Sample records for agricultural residues wheat

  1. Agricultural residue availability in the United States.

    PubMed

    Haq, Zia; Easterly, James L

    2006-01-01

    The National Energy Modeling System (NEMS) is used by the Energy Information Administration (EIA) to forecast US energy production, consumption, and price trends for a 25-yr-time horizon. Biomass is one of the technologies within NEMS, which plays a key role in several scenarios. An endogenously determined biomass supply schedule is used to derive the price-quantity relationship of biomass. There are four components to the NEMS biomass supply schedule including: agricultural residues, energy crops, forestry residues, and urban wood waste/mill residues. The EIA's Annual Energy Outlook 2005 includes updated estimates of the agricultural residue portion of the biomass supply schedule. The changes from previous agricultural residue supply estimates include: revised assumptions concerning corn stover and wheat straw residue availabilities, inclusion of non-corn and non-wheat agricultural residues (such as barley, rice straw, and sugarcane bagasse), and the implementation of assumptions concerning increases in no-till farming. This article will discuss the impact of these changes on the supply schedule.

  2. Polylactide-based renewable green composites from agricultural residues and their hybrids.

    PubMed

    Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri

    2010-06-14

    Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites.

  3. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    PubMed

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-08-01

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and 1 H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fuel ethanol production from agricultural residues

    USDA-ARS?s Scientific Manuscript database

    Ethanol is a renewable oxygenated fuel. In 2012, about 13.3 billion gallons of fuel ethanol was produced from corn in the USA which makes up 10% of gasoline supply. Various agricultural residues such as corn stover, wheat straw, rice straw and barley straw can serve as low-cost lignocellulosic fee...

  5. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    PubMed

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  6. Product distribution from pyrolysis of wood and agricultural residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Blasi, C.; Signorelli, G.; Di Russo, C.

    1999-06-01

    The pyrolysis characteristics of agricultural residues (wheat straw, olive husks, grape residues, and rice husks) and wood chips have been investigated on a bench scale. The experimental system establishes the conditions encountered by a thin (4 {times} 10{sup {minus}2} m diameter) packed bed of biomass particles suddenly exposed in a high-temperature environment, simulated by a radiant furnace. Product yields (gases, liquids, and char) and gas composition, measured for surface bed temperatures in the range 650--1000 K, reproduce trends already observed for wood. However, differences are quantitatively large. Pyrolysis of agricultural residues is always associated with much higher solid yields (upmore » to a factor of 2) and lower liquid yields. Differences are lower for the total gas, and approximate relationships exist among the ratios of the main gas species yields, indicating comparable activation energies for the corresponding apparent kinetics of formation. However, while the ratios are about the same for wood chips, rice husks, and straw, much lower values are shown by olive and grape residues. Large differences have also been found in the average values of the specific devolatilization rates. The fastest (up to factors of about 1.5 with respect to wood) have been observed for wheat straw and the slowest (up to factors of 2) for grape residues.« less

  7. Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China.

    PubMed

    Wang, Jinzhou; Wang, Xiujun; Xu, Minggang; Feng, Gu; Zhang, Wenju; Yang, Xueyun; Huang, Shaomin

    2015-06-23

    Soil organic carbon (SOC) dynamics in agro-ecosystem is largely influenced by cropping. However, quantifying the contributions of various crops has been lacking. Here we employed a stable isotopic approach to evaluate the contributions of wheat and maize residues to SOC at three long-term experimental sites in north China. Soil samples were collected from 0-20, 20-40, 40-60, 60-80 and 80-100 cm after 13 and 20 years of wheat-maize rotation, and SOC and its stable (13)C composition were determined. Our data showed that the δ(13)C value of SOC varied, on average, from -22.1‰ in the 0-20 cm to -21.5‰ in the 80-100 cm. Carbon input through maize residues ranged from 35% to 68% whereas the contribution of maize residues to SOC (0-40 cm) ranged from 28% to 40%. Our analyses suggested that the retention coefficient was in the range of 8.0-13.6% for maize residues and 16.5-28.5% for wheat residues. The two-fold higher retention coefficient of wheat versus maize residues was due to the differences in the quality of residues and probably also in the temperature during the growing season. Our study highlighted the importance of crop management on carbon sequestration in agricultural lands.

  8. Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China

    PubMed Central

    Wang, Jinzhou; Wang, Xiujun; Xu, Minggang; Feng, Gu; Zhang, Wenju; Yang, Xueyun; Huang, Shaomin

    2015-01-01

    Soil organic carbon (SOC) dynamics in agro-ecosystem is largely influenced by cropping. However, quantifying the contributions of various crops has been lacking. Here we employed a stable isotopic approach to evaluate the contributions of wheat and maize residues to SOC at three long-term experimental sites in north China. Soil samples were collected from 0–20, 20–40, 40–60, 60–80 and 80–100 cm after 13 and 20 years of wheat-maize rotation, and SOC and its stable 13C composition were determined. Our data showed that the δ13C value of SOC varied, on average, from −22.1‰ in the 0–20 cm to −21.5‰ in the 80–100 cm. Carbon input through maize residues ranged from 35% to 68% whereas the contribution of maize residues to SOC (0–40 cm) ranged from 28% to 40%. Our analyses suggested that the retention coefficient was in the range of 8.0–13.6% for maize residues and 16.5–28.5% for wheat residues. The two-fold higher retention coefficient of wheat versus maize residues was due to the differences in the quality of residues and probably also in the temperature during the growing season. Our study highlighted the importance of crop management on carbon sequestration in agricultural lands. PMID:26100739

  9. Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics.

    PubMed

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-10-01

    The thermal conversion characteristics, kinetics, and thermodynamics of agricultural residues, rape straw (RS) and wheat bran (WB), were investigated under non-isothermal conditions. TGA experiments showed that the pyrolysis characteristics of RS were quite different from those of WB. As reflected by the comprehensive devolatilization index, when the heating rate increased from 10 to 30Kmin -1 , the pyrolysis performance of RS and WB were improved 5.27 and 5.96 times, respectively. The kinetic triplets of the main pyrolysis process of agricultural residues were calculated by the Starink method and the integral master-plots method. Kinetic analysis results indicated that the most potential kinetic models for the pyrolysis of RS and WB were D 2 and F 2.7 , respectively. The thermodynamic parameters (ΔH, ΔG, and ΔS) were determined by the activated complex theory. The positive ΔH, positive ΔG, and negative ΔS at characteristic temperatures validated that the pyrolysis of agricultural residues was endothermic and non-spontaneous. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of levels of wheat residue on the severity of stagonospora nodorum blotch in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Stagonospora nodorum blotch (SNB), caused by the ascomycete fungus Stagonospora nodorum, is a major disease of wheat. Wheat residue can be an important source of inoculum, but the effect of different densities of infected debris on disease severity has not been previously determined. Experiments wer...

  11. Quantifying the effects of wheat residue on severity of Stagonospora nodorum blotch and yield in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Stagonospora nodorum blotch (SNB), caused by the ascomycete fungus Stagonospora nodorum, is a major disease of wheat. Wheat residue can be an important source of inoculum, but the effect of different densities of infected debris on disease severity has not been previously determined. Experiments wer...

  12. Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

    2007-04-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability ofmore » the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ag’s ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.« less

  13. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.

    PubMed

    Gao, Jianmin; Xie, Yingxin; Jin, Haiyang; Liu, Yuan; Bai, Xueying; Ma, Dongyun; Zhu, Yunji; Wang, Chenyang; Guo, Tiancai

    2016-01-01

    The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat), individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV) under 80% WFPS (the water filled pore space) in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0), 200 kg N ha-1 (N200), 250 kg N ha-1 (N250), maize residue plus N200 (MN200), maize residue plus N250 (MN250), wheat residue plus N200 (WN200) and wheat residue plus N250 (WN250). Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O emissions

  14. Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field.

    PubMed

    Qayyum, Muhammad Farooq; Rehman, Muhammad Zia Ur; Ali, Shafaqat; Rizwan, Muhammad; Naeem, Asif; Maqsood, Muhammad Aamer; Khalid, Hinnan; Rinklebe, Jörg; Ok, Yong Sik

    2017-05-01

    Cadmium (Cd) accumulation in agricultural soils is one of the major threats to food security. The application of inorganic amendments such as mono-ammonium phosphate (MAP), gypsum and elemental sulfur (S) could alleviate the negative effects of Cd in crops. However, their long-term residual effects on decreasing Cd uptake in latter crops remain unclear. A field that had previously been applied with treatments including control and 0.2, 0.4 and 0.8% by weight of each MAP, gypsum and S, and grown with wheat and rice and thereafter wheat in the rotation was selected for this study. Wheat (Triticum aestivum L.) was grown in the same field as the third crop without further application of amendments to evaluate the residual effects of the amendments on Cd uptake by wheat. Plants were harvested at maturity and grain, and straw yield along with Cd concentration in soil, straw, and grains was determined. The addition of MAP and gypsum significantly increased wheat growth and yield and decreased Cd accumulation in straw and grains compared to control while the reverse was found in S application. Both MAP and gypsum decreased AB-DTPA extractable Cd in soil while S increased the bioavailable Cd in soil. Both MAP and gypsum increased the Cd immobilization in the soil and S decreased Cd immobilization in a dose-additive manner. We conclude that MAP and gypsum had a significant residual effect on decreasing Cd uptake in wheat. The cost-benefit ratio revealed that gypsum is an effective amendment for decreasing Cd concentration in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Green house gas emissions from open field burning of agricultural residues in India.

    PubMed

    Murali, S; Shrivastava, Rajnish; Saxena, Mohini

    2010-10-01

    In India, about 435.98 MMT of agro-residues are produced every year, out of which 313.62 MMT are surplus. These residues are either partially utilized or un-utilised due to various constraints. To pave the way for subsequent season for agriculture activity, the excess crop residues are burnt openly in the fields, unmindful of their ill effects on the environment. The present study has been undertaken to evaluate the severity of air pollution through emission of green house gases (GHGs) due to open field burning of agro-residues in India. Open field burning of surplus agro-residues in India results in the emission of GHG. Emissions of CH4 and N2O in 1997-98 and 2006-07 have been 3.73 and 4.06 MMT CO2 equivalent, which is an increase of 8.88% over a decade. About three-fourths of GHG emissions from agro-residues burning were CH4 and the remaining one-fourth were N2O. Burning of wheat and paddy straws alone contributes to about 42% of GHGs. These GHG emissions can be avoided once the agro-residues are employed for sustainable, cost-effective and environment- friendly options like power generation.

  16. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    PubMed Central

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  17. [Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province].

    PubMed

    Liu, Li-hua; Jiang, Jing-yan; Zong, Liang-gang

    2011-05-01

    Burning of agricultural crop residues was a major source greenhouse gases. In this study, the proportion of crop straws (rice, wheat, maize, oil rape, cotton and soja) in Jiangsu used as household fuel and direct open burning in different periods (1990-1995, 1996-2000, 2001-2005 and 2006-2008) was estimated through questionnaire. The emission factors of CO2, CO, CH4 and NO20 from the above six types of crop straws were calculated by the simulated burning experiment. Thus the emission inventory of greenhouse gases from crop straws burning was established according to above the burning percentages and emission factors, ratios of dry residues to production and crop productions of different periods in Jiangsu province. Results indicated that emission factors of CO2, CO, CH4 and N2O depended on crop straw type. The emission factors of CO2 and CH4 were higher for oil rape straw than the other straws, while the maize and the rice straw had the higher N2O and CO emission factor. Emission inventory of greenhouse gases from agricultural residues burning in Jiangsu province showed, the annual average global warming potential (GWP) of six tested crop straws were estimated to be 9.18 (rice straw), 4.35 (wheat straw), 2.55 (maize straw), 1.63 (oil rape straw), 0.55 (cotton straw) and 0. 39 (soja straw) Tg CO2 equivalent, respectively. Among the four study periods, the annual average GWP had no obvious difference between the 1990-1995 and 2006-2008 periods, while the maximal annual average GWP (23.83 Tg CO2 equivalent) happened in the 1996-2000 period, and the minimum (20.30 Tg CO2 equivalent) in 1996-2000 period.

  18. Use of inedible wheat residues from the KSC-CELSS breadboard facility for production of fungal cellulase

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Brannon, M. A.; Garland, J. L.

    1990-01-01

    Cellulose and xylan (a hemicellulose) comprise 50 percent of inedible wheat residue (which is 60 percent of total wheat biomass) produced in the Kennedy Space Center Closed Ecological Life Support System (CELSS) Breadboard Biomass Production Chamber (BPC). These polysaccharides can be converted by enzymatic hydrolysis into useful monosaccharides, thus maximizing the use of BPC volume and energy, and minimizing waste material to be treated. The evaluation of CELSS-derived wheat residues for production for cellulase enzyme complex by Trichoderma reesei and supplemental beta-glucosidase by Aspergillus phoenicis is in progress. Results to date are given.

  19. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    NASA Astrophysics Data System (ADS)

    Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri; Mohanty, Amar K.

    2015-05-01

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler's intrinsic properties on the resulting material performance.

  20. PCDD/F EMISSIONS FROM BURNING WHEAT AND RICE FIELD RESIDUE

    EPA Science Inventory

    The paper presents the first known values for emissions of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs) from combustion of agricultural field biomass. Wheat and rice straw stubble collected from two western U.S. states were tested in a field burn simulation to dete...

  1. Wheat domestication: Key to agricultural revolutions past and future

    USDA-ARS?s Scientific Manuscript database

    The domestication of wheat was instrumental in the transition of human behavior from hunter-gatherers to farmers. It was a key event in the agricultural revolution that occurred about 10,000 years ago in the Fertile Crescent of the Middle East. Transitions of forms with natural seed dispersal mechan...

  2. Rapid Assessment of In Situ Wheat Straw Residue Via Remote Sensing Platforms

    NASA Technical Reports Server (NTRS)

    Sullivan, D. G.; Shaw, J. N.; Mask, P. L.; Rickman, D.; Luvall, J.; Wersinger, J. M.; Guertal, E. A.

    2003-01-01

    Crop residues influence near surface soil organic carbon content (SOC), impact our ability to remotely assess soil properties, and play a role in global carbon budgets. Methods that measure crop residues are laborious, and largely inappropriate for regional estimates. The objective of this study was to evaluate remote sensing (RS) data for rapid quantification of residue cover. In March 2000 and April 2001, residue plots (15 m x 15 m) were established in the Coastal Plain and Appalachian Plateau physiographic regions of Alabama. Treatments consisted of five wheat (Triticum aestivum L.) straw cover rates (0, 10, 20, 50, and 80%) replicated 3 times. Soil water content and residue decomposition were monitored. Spectral measurements were acquired via spectroradiometer (350 - 1050 nm), Airborne Terrestrial Applications Sensor (ATLAS) (400 - 12,500 nm), airborne color photography (400 - 600 nm), and IKONOS satellite (450 - 900 nm). Spectroradiometer data were acquired monthly, aircraft images yearly, and satellite per availability. Results showed all platforms successfully estimated residue cover variability using red, near infrared (NIR) and thermal infrared (TIR) regions of the spectrum. Airborne ATLAS imagery was best explaining as much as 98% of the variability in wheat straw cover. Spectroradiometer, color infrared photography, and IKONOS imagery accounted for 84, 56, and 24% of the variability, respectively.

  3. Wheat and barley exposure to nanoceria: Implications for agricultural productivity

    EPA Science Inventory

    The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (Triticum aestivum) and barley (Hordeum vulgare L.) exposed to nanoceria (n...

  4. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass,more » wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler’s intrinsic properties on the resulting material performance.« less

  5. Conversion of agricultural residues to carboxymethylcellulose and carboxymethylcellulose acetate

    USDA-ARS?s Scientific Manuscript database

    In view of continuing interest in the use of agricultural by-products, we have converted cellulose, wheat straw, barley straw, and rice hull into carboxymethylcellulose (CMC). Microwave-assisted synthesis was found to be a partly effective alternative to the conventional heating process. The CMC thu...

  6. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations.

  7. Absorption of mercuric cation by tannins in agricultural residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waiss, A.C. Jr.; Wiley, M.E.; Kuhnle, J.A.

    1973-01-01

    Two common environmental pollutants are agricultural residues (skins, pits, husks, tannin bark, grape pomace) and waste streams of water containing only traces of heavy metals (such as mercury at 10 or more ppb) from mining or manufacturing operations. Agricultural residues contain tannins, polyphenolic substances, pectin, and other polymers-all with chemically reactive groups that can chelate, reduce, oxidize, demonstrate ion exchange properties, and aid in removing traces of heavy metals from dilute waste water streams at low cost. Finely ground and water-washed agricultural residues were slurried in water and packed into columns for absorption tests with heavy metals. Solutions of knownmore » concentrations of heavy metals were passed through the packed columns which were then eluted with water or with alkaline or acidic solutions. The fractions and the column absorbents were then analyzed by standard atomic absorption methods. The nature of the physical and chemical forces that are effective in metal absorption from agricultural residues is not clear.« less

  8. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues.

