perform a number of knowledge-related functions that link knowledge and know how with action-have played a key role in fostering agricultural development over the last 50 years. We examine the evolution of the knowledge system of the Yaqui Valley, Mexico, a region often described as the home of the green revolution for wheat, tracing changes in the functions of critical knowledge system participants, information flows, and research priorities. Most of the knowledge system's key players have been in place for many decades, although their roles have changed in response to exogenous and endogenous shocks and trends (e.g., drought, policy shifts, and price trends). The system has been agile and able to respond to challenges, in part because of the diversity of players (evolving roles of actors spanning research-decision maker boundaries) and also because of the strong and consistent role of innovative farmers. Although the agricultural research agenda in the Valley is primarily controlled from within the agricultural sector, outside voices have become an important influence in broadening development- and production-oriented perspectives to sustainability perspectives. PMID:21606365

  5. Life Cycle Assessment of Switchgrass Cellulosic Ethanol Production in the Wisconsin and Michigan Agricultural Contexts

    SciTech Connect

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.; Cronin, Keith R.; Meier, Paul J.; Runge, Troy M.; Zhang, Xuesong

    2015-04-25

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combined with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.

  6. The limitations of environmental management systems in Australian agriculture.

    PubMed

    Cary, John; Roberts, Anna

    2011-03-01

    The efficacy of government-supported programs to encourage improved management of land and water systems associated with agricultural land in Australia has been mixed. The broad approach of Australian governments is reviewed briefly. Evidence is presented from case assessments of a program to promote adoption of environmental management systems (EMSs) to improve environmental outcomes from agricultural practices. EMSs are systems implemented to manage the environmental impacts and ameliorate environmental risk associated with business activity. Data are presented on reported EMS activity and experience of four selected groups of farmers in Victoria, south-eastern Australia, representing broad-acre cropping, beef and dairy farming. The pro-environmental behaviours of farmers were mediated through voluntary adoption of government and industry sponsored EMSs, often with financial incentives and other support. Findings from the study were that adoption of EMS practices with sufficient public benefits is unlikely to occur at sufficient scale for significant environmental impact. Farmers more readily adopted practices which were financially beneficial than those which had a positive environmental impact. Although the focus on voluntary market-based instrument (MBI) type programs is popular in western countries, enforcing regulation is an important, but usually politically unpopular, component of land use policy. The comparative advantage of EMSs differed for the industries studied, but overall there were insufficient market drivers for widespread EMS adoption in Australia. Environmental outcomes could be more effectively achieved by directly funding land management practices which have highest public net benefits. Having a clear and unambiguous management objective for a particular land management policy is more likely to achieve outcomes than having multiple objectives as occurs in a number of international programs currently. PMID:21084146

  7. Agricultural production and groundwater depletion under climate variability in India - Results from a regional scale crop modeling approach

    NASA Astrophysics Data System (ADS)

    Siegfried, T. U.; Sobolowski, S.; Fishman, R.; Vasquez, V.; Raj, P.; Narula, K. K.; Modi, V.; Lall, U.

    2009-12-01

    In India, recent declines in national food security may point to systemic deficiencies of agricultural production. Over the past decade and in the face of declining public investments in irrigation projects, the growth of production has increasingly become reliant on the allocation of large volumes of groundwater in an unsustainable manner. As a result, shallow as well as deep fossil groundwater resources are increasingly depleted and the buffer that mitigates negative impacts on production in case of Monsoonal dry-spells / drought conditions is lost. In the face of future climate and food supply uncertainty, it is vital that the connections between climate variability, unsustainable irrigation practices and their impacts on regional scale agricultural production be quantified and better understood. In our analysis, we focus on rice production in the Telengana region in Andhra Pradesh, which is characterized by a semi-arid tropical climate that is driven by the bimodal seasonality of the south-western monsoon. Traditionally, agricultural production of rice was constrained by precipitation variations during the wet season (Kharif). However, the advent of inexpensive pump technology in the 1970's, coupled with governmentally subsidized electricity has allowed year-round rice production. Thus, the Monsoon rains must not only drive wet season production but must also sufficiently recharge groundwater in order to support dry season production. Observed Production time series are characterized by non-stationarity and heteroscedasticity. Using a subset of eight districts, a non-linear Gaussian Process regression model is developed and yearly crop production is modeled at the district level over 48 years. We show that interannual climate variations, in the form of the monsoon rains, play a significant role in determining the area of land set aside for dry season planting and thus affect total yearly production. The results suggest that a non-linear Bayesian regression

  8. Problem area 1 effective water management in agriculture-Product area accomplishments-FY 11 - FY14

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service National Program 211 is composed of four components or problem areas. Problem Area 1, Effective Water Management in Agriculture, focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) I...

  9. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    DOE PAGESBeta

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenuemore » from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.« less

  10. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    SciTech Connect

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.

  11. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    NASA Astrophysics Data System (ADS)

    Campiche, Jody L.; Bryant, Henry L.; Richardson, James W.

    2010-01-01

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. In the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.

  12. Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico

    PubMed Central

    McCullough, Ellen B.; Matson, Pamela A.

    2016-01-01

    Knowledge systems—networks of linked actors, organizations, and objects that perform a number of knowledge-related functions that link knowledge and know how with action—have played a key role in fostering agricultural development over the last 50 years. We examine the evolution of the knowledge system of the Yaqui Valley, Mexico, a region often described as the home of the green revolution for wheat, tracing changes in the functions of critical knowledge system participants, information flows, and research priorities. Most of the knowledge system's key players have been in place for many decades, although their roles have changed in response to exogenous and endogenous shocks and trends (e.g., drought, policy shifts, and price trends). The system has been agile and able to respond to challenges, in part because of the diversity of players (evolving roles of actors spanning research–decision maker boundaries) and also because of the strong and consistent role of innovative farmers. Although the agricultural research agenda in the Valley is primarily controlled from within the agricultural sector, outside voices have become an important influence in broadening development- and production-oriented perspectives to sustainability perspectives. PMID:21606365

  13. A Study to Determine Competencies Needed in Selected Job Titles in Agricultural Products Occupations.

    ERIC Educational Resources Information Center

    Amberson, Max L.; And Others

    The report is a composite of competency interviews and a compilation, evaluation, and analysis of data on agricultural products occupations (bakery, dairy, meat, and flour milling industry job titles). The study was conducted to obtain information which would identify the knowledge, skills, and attitudes needed by employees in selected job titles…

  14. Organic agricultural production in the United States: An old wheel being reinvented

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic production is not a new concept that has been developed in the United States during the last part of the 20th century as an alternative to conventional agriculture. It can better be described as a resurgence of old ideas that have been combined with modern technology. The problems faced by...

  15. 12 CFR 615.5172 - Production credit association and agricultural credit association investment in farmers' notes...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... credit association investment in farmers' notes given to cooperatives and dealers. 615.5172 Section 615....5172 Production credit association and agricultural credit association investment in farmers' notes... farmers and ranchers eligible to borrow from such associations. (b) Such notes and other...

