Science.gov

Sample records for agricultural pumping equipment

  1. 49 CFR 195.262 - Pumping equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY..., pumping equipment must be installed on property that is under the control of the operator and at least...

  2. 49 CFR 195.262 - Pumping equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY..., pumping equipment must be installed on property that is under the control of the operator and at least...

  3. Agricultural Machinery - Equipment. Agricultural Cooperative Training. Vocational Agricluture. Revised.

    ERIC Educational Resources Information Center

    Sandlin, David, Comp.; And Others

    Designed for students enrolled in the Agricultural Cooperative Part-Time Training Program, this course of study contains 12 units on agricultural machinery mechanics. Units include (examples of unit topics in parentheses): introduction (agricultural mechanics as an occupation; safety--shop and equipment; use of holding devices, jacks, lifts, and…

  4. Skill Standards for Agriculture: John Deere Agricultural Equipment Technician, Agricultural & Diesel Equipment Mechanic, Irrigation Technologist, Turf Management Technician, Turf Equipment Service Technician.

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, Olympia.

    This document presents agriculture skill standards for programs to prepare Washington students for employment in the following occupations: John Deere agricultural equipment technician; agricultural and diesel equipment mechanic; irrigation technologist; turf management technician; and turf equipment service technician. The introduction explains…

  5. Energy efficiency of Pacific Northwest agriculture irrigation pumping systems

    SciTech Connect

    Wilfert, G.L.; Harrer, B.J.

    1987-03-01

    This document addresses the energy use and efficiency characteristics of pumping plants used to irrigate agricultural cropland in the Pacific Northwest. The principal focus of this document is on field information obtained from tests of irrigation pumping plants.

  6. GENERAL ARRANGEMENT BUILDING AND EQUIPMENT. WELLTONMOHAWK PUMPING PLANT NO. 3. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL ARRANGEMENT BUILDING AND EQUIPMENT. WELLTON-MOHAWK PUMPING PLANT NO. 3. United States Department of the Interior, Bureau of Reclamation; Gila Project, Arizona, Wellton-Mohawk Division. Drawing No. 50-D-2343, dated October 26, 1948, Denver, Colorado - Wellton-Mohawk Irrigation System, Pumping Plant No. 3, South of Interstate 8, Wellton, Yuma County, AZ

  7. GENERAL ARRANGEMENT BUILDING AND EQUIPMENT. WELLTONMOHAWK PUMPING PLANT NO. 2. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL ARRANGEMENT BUILDING AND EQUIPMENT. WELLTON-MOHAWK PUMPING PLANT NO. 2. United States Department of the Interior, Bureau of Reclamation; Gila Project, Arizona, Wellton-Mohawk Division. Drawing No. 50-D-2352, dated December 2, 1948, Denver Colorado - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  8. GENERAL ARRANGEMENT BUILDING AND EQUIPMENT. WELLTONMOHAWK PUMPING PLANT NO.. 1. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL ARRANGEMENT BUILDING AND EQUIPMENT. WELLTON-MOHAWK PUMPING PLANT NO.. 1. United States Department of the Interior, Bureau of Reclamation; Gila Project, Arizona, Wellton-Mohawk Division. Drawing No. 50-D-2328, dated August 2, 1948, Denver, Colorado. - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  9. 20. VIEW OF LOW PRESSURE PUMPING EQUIPMENT ON THE SECOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF LOW PRESSURE PUMPING EQUIPMENT ON THE SECOND FLOOR OF BUILDING 707. THE EQUIPMENT MAINTAINS PROPER COOLANT PRESSURE IN MACHINES. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  10. An environmental rating for heat pump equipment

    SciTech Connect

    Hughes, P.J.

    1992-01-01

    The major federal and state regulatory trends that may affect heat pump markets are reviewed. Then the confluence of federal and state regulation, and what that may mean for heat pump markets, is discussed. The conclusion reached, and therefore the assumption for the rest of the paper, is that state regulators will increasingly be managing the environmental impacts associated with alternative heating, cooling, and water heating methods within the framework of Integrated Resource Planning (IRP). The input needs of IRP are reviewed, and some shortcomings of existing rating procedures for providing the IRP inputs are identified. Finally, the paper concludes with a brief suggestion on course of action.

  11. An environmental rating for heat pump equipment

    SciTech Connect

    Hughes, P.J.

    1992-12-31

    The major federal and state regulatory trends that may affect heat pump markets are reviewed. Then the confluence of federal and state regulation, and what that may mean for heat pump markets, is discussed. The conclusion reached, and therefore the assumption for the rest of the paper, is that state regulators will increasingly be managing the environmental impacts associated with alternative heating, cooling, and water heating methods within the framework of Integrated Resource Planning (IRP). The input needs of IRP are reviewed, and some shortcomings of existing rating procedures for providing the IRP inputs are identified. Finally, the paper concludes with a brief suggestion on course of action.

  12. 46 CFR 108.421 - Location of fire pumps and associated equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Location of fire pumps and associated equipment. 108.421... pumps and associated equipment. Each fire pump required by § 108.415, and the source of power, controls, sea connections for the fire pump, and booster pumps, if installed, must be installed in...

  13. 46 CFR 108.421 - Location of fire pumps and associated equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Location of fire pumps and associated equipment. 108.421... pumps and associated equipment. Each fire pump required by § 108.415, and the source of power, controls, sea connections for the fire pump, and booster pumps, if installed, must be installed in...

  14. 46 CFR 108.421 - Location of fire pumps and associated equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Location of fire pumps and associated equipment. 108.421... pumps and associated equipment. Each fire pump required by § 108.415, and the source of power, controls, sea connections for the fire pump, and booster pumps, if installed, must be installed in...

  15. 46 CFR 108.421 - Location of fire pumps and associated equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Location of fire pumps and associated equipment. 108.421... pumps and associated equipment. Each fire pump required by § 108.415, and the source of power, controls, sea connections for the fire pump, and booster pumps, if installed, must be installed in...

  16. 46 CFR 108.421 - Location of fire pumps and associated equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Location of fire pumps and associated equipment. 108.421... pumps and associated equipment. Each fire pump required by § 108.415, and the source of power, controls, sea connections for the fire pump, and booster pumps, if installed, must be installed in...

  17. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith

    2014-01-01

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  18. Groundwater pumping effects on contaminant loading management in agricultural regions.

    PubMed

    Park, Dong Kyu; Bae, Gwang-Ok; Kim, Seong-Kyun; Lee, Kang-Kun

    2014-06-15

    Groundwater pumping changes the behavior of subsurface water, including the location of the water table and characteristics of the flow system, and eventually affects the fate of contaminants, such as nitrate from agricultural fertilizers. The objectives of this study were to demonstrate the importance of considering the existing pumping conditions for contaminant loading management and to develop a management model to obtain a contaminant loading design more appropriate and practical for agricultural regions where groundwater pumping is common. Results from this study found that optimal designs for contaminant loading could be determined differently when the existing pumping conditions were considered. This study also showed that prediction of contamination and contaminant loading management without considering pumping activities might be unrealistic. Motivated by these results, a management model optimizing the permissible on-ground contaminant loading mass together with pumping rates was developed and applied to field investigation and monitoring data from Icheon, Korea. The analytical solution for 1-D unsaturated solute transport was integrated with the 3-D saturated solute transport model in order to approximate the fate of contaminants loaded periodically from on-ground sources. This model was further expanded to manage agricultural contaminant loading in regions where groundwater extraction tends to be concentrated in a specific period of time, such as during the rice-growing season, using a method that approximates contaminant leaching to a fluctuating water table. The results illustrated that the simultaneous management of groundwater quantity and quality was effective and appropriate to the agricultural contaminant loading management and the model developed in this study, which can consider time-variant pumping, could be used to accurately estimate and to reasonably manage contaminant loading in agricultural areas. PMID:24681649

  19. Groundwater pumping effects on contaminant loading management in agricultural regions.

    PubMed

    Park, Dong Kyu; Bae, Gwang-Ok; Kim, Seong-Kyun; Lee, Kang-Kun

    2014-06-15

    Groundwater pumping changes the behavior of subsurface water, including the location of the water table and characteristics of the flow system, and eventually affects the fate of contaminants, such as nitrate from agricultural fertilizers. The objectives of this study were to demonstrate the importance of considering the existing pumping conditions for contaminant loading management and to develop a management model to obtain a contaminant loading design more appropriate and practical for agricultural regions where groundwater pumping is common. Results from this study found that optimal designs for contaminant loading could be determined differently when the existing pumping conditions were considered. This study also showed that prediction of contamination and contaminant loading management without considering pumping activities might be unrealistic. Motivated by these results, a management model optimizing the permissible on-ground contaminant loading mass together with pumping rates was developed and applied to field investigation and monitoring data from Icheon, Korea. The analytical solution for 1-D unsaturated solute transport was integrated with the 3-D saturated solute transport model in order to approximate the fate of contaminants loaded periodically from on-ground sources. This model was further expanded to manage agricultural contaminant loading in regions where groundwater extraction tends to be concentrated in a specific period of time, such as during the rice-growing season, using a method that approximates contaminant leaching to a fluctuating water table. The results illustrated that the simultaneous management of groundwater quantity and quality was effective and appropriate to the agricultural contaminant loading management and the model developed in this study, which can consider time-variant pumping, could be used to accurately estimate and to reasonably manage contaminant loading in agricultural areas.

  20. Heat pump assisted drying of agricultural produce-an overview.

    PubMed

    Patel, Krishna Kumar; Kar, Abhijit

    2012-04-01

    This review paper included the recent progress made in heat pump assisted drying, its principle, mechanism and efficiency, type and its application for drying of agricultural produce. Heat pump assisted drying provides a controllable drying environment (temperature and humidity) for better products quality at low energy consumption. It has remarkable future prospects and revolutionaries ability. The heat pump system consists of an expansion valve, two heat exchangers (evaporator and condenser), and a compressor, which are connected by using copper tubes. In this paper we also provided a review discussion on different type of heat pump assisted drying system ready for remarkable and commercial use in different type of food industries. Here we also have given some major advantage and disadvantage of heat pump assisted drying.

  1. 46 CFR 167.45-20 - Examination and testing of pumps and fire-extinguishing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Examination and testing of pumps and fire-extinguishing....45-20 Examination and testing of pumps and fire-extinguishing equipment. The inspectors will examine all pumps, hose, and other fire apparatus and will see that the hose is subjected to a pressure of...

  2. 46 CFR 167.45-20 - Examination and testing of pumps and fire-extinguishing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Examination and testing of pumps and fire-extinguishing....45-20 Examination and testing of pumps and fire-extinguishing equipment. The inspectors will examine all pumps, hose, and other fire apparatus and will see that the hose is subjected to a pressure of...

  3. Utility pump truck; Residual gas problems reduced with innovative equipment

    SciTech Connect

    Not Available

    1988-04-01

    Residual natural gas trapped in the ground after the repair of a distribution-system leak can be a headache for utility employees and customers. The pump truck, a unique approach to removing residual gas, is described in this paper. Natural gas is lighter than air and naturally tends to rise upward and dissipate in the atmosphere. However, pavement, buildings or soil conditions around a leaking pipe often cause gas to be trapped in the ground. In addition to removing trapped gas, the pump truck is used to help pinpoint leaks where the source is difficult to locate because of soil conditions.

  4. Rod pumping optimization program reduces equipment failures and operating costs

    SciTech Connect

    Allen, L.F.; Svinos, J.G.

    1984-09-01

    In 1975, an intensive program was initiated by Gulf Oil EandP Central Area to reduce rod and tubing failure rates in the fields of the northwest corner of Crane County, Texas. Chronologically the program steps were: The replacement of rod strings experiencing three failures in three months. The replacement of tubing strings experiencing two failures in three months. The use of inspected, classified and plastic coated new or used grade ''C'' rods. The use of inspected, classified and internally plastic coated used or new tubing. The exclusive use of high working stress rods. The exclusive use of specially designed fiberglass sucker rod systems with improved sinker bar design. This program reduced rod failure rates from 16% to 4% and tubing failures from 7% to 3% per month. The lighter rod design reduced lifting costs by $2 MM per year on 880 active wells. Of the 219 wells equipped with fiberglass sucker rods in the last two years, there have been no operational body breaks or tubing leaks.

  5. Replacement of the static frequency converter starting equipment at the Raccoon Mountain Pumped Storage Plant

    SciTech Connect

    Patel, G.; Deckman, J.T.

    1995-12-31

    In October 1994, the Tennessee Valley Authority awarded a contract for replacement of their Static Frequency Converter (SFC) Starting Equipment at the Raccoon Mountain Pumped Storage Plant. Replacement of the original SFC was deemed necessary to counter a rising forced outage rate and costly repairs directly attributable to the advanced age and condition of the original equipment. This paper presents a comparison of the features of the new SFC versus the original SFC. The new SFC is scheduled to undergo check-out and testing in Spring of 1996.

  6. Equipment Request for the Belleville Agricultural Research and Education Center

    SciTech Connect

    Young, Bryan; Nehring, Jarrett; Graham, Susan; Klubek, Brian

    2013-01-13

    The funding provided by the DOE for this project was used exclusively to purchase research equipment involved with the field development and evaluation of crop production technologies and practices for energy crop production. The new equipment has been placed into service on the SIU farms and has significantly enhanced our research capacity and scope for agronomy and precision ag research to support novel seed traits or crop management strategies for improving the efficiency and productivity of corn and soybeans. More specifically, the precision ag capability of the equipment that was purchased has heightened interest by faculty and associated industry partners to develop collaborative projects. In addition, this equipment has provided SIU with a foundation to be more successful at securing competitive grants in energy crop production and precision ag data management. Furthermore, the enhanced capacity for agronomy research in the southern Illinois region has been realized and will benefit crop producers in this region by learning to improve their operations from our research outcomes.

  7. Hydro-economic analysis of groundwater pumping for irrigated agriculture in California's Central Valley, USA

    NASA Astrophysics Data System (ADS)

    Medellín-Azuara, Josué; MacEwan, Duncan; Howitt, Richard E.; Koruakos, George; Dogrul, Emin C.; Brush, Charles F.; Kadir, Tariq N.; Harter, Thomas; Melton, Forrest; Lund, Jay R.

    2015-09-01

    As in many places, groundwater in California (USA) is the major alternative water source for agriculture during drought, so groundwater's availability will drive some inevitable changes in the state's water management. Currently, agricultural, environmental, and urban uses compete for groundwater, resulting in substantial overdraft in dry years with lowering of water tables, which in turn increases pumping costs and reduces groundwater pumping capacity. In this study, SWAP (an economic model of agricultural production and water use in California) and C2VISim (the California Department of Water Resources groundwater model for California's Central Valley) are connected. This paper examines the economic costs of pumping replacement groundwater during drought and the potential loss of pumping capacity as groundwater levels drop. A scenario of three additional drought years continuing from 2014 show lower water tables in California's Central Valley and loss of pumping capacity. Places without access to groundwater and with uncertain surface-water deliveries during drought are the most economically vulnerable in terms of crop revenues, employment and household income. This is particularly true for Tulare Lake Basin, which relies heavily on water imported from the Sacramento-San Joaquin Delta. Remote-sensing estimates of idle agricultural land between 2012 and 2014 confirm this finding. Results also point to the potential of a portfolio approach for agriculture, in which crop mixing and conservation practices have substantial roles.

  8. On the efficiency of electrical submersible pumps equipped with variable frequency drives: A field study

    SciTech Connect

    Patterson, M.M.

    1996-02-01

    A field study was conducted on 18 electrical-submersible-pump- (ESP-) equipped wells operating in the Williston basin. Fifteen of these wells were run with variable frequency drives (VFD`s). The purpose of the study was to determine the efficiency and operating characteristics of ESP`s operating with VFD`s and compare them to those without. Voltage, current, power, and frequency were measured at the drive input, the drive output, and ESP input. Production data were recorded and power and efficiency were calculated at all measurement locations and compared to published data.

  9. A Comparison of Certain Knowledges in Agriculture Needed by Workers in Farming, in Grain Elevator Businesses, and in Agricultural Equipment Businesses.

    ERIC Educational Resources Information Center

    Fiscus, Keith Eugene

    Questionnaires to determine the vocational and technical education needed by prospective workers in farming and in grain elevator and agricultural equipment businesses were administered to 20 workers in each of the jobs of (1) farm manager, (2) grain elevator manager, operator, salesman, and deliveryman, and (3) agricultural equipment manager,…

  10. Agricultural Equipment Technician: Apprenticeship Course Outline. Apprenticeship and Industry Training. 3212

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2012

    2012-01-01

    The graduate of the Agricultural Equipment Technician apprenticeship program is a certified journeyperson who will be able to: (1) repair, diagnose and maintain by skill and knowledge gained through training and experience any of the working parts of diesel engines as well as the various components of mobile farm machinery; (2) use, competently,…

  11. Agricultural Equipment Technology: A Suggested 2-Year Post High School Curriculum.

    ERIC Educational Resources Information Center

    Office of Education (DHEW), Washington, DC.

    Developed by a subject matter specialist, this suggested curriculum guide is intended to assist school administrators, advisory committees, supervisors, and teachers in planning and developing new programs or evaluating existing ones in agricultural equipment technology. The guide provides suggested course outlines, including examples of texts and…

  12. Effects of groundwater pumping on agricultural drains in the Tule Lake subbasin, Oregon and California

    USGS Publications Warehouse

    Pischel, Esther M.; Gannett, Marshall W.

    2015-07-24

    To better define the effect of increased pumping on drain flow and on the water balance of the groundwater system, the annual water volume pumped from drains in three subareas of the Tule Lake subbasin was estimated and a fine-grid, local groundwater model of the Tule Lake subbasin was constructed. Results of the agricultural-drain flow analysis indicate that groundwater discharge to drains has decreased such that flows in 2012 were approximately 32,400 acre-ft less than the 1997–2000 average flow. This decrease was concentrated in the northern and southeastern parts of the subbasin, which corresponds with the areas of greatest groundwater pumping. Model simulation results of the Tule Lake subbasin groundwater model indicate that increased supplemental pumping is the dominant stress to the groundwater system in the subbasin. Simulated supplemental pumping and decreased recharge from irrigation between 2000 and 2010 totaled 323,573 acre-ft, 234,800 acre-ft (73 percent) of which was from supplemental pumping. The response of the groundwater system to this change in stress included about 180,500 acre-ft (56 percent) of decreased groundwater discharge to drains and a 126,000 acre-ft (39 percent) reduction in aquifer storage. The remaining 5 percent came from reduced groundwater flow to other model boundaries, including the Lost River, the Tule Lake sumps, and interbasin flow.

  13. Effects of groundwater pumping on agricultural drains in the Tule Lake subbasin, Oregon and California

    USGS Publications Warehouse

    Pischel, Esther M.; Gannett, Marshall W.

    2015-01-01

    To better define the effect of increased pumping on drain flow and on the water balance of the groundwater system, the annual water volume pumped from drains in three subareas of the Tule Lake subbasin was estimated and a fine-grid, local groundwater model of the Tule Lake subbasin was constructed. Results of the agricultural-drain flow analysis indicate that groundwater discharge to drains has decreased such that flows in 2012 were approximately 32,400 acre-ft less than the 1997–2000 average flow. This decrease was concentrated in the northern and southeastern parts of the subbasin, which corresponds with the areas of greatest groundwater pumping. Model simulation results of the Tule Lake subbasin groundwater model indicate that increased supplemental pumping is the dominant stress to the groundwater system in the subbasin. Simulated supplemental pumping and decreased recharge from irrigation between 2000 and 2010 totaled 323,573 acre-ft, 234,800 acre-ft (73 percent) of which was from supplemental pumping. The response of the groundwater system to this change in stress included about 180,500 acre-ft (56 percent) of decreased groundwater discharge to drains and a 126,000 acre-ft (39 percent) reduction in aquifer storage. The remaining 5 percent came from reduced groundwater flow to other model boundaries, including the Lost River, the Tule Lake sumps, and interbasin flow.

  14. Study of hybrid power system potential to power agricultural water pump in mountain area

    NASA Astrophysics Data System (ADS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  15. 46 CFR 108.417 - Fire pump components and associated equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....415 for the pump or 8.6 kilograms per square centimeters (approximately 125 pounds per square inch... pounds per square inch). (b) Each fire pump in a fire main system must have a pressure gauge on its... discharge side that is set to relieve at 1.75 kilograms per square centimeter (approximately 25......

  16. 46 CFR 108.417 - Fire pump components and associated equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....415 for the pump or 8.6 kilograms per square centimeters (approximately 125 pounds per square inch... pounds per square inch). (b) Each fire pump in a fire main system must have a pressure gauge on its... discharge side that is set to relieve at 1.75 kilograms per square centimeter (approximately 25......

  17. 46 CFR 108.417 - Fire pump components and associated equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....415 for the pump or 8.6 kilograms per square centimeters (approximately 125 pounds per square inch... pounds per square inch). (b) Each fire pump in a fire main system must have a pressure gauge on its... discharge side that is set to relieve at 1.75 kilograms per square centimeter (approximately 25......

  18. 46 CFR 108.417 - Fire pump components and associated equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pounds per square inch). (b) Each fire pump in a fire main system must have a pressure gauge on its... manifold to other portions of the fire main system must have a reducing station and a pressure gauge in addition to the pressure gauge required by paragraph (b) of this section. (d) If a fire pump has a...

  19. 46 CFR 108.417 - Fire pump components and associated equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pounds per square inch). (b) Each fire pump in a fire main system must have a pressure gauge on its... manifold to other portions of the fire main system must have a reducing station and a pressure gauge in addition to the pressure gauge required by paragraph (b) of this section. (d) If a fire pump has a...