    PubMed

    Bansal, Namita; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2012-07-01

    Various agricultural and kitchen waste residues were assessed for their ability to support the production of a complete cellulase system by Aspergillus niger NS-2 in solid state fermentation. Untreated as well as acid and base-pretreated substrates including corn cobs, carrot peelings, composite, grass, leaves, orange peelings, pineapple peelings, potato peelings, rice husk, sugarcane bagasse, saw dust, wheat bran, wheat straw, simply moistened with water, were found to be well suited for the organism's growth, producing good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. Yields of cellulases were higher in alkali treated substrates as compared to acid treated and untreated substrates except in wheat bran. Of all the substrates tested, wheat bran appeared to be the best suited substrate producing appreciable yields of CMCase, FPase and β-glucosidase at the levels of 310, 17 and 33 U/g dry substrate respectively. An evaluation of various environmental parameters demonstrated that appreciable levels of cellulases could be produced over a wide range of temperatures (20-50 °C) and pH levels (3.0-8.0) with a 1:1.5 to 1:1.75 substrate to moisture ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Agricultural factors affecting Fusarium communities in wheat kernels.

    PubMed

    Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

    2017-07-03

    Fusarium head blight (FHB) is a devastating disease of cereals caused by Fusarium fungi. The disease is of great economic importance especially owing to reduced grain quality due to contamination by a range of mycotoxins produced by Fusarium. Disease control and prediction is difficult because of the many Fusarium species associated with FHB. Different species may respond differently to control methods and can have both competitive and synergistic interactions. Therefore, it is important to understand how agricultural practices affect Fusarium at the community level. Lower levels of Fusarium mycotoxin contamination of organically produced cereals compared with conventionally produced have been reported, but the causes of these differences are not well understood. The aim of our study was to investigate the effect of agricultural factors on Fusarium abundance and community composition in different cropping systems. Winter wheat kernels were collected from 18 organically and conventionally cultivated fields in Sweden, paired based on their geographical distance and the wheat cultivar grown. We characterised the Fusarium community in harvested wheat kernels using 454 sequencing of translation elongation factor 1-α amplicons. In addition, we quantified Fusarium spp. using real-time PCR to reveal differences in biomass between fields. We identified 12 Fusarium operational taxonomic units (OTUs) with a median of 4.5 OTUs per field. Fusarium graminearum was the most abundant species, while F. avenaceum had the highest occurrence. The abundance of Fusarium spp. ranged two orders of magnitude between fields. Two pairs of Fusarium species co-occurred between fields: F. poae with F. tricinctum and F. culmorum with F. sporotrichoides. We could not detect any difference in Fusarium communities between the organic and conventional systems. However, agricultural intensity, measured as the number of pesticide applications and the amount of nitrogen fertiliser applied, had an

  10. Evaluation of Enzymatic Hydrolysis of CELSS Wheat Residue Cellulose at a Scale Environment to NASA's KSC Breadboard Project

    NASA Technical Reports Server (NTRS)

    Strayer, Richard F.

    1993-01-01

    Biomass processing at the Kennedy Space Center CELSS breadboard project has focused on the evaluation of breadboard-scale enzymatic hydrolysis of wheat residue cellulose (25%, w/w). Five replicate runs of cellulase production by Trichoderma reesei (QM9414) and enzymatic hydrolysis of residue cellulose were completed. Enzymes were produced in 1 0 days (5 L, 25 g (dry weight) residue). Cellulose hydrolysis (12 L, 50 g (dry weight) residue) using these enzymes produced 5.5 to 6.0 g glucose liter(exp -1) in 7 days. Cellulose conversion efficiency was 29%. These processes are feasible technically on a breadboard scale, but would only increase the edible wheat yield 10%.

  11. Adaptive nitrogen and integrated weed management in conservation agriculture: impacts on agronomic productivity, greenhouse gas emissions, and herbicide residues.

    PubMed

    Oyeogbe, Anthony Imoudu; Das, T K; Bhatia, Arti; Singh, Shashi Bala

    2017-04-01

    Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)-wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker™ technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the 'best-adaptive N rate' (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N 2 O and CO 2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.

  12. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps

    NASA Astrophysics Data System (ADS)

    Bryan, B. A.; King, D.; Zhao, G.

    2014-04-01

    In the future, agriculture will need to produce more, from less land, more sustainably. But currently, in many places, actual crop yields are below those attainable. We quantified the ability for agricultural management to increase wheat yields across 179 Mha of potentially arable land in Australia. Using the Agricultural Production Systems Simulator (APSIM), we simulated the impact on wheat yield of 225 fertilization and residue management scenarios at a high spatial, temporal, and agronomic resolution from 1900 to 2010. The influence of management and environmental variables on wheat yield was then assessed using Spearman’s non-parametric correlation test with bootstrapping. While residue management showed little correlation, fertilization strongly increased wheat yield up to around 100 kg N ha-1 yr-1. However, this effect was highly dependent on the key environment variables of rainfall, temperature, and soil water holding capacity. The influence of fertilization on yield was stronger in cooler, wetter climates, and in soils with greater water holding capacity. We conclude that the effectiveness of management intensification to increase wheat yield is highly dependent upon local climate and soil conditions. We provide context-specific information on the yield benefits of fertilization to support adaptive agronomic decision-making and contribute to the closure of yield gaps. We also suggest that future assessments consider the economic and environmental sustainability of management intensification for closing yield gaps.

  13. Focus on agricultural residues: Microstructure of almond hull (abstract)

    USDA-ARS?s Scientific Manuscript database

    Agricultural residues have historically been used as animal feed or burned for disposal. These residues, therefore, have little economic value and may end up becoming disposal problems because tighter air quality control measures may limit burning of the residues. Therefore, value-added products mad...

  14. An Innovative Rapid Method for Analysis of 10 Organophosphorus Pesticide Residues in Wheat by HS-SPME-GC-FPD/MSD.

    PubMed

    Du, Xin; Ren, YongLin; Beckett, Stephen J

    2016-01-01

    The rapid detection of pesticide residues in wheat has become a top food security priority. A solvent-free headspace solid-phase microextraction (HS-SPME) has been evaluated for rapid screening of organophosphorus pesticide (OPP) residues in wheat with high sensitivity. Individual wheat samples (1.7 g), spiked with 10 OPPs, were placed in a 4 mL sealed amber glass vial and heated at 60°C for 45 min. During this time, the OPP residues were extracted with a 50 μm/30 μm divinylbenzene (DVB)/carboxen (CAR)/plasma desorption mass spectroscopy polydimethylsiloxane (PDMS) fiber from the headspace above the sample. The fiber was then removed and injected into the GC injection port at 250°C for desorption of the extracted chemicals. The multiple residues were identified by a GC mass spectrometer detector (GC-MSD) and quantified with a GC flame photometric detector (GC-FPD). Seven spiked levels of 10 OPPs on wheat were analyzed. The GC responses for a 50 μm/30 μm DVB/CAR/PDMS fiber increased with increasing spiking levels, yielding significant (R(2) > 0.98) linear regressions. The lowest LODs of the multiple pesticide standards were evaluated under the conditions of the validation study in a range of levels from 0 (control) to 100 ng of pesticide residue per g of wheat that separated on a low-polar GC capillary column (Agilent DB-35UI). The results of the HS-SPME method were compared with the QuEChERS AOAC 2007.01 method and they showed several advantages over the latter. These included improved sensitivity, selectivity, and simplicity.

  15. Redefining Agricultural Residues as Bioenergy Feedstocks

    PubMed Central

    Caicedo, Marlon; Barros, Jaime; Ordás, Bernardo

    2016-01-01

    The use of plant biomass is a sustainable alternative to the reduction of CO2 emissions. Agricultural residues are interesting bioenergy feedstocks because they do not compete with food and add extra value to the crop, which might help to manage these residues in many regions. Breeding crops for dual production of food and bioenergy has been reported previously, but the ideal plant features are different when lignocellulosic residues are burnt for heat or electricity, or fermented for biofuel production. Stover moisture is one of the most important traits in the management of agricultural waste for bioenergy production which can be modified by genetic improvement. A delayed leaf senescence or the stay-green characteristic contributes to higher grain and biomass yield in standard, low nutrient, and drought-prone environments. In addition, the stay-green trait could be favorable for the development of dual purpose varieties because this trait could be associated with a reduction in biomass losses and lodging. On the other hand, the stay-green trait could be detrimental for the management of agricultural waste if it is associated with higher stover moisture at harvest, although this hypothesis has been insufficiently tested. In this paper, a review of traits relevant to the development of dual purpose varieties is presented with particular emphasis on stover moisture and stay-green, because less attention has been paid to these important traits in the literature. The possibility of developing new varieties for combined production is discussed from a breeding perspective. PMID:28773750

  16. Farmer's Incentives for Adoption of Recommended Farm Practices in Wheat Crop in Aligarh Intensive Agricultural District, India.

    ERIC Educational Resources Information Center

    Vidyarthy, Gopal Saran

    This study was undertaken to identify farmer incentives that led them to adopt wheat crop practices in Aligarh Intensive Agricultural District Program: the association between the farmer's characteristics and adoption groups; the incentives that lead the farmers to adopt recommended wheat crop practices; relationship between identified incentives…

  17. Dry fermentation of agricultural residues

    NASA Astrophysics Data System (ADS)

    Jewell, W. J.; Chandler, J. A.; Dellorto, S.; Fanfoni, K. J.; Fast, S.; Jackson, D.; Kabrick, R. M.

    1981-09-01

    A dry fermentation process is discussed which converts agricultural residues to methane, using the residues in their as produced state. The process appears to simplify and enhance the possibilities for using crop residues as an energy source. The major process variables investigated include temperature, the amount and type of inoculum, buffer requirements, compaction, and pretreatment to control the initial available organic components that create pH problems. A pilot-scale reactor operation on corn stover at a temperature of 550 C, with 25 percent initial total solids, a seed-to-feed ratio of 2.5 percent, and a buffer-to-feed ratio of 8 percent achieved 33 percent total volatile solids destruction in 60 days. Volumetric biogas yields from this unit were greater than 1 vol/vol day for 12 days, and greater than 0.5 vol/vol day for 32 days, at a substrate density of 169 kg/m (3).

  18. Ancient DNA from 8400 Year-Old Çatalhöyük Wheat: Implications for the Origin of Neolithic Agriculture

    PubMed Central

    Bilgic, Hatice; Hakki, Erdogan E.; Akkaya, Mahinur S.

    2016-01-01

    Human history was transformed with the advent of agriculture in the Fertile Crescent with wheat as one of the founding crops. Although the Fertile Crescent is renowned as the center of wheat domestication, archaeological studies have shown the crucial involvement of Çatalhöyük in this process. This site first gained attention during the 1961–65 excavations due to the recovery of primitive hexaploid wheat. However, despite the seeds being well preserved, a detailed archaeobotanical description of the samples is missing. In this article, we report on the DNA isolation, amplification and sequencing of ancient DNA of charred wheat grains from Çatalhöyük and other Turkish archaeological sites and the comparison of these wheat grains with contemporary wheat species including T. monococcum, T. dicoccum, T. dicoccoides, T. durum and T. aestivum at HMW glutenin protein loci. These ancient samples represent the oldest wheat sample sequenced to date and the first ancient wheat sample from the Middle East. Remarkably, the sequence analysis of the short DNA fragments preserved in seeds that are approximately 8400 years old showed that the Çatalhöyük wheat stock contained hexaploid wheat, which is similar to contemporary hexaploid wheat species including both naked (T. aestivum) and hulled (T. spelta) wheat. This suggests an early transitory state of hexaploid wheat agriculture from the Fertile Crescent towards Europe spanning present-day Turkey. PMID:26998604

  19. Agricultural Residues and Other Carbon-Based Resources as Feedstocks for Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Yong

    Agricultural residues are generally considered as renewable, economical and environmental-friendly sources to produce carbon-based nanomaterials with many advanced applications. Agricultural residues and by-products generated from the agricultural industry, such as distiller's dried grains with solubles (DDGS), are produced every year on a large scale but lack of proper utilization. As a result, seeking high-value applications based on agricultural residues is essential for the promotion of the economy in agricultural producing states like North Dakota, USA. With the fast development of nanotechnology in recent years, carbon-based nanomaterials have attracted intense research interests in the fields of chemistry, materials science and condensed matter physics due to many unique properties (e.g., chemical and thermal stability, electrical conductivity, mechanical strength, etc.). The development of low-cost nanomaterials using agricultural residues as feedstocks can be a promising route for the sustainable development of the agricultural industry. In this dissertation, the preparation of carbon-based materials from agricultural residues is explored. Many advanced applications are investigated, especially in the field of energy storage devices. The development of porous activate carbons were investigated in detail, and their application as electrode materials of supercapacitors was demonstrated. Hydrothermal carbonization of biomass to produce carbonaceous materials was also covered in this dissertation. In addition to traditional raw materials such as cellulose produced from wood industry, novel material sources such as bacterial cellulose were used to prepare nanocomposites that can be used for the electrodes of supercapacitors. This dissertation contributes to the sustainable development of the agricultural industry in North Dakota.

  20. Effect of the Relationship between Agricultural Extension Agents and Wheat Farmers in Medina Region, Saudi Arabia, on the Adoption of Appropriate Wheat Production Practices. A Summary Report of Research. Department Information Bulletin 91-3.

    ERIC Educational Resources Information Center

    Bakri, Mohammad Saleh

    The relationship between agricultural extension agents and wheat farmers in the Medina region, Saudi Arabia, was analyzed, based on each group's perception of the relationship. Participants were 73 randomly selected wheat farmers and 31 of 34 agricultural extension agents working in the region during spring 1990. Farmers were interviewed, and…

  1. Partitioning Residue-derived and Residue-induced Emissions of N2O Using 15N-labelled Crop Residues

    NASA Astrophysics Data System (ADS)

    Farrell, R. E.; Carverhill, J.; Lemke, R.; Knight, J. D.

    2014-12-01

    Estimates of N2O emissions in Canada indicate that 17% of all agriculture-based emissions are associated with the decomposition of crop residues. However, research specific to the western Canadian prairies (including Saskatchewan) has shown that the N2O emission factor for N sources in this region typically ranges between 0.2 and 0.6%, which is well below the current IPCC default emission factor of 1.0%. Thus, it stands to reason that emissions from crop residues should also be lower than those calculated using the current IPCC emission factor. Current data indicates that residue decomposition, N mineralization and N2O production are affected by a number of factors such as C:N ratio and chemical composition of the residue, soil type, and soil water content; thus, a bench-scale incubation study was conducted to examine the effects of soil type and water content on N2O emissions associated with the decomposition of different crop residues. The study was carried out using soils from the Black, Dark Brown, Brown, and Gray soil zones and was conducted at both 50% and 70% water-filled pore space (WFPS); the soils were amended with 15N-labeled residues of wheat, pea, canola, and flax, or with an equivalent amount of 15N-labeled urea; 15N2O production was monitored using a Picarro G5101-i isotopic N2O analyzer. Crop residue additions to the soils resulted in both direct and indirect emissions of N2O, with residue derived emissions (RDE; measured as 15N2O) generally exceeding residue-induced emissions (RIE) at 50% WFPS—with RDEs ranging from 42% to 88% (mean = 58%) of the total N2O. Conversely, at 70% WFPS, RDEs were generally lower than RIEs—ranging from 21% to 83% (mean = 48%). Whereas both water content and soil type had an impact on N2O production, there was a clear and consistent trend in the emission factors for the residues; i.e., emissions were always greatest for the canola residue and lowest for the wheat residue and urea fertilizer; and intermediate for pea

  2. Bioprocessing of wheat and paddy straw for their nutritional up-gradation.

    PubMed

    Sharma, Rakesh Kumar; Arora, Daljit Singh

    2014-07-01

    Solid-state bioprocessing of agricultural residues seems to be an emerging and effective method for the production of high quality animal feed. Seven strains of white-rot fungi were selected to degrade wheat and paddy straw (PS) under solid-state conditions. Degradation of different components, i.e., hemicellulose, cellulose and lignin was evaluated along with nutritional parameters including; in vitro digestibility, crude protein, amino acids, total phenolic contents (TPC) etc. Effect of nitrogen-rich supplements on degradation of lignocellulosics was evaluated using two best selected fungal strains (Phlebia brevispora and Phlebia floridensis). The best selected conditions were used to upscale the process up to 200 g batches of wheat and PS. Lignin was selectively degraded up to 30 % with a limited loss of 11-12 % in total organic matter. Finally, the degraded agro-residues demonstrated 50-62 % enhancement in their digestibility. Two-threefold enhancement in other nutritional quality (amino acids, TPCs and antioxidant activity) fortifies the process. Thus the method is quite helpful to design an effective solid-state fermentation system to improve the nutritive quality of agricultural residues by simultaneous production of lignocellulolytic enzyme production and antioxidants.

  3. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture

    PubMed Central

    Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  4. Mycotoxin and fungicide residues in wheat grains from fungicide-treated plants measured by a validated LC-MS method.