  16. A multidisciplinary analysis of groundwater declines and agricultural production in the High Plains Aquifer of Kansas

    NASA Astrophysics Data System (ADS)

    Steward, David R.; Bruss, Paul J.; Yang, Xiaoying; Staggenborg, Scott A.; Welch, Stephen M.; Apley, Michael D.

    2014-05-01

    The High Plains Aquifer provides groundwater for 30% of the irrigated agriculture in the USA. Within Kansas, groundwater supports the congressional district with highest market value of agriculture. And yet, over-pumping and associated groundwater declines threaten the long-term prospects. The groundwater portion of this study quantifies the availability of groundwater stores over the next 100 years. A water-use function is developed to quantify the historical and future impacts of irrigation on corn production. A relationship between corn consumption per head of cattle quantifies the herd size that can be supported by irrigated corn. Together, we project the impacts of changes in groundwater stores on corn and cattle production for the next century. Scenarios analyze the impacts of water savings today on current and future agriculture production. Reference: Steward, D. R., Bruss, P. J., Yang, X., Staggenborg, S. A., Welch, S. M. and M. D. Apley, Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110, Proceedings of the National Academy of Sciences of the United States of America, 110(37) E3477-E3486, September 10, 2013. http://dx.doi.org/10.1073/pnas.1220351110

  17. Beef Production Unit for Agricultural Science I Core Curriculum. Instructor's Guide. AGDEX 420/10.

    ERIC Educational Resources Information Center

    Stewart, Bob R.; And Others

    This instructor's guide for a beef production unit contains five lessons that are designed to be taught in the Agricultural Science I core curriculum. Introductory materials include lists of performance objectives and competencies for the complete unit, suggestions for motivational technique/interest approach and evaluation, lists of references…

  18. Lesson Plans for Teaching Basic Vocational Agriculture. Section II. Introduction to Livestock Production.

    ERIC Educational Resources Information Center

    McCully, James S., Jr., Comp.

    This volume, the second in a series of five publications for use in teaching basic vocational agriculture in Mississippi secondary schools, consists of the final eight lessons in a 15-lesson introduction to livestock production. Covered in the individual lessons included in this volume are the following topics: types of livestock production…

  19. 12 CFR 615.5172 - Production credit association and agricultural credit association investment in farmers' notes...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... credit association investment in farmers' notes given to cooperatives and dealers. 615.5172 Section 615....5172 Production credit association and agricultural credit association investment in farmers' notes... farmers and ranchers eligible to borrow from such associations. (b) Such notes and other...

  20. Torrefaction of agricultural by-products: Effects of temperature and time on energy yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural by-products, such as apple, grape, olive, and tomato pomaces as well as almond and walnut shells, were torrefied at different temperatures and times. Torrefaction of biomass involves heating in an inert atmosphere to remove volatile components for improved grindability and increased ene...

  1. 75 FR 20316 - Geographic Preference Option for the Procurement of Unprocessed Agricultural Products in Child...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... CFR Part 3015, Subpart V and related Notice (48 FR 29115, June 24, 1983), these programs are included... Food and Nutrition Service 7 CFR Parts 210, 215, 220, 225, and 226 RIN 0584-AE03 Geographic Preference Option for the Procurement of Unprocessed Agricultural Products in Child Nutrition Programs AGENCY:...

  2. Agricultural By-Products Turned into Important Materials with Adsorptive Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will summarize the use of agricultural by-products (e.g., animal manure and plant waste) as starting materials to adsorb environmental contaminants such as mercury from air, ammonia from air, metal ions from water, and chlorinated organics from water. The results show that the mat...

  3. PREPARATION AND CHARACTERIZATION OF POLY (LACTIC ACID) GREEN COMPOSITES USING AGRICULTURAL CO-PRODUCTS AS FILLERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly (lactic acid) is a biodegradable plastic made from renewable resources and has similar mechanical properties to polypropylene. PLA is more expensive than petroleum-based plastics, and the use of low-cost fillers as extenders is desirable. Agricultural co-products (AcP) of oilseed crops were c...

  4. Sheep Production Unit for Agricultural Science I Core Curriculum. Instructor's Guide. AGDEX 430/10.

    ERIC Educational Resources Information Center

    Brzozowski, Richard J.; Stewart, Bob R.

    This instructor's guide for a sheep production unit contains six lessons that are designed to be taught in the Agricultural Science I core curriculum. Introductory materials include lists of performance objectives and competencies for the complete unit, suggestions for motivational technique/interest approach and evaluation, lists of references…

  5. Measurement software to facilitate free-space permittvity measurements on agricultural products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The creation of a user-driven software application to automate laboratory, free-space measurements of permittivity for cereal grain, oilseed, biomass, nuts and other agricultural products is discussed. A decade ago, there was no software available to aid in permittivity measurements using the free-s...

  6. Diffusion and Adoption of Innovations in Fertilizer-Related Agricultural Production Technology in Developing Countries.

    ERIC Educational Resources Information Center

    Byrnes, Kerry J.

    This monograph reviews a wide range of research literature on the diffusion and adoption of innovations in agricultural production technology in the developing countries, with particular emphasis on the practice of using commercially purchased, inorganic fertilizer as a source of plant nutrients. It is intended that the report's documentation of…

  7. Near- and Mid-Infrared Reflectance Spectroscopy for the Quantitative and Qualitative Analysis of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several decades near-infrared diffuse reflectance spectroscopy (NIRS) has been used to determine the composition of a variety of agricultural products. More recently, diffuse reflectance Fourier transform mid-infrared spectroscopy (DRIFTS) has similarly been shown to be able to determine the co...

  8. Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is charred material produced by the pyrolysis of organic biomass. In this work, Fourier transform infrared (FTIR) spectra of different agricultural by-products feedstock and their derived biochars were collected to explore the potential of FTIR technique as a simple and rapid method for char...

  9. MAPPING AND SCOUTING CORN PEST INFESTATIONS IN A PRODUCTION AGRICULTURE ENVIRONMENT USING REMOTE SENSING.

    EPA Science Inventory

    Hyperspectral imagery was acquired three times during the 2006 agricultural growing season (late July to mid-September) over 35 corn fields in east central Illinois. The imagery was processed with an emphasis on rapid image product development (turnabround time of less than 24 ho...

  10. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition and structure of bacterial communities was examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profile...

  11. Biobased products research at the National Center for Agricultural Utilization Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent research by our group at the NCAUR has concerned the research and development of biobased products, most of which are derived from the residues produced during agricultural processing. These include: novel sophorolipids from yeast as natural emulsifiers and surfactants for certified organic...

  12. Development and prospect of unmanned aerial vehicles for agricultural production management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared to piloted aircrafts, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields in lower flight altitude than regular airplanes to perform site-specific management with high precisi...

  13. Definition of zones with different levels of productivity within an agricultural field using fuzzy modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for the definition of zones with different levels of productivity is based on fuzzy indicator model. Fuzzy indicator model for identification of zones with different levels of productivit...

  14. Teaching Basic Production Economic Principles to Secondary School Students of Vocational Agriculture: An Evaluative Case Study.