  20. Use of Dieselized Farm Equipment and Incident Lung Cancer: Findings from the Agricultural Health Study Cohort

    PubMed Central

    Tual, Séverine; Silverman, Debra T.; Koutros, Stella; Blair, Aaron; Sandler, Dale P.; Lebailly, Pierre; Andreotti, Gabriella; Hoppin, Jane A.; Freeman, Laura E. Beane

    2015-01-01

    Background: Diesel exhaust is a known lung carcinogen. Farmers use a variety of dieselized equipment and thus may be at increased risk of lung cancer, but farm exposures such as endotoxins may also be protective for lung cancer. Objectives: We evaluated the relative risk of incident lung cancer, including histological subtype, from enrollment (1993–1997) to 2010–2011 in relation to farm equipment use in the Agricultural Health Study (AHS), a prospective cohort study of pesticide applicators and spouses in Iowa and North Carolina, USA. Methods: Farm equipment use was reported by 21,273 farmers and 29,840 spouses. Rate ratios (RRs) were estimated separately for farmers and spouses with Poisson regression models adjusted for smoking and other confounders. We conducted stratified analyses by exposure to animals or stored grain, a surrogate for endotoxin exposure. Results: Daily diesel tractor use (vs. no use) was positively associated with lung cancer in farmers (RR = 1.48; 95% CI: 0.87, 2.50; 35 exposed, 32 unexposed cases), particularly adenocarcinoma (RR = 3.39; 95% CI: 1.23, 9.33; 12 exposed, 7 unexposed cases). The association of adenocarcinoma with daily (vs. low/no) use of diesel tractors was stronger for farmers with no animal or stored grain exposures (RR = 6.23; 95% CI: 2.25, 17.25; 5 exposed, 18 unexposed cases) than among farmers with these exposures (RR = 1.19; 95% CI: 0.51, 2.79; 7 exposed, 27 unexposed cases) (p-interaction = 0.05). Conclusions: This study provides preliminary evidence of an increased risk of lung adenocarcinoma among daily drivers of diesel tractors and suggests that exposure to endotoxins may modify the impact of diesel exposure on lung cancer risk. Confirmation of these findings with more exposed cases and more detailed exposure information is warranted. Citation: Tual S, Silverman DT, Koutros S, Blair A, Sandler DP, Lebailly P, Andreotti G, Hoppin JA, Beane Freeman LE. 2016. Use of dieselized farm equipment and incident lung

  1. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... efficiency of commercial and industrial pumps. (76 FR 34192, June 13, 2011). DOE subsequently published a notice of public meeting and availability of the Framework Document in the Federal Register (78 FR...

  2. 46 CFR 167.45-20 - Examination and testing of pumps and fire-extinguishing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... all pumps, hose, and other fire apparatus and will see that the hose is subjected to a pressure of 100 pounds to the square inch at each annual inspection and that the hose couplings are securely fastened....

  3. 46 CFR 167.45-20 - Examination and testing of pumps and fire-extinguishing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... all pumps, hose, and other fire apparatus and will see that the hose is subjected to a pressure of 100 pounds to the square inch at each annual inspection and that the hose couplings are securely fastened....

  4. 46 CFR 167.45-20 - Examination and testing of pumps and fire-extinguishing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... all pumps, hose, and other fire apparatus and will see that the hose is subjected to a pressure of 100 pounds to the square inch at each annual inspection and that the hose couplings are securely fastened....

  5. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  6. What`s new in artificial lift. Part 2: Advances in electrical submersible pumping equipment and instrumentation/control, plus other new artificial lift developments

    SciTech Connect

    Lea, J.F.; Winkler, H.W.

    1996-04-01

    The Part 1 article presented last month discussed recent industry artificial lift innovations for sucker rod pumping, progressing cavity pumping and gas lift. Described in this presentation are 22 advances recently introduced by 15 different companies for electrical submersible pumping (ESP), and other new developments related to artificial lift field operations. ESP innovations include contributions ranging from new downhole pump equipment, gas separators and cables to various surface controllers/monitors. Other R and D contributions cover desangers, separators, fluid level measurements, chemical injection and well-heads.

  7. The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications.

    PubMed

    Begolo, Stefano; Zhukov, Dmitriy V; Selck, David A; Li, Liang; Ismagilov, Rustem F

    2014-12-21

    Equipment-free pumping is a challenging problem and an active area of research in microfluidics, with applications for both laboratory and limited-resource settings. This paper describes the pumping lid method, a strategy to achieve equipment-free pumping by controlled generation of pressure. Pressure was generated using portable, lightweight, and disposable parts that can be integrated with existing microfluidic devices to simplify workflow and eliminate the need for pumping equipment. The development of this method was enabled by multi-material 3D printing, which allows fast prototyping, including composite parts that combine materials with different mechanical properties (e.g. both rigid and elastic materials in the same part). The first type of pumping lid we describe was used to produce predictable positive or negative pressures via controlled compression or expansion of gases. A model was developed to describe the pressures and flow rates generated with this approach and it was validated experimentally. Pressures were pre-programmed by the geometry of the parts and could be tuned further even while the experiment was in progress. Using multiple lids or a composite lid with different inlets enabled several solutions to be pumped independently in a single device. The second type of pumping lid, which relied on vapor-liquid equilibrium to generate pressure, was designed, modeled, and experimentally characterized. The pumping lid method was validated by controlling flow in different types of microfluidic applications, including the production of droplets, control of laminar flow profiles, and loading of SlipChip devices. We believe that applying the pumping lid methodology to existing microfluidic devices will enhance their use as portable diagnostic tools in limited resource settings as well as accelerate adoption of microfluidics in laboratories. PMID:25231706

  8. Equipment

    NASA Astrophysics Data System (ADS)

    Szumski, Michał

    This chapter describes the most important features of capillary electrophoretic equipment. A presentation of the important developments in high voltage power supplies for chip CE is followed by preparation of fused silica capillaries for use in CE. Detection systems that are used in capillary electrophoresis are widely described. Here, UV-Vis absorbance measurements are discussed including different types of detection cells—also those less popular (u-shaped, Z-shaped, mirror-coated). Fluorescence detection and laser-induced fluorescence detection are the most sensitive detection systems. Several LIF setups, such as collinear, orthogonal, confocal, and sheath-flow cuvette, are presented from the point of view of the sensitivity they can provide. Several electrochemical detectors for CE, such as conductivity, amperometric, and potentiometric, are also shown and their constructions discussed. CE-MS and much less known CE (CEC)-NMR systems are also described. The examples of automation and robotized CE systems together with their potential fields of application are also presented.

  9. Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus

    SciTech Connect

    Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

    2013-09-30

    The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method

  10. Pattern of use of personal protective equipments and measures during application of pesticides by agricultural workers in a rural area of Ahmednagar district, India

    PubMed Central

    Singh, Bhoopendra; Gupta, Mudit Kumar

    2009-01-01

    Background: Pesticides, despite their known toxicity, are widely used in developing countries for agricultural purposes. Objectives: To find various patterns of hardware use for spraying of insecticides, prevalent storage practice adopted by the user, types of personal protective equipments used for the handling of chemicals; to detect dangerous practices and the extent to which safety norms being followed by the users during the application/treatments, and finally their knowledge concerning the risks of pesticides. Materials and Methods: The agriculture workers who had been involved in pesticide application for agricultural purpose were interviewed face-to-face to gain information on the following determinants of pesticide exposure: Types, treatment equipment, use of personal protection and safety measures during the application/treatments and knowledge of the risks of pesticide exposure. Results: Hundred workers, aged between 21 and 60 years old, were included. Pesticides were mostly applied with manual equipment using Knapsack (70%) and only 5% farmers were using Tractor-mounted sprayer. Workers frequently performed tasks involving additional exposure to pesticides (mixing chemicals, 66%, or washing equipment, 65%). Majority of the workers/applicators used no personal protection measures or used it defectively/partially. Most of the workers/respondents (77%) did not bother for safety and health risks of pesticide exposure. Conclusions: Workers involved in pesticide application use personal protection measures very poorly and defectively. Almost half of the applicators were not following right direction with respect to wind direction while spraying, thus it increase the risk of exposure. There is a clear need to develop specific training and prevention programs for these workers. The determinants of pesticide exposure in agricultural workers described in this study should be properly assessed in epidemiological studies of the health effects of pesticides on

  11. Solar Equipment

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  12. Employer Evaluation for the Layout and Erection of Agriculture Pole Buildings, Dairy Equipment and Materials Handling. Final Report.

    ERIC Educational Resources Information Center

    Pasch, Rodney; And Others

    To meet the need for trained personnel in the agriculture building industry, an agricultural building serviceman program was developed to prepare graduates for entry-level positions in this expanding field. The purpose of the study was to evaluate and improve the curriculum by determining the specific job skills required. Employers and former…

  13. Dairy Equipment Lubrication

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Lake To Lake Dairy Cooperative, Manitowoc, Wisconsin, operates four plants in Wisconsin for processing milk, butter and cheese products from its 1,300 member farms. The large co-op was able to realize substantial savings by using NASA information for improved efficiency in plant maintenance. Under contract to Marshall Space Flight Center, Midwest Research Institute compiled a handbook consolidating information about commercially available lubricants. The handbook details chemical and physical properties, applications, specifications, test procedures and test data for liquid and solid lubricants. Lake To Lake's plant engineer used the handbook to effect savings in maintenance labor and materials costs by reducing the number of lubricants used on certain equipment. Strict U.S. Department of Agriculture and Food and Drug Administration regulations preclude lubrication changes n production equipment, but the co-op's maintenance chief was able to eliminate seven types of lubricants for ancillary equipment, such as compressors and high pressure pumps. Handbook data enabled him to select comparable but les expensive lubricants in the materials consolidation process, and simplified lubrication schedules and procedures. The handbook is in continuing use as a reference source when a new item of equipment is purchased.

  14. 46 CFR 169.559 - Fire pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fire pumps. 169.559 Section 169.559 Shipping COAST GUARD... Firefighting Equipment Firefighting Equipment § 169.559 Fire pumps. (a) Each sailing school vessel must be equipped with fire pumps as required in Table 169.559(a). Table 169.559(a)—Fire Pumps Length Exposed...

  15. 46 CFR 169.559 - Fire pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire pumps. 169.559 Section 169.559 Shipping COAST GUARD... Firefighting Equipment Firefighting Equipment § 169.559 Fire pumps. (a) Each sailing school vessel must be equipped with fire pumps as required in Table 169.559(a). Table 169.559(a)—Fire Pumps Length Exposed...

  16. 46 CFR 169.559 - Fire pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fire pumps. 169.559 Section 169.559 Shipping COAST GUARD... Firefighting Equipment Firefighting Equipment § 169.559 Fire pumps. (a) Each sailing school vessel must be equipped with fire pumps as required in Table 169.559(a). Table 169.559(a)—Fire Pumps Length Exposed...

  17. 46 CFR 169.559 - Fire pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire pumps. 169.559 Section 169.559 Shipping COAST GUARD... Firefighting Equipment Firefighting Equipment § 169.559 Fire pumps. (a) Each sailing school vessel must be equipped with fire pumps as required in Table 169.559(a). Table 169.559(a)—Fire Pumps Length Exposed...

  18. An Empirical Determination of Tasks Essential to Successful Performance as an Agricultural-Industrial Equipment Mechanic. Determination of a Common Core of Basic Skills in Agribusiness and Natural Resources.

    ERIC Educational Resources Information Center

    Yoder, Edgar P.; McCracken, J. David

    To improve vocational educational programs in agriculture, occupational information on a common core of basic skills within the occupational area of the agricultural-industrial equipment mechanic is presented in the revised task inventory survey. The purpose of the occupational survey was to identify a common core of basic skills which are…

  19. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each...

  20. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each...

  1. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each...

  2. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each...

  3. 33 CFR 157.126 - Pumps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Pumps. 157.126 Section 157.126... Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil must be supplied to the COW machines by COW system pumps or cargo pumps. (b) The pumps under...

  4. 33 CFR 157.126 - Pumps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Pumps. 157.126 Section 157.126... Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil must be supplied to the COW machines by COW system pumps or cargo pumps. (b) The pumps under...

  5. 33 CFR 157.126 - Pumps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pumps. 157.126 Section 157.126... Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil must be supplied to the COW machines by COW system pumps or cargo pumps. (b) The pumps under...

  6. 33 CFR 183.524 - Fuel pumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operated fuel pump must not operate except when the engine is operating or when the engine is started. (c... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a)...

  7. Potential depletion of surface water in the Colorado River and agricultural drains by groundwater pumping in the Parker-Palo Verde-Cibola area, Arizona and California

    USGS Publications Warehouse

    Leake, Stanley A.; Owen-Joyce, Sandra J.; Heilman, Julian A.

    2013-01-01

    Water use along the lower Colorado River is allocated as “consumptive use,” which is defined to be the amount of water diverted from the river minus the amount that returns to the river. Diversions of water from the river include surface water in canals and water removed from the river by pumping wells in the aquifer connected to the river. A complication in accounting for water pumped by wells occurs if the pumping depletes water in drains and reduces measured return flow in those drains. In that case, consumptive use of water pumped by the wells is accounted for in the reduction of measured return flow. A method is needed to understand where groundwater pumping will deplete water in the river and where it will deplete water in drains. To provide a basis for future accounting for pumped groundwater in the Parker-Palo Verde-Cibola area, a superposition model was constructed. The model consists of three layers of finite-difference cells that cover most of the aquifer in the study area. The model was run repeatedly with each run having a pumping well in a different model cell. The source of pumped water that is depletion of the river, expressed as a fraction of the pumping rate, was computed for all active cells in model layer 1, and maps were constructed to understand where groundwater pumping depletes the river and where it depletes drains. The model results indicate that if one or more drains exist between a pumping well location and the river, nearly all of the depletion will be from drains, and little or no depletion will come from the Colorado River. Results also show that if a well pumps on a side of the river with no drains in the immediate area, depletion will come from the Colorado River. Finally, if a well pumps between the river and drains that parallel the river, a fraction of the pumping will come from the river and the rest will come from the drains. Model results presented in this report may be considered in development or refinement of strategies

  8. 7 CFR 58.626 - Packaging equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Packaging equipment. 58.626 Section 58.626 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...

  9. 7 CFR 58.319 - Printing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Printing equipment. 58.319 Section 58.319 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...

  10. 7 CFR 58.428 - Speciality equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Speciality equipment. 58.428 Section 58.428 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...

  11. 7 CFR 58.626 - Packaging equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging equipment. 58.626 Section 58.626 Agriculture....626 Packaging equipment. Packaging equipment designed to mechanically fill and close single service... Standards for Equipment for Packaging Frozen Desserts and Cottage Cheese. Quality Specifications for...

  12. 7 CFR 58.626 - Packaging equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Packaging equipment. 58.626 Section 58.626 Agriculture....626 Packaging equipment. Packaging equipment designed to mechanically fill and close single service... Standards for Equipment for Packaging Frozen Desserts and Cottage Cheese. Quality Specifications for...

  13. 49 CFR 195.430 - Firefighting equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Firefighting equipment. 195.430 Section 195.430... PIPELINE Operation and Maintenance § 195.430 Firefighting equipment. Each operator shall maintain adequate firefighting equipment at each pump station and breakout tank area. The equipment must be— (a) In...

  14. 49 CFR 195.430 - Firefighting equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Firefighting equipment. 195.430 Section 195.430... PIPELINE Operation and Maintenance § 195.430 Firefighting equipment. Each operator shall maintain adequate firefighting equipment at each pump station and breakout tank area. The equipment must be— (a) In...

  15. 49 CFR 195.430 - Firefighting equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Firefighting equipment. 195.430 Section 195.430... PIPELINE Operation and Maintenance § 195.430 Firefighting equipment. Each operator shall maintain adequate firefighting equipment at each pump station and breakout tank area. The equipment must be— (a) In...

  16. 49 CFR 195.430 - Firefighting equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Firefighting equipment. 195.430 Section 195.430... PIPELINE Operation and Maintenance § 195.430 Firefighting equipment. Each operator shall maintain adequate firefighting equipment at each pump station and breakout tank area. The equipment must be— (a) In...

  17. 49 CFR 195.430 - Firefighting equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Firefighting equipment. 195.430 Section 195.430... PIPELINE Operation and Maintenance § 195.430 Firefighting equipment. Each operator shall maintain adequate firefighting equipment at each pump station and breakout tank area. The equipment must be— (a) In...

  18. 7 CFR 58.223 - Special treatment equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Special treatment equipment. 58.223 Section 58.223 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....223 Special treatment equipment. Any special equipment (instantizers, hammer mills, etc.) used...

  19. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  20. Supercritical waste oxidation pump investigation

    SciTech Connect

    Thurston, G.; Garcia, K.

    1993-02-01

    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications.

  1. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  2. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  3. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  4. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  5. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  6. 46 CFR 118.300 - Fire pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire pumps. 118.300 Section 118.300 Shipping COAST GUARD... OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS FIRE PROTECTION EQUIPMENT Fire Main System § 118.300 Fire pumps. (a) A self priming, power driven fire pump must be installed on each vessel. (b) On...

  7. 46 CFR 181.300 - Fire pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire pumps. 181.300 Section 181.300 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) FIRE PROTECTION EQUIPMENT Fire Main System § 181.300 Fire pumps. (a) A self priming, power driven fire pump must...

  8. 46 CFR 118.300 - Fire pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire pumps. 118.300 Section 118.300 Shipping COAST GUARD... OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS FIRE PROTECTION EQUIPMENT Fire Main System § 118.300 Fire pumps. (a) A self priming, power driven fire pump must be installed on each vessel. (b) On...

  9. 46 CFR 181.300 - Fire pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire pumps. 181.300 Section 181.300 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) FIRE PROTECTION EQUIPMENT Fire Main System § 181.300 Fire pumps. (a) A self priming, power driven fire pump must...

  10. 46 CFR 118.300 - Fire pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire pumps. 118.300 Section 118.300 Shipping COAST GUARD... OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS FIRE PROTECTION EQUIPMENT Fire Main System § 118.300 Fire pumps. (a) A self priming, power driven fire pump must be installed on each vessel. (b) On...

  11. 46 CFR 118.300 - Fire pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 118.300 Section 118.300 Shipping COAST GUARD... OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS FIRE PROTECTION EQUIPMENT Fire Main System § 118.300 Fire pumps. (a) A self priming, power driven fire pump must be installed on each vessel. (b) On...

  12. 46 CFR 118.300 - Fire pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire pumps. 118.300 Section 118.300 Shipping COAST GUARD... OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS FIRE PROTECTION EQUIPMENT Fire Main System § 118.300 Fire pumps. (a) A self priming, power driven fire pump must be installed on each vessel. (b) On...

  13. 46 CFR 181.300 - Fire pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fire pumps. 181.300 Section 181.300 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) FIRE PROTECTION EQUIPMENT Fire Main System § 181.300 Fire pumps. (a) A self priming, power driven fire pump must...

  14. Analysis of electric-submersible-pumping systems

    SciTech Connect

    Nolen, K.B.; Gibbs, S.G.

    1989-05-01

    This paper presents a field-proven analytical method of evaluating electric-submersible-pumping equipment and well performance jointly. A computerized mathematical model that considers the effects of free gas, pump speed (variable-frequency drives), and pump tapering is described. The method allows accurate calculations of important downhole parameters, including pump intake pressure, pump intake volume (including free gas), pump pressure, and fluid density profile. Lifting cost parameters - such as pump and motor power requirements, monthly power consumption, pump and motor performance, and overall system efficiency - are also determined. Once operating conditions are known, decisions can be made on ways to increase production (if additional potential exists) or to reduce operating costs. Thus, the same basic goals that often justify frequent analysis of rod pumping systems can be applied to submersible pumping.

  15. 46 CFR 76.10-5 - Fire pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Fire pumps. 76.10-5 Section 76.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 76.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven fire pumps...

  16. 46 CFR 76.10-5 - Fire pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Fire pumps. 76.10-5 Section 76.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 76.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven fire pumps...

  17. 46 CFR 76.10-5 - Fire pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Fire pumps. 76.10-5 Section 76.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 76.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven fire pumps...

  18. Aeration equipment for small depths

    NASA Astrophysics Data System (ADS)

    Sluše, Jan; Pochylý, František

    2015-05-01

    Deficit of air in water causes complications with cyanobacteria mainly in the summer months. Cyanobacteria is a bacteria that produces poison called cyanotoxin. When the concentration of cyanobacteria increases, the phenomena "algal bloom" appears, which is very toxic and may kill all the organisms. This article describes new equipment for aeration of water in dams, ponds and reservoirs with small depth. This equipment is mobile and it is able to work without any human factor because its control is provided by a GPS module. The main part of this equipment consists of a floating pump which pumps water from the surface. Another important part of this equipment is an aerator where water and air are blended. Final aeration process runs in the nozzles which provide movement of all this equipment and aeration of the water. Simulations of the flow are solved by multiphase flow with diffusion in open source program called OpenFOAM. Results will be verified by an experiment.

  19. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  20. Casing pump

    SciTech Connect

    Bass, H.E.; Bass, R.E.

    1987-09-29

    A natural gas operated pump is described for use in the casing of an oil well, comprising: a tubular pump body having an open lower end for admitting well fluids to the interior of the pump body and an open upper end, wherein a downwardly facing seating surface is formed on the inner periphery of the pump body adjacent the upper end thereof; means for forming a seal between the pump body and the casing of the well; a rod extending longitudinally through the seating surface formed in the pump body and protruding from the upper end of the pump body; a valve member mounted on the rod below the seating surface and shaped to mate with the seating surface; and means for vertically positioning the rod in proportion to fluid pressure within the pump body.

  1. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  2. Hydraulic well pump

    SciTech Connect

    Dollison, W.W.