    PubMed

    da Luz, Suzane Rickes; Pazdiora, Paulo Cesar; Dallagnol, Leandro José; Dors, Giniani Carla; Chaves, Fábio Clasen

    2017-04-01

    Wheat (Triticum aestivum) is an annual crop, cultivated in the winter and spring and susceptible to several pathogens, especially fungi, which are managed with fungicides. It is also one of the most consumed cereals, and can be contaminated by mycotoxins and fungicides. The objective of this study was to validate an analytical method by LC-MS for simultaneous determination of mycotoxins and fungicide residues in wheat grains susceptible to fusarium head blight treated with fungicides, and to evaluate the relationship between fungicide application and mycotoxin production. All parameters of the validated analytical method were within AOAC and ANVISA limits. Deoxynivalenol was the prevalent mycotoxin in wheat grain and epoxiconazole was the fungicide residue found in the highest concentration. All fungicidal treatments induced an increase in AFB2 production when compared to the control (without application). AFB1 and deoxynivalenol, on the contrary, were reduced in all fungicide treatments compared to the control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Simultaneous determination of pesticide residues in agricultural products by LC-MS/MS].

    PubMed

    Watanabe, Minae; Ueno, Eiji; Inoue, Tomomi; Ohno, Haruka; Ikai, Yoshitomo; Morishita, Toshio; Oshima, Harumi; Hayashi, Rumiko

    2013-01-01

    A method for the simultaneous determination of multiple pesticide residues in agricultural products was developed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The sample was extracted with acetonitrile. Co-extractives were removed by GPC/graphitized carbon column SPE, and silica gel/PSA cartridge column SPE. Pesticides in the test solution were determined by LC-MS/MS using scheduled MRM. Recoveries of 124 pesticides from spinach, brown rice, soybean, orange and tomato were tested at the level of 0.1 µg/g, and those of 121 pesticides ranged from 70 to 120% (RSD≤15%). Pesticide residues in 239 agricultural products were investigated by this method, and residues of 49 pesticides were detected in 98 agricultural products.

  6. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    PubMed

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.

  7. Major quality trait analysis and QTL detection in hexaploid wheat in humid rain-fed agriculture.

    PubMed

    Li, H M; Tang, Z X; Zhang, H Q; Yan, B J; Ren, Z L

    2013-05-21

    Humid rain-fed agriculture is a special environment for wheat (Triticum aestivum) culture that tends to negatively affect wheat yield and quality. To identify quality characters of wheat in a humid environment, we conducted quality analysis and quantitative trait loci (QTL) detection in a recombinant inbred line whose parent had a high level of quality for several years. We found that high-quality wheat had less gluten content and lower protein content. Apparently, wheat quality and associated quantity traits were in a dynamic state of equilibrium. We detected 83 QTL for 10 wheat quality traits in this recombinant inbred line population. Nine QTL were detected in both evaluation years; Q.DT.scau-2A, linked to Xwmc522-2A, was detected at the same genetic location in both years. Other QTL for different traits were detected simultaneously in more than one location. Consequently, there appeared to be pleiotropic genes that control wheat quality. Based on previous studies and our research on QTL analysis of grain protein content, we conclude that there must be one or more genes for grain protein content on chromosome 6B, whose expression was little affected by environment. We constructed a consensus map and projected the QTL on it. It was useful for choosing optimal markers for marker-assisted breeding and map-based cloning.

  8. Liquid N and S fertilizer solutions effects on the mass, chemical, and shear strength properties of winter wheat (Triticum aestuvum) residue

    USDA-ARS?s Scientific Manuscript database

    To improve stand establishment in high crop residue situations, the utility of fertilizer to stimulate microbial decomposition of residue has been debated. Field experiments assessed winter wheat (Triticum aestivum) straw decomposition under different fertilizer rates and application timings at thre...

  9. Effect of the Agricultural Biomass Burning on the Ambient Air Quality of Lumbini

    NASA Astrophysics Data System (ADS)

    Mehra, M.; Panday, A. K.; Praveen, P. S.; Bhujel, A.; Pokhrel, S.; Ram, K.

    2017-12-01

    The emissions from increasing anthropogenic activities has led to degradation in ambient air quality of Lumbini (UNESCO world heritage site) and its surrounding environments. The presence of high concentrations of air pollutants is of concern because of its implications for public health, atmospheric visibility, chemistry, crop yield, weather and climate on a local to regional scale. The study region experiences wide-spread on-field agricultural residue burning, particularly in the months of November (paddy residue burning) and April (wheat residue burning). In an attempt to study the impact of emissions from post-harvest burning of paddy and wheat residue in Nepal, the International Centre for Integrated Mountain Development, in collaboration with the Government of Nepal's Department of Environment and the Lumbini International Research Institute, established the Lumbini Air Quality Observatory (LAQO) in May 2016 for continuous measurement of Black carbon (BC), particulate matter (PM10, PM2.5 & PM1), as well as concentration of gaseous pollutant and meteorological parameters. Here we present results of the surface observations from LAQO for the months with intensified paddy and wheat open biomass burning during November 2016 and April 2017, respectively. The average concentrations of BC, PM2.5 and PM10 were 11.3±6.2 µg m-3, 96.7±48.9 µg m-3 and 132.3±59.1 µg m-3 respectively during the month of November 2016. On the other hand, the surface concentrations of BC, PM2.5 and PM10 were found to be 11.0±8.3 µg m-3, 45.0±35.0 µg m-3 and 114.0±96.1 µg m-3 during April 2017. A significant increase in the primary pollutant concentration was observed during both types of open agricultural burning periods. However, BC/PM2.5 ratio was almost higher by factor of two during paddy burning as compared to wheat residue burning. Source characteristics and the relative contribution of agricultural burning to PM concentrations at Lumbini are being computed based on

  10. The ripples of "The Big (agricultural) Bang": the spread of early wheat cultivation.

    PubMed

    Abbo, Shahal; Gopher, Avi; Peleg, Zvi; Saranga, Yehoshua; Fahima, Tzion; Salamini, Francesco; Lev-Yadun, Simcha

    2006-08-01

    Demographic expansion and (or) migrations leave their mark in the pattern of DNA polymorphisms of the respective populations. Likewise, the spread of cultural phenomena can be traced by dating archaeological finds and reconstructing their direction and pace. A similar course of events is likely to have taken place following the "Big Bang" of the agricultural spread in the Neolithic Near East from its core area in southeastern Turkey. Thus far, no attempts have been made to track the movement of the founder genetic stocks of the first crop plants from their core area based on the genetic structure of living plants. In this minireview, we re-interpret recent wheat DNA polymorphism data to detect the genetic ripples left by the early wave of advance of Neolithic wheat farming from its core area. This methodology may help to suggest a model charting the spread of the first farming phase prior to the emergence of truly domesticated wheat types (and other such crops), thereby increasing our resolution power in studying this revolutionary period of human cultural, demographic, and social evolution.

  11. Algal derivatives may protect crops from residual soil salinity: a case study on a tomato-wheat rotation

    NASA Astrophysics Data System (ADS)

    Di Stasio, Emilio; Raimondi, Giampaolo; Van Oosten, Michael; Maggio, Albino

    2017-04-01

    In coastal areas, summer crops are frequently irrigated with saline water. As a consequence, salts may accumulate in the root zone with detrimental effects on the following winter crops if the rainfall is insufficient to leach them. Two field experiments were performed in 2015-2016 on a field used for tomato (summer) wheat (winter) rotation cropping. The spring-summer experiment was carried in order to evaluate the effect of two algal derivatives (Ascophyllum nodosum), Rygex and Super Fifty, on a tomato crop exposed to increasing salinity and reduced nutrient availability. In the autumn-winter experiment we investigated the effect of residual salts from the previous summer irrigations on plant growth and yield of wheat treated with the same two algal extracts. The salt treatment for the irrigated summer crop was 80 mM NaCl plus a non-salinized control. The nutrient regimes were 100% and 50% of the tomato nutritional requirements. With both the seaweeds applications the salt stressed plants were demonstrated improved Relative Water Content and water potential. Nevertheless the total fresh biomass and the fruit fresh weight were enhanced only in the non salinized controls. Application of algal derivatives increased the total fresh weight over controls in the non salinized plants. The seaweed treatments enhanced the fruit fresh weight with an increase of 30% and 46% for Rygex and Super Fifty, respectively. Preliminary analysis of the ion profile in roots, shoots and leaves, indicates that the seaweed extracts may enhance the assimilation of ions in fruits affecting their nutritional value. The residual salinity of the summer experiment reduced the wheat biomass production. However, the seaweed extracts treatments improved growth under salinity. In the salt stressed plants the Super Fifty application increased shoots and ears by 34% and 23% respectively, compared to the non treated plants. Plant height was increased by application of seaweeds extracts for both the

  12. Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco

    NASA Astrophysics Data System (ADS)

    Ibno Namr, Khalid; Mrabet, Rachid

    2004-06-01

    Morocco's semi-arid lands are characterized by unique challenges. The most important obstacles to the development of durable agriculture are (1) limited and unpredictable supply of soil moisture and (2) low soil quality. Intensive use of soil throughout history has led to depletion in soil quality, leading in return to reduced yields because of the consequent reduced organic matter. Recognizing the need to recover soil quality and production decline, INRA scientists began, in the early 1980s, research on the effects of crop rotations, tillage and residue management on the productivity and quality of cropped soils. The present study concerns the short-term effect of rotation, tillage and residue management on selected quality indices of a calcixeroll (organic matter, nitrogen, particulate organic carbon (Cpom), particulate organic nitrogen (Npom) and pH). Hence, three rotations (wheat-wheat, WW; fallow-wheat, FW; and fallow-wheat-barley, FWB), two tillage systems (conventional offset disking, CT and no-tillage, NT), and three levels of residue in the NT system (NT 0 = no-residue cover, NT 50 = half surface residue cover, NT 100 = full surface residue cover) were selected. Three surface horizons were sampled (0-2.5, 2.5-7 and 7-20 cm). The study results showed an improvement of measured soil chemical properties under NT compared to CT, at the surface layer. No-tillage system helped sequestration of carbon and nitrogen, build-up of particulate organic carbon and nitrogen and sensible reduction of pH only at the surface layer. Continuous wheat permitted a slight improvement of soil quality, mainly at the 0-2.5 cm depth. Effects of rotation, tillage and residue level were reduced with depth of measurements.

  13. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    PubMed

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. OPEN BURNING OF AGRICULTURAL BIOMASS: PHYSICAL AND CHEMICAL PROPERTIES OF PARTICLE-PHASE EMISSIONS

    EPA Science Inventory

    This effort presents the physical and chemical characterization of PM2.5 emissions from simulated agricultural fires of surface residuals of two major grain crops, rice (Oryza sativa) and wheat (Triticum aestivum L). The O2 levels and CO/CO

  15. Wheat for Kids! [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…

  16. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practicesmore » [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].« less

  17. Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions.

    PubMed

    Zahoor; Tu, Yuanyuan; Wang, Lingqiang; Xia, Tao; Sun, Dan; Zhou, Shiguang; Wang, Yanting; Li, Ying; Zhang, Heping; Zhang, Tong; Madadi, Meysam; Peng, Liangcai

    2017-11-01

    In this study, a combined pretreatment was performed in four wheat accessions using steam explosion followed with different concentrations of H 2 SO 4 or NaOH, leading to increased hexoses yields by 3-6 folds from enzymatic hydrolysis. Further co-supplied with 1% Tween-80, Talq90 and Talq16 accessions exhibited an almost complete enzymatic saccharification of steam-exploded (SE) residues after 0.5% H 2 SO 4 or 1% NaOH pretreatment, with the highest bioethanol yields at 18.5%-19.4%, compared with previous reports about wheat bioethanol yields at 11%-17% obtained under relatively strong pretreatment conditions. Furthermore, chemical analysis indicated that much enhanced saccharification in Talq90 and Talq16 may be partially due to their relatively low cellulose CrI and DP values and high hemicellulose Ara and H-monomer levels in raw materials and SE residues. Hence, this study has not only demonstrated a mild pretreatment technology for a complete saccharification, but it has also obtained the high ethanol production in desirable wheat accessions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region

    PubMed Central

    Zhou, Tao; Pan, Jianjun; Zhang, Peiyu; Wei, Shanbao; Han, Tao

    2017-01-01

    Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure–up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data. PMID:28587066

  19. An optical instrument to test pesticide residues in agricultural products

    NASA Astrophysics Data System (ADS)

    Qiu, Zhengjun; Zheng, Wenzhong; Fang, Hui; He, Yong

    2005-10-01

    Pesticide is one of the indispensability materials in modern agricultural management, however the excessive use of pesticides has threatened the ecological environment and people's health. This paper introduced an optical instrument to test the pesticide residues in agricultural products based on the inhibition rate of organophosphates against acrtyl-cholinesterase (AchE). The instrument consists mainly of a solid light source with 410nm wavelength, a sampling container, an optical sensor, a temperature sensor, and a MCU based data acquisition board. The light illuminated through the liquid in the sampling container, and the absorptivity was determined by the amount of the pesticide residues in the liquid. This paper involves the design of optical testing system, the data acquisition and calibration of the optical sensor, the design of microcontroller-based electrical board. Tests were done to reveal the affection of temperature and reacting time on AchE, to establish the relationship between the amount of methamidophos and dichlorvos with AchE. The results showed that the absorption rate was related to the pesticide residues and it could be concluded that the pesticide residues exceeded the normal level when the inhibition rate was over 50 percent. The instrument has potential application in vegetable markets.

  20. Efficiency Improvement of Some Agricultural Residue Modified Materials for Textile Dyes Absorption

    NASA Astrophysics Data System (ADS)

    Boonsong, P.; Paksamut, J.

    2018-03-01

    In this work, the adsorption efficiency was investigated of some agricultural residue modified materials as natural bio-adsorbents which were rice straw (Oryza sativa L.) and pineapple leaves (Ananas comosus (L.) Merr.) for the removal of textile dyes. Reactive dyes were used in this research. The improvement procedure of agricultural residue materials properties were alkali-acid modification with sodium hydroxide solution and hydrochloric acid solution. Adsorption performance has been investigated using batch experiments. Investigated adsorption factors consisted of adsorbent dose, contact time, adsorbent materials and pH of solution. The results were found that rice straw had higher adsorption capacity than pineapple leaves. The increasing of adsorption capacity depends on adsorbent dose and contact time. Moreover, the optimum pH for dye adsorption was acidic range because lowering pH increased the positively charges on the adsorbent surface which could be attacked by negatively charge of acid dyes. The agricultural residue modified materials had significant dye removal efficiency which these adsorbents could be used for the treatment of textile effluent in industries.

  1. Spatial and temporal dynamics of agricultural residue resources in the last 30 years in China.

    PubMed

    Yang, Yanli; Zhang, Peidong; Yang, Xutong; Xu, Xiaoning

    2016-12-01

    The availability and distribution of biomass resources are important for the development of the bioenergy industry in a region. Biomass resources are abundant in China; however, the raw material is severely deficient, which makes the Chinese bioenergy industry an embarrassment and a contradiction. Unclear reserves and distribution and changing trends of biomass resources are the reason for this situation. A collection coefficient model of Chinese agricultural residue resources was established and the spatial and temporal pattern dynamics of agricultural residue resources in the last 30 years were analyzed. The results show that agricultural residue resources increased in stages from 1978 to 2011, including a rapid increase from 1978 to 1999, a significant fall from 2000 to 2004, and a slow increase from 2004 to 2011. Crops straw and livestock manure are the main ingredients of agricultural residue resources with proportions of 53-59% and 31-38%, respectively. However, the former has gradually decreased, while the latter is increasing. This mainly resulted from the strategic reorganization of the Chinese agriculture structure and the rapid development of large-scale livestock breeding and agricultural mechanization. Large regional differences existed in Chinese agricultural residue resources, and three distribution types formed, including resource-rich areas in North China, Northeast and Inner Mongolia, resource-limited areas in Central and Southwest China, and resource-poor areas along Northwest and Southeast coasts. This pattern is a reverse of the distributions of climatic conditions, water resources, economic development, human resources, and technological levels. Finally, it can be predicted that livestock manure and biomass conversion technology at low temperature will play increasingly significant roles in bioenergy industry development. © The Author(s) 2016.

  2. Crop residue stabilization and application to agricultural and degraded soils: A review.

    PubMed

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.