    ERIC Educational Resources Information Center

    McGuire, James E.

    Four modules of instruction on basic production economic principles were developed, tried in high school classes of students preparing for on- and off-farm agricultural occupations, and evaluated for content and teaching. Basic principles studied were supply and demand, value theory, variable proportions, and marginal analysis. Total and part…

  15. Production of poly(beta-L-malic acid) (PMA) from agricultural biomass substrates by Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here for the first time the production of poly(beta-L-malic acid) (PMA) from agricultural biomass substrates by the yeastlike fungus Aureobasidium pullulans. Strains NRRL Y 2311-1, NRRL 50382, NRRL 50383, and NRRL 50384, representing diverse isolation sources and phylogenetic clades, prod...

  16. Mitigating greenhouse gas emissions in China's agriculture: from farm production to food consumption

    NASA Astrophysics Data System (ADS)

    Yue, Qian; Cheng, Kun; Pan, Genxing

    2016-04-01

    Greenhouse gas (GHG) emissions from agriculture could be mitigated from both supple side and demand side. Assessing carbon footprint (CF) of agricultural production and food consumption could provide insights into the contribution of agriculture to climate change and help to identify possible GHG mitigation options. In the present study, CF of China's agricultural production was firstly assessed from site scale to national scale, and from crop production to livestock production. Data for the crop and livestock production were collected from field survey and national statistical archive, and both life cycle assessment and input-output method were employed in the estimations. In general, CF of crop production was lower than that of livestock production on average. Rice production ranked the highest CF in crop production, and the highest CFs of livestock production were observed in mutton and beef production. Methane emissions from rice paddy, emissions from fertilizer application and water irrigation exerted the largest contribution of more than 50% for CF of crop production; however, emissions from forage feeding, enteric fermentation and manure treatment made the most proportion of more than 90 % for CF of livestock production. In China, carbon efficiency was shown in a decreasing trend in recent years. According to the present study, overuse of nitrogen fertilizer caused no yield effect but significant emissions in some sites and regions of China, and aggregated farms lowered the CFs of crop production and livestock production by 3% to 25% and 6% to 60% respectively compared to household farms. Given these, improving farming management efficiency and farm intensive development is the key strategy to mitigate climate change from supply side. However, changes in food consumption may reduce GHG emissions in the production chain through a switch to the consumption of food with higher GHG emissions in the production process to food with lower GHG emissions. Thus, CFs

  17. Emergy evaluation of the contribution of irrigation water, and its utilization, in three agricultural systems in China

    NASA Astrophysics Data System (ADS)

    Chen, Dan; Luo, Zhaohui; Webber, Michael; Chen, Jing; Wang, Weiguang

    2014-09-01

    Emergy theory and method are used to evaluate the contribution of irrigation water, and the process of its utilization, in three agricultural systems. The agricultural systems evaluated in this study were rice, wheat, and oilseed rape productions in an irrigation pumping district of China. A corresponding framework for emergy evaluation and sensitivity analysis methods was proposed. Two new indices, the fraction of irrigation water ( FIW), and the irrigation intensity of agriculture ( IIA), were developed to depict the contribution of irrigation water. The calculated FIW indicated that irrigation water used for the rice production system (34.7%) contributed more than irrigation water used for wheat (5.3%) and oilseed rape (11.2%) production systems in a typical dry year. The wheat production with an IIA of 19.0 had the highest net benefit from irrigation compared to the rice (2.9) and oilseed rape (8.9) productions. The transformities of the systems' products represented different energy efficiencies for rice (2.50E + 05 sej·J-1), wheat (1.66E + 05 sej·J-1) and oilseed rape (2.14E + 05 sej·J-1) production systems. According to several emergy indices, of the three systems evaluated, the rice system had the greatest level of sustainability. However, all of them were less sustainable than the ecological agricultural systems. A sensitivity analysis showed that the emergy inputs of irrigation water and nitrogenous fertilizer were the highest sensitivity factors influencing the emergy ratios. Best Management Practices, and other agroecological strategies, could be implemented to make further improvements in the sustainability of the three systems.

  18. Nitrate loading and isotopic signatures in subsurface agricultural drainage systems.

    PubMed

    Smith, E L; Kellman, L M

    2011-01-01

    Artificially draining soils using subsurface tiles is a common practice on many agricultural fields. High levels of nitrate-nitrogen (NO-N) are often released from these systems; therefore, knowledge on the sources and processes controlling NO-N in drainage systems is needed. A dual isotope study (δN and δO) was used to investigate three subsurface drainage systems (shallow, conventional, and controlled) in Onslow, Nova Scotia, Canada. The objectives of this study were (i) to identify which drainage system more effectively reduced the NO-N loading, (ii) to examine differences in isotopic signatures under identical nutrient and cropping regimes for a fixed soil type, and (iii) to identify the utility of different drainage systems in controlling nutrient flows. Nitrate concentrations measured ranged from 0.92 to 11.8, from 2.3 to 17.3, and from 2.1 to 19.8 mg L for the shallow, conventional, and controlled drains, respectively. Total NO-N loading from shallow and controlled drains were 20 and 5.6 kg ha, respectively, lower than conventional (39.1 kg ha). The isotopic composition of NO-N for all drainage types appeared to be a mixture of two organic sources (manure and soil organic matter) via the process of nitrification. There was no evidence that denitrification played a significant role in removing NO-N during transport. Overall, shallow drainage reduced NO-N loading but offered no water conservation benefits. Combining the benefits of decreased NO-N loading from shallow systems with water control capability may offer the best solution to reducing nutrient loadings into water systems, achieving optimal crop yield, and decreasing drainage installation costs. PMID:21712595

  19. Sustainable agriculture, renewable energy and rural development: An analysis of bio-energy systems used by small farms in China

    NASA Astrophysics Data System (ADS)

    Zhou, Aiming

    Renewable energy needs to be incorporated into the larger picture of sustainable agriculture and rural development if it is to serve the needs of the 3.25 billion human beings whose livelihoods and based on rural economies and ecologies. For rural communities, increasing agriculture production is key to raising income generation and improving social well-being, but this linkage depends also upon not harming natural resources. This dissertation provides an overview of recent Chinese agriculture history, discusses the role of energy in contemporary's China's agriculture and rural development, and introduces a new approach---the integrated agricultural bio-energy (IAB) system---to address the challenge of sustainable agriculture and rural development. IAB is an innovative design and offers a renewable energy solution for improving agricultural productivity, realizing efficient resource management, and enhancing social well-being for rural development. In order to understand how the IAB system can help to achieve sustainable agricultural and rural development in China, a comprehensive evaluation methodology is developed from health, ecological, energy and economic (HE3) perspectives. With data from surveys of 200 small farm households, a detailed study of IAB and conventional agricultural energy (CAE) system applications (in China's Liaoning and Yunnan Province) is conducted. The HE3 impacts of IAB systems in China's rural areas (compared to existing CAE systems) are quantified. The dissertation analyzes the full life-cycle costs and benefits of IAB systems, including their contributions to energy savings, CO2 emissions reduction, agricultural waste reduction, increased rural incomes, better rural health, and improved ecosystem sustainability. The analysis relies upon qualitative and quantitative modeling in order to produce a comprehensive assessment of IAB system impacts. Finally, the dissertation discusses the barriers to greater diffusion of the IAB systems