    1987-09-08

    This patent describes a system for operating a sucker rod string connected with a well pump comprising: a double-acting fluid cylinder having opposing power ends; means for connecting the cylinder with the sucker rod string for raising and lowering the string to operate the pump; hydraulic pump means for supplying pressurized fluid alternately to the cylinder ends including a direction control movable between extend and retract conditions to extend and retract the cylinder; drive means for shifting the direction control; control means for operating the drive means responsive to the extend and retract movements of the cylinder; and means for applying a fluid counterbalancing force into the cylinder for offsetting the combined weights of the sucker rod string. A production fluid column in a well bore above the pump, and movable surface equipment supported on the cylinder include an accumulator connected with the hydraulic pump means and the direction control for supercharging the intake of the pump during the extend movement of the cylinder and for applying an opposing hydraulic force to the cylinder during the retract movement.

  3. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  4. Unprotected karst resources in western Iran: the environmental impacts of intensive agricultural pumping on the covered karstic aquifer, a case in Kermanshah province

    NASA Astrophysics Data System (ADS)

    Taheri, Kamal; Taheri, Milad; Parise, Mario

    2015-04-01

    Bare and covered karst areas, with developed karstic aquifers, cover 35 percent of the Kermanshah province in western Iran. These aquifers are the vital sources for drinking and agricultural water supplies. Over the past decade, intensive groundwater use (exploitation) for irrigation imposed a significant impact on the carbonate environments. The huge amount of groundwater over-exploitations has been carried out and still goes on by local farmers in the absence of appropriate governance monitoring control. Increasing in water demands, for more intense crop production, is an important driving force toward groundwater depletion in alluvial aquifers. Progressive groundwater over-exploitations from underlying carbonate rocks have led to dramatic drawdown in alluvial aquifers and deep karst water tables. Detecting new sources of groundwater extractions and prohibiting the karst water utilization for agricultural use could be the most effective strategy to manage the sustainability of covered karst aquifers. Anthropogenic pressures on covered karst aquifers have magnified the drought impacts and caused dryness of most of the karst springs and deep wells. In this study, the combination of geophysical and geological studies was used to estimate the most intensively exploited agricultural zones of Islam Abad plain in the southwestern Kermanshah province using GIS. The results show that in the past decade a great number of deep wells were drilled through the overburden alluvial aquifer and reached the deep karst water resources. However, the difficulties involved in monitoring deep wells in covered karst aquifer were the main cause of karst water depletion. Overexploitation from both alluvial and karst aquifers is the main reason for drying out the Arkawazi, Sharafshah, Gawrawani karst springs, and the karst drinking water wells 1, 3 and 5 of Islam Abad city. Karst spring landscape destructions, fresh water supply deficit for inhabitants, decreasing of tourism and

  5. Development and Qualification of Advancements in Submersible Transfer Pump Performance and Life, and Implications for Advancing and Supporting Processing Options - 13343

    SciTech Connect

    Stover, David L.; Bryan, Wes; Kelly, James

    2013-07-01

    From the 1950's through the 1990's, relatively inexpensive, 'off-the-shelf' type, vertical turbine pumps (VTP) were used to transfer Hanford waste. The technology of those pumps was rooted primarily in the mining and agricultural (irrigation) industries. HNF-3218, Double Shell Tank (DST) Transfer Pump History and Reliability Report, 1998, provides a summary of Hanford DST pump history to that date. Such pumps operated in the Hanford radioactive waste environment for an average of only 400 hours before failure. However, at that time, operating life was not a driving criteria within the Department of Energy (DOE) complex, as the failure of transfer pumps represented a relatively low replacement and disposal cost. The Environmental Protection Agency (EPA) issuance of the 'Debris Rule' in 1992, which mandated that mixed radioactive waste contaminated equipment be decontaminated to a 'low level waste' category prior to burial, elevated the significance of transfer pump reliability and decontamination capability as life-cycle cost criteria. Minimizing the frequency of transfer pump failures and design for decontamination became significantly important and served to drive the need toward specific, designed for application pumps to meet this challenge. To this end, Washington River Protection Solutions (WRPS) and the supplier, Curtiss-Wright EMD (EMD), have recently collaborated on an intense program to further transfer pump technology and performance. (authors)

  6. 7 CFR 58.419 - Curd mill and miscellaneous equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Curd mill and miscellaneous equipment. 58.419 Section 58.419 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...

  7. 7 CFR 550.37 - Title to equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Title to equipment. 550.37 Section 550.37 Agriculture... Equipment/property Standards § 550.37 Title to equipment. (a) As authorized by 7 U.S.C. 3318(d), title to... provision of this rule the REE Agency may, at its discretion, retain title to equipment described...

  8. 7 CFR 1753.68 - Purchasing special equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Purchasing special equipment. 1753.68 Section 1753.68... AGRICULTURE TELECOMMUNICATIONS SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Purchase and Installation of Special Equipment § 1753.68 Purchasing special equipment. (a) General. (1) Equipment purchases...

  9. Insulin pumps.

    PubMed

    Pickup, J

    2010-02-01

    Insulin pump therapy is now more than 30 years old, and is an established part of the routine care of selected people with type 1 diabetes. Nevertheless, there are still significant areas of concern, particularly how pumps compare with modern injection therapy, whether the increasingly sophisticated pump technologies like onboard calculators and facility for computer download offer any real benefit, and whether we have a consensus on the clinical indications. The following papers offer some insight into these and other current questions.

  10. Farm Equipment Mechanic. Occupational Analyses Series.

    ERIC Educational Resources Information Center

    Ross, Douglas

    This analysis covers tasks performed by a farm equipment mechanic, an occupational title some provinces and territories of Canada have also identified as agricultural machinery technician, agricultural mechanic, and farm equipment service technician. A guide to analysis discusses development, structure, and validation method; scope of the…

  11. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  12. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  13. Strategy Guideline. HVAC Equipment Sizing

    SciTech Connect

    Burdick, Arlan

    2012-02-01

    This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, FL. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  14. 46 CFR 109.329 - Fire pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire pumps. 109.329 Section 109.329 Shipping COAST GUARD... of Safety Equipment § 109.329 Fire pumps. The master or person in charge shall insure that at least one of the fire pumps required in § 108.415 is ready for use on the fire main system at all times....

  15. 46 CFR 109.329 - Fire pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire pumps. 109.329 Section 109.329 Shipping COAST GUARD... of Safety Equipment § 109.329 Fire pumps. The master or person in charge shall insure that at least one of the fire pumps required in § 108.415 is ready for use on the fire main system at all times....

  16. 46 CFR 109.329 - Fire pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire pumps. 109.329 Section 109.329 Shipping COAST GUARD... of Safety Equipment § 109.329 Fire pumps. The master or person in charge shall insure that at least one of the fire pumps required in § 108.415 is ready for use on the fire main system at all times....

  17. 46 CFR 109.329 - Fire pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 109.329 Section 109.329 Shipping COAST GUARD... of Safety Equipment § 109.329 Fire pumps. The master or person in charge shall insure that at least one of the fire pumps required in § 108.415 is ready for use on the fire main system at all times....

  18. 46 CFR 109.329 - Fire pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire pumps. 109.329 Section 109.329 Shipping COAST GUARD... of Safety Equipment § 109.329 Fire pumps. The master or person in charge shall insure that at least one of the fire pumps required in § 108.415 is ready for use on the fire main system at all times....

  19. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  20. 46 CFR 132.120 - Fire pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire pumps. 132.120 Section 132.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT General Provisions; Fire Main § 132.120 Fire pumps. (a) Except as provided by § 132.100(b) of this subpart,...

  1. 46 CFR 132.120 - Fire pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire pumps. 132.120 Section 132.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT General Provisions; Fire Main § 132.120 Fire pumps. (a) Except as provided by § 132.100(b) of this subpart,...

  2. 46 CFR 132.120 - Fire pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire pumps. 132.120 Section 132.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT General Provisions; Fire Main § 132.120 Fire pumps. (a) Except as provided by § 132.100(b) of this subpart,...

  3. Double-shell tank emergency pumping guide

    SciTech Connect

    BROWN, M.H.

    1999-02-24

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTS. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified.

  4. Double-shell tank emergency pumping guide

    SciTech Connect

    BROWN, M.H.

    1999-05-18

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanfords 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified.

  5. 33 CFR 157.126 - Pumps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil... pumps that are capable of supplying oil to the COW machines. (e) The COW system must be designed to...

  6. 33 CFR 157.126 - Pumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil... pumps that are capable of supplying oil to the COW machines. (e) The COW system must be designed to...

  7. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  8. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  9. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  10. Hydraulic well pump

    SciTech Connect

    Dollison, W.W.

    1986-02-25

    This patent describes a system for operating a sucker rod string connected with a well pump. This pump consists of: a double-acting fluid cylinder having opposing power ends; means for connecting the cylinder with the sucker rod string for raising and lowering the string to operate the pump; means for supplying pressurized fluid alternately to the cylinder ends including a direction control movable between extend and retract conditions to extend and retract the cylinder; drive means for shifting the direction control; control means for operating the drive means responsive to the extend and retract movements of the cylinder; including limit valves positioned to simulate the hydraulic cylinder extend and retract stroke end locations, the limit valves being movably mounted for changing the location of each limit valve and the distance between the limit valves for selectively adjusting the length of the strokes of the hydraulic cylinder and the end limit of the extend and retract strokes of the cylinder. A cam operator is for opening and closing each of the limit valves at the end locations and means connecting the cam operator means with the hydraulic cylinder. Cable is reeved over the movable and fixed sheave means and secured along the second end thereof at a fixed location; and means for applying a fluid counterbalancing force into the cylinder for offsetting the combined weights of the sucker rods string, a production fluid column in a well core above the pump, and movable surface equipment supported on the cylinder.

  11. 7 CFR 501.11 - Mobile equipment and pedestrian traffic.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Mobile equipment and pedestrian traffic. 501.11 Section 501.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER,...

  12. 7 CFR 501.11 - Mobile equipment and pedestrian traffic.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Mobile equipment and pedestrian traffic. 501.11 Section 501.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER,...

  13. 7 CFR 501.11 - Mobile equipment and pedestrian traffic.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Mobile equipment and pedestrian traffic. 501.11 Section 501.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER,...

  14. 7 CFR 501.11 - Mobile equipment and pedestrian traffic.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Mobile equipment and pedestrian traffic. 501.11 Section 501.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER,...

  15. 7 CFR 501.11 - Mobile equipment and pedestrian traffic.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Mobile equipment and pedestrian traffic. 501.11 Section 501.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER,...

  16. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  17. 46 CFR 95.10-5 - Fire pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 95.10-5 Section 95.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 95.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven...

  18. 46 CFR 95.10-5 - Fire pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire pumps. 95.10-5 Section 95.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 95.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven...

  19. 46 CFR 95.10-5 - Fire pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire pumps. 95.10-5 Section 95.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 95.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven...

  20. 46 CFR 193.10-5 - Fire pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fire pumps. 193.10-5 Section 193.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 193.10-5 Fire pumps. (a) Vessels shall be equipped with...

  1. 46 CFR 95.10-5 - Fire pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire pumps. 95.10-5 Section 95.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 95.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven...

  2. 46 CFR 95.10-5 - Fire pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire pumps. 95.10-5 Section 95.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 95.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven...

  3. 46 CFR 105.35-5 - Fire pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire pumps. 105.35-5 Section 105.35-5 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Fire Extinguishing Equipment § 105.35-5 Fire pumps. (a) All vessels shall be provided with a hand operated portable fire pump having a capacity of at least 5 gallons...

  4. 46 CFR 105.35-5 - Fire pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire pumps. 105.35-5 Section 105.35-5 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Fire Extinguishing Equipment § 105.35-5 Fire pumps. (a) All vessels shall be provided with a hand operated portable fire pump having a capacity of at least 5 gallons...

  5. 46 CFR 105.35-5 - Fire pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire pumps. 105.35-5 Section 105.35-5 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Fire Extinguishing Equipment § 105.35-5 Fire pumps. (a) All vessels shall be provided with a hand operated portable fire pump having a capacity of at least 5 gallons...

  6. 46 CFR 105.35-5 - Fire pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire pumps. 105.35-5 Section 105.35-5 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Fire Extinguishing Equipment § 105.35-5 Fire pumps. (a) All vessels shall be provided with a hand operated portable fire pump having a capacity of at least 5 gallons...

  7. 46 CFR 105.35-5 - Fire pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 105.35-5 Section 105.35-5 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Fire Extinguishing Equipment § 105.35-5 Fire pumps. (a) All vessels shall be provided with a hand operated portable fire pump having a capacity of at least 5 gallons...

  8. Mixer pump test plan for double shell tank AZ-101

    SciTech Connect

    STAEHR, T.W.

    1999-05-12

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151.

  9. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154.534 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps...

  10. 33 CFR 183.566 - Fuel pumps: Placement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel pumps: Placement. 183.566...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.566 Fuel pumps: Placement. Each fuel pump must be on the engine it serves or within 12 inches of the engine, unless it is...

  11. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154.534 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps...

  12. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154.534 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps...

  13. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154.534 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps...

  14. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo lines serving different tanks enter a pumproom and connect to the same pump: (1) Each cargo line...

  15. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo lines serving different tanks enter a pumproom and connect to the same pump: (1) Each cargo line...

  16. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo lines serving different tanks enter a pumproom and connect to the same pump: (1) Each cargo line...

  17. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire pump: General. 108.415 Section 108.415 Shipping... EQUIPMENT Fire Extinguishing Systems Fire Main System § 108.415 Fire pump: General. A fire main system must have at least two independently driven fire pumps that can each deliver water at a continuous...

  18. 33 CFR 183.566 - Fuel pumps: Placement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel pumps: Placement. 183.566...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.566 Fuel pumps: Placement. Each fuel pump must be on the engine it serves or within 12 inches of the engine, unless it is...

  19. 33 CFR 183.566 - Fuel pumps: Placement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel pumps: Placement. 183.566...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.566 Fuel pumps: Placement. Each fuel pump must be on the engine it serves or within 12 inches of the engine, unless it is...

  20. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire pump: General. 108.415 Section 108.415 Shipping... EQUIPMENT Fire Extinguishing Systems Fire Main System § 108.415 Fire pump: General. A fire main system must have at least two independently driven fire pumps that can each deliver water at a continuous...

  1. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154.534 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps...

  2. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo lines serving different tanks enter a pumproom and connect to the same pump: (1) Each cargo line...

  3. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pump: General. 108.415 Section 108.415 Shipping... EQUIPMENT Fire Extinguishing Systems Fire Main System § 108.415 Fire pump: General. A fire main system must have at least two independently driven fire pumps that can each deliver water at a continuous...

  4. 33 CFR 183.566 - Fuel pumps: Placement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel pumps: Placement. 183.566...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.566 Fuel pumps: Placement. Each fuel pump must be on the engine it serves or within 12 inches of the engine, unless it is...

  5. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire pump: General. 108.415 Section 108.415 Shipping... EQUIPMENT Fire Extinguishing Systems Fire Main System § 108.415 Fire pump: General. A fire main system must have at least two independently driven fire pumps that can each deliver water at a continuous...

  6. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo lines serving different tanks enter a pumproom and connect to the same pump: (1) Each cargo line...

  7. 46 CFR 108.415 - Fire pump: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire pump: General. 108.415 Section 108.415 Shipping... EQUIPMENT Fire Extinguishing Systems Fire Main System § 108.415 Fire pump: General. A fire main system must have at least two independently driven fire pumps that can each deliver water at a continuous...

  8. 33 CFR 183.566 - Fuel pumps: Placement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.566 Fuel pumps: Placement. Each fuel pump must be on the engine it serves or within 12 inches of the engine, unless it is a... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel pumps: Placement....

  9. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the sprinkling system and shall be used for no other purpose....

  10. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the sprinkling system and shall be used for no other purpose....

  11. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply...

  12. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  13. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  14. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  15. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  16. Oil well pumping apparatus

    SciTech Connect

    Whatley, D. L.; Chaviers, W. M.

    1985-07-23

    The present system and apparatus for pumping an oil well damps out the stretch and over travel in sucker rod over travel particularly when the rod string approaches its point of reversal of direction either up or down. This is accomplished by decelerating the rate of travel of the rod string and at its end of travel pausing for a time period sufficient to allow rod string oscillations to damp out prior to reversal of rod string direction which due to the long length of the rod string, its weight and the weight of the trapped oil avoids breaking the rod string and the time loss occasioned thereby in both loss of well production and costly replacement of equipment and the time loss resulting therefrom. The present invention also achieves substantial recovery of hi-viscosity oil not recoverable at present by standard recovery procedures. This is accomplished with a sensor positioned to be actuated by the ram of the hydraulic drive. When the sensor is actuated, it energizes a time delay relay which holds the sucker rod string in the upper most raised position allowing the suction to be maintained on the bottom hole pump with the standing valve open. This allows the hi-viscus oil to enter the bottom hole pump barrel. When the time delay relay is released, the sucker rod string starts its downward movement closing the bottom hole standing valve. This traps the hi-viscus oil in the pump barrel which is then displaced by the downward-movement of the plunger in the bottom hole pump.

  17. 7 CFR 800.158 - Equipment testing work records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Equipment testing work records. 800.158 Section 800.158 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND... Official Records and Forms (general) § 800.158 Equipment testing work records. The record for each...

  18. 7 CFR 800.158 - Equipment testing work records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Equipment testing work records. 800.158 Section 800.158 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND... Official Records and Forms (general) § 800.158 Equipment testing work records. The record for each...

  19. Replacement Saltwell Pumping System Document Bibliography

    SciTech Connect

    BELLOMY, J.R.

    2000-12-07

    This document bibliography is prepared to identify engineering documentation developed during the design of the Replacement Saltwell Pumping System. The bibliography includes all engineering supporting documents and correspondence prepared prior to the deployment of the system in the field. All documents referenced are available electronically through the Records Management Information System (RMIS). Major components of the Replacement Saltwell Pumping System include the Sundyne Canned Motor Pump, the Water Filter Skid, the Injection Water Skid and the Backflow Preventer Assembly. Drawing H-14-104498 provides an index of drawings (fabrication details, P&IDs, etc.) prepared to support development of the Replacement Saltwell Pumping System. Specific information pertaining to new equipment can be found in Certified Vendor Information (CVI) File 50124. This CVI file has been established specifically for new equipment associated with the Replacement Saltwell Pumping System.

  20. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  1. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  2. Task Lists for Agricultural Occupations, 1988: Cluster Matrices for Agricultural Occupations. Education for Employment Task Lists.

    ERIC Educational Resources Information Center

    Pepple, Jerry

    This document contains four publications for agricultural occupations in Illinois. "Task Lists for Agricultural Occupations" provide lists of employability skills for the following: park aide; hand sprayer; gardener/groundskeeper; salesperson, parts, agricultural equipment; and dairy processing equipment operator. Each list contains skills…

  3. Testing new submersible pumps for proper sizing and reduced costs

    SciTech Connect

    O'Toole, W.P.; O'Brien, J.B.

    1986-01-01

    This paper describes an ongoing program to improve overall submersible pump performance by Thums Long Beach Company, acting as Contractor of the City of Long Beach, Operator of the Long Beach Unit. Thums Long Beach Company currently operates 700 submersible pump installations located on four man-made islands and one land fill pier location. The program began with spot testing of submersible pumps for Thums' use. It has evolved to 100 percent pump testing and the stipulation that only pumps with newly manufactured parts are acceptable. The primary goals of this program are to increase well production and lower lifting costs. Critical to these goals is increasing the average length of run by using accurate pump performance data to design equipment and by rejecting defective pumps before they are run. Increased production is realized from better designs. Lower lifting costs result from utilizing higher efficiency pumps and a reduced frequency of pulling submersible equipment.

  4. Testing new submersible pumps for proper sizing and reduced costs

    SciTech Connect

    O'Toole, W.P.; O'Brien, J.B.

    1989-02-01

    This paper describes an ongoing program to improve overall submersible pump performance by Thums Long Beach Co., acting as contractor for the City of Long Beach, operator of the Long Beach Unit. Thums Long Beach Co. currently operates 700 submersible pump installations located on four manmade islands and one landfill pier location. The program began with spot testing of submersible pumps for Thums' use. It has evolved to 100% pump testing and the stipulation that only pumps with newly manufactured parts are acceptable. The primary goals of this program are to increase well production and to lower lifting costs. Critical to these goals is increasing the average length of run by using accurate pump-performance data to design equipment and by rejecting defective pumps before they are run. Increased production is realized from better designs. Lower lifting costs result from using more efficient pumps and a reduced frequency of pulling submersible equipment.

  5. Telescope Equipment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Renaissance Telescope for high resolution and visual astronomy has five 82-degree Field Tele-Vue Nagler Eyepieces, some of the accessories that contribute to high image quality. Telescopes and eyepieces are representative of a family of optical equipment manufactured by Tele-Vue Optics, Inc.

  6. Pump jack

    SciTech Connect

    Stanton, G. E.

    1985-02-26

    A pump jack of the type comprising a rocker arm pivotably mounted intermediate its ends on a support member, said rocker arm being divided by said pivot mounting into a sucker-rod limb and a drive limb wherein the improvement comprises a pneumatic motor pivotably attached to the drive support member and further pivotably attached to the mounting base of the pump jack to provide the power to reciprocate the pump jack. The working fluid of said pneumatic motor being natural gas which is available from the well casing of the well without any interference with the flow of the oil in the oil tube of the well thereby making use of an energy source available at any oil well without having to provide gasoline to drive a rotating type gasoline engine or electricity to drive an electric motor usually of the rotating variety. Also the stroke of a pneumatic cylinder inherently smooths out and eliminates the shock loading at the extremes of motion at the piston mounted to the sucker rods of such pump jack at the bottom of the well.