    PubMed

    Wang, Xun; Hu, Mian; Hu, Wanyong; Chen, Zhihua; Liu, Shiming; Hu, Zhiquan; Xiao, Bo

    2016-11-01

    Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Simultaneous Determination of Residue from 58 Pesticides in the Wheat Flour Consumed in Tehran, Iran by GC/MS

    PubMed Central

    Rezaei, Mohammad; Shariatifar, Nabi; Shoeibi, Shahram; Amir Ahmadi, Maryam; Jahed Khaniki, Gholamreza

    2017-01-01

    Food safety has a direct impact on human health and as such is a growing concern worldwide. Presence of harmful pesticide residue in food is a serious cause for concern among consumers so it is important to monitor levels of pesticides in foods. The aim of this study was simultaneous determination of concentrations of 58 pesticides in 40 wheat flour samples collected from Tehran market in January, 2014. The city under study (Tehran) was divided into five districts and samples were collected independently from each district and sourced from different bakeries (n=40). A gas chromatography-mass spectrometry single quadrupole selected ion monitoring «GC/MS-SQ-SIM» method was used to quantify residue of 58 pesticides in the wheat flour samples. Four of the 40 samples showed contamination with Malathion (2 samples: 50.96 ± 11.38 and 62.088 ± 11.38 ppb) and 2, 4-DDE (2 samples: 19.88±15.24 and 13.7 ± 15.24 ppb). that had levels below MRLs of these pesticides in Iran. Averages of recovery of pesticides at 6 concentration levels were in the range of 81.61-118.41%. The method was proven as repeatable with RSDr in the range of 6.5-29.45% for all concentration levels. The limit of quantification for 37 of the tested pesticides was calculated as 15 ppb and for the other 21 tested pesticides, the concentration was 25 ppb. In summary, results of these tests suggested that the wheat flour consumed in Tehran, was within safety limits in terms of levels of pesticide residues. PMID:29201093

  5. Eat Wheat!

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  6. Effects of Different Forms of Selenium Fertilizers on Se Accumulation, Distribution, and Residual Effect in Winter Wheat-Summer Maize Rotation System.

    PubMed

    Wang, Qi; Yu, Yao; Li, Jixiang; Wan, Yanan; Huang, Qingqing; Guo, Yanbin; Li, Huafen

    2017-02-15

    Foliar Se fertilizers were applied to investigate the effects of Se forms on Se accumulation and distribution in the wheat-maize rotation system and residual concentration of Se in subsequent crops. Sodium selenite, sodium selenate, selenomethionine, chemical nano-Se, humic acid + sodium selenite, and compound fertilizer + sodium selenite were applied once at the flowering stage of wheat (30 g ha -1 ) and at the bell stage of maize (60 g ha -1 ). Compared with the control treatment, foliar Se applications significant increased the grain Se concentration of wheat and maize by 0.02-0.31 and 0.07-1.09 mg kg -1 , respectively. Wheat and maize grain Se recoveries were 3.0-10.4 and 4.1-18.5%, respectively. However, Se concentrations in the grain of subsequent wheat and maize significantly decreased by 77.9 and 91.2%, respectively. The change of Se concentration in soil was a dynamic process with Se depletion after harvest of maize.

  7. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  8. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil.

    PubMed

    Garg, R N; Pathak, H; Das, D K; Tomar, R K

    2005-08-01

    This study explores the potential use of by-products of energy production, i.e., (i) flyash from coal-powered electricity generation and (ii) biogas slurry from agricultural waste treatment, as nutrient sources in agriculture. These residues are available in large amounts and their disposal is a major concern for the environment. As both residues contain considerable amounts of plant nutrients, their use as soil amendment may offer a promising win-win opportunity to improve crop production and, at the same time, preventing adverse environmental impacts of waste disposal. Effect of flyash and biogas slurry on soil physical properties and growth and yield of wheat (Triticum aestivum) was studied in a field experiment. Leaf area index, root length density and grain yield of wheat were higher in plots amended with flyash or biogas slurry compared to unamended plots. Both types of amendments reduced bulk density, and increased saturated hydraulic conductivity and moisture retention capacity of soil. The study showed that flyash and biogas slurry should be used as soil amendments for obtaining short-term and long-term benefits in terms of production increments and soil amelioration.

  9. Ghg and Aerosol Emission from Fire Pixel during Crop Residue Burning Under Rice and Wheat Cropping Systems in North-West India

    NASA Astrophysics Data System (ADS)

    Acharya, Prasenjit; Sreekesh, S.; Kulshrestha, Umesh

    2016-10-01

    Emission of smoke and aerosol from open field burning of crop residue is a long-standing subject matter of atmospheric pollution. In this study, we proposed a new approach of estimating fuel load in the fire pixels and corresponding emissions of selected GHGs and aerosols i.e. CO2, CO, NO2, SO2, and total particulate matter (TPM) due to burning of crop residue under rice and wheat cropping systems in Punjab in north-west India from 2002 to 2012. In contrasts to the conventional method that uses RPR ratio to estimate the biomass, fuel load in the fire pixels was estimated as a function of enhanced vegetation index (EVI). MODIS fire products were used to detect the fire pixels during harvesting seasons of rice and wheat. Based on the field measurements, fuel load in the fire pixels were modelled as a function of average EVI using second order polynomial regression. Average EVI for rice and wheat crops that were extracted through Fourier transformation were computed from MODIS time series 16 day EVI composites. About 23 % of net shown area (NSA) during rice and 11 % during wheat harvesting seasons are affected by field burning. The computed average fuel loads are 11.32 t/ha (±17.4) during rice and 10.89 t/ha (±8.7) during wheat harvesting seasons. Calculated average total emissions of CO2, CO, NO2, SO2 and TPM were 8108.41, 657.85, 8.10, 4.10, and 133.21 Gg during rice straw burning and 6896.85, 625.09, 1.42, 1.77, and 57.55 Gg during wheat burning. Comparison of estimated values shows better agreement with the previous concurrent estimations. The method, however, shows its efficiency parallel to the conventional method of estimation of fuel load and related pollutant emissions.

  10. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Muth, Jr.; Jared Abodeely; Richard Nelson

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice datamore » required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.« less

  11. Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment.

    PubMed

    Salihu, Aliyu; Abbas, Olagunju; Sallau, Abdullahi Balarabe; Alam, Md Zahangir

    2015-12-01

    Different agricultural residues were considered in this study for their ability to support cellulolytic enzyme production by Aspergillus niger. A total of eleven agricultural residues including finger millet hulls, sorghum hulls, soybean hulls, groundnut husk, banana peels, corn stalk, cassava peels, sugarcane bagasse, saw dust, rice straw and sheanut cake were subjected to three pretreatment (acid, alkali and oxidative) methods. All the residues supported the growth and production of cellulases by A. niger after 96 h of incubation. Maximum cellulase production was found in alkali-treated soybean hulls with CMCase, FPase and β-glucosidase yields of 9.91 ± 0.04, 6.20 ± 0.13 and 5.69 ± 0.29 U/g, respectively. Further studies in assessing the potential of soybean hulls are being considered to optimize the medium composition and process parameters for enhanced cellulase production.

  12. 7 CFR 407.17 - Group risk plan for wheat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Group risk plan for wheat. 407.17 Section 407.17..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.17 Group risk plan for wheat. The provisions of the Group Risk Plan for Wheat for the 2000 and succeeding crop years are as follows: 1...

  13. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for payment...

  14. Registration of 'Antero' Wheat

    USDA-ARS?s Scientific Manuscript database

    ’Antero’ (Reg. No. CV-XXXX, PI 667743) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2012 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Univ...

  15. 40 CFR 180.7 - Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural commodities or processed foods. 180.7 Section 180... proposing tolerances or exemptions for pesticide residues in or on raw agricultural commodities or processed...

  16. 40 CFR 180.7 - Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural commodities or processed foods. 180.7 Section 180... proposing tolerances or exemptions for pesticide residues in or on raw agricultural commodities or processed...

  17. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation.

    PubMed

    Talebnia, Farid; Karakashev, Dimitar; Angelidaki, Irini

    2010-07-01

    Wheat straw is an abundant agricultural residue with low commercial value. An attractive alternative is utilization of wheat straw for bioethanol production. However, production costs based on the current technology are still too high, preventing commercialization of the process. In recent years, progress has been made in developing more effective pretreatment and hydrolysis processes leading to higher yield of sugars. The focus of this paper is to review the most recent advances in pretreatment, hydrolysis and fermentation of wheat straw. Based on the type of pretreatment method applied, a sugar yield of 74-99.6% of maximum theoretical was achieved after enzymatic hydrolysis of wheat straw. Various bacteria, yeasts and fungi have been investigated with the ethanol yield ranging from 65% to 99% of theoretical value. So far, the best results with respect to ethanol yield, final ethanol concentration and productivity were obtained with the native non-adapted Saccharomyses cerevisiae. Some recombinant bacteria and yeasts have shown promising results and are being considered for commercial scale-up. Wheat straw biorefinery could be the near-term solution for clean, efficient and economically-feasible production of bioethanol as well as high value-added products. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    NASA Astrophysics Data System (ADS)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol

  19. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  20. An integrated assessment of the potential of agricultural and forestry residues for energy production in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ji; Zhang, Aiping; Lam, Shu Kee

    Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003-2007, is around 15519PJ in China, consisting of 10818PJ from agriculture residues (70%) and 4701PJ forestry residues (30%). We estimate that 12693PJ ofmore » the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347PJ), east China (2862PJ) and south-west China (2229PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380PJ by 2050 and 4108PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450ppm scenario, availability of biomass increases to 9002PJ (2050) and 11524PJ (2095), respectively. For the 450ppm scenario without CCS, 9183 (2050) and 11150PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world.« less

  1. Registration of 'Bill Brown' wheat

    USDA-ARS?s Scientific Manuscript database

    'Bill Brown’ (Reg. No. CV-133, PI 653260) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2007 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorad...

  2. Registration of 'Thunder CL' Wheat

    USDA-ARS?s Scientific Manuscript database

    'Thunder CL' (Reg. No. CV- , PI XXXXXX) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2008 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Uni...

  3. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR... the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  4. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR... the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  5. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR... the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  6. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR... the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  7. Viscoelastic properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic properties. Th...

  8. Viscoelastic properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic solid properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic propertie...

  9. Registration of 'Bill Brown' Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Bill Brown’ (Reg. No. CV-133, PI 653260) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2007 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorad...

  10. Registration of ‘Ripper’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Ripper’ (Reg. No. CV-1016, PI 644222) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2006 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado S...

  11. 7 CFR 782.17 - Wheat purchased for resale.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Wheat purchased for resale. 782.17 Section 782.17... § 782.17 Wheat purchased for resale. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of reselling the wheat. (b) The importer or...

  12. Screening of pesticide residues in soil and water samples from agricultural settings

    PubMed Central

    Akogbéto, Martin C; Djouaka, Rousseau F; Kindé-Gazard, Dorothée A

    2006-01-01

    Background The role of agricultural practices in the selection of insecticide resistance in malaria vectors has so far been hypothesized without clear evidence. Many mosquito species, Anopheles gambiae in particular, lay their eggs in breeding sites located around agricultural settings. There is a probability that, as a result of farming activities, insecticide residues may be found in soil and water, where they exercise a selection pressure on the larval stage of various populations of mosquitoes. To confirm this hypothesis, a study was conducted in the Republic of Benin to assess the environmental hazards which can be generated from massive use of pesticides in agricultural settings. Methods Lacking an HPLC machine for direct quantification of insecticide residues in samples, this investigation was performed using indirect bioassays focussed on the study of factors inhibiting the normal growth of mosquito larvae in breeding sites. The speed of development was monitored as well as the yield of rearing An. gambiae larvae in breeding sites reconstituted with water and soil samples collected in agricultural areas known to be under pesticide pressure. Two strains of An. gambiae were used in this indirect bioassay: the pyrethroid-susceptible Kisumu strain and the resistant Ladji strain. The key approach in this methodology is based on comparison of the growth of larvae in test and in control breeding sites, the test samples having been collected from two vegetable farms. Results Results obtained clearly show the presence of inhibiting factors on test samples. A normal growth of larvae was observed in control samples. In breeding sites simulated by using a few grams of soil samples from the two vegetable farms under constant insecticide treatments (test samples), a poor hatching rate of Anopheles eggs coupled with a retarded growth of larvae and a low yield of adult mosquitoes from hatched eggs, was noticed. Conclusion Toxic factors inhibiting the hatching of anopheles

  13. Degradation of Lignin in Agricultural Residues by locally Isolated Fungus Neurospora discreta.

    PubMed

    Pamidipati, Sirisha; Ahmed, Asma

    2017-04-01

    Locally isolated fungus, Neurospora discreta, was evaluated for its ability to degrade lignin in two agricultural residues: cocopeat and sugarcane bagasse with varying lignin concentrations and structures. Using Klason's lignin estimation, high-performance liquid chromatography, and UV-visible spectroscopy, we found that N. discreta was able to degrade up to twice as much lignin in sugarcane bagasse as the well-known white rot fungus Phanerochaete chrysosporium and produced nearly 1.5 times the amount of lignin degradation products in submerged culture. Based on this data, N. discreta is a promising alternative to white rot fungi for faster microbial pre-treatment of agricultural residues. This paper presents the lignin degrading capability of N. discreta for the first time and also discusses the difference in biodegradability of cocopeat and sugarcane bagasse as seen from the analysis carried out using Fourier transform infrared spectroscopy.

  14. Abiotic Stress Signaling in Wheat – An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat

    PubMed Central

    Abhinandan, Kumar; Skori, Logan; Stanic, Matija; Hickerson, Neil M. N.; Jamshed, Muhammad; Samuel, Marcus A.

    2018-01-01

    Rapid global warming directly impacts agricultural productivity and poses a major challenge to the present-day agriculture. Recent climate change models predict severe losses in crop production worldwide due to the changing environment, and in wheat, this can be as large as 42 Mt/°C rise in temperature. Although wheat occupies the largest total harvested area (38.8%) among the cereals including rice and maize, its total productivity remains the lowest. The major production losses in wheat are caused more by abiotic stresses such as drought, salinity, and high temperature than by biotic insults. Thus, understanding the effects of these stresses becomes indispensable for wheat improvement programs which have depended mainly on the genetic variations present in the wheat genome through conventional breeding. Notably, recent biotechnological breakthroughs in the understanding of gene functions and access to whole genome sequences have opened new avenues for crop improvement. Despite the availability of such resources in wheat, progress is still limited to the understanding of the stress signaling mechanisms using model plants such as Arabidopsis, rice and Brachypodium and not directly using wheat as the model organism. This review presents an inclusive overview of the phenotypic and physiological changes in wheat due to various abiotic stresses followed by the current state of knowledge on the identified mechanisms of perception and signal transduction in wheat. Specifically, this review provides an in-depth analysis of different hormonal interactions and signaling observed during abiotic stress signaling in wheat. PMID:29942321

  15. 40 CFR 180.314 - Triallate; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., tops 0.5 Pea, dry 0.2 Pea, field, hay 1.0 Pea, field, vines 0.5 Pea, succulent 0.2 Wheat, forage 0.5 Wheat, grain 0.05 Wheat, hay 1.0 Wheat, straw 1.0 (d) Indirect or inadvertent residues. [Reserved] [72...

  16. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Yang, Hong

    2015-01-01

    Isoproturon (IPU) is a herbicide widely used to prevent weeds in cereal production. Due to its extensive use in agriculture, residues of IPU are often detected in soils and crops. Overload of IPU to crops is associated with human health risks. Hence, there is an urgent need to develop an approach to mitigate its accumulation in crops. In this study, the IPU residues and its degradation products in wheat were characterized using ultra performance liquid chromatography-time of fight tandem-mass spectrometer/mass spectrometer (UPLC-TOF-MS/MS). Most detected IPU-derivatives were sugar-conjugated. Degradation and glycosylation of IPU-derivatives could be enhanced by applying salicylic acid (SA). While more sugar-conjugated IPU-derivatives were identified in wheat with SA application, lower levels of IPU were detected, indicating that SA is able to accelerate intracellular IPU catabolism. All structures of IPU-derivatives and sugar-conjugated products were characterized. Comparative data were provided with specific activities and gene expression of certain glucosyltransferases. A pathway with IPU degradation and glucosylation was discussed. Our work indicates that SA-accelerated degradation is practically useful for wheat crops growing in IPU-contaminated soils because such crops with SA application can potentially lower or minimize IPU accumulation in levels below the threshold for adverse effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Parasitism of the wheat stem sawfly (Hymenoptera: Cephidae) by Bracon cephi and B. liflogaster (Hymenoptera: Braconidae) in wheat fields bordering tilled and untilled fallow in Montana

    Treesearch

    J. B. Runyon; W. L. Morrill; D. K. Weaver; P. R. Miller

    2002-01-01

    We evaluated wheat stem sawfly, Cephus cinctus Norton, parasitism, infestation, and sawfly-cut stems in wheat fields bordering intensely tilled (no visible stubble residue), minimally tilled (>75% stubble residue visible), and untilled (chemical fallow, herbicide fallow management) summer fallow fields in north-central and south-central Montana....

  18. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor.