  20. Life cycle assessment of domestic and agricultural rainwater harvesting systems.

    PubMed

    Ghimire, Santosh R; Johnston, John M; Ingwersen, Wesley W; Hawkins, Troy R

    2014-04-01

    To further understanding of the environmental implications of rainwater harvesting and its water savings potential relative to conventional U.S. water delivery infrastructure, we present a method to perform life cycle assessment of domestic rainwater harvesting (DRWH) and agricultural rainwater harvesting (ARWH) systems. We also summarize the design aspects of DRWH and ARWH systems adapted to the Back Creek watershed, Virginia. The baseline design reveals that the pump and pumping electricity are the main components of DRWH and ARWH impacts. For nonpotable uses, the minimal design of DRWH (with shortened distribution distance and no pump) outperforms municipal drinking water in all environmental impact categories except ecotoxicity. The minimal design of ARWH outperforms well water in all impact categories. In terms of watershed sustainability, the two minimal designs reduced environmental impacts, from 58% to 78% energy use and 67% to 88% human health criteria pollutants, as well as avoiding up to 20% blue water (surface/groundwater) losses, compared to municipal drinking water and well water. We address potential environmental and human health impacts of urban and rural RWH systems in the region. The Building for Environmental and Economic Sustainability (BEES) model-based life cycle inventory data were used for this study. PMID:24605844

  1. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study.

    PubMed

    Cheng, Weixiao; Li, Jianan; Wu, Ying; Xu, Like; Su, Chao; Qian, Yanyun; Zhu, Yong-Guan; Chen, Hong

    2016-03-01

    This study aims to determine abundance and persistence of antibiotics and antibiotic resistance genes (ARGs) in eco-agricultural system (EAS), which starts from swine feces to anaerobic digestion products, then application of anaerobic digestion solid residue (ADSR) and anaerobic digestion liquid residue (ADLR) to the soil to grow ryegrass, one of swine feed. Oxytetracycline had the highest concentration in manure reaching up to 138.7 mg/kg. Most of antibiotics could be effectively eliminated by anaerobic digestion and removal rates ranged from 11% to 86%. ARGs abundance fluctuated within EAS. TetQ had the highest relative abundance and the relative abundance of tetG had the least variation within the system, which indicates that tetG is persistent in the agricultural environment and requires more attention. Compared to the relative abundance in manure, tetC and tetM increased in biogas residue while three ribosomal protection proteins genes (tetO, tetQ, tetW) decreased (p<0.05), with other genes showing no significant change after anaerobic fermentation (p>0.05). Most ARGs in downstream components (soils and fishpond) of EAS showed significantly higher relative abundance than the control agricultural system (p<0.05), except for tetG and sulI. PMID:26546700

  2. Increasing cropping system diversity balances productivity, profitability and environmental health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and can have large negative im...

  3. New concepts regarding the production of waterfowl and other game birds in areas of diversified agriculture

    USGS Publications Warehouse

    Nelson, H.K.; Duebbert, H.F.

    1974-01-01

    Many concepts regarding breeding ecology of waterfowl and the influences of environmental factors on annual production have changed in the past 20 years. These influences are especially pronounced in the prairie region of central North America where agriculture becomes more intensive each year. The principal task assigned to this Research Center when established in 1965 was to determine the relative impact of these influences on production and to identify those facets of breeding biology, nesting habitat requirements and other factors that may be altered to increase production on lands dedicated for this purpose. A corollary objective was to develop methods for enhancing production of waterfowl and other ground-nesting birds on private lands in agricultural areas. Some of the highlights of our findings to date, together with the results from current work of others, provide new information on waterfowl that indicates: (1) homing instincts are not as specific as indicated by earlier workers, (2) there are differences in pioneering between species, sexes and age classes, (3) strength and duration of pair bonds vary by species and age classes, (4) territorial tolerances for most species are greater than previously indicated, (5) there is differential productivity by age classes in some species, (6) there has been a gradual decline in nesting success in the prairie region the past 30 years, (7) adverse influences of intensive agriculture are increasing, (8) mammalian predation is an important factor, (9) high quality, secure nesting habitat and a complex of wetland types are the essential components of an optimum production unit, (10) the size and shape of blocks of nesting cover are important management considerations, (11) overharvest of local breeding populations is becoming a serious problem in some areas. Each of these subjects is discussed as related to research objectives and current management problems. Recommendations are presented for obtaining maximum

  4. Nutrient cycles in agricultural systems at sub-catchment scale within the UK and China

    NASA Astrophysics Data System (ADS)

    Bellarby, Jessica; Surridge, Ben; Haygarth, Philip M.; Lai, Xin; Zhang, Guilong; Song, Xiaolong; Zhou, Jianbin; Meng, Fanqiao; Shen, Jianbo; Rahn, Clive; Smith, Laurence; Burke, Sean

    2015-04-01

    Diffuse water pollution from agriculture (DWPA) represents a significant challenge in both the UK and China. The UK has developed policies and practices which seek to mitigate DWPA, yet the risks and adverse impacts of DWPA remain widespread. In contrast, China's past priorities have largely focussed on food security, with an emphasis on increasing food production through high fertiliser application rates with little attention being paid to enhanced nutrient export from land to water and to air. This has contributed to severe environmental problems which are only now beginning to be recognised and addressed. We have prepared nutrient balances (phosphorus and nitrogen) in contrasting agricultural production systems at sub-catchment scale within China and the UK. These draw from a variety of sources ranging from general yearly statistics collected by the respective government to farm surveys. Our aim is to use the resulting nutrient balances to underpin the sharing of knowledge and innovation to mitigate DWPA in both nations. In the UK, the case studies focus on the three Demonstration Test Catchment locations, covering a range of livestock and arable production systems across England. Here, the high frequency monitoring of phosphorus river loads enables the cross-validation of the simple nutrient budget approaches applied in this study. In China, our case studies span kiwi orchard, fruit and vegetable solar greenhouse systems, double cropped rice-wheat and wheat-maize production systems. Substantial differences in nutrient stocks and flows exist between individual production systems both across and within the two countries. These differences will be expressed along the source-mobilisation-delivery-impact continuum that underpins our budgets for both phosphorus and nitrogen. We will present the phosphorus cycles of some case studies and highlight their challenges and relevance at sub-catchment scale. Based on our nutrient budgets, general recommendations can be

  5. Implications of climate change for agricultural productivity in the early twenty-first century

    PubMed Central

    Gornall, Jemma; Betts, Richard; Burke, Eleanor; Clark, Robin; Camp, Joanne; Willett, Kate; Wiltshire, Andrew

    2010-01-01

    This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty. Few global-scale assessments have been carried out, and these are limited in their ability to capture the uncertainty in climate projections, and omit potentially important aspects such as extreme events and changes in pests and diseases. There is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity. Indirect impacts via sea-level rise, storms and diseases have not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO2 rise on plant physiology will interact with climate change in affecting productivity. At present, the aggregate impacts of climate change on global-scale agricultural productivity cannot be reliably quantified. PMID:20713397

  6. Agroforestry Systems in Zimbabwe: Promoting Trees in Agriculture.

    ERIC Educational Resources Information Center

    Vukasin, Helen L., Ed.