  7. 29 CFR 1928.57 - Guarding of farm field equipment, farmstead equipment, and cotton gins.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cotton gins. 1928.57 Section 1928.57 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY..., farmstead equipment, and cotton gins. (a) General—(1) Purpose. The purpose of this section is to provide for... equipment, farmstead equipment, and cotton gins used in any agricultural operation. (2) Scope. Paragraph...

  8. 29 CFR 1928.57 - Guarding of farm field equipment, farmstead equipment, and cotton gins.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cotton gins. 1928.57 Section 1928.57 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY..., farmstead equipment, and cotton gins. (a) General—(1) Purpose. The purpose of this section is to provide for... equipment, farmstead equipment, and cotton gins used in any agricultural operation. (2) Scope. Paragraph...

  9. 29 CFR 1928.57 - Guarding of farm field equipment, farmstead equipment, and cotton gins.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cotton gins. 1928.57 Section 1928.57 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY..., farmstead equipment, and cotton gins. (a) General—(1) Purpose. The purpose of this section is to provide for... equipment, farmstead equipment, and cotton gins used in any agricultural operation. (2) Scope. Paragraph...

  10. 29 CFR 1928.57 - Guarding of farm field equipment, farmstead equipment, and cotton gins.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cotton gins. 1928.57 Section 1928.57 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY..., farmstead equipment, and cotton gins. (a) General—(1) Purpose. The purpose of this section is to provide for... equipment, farmstead equipment, and cotton gins used in any agricultural operation. (2) Scope. Paragraph...

  11. 29 CFR 1928.57 - Guarding of farm field equipment, farmstead equipment, and cotton gins.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cotton gins. 1928.57 Section 1928.57 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY..., farmstead equipment, and cotton gins. (a) General—(1) Purpose. The purpose of this section is to provide for... equipment, farmstead equipment, and cotton gins used in any agricultural operation. (2) Scope. Paragraph...

  12. Portable Heat Pump Testing Device

    NASA Astrophysics Data System (ADS)

    Kłosowiak, R.; Bartoszewicz, J.; Urbaniak, R.

    2015-08-01

    The aim of this paper is to present the design and working principle of a portable testing device for heat pumps in the energy recirculation system. The presented test stand can be used for any refrigerating/reverse flow cycle device to calculate the device energy balance. The equipment is made of two portable containers of the capacity of 250 liters to simulate the air heat source and ground heat source with a system of temperature stabilization, compressor heat pump of the coefficient of performance (COP) of = 4.3, a failsafe system and a control and measurement system.

  13. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  14. Improve pumping efficiency with PSZ ceramic balls

    SciTech Connect

    Brothers, J. )

    1989-04-01

    partially stabilized zirconia (PSZ) ceramic balls used today in downhole pumps improve both the efficiency and run time of sucker rod pumping systems. Recent field tests showed the balls increased the average run time of downhole pumps by 440%. While there are other types of stabilizers, only magnesia PSZ is appropriate for downhole pumps. The more commonly found alloy balls and carbide balls have been found to deform and not seal under these conditions. PSZ is most notable for its resistance to breaking from impact. A nonductile material, it will make a perfect seal on the seat despite any impact, enhancing its use in fluid pound situations. Other PSZ applications in downhole pumps and related equipment include plunger inserts, discharge inserts, plunger rings, choke parts, pressure relief valve components, and triplex pump plungers.

  15. 46 CFR 154.315 - Cargo pump and cargo compressor rooms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pump and cargo compressor rooms. 154.315 Section... Equipment Ship Arrangements § 154.315 Cargo pump and cargo compressor rooms. (a) Cargo pump rooms and cargo compressor rooms must be above the weather deck and must be within the cargo area. (b) Where pumps...

  16. 46 CFR 153.336 - Special cargo pump or pumproom requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Special cargo pump or pumproom requirements. 153.336... Equipment Cargo Pumprooms § 153.336 Special cargo pump or pumproom requirements. (a) When Table 1 refers to this section: (1) The cargo pump must be an intank cargo pump; (2) The cargo pumproom must be on...

  17. 46 CFR 153.336 - Special cargo pump or pumproom requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Special cargo pump or pumproom requirements. 153.336... Equipment Cargo Pumprooms § 153.336 Special cargo pump or pumproom requirements. (a) When Table 1 refers to this section: (1) The cargo pump must be an intank cargo pump; (2) The cargo pumproom must be on...

  18. 46 CFR 153.336 - Special cargo pump or pumproom requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special cargo pump or pumproom requirements. 153.336... Equipment Cargo Pumprooms § 153.336 Special cargo pump or pumproom requirements. (a) When Table 1 refers to this section: (1) The cargo pump must be an intank cargo pump; (2) The cargo pumproom must be on...

  19. 46 CFR 153.336 - Special cargo pump or pumproom requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Special cargo pump or pumproom requirements. 153.336... Equipment Cargo Pumprooms § 153.336 Special cargo pump or pumproom requirements. (a) When Table 1 refers to this section: (1) The cargo pump must be an intank cargo pump; (2) The cargo pumproom must be on...

  20. 46 CFR 153.336 - Special cargo pump or pumproom requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Special cargo pump or pumproom requirements. 153.336... Equipment Cargo Pumprooms § 153.336 Special cargo pump or pumproom requirements. (a) When Table 1 refers to this section: (1) The cargo pump must be an intank cargo pump; (2) The cargo pumproom must be on...

  1. 46 CFR 154.315 - Cargo pump and cargo compressor rooms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo pump and cargo compressor rooms. 154.315 Section... Equipment Ship Arrangements § 154.315 Cargo pump and cargo compressor rooms. (a) Cargo pump rooms and cargo compressor rooms must be above the weather deck and must be within the cargo area. (b) Where pumps...

  2. 46 CFR 154.315 - Cargo pump and cargo compressor rooms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo pump and cargo compressor rooms. 154.315 Section... Equipment Ship Arrangements § 154.315 Cargo pump and cargo compressor rooms. (a) Cargo pump rooms and cargo compressor rooms must be above the weather deck and must be within the cargo area. (b) Where pumps...

  3. Agricultural application of SWECS

    NASA Astrophysics Data System (ADS)

    Nelson, V.

    Principal applications of wind energy for agriculture are (1) farmstead power, mainly electrical, (2) building heating, (3) irrigation pumping, (4) product storage and processing, (5) hot water for residences and dairies, and (6) associated industries of agribusiness such as feedlots, fertilizer elevators, greenhouses, etc. Field experiments show that wind energy is a viable alternative, however, reliability and maintenance are still major problems. Test results of the various experiments are described.

  4. 7 CFR 58.222 - Dry dairy product cooling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Dry dairy product cooling equipment. 58.222 Section 58... DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Equipment and Utensils § 58.222 Dry dairy product cooling equipment. Cooling equipment shall...

  5. 7 CFR 58.222 - Dry dairy product cooling equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Dry dairy product cooling equipment. 58.222 Section 58... DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Equipment and Utensils § 58.222 Dry dairy product cooling equipment. Cooling equipment shall...

  6. 7 CFR 58.222 - Dry dairy product cooling equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Dry dairy product cooling equipment. 58.222 Section 58... DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Equipment and Utensils § 58.222 Dry dairy product cooling equipment. Cooling equipment shall...

  7. 7 CFR 58.222 - Dry dairy product cooling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry dairy product cooling equipment. 58.222 Section 58... DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Equipment and Utensils § 58.222 Dry dairy product cooling equipment. Cooling equipment shall...

  8. 7 CFR 58.222 - Dry dairy product cooling equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Dry dairy product cooling equipment. 58.222 Section 58... DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Equipment and Utensils § 58.222 Dry dairy product cooling equipment. Cooling equipment shall...

  9. 7 CFR 58.426 - Rindless cheese wrapping equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Rindless cheese wrapping equipment. 58.426 Section 58... Service 1 Equipment and Utensils § 58.426 Rindless cheese wrapping equipment. The equipment used to heat seal the wrapper applied to rindless cheese shall have square interior corners, reasonably...

  10. 7 CFR 3015.169 - Equipment management requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Equipment management requirements. 3015.169 Section... Equipment management requirements. Recipient procedures for managing equipment shall, as a minimum, meet the following requirements (including replacement equipment) until such actions as transfer, replacement...

  11. Pioneering Heat Pump Project

    SciTech Connect

    Aschliman, Dave; Lubbehusen, Mike

    2015-06-30

    This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of the data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode

  12. Suggested techniques, equipment, and standards for the testing of hand insecticide-spraying equipment.

    PubMed

    HALL, L B

    1955-01-01

    The new demands placed upon application equipment by the introduction of modern insecticides have revealed the deficiencies of this equipment when required for continuous use on a large scale. If adequate equipment is to be produced, specifications must be based not only on basic materials tests but also on "use" tests, in which the conditions of field use are simulated.THE AUTHOR OUTLINES SUGGESTED TECHNIQUES TO BE FOLLOWED AND STANDARDS TO BE ADOPTED IN TESTING THE PERFORMANCE OF COMPRESSION SPRAYERS AND ALLIED EQUIPMENT, WITH REFERENCE TO THE FOLLOWING FEATURES: compression-sprayer tank fatigue; tank impact; pump resistance to bursting; pump resistance to collapse; pump friction; cut-off valve durability; constant-pressure valves; cut-off valve actuation; hose flexure; hose tension and bursting-pressure; hose friction; gaskets, valve faces, and similar non-metallic parts; nozzle-orifice erosion; and nozzle pattern.

  13. Suggested techniques, equipment, and standards for the testing of hand insecticide-spraying equipment

    PubMed Central

    Hall, Lawrence B.

    1955-01-01

    The new demands placed upon application equipment by the introduction of modern insecticides have revealed the deficiencies of this equipment when required for continuous use on a large scale. If adequate equipment is to be produced, specifications must be based not only on basic materials tests but also on “use” tests, in which the conditions of field use are simulated. The author outlines suggested techniques to be followed and standards to be adopted in testing the performance of compression sprayers and allied equipment, with reference to the following features: compression-sprayer tank fatigue; tank impact; pump resistance to bursting; pump resistance to collapse; pump friction; cut-off valve durability; constant-pressure valves; cut-off valve actuation; hose flexure; hose tension and bursting-pressure; hose friction; gaskets, valve faces, and similar non-metallic parts; nozzle-orifice erosion; and nozzle pattern. ImagesFIG. 1FIG. 14FIG. 20 PMID:14364189

  14. Improved designs reduce sucker-rod pumping costs

    SciTech Connect

    Takacs, G.

    1996-10-07

    Pumping mode selection, optimum counterbalance determination, and rod string design are factors that can reduce operational costs and improve sucker-rod pumping operations. To maximize profits from sucker-rod pumped wells, designs must aim at technically and economically optimum conditions. Assessment of surface and downhole energy losses are basic considerations for improving system efficiency. It is important to properly select the pumping mode, such as the combination of plunger size, pumping speed, stroke length, and rod taper design. The best pumping mode maximizes lifting efficiency and, at the same time, reduces prime-mover power requirements and electrical costs. Surface equipment operational efficiency can be improved with optimum counterbalancing of the pumping unit, and top achieve an ideal sucker-rod pumping system, a tapered rod string must have a proper mechanical design. The paper discusses rod pumping, downhole energy losses, surface losses, optimum efficiency, mode selection, counterbalancing, minimizing the cyclic load factor, and rod string design.

  15. 16. DIAGONAL VIEW TO NORTHWEST OF 1895 ENGINE/PUMP HOUSE SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DIAGONAL VIEW TO NORTHWEST OF 1895 ENGINE/PUMP HOUSE SHOWING REPLACEMENT DIESEL ENGINE LOCATIONS AND ASSOCIATED COOLING EQUIPMENT WITH PIPING - Deer Island Pumping Station, Boston, Suffolk County, MA

  16. The Chillicothe Story--How a Comprehensive Vocational Agriculture Program Meets the Needs of Agricultural Industry.

    ERIC Educational Resources Information Center

    And Others; Gutshall, Bill

    1980-01-01

    Describes five elements of the vocational agriculture program at Chillicothe (Missouri) Area Vocational School: (1) production agriculture program, (2) agribusiness program, (3) postsecondary farm management program, (4) postsecondary farm equipment repair program, and (5) adult farm management core program. (LRA)

  17. Agricultural aviation application in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States has the most advanced equipment and applications in agricultural aviation. It also has a complete service system in agricultural aviation. This article introduces the current status of aerial application including service, equipment, and aerial application techniques. It has a c...

  18. Apply reliability centered maintenance to sealless pumps

    SciTech Connect

    Pradhan, S. )

    1993-01-01

    This paper reports on reliability centered maintenance (RCM) which is considered a crucial part of future reliability engineering. RCM determines the maintenance requirements of plants and equipment in their operating context. The RCM method has been applied to the management of critical sealless pumps in fire/toxic risk services, typical of the petrochemical industry. The method provides advantages from a detailed study of any critical engineering system. RCM is a team exercise and fosters team spirit in the plant environment. The maintenance strategy that evolves is based on team decisions and relies on maximizing the inherent reliability built into the equipment. RCM recommends design upgrades where this inherent reliability is being questioned. Sealless pumps of canned motor design are used as main reactor charge pumps in PVC plants. These pumps handle fresh vinyl chloride monomer (VCM), which is both carcinogenic and flammable.

  19. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  20. Well pump

    SciTech Connect

    Page, J.S.

    1983-03-08

    Well fluid pumping apparatus comprises: (A) body structure defining an upright plunger bore, (B) a plunger reciprocable in that bore, (C) the body structure also defining a chamber sidewardly offset from an axis defined by the plunger bore and communicating with the bore, and (D) valving carried by the body structure to pass intake fluid via the chamber into the plunger bore in response to stroking of the plunger in one direction in the bore, and to pass discharge fluid from the plunger bore into and from the chamber in response to stroking of the plunger in the opposite direction in the bore.

  1. Pump apparatus

    SciTech Connect

    Kime, J.A.

    1987-02-17

    This patent describes a gas-oil well production system for pumping formation fluid wherein a down hole pump is provided having a barrel including a barrel fluid inlet, a barrel fluid outlet, a barrel chamber, and a plunger mounted in the barrel chamber having a plunger chamber. The plunger is reciprocally driven between an upper terminal position at the end of the plunger upstroke and a lower terminal position at the end of the plunger downstroke. The method for removing developed gaseous fluids in the formation fluid from the barrel chamber comprises: drawing formation fluid into the barrel chamber during the plunger upstroke; providing gas port means in the barrel; expelling the developed gaseous fluids from the barrel chamber through the gas port means during the occurrence of that portion of the plunger downstroke from the upper terminal position of the gas port means; and substantially blocking the gas port means and moving formation fluid into the plunger chamber during the occurrence of that portion of the plunger downstroke from below the gas port means to the lower terminal position.

  2. 77 FR 75400 - Labeling Requirements for Commercial and Industrial Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... following: Electric motors and pumps; commercial HVAC and water heating equipment (small, large, and very..., for which DOE has already prescribed labeling requirements, as well as for commercial HVAC and...

  3. 2. VIEW OF GOVERNANCE EQUIPMENT AT UNIT 3 GENERATOR (RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF GOVERNANCE EQUIPMENT AT UNIT 3 GENERATOR (RIGHT BACKGROUND) SHOWING PRESSURE TANK (LEFT BACKGROUND), GOVERNOR STAND (CENTER), AND SUMP PUMP (RIGHT FOREGROUND). VIEW TO SOUTHEAST. - Black Eagle Hydroelectric Facility, Powerhouse, Great Falls, Cascade County, MT

  4. Heat pump technology: Responding to new opportunities

    SciTech Connect

    Baxter, V.D.; Creswick, F.A. ); Snelson, W.K. . Institute for Mechnical Engineering)

    1993-01-01

    This paper provides an update on advanced heat pump research and development activities in the United States and Canada. Under the general area of vapor compression technology a major need toward which these research programs are directed is the development of viable alternatives to HCFC-22 for heat pump and air-conditioning applications. The HCFC phaseout provides an opportunity to develop advanced refrigeration equipment for the new refrigerants which has higher energy efficiency than current heat pump systems. Programs are underway in both industry and government laboratories and are characterized by close collaboration between major manufacturers and government agencies to plan and execute the research. Under the general area of thermally activated heat pump technology, there are several cooperative early-commercialization activities being conducted on gas-fired heat pumps and chillers by government, HVAC industry, and gas utility organizations.

  5. Using water in distillation systems heat pumps

    SciTech Connect

    Meili, A.

    1993-05-01

    Conventional steam-heated distillation columns are among the largest energy consumers in a chemical process industries (CPI) plant. More and more distillation columns are, therefore, being equipped with heat pumps. In many cases, this is done not only to reduce energy costs, but also for safety and operational reasons. Most heat pumps in industrial-scale evaporation or distillation plants employ steam ejectors, direct vapor recompression, or an auxiliary heat-transfer medium. An earlier article covered the various alternatives for heat-pump-assisted distillation. This article takes an in-depth look at heat pumps with an auxiliary medium, specifically those employing water. The article provides some general background on heat-pump-assisted distillation, discusses the advantages and disadvantages of using water as the heat-transfer medium, highlights the range of possible applications, and illustrates the technology and its potential energy savings via several examples.

  6. Double-shell tank annulus pumping alternative evaluation

    SciTech Connect

    RIESENWEBER, S.D.

    1999-06-23

    This engineering evaluation compares five alternative schemes for maintaining emergency annulus pumping equipment in a reliable condition. The five schemes are: (1) continue status quo; (2) periodic pump removal and run-in; (3) periodic in-place limited maintenance; (4) uninstalled ready spares; and (5) expanded mission of Single-Shell Tank Emergency Pumping Trailer. Each alternative is described, the pros and cons identified, and rough order of magnitude life-cycle costs computed. The alternatives are compared using weighted evaluation criteria. The evaluation concludes that staging adjustable length submersible pumps in the Single-Shell Tank Emergency Pumping Trailer has the best cost-benefit characteristics.

  7. The terrestrial silica pump.

    PubMed

    Carey, Joanna C; Fulweiler, Robinson W

    2012-01-01

    Silicon (Si) cycling controls atmospheric CO(2) concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C) to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1), accounting for 43% of the total oceanic net primary production (NPP). However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1)) is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2) levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump.

  8. Power Sprayers, Power Dusters, and Aerial Equipment for Pesticide Application.

    ERIC Educational Resources Information Center

    Cole, Herbert, Jr.

    This agriculture extension service publication from Pennsylvania State University discusses agricultural pesticide application equipment. The three sections of the publication are Power Sprayers, Power Dusters, and Aerial Equipment. In the section discussing power sprayers, subtopics include hydraulic sprayers, component parts, multi-purpose farm…

  9. 30 CFR 250.502 - Equipment movement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations... District Manager. A closed surface-controlled subsurface safety valve of the pump-through type may be used... of operation. The well from which the rig or related equipment is to be moved shall also be...

  10. Review of surface-equipment requirements for geothermal-well stimulation. Geothermal-reservoir well-stimulation program

    SciTech Connect

    Not Available

    1982-02-01

    A summary of stimulation equipment available to geothermal industry is presented and some modifications from which it could benefit are discussed. Equipment requirements for hydraulic fracturing, acid fracturing, acidizing, and other chemical treatments are included. Designs for the following are reviewed: equipment for premixing and storing treatment fluids, proppant handling equipment, pump trucks, special equipment for foam fracturing, intensifier pumps, manifolding, and monitoring and control devices.

  11. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  12. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  13. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  14. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  15. Grassland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...

  16. Aquatic Equipment Information.

    ERIC Educational Resources Information Center

    Sova, Ruth

    Equipment usually used in water exercise programs is designed for variety, intensity, and program necessity. This guide discusses aquatic equipment under the following headings: (1) equipment design; (2) equipment principles; (3) precautions and contraindications; (4) population contraindications; and (5) choosing equipment. Equipment is used…

  17. Agricultural Production.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This brochure describes the philosophy and scope of a secondary-level course in agricultural production. Addressed in the individual units of the course are the following topics: careers in agriculture and agribusiness, animal science and livestock production, agronomy, agricultural mechanics, supervised occupational experience programs, and the…

  18. [Radiotherapy and implantable medical device: example of infusion pumps].

    PubMed

    Abrous-Anane, S; Benhassine, S; Lopez, S; Cristina, K; Mazeron, J-J

    2013-12-01

    Indication for radiotherapy is often questioned for patients equipped with implantable medical devices like infusion pumps as the radiation tolerance is poor or not known. We report here on the case of a patient who we treated with pelvic radiotherapy for cervical cancer and who had an infusion pump in iliac fossa. We conducted a series of tests on five identical pumps that insured that the treatment protocol is harmless to the implanted device.

  19. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically... water from the two highest fire hose outlets in a manner similar to that described in §...

  20. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically... water from the two highest fire hose outlets in a manner similar to that described in §...

  1. 40 CFR 65.116 - Quality improvement program for pumps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.116 Quality improvement program for... pumps in a process unit (or plant site) or three pumps in a process unit (or plant site) leak, the owner... leak is detected, the repair methods used and the instrument readings after repair. (v) If the...

  2. 40 CFR 65.116 - Quality improvement program for pumps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.116 Quality improvement program for... pumps in a process unit (or plant site) or three pumps in a process unit (or plant site) leak, the owner... leak is detected, the repair methods used and the instrument readings after repair. (v) If the...

  3. 40 CFR 63.176 - Quality improvement program for pumps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Emission Standards for Organic Hazardous Air Pollutants for Equipment Leaks § 63.176 Quality...) Pumps that are in food/medical service or in polymerizing monomer service shall comply with all requirements except for those specified in paragraph (d)(8) of this section. (2) Pumps that are not in...