    PubMed

    Li, Chong; Gao, Shi; Yang, Xiaofeng; Lin, Carol Sze Ki

    2018-02-01

    In situ fibrous bed bioreactor (isFBB) for efficient succinic acid (SA) production by Yarrowia lipolytica was firstly developed in our former study. In this study, agricultural residues including wheat straw, corn stalk and sugarcane bagasse were investigated for the improvement of isFBB, and sugarcane bagasse was demonstrated to be the best immobilization material. With crude glycerol as the sole carbon source, optimization for isFBB batch fermentation was carried out. Under the optimal conditions of 20g sugarcane bagasse as immobilization material, 120gL -1 crude glycerol as carbon source and 4Lmin -1 of aeration rate, the resultant SA concentration was 53.6gL -1 with an average productivity of 1.45gL -1 h -1 and a SA yield of 0.45gg -1 . By feeding crude glycerol, SA titer up to 209.7gL -1 was obtained from fed batch fermentation, which was the highest value that ever reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy

  20. Space Weather Influence on the Earth wheat markets: past, present, and future.

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev

    We consider problem of a possible influence of unfavorable states of the space weather on agriculture market through chain of connections: "space weather"-"earth weather"-"agriculture crops"-"price reaction". We show that new manifestations of "space weather"-"earth weather" relations discovered in the last time allow to revise wide field of expected solar-terrestrial connections. In the previous works we proposed possible mechanisms of wheat market reaction in the form of price bursts on the specific unfavorable states of space weather. We show that implementation of considered "price reaction scenarios" is possible only for condition of simultaneous realization of several necessary conditions: high sensitivity of local earth weather in selected region to space weather; state of "high risk agriculture" in selected agriculture zone; high sensitivity of agricultural market to possible deficit of supply. Results of previous works (I, II) included application of this approach to wheat market in Medieval England and to modern USA durum market showed that real connection between wheat price bursts and space weather state is observed with high confidence level. The aim of present work is answer on the question, why wheat markets in one region are sensitive to space weather factor, while another regional wheat markets demonstrate absolute indifferent reaction on this factor. For this aim we consider distribution of sensitivity of wheat markets in Europe to space weather as function of localization in different climatic zones. We analyze giant database of 95 European wheat markets from 14 countries during about 600-year period (1260-1912). We show that observed sensitivity of wheat market to space weather effects controlled, first of all, by type of predominant climate in different zones of agriculture. Wheat markets in the North and part of Central Europe (England, Iceland, Holland) shows reliable sensitivity to space weather in minimum states of solar activity with low

  1. 7 CFR 782.18 - Wheat purchased for export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Wheat purchased for export. 782.18 Section 782.18... § 782.18 Wheat purchased for export. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of export to a foreign country or...

  2. The viscoelastic properties of the protein-rich materials from the fermented hard wheat, soft wheat and barley flours

    USDA-ARS?s Scientific Manuscript database

    The linear and non-linear rheological properties of the suspensions for the hard red spring wheat (HRS) flour, soft wheat (Pastry) flour, barley flour, as well as the remain residues of HRS flour, Pastry flour, and barley flour after fermentation were investigated. The linear and non-linear rheologi...

  3. Representative Agricultural Pathways and Climate Impact Assessment for Pacific Northwest Agricultural Systems

    NASA Astrophysics Data System (ADS)

    MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.

    2013-12-01

    Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.

  4. Identification of residues of sulfosulfuron and its metabolites in subsoil-dissipation kinetics and factors influencing the stability and degradation of residues from topsoil to subsoil under predominant cropping conditions.

    PubMed

    Atmakuru, Ramesh; Perumal Elumalai, Thirugnanam; Sivanandam, Sathiyanarayanan

    2007-07-01

    Long term stability of sulfosulfuron was investigated in subsoil under the natural wheat cropping conditions. Experiments were conducted by applying a commercial formulation of sulfosulfuron on soil at 50 g/ha and 100 g/ha. To understand the factors influencing the persistence of residues two different experiments were conducted. In one experiment wheat crop was cultivated once at the beginning of the two years study period and subsequently the plots were kept undisturbed for the remaining period. In another experiment cultivation of subsequent crops were continued during the study period. In both the cases sulfosulfuron was applied only once at the beginning of the study. Representative soil samples were collected from the depths viz., 0-5, 15, 30, 45, 60 and 90 cm on different pre determined sampling occasions 50, 100, 200, 300, 400, 500 and 600 days after the application of the herbicide. The collected soil samples were analyzed for the residues of sulfosulfuron. Under the influence of continuous cropping conditions residues of sulfosulfuron were found to be relatively low when compared with the soil samples collected from the agriculture plots maintained without any cultivation. The residues detected are in the range 0.001 to 0.017 microg/g. Samples collected from the depth, at 30 to 45 cm showed higher residual concentrations. Soil samples were also showed the presence of break down products. The data has been confirmed by LC-MS/MS. The relation between residue content of sulfosulfuron and the factors contributing the stability of herbicide concentration were also studied.

  5. Registration of 'Sunshine' hard white winter wheat

    USDA-ARS?s Scientific Manuscript database

    ’Sunshine’ (Reg. No. CV-XXXX, PI 674741) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2014 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Un...

  6. Monitoring changes in soil organic carbon pools, nitrogen, phosphorus, and sulfur under different agricultural management practices in the tropics.

    PubMed

    Verma, Bibhash C; Datta, Siba Prasad; Rattan, Raj K; Singh, Anil K

    2010-12-01

    Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining overall quality of environment as soil contains a significant part of global carbon stock. Hence, we attempted to assess the influence of different tillage and nutrient management practices on various stabilized and active soil organic carbon pools, and their contribution to the extractable nitrogen phosphorus and sulfur. Our study confined to the assessment of impact of agricultural management practices on the soil organic carbon pools and extractable nutrients under three important cropping systems, viz. soybean-wheat, maize-wheat, and rice-wheat. Results indicated that there was marginal improvement in Walkley and Black content in soil under integrated and organic nutrient management treatments in soybean-wheat, maize-wheat, and rice-wheat after completion of four cropping cycles. Improvement in stabilized pools of soil organic carbon (SOC) was not proportional to the applied amount of organic manures. While, labile pools of SOC were increased with the increase in amount of added manures. Apparently, green manure (Sesbania) was more effective in enhancing the lability of SOC as compared to farmyard manure and crop residues. The KMnO(4)-oxidizable SOC proved to be more sensitive and consistent as an index of labile pool of SOC compared to microbial biomass carbon. Under different cropping sequences, labile fractions of soil organic carbon exerted consistent positive effect on the extractable nitrogen, phosphorus, and sulfur in soil.

  7. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    PubMed

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  8. 40 CFR 180.7 - Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exemptions for pesticide residues in or on raw agricultural commodities or processed foods. 180.7 Section 180.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Procedural Regulations § 180.7 Petitions...

  9. 40 CFR 180.7 - Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exemptions for pesticide residues in or on raw agricultural commodities or processed foods. 180.7 Section 180.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Procedural Regulations § 180.7 Petitions...

  10. 40 CFR 180.7 - Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exemptions for pesticide residues in or on raw agricultural commodities or processed foods. 180.7 Section 180.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Procedural Regulations § 180.7 Petitions...

  11. The impact of Septoria tritici Blotch disease on wheat: An EU perspective.

    PubMed

    Fones, Helen; Gurr, Sarah

    2015-06-01

    Zymoseptoria tritici is the causal agent of one of the European Union's most devastating foliar diseases of wheat: Septoria tritici Blotch (STB). It is also a notable pathogen of wheat grown in temperate climates throughout the world. In this commentary, we highlight the importance of STB on wheat in the EU. To better understand STB, it is necessary to consider the host crop, the fungal pathogen and their shared environment. Here, we consider the fungus per se and its interaction with its host and then focus on a more agricultural overview of the impact STB on wheat. We consider the climatic and weather factors which influence its spread and severity, allude to the agricultural practices which may mitigate or enhance its impact on crop yields, and evaluate the economic importance of wheat as a food and animal feed crop in the UK and EU. Finally, we estimate the cost of STB disease to EU agriculture. Copyright © 2015. Published by Elsevier Inc.

  12. The impact of Septoria tritici Blotch disease on wheat: An EU perspective

    PubMed Central

    Fones, Helen; Gurr, Sarah

    2015-01-01

    Zymoseptoria tritici is the causal agent of one of the European Union’s most devastating foliar diseases of wheat: Septoria tritici Blotch (STB). It is also a notable pathogen of wheat grown in temperate climates throughout the world. In this commentary, we highlight the importance of STB on wheat in the EU. To better understand STB, it is necessary to consider the host crop, the fungal pathogen and their shared environment. Here, we consider the fungus per se and its interaction with its host and then focus on a more agricultural overview of the impact STB on wheat. We consider the climatic and weather factors which influence its spread and severity, allude to the agricultural practices which may mitigate or enhance its impact on crop yields, and evaluate the economic importance of wheat as a food and animal feed crop in the UK and EU. Finally, we estimate the cost of STB disease to EU agriculture. PMID:26092782

  13. The Impact of Post Harvest Agricultural Crop Residue Fires on Volatile Organic Compounds and Formation of Secondary Air Pollutants in the N.W. Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Chandra, P.; Kumar, V.; Sarkar, C.

    2015-12-01

    The N.W. Indo-Gangetic Plain (IGP) is an agriculturally and demographically important region of the world. Every year during the post harvest months of April-May and October-November, large scale open burning of wheat straw and paddy straw occurs in the region impairing the regional air quality and resulting in air pollution episodes. Here, using online in-situ measurements from the IISER Mohali Atmospheric Chemistry Facility (Sinha et al., Atmos Chem Phys, 2014), which is located at a regionally representative suburban site in the agricultural state of Punjab, India, we investigated the effects of this activity on gas phase chemistry. The online data pertaining to the pre harvest and post harvest paddy residue fires in 2012, 2013 and 2014 were analyzed to understand the effect of this anthropogenic activity on atmospheric chemistry and regional air quality with respect to health relevant VOCs such as benzenoids and isocyanic acid and trace gases such as ozone and carbon monoxide. These compounds showed marked increases (factor of 2-3 times higher) in their concentrations which correlated with the biomass combustion tracers such as acetonitrile. Emissions from the paddy residue fires did not result in significant enhancement of ambient ozone in 2012 but instead sustained hourly daytime ozone concentrations at ~ 50 ppb during the late post monsoon season, despite decreases in solar radiation and temperature. Results of such massive perturbations to ambient chemical composition, reactivity and formation of secondary pollutants and its implications for human health will be presented in this paper.

  14. Development of an enzyme-linked immunosorbent assay for residue analysis of the insecticide emamectin benzoate in agricultural products.

    PubMed

    Kondo, Mika; Yamashita, Hiroshi; Uchigashima, Mikiko; Kono, Takeshi; Takemoto, Toshihide; Fujita, Masahiro; Saka, Machiko; Iwasa, Seiji; Ito, Shigekazu; Miyake, Shiro

    2009-01-28

    A direct competitive enzyme-linked immunosorbent assay (dc-ELISA) for the analysis of emamectin residues in agricultural products was developed using a prepared mouse monoclonal antibody. The working range was 0.3-3.0 ng/mL, and the 50% inhibition concentration (IC(50)) was 1.0 ng/mL. The assay was sufficiently sensitive for analysis of the maximum residue limits in agricultural products in Japan (>0.1 microg/g). Emamectin residues contain the following metabolites: the 4''-epi-amino analogue, the 4''-epi-(N-formyl)amino analogue, the 4''-epi-(N-formyl-N-methyl)amino analogue, and the 8,9-Z isomer. The dc-ELISA reacted with these compounds at ratios of 113, 55, 38, and 9.1% of the IC(50) value of emamectin benzoate. Seven kinds of vegetables were spiked with emamectin benzoate at concentrations of 15-300 ng/g, and the recoveries were 91-117% in the dc-ELISA. The dc-ELISA results agreed reasonably well with results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using spiked samples and actual (incurred) samples. The results indicate that the dc-ELISA was useful for the analysis of emamectin benzoate residues in agricultural products.

  15. Comparative degradation of [14C]-2,4-dichlorophenoxyacetic acid in wheat and potato after Foliar application and in wheat, radish, lettuce, and apple after soil application.

    PubMed

    Hamburg, A; Puvanesarajah, V; Burnett, T J; Barnekow, D E; Premkumar, N D; Smith, G A

    2001-01-01

    The fate of 2,4-dichlorophenoxyacetic acid (2,4-D) applied foliarly as the 2-ethylhexyl ester (EHE) to wheat and potatoes, to the soil as the dimethylamine (DMA) salt under apple tree canopies, and preplant as the free acid for wheat, lettuce, and radish was studied to evaluate metabolic pathways. Crop fractions analyzed for (14)C residues included wheat forage, straw, and grain; potato vine and tubers; and apple fruit. The primary metabolic pathway for foliar application in wheat is ester hydrolysis followed by the formation of base-labile 2,4-D conjugates. A less significant pathway for 2,4-D in wheat was ring hydroxylation to give NIH-shift products 2,5-dichloro-4-hydroxyphenoxyacetic acid (4-OH-2,5-D), 4-OH-2,3-D, and 5-OH-2,4-D both free and as acid-labile conjugates. The primary metabolic pathway in potato was again ester hydrolysis. 2,4-D acid was further transformed to 4-chlorophenoxyacetic acid and 4-OH-2,5-D. For the soil applications, (14)C residues in the crops were low, and characterization of the (14)C residues indicated association with or incorporation into the biochemical matrix of the tissue. The degradative pathways observed in wheat are similar to those characterized in other intact plant studies but differ from those in studies in wheat cell suspension culture in that no amino acid conjugates were observed.

  16. A satellite-based assessment of the effects of demonetization on the 2016-2017 Indian paddy and wheat agricultural seasons

    NASA Astrophysics Data System (ADS)

    Lin, M.; Singh, N.; Mueller, N. D.; Huybers, P. J.

    2017-12-01

    Demonetization invalidated 86% of the currency in circulation in India on November 8, 2016, in the midst of the harvesting and sale of the monsoon kharif paddy or rice crop and the commencement of the winter rabi wheat-growing season. Regions of the Indo-Gangetic Plain, the breadbasket of India, and Northeastern India, the rice bowl, show signatures of satellite-observed vegetation activity consistent with a delayed rice harvest and a delayed wheat sowing, apparent over regions with heavy rice-cropping, wheat-cropping, or both. Compared to previous years, these signatures are anomalous after accounting for the temporal increases in agricultural productivity and for the influence of the preceding monsoon rainfall. Delays in the crop production calendar can be expected from the lack of cash, as both labor and inputs such as seed, fuel, fertilizer, machine rentals, are paid in cash for the rural population, the majority of whom do not have regular access to banking. Although 2016-2017 boasted a strong monsoon and subsequently high and even record productivity, the overall production figures could mask heterogeneity in farmers' ability to recoup their investments as a function of their financial access.

  17. Quantitative study on the fate of residual soil nitrate in winter wheat based on a 15N-labeling method.

    PubMed

    Zhang, Jing-Ting; Wang, Zhi-Min; Liang, Shuang-Bo; Zhang, Ying-Hua; Zhou, Shun-Li; Lu, Lai-Qing; Wang, Run-Zheng

    2017-01-01

    A considerable amount of surplus nitrogen (N), which primarily takes the form of nitrate, accumulates in the soil profile after harvesting crops from an intensive production system in the North China Plain. The residual soil nitrate (RSN) is a key factor that is included in the N recommendation algorithm. Quantifying the utilization and losses of RSN is a fundamental necessity for optimizing crop N management, improving N use efficiency, and reducing the impact derived from farmland N losses on the environment. In this study, a 15N-labeling method was introduced to study the fate of the RSN quantitatively during the winter wheat growing season by 15N tracer technique combined with a soil column study. A soil column with a 2 m height was vertically divided into 10 20-cm layers, and the RSN in each layer was individually labeled with a 15N tracer before the wheat was sown. The results indicated that approximately 17.68% of the crop N derived from RSN was located in the 0-2 m soil profile prior to wheat sowing. The wheat recovery proportions of RSN at various layers ranged from 0.21% to 33.46%. The percentages that still remained in the soil profile after the wheat harvest ranged from 47.08% to 75.44%, and 19.46-32.64% of the RSN was unaccounted for. Upward and downward movements in the RSN were observed, and the maximum upward and downward distances were 40 cm and 100 cm, respectively. In general, the 15N-labeling method contributes to a deeper understanding of the fates of the RSN. Considering the low crop recovery of the RSN from deep soil layers, water and N saving practices should be adopted during crop production.

  18. Microbial association with the dynamics of particulate organic carbon in response to the amendment of elevated CO2-derived wheat residue into a Mollisol.