    Agroforestry has been defined as a sustainable crop management system which combines the production of forest crops with field crops. In June, 1987, an agroforestry workshop took place in Nyanga, Manicaland, Zimbabwe. This document was prepared to share the information presented at this workshop with other non-government organizations around the…

  7. The Philippine System of Education: Some Implications to Agricultural Education.

    ERIC Educational Resources Information Center

    Mancebo, Samuel T.

    The Philippine educational system views education as a human development resource conversion process that can maximize the realization of the national developmental goals. Students comprise the principal input of this manpower resource conversion process. The output is individuals who can find useful and productive employment. Two broad strategies…

  8. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production

    PubMed Central

    Odhiambo, Judith A.; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C.; Norton, Jay B.

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha-1 in MT and $149.60 ha-1 in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations. PMID:26237404

  9. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    PubMed

    Odhiambo, Judith A; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C; Norton, Jay B

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1) in MT and $149.60 ha(-1) in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations. PMID:26237404

  10. [Development of Determination Method of Ipfencarbazone in Agricultural Products, Livestock Products and Seafood by LC-MS/MS].

    PubMed

    Imai, Koichi; Onoue, Keiko; Ishii, Rie; Takano, Mariko; Nemoto, Satoru; Teshima, Reiko

    2015-01-01

    A method for the determination of ipfencarbazone in agricultural products, livestock products and seafood by LC-MS/MS was developed. Agricultural samples were extracted with acetone. An aliquot of crude extract was partitioned with n-hexane and sat. sodium chloride solution. Clean-up was performed using GC/PSA and C18 cartridges. In the case of livestock products and seafood, samples were extracted with a mixture of acetone and n-hexane, and the organic layer was collected. After acetonitrile-hexane partitioning, the extract was cleaned up using PAS and C18 cartridges. The gradient LC separation was performed on a C18 column with acetonitrile-water containing acetic acid as a mobile phase, and MS with positive ion electrospray ionization was used for detection. The average recoveries (n=5) of ipfencarbazone from 16 kinds of agricultural products, livestock products and seafood spiked at the MRLs or at the uniform limits (0.01 ppm) were 73-101%, and the relative standard deviations were 1.3-5.1%. The limit of quantitation of the developed method was 0.01 mg/kg for ipfencarbazone. PMID:26537650

  11. Utilization of agricultural biomass in the production of the biopolymer schizophyllan.

    PubMed

    Sutivisedsak, Nongnuch; Leathers, Timothy D; Nunnally, Melinda S; Price, Neil P J; Biresaw, Girma

    2013-01-01

    Schizophyllan is a homoglucan produced by the fungus Schizophyllum commune, with a β-1,3-linked backbone and β-1,6-linked side chains of single glucose units at every other residue. Schizophyllan is commercially produced for pharmaceutical and cosmetics uses. However, the unique physical properties of schizophyllan suggest that it may have biomaterials applications. Schizophyllan is conventionally produced by submerged culture fermentation using glucose as a carbon source. This study demonstrates for the first time the efficient utilization of agricultural biomass substrates, particularly distiller's dried grains with solubles, for schizophyllan production. Sugar composition analysis, NMR, and permethylation linkage analysis confirmed that the recovered product was schizophyllan. Schizophyllan produced from agricultural residues was of a high molecular weight and exhibited solution viscosity properties similar to those of commercially produced material. Utilization of biomass substrates could reduce the cost of schizophyllan production and provide a new value-added bioproduct for integrated biorefineries of the future. PMID:23090286

  12. Food productivity trend analysis of Raichur district for the management of agricultural drought.

    PubMed

    Swathandran, Sruthi; Aslam, M A Mohammed

    2016-01-01

    Drought is an extreme climatic situation where there is a water shortage arising due to sub-normal rainfall, erratic distribution of precipitation, increased water supply demand, etc. India faced several years of drought in last six decades. As Indian agriculture is largely dependent on the monsoon, a slight change affects production as well as crop yield drastically. Statistical analysis is important for mapping the drought prone areas. Raichur district of the northern interior state of Karnataka is a drought-prone region where the economy is mainly based on agriculture. So, the uneven distribution of rainfall as well as the delay in the arrival of the southwest monsoon adversely affects the growth stage of crops which result in a decline in crop production. The effect of drought on the agriculture for the past decade has been analyzed using crop productivity data. When the production rate of Raichur district was studied for the years 1998 to 2009, it was seen that major crops like rice and jowar faced a decline in its production during the years 2002 and 2003, whereas bajra, maize, etc. mostly decreased in the year 2004. PMID:26718944

  13. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security?

    NASA Astrophysics Data System (ADS)

    Valin, H.; Havlík, P.; Mosnier, A.; Herrero, M.; Schmid, E.; Obersteiner, M.

    2013-09-01

    In this letter, we investigate the effects of crop yield and livestock feed efficiency scenarios on greenhouse gas (GHG) emissions from agriculture and land use change in developing countries. We analyze mitigation associated with different productivity pathways using the global partial equilibrium model GLOBIOM. Our results confirm that yield increase could mitigate some agriculture-related emissions growth over the next decades. Closing yield gaps by 50% for crops and 25% for livestock by 2050 would decrease agriculture and land use change emissions by 8% overall, and by 12% per calorie produced. However, the outcome is sensitive to the technological path and which factor benefits from productivity gains: sustainable land intensification would increase GHG savings by one-third when compared with a fertilizer intensive pathway. Reaching higher yield through total factor productivity gains would be more efficient on the food supply side but halve emissions savings due to a strong rebound effect on the demand side. Improvement in the crop or livestock sector would have different implications: crop yield increase would bring the largest food provision benefits, whereas livestock productivity gains would allow the greatest reductions in GHG emission. Combining productivity increases in the two sectors appears to be the most efficient way to exploit mitigation and food security co-benefits.

  14. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 6. Science Applications, Incorporated system analysis

    SciTech Connect

    Not Available

    1985-01-01

    This report summarizes the results of the systems analysis task for the conceptual design of a commercial size, solar powered, controlled environment agriculture system. The baseline greenhouse system consists of a 5-hectare growing facility utilizing an innovative fluid roof filter concept to provide temperature and humidity control. Fresh water for the system is produced by means of a reverse osmosis desalination unit and energy is provided by means of a solar photovoltaic array in conjunction with storage batteries and a power conditioning unit. The greenhouse environment is controlled via circulation of brackish groundwater in a closed system, which permits water recovery during dehumidification as well as CO/sub 2/ enrichment for increased crop productivity.