  4. 40 CFR 63.176 - Quality improvement program for pumps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... National Emission Standards for Organic Hazardous Air Pollutants for Equipment Leaks § 63.176 Quality...) Pumps that are in food/medical service or in polymerizing monomer service shall comply with all requirements except for those specified in paragraph (d)(8) of this section. (2) Pumps that are not in...

  5. 40 CFR 63.176 - Quality improvement program for pumps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... National Emission Standards for Organic Hazardous Air Pollutants for Equipment Leaks § 63.176 Quality...) Pumps that are in food/medical service or in polymerizing monomer service shall comply with all requirements except for those specified in paragraph (d)(8) of this section. (2) Pumps that are not in...

  6. 33 CFR 157.222 - Pump and piping arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... section of discharge piping. Note: An example of a sample point is shown in 46 CFR Figure 162.050-17(e). ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Pump and piping arrangements. 157... OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.222 Pump...

  7. 33 CFR 157.222 - Pump and piping arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section of discharge piping. Note: An example of a sample point is shown in 46 CFR Figure 162.050-17(e). ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Pump and piping arrangements. 157... OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.222 Pump...

  8. 33 CFR 157.222 - Pump and piping arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section of discharge piping. Note: An example of a sample point is shown in 46 CFR Figure 162.050-17(e). ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pump and piping arrangements. 157... OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.222 Pump...

  9. 33 CFR 157.222 - Pump and piping arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section of discharge piping. Note: An example of a sample point is shown in 46 CFR Figure 162.050-17(e). ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pump and piping arrangements. 157... OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.222 Pump...

  10. 33 CFR 157.222 - Pump and piping arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section of discharge piping. Note: An example of a sample point is shown in 46 CFR Figure 162.050-17(e). ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Pump and piping arrangements. 157... OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.222 Pump...

  11. Noise control of radiological monitoring equipment

    SciTech Connect

    Rubick, R.D.; Stevens, W.W.; Burke, L.L.

    1998-12-31

    Although vacuum pumps on continuous air monitors (CAMs) do not produce noise levels above regulatory limits, engineering controls were used to establish a safer work environment. Operations performed in areas where CAMs are located are highly specialized and require precision work when handling nuclear materials, heavy metals, and inert gases. Traditional methods for controlling noise such as enclosing or isolating the source and the use of personal protection equipment were evaluated. An innovative solution was found by retrofitting CAMs with air powered multistage ejectors pumps. By allowing the air to expand in several chambers to create a vacuum, one can eliminate the noise hazard altogether. In facilities with adequate pressurized air, use of these improved ejector pumps may be a cost-effective replacement for noisy vacuum pumps. A workplace designed or engineered with noise levels as low as possible or as close to background adds to increased concentration, attention to detail, and increased production.

  12. Hydraulic pump

    SciTech Connect

    Polak, P.R.; Jantzen, D.E.

    1984-05-15

    This invention relates to an improved pump jack characterized by a hollow piston rod which telescopes down over the sucker rod to which it is clamped for reciprocating motion. The cylinder, in turn, is fastened in fixed position directly to the upper exposed end of the well casing. As fluid is introduced into the lower end of the cylinder it raises the piston into engagement with a pushrod housed in the upper cylinder head that lifts switch-actuating means associated therewith into a position operative to actuate a switch located adjacent thereto thereby causing the latter to change state and actuate a multi-function solenoid valve so as to cut off fluid flow to the cylinder. As gravity lowers the sucker rod and piston exhausting the hydraulic fluid therebeneath, an adjustable stop engages the pushrod from above so as to return it together with the switch-actuating means associated therewith to their original positions thereby resetting the switch to complete the operating cycle.

  13. Agricultural Waste.

    PubMed

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014. PMID:27620093

  14. Agricultural Waste.

    PubMed

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014.

  15. 7 CFR 58.418 - Automatic cheese making equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Automatic cheese making equipment. 58.418 Section 58... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The automatic curd making system shall be constructed of stainless steel or of material approved in the...

  16. 7 CFR 58.418 - Automatic cheese making equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Automatic cheese making equipment. 58.418 Section 58... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The automatic curd making system shall be constructed of stainless steel or of material approved in the...

  17. 7 CFR 58.418 - Automatic cheese making equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Automatic cheese making equipment. 58.418 Section 58... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The automatic curd making system shall be constructed of stainless steel or of material approved in the...

  18. 7 CFR 58.418 - Automatic cheese making equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Automatic cheese making equipment. 58.418 Section 58... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The automatic curd making system shall be constructed of stainless steel or of material approved in the...

  19. 7 CFR 58.418 - Automatic cheese making equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Automatic cheese making equipment. 58.418 Section 58... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The automatic curd making system shall be constructed of stainless steel or of material approved in the...

  20. 7 CFR 3015.169 - Equipment management requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Equipment management requirements. 3015.169 Section... Equipment management requirements. Recipient procedures for managing equipment shall, as a minimum, meet the... by the physical inspection and those shown in the accounting records shall be investigated...

  1. 9 CFR 354.230 - Equipment and utensils.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 354.230 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... equipped with facilities for locking and sealing. (m) Freezing rooms should be adequately equipped to... constant as possible. Freezing room should be equipped with floor racks or pallets and fans to insure...

  2. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  3. DOUBLE SHELL TANK (DST) EMERGENCY PUMPING GUIDE

    SciTech Connect

    REBERGER, D.W.

    2006-03-17

    This document provides preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified.

  4. Double Shell Tank (DST) Emergency Pumping Guide

    SciTech Connect

    DOMNOSKE-RAUCH, L.A.

    2000-05-17

    This document provides preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified.

  5. Multiple pump housing

    DOEpatents

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  6. Medical equipment libraries: implementation, experience and user satisfaction.

    PubMed

    Keay, S; McCarthy, J P; Carey-Smith, B E

    2015-01-01

    The hospital-wide pooling and sharing of certain types of medical equipment can lead to both significant improvements in patient safety and financial advantages when compared with a department or ward-level equipment ownership system. In September 2003, a Medical Equipment Loan Service (MELS) was established, focusing initially on infusion pumps. The aims and expected benefits included; improving availability of equipment for both patients and clinical users, managing and reducing clinical risk, reducing equipment diversity, improving equipment management and reducing the overall cost of equipment provision. A user survey was carried out in 2005 and repeated in 2011. The results showed wide and continued satisfaction with the service. The process and difficulties of establishing the service and its development to include additional types of equipment are described. The benefits of managing medical equipment which is in widespread general use, through a MELS as part of a Clinical Engineering Department, are presented.

  7. How improper pump selection influences ESP cable failure

    SciTech Connect

    Beavers, J.

    1984-10-01

    ESP cable failures can sometimes seem to result from high-temperature damage even though the well temperature is far below the temperature rating of the cable. Recent studies show that the problem is one of low well productivity, either from a pumped-off or a gas-locked condition, and that the excessive heat is generated in the pump. In both cases, the problem is caused by misapplied equipment. In the pumped-off condition the pump is oversized. In the gas-locked condition, a proper gas separator should be used. The importance of proper pump selection is emphasized. Both conditions cause excessive heat buildup in the pump. When flow decreases as in either of these conditions, energy continues to be added to the fluid, but pump efficiency decreases and flow decreases. The losses or inefficiencies of the system are transferred to a lesser weight of fluid, so the fluid temperature rises even more.

  8. 46 CFR 34.10-5 - Fire pumps-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps-T/ALL. 34.10-5 Section 34.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fire Main System, Details § 34.10-5 Fire pumps—T/ALL. (a) Tankships shall be equipped with independently driven fire pumps...

  9. 46 CFR 34.10-5 - Fire pumps-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Fire pumps-T/ALL. 34.10-5 Section 34.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fire Main System, Details § 34.10-5 Fire pumps—T/ALL. (a) Tankships shall be equipped with independently driven fire pumps...

  10. 46 CFR 34.10-5 - Fire pumps-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Fire pumps-T/ALL. 34.10-5 Section 34.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fire Main System, Details § 34.10-5 Fire pumps—T/ALL. (a) Tankships shall be equipped with independently driven fire pumps...

  11. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.92 Definitions concerning commercial air conditioners and heat pumps. The following definitions...

  12. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.92 Definitions concerning commercial air conditioners and heat pumps. The following definitions...

  13. 46 CFR 167.45-5 - Steam fire pumps or their equivalent.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Steam fire pumps or their equivalent. 167.45-5 Section... NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-5 Steam fire pumps or their equivalent. (a) All nautical school ships shall be equipped with fire pumps. (b) Nautical...

  14. 40 CFR 63.1007 - Pumps in light liquid service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Pumps in light liquid service... (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 1 § 63.1007 Pumps in light liquid... inspection each calendar week for indications of liquids dripping from the pump seal. The owner or...

  15. 40 CFR 63.1007 - Pumps in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Pumps in light liquid service... (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 1 § 63.1007 Pumps in light liquid... inspection each calendar week for indications of liquids dripping from the pump seal. The owner or...

  16. 40 CFR 63.1007 - Pumps in light liquid service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Pumps in light liquid service... (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 1 § 63.1007 Pumps in light liquid... inspection each calendar week for indications of liquids dripping from the pump seal. The owner or...

  17. 40 CFR 63.1007 - Pumps in light liquid service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Pumps in light liquid service... (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 1 § 63.1007 Pumps in light liquid... inspection each calendar week for indications of liquids dripping from the pump seal. The owner or...

  18. Test Procedure - pumping system for caustic addition project

    SciTech Connect

    Leshikar, G.A.

    1994-10-01

    This test procedure provides the requirements for sub-system testing and integrated operational testing of the submersible mixer pump and caustic addition equipment by WHC and Kaiser personnel at the Rotating Equipment Shop run-in pit (Bldg. 272E).

  19. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  20. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, T.H.; Call, W.R.

    Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  1. Alternative backing up pump for turbomolecular pumps

    DOEpatents

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  2. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  3. VOCATIONAL AGRICULTURE.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Research Coordinating Unit.

    TO ASSIST THOSE WHO MAKE DECISIONS RELATING TO EDUCATIONAL PROGRAMS IN AGRICULTURE, RECENT RESEARCH IN VOCATIONAL AGRICULTURE IS SUMMARIZED. A 1963 STUDY TREATS THE RELATIONSHIP BETWEEN WORK EXPERIENCE AND STUDENT CHARACTERISTICS, PLANS, AND ASPIRATIONS. STUDIES ON POST-SECONDARY EDUCATION CONCERN GUIDELINES FOR TECHNICIAN PROGRAMS, JUSTIFICATION…

  4. Tritium gas transfer pump development

    SciTech Connect

    Sharpe, C.L.

    1985-01-01

    Non-lubricated, hermetically sealed pumps for tritium service have been selected to replace Sprengel pumps in the existing Tritium Facility. These pumps will be the primary gas-transfer pumps in the planned Replacement Tritium Facility. The selected pumps are Metal Bellows Corporation's bellows pumps and Normetex scroll pumps. Pumping range for a Normetex/Metal Bellows system is from 0.01 torr suction to 2300 torr discharge. Performance characteristics of both pumps are presented. 10 figs.

  5. [Design and optimization of a centrifugal pump for CPCR].

    PubMed

    Pei, J; Tan, X; Chen, K; Li, X

    2000-06-01

    Requirements for an optimal centrifugal pump, the vital component in the equipment for cardiopulmonary cerebral resuscitation(CPCR), have been presented. The performance of the Sarns centrifugal pump (Sarns, Inc./3M, Ann arbor, MI, U.S.A) was tested. The preliminarily optimized model for CPCR was designed according to the requirements of CPCR and to the comparison and analysis of several clinically available centrifugal pumps. The preliminary tests using the centrifugal pump made in our laboratory(Type CPCR-I) have confirmed the design and the optimization.

  6. Heat pumps and manufactured homes: Making the marriage work

    SciTech Connect

    Conlin, F.; Neal, C.L.

    1996-11-01

    Manufactured homes make up over 7% of the US housing stock, including over 15% of the homes in North Carolina. As more of these homes are being equipped with heat pumps, it becomes important to figure out how to make these systems efficient. This article describes a number of ways of increasing the efficiency. The following topics are included: heat pump actual and rated capacity; heat pump sizing; air flow to the coil; indoor thermostat placement; outdoor thermostat; condensate; leaky ducts; pressure boundary breaches; pressure problems; what you should look for in heat pumps; manufactured housing - an evolutionary home.

  7. Experience reveals ways to minimize failures in rod-pumped wells

    SciTech Connect

    Patterson, J.C.; Bucaram, S.M. ); Curfew, J.V. )

    1993-07-05

    From the experience gained over the past 25 years, ARCO Oil and Gas Co. has developed recommendations to reduce equipment failure in sucker-rod pumping installations. These recommendations include equipment selection and design, operating procedures, and chemical treatment. Equipment failure and its attendant costs are extremely important in today's petroleum industry. Because rod pumping is the predominant means of artificial lift, minimizing equipment failure in rod pumped wells can have a significant impact on profitability. This compilation of recommendations comes from field locations throughout the US and other countries. The goal is to address and solve problems on a well-by-well basis.

  8. 7 CFR 4290.504 - Equipment of USDA or SBA officials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Equipment of USDA or SBA officials. 4290.504 Section 4290.504 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS... (âRBICâ) PROGRAM Managing the Operations of a RBIC General Requirements § 4290.504 Equipment of...

  9. 7 CFR 4290.504 - Equipment of USDA or SBA officials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Equipment of USDA or SBA officials. 4290.504 Section 4290.504 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS... (âRBICâ) PROGRAM Managing the Operations of a RBIC General Requirements § 4290.504 Equipment of...

  10. Improper pump filling detected with dxi-30

    SciTech Connect

    Gibson, G.E. Jr.

    1983-04-01

    The traditional methods employed and widely accepted by the oil industry to artificially lift fluid require the use of beam pumping systems with lift capacities much greater than reservoir yield capacity. Pumping unit, gearbox, and rod string failures related to fluid pounding were accepted as a price that had to be paid to produce fluid, but times have changed. The increasing cost of oil production, spurred upward by higher power source cost, maintenance cost and inflation, necessitates optimum operating efficiency of sucker rod pumping systems. Recent innovations in electronic hardware and technology have led to the design and manufacture of monitoring and controlling equipment that may be permanently mounted on electric motor-driven beam pumping units. The scope and flexibility of these units is such that wells may be continuously analyzed and controlled. Resulting cost savings have been substantial. The internal circuitry of such a system is designed for interfacing with preexisting and/or optional accessory data acquisition equipment so that the user may (1) obtain a fully calibrated dynamometer card; (2) utilize the dynamometer card for instantaneous analysis and control of pumping-off conditions; and (3) record data on a memory card for future use via computer interface.

  11. Hot conditioning equipment conceptual design report

    SciTech Connect

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  12. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  13. Agriculture Education. Agricultural Metal Working.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agricultural metal working. The guide presents units of study in the following areas: (1) oxyacetylene welding, (2) arc welding, (3) sheet metal, (4) blueprint reading for welders and (5) job…

  14. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  15. Insulin pump (image)

    MedlinePlus

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  16. Photovoltaic pump systems

    NASA Astrophysics Data System (ADS)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  17. Vibration budget for observatory equipment

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Thompson, Hugh

    2015-07-01

    Vibration from equipment mounted on the telescope and in summit support buildings has been a source of performance degradation at existing astronomical observatories, particularly for adaptive optics performance. Rather than relying only on best practices to minimize vibration, we present here a vibration budget that specifies allowable force levels from each source of vibration in the observatory (e.g., pumps, chillers, cryocoolers, etc.). This design tool helps ensure that the total optical performance degradation due to vibration is less than the corresponding error budget allocation and is also useful in design trade-offs, specifying isolation requirements for equipment, and tightening or widening individual equipment vibration specifications as necessary. The vibration budget relies on model-based analysis of the optical consequences that result from forces applied at different locations and frequencies, including both image jitter and primary mirror segment motion. We develop this tool here for the Thirty Meter Telescope but hope that this approach will be broadly useful to other observatories, not only in the design phase, but for verification and operations as well.

  18. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  19. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  20. Multiwell pumping device

    SciTech Connect

    Dysarz, E.D.

    1987-06-30

    This patent describes a balanced pumping apparatus for pumping two laterally spaced wells comprising: a left conductor on a left well; a right conductor on a right the well; a left pump casing inside the well conductor; a right pump casing inside the right well conductor; a left sucker rod inside the left pump casing; a right sucker rod inside the right pump casing; flexible linkage means for attachment to the top ends of the right sucker rod and left sucker rod; a drive motor with a rotating shaft; a drive sprocket rotatably engaging the flexible linkage means; a separate pump casing flange attached to the upper section of each well conductors; a separate upper flange attached to the upper section of each pump casing and positioned at an axial location above the point attached to the pump casing; a separate transition piece attached to the top of each pump casing flange; a separate pump support attached to the top of each transition piece; a plate-like structural support means placed in a vertical plane above the well conductors and supporting the drive motor, the drive sprocket, the flexible linkage means, and the sucker rods; a structural load transfer means connecting the plate-like structural support means to the well conductors; a motor control unit for supporting itself and controlling the drive motor; and a separate shaft extending across each pump support.

  1. Types of Breast Pumps

    MedlinePlus

    ... uses batteries or a cord plugged into an electrical outlet to power a small motorized pump that creates suction to ... pumping. Because these breast pumps rely on a power source, women who use ... situations when electricity or extra batteries may not be available. If ...

  2. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  3. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  4. Green pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, Jerry W.; Brown, David C.

    2005-04-01

    Initial experiments with pulsed and CW pumping an alexandrite laser rod at 532 nm are presented. This pumping architecture holds promise for the production of scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  5. Agricultural Microbiology.

    ERIC Educational Resources Information Center

    Brill, Winston J.

    1981-01-01

    Elucidates strategies for applying microbiological techniques to traditional agricultural practices. Discusses the manipulation of microorganisms that live with plants and also the problems involved in the introduction of new genes into crop plants by recombinant DNA methods. (CS)

  6. Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  7. Video requirements plan for the HMT equipment removal system

    SciTech Connect

    Vargo, G.F. Jr.

    1995-02-01

    This document is the plan defining the video coverage requirements for the equipment removal event of the Hydrogen Mitigation Test (HMT) mixer pump currently installed in high level nuclear waste storage Tank 241-SY-101. When the mixer pump fails the removal and installation of a spare pump will be a time critical event. Since the success of the HMT mixer pump has resolved the DOE safety issue it is absolutely essential that mixing be restored to the tank in a short as time possible. Therefore, the removal of the failed pump and the installation of the spare pump must be anticipated and planned well in advance. The removal, containment, transporting, and storage of the failed pump is a very complex and hazardous task. The successful completion of this task will require careful planning and monitoring. Certain events, during the removal and subsequent installation of the new pump, will require video observation and storage for safety, documenting, training, and promotional use. Furthermore, certain events will require close monitoring and observation by the event directors and key supervisory personnel for the execution of specific tasks during the equipment removal event.

  8. Irrigation pumping using geothermal energy

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The potential of using geothermal energy in an isobutane binary system to drive directly a cluster of irrigation pumps was evaluated. This three well geothermal system, based at 150{sup 0}C (302{sup 0}F) resource at 2000 m (6560 ft), would cost an estimated $7,800,000 in capital investment to provide 6000 gpm of irrigation water from 12 water wells. It would serve approximately 4.5 square miles of irrigated agricultural land, with the delivered water costing $106.76 per acre-foot. This compares with an estimated cost of $60.78 per acre-foot for a conventional irrigation system driven by natural gas at the current price (1980 dollars) of $2.72/mm Btu. It is obvious that if natural gas prices continue to rise, or if geothermal resources can be found at depths less than 2000 meters, then the geothermal irrigation pumping system would be attractive economically. The importance of water to the economy and growth of Arizona was summarized. Total water consumption in Arizona is about 7,600,000 acre-feet annually of which about 87% is used for agriculture. Total supply from the Colorado River and water runoff is only 2,600,000 acre-feet per year, resulting in a net potable groundwater depletion of about 4,000,000 acre-feet per year assuming a recharge rate of about 1,000,000 acre-feet per year.

  9. Irrigation pumping using geothermal energy

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The potential of using geothermal energy in an isobutane binary system to drive directly a cluster of irrigation pumps was evaluated. This three well geothermal system, based at 1500 C (3020 F) resource at 2000 m (6560 ft), would cost an estimated $7,800,000 in capital investment to provide 6000 gpm of irrigation water from 12 water wells. It would serve approximately 4.5 square miles of irrigated agricultural land, with the delivered water costing $106.76 per acre-foot. This compares with an estimated cost of $60.78 per acre-foot for a conventional irrigation system driven by natural gas at the current price (1980 dollars) of $2.72/mm Btu. It is obvious that if natural gas prices continue to rise, or if geothermal resources can be found at depths less than 2000 meters, then the geothermal irrigation pumping system would be attractive economically. The importance of water to the economy and growth of Arizona was summarized. Total water consumption in Arizona is about 7,600,000 acre-feet annually of which about 87% is used for agriculture.

  10. 46 CFR 108.575 - Survival craft and rescue boat equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.575 Survival craft and rescue boat equipment... 6 6 6 32 Signal, parachute flare 4 4 4 4 33 Skates and fenders 8 1 1 34 Sponge 7 2 2 2 2 35 Survival.... 2 Bilge pumps are not required for boats of self-bailing design. 3 Not required for inflated...