    PubMed

    Wang, Yanhong; Yu, Zhenhua; Li, Yansheng; Wang, Guanghua; Liu, Junjie; Liu, Judong; Liu, Xiaobing; Jin, Jian

    2017-12-31

    As the chemical quality of crop residue is likely to be affected by elevated CO 2 (eCO 2 ), residue amendments may influence soil organic carbon (SOC) sequestration. However, in Mollisols, the dynamics of the SOC fractions in response to amendment with wheat residue produced under eCO 2 and the corresponding microbial community composition remain unknown. Such investigation is essential to residue management, which affects the soil quality and productivity of future farming systems. To narrow this knowledge gap, 13 C-labeled shoot and root residue derived from ambient CO 2 (aCO 2 ) or eCO 2 were amended into Mollisols and incubated for 200days. The soil was sampled during the incubation period to determine the residue-C retained in the three SOC fractions, i.e., coarse intra-aggregate particulate organic C (coarse iPOC), fine iPOC and mineral-associated organic C (MOC). The soil bacterial community was assessed using a MiSeq sequencing instrument. The results showed that the increase in SOC concentrations attributable to the application of the wheat residue primarily occurred in the coarse iPOC fraction. Compared with the aCO 2 -derived shoot residue, the amendment of eCO 2 -derived shoot residue resulted in greater SOC concentrations, whereas no significant differences (P>0.05) were observed between the aCO 2 - and eCO 2 -derived roots. Principal coordinates analysis (PCoA) showed that the residue amendment significantly (P≤0.05) altered the bacterial community composition compared with the non-residue amendment. Additionally, the bacterial community in the aCO 2 -derived shoot treatment differed from those in the other residue treatments until day 200 of the incubation period. The eCO 2 -derived shoot treatment significantly increased (P≤0.05) the relative abundances of the genera Acidobacteriaceae_(Subgroup_1)_uncultured, Bryobacter, Candidatus_Solibacter, Gemmatimonas and Nitrosomonadaceae_uncultured, whereas the opposite trend was observed in Nonomuraea

  19. New field-based agricultural biomass burning trace gas, PM2.5, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran; Wooster, Martin J.; Green, David C.; Main, Bruce

    2015-11-01

    Despite policy attempts to limit or prevent agricultural burning, its use to remove crop residues either immediately after harvest (e.g. field burning of wheat stubble) or after subsequent crop processing (e.g. ;bonfires; of rice straw and rapeseed residues) appears to remain widespread across parts of China. Emission factors for these types of small but highly numerous fire are therefore required to fully assess their impact on atmospheric composition and air pollution. Here we describe the design and deployment of a new smoke measurement system for the close-range sampling of key gases and particles within smoke from crop residue fires, using it to assess instantaneous mixing ratios of CO and CO2 and mass concentrations of black carbon (BC) and PM2.5 from wheat stubble, rice straw, and rapeseed residue fires. Using data of our new smoke sampling system, we find a strong linear correlation between the PM2.5 mass and BC, with very high PM2.5 to BC emission ratios found in the smouldering phase (up to 80.7 mg m-3.(mg m-3)-1) compared to the flaming phase (2.0 mg m-3.(mg m-3)-1). We conclude that the contribution of BC to PM2.5 mass was as high as 50% in the flaming phase of some burns, whilst during smouldering it sometimes decreased to little over one percent. A linear mixing model is used to quantify the relative contribution of each combustion phase to the overall measured smoke composition, and we find that flaming combustion dominated the total emission of most species assessed. Using time series of trace gas concentrations from different fire cases, we calculated 'fire integrated' trace gas emission factors (EFs) for wheat, rice and rapeseed residue burns as 1739 ± 19 g kg-1, 1761 ± 30 g kg-1and 1704 ± 27 g kg-1 respectively for CO2, and 60 ± 12 g kg-1, 47 ± 19 g kg-1 and 82 ± 17 g kg-1 respectively for CO. Where comparisons were possible, our EFs agreed well with those derived via a simultaneously-deployed open path Fourier transform infrared (OP

  20. Effects of soil properties on the transfer of cadmium from soil to wheat in the Yangtze River delta region, China--a typical industry-agriculture transition area.

    PubMed

    Wang, Cheng; Ji, Junfeng; Yang, Zhongfang; Chen, Lingxiao; Browne, Patrick; Yu, Ruilian

    2012-08-01

    In order to identify the effects of soil properties on the transfer of Cd from soil to wheat under actual field conditions, 126 pairs of topsoil and wheat samples were collected from the Yangtze River delta region, China. Relevant parameters (Cd, Ca, Mg, Fe, Mn, Zn, N, P, K, S, pH, total organic carbon, and speciation of soil Cd) in soil and wheat tissues were analyzed, and the results were treated by statistical methods. Soil samples (19.8%) and 14.3% of the wheat grain samples exceeded the relevant maximum permissible Cd concentrations in China for agricultural soil and wheat grain, respectively. The major speciations of Cd in soil were exchangeable, bound to carbonates and fulvic and humic acid fraction, and they were readily affected by soil pH, total Ca, Mg, S and P, DTPA-Fe, Ex-Ca, and Ex-Mg. Cadmium showed a strong correlation with Fe, S, and P present in the grain and the soil, whereas there was no significant correlation in the straw or root. Generally, soil pH, Ca, Mg, Mn, P, and slowly available K restricted Cd transfer from soil to wheat, whereas soil S, N, Zn, DTPA-Fe, and total organic carbon enhance Cd uptake by wheat.

  1. BIRTH DEFECTS IN FOUR U.S. WHEAT-PRODUCING STATES

    EPA Science Inventory

    Birth Defects in Four U.S. Wheat - Producing States
    Dina M. Schreinemachers, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    Wheat agriculture in Mi...

  2. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    PubMed Central

    2012-01-01

    Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second

  3. How can crop intra-specific biodiversity mitigate the vulnerability of agricultural systems to climate change? A case study on durum wheat in Southern Italy

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; Alfieri, Silvia Maria; Basile, Angelo; Menenti, Massimo; Bonfante, Antonello; De Lorenzi, Fracesca

    2014-05-01

    Climate evolution may lead to changes in the amount and distribution of precipitations and to reduced water availability, with constraints on the cultivation of some crops. Recently, foreseen crop responses to climate change raise a crucial question for the agricultural stakeholders: are the current production systems resilient to this change? An active debate is in progress about the definition of adaptation of agricultural systems, particularly about the integrated assessment of climate stressors, vulnerability and resilece towards the evaluation of climate impact on agricultural systems. Climate change represents a risk for rain-fed agricultural systems, where irrigations cannot compensate reductions in precipitations. The intra-specific biodiversity of crops can be a resource towards adaptation. The knowledge of the responses to environmental conditions (temperature and water availability) of different cultivars can allow to identify options for adaptation to future climate. Simulation models of water flow in the soil-plant-atmosphere system, driven by different climate scenarios, can describe present and foreseen soil water regime. The present work deals with a case-study on the adaptive capacity of durum wheat to climate change. The selected study area is a hilly region in Southern Italy (Fortore Beneventano, Campania Region). Two climate cases were studied: "reference" (1961-1990) and "future" (2021-2050). A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was run to determine the water regime in some soil units, representative of the soil variability in the study area. From model output, the Relative Evapotranspiration Deficit (RETD) was determined as an indicator of hydrological conditions during the crop growing period for each year and climate case; and periods with higher frequencies of soil water deficits were identified. The timing of main crop development stages was calculated. The occurrence of water deficit at different

  4. Registration of ‘NE06545’ (husker genetics brand freeman) hard red winter wheat

    USDA-ARS?s Scientific Manuscript database

    Providing more productive wheat (Triticum aestivum L.) cultivars with broad adaptation in their target regions to wheat producers is a major goal of wheat breeding programs. 'NE06545' ( PI 667038) hard red winter wheat was developed cooperatively by the Nebraska Agricultural Experiment Station and ...

  5. Organochlorine pesticides residue in lakes of Khorezm, Uzbekistan

    USGS Publications Warehouse

    Rosen, Michael R.; Nishonov, Bakhriddin; Fayzieva, Dilorom; Saito, L.; Lamers, J.

    2009-01-01

    The Khorezm province in northwest Uzbekistan is a productive agricultural area within the Aral Sea Basin that produces cotton, rice and wheat. Various organochlorine pesticides were widely used for cotton production before Uzbekistan's independence in 1991. In Khorezm, small lakes have formed in natural depressions that receive inputs mostly from agricultural runoff. Samples from lake waters and sediments, as well as water from the Amu Darya River (which is the source of most of the lake water) have been analyzed to study variations in the concentrations of organochlorine pesticides residues during the year. Low concentrations of DDT, DDD, DDE, a-HCH and y-HCH compounds were found in water and sediment samples. The concentration of persistent organochlorine pesticides (DDT and HCH) in water and sediment is much lower than the maximum permissible concentrations that exist for water and soil. According to these preliminary results, the investigated lakes in Khorezm appear to be suitable for recreation or for aquaculture.

  6. 40 CFR 180.413 - Imazalil; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.413 Imazalil; tolerances for residues. (a) General. (1) Tolerances are established for the combined residues of..., hay 0.5 Wheat, straw 0.5 (2) Tolerances are established for the combined residues of the fungicide...

  7. Atmospheric contribution to boron enrichment in aboveground wheat tissues.

    PubMed

    Wang, Cheng; Ji, Junfeng; Chen, Mindong; Zhong, Cong; Yang, Zhongfang; Browne, Patrick

    2017-05-01

    Boron is an essential trace element for all organisms and has both beneficial and harmful biological functions. A particular amount of boron is discharged into the environment every year because of industrial activities; however, the effects of environmental boron emissions on boron accumulation in cereals has not yet been estimated. The present study characterized the accumulation of boron in wheat under different ecological conditions in the Yangtze River Delta (YRD) area. This study aimed to estimate the effects of atmospheric boron that is associated with industrial activities on boron accumulation in wheat. The results showed that the concentrations of boron in aboveground wheat tissues from the highly industrialized region were significantly higher than those from the agriculture-dominated region, even though there was no significant difference in boron content in soils. Using the model based on the translocation coefficients of boron in the soil-wheat system, we estimated that the contribution of atmosphere to boron accumulation in wheat straw in the highly industrialized region exceeded that in the agriculture-dominated region by 36%. In addition, from the environmental implication of the model, it was estimated that the development of boron-utilizing industries had elevated the concentration of boron in aboveground wheat tissues by 28-53%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    NASA Astrophysics Data System (ADS)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  9. The development and adaption of early agriculture in Huanghe River Valley, China

    NASA Astrophysics Data System (ADS)

    Li, X.

    2017-12-01

    The expanding and developing of agriculture are the basic of population growth, the expansions of material cultures and civilization. The Huanghe River valley, as the origin center of millet agriculture, lies between the heartlands of wheat and rice, which gestates the flourishing Neolithic culture based on agriculture. Recent work using botanical remains has greatly expanded the knowledge concerning early agriculture. Here, we report the new progress on the development and adaption of early agriculture in Huanghe River valley and the surrounding areas. Based on the analysis of phytolith from 13 sites in middle reaches of Huanghe River and the survey of crop seeds from 5 sites in Guanzhong Basin, the rice have been cultivated around 7600 cal BP in semi-humid regions dominated by rain-fed agriculture. The mixed agriculture of common millet, foxtail millet, and rice continued to exist between 7600-3500 BP. In semi-arid region of Huanghe River valley, the agriculture was dominated by the production of common and foxtail millet and 3 major changes have taken place around 6500 BP, 5500 BP, and 4000 BP during Neolithic. The cultivating ratio of common and foxtail millet was adjusted by farmer for adapting the climate changes during Holocene. Approximately 5000 yr BP, the rain-fed agriculture continues to break geographical boundaries to expand to west and southwest from Huanghe River valley. Millet agriculture appeared in southern Ganshu and north eastern Tibetan Plateau. The common and foxtail millet spread to the arid-area of Hexi corridor, a major crossroad of the famous Silk Road, around 4500 yr BP. Wheat was added as a new crop to the existing millet based agricultural systems around 4100-4000 cal yr BP in Hexi corridor. Between 3800 and 3400 cal yr BP, the proportion of wheat and barley in agriculture was up to 90%,which have replaced the local millet and become the main crops. And now, some new evidences of wheat agriculture from NW Xijiang have been obtained and

  10. Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides.

    PubMed

    Lozowicka, B; Kaczynski, P; Paritova, Capital A Cyrillic Е; Kuzembekova, G B; Abzhalieva, A B; Sarsembayeva, N B; Alihan, K

    2014-02-01

    This paper presents the first study of pesticide residue results in grain from Kazakhstan. A total of 80 samples: barley, oat, rye, and wheat were collected and tested in the accredited laboratory. Among 180 pesticides, 10 active substances were detected. Banned pesticides, such as DDTs, γ-HCH, aldrin and diazinon were found in cereal grain. Chlorpyrifos methyl and pirimiphos methyl were the most frequently detected residues. No residues were found in 77.5% of the samples, 13.75% contained pesticide residues at or below MRLs, and 8.75% above MRLs. The greatest percentage of samples with residues (29%) was noted for wheat, and the lowest for rye (20%). Obtained data were used to estimate potential health risks associated with exposure to these pesticides. The highest estimated daily intakes (EDIs) were as follows: 789% of the ADI for aldrin (wheat) and 49.8% of the ADI for pirimiphos methyl (wheat and rye). The acute risk from aldrin and tebuconazole in wheat was 315.9% and 98.7% ARfD, respectively. The results show that despite the highest EDIs of pesticide residues in cereals, the current situation could not be considered a serious public health problem. Nevertheless, an investigation into continuous monitoring of pesticide residues in grain is recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. 40 CFR 180.659 - Pyroxasulfone; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide pyroxasulfone, including its metabolites and degradates, in or on the commodities... Wheat, grain 0.03 (2) Tolerances are established for residues of the herbicide pyroxasulfone, including..., straw 0.60 (3) Tolerances are established for residues of the herbicide pyroxasulfone, including its...

  12. 40 CFR 180.610 - Aminopyralid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide aminopyralid, 4-amino-3,6-dichloro-2-pyridinecarboxylic acid, including its... 4.0 Wheat, straw 0.25 (2) Tolerances are established for residues of the herbicide aminopyralid, 4...

  13. 40 CFR 180.610 - Aminopyralid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residues of the herbicide aminopyralid, 4-amino-3,6-dichloro-2-pyridinecarboxylic acid, including its... 4.0 Wheat, straw 0.25 (2) Tolerances are established for residues of the herbicide aminopyralid, 4...

  14. 40 CFR 180.610 - Aminopyralid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residues of the herbicide aminopyralid, 4-amino-3,6-dichloro-2-pyridinecarboxylic acid, including its... 4.0 Wheat, straw 0.25 (2) Tolerances are established for residues of the herbicide aminopyralid, 4...

  15. 40 CFR 180.610 - Aminopyralid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide aminopyralid, 4-amino-3,6-dichloro-2-pyridinecarboxylic acid, including its... 4.0 Wheat, straw 0.25 (2) Tolerances are established for residues of the herbicide aminopyralid, 4...

  16. 40 CFR 180.610 - Aminopyralid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide aminopyralid, 4-amino-3,6-dichloro-2-pyridinecarboxylic acid, including its... 4.0 Wheat, straw 0.25 (2) Tolerances are established for residues of the herbicide aminopyralid, 4...

  17. Rapid residue analysis of four triazolopyrimidine herbicides in soil, water, and wheat by ultra-performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Liu, Xingang; Xu, Jun; Li, Yuanbo; Dong, Fengshou; Li, Jing; Song, Wenchen; Zheng, Yongquan

    2011-03-01

    A sensitive and effective method for simultaneous determination of triazolopyrimidine sulfonamide herbicide residues in soil, water, and wheat was developed using ultra-performance liquid chromatography coupled with tandem mass spectrometry. The four herbicides (pyroxsulam, flumetsulam, metosulam, and diclosulam) were cleaned up with an off-line C18 SPE cartridge and detected by tandem mass spectrometry using an electrospray ionization source in positive mode (ESI+). The determination of the target compounds was achieved in <2.0 min. The limits of detection were below 1 μg kg(-1), while the limits of quantification did not exceed 3 μg kg(-1) in different matrices. Quantitation was determined from calibration curves of standards containing 0.05-100 μg L(-1) with r(2) > 0.997. Recovery studies were conducted at three spiked levels (0.2, 1, and 5 μg kg(-1) for water; 5, 10, and 100 μg kg(-1) for soil and wheat). The overall average recoveries for this method in water, soil, wheat plants, and seeds at three levels ranged from 75.4% to 106.0%, with relative standard deviations in the range of 2.1-12.5% (n = 5) for all analytes.

  18. Sonora exploratory study for the detection of wheat-leaf rust

    NASA Technical Reports Server (NTRS)

    Payne, R. W. (Principal Investigator)

    1980-01-01

    The applicability of LANDSAT remote sensing technology to the detection of a wheat-leaf-rust epidemic in Sonora, Mexico, during 1977 was investigated. LANDSAT data acquired during crop years 1975-76 and 1976-77 were clustered, classified, and analyzed in order to detect agricultural changes. Analysis of 1977 data indicates a significant proportion of the identified wheat is stressed (potentially rust-infected). Additional analyses show a significant increase in fallowing during the year, as well as a substantial decrease in reservoir levels in the Sonora agricultural region. Ground observations are required to substantiate these analyses. The possibility exists that heat-rust is not LANDSAT detectable and that the clusters identified as containing stressed signatures represent different varieties of wheat or perhaps nonwheat crops.