  15. Agriculture--Agricultural Production 1, Seed Bed. Kit No. 6. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Sloan, Lee

    An instructor's manual and student activity guide on the seed bed are provided in this set of prevocational education materials which focuses on the vocational area of agriculture. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home economics,…

  16. Research needs to improve agricultural productivity and food quality, with emphasis on biotechnology.

    PubMed

    Thomson, Jennifer A

    2002-11-01

    Research into agricultural productivity, especially for crops in the developing world, should include resistance to plant viruses, fungi and the parasitic weed Striga. It must also include research into the development of resistance to Bacillus thuringiensis (Bt) toxin-expressing crops. Drought- and heat-tolerant crops, and those that can combat the problems of soil deficiencies, are required, and vaccine production in plants should be a high priority. Research into food quality should include the equivalent of "golden rice" in maize, the enhancement of the production of phytosterols and improved qualities of vegetable oils. PMID:12421866

  17. Sustainability of three apple production systems.

    PubMed

    Reganold, J P; Glover, J D; Andrews, P K; Hinman, H R

    2001-04-19

    Escalating production costs, heavy reliance on non-renewable resources, reduced biodiversity, water contamination, chemical residues in food, soil degradation and health risks to farm workers handling pesticides all bring into question the sustainability of conventional farming systems. It has been claimed, however, that organic farming systems are less efficient, pose greater health risks and produce half the yields of conventional farming systems. Nevertheless, organic farming became one of the fastest growing segments of US and European agriculture during the 1990s. Integrated farming, using a combination of organic and conventional techniques, has been successfully adopted on a wide scale in Europe. Here we report the sustainability of organic, conventional and integrated apple production systems in Washington State from 1994 to 1999. All three systems gave similar apple yields. The organic and integrated systems had higher soil quality and potentially lower negative environmental impact than the conventional system. When compared with the conventional and integrated systems, the organic system produced sweeter and less tart apples, higher profitability and greater energy efficiency. Our data indicate that the organic system ranked first in environmental and economic sustainability, the integrated system second and the conventional system last. PMID:11309616

  18. Eco-efficiency of agricultural water systems: Methodological approach and assessment at meso-level scale.

    PubMed

    Todorovic, Mladen; Mehmeti, Andi; Scardigno, Alessandra

    2016-01-01

    This study presents a methodological framework for the meso-level eco-efficiency assessment of agricultural water systems using a life-cycle system-based approach. The methodology was applied to the Sinistra Ofanto irrigation scheme, located in Southern Italy, where about 28,165 ha are under irrigation. The environmental performance of the system was evaluated through a set of selected mid-point environmental impact categories while the economic performance was measured using the total value added to the system's final products due to water use and the adopted management practices. Both economic performance and environmental performance were measured at different stages and for each stakeholder in the value chain. A distinction was made between foreground and background systems referring, respectively, to the processes that occurred inside the water system boundaries and those used for the production of supplementary resources. The analysis revealed that the major environmental burdens are: i) the freshwater resource depletion (i.e. excessive groundwater pumping), ii) climate change (i.e. direct emissions due to fertilizer use and diesel combustion), and iii) eutrophication (as a result of excessive application of N and P fertilizers). A considerable impact was observed on the background system where energy, fuel and agrochemicals were produced thereby confirming the prominent role of background processes in the comprehensive eco-efficiency assessment. The presented methodology aimed at the quantitative assessment of the eco-efficiency level rather than at the identification of the most affected environmental category. Hence, the results can be used to compare the performance of the system from one year to the next, among different stakeholders (water users) and/or to assess the impact of adopting innovative technologies and management practices. Moreover, the presented approach is useful for comparing the performance among different agricultural water systems and

  19. BUTANOL PRODUCTION FROM AGRICULTURAL RESIDUES: IMPACT OF DEGRADATION PRODUCTS ON CLOSTRIDIUM BEIJERINCKII GROWTH AND BUTANOL FERMENTATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During pretreatment and hydrolysis of fiber-rich agricultural biomass, compounds such as salts, furfural, hydroxymethyl furfural (HMF), acetic, ferulic, glucuronic, p-coumaric acids, and phenolic compounds are produced. Clostridium beijerinckii BA101 can utilize the individual sugars present in lig...

  20. Technical assessment of synthetic natural gas (SNG) production from agriculture residuals

    NASA Astrophysics Data System (ADS)

    Song, Guohui; Feng, Fei; Xiao, Jun; Shen, Laihong

    2013-08-01

    This paper presents thermodynamic evaluations of the agriculture residual-to-SNG process by thermochemical conversion, which mainly consists of the interconnected fluidized beds, hot gas cleaning, fluidized bed methanation reactor and Selexol absorption unit. The process was modeled using Aspen Plus software. The process performances, i.e., CH4 content in SNG, higher heating value and yield of SNG, exergy efficiencies with and without heat recovery, unit power consumption, were evaluated firstly. The results indicate that when the other parameters remain unchanged, the steam-to-biomass ratio at carbon boundary point is the optimal value for the process. Improving the preheating temperatures of air and gasifying agent is beneficial for the SNG yield and exergy efficiencies. Due to the effects of CO2 removal efficiency, there are two optimization objectives for the SNG production process: (I) to maximize CH4 content in SNG, or (II) to maximize SNG yield. Further, the comparison among different feedstocks indicates that the decreasing order of SNG yield is: corn stalk > wheat straw > rice straw. The evaluation on the potential of agriculture-based SNG shows that the potential annual production of agriculture residual-based SNG could be between 555×108 ˜ 611×108 m3 with utilization of 100% of the available unexplored resources. The agriculture residual-based SNG could play a significant role on solving the big shortfall of China's natural gas supply in future.

  1. Modeling Agricultural Crop Production in China using AVHRR-based Vegetation Health Indices

    NASA Astrophysics Data System (ADS)

    Yang, B.; Kogan, F.; Guo, W.; Zhiyuan, P.; Xianfeng, J.

    Weather related crop losses have always been a concern for farmers On a wider scale it has always influenced decision of Governments traders and other policy makers for the purpose of balanced food supplies trade and distribution of aid to the nations in need Therefore national policy and decision makers are giving increasing importance to early assessment of crop losses in response to weather fluctuations This presentation emphasizes utility of AVHRR-based Vegetation health index VHI for early warning of drought-related losses of agricultural production in China The VHI is a three-channel index characterizing greenness vigor and temperature of land surface which can be used as proxy for estimation of how healthy and potentially productive could be vegetation China is the largest in the world producer of grain including wheat and rice and cotton In the major agricultural areas China s crop production is very dependent on weather The VHI being a proxy indicator of weather impact on vegetation showed some correlation with productivity of agricultural crops during the critical period of their development The periods of the strongest correlation were investigated and used to build regression models where crop yield deviation from technological trend was accepted as a dependent and VHI as independent variables The models were developed for several major crops including wheat corn and soybeans

  2. [Effects of elevated CO2 concentration on the quality of agricultural products: a review].