  11. 46 CFR 108.575 - Survival craft and rescue boat equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.575 Survival craft and rescue boat equipment... 6 6 6 32 Signal, parachute flare 4 4 4 4 33 Skates and fenders 8 1 1 34 Sponge 7 2 2 2 2 35 Survival.... 2 Bilge pumps are not required for boats of self-bailing design. 3 Not required for inflated...

  12. 40 CFR 63.11915 - What are my compliance requirements for equipment leaks?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment, or by complying with the requirements of 40 CFR part 63, subpart UU for reciprocating pumps... double mechanical seals or equivalent equipment, or by complying with the requirements of 40 CFR part 63... certain equipment in subpart UU of this part. You must comply with §§ 63.1020 through 63.1025, 63.1027,...

  13. 40 CFR 63.11915 - What are my compliance requirements for equipment leaks?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment, or by complying with the requirements of 40 CFR part 63, subpart UU for reciprocating pumps... double mechanical seals or equivalent equipment, or by complying with the requirements of 40 CFR part 63... certain equipment in subpart UU of this part. You must comply with §§ 63.1020 through 63.1025, 63.1027,...

  14. Commercial Pesticides Applicator Manual: Agriculture - Plant.

    ERIC Educational Resources Information Center

    Fitzwater, W. D.; And Others

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the agriculture-plant pest control category. The text discusses identification and control of insects, diseases, nematodes, and weeds of agricultural crops. Proper use of application equipment and safety…

  15. Vertical pump turbine oil environmental evaluation

    SciTech Connect

    Culver, G.

    1991-04-01

    In Oregon low-temperature geothermal injection well construction, siting and receiving formations requires approval by the Water Resources Department (OWRD). In addition, the Oregon Department of Environmental Quality (ODEQ) has regulations concerning injection. Conversations with the OWRD and ODEQ representatives indicated they were very concerned about the potential for contamination of the geothermal (and cooler but hydraulically connected) aquifers by oils and grease. Their primary concern was over the practice of putting paraffin, motor oils and other hydrocarbons in downhole heat exchanger (DHE) wells to prevent corrosion. They also expressed considerable concern about the use of oil in production well pumps since the fluids pumped would be injected. Oregon (and Idaho) prohibit the use of oil-lubricated pumps for public water supplies except in certain situations where non-toxic food-grade lubricants are used. Since enclosed-lineshaft oil-lubricated pumps are the mainstay of direct-use pumping equipment, the potential for restricting their use became a concern to the Geo-Heat Center staff. An investigation into alternative pump lubrication schemes and development of rebuttals to potential restrictions was proposed and approved as a contract task. (SM)

  16. Environmental monitoring equipment

    SciTech Connect

    Perugini, F.

    1995-12-31

    For over 10 years GEOGUARD has been serving the waste industry with innovative, relevant and high quality products for ground water sampling, remediation pumping, and ground water monitoring. GEOGUARD has four advanced technology products for environmental monitoring. (1) MASTER-FLO{trademark} PUMPS collect accurate ground water samples and standardize field sampling procedures. MASTER-FLO{trademark} PUMPS are based upon a time proven bladder squeeze pump, the most accepted ground water sampling pump available, which can be operated with a flow through cell and low flow rates to minimize sample aeration and turbidity. (2) RELIA-FLO{trademark} PUMPS simplifiy ground water pollution clean ups. Pump and Test Remediation depends upon reliable pumping systems that can operate continually year after year in the most hostile environments. RELIA-FLO{trademark} PUMPS combine simplicity with versatility to satisfy the most demanding ground water pollution clean-up projects. (3) TUBER{trademark} measures and combines the latest sensor technology with a dedicated logger into one integrated unit, which can record well water levels, temperatures, pH and conductivity in two inch or larger wells. (4) TERRAPROBE{trademark} offers a versatile, portable alternative to drilling Wells for shallow ground penetration up to 30 feet. With TERRAPROBE{trademark}, samples for soil gas, water or soil can be easily acquired where vehicle access is not possible.

  17. Jet pump assisted artery

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  18. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  19. The Federal Conference on Intelligent Processing Equipment

    SciTech Connect

    Not Available

    1992-04-01

    Research and development projects involving intelligent processing equipment within the following U.S. agencies are addressed: Department of Agriculture, Department of Commerce, Department of Energy, Department of Defense, Environmental Protection Agency, Federal Emergency Management Agency, NASA, National Institutes of Health, and the National Science Foundation.

  20. 7 CFR 550.38 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE GENERAL ADMINISTRATIVE POLICY FOR NON-ASSISTANCE COOPERATIVE AGREEMENTS Management of Agreements... Federal funds to provide services to non-Federal outside organizations for a fee that is less than private... Agency. (e) The Cooperator's property management standards for equipment acquired with Federal funds...

  1. The Federal Conference on Intelligent Processing Equipment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research and development projects involving intelligent processing equipment within the following U.S. agencies are addressed: Department of Agriculture, Department of Commerce, Department of Energy, Department of Defense, Environmental Protection Agency, Federal Emergency Management Agency, NASA, National Institutes of Health, and the National Science Foundation.

  2. A theoretical study of induction eletrohydrodynamic pumping in outer space

    SciTech Connect

    Seyed-Yagoobi, J. )

    1990-11-01

    The challenge for designers of a space station is to meet requirements ofweight, reliability, power, and maintainability. Several new technologies must be developed to insure the success of the space station. Electrohydrodynamic (EHD) pumping may have an impact on the design of novel pumping devices for space stations or other space-related operations. The principal advantage of EHD pumping is that it is non-mechanical; therefore, it has neither moving mechanical parts nor the need for external pressure for operation. Typical applications of EHD pumping include cooling of underground cables, transformers and similar electrical equipment. An EHD pump uses electric fields acting on electric charges embedded in a fluid to move that fluid. One way of setting up the free charges is induction charging, based on establishing an electrical conductivity gradient perpendicular to the desired direction of fluid motion. This gradient perpendicular to the desired direction of fluid motion. This gradient can be established in the presence of a temperature gradient. There are two basic kinds of induction EHD pump: attraction (forward) and repulsion (backward) pumps. In the attraction pump, the pipe is cooled at the wall, giving a negative electric conductivity gradient. In the repulsion pump, the pipe is heated at the wall, causing a positive electric conductivity gradient. In the attraction pump, the fluid is pumped in the same direction as the traveling electric wave. In this mode, the fluid velocity is limited by the speed of the moving electric field (synchronous speed), which depends on frequency and on the spacing of the electrodes (wavelength) along the channel. Unlike the attraction pump, a repulsion pump has no velocity limit. In the repulsion mode, the fluid is pumped in the opposite direction to the traveling electric wave.

  3. 7 CFR 3015.54 - Valuation of donated supplies and loaned equipment or space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Valuation of donated supplies and loaned equipment or space. 3015.54 Section 3015.54 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Cost-Sharing or Matching § 3015.54...

  4. Decontaminating breast pump kits: new guidance.

    PubMed

    Oxtoby, Kathy

    Various methods can be used to decontaminate breast pump milk collection kits and items related to infant feeding but they have some drawbacks and risks. In 2015, the Joint Working Group of the Healthcare Infection Society and Infection Prevention Society published guidance to support the safe decontamination of this equipment at home and in hospital. This article summarises its recommendations for health professionals to use and communicate to other groups, such as parents and carers. PMID:27400623

  5. Personal protective equipment

    MedlinePlus

    ... protective equipment. Available at: www.cdc.gov/niosh/ppe . Accessed October 27, 2015. Holland MG, Cawthon D. Personal protective equipment and decontamination of adults and children. Emerg Med Clin N ...

  6. Medical Issues: Equipment

    MedlinePlus

    ... Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At School At Home ... Diagnosed Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life Grief & Loss Community & Local ...

  7. Packing tube assembly for pumping wells

    SciTech Connect

    Towner, G.F.; Carter, C.A.

    1987-09-22

    A packing tube assembly for replacing a conventional stuffing box is described. The packing tube assembly comprising: a packing tube; a rod adaptor adapted to be coupled between the polished rod and the sucker rod string and adapted to extend throughout the packing tube when positioned therein; compressible packing means on the rod adaptor adapted to provide a seal between the rod adaptor and the packing tube when the rod adaptor is in position within the packing tube; stabilizing means on the rod adaptor adapted to engage the packing tube to stabilize the rod adaptor within the packing tube during operation; and a mounting bushing connected to the top of the packing tube and adapted to be threaded into the pumping tee to secure the packing tube position within the production tubing string. A method of converting a conventional stuffing box-equipped pumping well to a packing tube-equipped well is described. It consists of: disconnecting the polished rod of the pumping well from the sucker rod string while suspending the sucker rod string within the well by the use of slips; unthreading the conventional stuffing box from the pumping tee of the well and removing the stuffing box; attaching the polished rod to the upper end of a rod adaptor of a packing tube assembly, inserting the rod adaptor with the polished rod attached into the packing tube of the packing tube assembly; aligning the packing tube assembly with the sucker rod string; connecting the lower end of the rod adaptor to the sucker rod string; removing the slips and lowering the packer tube assembly through the pumping tee; and connecting the upper end of the packing tube to the pumping tee.

  8. Operation effectiveness of wells by enhancing the electric- centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zyatikov, P. N.; Kozyrev, I. N.; Deeva, V. S.

    2016-09-01

    We present the method to improve the operation effectiveness of wells by enhancing the electric-centrifugal pump. Some of the best ways to extend the electric-centrifugal pumps operating lifetime is using today's techniques as well as additional protective equipment as a part of the electric-centrifugal pump. In paper it is shown that high corrosiveness of formation fluid (a multi-component medium composed of oil, produced water, free and dissolved gases) is a major cause of failures of downhole equipment. Coil tubing is the most efficient technology to deal with this problem. The experience of coil tubing operations has proved that high-quality bottom hole cleaning saving the cost of operation due to a decreased failure rate of pumps associated with ejection of mechanical impurity.

  9. Exercise Equipment: Neutral Buoyancy

    NASA Technical Reports Server (NTRS)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  10. 33 CFR 150.531 - How many fire pumps must be kept ready for use at all times?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false How many fire pumps must be kept... Specialty Equipment Miscellaneous Operations § 150.531 How many fire pumps must be kept ready for use at all times? At least one of the fire pumps required by this subchapter must be kept ready for use at...

  11. 33 CFR 150.531 - How many fire pumps must be kept ready for use at all times?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false How many fire pumps must be kept... Specialty Equipment Miscellaneous Operations § 150.531 How many fire pumps must be kept ready for use at all times? At least one of the fire pumps required by this subchapter must be kept ready for use at...

  12. 33 CFR 150.531 - How many fire pumps must be kept ready for use at all times?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false How many fire pumps must be kept... Specialty Equipment Miscellaneous Operations § 150.531 How many fire pumps must be kept ready for use at all times? At least one of the fire pumps required by this subchapter must be kept ready for use at...

  13. 33 CFR 150.531 - How many fire pumps must be kept ready for use at all times?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false How many fire pumps must be kept... Specialty Equipment Miscellaneous Operations § 150.531 How many fire pumps must be kept ready for use at all times? At least one of the fire pumps required by this subchapter must be kept ready for use at...

  14. Mobile Equipment Expands Inventory.

    ERIC Educational Resources Information Center

    McGough, Robert L.; And Others

    1978-01-01

    Describes the Mobile Equipment Modules (MEM) system in Duluth, Minnesota. MEM is a way to hold down costs and increase learning opportunities by consolidating purchases of expensive shop equipment within the school district, grouping the equipment in modules, and scheduling and moving it from school to school as needed. (MF)

  15. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  16. AGRICULTURAL EDUCATION.

    ERIC Educational Resources Information Center

    STEVENS, GLENN Z.

    FEDERAL LEGISLATION HAS PROVIDED FOR PUBLIC PROGRAMS OF OCCUPATIONAL AGRICULTURE EDUCATION IN LAND GRANT COLLEGES AND UNIVERSITIES, LOCAL SCHOOL DISTRICTS, AND MANPOWER DEVELOPMENT PROGRAMS. PROGRAM OBJECTIVES SHOULD BE TO DEVELOP KNOWLEDGE AND SKILLS, PROVIDE OCCUPATIONAL GUIDANCE AND PLACEMENT, AND DEVELOP ABILITIES IN HUMAN RELATIONS AND…

  17. AGRICULTURAL EXTENSION.

    ERIC Educational Resources Information Center

    FARQUHAR, R.N.

    AUSTRALIAN AGRICULTURAL EXTENSION HAS LONG EMPHASIZED TECHNICAL ADVISORY SERVICE AT THE EXPENSE OF THE SOCIOECONOMIC ASPECTS OF FARM PRODUCTION AND FARM LIFE. ONLY IN TASMANIA HAS FARM MANAGEMENT BEEN STRESSED. DEMANDS FOR THE WHOLE-FARM APPROACH HAVE PRODUCED A TREND TOWARD GENERALISM FOR DISTRICT OFFICERS IN MOST STATES. THE FEDERAL GOVERNMENT,…

  18. Pump isolation valve

    DOEpatents

    Kinney, Calvin L.; Wetherill, Todd M.

    1983-08-02

    The pump isolation valve provides a means by which the pump may be selectively isolated from the remainder of the coolant system while being compatible with the internal hydraulic arrangement of the pump during normal operation of the pump. The valve comprises a valve cylinder disposed around the pump and adjacent to the last pump diffuser with a turning vane attached to the lower end of the valve cylinder in a manner so as to hydraulically match with the discharge diffuser. The valve cylinder is connected to a drive means for sliding the valve cylinder relative to the diffuser support cylinder so as to block flow in either direction through the discharge diffuser when the valve is in the closed position and to aid in the flow of the coolant from the discharge diffuser by means of the turning vane when the valve is in the open position.

  19. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  20. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  1. Electrokinetic pumps and actuators

    SciTech Connect

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  2. 7 CFR 2902.10 - Mobile equipment hydraulic fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Comprehensive Procurement Guideline, 40 CFR 247.11. ... 7 Agriculture 15 2010-01-01 2010-01-01 false Mobile equipment hydraulic fluids. 2902.10 Section... PROCUREMENT Designated Items § 2902.10 Mobile equipment hydraulic fluids. (a) Definition. Hydraulic...

  3. 7 CFR 2902.28 - Stationary equipment hydraulic fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.11. EPA provides recovered... 7 Agriculture 15 2010-01-01 2010-01-01 false Stationary equipment hydraulic fluids. 2902.28... PROCUREMENT Designated Items § 2902.28 Stationary equipment hydraulic fluids. (a) Definition....

  4. Detection of pump degradation

    SciTech Connect

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  5. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  6. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  7. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  8. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  9. Wind pumping: A handbook

    SciTech Connect

    van Meel, J.; Smulders, P.

    1989-01-01

    The handbook is meant to provide energy and water-supply professionals and economists as well as field officers with an easily accessible source of information on wind pumping. It consolidates information acquired by institutions, professionals, and research centers in an easily extractable form. An overview of the characteristics of the technology is provided. The techniques for sizing of wind pumps and the sizing of alternative small pumps is discussed. Guidelines for financial and economic assessment of wind pumping are given. Particulars on installation, maintenance, and other logistical matters are also given. Several annexes provide supporting details and examples.

  10. Renewal of radiological equipment.

    PubMed

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  11. Renewal of radiological equipment.

    PubMed

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  12. An Analysis of Agricultural Mechanics Safety Practices in Agricultural Science Laboratories.

    ERIC Educational Resources Information Center

    Swan, Michael K.

    North Dakota secondary agricultural mechanics instructors were surveyed regarding instructional methods and materials, safety practices, and equipment used in the agricultural mechanics laboratory. Usable responses were received from 69 of 89 instructors via self-administered mailed questionnaires. Findings were consistent with results of similar…

  13. Liquid pump for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  14. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  15. Gastrostomy feeding tube - pump - child

    MedlinePlus

    Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Your child has a gastrostomy tube (G-tube). This is a soft, plastic tube placed into your child's stomach. It delivers nutrition (food) and medicines until your ...

  16. Agricultural Spraying

    NASA Technical Reports Server (NTRS)

    1986-01-01

    AGDISP, a computer code written for Langley by Continuum Dynamics, Inc., aids crop dusting airplanes in targeting pesticides. The code is commercially available and can be run on a personal computer by an inexperienced operator. Called SWA+H, it is used by the Forest Service, FAA, DuPont, etc. DuPont uses the code to "test" equipment on the computer using a laser system to measure particle characteristics of various spray compounds.

  17. SOLERAS: Rural/agricultural project technical overview

    SciTech Connect

    Huraib, F.S.; Adcock, J.P.; Knect, R.D.

    1987-04-01

    The objective of the Rural and Agricultural Solar Applications Projects is to enhance the quality of rural life in hot, arid climates by providing systems that use renewable or regenerable energy sources for domestic or communal, agricultural, and local industrial applications. These systems must provide domestic services such as hot water, heat for cooking, and electric power for lighting, communications, and refrigeration. In addition, agricultural applications such as water desalination, irrigation pumping, and heat and electricity for crop or food processing and local industrial functions, can become the basis for improving the villagers' standard of living. 29 refs., 82 figs., 23 tabs.

  18. Reliance on Pumped Mother's Milk Has an Environmental Impact.

    PubMed

    Becker, Genevieve; Ryan-Fogarty, Yvonne

    2016-01-01

    Breastfeeding is an environmentally friendly process; however when feeding relies on pumped mother's milk, the environmental picture changes. Waste plastics and heavy metals raise concerns regarding resource efficiency, waste treatment, and detrimental effects on health. Reliance on pumped milk rather than breastfeeding may also effect obesity and family size, which in turn have further environmental impacts. Information on pump equipment rarely includes environmental information and may focus on marketing the product for maximum profit. In order for parents, health workers, and health policy makers to make informed decisions about the reliance on pumped mother's milk, they need information on the broad and far reaching environmental aspects. There was no published research found that examined the environmental impact of using pumped mother's milk. A project is ongoing to examine this issue. PMID:27626456

  19. Reliance on Pumped Mother's Milk Has an Environmental Impact.

    PubMed

    Becker, Genevieve; Ryan-Fogarty, Yvonne

    2016-01-01

    Breastfeeding is an environmentally friendly process; however when feeding relies on pumped mother's milk, the environmental picture changes. Waste plastics and heavy metals raise concerns regarding resource efficiency, waste treatment, and detrimental effects on health. Reliance on pumped milk rather than breastfeeding may also effect obesity and family size, which in turn have further environmental impacts. Information on pump equipment rarely includes environmental information and may focus on marketing the product for maximum profit. In order for parents, health workers, and health policy makers to make informed decisions about the reliance on pumped mother's milk, they need information on the broad and far reaching environmental aspects. There was no published research found that examined the environmental impact of using pumped mother's milk. A project is ongoing to examine this issue.

  20. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  1. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  2. Infusion pump inspection frequencies. How often is inspection really needed?

    PubMed

    1998-01-01

    As noted in this issue's Evaluation of infusion pump analyzers, the frequency at which a facility inspects its infusion pumps can help determine its need for one or more analyzers. It can also have a financial impact on the clinical engineering department. In this article, we discuss inspection issues affecting infusion pumps, including our recommendations and how facilities can set intervals for their equipment. (For ECRI's procedure for inspecting infusion devices, refer to Procedure/Checklist 416-0595 in the Health Devices Inspection and Preventive Maintenance [IPM] System; contact ECRI's Communications Department at [610] 825-6000, ext. 888, for more information about this publication.) PMID:9595314

  3. Fast Flux Test Facility replacement of a primary sodium pump

    SciTech Connect

    Krieg, S.A.; Thomson, J.D.

    1985-11-15

    The Fast Flux Test Facility is a 400 MW Thermal Sodium Cooled Fast Reactor operated by Westinghouse Hanford Company for the US Department of Energy. During startup testing in 1979, the sodium level in one of the primary sodium pumps was inadvertently raised above the normal height. This resulted in distortion of the pump shaft. Pump replacement was carried out using special maintenance equipment. Nuclear radiation and contamination were not significant problems since replacement operations were carried out shortly after startup of the Fast Flux Test Facility.

  4. 25. Top 32/1. Plan of general arrangement of equipment. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Top 32/1. Plan of general arrangement of equipment. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  5. 33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLAN AND LOCATION OF PROPOSED ADDITIONS, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, JULY 1908. Aperture card 6417. - Deer Island Pumping Station, Boston, Suffolk County, MA

  6. 32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLANT AND LOCATION OF PROPOSED ADDITIONS, JULY 1898 SHEET NO. 1. Aperture card 4966-1 - Deer Island Pumping Station, Boston, Suffolk County, MA

  7. Looking south at boiler feedwater pumps (steam turbine pump on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at boiler feedwater pumps (steam turbine pump on left, electric motor pump on right). - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  8. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, G.R.

    1997-12-30

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  9. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  10. Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction

    DOEpatents

    Lemoff, Asuncion V.; Lee, Abraham P.

    2010-07-13

    A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.

  11. NEUTRONIC REACTOR FUEL PUMP

    DOEpatents

    Cobb, W.G.

    1959-06-01

    A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

  12. Pump apparatus including deconsolidator

    SciTech Connect

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  13. Cryogenic Vacuum Pump

    NASA Technical Reports Server (NTRS)

    Zachman, C. A.

    1983-01-01

    System provides high pumping capacity even for noble gases. First stage, removes water and CO2 from input gas. Second stage, removes noble gases except helium and some lighter gases not trapped by first stage. Third stage, traps all remaining gases. All three stages mounted inside liquid-nitrogen Dewar that cools first stage. Pump small enough for general laboratory use.

  14. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  15. Micromachined peristaltic pumps

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1999-01-01

    Micromachined pumps including a channel formed between a first membrane and a substrate or between first and second flexible membranes. A series of electrically conductive strips is applied to a surface of the substrate or one of the membranes. Application of a sequential voltage to the series of strips causes a region of closure to progress down the channel to achieve a pumping action.