  19. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Miao, Shan Shan; Jiang, Chen; Huang, Meng Tian; Liu, Ying; Yang, Hong

    2015-01-14

    This study investigated the herbicide isoproturon (IPU) residues in soil, where wheat was cultivated and sprayed with salicylic acid (SA). Provision of SA led to a lower level of IPU residues in rhizosphere soil compared to IPU treatment alone. Root exudation of tartaric acid, malic acid, and oxalic acids was enhanced in rhizosphere soil with SA-treated wheat. We examined the microbial population (e.g., biomass and phospholipid fatty acid), microbial structure, and soil enzyme (catalase, phenol oxidase, and dehydrogenase) activities, all of which are associated with soil activity and were activated in rhizosphere soil of SA-treated wheat roots. We further assessed the correlation matrix and principal component to figure out the association between the IPU degradation and soil activity. Finally, six IPU degraded products (derivatives) in rhizosphere soil were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer (UPLC/Q-TOF-MS/MS). A relatively higher level of IPU derivatives was identified in soil with SA-treated wheat than in soil without SA-treated wheat plants.

  20. Coproduction of xylose, lignosulfonate and ethanol from wheat straw.

    PubMed

    Zhu, Shengdong; Huang, Wangxiang; Huang, Wenjing; Wang, Ke; Chen, Qiming; Wu, Yuanxin

    2015-06-01

    A novel integrated process to coproduce xylose, lignosulfonate and ethanol from wheat straw was investigated. Firstly, wheat straw was treated by dilute sulfuric acid and xylose was recovered from its hydrolyzate. Its optimal conditions were 1.0wt% sulfuric acid, 10% (w/v) wheat straw loading, 100°C, and 2h. Then the acid treated wheat straw was treated by sulfomethylation reagent and its hydrolyzate containing lignosulfonate was directly recovered. Its optimal conditions were 150°C, 15% (w/v) acid treated wheat straw loading, and 5h. Finally, the two-step treated wheat straw was converted to ethanol through enzymatic hydrolysis and microbial fermentation. Under optimal conditions, 1kg wheat straw could produce 0.225kg xylose with 95% purity, 4.16kg hydrolyzate of sulfomethylation treatment containing 5.5% lignosulfonate, 0.183kg ethanol and 0.05kg lignin residue. Compared to present technology, this process is a potential economically profitable wheat straw biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The impact exploration of agricultural drought on winter wheat yield in the North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Jianhua; Wu, Jianjun; Han, Xinyi; Zhou, Hongkui

    2017-04-01

    Drought is one of the most serious agro-climatic disasters in the North China Plain, which has a great influence on winter wheat yield. Global warming exacerbates the drought trend of this region, so it is important to study the effect of drought on winter wheat yield. In order to assess the drought-induced winter wheat yield losses, SPEI (standardized precipitation evapotranspiration index), the widely used drought index, was selected to quantify the drought from 1981 to 2013. Additionally, the EPIC (Environmental Policy Integrated Climate) crop model was used to simulate winter wheat yield at 47 stations in this region from 1981 to 2013. We analyzed the relationship between winter wheat yield and the SPEI at different time scales in each month during the growing season. The trends of the SPEI and the trends of winter wheat yield at 47 stations over the past 32 years were compared with each other. To further quantify the effect of drought on winter wheat yield, we defined the year that SPEI varied from -0.5 to 0.5 as the normal year, and calculated the average winter wheat yield of the normal years as a reference yield, then calculated the reduction ratios of winter wheat based on the yields mentioned above in severe drought years. As a reference, we compared the results with the reduction ratios calculated from the statistical yield data. The results showed that the 9 to 12-month scales' SPEI in April, May and June had a high correlation with winter wheat yield. The trends of the SPEI and the trends of winter wheat yield over the past 32 years showed a positive correlation (p<0.01) and have similar spatial distributions. The proportion of the stations with the same change trend between the SPEI and winter wheat yield was 70%, indicating that drought was the main factor leading to a decline in winter wheat yield in this region. The reduction ratios based on the simulated yield and the reduction ratios calculated from the statistical yield data have a high positive

  2. On-farm bioremediation of dimethazone and trifluralin residues in runoff water from an agricultural field.

    PubMed

    Antonious, George F

    2012-01-01

    Bioremediation is the use of living organisms, primarily microorganisms, to degrade environmental contaminants into less toxic forms. Nine biobeds (ground cavity filled with a mixture of composted organic matter, topsoil, and a surface grass) were established at Kentucky State University research farm (Franklin County, KY) to study the impact of this practice on reducing surface runoff water contamination by residues of dimethazone and trifluralin herbicides arising from an agricultural field. Biobed (biofilter) systems were installed at the bottom of the slope of specially designed runoff plots to examine herbicides retention and degradation before entering streams and rivers. In addition to biobed systems, three soil management practices: municipal sewage sludge (SS), SS mixed with yard waste compost (SS + YW), and no-mulch rototilled bare soil (NM used for comparison purposes) were used to monitor the impact of soil amendments on herbicide residues in soil following natural rainfall events. Organic amendments increased soil organic matter content and herbicide residues retained in soil following rainfall events. Biobeds installed in NM soil reduced dimethazone and trifluralin by 84 and 82%, respectively in runoff water that would have been transported down the land slope of agricultural fields and contaminated natural water resources. Biobeds installed in SS and SS+YW treatments reduced dimethazone by 65 and 46% and trifluralin by 52 and 79%, respectively. These findings indicated that biobeds are effective for treating dimethazone and trifluralin residues in runoff water.

  3. Wheat production in Bangladesh: its future in the light of global warming.

    PubMed

    Hossain, Akbar; Teixeira da Silva, Jaime A

    2013-01-01

    The most fundamental activity of the people of Bangladesh is agriculture. Modelling projections for Bangladesh indicate that warmer temperatures linked to climate change will severely reduce the growth of various winter crops (wheat, boro rice, potato and winter vegetables) in the north and central parts. In summer, crops in south-eastern parts of the country are at risk from increased flooding as sea levels increase. Wheat is one of the most important winter crops and is temperature sensitive and the second most important grain crop after rice. In this review, we provide an up-to-date and detailed account of wheat research of Bangladesh and the impact that global warming may have on agriculture, especially wheat production. Although flooding is not of major importance or consequence to the wheat crop at present, some perspectives are provided on this stress since wheat is flood sensitive and the incidence of flooding is likely to increase. This information and projections will allow wheat breeders to devise new breeding programmes to attempt to mitigate future global warming. We discuss what this implies for food security in the broader context of South Asia.

  4. Wheat production in Bangladesh: its future in the light of global warming

    PubMed Central

    Hossain, Akbar; Teixeira da Silva, Jaime A.

    2012-01-01

    Background and aims The most fundamental activity of the people of Bangladesh is agriculture. Modelling projections for Bangladesh indicate that warmer temperatures linked to climate change will severely reduce the growth of various winter crops (wheat, boro rice, potato and winter vegetables) in the north and central parts. In summer, crops in south-eastern parts of the country are at risk from increased flooding as sea levels increase. Key facts Wheat is one of the most important winter crops and is temperature sensitive and the second most important grain crop after rice. In this review, we provide an up-to-date and detailed account of wheat research of Bangladesh and the impact that global warming may have on agriculture, especially wheat production. Although flooding is not of major importance or consequence to the wheat crop at present, some perspectives are provided on this stress since wheat is flood sensitive and the incidence of flooding is likely to increase. Projections This information and projections will allow wheat breeders to devise new breeding programmes to attempt to mitigate future global warming. We discuss what this implies for food security in the broader context of South Asia. PMID:23304431

  5. Registration of Warhorse wheat

    USDA-ARS?s Scientific Manuscript database

    'Warhorse' (Reg. No. CV-1096, PI 670157) hard red winter (HRW) wheat (Triticum aestivum L.) was developed and released by the Montana Agricultural Experiment Station in September 2013. Warhorse is of unknown pedigree, derived from a composite of three topcrosses made to the same F1 population in 200...

  6. Winter wheat mapping combining variations before and after estimated heading dates

    NASA Astrophysics Data System (ADS)

    Qiu, Bingwen; Luo, Yuhan; Tang, Zhenghong; Chen, Chongcheng; Lu, Difei; Huang, Hongyu; Chen, Yunzhi; Chen, Nan; Xu, Weiming

    2017-01-01

    Accurate and updated information on winter wheat distribution is vital for food security. The intra-class variability of the temporal profiles of vegetation indices presents substantial challenges to current time series-based approaches. This study developed a new method to identify winter wheat over large regions through a transformation and metric-based approach. First, the trend surfaces were established to identify key phenological parameters of winter wheat based on altitude and latitude with references to crop calendar data from the agro-meteorological stations. Second, two phenology-based indicators were developed based on the EVI2 differences between estimated heading and seedling/harvesting dates and the change amplitudes. These two phenology-based indicators revealed variations during the estimated early and late growth stages. Finally, winter wheat data were extracted based on these two metrics. The winter wheat mapping method was applied to China based on the 250 m 8-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) 2-band Enhanced Vegetation Index (EVI2) time series datasets. Accuracy was validated with field survey data, agricultural census data, and Landsat-interpreted results in test regions. When evaluated with 653 field survey sites and Landsat image interpreted data, the overall accuracy of MODIS-derived images in 2012-2013 was 92.19% and 88.86%, respectively. The MODIS-derived winter wheat areas accounted for over 82% of the variability at the municipal level when compared with agricultural census data. The winter wheat mapping method developed in this study demonstrates great adaptability to intra-class variability of the vegetation temporal profiles and has great potential for further applications to broader regions and other types of agricultural crop mapping.

  7. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, L.J.; Reid, I.D.; Coxworth, E.C.

    1987-06-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. (Refs. 24).

  8. Paint removal using wheat starch blast media

    NASA Astrophysics Data System (ADS)

    Foster, Terry; Oestreich, John

    1993-03-01

    A review of the Wheat Starch Blasting technology is presented. Laboratory evaluations covering Almen Arc testing on bare 2024-T3 aluminum and magnesium, as well as crack detection on 7075-T6 bare aluminum, are discussed. Comparisons with Type V plastic media show lower residual stresses are achieved on aluminum and magnesium with wheat starch media. Dry blasting effects on the detection of cracks confirms better crack visibility with wheat starch media versus Type V or Type II plastic media. Testing of wheat starch media in several composite test programs, including fiberglass, Kevlar, and graphite-epoxy composites, showed no fiber damage. Process developments and production experience at the first U.S. aircraft stripping facility are also reviewed. Corporate and regional aircraft are being stripped in this three nozzle dry blast hanger.

  9. 7 CFR 782.15 - Filing FSA-751, Wheat Consumption and Resale Report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Filing FSA-751, Wheat Consumption and Resale Report. 782.15 Section 782.15 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS END-USE CERTIFICATE PROGRAM Implementation of...

  10. 7 CFR 782.15 - Filing FSA-751, Wheat Consumption and Resale Report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Filing FSA-751, Wheat Consumption and Resale Report. 782.15 Section 782.15 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS END-USE CERTIFICATE PROGRAM Implementation of...

  11. 7 CFR 782.15 - Filing FSA-751, Wheat Consumption and Resale Report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Filing FSA-751, Wheat Consumption and Resale Report. 782.15 Section 782.15 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS END-USE CERTIFICATE PROGRAM Implementation of...

  12. 7 CFR 782.15 - Filing FSA-751, Wheat Consumption and Resale Report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Filing FSA-751, Wheat Consumption and Resale Report. 782.15 Section 782.15 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS END-USE CERTIFICATE PROGRAM Implementation of...

  13. 7 CFR 782.15 - Filing FSA-751, Wheat Consumption and Resale Report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Filing FSA-751, Wheat Consumption and Resale Report. 782.15 Section 782.15 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS END-USE CERTIFICATE PROGRAM Implementation of...

  14. Pesticides residues and metals in plant products from agricultural area of Belgrade, Serbia.

    PubMed

    Ethorđević, Tijana; Ethurović, Rada

    2012-03-01

    The objective of study was to assess the levels of selected metals and pesticides in plant products from agricultural area of Belgrade, Serbia in order to indicate their possible sources and risks of contamination and to evaluate their sanitary probity and safety. The concentrations of cadmium, copper, iron, manganese, nickel, lead and zinc were below limits established by national and international regulations (maximum found concentrations were 0.028, 1.91, 11.16, 1.77, 0.605, 0.073 and 1.76 mg kg(-1) respectively). Only residue of one of examined pesticides was found in amount below MRL (bifenthrin 2.46 μg kg(-1)) in only one of analysed samples, while others were below detection limits. Obtained results indicate that crops from examined agricultural areas are unpolluted by contaminants used for plant protection and nutrition, indicating good agricultural practice regarding pesticides and fertilizer usage as well as moderate industrial production within examined areas.

  15. Registration of ‘NE05548’ (husker genetics brand panhandle) hard red winter wheat

    USDA-ARS?s Scientific Manuscript database

    Western Nebraska wheat producers and those in adjacent areas want taller wheat (Triticum aestivum L.) cultivars that retain their height under drought for better harvestability. ‘NE05548’ (Reg. No. CV-1117, PI 670462) hard red winter wheat was developed cooperatively by the Nebraska Agricultural Exp...

  16. EXCESS CANCER MORTALITY IN AGRICULTURAL REGIONS OF MINNESOTA

    EPA Science Inventory

    Because of its unique geology, Minnesota can be divided into four agricultural regions: south-central region one (corn, soybeans); west-central region two (wheat, corn, soybeans); northwest region three (wheat, sugar beets, potatoes); and northeast region four (forested and urban...

  17. Agricultural practices and residual corn during spring crane and waterfowl migration in Nebraska

    USGS Publications Warehouse

    Sherfy, M.H.; Anteau, M.J.; Bishop, A.A.

    2011-01-01

    Nebraska's Central Platte River Valley (CPRV) is a major spring-staging area for migratory birds. Over 6 million ducks, geese, and sandhill cranes (Grus canadensis) stage there en route to tundra, boreal forest, and prairie breeding habitats, storing nutrients for migration and reproduction by consuming primarily corn remaining in fields after harvest (hereafter residual corn). In springs 2005-2007, we measured residual corn density in randomly selected harvested cornfields during early (n=188) and late migration (n=143) periods. We estimated the mean density of residual corn for the CPRV and examined the influence of agricultural practices (post-harvest field management) and migration period on residual corn density. During the early migration period, residual corn density was greater in idle harvested fields than any other treatments of fields (42%, 48%, 53%, and 92% more than grazed, grazed and mulched, mulched, and tilled fields, respectively). Depletion of residual corn from early to late migration did not differ among post-harvest treatments but was greatest during the year when overall corn density was lowest (2006). Geometric mean early-migration residual corn density for the CPRV in 2005-2007 (42.4 kg/ha; 95% CI=35.2-51.5 kg/ha) was markedly lower than previously published estimates, indicating that there has been a decrease in abundance of residual corn available to waterfowl during spring staging. Increases in harvest efficiency have been implicated as a cause for decreasing corn densities since the 1970s. However, our data show that post-harvest management of cornfields also can substantially influence the density of residual corn remaining in fields during spring migration. Thus, managers may be able to influence abundance of high-energy foods for spring-staging migratory birds in the CPRV through programs that influence post-harvest management of cornfields. ?? 2011 The Wildlife Society.

  18. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the

  19. Sensitivity of Earth Wheat Markets to Space Weather: Comparative Analysis based on data from Medieval European Markets

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev

    We consider a problem of the possible influence of unfavorable states of the space weather on agriculture markets through the chain of connections: "space weather"-"earth weather"- "agriculture crops"-"price reaction". We show that new manifestations of "space weather"- "earth weather" relations discovered in the recent time allow revising a wide range of the expected solar-terrestrial connections. In the previous works we proposed possible mechanisms of wheat market reaction on the specific unfavorable states of space weather in the form of price bursts and price asymmetry. We point out that implementation of considered "price reaction scenarios" is possible only for the case of simultaneous realization of several necessary conditions: high sensitivity of local earth weather in the selected region to space weather; the state of "high risk agriculture" in the selected agriculture zone; high sensitivity of agricultural market to a possible deficit of yield. Results of our previous works (I, II), including application of this approach to the Medieval England wheat market (1250-1700) and to the modern USA durum market (1910-1992), showed that connection between wheat price bursts and space weather state in these cases was absolutely real. The aim of the present work is to answer the question why wheat markets in one selected region may be sensitive to a space weather factor, while in other regions wheat markets demonstrate absolutely indifferent reaction on the space weather. For this aim, we consider dependence of sensitivity of wheat markets to space weather as a function of their location in different climatic zones of Europe. We analyze a database of 95 European wheat markets from 14 countries for the 600-year period (1260-1912). We show that the observed sensitivity of wheat markets to space weather effects is controlled, first of all, by a type of predominant climate in different zones of agricultural production. Wheat markets in the Northern and, partly, in

  20. A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil*

    PubMed Central

    Nourbakhsh, Farshid; Sheikh-Hosseini, Ahmad R.