    PubMed

    Chai, Ru-shan; Niu, Yao-fang; Zhu, Li-qing; Wang, Huan; Zhang, Yong-song

    2011-10-01

    The increasing concentration of atmospheric CO2 and the nutritional quality of human diets are the two important issues we are facing. At present, the atmospheric CO2 concentration is about 380 micromol mol(-1), and to be reached 550 micromol mol(-1) by 2050. A great deal of researches indicated that the quality of agricultural products is not only determined by inherited genes, but also affected by the crop growth environmental conditions. This paper summarized the common methods adopted at home and abroad for studying the effects of CO2 enrichment on the quality of agricultural products, and reviewed the research advances in evaluating the effects of elevated CO2 on the quality of rice, wheat, soybean, and vegetables. Many experimental results showed that elevated CO2 concentration causes a decrease of protein content in the grains of staple food crops and an overall decreasing trend of trace elements contents in the crops, but improves the quality of vegetable products to some extent. Some issues and future directions regarding the effects of elevated CO2 concentration on the quality of agricultural products were also discussed, based on the present status of related researches. PMID:22263486

  3. Water and Land Limitations to Future Agricultural Production in the Middle East

    NASA Astrophysics Data System (ADS)

    Koch, J. A. M.; Wimmer, F.; Schaldach, R.

    2015-12-01

    Countries in the Middle East use a large fraction of their scarce water resources to produce cash crops, such as fruit and vegetables, for international markets. At the same time, these countries import large amounts of staple crops, such as cereals, required to meet the nutritional demand of their populations. This makes food security in the Middle East heavily dependent on world market prices for staple crops. Under these preconditions, increasing food demand due to population growth, urban expansion on fertile farmlands, and detrimental effects of a changing climate on the production of agricultural commodities present major challenges to countries in the Middle East that try to improve food security by increasing their self-sufficiency rate of staple crops.We applied the spatio-temporal land-use change model LandSHIFT.JR to simulate how an expansion of urban areas may affect the production of agricultural commodities in Jordan. We furthermore evaluated how climate change and changes in socio-economic conditions may influence crop production. The focus of our analysis was on potential future irrigated and rainfed production (crop yield and area demand) of fruit, vegetables, and cereals. Our simulation results show that the expansion of urban areas and the resulting displacement of agricultural areas does result in a slight decrease in crop yields. This leads to almost no additional irrigation water requirements due to the relocation of agricultural areas, i.e. there is the same amount of "crop per drop". However, taking into account projected changes in socio-economic conditions and climate conditions, a large volume of water would be required for cereal production in order to safeguard current self-sufficiency rates for staple crops. Irrigation water requirements are expected to double until 2025 and to triple until 2050. Irrigated crop yields are projected to decrease by about 25%, whereas there is no decrease in rainfed crop yields to be expected.

  4. Matching Livestock Production Systems and Environment

    NASA Astrophysics Data System (ADS)

    Becchetti, T.; Stackhouse, J.; Snell, L.; Lile, D.; George, H.; Harper, J. M.; Larson, S.; Mashiri, F.; Doran, M.; Barry, S.

    2015-12-01

    Livestock production systems vary greatly over the world. Producers try to match the resources they have with the demands of production, this can vary by species, class of animal, number of animals, and production goals, etc. Using California's diversity in production systems as an example, we explored how livestock producers best utilize the forage and feed found in different ecosystems and available in different parts of the state. Livestock grazing, the predominant land use in California and in much of the world, makes efficient use of the natural vegetation produced without additional water (irrigation), minimal inputs such as fertilizer while often supporting a variety of conservation objectives including vegetation management, fire fuels management, and habitat and open space conservation. The numerous by-products produced by other sectors of California's agriculture as well as food industries, such as brewer's grain, cottonseeds, and almond hulls are utilized as a feed source for livestock. These by-products are not only an important feed source especially in drought years but are diverted from our waste stream when utilized by livestock. The concept of matching available resources to livestock needs throughout the world is often overlooked and production systems are often over simplified in projects conducting a life cycle analysis or developing carbon foot prints for livestock production systems. This paper provides details on the various production systems found in California, the ecosystem they have adapted to, and how the producers use science and ecological knowledge to match the biological requirements of the livestock and conservation objectives to feed and forage resources.

  5. Using Bayesian methods to predict climate impacts on groundwater availability and agricultural production in Punjab, India

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Devineni, N.; Lall, U.

    2015-12-01

    Lasting success of the Green Revolution in Punjab, India relies on continued availability of local water resources. Supplying primarily rice and wheat for the rest of India, Punjab supports crop irrigation with a canal system and groundwater, which is vastly over-exploited. The detailed data required to physically model future impacts on water supplies agricultural production is not readily available for this region, therefore we use Bayesian methods to estimate hydrologic properties and irrigation requirements for an under-constrained mass balance model. Using measured values of historical precipitation, total canal water delivery, crop yield, and water table elevation, we present a method using a Markov chain Monte Carlo (MCMC) algorithm to solve for a distribution of values for each unknown parameter in a conceptual mass balance model. Due to heterogeneity across the state, and the resolution of input data, we estimate model parameters at the district-scale using spatial pooling. The resulting model is used to predict the impact of precipitation change scenarios on groundwater availability under multiple cropping options. Predicted groundwater declines vary across the state, suggesting that crop selection and water management strategies should be determined at a local scale. This computational method can be applied in data-scarce regions across the world, where water resource management is required to resolve competition between food security and available resources in a changing climate.

  6. Designing and Implementing a Computerized Information Management System for Employment Demand Data in Agriculture/Agribusiness.

    ERIC Educational Resources Information Center

    Berkey, Arthur L.; Cooper, Gloria S.

    Planning for educational programs in agriculture/agribusiness demands knowledge of future employment demand for various occupations. At present, a functional and comprehensive occupational information system for agriculture/agribusiness does not exist. Systems that do exist, such as the Occupational Information System (OIS) and the Dictionary of…

  7. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    PubMed

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production. PMID:27077274

  8. Effects of fluorine emission on agricultural products surrounding an aluminum factory

    SciTech Connect

    Muramoto, S.; Nishizaki, H.; Aoyama, I. )

    1991-06-01

    The F concentrations of precipitate dust, agricultural products, and fingernail and hair at the surrounding Al factory were investigated. The F content of dust ranged from 15400 to 42500 micrograms/g dry weight, 190,000 to 380,000 micrograms/g Al. Rice grain contained about 3.4 times more F than that in the control area, but some kinds of agricultural products, egg plants (S. melongena L.), mulberry plants (M. japonica Bailey non Sieb.), and soy beans (G. max (L.) Merrill) were almost equal to that of controls. Also, the high F concentration in the hair and nails of some workers was affected by available F contents in the emission from the factory as well as food and water surrounding the aluminum factory compared with those of control area.

  9. To establish pilot projects for agriculture renewable energy systems.

    THOMAS, 111th Congress

    Rep. Holden, Tim [D-PA-17

    2010-09-29

    11/16/2010 Referred to the Subcommittee on Rural Development, Biotechnology, Specialty Crops, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. Energy efficiency of Pacific Northwest agriculture irrigation pumping systems

    SciTech Connect

    Wilfert, G.L.; Harrer, B.J.

    1987-03-01

    This document addresses the energy use and efficiency characteristics of pumping plants used to irrigate agricultural cropland in the Pacific Northwest. The principal focus of this document is on field information obtained from tests of irrigation pumping plants.