  16. A Shocking New Pump

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Hydro Dynamics, Inc. received a technical helping hand from NASA that made their Hydrosonic Pump (HPump) a reality. Marshall engineers resolved a bearing problem in the rotor of the pump and recommended new bearings, housings and mounting hardware as a solution. The resulting HPump is able to heat liquids with greater energy efficiency using shock waves to generate heat.

  17. Magnetic heat pump design

    NASA Astrophysics Data System (ADS)

    Kirol, L. D.; Dacus, M. W.

    1988-03-01

    Heat pumps utilizing the magnetocaloric effect offer a potentially attractive alternative to conventional heat pumps and refrigerators. Many physical configurations of magnetic heat pumps are possible. Major classes include those requiring electrical energy input and those with mechanical energy input. Mechanical energy is used to move magnets, working material, or magnetic shielding. Each type of mechanical magnetic heat pump can be built in a rotary (recuperative) or reciprocal (regenerative) configuration. Machines with electrical energy input utilize modulation of the magnetic field to cause working material to execute the desired thermodynamic cycle, and can also be recuperative or regenerative. Recuperative rotary heat pumps in which working material is moved past stationary magnets is the preferred configuration. Regenerative devices suffer performance degradation from temperature change of regenerator material and mixing and conduction in the regenerator. Field modulated cycles are not practical due to ac losses in superconducting magnets. Development of methods for recuperator fluid pumping is the major challenge in design of rotary recuperative devices. Several pumping options are presented, and the design of a bench scale heat pump described.

  18. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1994-12-31

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  19. Normetex Pump Alternatives Study

    SciTech Connect

    Clark, Elliot A.

    2013-04-25

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying

  20. Groundwater pumping by heterogeneous users

    NASA Astrophysics Data System (ADS)

    Saak, Alexander E.; Peterson, Jeffrey M.

    2012-08-01

    Farm size is a significant determinant of both groundwater-irrigated farm acreage and groundwater-irrigation-application rates per unit land area. This paper analyzes the patterns of groundwater exploitation when resource users in the area overlying a common aquifer are heterogeneous. In the presence of user heterogeneity, the common resource problem consists of inefficient dynamic and spatial allocation of groundwater because it impacts income distribution not only across periods but also across farmers. Under competitive allocation, smaller farmers pump groundwater faster if farmers have a constant marginal periodic utility of income. However, it is possible that larger farmers pump faster if the Arrow-Pratt coefficient of relative risk-aversion is sufficiently decreasing in income. A greater farm-size inequality may either moderate or amplify income inequality among farmers. Its effect on welfare depends on the curvature properties of the agricultural output function and the farmer utility of income. Also, it is shown that a flat-rate quota policy that limits the quantity of groundwater extraction per unit land area may have unintended consequences for the income distribution among farmers.

  1. Deep well solar pump

    SciTech Connect

    Vanek, J.

    1990-02-06

    This patent describes, in a pump having a source of gas under pressure, and a gas operated pump, a mechanism periodically injecting gas from the source of gas into the gas operated pump. It comprises: a long period pendulum turning towards a first position by gravity, an injection valve connected between the source of gas under pressure and the gas operated pump, a linkage between the pendulum and the injection valve. The linkage opening the injection valve when the pendulum is in the first position, an impulse tube connected between the injection valve and the gas operated pump, a member having a surface adjacent to the first position of the pendulum, and an elastic impulse bladder connected to the impulse tube adjacent to the surface so that inflation of the impulse bladder on the opening of the injection valve forces the impulse bladder against the pendulum urging the pendulum against the force of gravity toward a second position.

  2. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  3. Apparatus for Pumping a Fluid

    NASA Technical Reports Server (NTRS)

    Boeyen, Robert Van; Reeh, Jonathan

    2013-01-01

    A fluid pump has been developed for mechanically pumped fluid loops for spacecraft thermal control. Lynntech's technology utilizes a proprietary electrochemically driven pumping mechanism. Conventional rotodynamic and displacement pumps typically do not meet the stringent power and operational reliability requirements of space applications. Lynntech's developmental pump is a highly efficient solid-state pump with essentially no rotating or moving components (apart from metal bellows).

  4. Beta Field history: Submersible pumps in heavy crude

    SciTech Connect

    Carpenter, D.E.; McCrea, A.A.

    1995-12-31

    Beta Field, offshore Long Beach, was developed in 1981 with electric submersible pumps as its primary artificial lift. The produced oil gravity ranges from 10--19 API. The wells had low initial water cuts, which increased as the waterflood matured. The impact of viscous production and increased water cuts on the ESP run times are presented here. Despite these challenges, equipment life is currently at 594 days. Equipment sizing techniques and the failure history are also shared.

  5. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  6. 40 CFR 265.1052 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1052 Standards: Pumps...

  7. 40 CFR 265.1052 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1052 Standards: Pumps...

  8. 40 CFR 264.1052 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1052 Standards: Pumps in light...

  9. 40 CFR 265.1052 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1052 Standards: Pumps...

  10. 40 CFR 265.1052 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1052 Standards: Pumps...

  11. 40 CFR 264.1052 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1052 Standards: Pumps in light...

  12. 40 CFR 264.1052 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1052 Standards: Pumps in light...

  13. 40 CFR 264.1052 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1052 Standards: Pumps in light...

  14. 40 CFR 264.1052 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1052 Standards: Pumps in light...

  15. 40 CFR 265.1052 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1052 Standards: Pumps...

  16. 49 CFR 192.171 - Compressor stations: Additional safety equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... must have adequate fire protection facilities. If fire pumps are a part of these facilities, their operation may not be affected by the emergency shutdown system. (b) Each compressor station prime mover... operates with pressure gas injection must be equipped so that stoppage of the engine automatically...

  17. 14 CFR 125.209 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Emergency equipment: Extended overwater operations. 125.209 Section 125.209 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... whistle; (vii) One raft knife; (viii) One CO2 bottle for emergency inflation; (ix) One inflation pump;...

  18. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Emergency equipment: Extended overwater operations. 135.167 Section 135.167 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...) One CO2 bottle for emergency inflation; (x) One inflation pump; (xi) Two oars; (xii) One...

  19. 4. CONSTRUCTION PROGRESS VIEW OF EQUIPMENT IN FRONT PART OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CONSTRUCTION PROGRESS VIEW OF EQUIPMENT IN FRONT PART OF CONTROL BUNKER (TRANSFORMER, HYDRAULIC TANK, PUMP, MOTOR). SHOWS UNLINED CORRUGATED METAL WALL. CAMERA FACING EAST. INEL PHOTO NUMBER 65-5433, TAKEN OCTOBER 20, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  20. Credit PSR. Interior view shows the building equipment room as ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. Interior view shows the building equipment room as seen looking south southwest (206°) from the doorway. The control console contains switches for chiller pumps, fans, heaters, temperature controls, and alarms - Jet Propulsion Laboratory Edwards Facility, Solid Propellant Conditioning Building, Edwards Air Force Base, Boron, Kern County, CA

  1. Pressure charged airlift pump

    DOEpatents

    Campbell, Gene K.

    1983-01-01

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  2. Deep well pump

    SciTech Connect

    Downen, J.L.; Sutliff, W.N.

    1981-06-16

    A pump barrel open at its lower end is coupled at its upper end by a tubular adapter assembly to the lower end of a pump tubing string. This assembly presents an internal bevelled sealing latching annulus, an axially bored pump head being radially expansively spring latched in a fixed axial sealed relation with the annulus to seal the upper end of the pump barrel from the adapter assembly to form a pump compression chamber surrounding a hollow polish rod extending upwardly from a plunger mounted on the lower end of the polish rod for reciprocation in the pump barrel. The plunger carries tandem travelling valves close beneath its connection with the polish rod. The lower valve opening to receive oil through the barrel and plunger on the down stroke and concurrently delivering such oil into the compression chamber. The upper valve closes on the down stroke and opening on the up stroke during which the lower valve closes to expel oil trapped in the compression chamber upward through the upper valve into the lower end of the hollow polish rod which oil is discharged at the upper end thereof into the pump tubing string through the fitting adapting the polish rod to the lower end of the sucker rod.

  3. Performance of mosquito's pump

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kenji

    2005-11-01

    The flow of human blood in Mosquito's proboscis on Hagen-Poiseuille flow is investigated by using micro PIV system to apply mosquito's sucking system for micro-TAS devises. We want to know how high the power of Mosquito's pump is and how small the resistance in a proboscis is, a structure of Mosquito's sucking pump, and its characteristics as mechanical pump. We made the mosquito suck blood of our arm to obtain the average value, made many slices of a mosquito with 2μm thickness after fixed by wax. We anatomized the mosquito's head and picked up the sucking pump under the microscope to know its volume. Mosquito's pump shows high performance compared with the artificial pumps. The surfaces of proboscis were taken by using SEM, AFM because it is important factor for interaction between flow and its wall. Visualization of the blood flows near the tip of and inside proboscis are taken by micro PIV system to know the flow rate. We estimate the power of pump and the friction drag of proboscis by using these data.

  4. Fuel injection pump

    SciTech Connect

    Iiyama, A.; Nishimura, T.

    1988-12-06

    This patent describes a fuel injection pump comprising: (a) engageable first and second cam members, the first cam member reciprocating axially as the first cam member moves angularly relative to the second cam member when the first and second cam members are in engagement; (b) means for urging the first cam member toward the second cam member to engage the first and second cam members; (c) a plunger connected to the first cam member for reciprocation with the first cam member, the plunger defining at least a part of a pumping chamber, the pumping chamber contracting and expanding as the plunger reciprocates; (d) means for allowing fuel to move into the pumping chamber as the pumping chamber expands in a fuel intake stroke; (e) means for allowing the fuel to move out of the pumping chamber as the pumping chamber contracts in a fuel compression stroke; and (f) means for resisting movement of the plunger in at least part of the fuel compression stroke and relieving resistance to the movement of the plunger in the fuel intake stroke wherein the resisting means comprises a piston slidably mounted on the plunger, a spring urging the piston to seat the piston on a shoulder on the plunger so that the piston reciprocates as the plunger reciprocates, wherein the piston is seated on the shoulder in the fuel compression stroke and separates from the shoulder against the force of the spring in the fuel intake stroke, a second fluid chamber at least partially defined by the piston.

  5. 40 CFR Table W - 6 of Subpart W-Default Methane Emission Factors for LNG Import and Export Equipment

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for LNG Import and Export Equipment W Table W Protection of Environment ENVIRONMENTAL... Emission Factors for LNG Import and Export Equipment LNG import and export equipment Emission factor (scf/hour/component) Leaker Emission Factors—LNG Terminals Components, LNG Service Valve 1.19 Pump Seal...

  6. RENEWABLE LIQUID GETTERING PUMP

    DOEpatents

    Batzer, T.H.

    1962-08-21

    A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

  7. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... applications; rated for sensible coefficient of performance (SCOP) and tested in accordance with 10 CFR 431.96... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps §...

  8. ETR HEAT EXCHANGER BUILDING, TRA644. FLOOR PLAN AND SECTIONS. PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. FLOOR PLAN AND SECTIONS. PUMP CUBICLES WITH PUMP MOTORS OUTSIDE CUBICLES. HEAT EXCHANGER EQUIPMENT. COOLANT PIPE TUNNEL ENTERS FROM REACTOR BUILDING. KAISER ETR-5582-MTR-644-A-3, 2/1956. INL INDEX NO. 532-0644-00-486-101294, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. 40 CFR 65.107 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.107 Standards: Pumps in light... than the implementation date specified in § 65.1(f). (b) Leak detection. Unless otherwise specified in... leaks and shall comply with all other provisions of this section. (1) Monitoring method. The pumps...

  10. Gain spectrum self controlling device and algorithm for mutiply pumped Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Jia Ying

    2004-05-01

    For both forward- and backward-pumped Raman amplifiers, devices to perform gain-spectrum self-control of multi-laser pumps are depicted in this paper. The algorithm supporting the devices is presented also. The function of automatic control is suitable for on-line maintenance of WDM equipment.

  11. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses..., fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire... water from a hose connected to the highest outlet. The minimum capacity of the power fire pump shall...

  12. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses..., fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire... water from a hose connected to the highest outlet. The minimum capacity of the power fire pump shall...

  13. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses..., fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire... water from a hose connected to the highest outlet. The minimum capacity of the power fire pump shall...

  14. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses..., fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire... water from a hose connected to the highest outlet. The minimum capacity of the power fire pump shall...

  15. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses..., fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire... water from a hose connected to the highest outlet. The minimum capacity of the power fire pump shall...

  16. 46 CFR 36.10-1 - Cargo pump relief valves-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo pump relief valves-TB/ALL. 36.10-1 Section 36.10-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Piping, Valves, Fittings, and Accessory Equipment § 36.10-1 Cargo pump relief valves—TB/ALL. (a) Cargo...

  17. 46 CFR 36.10-1 - Cargo pump relief valves-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo pump relief valves-TB/ALL. 36.10-1 Section 36.10-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Piping, Valves, Fittings, and Accessory Equipment § 36.10-1 Cargo pump relief valves—TB/ALL. (a) Cargo...

  18. 46 CFR 36.10-1 - Cargo pump relief valves-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Cargo pump relief valves-TB/ALL. 36.10-1 Section 36.10-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Piping, Valves, Fittings, and Accessory Equipment § 36.10-1 Cargo pump relief valves—TB/ALL. (a) Cargo...

  19. 46 CFR 36.10-1 - Cargo pump relief valves-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Cargo pump relief valves-TB/ALL. 36.10-1 Section 36.10-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Piping, Valves, Fittings, and Accessory Equipment § 36.10-1 Cargo pump relief valves—TB/ALL. (a) Cargo...

  20. 46 CFR 32.70-20 - Pump-engine compartment-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Pump-engine compartment-TB/ALL. 32.70-20 Section 32.70-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY..., 1936 § 32.70-20 Pump-engine compartment—TB/ALL. No cofferdam will be required between a cargo tank...

  1. 46 CFR 36.10-1 - Cargo pump relief valves-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo pump relief valves-TB/ALL. 36.10-1 Section 36.10-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Piping, Valves, Fittings, and Accessory Equipment § 36.10-1 Cargo pump relief valves—TB/ALL. (a) Cargo...

  2. AUDIOVISUAL EQUIPMENT STANDARDS.

    ERIC Educational Resources Information Center

    PATTERSON, PIERCE E.; AND OTHERS

    RECOMMENDED STANDARDS FOR AUDIOVISUAL EQUIPMENT WERE PRESENTED SEPARATELY FOR GRADES KINDERGARTEN THROUGH SIX, AND FOR JUNIOR AND SENIOR HIGH SCHOOLS. THE ELEMENTARY SCHOOL EQUIPMENT CONSIDERED WAS THE FOLLOWING--CLASSROOM LIGHT CONTROL, MOTION PICTURE PROJECTOR WITH MOBILE STAND AND SPARE REELS, COMBINATION 2 INCH X 2 INCH SLIDE AND FILMSTRIP…

  3. Shipboard Electronic Equipments.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    Fundamentals of major electronic equipments on board ships are presented in this text prepared for naval officers in general. Basic radio principles are discussed in connection with various types of transmitters, receivers, antennas, couplers, transfer panels, remote-control units, frequency standard equipments, teletypewriters, and facsimile…

  4. Technology Equipment Rooms.

    ERIC Educational Resources Information Center

    Day, C. William

    2001-01-01

    Examines telecommunications equipment room design features that allow for growth and can accommodate numerous equipment replacements and upgrades with minimal service disruption and with minimal cost. Considerations involving the central hub, power and lighting needs, air conditioning, and fire protection are discussed. (GR)

  5. Laboratory Equipment Criteria.

    ERIC Educational Resources Information Center

    State Univ. Construction Fund, Albany, NY.

    Requirements for planning, designing, constructing and installing laboratory furniture are given in conjunction with establishing facility criteria for housing laboratory equipment. Furniture and equipment described include--(1) center tables, (2) reagent racks, (3) laboratory benches and their mechanical fixtures, (4) sink and work counters, (5)…

  6. Equipment & New Products.

    ERIC Educational Resources Information Center

    Poitras, Adrian W., Ed.

    1977-01-01

    Presents several new products and equipment for teaching college science courses such as laser optics bench, portable digital thermometer, solar energy furnaces and blackboard optics kit. A description of all equipment or products, cost, and addresses of manufacturers are also included. (HM)

  7. Adaptive Recreational Equipment.

    ERIC Educational Resources Information Center

    Schilling, Mary Lou, Ed.

    1983-01-01

    Designed for teachers interested in therapeutic recreation, the document lists sources of adaptive recreational equipment and their homemade counterparts. Brief descriptions for ordering or constructing recreational equipment for the visually impaired, poorly coordinated, physically impaired, and mentally retarded are given. Specific adaptations…

  8. Equipment Operator 1 & C.

    ERIC Educational Resources Information Center

    Naval Education and Training Program Development Center, Pensacola, FL.

    The Rate Training Manual and Nonresident Career Course (RTM/NRCC) form a self-study package to assist Navy Equipment Operators First and Chief in fulfilling the requirements of their rating. (Navy Equipment Operators First and Chief direct and coordinate efforts of individuals and crews in construction, earthmoving, roadbuilding, quarrying, and…

  9. Troubleshooting rotating equipment

    SciTech Connect

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  10. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves

    NASA Technical Reports Server (NTRS)

    Baker, David (Inventor)

    1998-01-01

    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  11. On-line PWR RHR pump performance testing following motor and impeller replacement

    SciTech Connect

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  12. Pressurized Vessel Slurry Pumping

    SciTech Connect

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  13. Regenerative Hydride Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  14. Keeping Hearts Pumping

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A collaboration between NASA, Dr. Michael DeBakey, Dr. George Noon, and MicroMed Technology, Inc., resulted in a life-saving heart pump for patients awaiting heart transplants. The MicroMed DeBakey VAD functions as a "bridge to heart transplant" by pumping blood throughout the body to keep critically ill patients alive until a donor heart is available. Weighing less than 4 ounces and measuring 1 inch by 3 inches, the pump is approximately one-tenth the size of other currently marketed pulsatile VADs. This makes it less invasive and ideal for smaller adults and children. Because of the pump's small size, less than 5 percent of the patients implanted developed device-related infections. It can operate up to 8 hours on batteries, giving patients the mobility to do normal, everyday activities.The MicroMed DeBakey VAD is a registered trademark of MicroMed Technology, Inc.

  15. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  16. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  18. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  19. Subterranean heat exchanger for refrigeration air conditioning equipment

    SciTech Connect

    Rothwell, H.

    1980-09-30

    Heat exchanger apparatus for use with refrigeration cycle heating and cooling equipment is disclosed. In the preferred embodiment, it cooperates with and modifies refrigeration equipment including a compressor, an expansion valve, an evaporator coil and a closed loop for cycling refrigerant. This apparatus is a sealed container adapted to be placed in a well extending into artesian (Relatively heated or chilled) formations whereby the water of the formation stabilizes the temperature around the unit and enables heating and cooling. The sealed unit receives refrigerant from the top which flows along the sidewall at a reduced temperature, thereby condensing on the sidewall and trickling down the sidewall to collect in a sump at the bottom where the compressor pump picks up condensed refrigerant as a liquid and pumps it out of the artesian well to the connected refrigeration equipment.

  20. Field-wide program improves sucker rod pumping efficiency

    SciTech Connect

    DeFoe, P.R.

    1981-08-01

    A discussion is presented of a three year old project in which equipment is checked to assure proper design and operation is paying off with substantial savings in maintenance costs. Also, the resulting increase in downhole pump life keeps wells on stream for longer periods. 5 refs.

  1. Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  2. Remotely Adjustable Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  3. Open-source syringe pump library.

    PubMed

    Wijnen, Bas; Hunt, Emily J; Anzalone, Gerald C; Pearce, Joshua M

    2014-01-01

    This article explores a new open-source method for developing and manufacturing high-quality scientific equipment suitable for use in virtually any laboratory. A syringe pump was designed using freely available open-source computer aided design (CAD) software and manufactured using an open-source RepRap 3-D printer and readily available parts. The design, bill of materials and assembly instructions are globally available to anyone wishing to use them. Details are provided covering the use of the CAD software and the RepRap 3-D printer. The use of an open-source Rasberry Pi computer as a wireless control device is also illustrated. Performance of the syringe pump was assessed and the methods used for assessment are detailed. The cost of the entire system, including the controller and web-based control interface, is on the order of 5% or less than one would expect to pay for a commercial syringe pump having similar performance. The design should suit the needs of a given research activity requiring a syringe pump including carefully controlled dosing of reagents, pharmaceuticals, and delivery of viscous 3-D printer media among other applications. PMID:25229451

  4. Open-Source Syringe Pump Library

    PubMed Central

    Wijnen, Bas; Hunt, Emily J.; Anzalone, Gerald C.; Pearce, Joshua M.

    2014-01-01

    This article explores a new open-source method for developing and manufacturing high-quality scientific equipment suitable for use in virtually any laboratory. A syringe pump was designed using freely available open-source computer aided design (CAD) software and manufactured using an open-source RepRap 3-D printer and readily available parts. The design, bill of materials and assembly instructions are globally available to anyone wishing to use them. Details are provided covering the use of the CAD software and the RepRap 3-D printer. The use of an open-source Rasberry Pi computer as a wireless control device is also illustrated. Performance of the syringe pump was assessed and the methods used for assessment are detailed. The cost of the entire system, including the controller and web-based control interface, is on the order of 5% or less than one would expect to pay for a commercial syringe pump having similar performance. The design should suit the needs of a given research activity requiring a syringe pump including carefully controlled dosing of reagents, pharmaceuticals, and delivery of viscous 3-D printer media among other applications. PMID:25229451

  5. Driving mechanism for plunger pumps in oil field installations

    SciTech Connect

    Gazarov, R.E.; Zaslavskii, Yu.V.