  11. Linking carbon stock change from land-use change to consumption of agricultural products: Alternative perspectives.

    PubMed

    Goh, Chun Sheng; Wicke, Birka; Faaij, André; Bird, David Neil; Schwaiger, Hannes; Junginger, Martin

    2016-11-01

    Agricultural expansion driven by growing demand has been a key driver for carbon stock change as a consequence of land-use change (CSC-LUC). However, its relative role compared to non-agricultural and non-productive drivers, as well as propagating effects were not clearly addressed. This study contributed to this subject by providing alternative perspectives in addressing these missing links. A method was developed to allocate historical CSC-LUC to agricultural expansions by land classes (products), trade, and end use. The analysis for 1995-2010 leads to three key trends: (i) agricultural land degradation and abandonment is found to be a major (albeit indirect) driver for CSC-LUC, (ii) CSC-LUC is spurred by the growth of cross-border trade, (iii) non-food use (excluding liquid biofuels) has emerged as a significant contributor of CSC-LUC in the 2000's. In addition, the study demonstrated that exact values of CSC-LUC at a single spatio-temporal point may change significantly with different methodological settings. For example, CSC-LUC allocated to 'permanent oil crops' changed from 0.53 Pg C (billion tonne C) of carbon stock gain to 0.11 Pg C of carbon stock loss when spatial boundaries were changed from global to regional. Instead of comparing exact values for accounting purpose, key messages for policymaking were drawn from the main trends. Firstly, climate change mitigation efforts pursued through a territorial perspective may ignore indirect effects elsewhere triggered through trade linkages. Policies targeting specific commodities or types of consumption are also unable to quantitatively address indirect CSC-LUC effects because the quantification changes with different arbitrary methodological settings. Instead, it is recommended that mobilising non-productive or under-utilised lands for productive use should be targeted as a key solution to avoid direct and indirect CSC-LUC. PMID:27543749

  12. Review and appraisal of concept of sustainable food production systems

    NASA Astrophysics Data System (ADS)

    Brklacich, Michael; Bryant, Christopher R.; Smit, Barry

    1991-01-01

    Environmental degradation, competition for resources, increasing food demands, and the integration of agriculture into the international economy threaten the sustainability of many food production systems. Despite these concerns, the concept of sustainable food production systems remains unclear, and recent attempts to appraise sustainability have been hampered by conceptual inconsistencies and the absence of workable definitions. Six perspectives are shown to underpin the concept. Environmental accounting identifies biophysical limits for agriculture. Sustained yield refers to output levels that can be maintained continuously. Carrying capacity defines maximum population levels that can be supported in perpetuity. Production unit viability refers to the capacity of primary producers to remain in agriculture. Product supply and security focuses on the adequacy of food supplies. Equity is concerned with the spatial and temporal distribution of products dervied from resource use. Many studies into sustainable agriculture cover more than one of these perspectives, indicating the concept is complex and embraces issues relating to the biophysical, social, and economic environments. Clarification of the concept would facilitate the development of frameworks and analytical systems for appraising the sustainability of food production systems.

  13. Peering into the secrets of food and agricultural co-products

    NASA Astrophysics Data System (ADS)

    Wood, Delilah; Williams, Tina; Glenn, Gregory; Pan, Zhongli; Orts, William; McHugh, Tara

    2010-06-01

    Scanning electron microscopy is a useful tool for understanding food contamination and directing product development of food and industrial products. The current trend in food research is to produce foods that are fast to prepare and/or ready to eat. At the same time, these processed foods must be safe, high quality and maintain all or most of the nutritional value of the original whole foods. Minimally processed foods, is the phrase used to characterize these "new" foods. New techniques are needed which take advantage of minimal processing or processing which enhances the fresh properties and characteristics of whole foods while spending less time on food preparation. The added benefit coupled to less cooking time in an individual kitchen translates to an overall energy savings and reduces the carbon emissions to the environment. Food processing changes the microstructure, and therefore, the quality, texture and flavor, of the resulting food product. Additionally, there is the need to reduce waste, transportation costs and product loss during transportation and storage. Unlike food processing, structural changes are desirable in co-products as function follows form for food packaging films and boxes as well as for building materials and other industrial products. Thus, the standard materials testing procedures are coupled with SEM to provide direction in the development of products from agricultural residues or what would otherwise be considered waste materials. The use of agricultural residues reduces waste and adds value to a currently underutilized or unutilized product. The product might be biodegradable or compostable, thus reducing landfill requirements. Manufacturing industrial and packaging products from biological materials also reduces the amount of petroleum products currently standard in the industry.

  14. 7 CFR 205.309 - Agricultural products in other than packaged form at the point of retail sale that are sold...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Agricultural products in other than packaged form at the point of retail sale that are sold, labeled, or represented as âmade with organic (specified ingredients or food group(s)).â 205.309 Section 205.309 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL...

  15. 7 CFR 205.308 - Agricultural products in other than packaged form at the point of retail sale that are sold...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Agricultural products in other than packaged form at the point of retail sale that are sold, labeled, or represented as â100 percent organicâ or âorganic.â 205.308 Section 205.308 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards,...

  16. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row

  17. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3—N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  18. Development of two enzyme-linked immunosorbent assays for detection of endosulfan residues in agricultural products.

    PubMed

    Wang, Shuo; Zhang, Jun; Yang, Zhiyan; Wang, Junping; Zhang, Yan

    2005-09-21

    Two competitive immunoassays, a laboratory assay based on microwell plates and a field test based on the use of polystyrene tubes, have been developed for the detection of endosulfan in agricultural products. The limit of detection for the microwell plate format was 0.8 +/- 0.1 microg/kg, and the limit of detection for the tube format was 1.6 +/- 0.2 microg/kg. A simple, rapid, and efficient extraction method was employed, and 76-112% recoveries of spiked samples were obtained. Methanol extracts of some agricultural product samples such as grape, carrot, spinach, and tobacco could be analyzed directly by immunoassay after dilution in 0.5% fish skin gelatin-phosphate buffered saline. In contrast, extracts of green tea caused significant interference in the assay, and a number of simple cleanup methods were ineffective in removing interference. However, use of the coagulating reagent polyvinyl pyrrolidone removed the matrix effect effectively. For the validation of the enzyme-linked immunosorbent assay (ELISA) tests, samples were analyzed by ELISA and gas chromatography (GC) after solid phase extraction. The relationship between data obtained using the tube assay and microwell assay was good (the lowest r(2) value was 0.94), and also, the immunoassay assay data correlated well with data obtained from GC analysis (the lowest r(2) value was 0.93). The developed immunoassay methods are the suitable methods for the rapid quantitative and reliable determination of endosulfan residues in agricultural products. PMID:16159161

  19. Whole System Integration and Modeling Essential to Agricultural Science and Technology for the 21st Century

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the 21st century, agricultural research has more difficult and complex problems to solve. The continued increase in population in the developing countries requires continued increases in agricultural production. However, the increased use of fertilizers, pesticides, and water required for the new...

  20. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.