    1995-07-01

    Mobile oil field pumping installations of up to 1600 kW power at a pressure up to 140 MPa are widely used in hydraulic fracturing of beds, acid treatment of the near-face zone, cementation of wells, and other flushing and pressure operations. Equipment in these installations, which include high-pressure plunger pumps of high unit capacity, are mounted on mobile bases of limited lifting capacity (KrAZ automobile chassis, T-130 tractors, etc.). Very strict demands are made on the reliability, durability, and mass/size characteristics of the pumps and on all the equipment of the mobile installations. In modern pumps, an axial load of up to 100 tons or more, which is transmitted to the crankshaft, acts on each plunger. The engine of the installation rotates the crankshaft through a multiple-speed transmission and the transmission shaft of the pump. The forces acting on the elements of the driving part of a pump with a connecting rod - crank drive and a single-reduction tooth gear are described.

  6. Lunar base heat pump

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-01-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  7. Smart'' pump and treat

    SciTech Connect

    Isherwood, W.; Rice, D. Jr.; Ziagos, J. ); Nichols, E. )

    1991-09-01

    Lawrence Livermore National Laboratory (LLNL) is approaching the final phase of the Superfund decision-making process for site restoration and will soon initiate full scale cleanup. Despite some well-publicized failings of the pump and treat approach, we have concluded that intelligent application of this strategy if the best choice for ground water restoration at LLNL. Our proposed approach differs sufficiently from the pump and treat methods implemented at other sites that we call it smart'' pump and treat. Smart pump and treat consists of four distinct, but interrelated, elements: three preremediation strategies and one modification to pump and treat itself. Together, these techniques are an integrated program that utilizes an understanding of crucial aspects of contaminant flow and transport to speed up the remediation of contaminated aquifers. The four elements are: (1) a spatially detailed site characterization, linked with regional hydrogeologic models; (2) directed extraction, where the extraction and recharge locations are controlled by field-determined hydrogeologic parameters; (3) field-validated modeling that the matches the complexity of the collected data; and (4) adaptive pumping, whose pattern varies with time. Together, these techniques minimize the cost and the time to reach regulatory directed cleanup goals and maximize the rate of contaminant removal. 8 refs.

  8. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)

    1999-01-01

    A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.

  9. Auxiliary lubrication pump apparatus

    SciTech Connect

    Glesmann, H.C.; Thomas, R.G.

    1987-02-10

    This patent describes an auxiliary lubrication pump apparatus for use with a towing vehicle having an engine switch, a battery, and an interior compartment, and a towed vehicle having an automatic transmission which requires forced lubrication while being towed. The apparatus comprises: (a) a lubrication pump; (b) a transmission to pump hose connected between the automatic transmission and the lubrication pump; (c) a valve having at least one signal output and two inputs: (d) a hose means for connecting an output of the lubrication pump to one of the inputs of the valve; (e) a first outflow hose for connecting the automatic transmission to another input of the valve; (f) a second output hose for connecting the output of the valve to the automatic transmission; (g) pressure sensing means positioned to sense pressure as regards the second outflow hose; and (h) control means responsive to the pressure sensing means and having switch means for providing electricity to the lubrication pump and to provide an alarm whenever the control means detects through the pressure sensing means that inadequate pressure exists.

  10. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  11. The Evolution of Ion Pumps.

    ERIC Educational Resources Information Center

    Maloney, Peter C.; Wilson, T. Hastings

    1985-01-01

    Constructs an evolutionary sequence to account for the diversity of ion pumps found today. Explanations include primary ion pumps in bacteria, features and distribution of ATP-driven pumps, preference for cation transport, and proton pump reversal. The integrated evolutionary hypothesis should encourage new experimental approaches. (DH)

  12. 40 CFR 60.562-2 - Standards: Equipment leaks of VOC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Equipment leaks of VOC. 60...: Equipment leaks of VOC. (a) Each owner or operator of an affected facility subject to the provisions of this... from bleed ports in existing pumps in light liquid service are not considered to be a leak as...

  13. 40 CFR 60.562-2 - Standards: Equipment leaks of VOC.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Equipment leaks of VOC. 60...: Equipment leaks of VOC. (a) Each owner or operator of an affected facility subject to the provisions of this... from bleed ports in existing pumps in light liquid service are not considered to be a leak as...

  14. 40 CFR 60.562-2 - Standards: Equipment leaks of VOC.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards: Equipment leaks of VOC. 60...: Equipment leaks of VOC. (a) Each owner or operator of an affected facility subject to the provisions of this... from bleed ports in existing pumps in light liquid service are not considered to be a leak as...

  15. 40 CFR 60.562-2 - Standards: Equipment leaks of VOC.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards: Equipment leaks of VOC. 60...: Equipment leaks of VOC. (a) Each owner or operator of an affected facility subject to the provisions of this... from bleed ports in existing pumps in light liquid service are not considered to be a leak as...

  16. 40 CFR 60.562-2 - Standards: Equipment leaks of VOC.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards: Equipment leaks of VOC. 60...: Equipment leaks of VOC. (a) Each owner or operator of an affected facility subject to the provisions of this... from bleed ports in existing pumps in light liquid service are not considered to be a leak as...

  17. Pumping Optimization Model for Pump and Treat Systems - 15091

    SciTech Connect

    Baker, S.; Ivarson, Kristine A.; Karanovic, M.; Miller, Charles W.; Tonkin, M.

    2015-01-15

    Pump and Treat systems are being utilized to remediate contaminated groundwater in the Hanford 100 Areas adjacent to the Columbia River in Eastern Washington. Design of the systems was supported by a three-dimensional (3D) fate and transport model. This model provided sophisticated simulation capabilities but requires many hours to calculate results for each simulation considered. Many simulations are required to optimize system performance, so a two-dimensional (2D) model was created to reduce run time. The 2D model was developed as a equivalent-property version of the 3D model that derives boundary conditions and aquifer properties from the 3D model. It produces predictions that are very close to the 3D model predictions, allowing it to be used for comparative remedy analyses. Any potential system modifications identified by using the 2D version are verified for use by running the 3D model to confirm performance. The 2D model was incorporated into a comprehensive analysis system (the Pumping Optimization Model, POM) to simplify analysis of multiple simulations. It allows rapid turnaround by utilizing a graphical user interface that: 1 allows operators to create hypothetical scenarios for system operation, 2 feeds the input to the 2D fate and transport model, and 3 displays the scenario results to evaluate performance improvement. All of the above is accomplished within the user interface. Complex analyses can be completed within a few hours and multiple simulations can be compared side-by-side. The POM utilizes standard office computing equipment and established groundwater modeling software.

  18. [Medical Equipment Maintenance Methods].

    PubMed

    Liu, Hongbin

    2015-09-01

    Due to the high technology and the complexity of medical equipment, as well as to the safety and effectiveness, it determines the high requirements of the medical equipment maintenance work. This paper introduces some basic methods of medical instrument maintenance, including fault tree analysis, node method and exclusive method which are the three important methods in the medical equipment maintenance, through using these three methods for the instruments that have circuit drawings, hardware breakdown maintenance can be done easily. And this paper introduces the processing methods of some special fault conditions, in order to reduce little detours in meeting the same problems. Learning is very important for stuff just engaged in this area.

  19. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  20. Tokamak pump limiters

    NASA Astrophysics Data System (ADS)

    Conn, Robert W.

    1984-12-01

    Experiments with pump limiters on several operating tokamaks have established them as efficient collectors of particles. The gas pressure rise within the chamber behind the limiters has been as high as 50 mTorr when there is no internal chamber pumping. Observations of the plasma power distribution over the front face of these limiter modules yield estimates for the scale length of radial power decay consistent with predictions of relatively simple theory. Interaction of the in-flowing plasma with recycling neutral gas near the limiter deflector plate is predicted to become important when the effective ionization mean free path is comparable to or less than the neutral atom mean path length within the throat structure of the limiter. Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased

  1. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  2. Leasing versus buying equipment.

    PubMed

    Grossman, R

    1983-01-01

    For the upgrading of equipment that is necessary in radiologic practice, leasing is more convenient and less expensive than buying. Changes in tax laws, embodied in the Economic Recovery Act of 1981, have increased tax benefits of this arrangement.

  3. Cleaning supplies and equipment

    MedlinePlus

    ... something means to clean it to destroy germs. Disinfectants are the cleaning solutions that are used to ... each solution. You may need to allow the disinfectant to dry on the equipment for a set ...

  4. Equipment & New Products.

    ERIC Educational Resources Information Center

    Poitras, Adrian W., Ed.

    1979-01-01

    Reviews new science equipment and products for the laboratory. Includes hand-held calculators, fiberglass fume hoods, motorized microtomy, disposable mouse cages, and electric timers. Describes 11 products total. Provides manufacturer name, address, and price. (MA)

  5. Selecting Library Furniture & Equipment.

    ERIC Educational Resources Information Center

    Media & Methods, 1997

    1997-01-01

    Offers suggestions for selecting school library furniture and equipment. Describes various models of computer workstations; reading tables and chairs; and shelving. Sidebar lists names and addresses of library furniture manufactures and distributors. (AEF)

  6. Agricultural biosecurity.

    PubMed

    Waage, J K; Mumford, J D

    2008-02-27

    The prevention and control of new pest and disease introductions is an agricultural challenge which is attracting growing public interest. This interest is in part driven by an impression that the threat is increasing, but there has been little analysis of the changing rates of biosecurity threat, and existing evidence is equivocal. Traditional biosecurity systems for animals and plants differ substantially but are beginning to converge. Bio-economic modelling of risk will be a valuable tool in guiding the allocation of limited resources for biosecurity. The future of prevention and management systems will be strongly influenced by new technology and the growing role of the private sector. Overall, today's biosecurity systems are challenged by changing national priorities regarding trade, by new concerns about environmental effects of biological invasions and by the question 'who pays?'. Tomorrow's systems may need to be quite different to be effective. We suggest three changes: an integration of plant and animal biosecurity around a common, proactive, risk-based approach; a greater focus on international cooperation to deal with threats at source; and a commitment to refocus biosecurity on building resilience to invasion into agroecosystems rather than building walls around them.

  7. Impact of Installation Faults on Heat Pump Performance

    DOE PAGES

    Hourahan, Glenn; Baxter, Van D.

    2015-01-01

    Numerous studies and surveys indicate that typically-installed HVAC equipment operate inefficiently and waste considerable energy due to varied installation errors (faults) such as improper refrigerant charge, incorrect airflow, oversized equipment, and leaky ducts. This article summarizes the results of a large United States (U.S.) experimental/analytical study (U.S. contribution to IEA HPP Annex 36) of the impact that different faults have on the performance of an air-source heat pump (ASHP) in a typical U.S. single-family house. It combines building effects, equipment effects, and climate effects in an evaluation of the faults impact on seasonal energy consumption through simulations of the house/ASHPmore » pump system.« less

  8. Impact of Installation Faults on Heat Pump Performance

    SciTech Connect

    Hourahan, Glenn; Baxter, Van D.

    2015-01-01

    Numerous studies and surveys indicate that typically-installed HVAC equipment operate inefficiently and waste considerable energy due to varied installation errors (faults) such as improper refrigerant charge, incorrect airflow, oversized equipment, and leaky ducts. This article summarizes the results of a large United States (U.S.) experimental/analytical study (U.S. contribution to IEA HPP Annex 36) of the impact that different faults have on the performance of an air-source heat pump (ASHP) in a typical U.S. single-family house. It combines building effects, equipment effects, and climate effects in an evaluation of the faults impact on seasonal energy consumption through simulations of the house/ASHP pump system.

  9. Operator manual: High temperature heat pump

    NASA Astrophysics Data System (ADS)

    Dyer, D. F.; Maples, G.; Burch, T. E.; Chancellor, P. D.

    1980-03-01

    Experimental data were obtained from operating a high temperature heat pump system. The use of methanol as a working fluid necessitated careful monitoring of refrigerant temperatures and pressures with chemical analysis performed on the working fluid during scheduled down time. Materials sent to vendors and quotes received concerning equipment (compressor, evaporator, condensor, air heater, dryer, two accumulator tanks, and three expansion valves) are discussed. The detailed design and pricing estimates are included. Additional information on layout and construction; start-up; testing; shut down; scheduled maintenance and inspection; safety precautions; control system; and trouble shooting is presented.

  10. Batch treatment controls corrosion in pumping wells

    SciTech Connect

    Evans, S.; Doran, C.R.

    1984-02-01

    Conoco recently developed a batch treatment program to control corrosion in sucker rod pumped wells. The program was intended to prolong equipment life, reduce pulling jobs and cut operating costs. Tested on MCA Unit near Maljamar in southeast New Mexico, and since applied to more than 400 producing wells near Hobbs, the new program has been remarkably successful. Pulling jobs, which had totaled 178 a year at MCA Unit, dropped to 50 a year, reduced inhibitor requirements cut treatment costs by an estimated $6,100 per month and production increased.

  11. Capillary-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    1989-01-01

    New type of capillary-pumped heat-transfer loop primes itself at startup. Removes substantial quantities of heat like that generated by people and equipment in rooms and vehicles. Creates continuous path for its working fluid; both vapor and liquid move in same direction. Key element in operation of loop is formation of slugs of liquid, condensed from vapor and moved along loop by vapor bubbles before and after it. Both evaporator and condenser contain axial arteries carrying water. Heat entering evaporator from heat source provides energy for transport of fluid and heat. Dimensions in inches.

  12. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  13. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  14. 20. Station Unwatering Pumps and Sump Pump, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Station Unwatering Pumps and Sump Pump, view to the north. The station unwatering pumps are the two large units in the center and right foreground of photograph and are marked with the numbers 1 and 2. The sump pump is the smaller unit in left foreground of photograph. These pumps are used for unwatering the draft chests for maintenance. Note the draft tube unwatering valve visible in background between the two unwatering pumps. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  15. Pumping of helium and hydrogen by sputter-ion pumps. II. Hydrogen pumping

    SciTech Connect

    Welch, K.M.; Pate, D.J.; Todd, R.J. )

    1994-05-01

    The pumping of helium by various forms of sputter-ion pumps (i.e., SIPs) is given in part I [K. M. Welch, D. J. Pate, and R. J. Todd, J. Vac. Sci. Technol. A [bold 11], 1607 (1993)]. The pumping of hydrogen in diode and triode SIPs is herein discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum, titanium, and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium anodes and titanium [ital shielding] of a pump body is also shown to impact measurably the speed of a pump at very low pressures. This stems from the fact that hydrogen is [times]10[sup 6] more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Ions and fast neutrals of hydrogen are also buried in the walls of pump bodies. Outgassing of this hydrogen from the anodes and pump bodies results in a gradual increase in pump base pressure and consequential decrease in hydrogen pump speed at very low base pressures.

  16. Active magnetic bearings: As applied to centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-01-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  17. Active magnetic bearings: As applied to centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-05-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  18. Fuel injection pump

    SciTech Connect

    Hishinuma, O.; Masuda, A.; Ohmori, T.; Miyaki, M.; Takemoto, E.

    1987-06-09

    This patent describes a fuel injection pump for an internal combustion engine comprising: a housing having a cylindrical inner surface; a shaft having a portion disposed in rotatably sliding engagement with the cylindrical inner surface and having a first axial bore and a second radial bore therein; at least one pumping plunger slidably disposed in the second radial bore to cooperate therewith to define a compression chamber; a pumping plunger is adapted to be moved in the second radial bore to vary the volume of the compression chamber; an injection plunger slidably disposed in the first axial, bore to cooperate in defining the first and second pressure chambers separated from each other by the injection plunger.

  19. Miniature Lightweight Ion Pump

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    2010-01-01

    This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are

  20. Fluid pumping apparatus

    DOEpatents

    West, Phillip B.

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  1. Programs in Animal Agriculture.

    ERIC Educational Resources Information Center

    Herring, Don R.; And Others

    1980-01-01

    Five topics relating to programs in animal agriculture are addressed: (1) the future of animal agriculture; (2) preparing teachers in animal agriculture; (3) how animal programs help young people; (4) a nontraditional animal agriculture program; and (5) developing competencies in animal agriculture. (LRA)

  2. Air-Operated Sump Pump

    NASA Technical Reports Server (NTRS)

    Nolt, Gary D.

    1988-01-01

    Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.

  3. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  4. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  5. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  6. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  7. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  8. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  9. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  10. High pressure reciprocating pump

    SciTech Connect

    Besic, D.

    1990-05-01

    This patent describes an improvement in a reciprocating pump having a plunger and a pumping chamber. It comprises: the plunger having a bore communicating with an intersection opening and wherein the plunger incudes a central axis; a suction valve and a discharge valve, each having an axis of actuation parallel to a central axis of the plunger; the suction valve comprising a cylindrical core having a central passageway, and the core is slidably received by a seating member and resiliently biased to the seating member.

  11. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  12. Reactor coolant pump flywheel

    SciTech Connect

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  13. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  14. Wellhead equipment support

    SciTech Connect

    Nichols, R.P.

    1987-03-24

    A wellhead assembly is described for supporting equipment in a well, comprising: a suspension nut having a threaded outer surface; a wellhead member having an inner threaded surface adapted to mesh with the threaded outer surface of the suspension nut; the suspension nut having a projection extending axially from its threaded outer surface and having an inner surface adapted to support equipment in the well; at least a portion of the inner surface for supporting the equipment facing both inwardly and upwardly such that force exerted by the weight of the equipment against the inner surface is transformed at least in part to a radially outwardly directed force; the projecting having an outer surface sized such that the outer surface is spaced from an inner surface of the wellhead member in the absence of force exerted against the inner surface of the projection such that the projection is deflected outwardly by the force exerted by the weight of the equipment against the inner surface.

  15. Prioritizing equipment for replacement.

    PubMed

    Capuano, Mike

    2010-01-01

    It is suggested that clinical engineers take the lead in formulating evaluation processes to recommend equipment replacement. Their skill, knowledge, and experience, combined with access to equipment databases, make them a logical choice. Based on ideas from Fennigkoh's scheme, elements such as age, vendor support, accumulated maintenance cost, and function/risk were used.6 Other more subjective criteria such as cost benefits and efficacy of newer technology were not used. The element of downtime was also omitted due to the data element not being available. The resulting Periop Master Equipment List and its rationale was presented to the Perioperative Services Program Council. They deemed the criteria to be robust and provided overwhelming acceptance of the list. It was quickly put to use to estimate required capital funding, justify items already thought to need replacement, and identify high-priority ranked items for replacement. Incorporating prioritization criteria into an existing equipment database would be ideal. Some commercially available systems do have the basic elements of this. Maintaining replacement data can be labor-intensive regardless of the method used. There is usually little time to perform the tasks necessary for prioritizing equipment. However, where appropriate, a clinical engineering department might be able to conduct such an exercise as shown in the following case study.

  16. 12. Sewage Ejector Pumps, view to the southwest. These pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Sewage Ejector Pumps, view to the southwest. These pumps are connected to sewage treatment tanks. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  17. [Medical Equipment Maintenance Methods].

    PubMed

    Liu, Hongbin

    2015-09-01

    Due to the high technology and the complexity of medical equipment, as well as to the safety and effectiveness, it determines the high requirements of the medical equipment maintenance work. This paper introduces some basic methods of medical instrument maintenance, including fault tree analysis, node method and exclusive method which are the three important methods in the medical equipment maintenance, through using these three methods for the instruments that have circuit drawings, hardware breakdown maintenance can be done easily. And this paper introduces the processing methods of some special fault conditions, in order to reduce little detours in meeting the same problems. Learning is very important for stuff just engaged in this area. PMID:26904890

  18. German mining equipment

    SciTech Connect

    Not Available

    1993-10-01

    The German mining equipment industry developed to supply machines and services to the local mining industry, i.e., coal, lignite, salt, potash, ore mining, industrial minerals, and quarrying. The sophistication and reliability of its technology also won it worldwide export markets -- which is just as well since former major domestic mining sectors such as coal and potash have declined precipitously, and others such as ore mining have all but disappeared. Today, German mining equipment suppliers focus strongly on export sales, and formerly unique German mining technologies such as continuous mining with bucket wheel excavators and conveyors for open pits, or plowing of underground coal longwalls are widely used abroad. The status of the German mining equipment industry is reviewed.

  19. Portable engine-pump assembly

    SciTech Connect

    Eberhardt, H.A.

    1987-02-17

    This patent describes a portable engine-pump assembly that is compact and light in weight comprising: an internal combustion engine mounted with its crankshaft extending vertically, a centrifugal pump having an impeller mounted for rotation on a pump shaft within a volute chamber, means mounting the pump on and immediately beneath the engine with the pump shaft extending vertically in accurate alignment and concentricity with the engine crankshaft, means coupling the engine crankshaft and the pump shaft together so that the engine crankshaft drives the pump shaft, the pump comprising a pump body defining the volute chamber and providing a pump inlet passage and a pump discharge passage oriented in generally horizontal directions, the pump body defining an inlet chamber providing passages for the flow of liquid from the pump inlet passage into the impeller from both above and below same and including an upper body portion and a lower body portion, and an exhaust system for the engine including an exhaust passage contained in the upper body portion, a muffler having an inlet, and means providing flow communication between the exhaust passage and the inlet of the muffler.

  20. Agricultural Education at Risk.

    ERIC Educational Resources Information Center

    Evans, Donald E.

    1988-01-01

    Discusses educational reform in the context of agricultural education. Covers a recent report on agricultural education reform by the National Academy of Sciences, state legislative initiatives, and several recommendations for the future of agricultural education. (CH)