    2006-01-01

    The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (C 0) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation. PMID:16972320

  1. 7 CFR 782.12 - Filing FSA-750, End-Use Certificate for Wheat.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Filing FSA-750, End-Use Certificate for Wheat. 782.12 Section 782.12 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS END-USE CERTIFICATE PROGRAM Implementation of the End-Use...

  2. 7 CFR 782.12 - Filing FSA-750, End-Use Certificate for Wheat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Filing FSA-750, End-Use Certificate for Wheat. 782.12 Section 782.12 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS END-USE CERTIFICATE PROGRAM Implementation of the End-Use...

  3. 7 CFR 782.12 - Filing FSA-750, End-Use Certificate for Wheat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Filing FSA-750, End-Use Certificate for Wheat. 782.12 Section 782.12 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS END-USE CERTIFICATE PROGRAM Implementation of the End-Use...

  4. 7 CFR 782.12 - Filing FSA-750, End-Use Certificate for Wheat.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Filing FSA-750, End-Use Certificate for Wheat. 782.12 Section 782.12 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS END-USE CERTIFICATE PROGRAM Implementation of the End-Use...

  5. 7 CFR 782.12 - Filing FSA-750, End-Use Certificate for Wheat.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Filing FSA-750, End-Use Certificate for Wheat. 782.12 Section 782.12 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS END-USE CERTIFICATE PROGRAM Implementation of the End-Use...

  6. Organophosphate Pesticide Residues in Drinking Water from Artesian Wells and Health Risk Assessment of Agricultural Communities, Thailand

    PubMed Central

    Jaipieam, S.; Visuthismajarn, P.; Sutheravut, P.; Siriwong, W.; Thoumsang, S.; Borjan, M.; Robson, M.

    2010-01-01

    Organophosphate pesticide (OPPs) concentrations in artesian wells located in Thai agricultural and non-agricultural communities were studied during both wet and dry seasons. A total of 100 water samples were collected and subjects were asked to complete a survey. Gas chromatography flame photometric detector was used for OPP analysis. The average OPP concentration in the agricultural communities (0.085 and 0.418 µg/l in dry and wet season) was higher than in the non-agricultural communities (0.004 µg/l in both seasons). Ingestion of OPPs in contaminated water in the agricultural communities were estimated to be 0.187 and 0.919 µg/day during the dry and wet seasons, respectively, and 0.008 µg/day during both seasons in the non-agricultural communities. Agricultural communities were exposed to pesticide residues under the oral chronic reference dose. This study suggests that people in agricultural communities may be exposed to significantly greater levels of pesticides than non-agricultural populations during the dry and wet seasons (p < .001, .001). PMID:20485459

  7. Organophosphate Pesticide Residues in Drinking Water from Artesian Wells and Health Risk Assessment of Agricultural Communities, Thailand.

    PubMed

    Jaipieam, S; Visuthismajarn, P; Sutheravut, P; Siriwong, W; Thoumsang, S; Borjan, M; Robson, M

    2009-01-01

    Organophosphate pesticide (OPPs) concentrations in artesian wells located in Thai agricultural and non-agricultural communities were studied during both wet and dry seasons. A total of 100 water samples were collected and subjects were asked to complete a survey. Gas chromatography flame photometric detector was used for OPP analysis. The average OPP concentration in the agricultural communities (0.085 and 0.418 microg/l in dry and wet season) was higher than in the non-agricultural communities (0.004 microg/l in both seasons). Ingestion of OPPs in contaminated water in the agricultural communities were estimated to be 0.187 and 0.919 microg/day during the dry and wet seasons, respectively, and 0.008 microg/day during both seasons in the non-agricultural communities. Agricultural communities were exposed to pesticide residues under the oral chronic reference dose. This study suggests that people in agricultural communities may be exposed to significantly greater levels of pesticides than non-agricultural populations during the dry and wet seasons (p < .001, .001).

  8. Kansas environmental and resource study: A Great Plains model. [land use, image enhancement, winter wheat, agriculture, water resources, and pattern recognition

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L.; Ulaby, F. T.; Davis, J. C. (Principal Investigator); Bosley, R. J.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.

    1973-01-01

    The author has identified the following significant results. Improvement in the land use classification accuracy of ERTS-1 MSS multi-images over Kansas can be made using two distances between neighboring grey tone N-tuples instead of one distance. Much more information is contained texturally than spectrally on the Kansas image. Ground truth measurements indicate that reflectance ratios of the 545 and 655 nm wavebands provide an index of plant development and possibly physiological stress. Preliminary analysis of MSS 4 and 5 channels substantiate the ground truth interpretation. Results of the land use mapping experiment indicate that ERTS-1 imagery has major potential in regionalization. The ways in which land is utilized within these regions may then be studied more effectively than if no adequate regionalization is available. A model for estimating wheat yield per acre has been applied to acreage estimates derived from ERTS-1 imagery to project the 1973 wheat yields for a ten county area in southwest Kansas. The results are within 3% of the preharvest estimates for the same area prepared by the USDA. Visual identification of winter wheat is readily achieved by using a temporal sequence of images. Identification can be improve by stratifying the project area into subregions having more or less homogeneous agricultural practices and crop mixes.

  9. Registration of ‘Tatanka’ hard red winter wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Tatanka’ hard red winter wheat (Triticum aestivum L.) was developed at the Agricultural Research Center-Hays, Kansas State University and released by the Kansas Agricultural Experiment Station in 2016. Tatanka was selected from a single cross of KS07HW81/T151 made in 2006 at Hays, KS. The objectiv...

  10. Registration of 'Tiger' wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Tiger’ hard white winter wheat (Triticum aestivum L.) was developed at Research Center-Hays, Kansas State University and released by Kansas Agricultural Experiment Station in 2010. Tiger was selected from a three-way cross KS98H245/’Trego’//KS98HW518 made in 1999 at Hays, KS. The objective of this ...

  11. Registration of ‘Coral’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Coral’ soft white winter wheat (Triticum aestivum L.) was developed by the Michigan Agricultural Experiment Station and released March 28, 2008, via an exclusive licensing agreement through Michigan State University (MSU) Technologies. Coral was selected from the cross MSU D3913 / MSU D0331 made i...

  12. USU research helps agriculture enter the space age

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.

    1987-01-01

    Research at the Utah State University College of Agriculture that is relevant to the space life sciences is reviewed. Specific programs detailed are gravitropism of dicot stems, maximization of wheat yields for use in space exploration, and plant development processes in wheat in microgravity.

  13. Comparison of statistical models for analyzing wheat yield time series.

    PubMed

    Michel, Lucie; Makowski, David

    2013-01-01

    The world's population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha⁻¹ year⁻¹ in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale.

  14. Comparison of Statistical Models for Analyzing Wheat Yield Time Series

    PubMed Central

    Michel, Lucie; Makowski, David

    2013-01-01

    The world's population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha−1 year−1 in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale. PMID:24205280

  15. Presence of Enniatins and Beauvericin in Romanian Wheat Samples: From Raw Material to Products for Direct Human Consumption

    PubMed Central

    Stanciu, Oana; Juan, Cristina; Miere, Doina; Loghin, Felicia; Mañes, Jordi

    2017-01-01

    In this study, a total of 244 wheat and wheat-based products collected from Romania were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) in order to evaluate the presence of four enniatins (ENs; i.e., ENA, ENA1, ENB, and ENB1) and beauvericin (BEA). For the wheat samples, the influence of agricultural practices was assessed, whereas the results for the wheat-based products were used to calculate the estimated daily intake of emerging mycotoxins through wheat consumption for the Romanian population. ENB presented the highest incidence (41% in wheat and 32% in wheat-based products), with its maximum levels of 815 μg kg−1 and 170 μg kg−1 in wheat and wheat-based products, respectively. The correlation between the concentrations of ENB and ENB1 in wheat grain samples and farm practices (organic or conventional) was confirmed statistically (p < 0.05). This is the first study that provides comprehensive information about the influence of agricultural practice on emerging Fusarium mycotoxin presence in Romanian wheat samples and the estimated daily intake of ENs and BEA present in wheat-based products for human consumption commercialized in Romania. PMID:28604626

  16. [Impact of Phosphogypsum Wastes on the Wheat Growth and CO2 Emissions and Evaluation of Economic-environmental Benefit].

    PubMed

    Li, Ji; Wu, Hong-sheng; Gao, Zhi-qiu; Shang, Xiao-xia; Zheng, Pei-hui; Yin, Jin; Kakpa, Didier; Ren, Qian-qi; Faustin, Ogou Katchele; Chen, Su-yun; Xu, Ya; Yao, Tong-yan; Ji, Wei; Qian, Jing-shan; Ma, Shi-jie

    2015-08-01

    Phosphogypsum is a phosphorus chemical waste which has not been managed and reused well, resultantly, causing environmental pollution and land-occupation. Phosphogypsum wastes were used as a soil amendment to assess the effect on wheat growth, yield and CO2 emissions from winter wheat fields. Its economic and environmental benefits were analyzed at the same time. The results showed that wheat yield was increased by 37.71% in the treatment of phosphogypsum of 2 100 kg x hm(-2). Compared with the control treatment, throughout the wheat growing season, CO2 emission was accumulatively reduced by 3% in the treatment of phosphogypsum waste of 1050 kg x hm(-2), while reduced by 8% , 10% , and 6% during the jointing stage, heading date and filling period of wheat, respectively; while CO2 emission was accumulatively reduced by 7% in the treatment of phosphogypsum waste of 2 100 kg x hm(-2) throughout the wheat growing season, as reduced by 11% , 4% , and 12% during the reviving wintering stage, heading date and filling period of wheat, respectively. It was better for CO2 emission reduction in the treatment of a larger amount of phosphogypsum waste. In the case of application of phosphogypsum waste residue within a certain range, the emission intensity of CO2 ( CO2 emissions of per unit of fresh weight or CO2 emissions of per unit of yield) , spike length, fresh weight and yield showed a significantly negative correlation--the longer the ear length, the greater fresh weight and yield and the lower the CO2 emissions intensity. As to the carbon trading, phosphogypsum utilization was of high economic and environmental benefits. Compared with the control, the ratio of input to output changed from 1: 8.3 to 1: 10.7, which in the same situation of investment the output could be increased by 28.92% ; phosphogypsum as a greenhouse gas reducing agent in the wheat field, it could decrease the cost and increase the environmental benefit totally about 290 yuan per unit of ton. The

  17. Investigate the Capabilities of Remotely Sensed Crop Indicators for Agricultural Drought Monitoring in Kansas

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Becker-Reshef, I.; Justice, C. O.

    2013-12-01

    Although agricultural production has been rising in the past years, drought remains the primary cause of crop failure, leading to food price instability and threatening food security. The recent 'Global Food Crisis' in 2008, 2011 and 2012 has put drought and its impact on crop production at the forefront, highlighting the need for effective agricultural drought monitoring. Satellite observations have proven a practical, cost-effective and dynamic tool for drought monitoring. However, most satellite based methods are not specially developed for agriculture and their performances for agricultural drought monitoring still need further development. Wheat is the most widely grown crop in the world, and the recent droughts highlight the importance of drought monitoring in major wheat producing areas. As the largest wheat producing state in the US, Kansas plays an important role in both global and domestic wheat markets. Thus, the objective of this study is to investigate the capabilities of remotely sensed crop indicators for effective agricultural drought monitoring in Kansas wheat-grown regions using MODIS data and crop yield statistics. First, crop indicators such as NDVI, anomaly and cumulative metrics were calculated. Second, the varying impacts of agricultural drought at different stages were explored by examining the relationship between the derived indicators and yields. Also, the starting date of effective agricultural drought early detection and the key agricultural drought alert period were identified. Finally, the thresholds of these indicators for agricultural drought early warning were derived and the implications of these indicators for agricultural drought monitoring were discussed. The preliminary results indicate that drought shows significant impacts from the mid-growing-season (after Mid-April); NDVI anomaly shows effective drought early detection from Late-April, and Late-April to Early-June can be used as the key alert period for agricultural

  18. Registration of "Merl" Wheat.

    USDA-ARS?s Scientific Manuscript database

    ‘Merl’ (Reg. No. CV- , PI 658598) soft red winter (SRW) wheat (Triticum aestivum L.)developed and tested as VA03W-412 by the Virginia Agricultural Experiment Station was released in March 2009. Merl was derived from the three-way cross ‘Roane’ / Pioneer Brand ‘2643’ // ‘38158’ (PI 619052). Merl is a...

  19. Rising temperatures reduce global wheat production

    NASA Astrophysics Data System (ADS)

    Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.; Reynolds, M. P.; Alderman, P. D.; Prasad, P. V. V.; Aggarwal, P. K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A. J.; de Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L. A.; Izaurralde, R. C.; Jabloun, M.; Jones, C. D.; Kersebaum, K. C.; Koehler, A.-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A. C.; Semenov, M. A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P. J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y.

    2015-02-01

    Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.

  20. Rising Temperatures Reduce Global Wheat Production

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.; hide

    2015-01-01

    Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32? degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time.

  1. Microwave emission and crop residues

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1991-01-01

    A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.

  2. Novel Field Data on Phytoextraction: Pre-Cultivation With Salix Reduces Cadmium in Wheat Grains.

    PubMed

    Greger, Maria; Landberg, Tommy

    2015-01-01

    Cadmium (Cd) is a health hazard, and up to 43% of human Cd intake comes from wheat products, since Cd accumulates in wheat grains. Salix spp. are high-accumulators of Cd and is suggested for Cd phytoextraction from agricultural soils. We demonstrate, in field, that Salix viminalis can remove Cd from agricultural soils and thereby reduce Cd accumulation in grains of wheat subsequently grown in a Salix-treated field. Four years of Salix cultivation reduce Cd concentration in the soil by up to 27% and in grains of the post-cultivated wheat by up to 33%. The higher the plant density of the Salix, the greater the Cd removal from the soil and the lower the Cd concentration in the grains of post-cultivated wheat, the Cd reduction remaining stable several years after Salix cultivation. The effect occurred in both sandy and clayey soil and in winter and spring bread wheat cultivars. Already one year of Salix cultivation significantly decrease Cd in post grown wheat grains. With this field experiment we have demonstrated that phytoextraction can reduce accumulation of a pollutant in post-cultivated wheat and that phytoextraction has no other observed effect on post-cultivated crops than reduced uptake of the removed pollutant.

  3. Manure incorporation reduces environmental nitrogen loss while sustaining crop productivity in the subtropical wheat-maize rotation system: A comprehensive study of nitrogen cycling and balance

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; Zhu, Bo; Butterbach-Bahl, klaus; Brüggemann, Nicolas

    2016-04-01

    Balancing nitrogen (N) budgets of agricultural systems is essential for sustaining yields at lower environmental costs. The knowledge, however, of total N budgets of agricultural systems including all N fluxes is still rare in the literature. Here, we applied a combination of monitoring in situ N fluxes and field 15N tracer and 15N isotope dilution techniques to investigate the effects of different N fertilizers (control, synthetic fertilizer, 60% synthetic fertilizer N plus 40% pig manure N, pig manure only applied at the same N rate 280 kg N ha-1 yr-1) on N pools, cycling processes, fluxes and total N balances in a subtropical wheat-maize rotation system of China. Nitrate leaching and NH3 volatilization were main hydrological and gaseous N loss pathways, respectively. The warm and wet maize season was associated with significantly larger environmental N losses than the cooler and drier wheat season. The field 15N tracing experiment showed that the wheat system had high N retention capacity (˜50% of 15N application) but with short residence time. I.e. 90% of soil residual 15N labelled fertilizer in the wheat system were utilized by plants or lost to the environment in the subsequent maize season. Our annual total N balances of the different treatments revealed that combined synthetic and organic fertilization or manure only maintained the same level of yields and led to significantly lower N losses and higher N retention, even though larger NH3 volatilization losses were caused by manure incorporation. Thus, our study suggests that a combination of synthetic and organic N fertilizers is suitable for sustaining agricultural productivity while reducing environmental N losses through fostering interactions between the soil C and N cycle.

  4. Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues.

    PubMed

    Bhatia, Poonam; Aureli, Federica; D'Amato, Marilena; Prakash, Ranjana; Cameotra, Swaranjit Singh; Nagaraja, Tejo Prakash; Cubadda, Francesco

    2013-09-01

    Cultivation of saprophytic fungi on selenium-rich substrates can be an effective means to produce selenium-fortified food. Pleurotus florida, an edible species of oyster mushrooms, was grown on wheat straw from the seleniferous belt of Punjab (India) and its potential to mobilize and accumulate selenium from the growth substrate was studied. Selenium concentration in biofortified mushrooms was 800 times higher compared with control samples grown on wheat straw from non selenium-rich areas (141 vs 0.17 μg Se g(-1) dry weight). Seventy-five percent of the selenium was extracted after in vitro simulated gastrointestinal digestion and investigation of the selenium molecular fractions by size exclusion HPLC-ICP-MS revealed that proteins and any other high molecular weight selenium-containing molecule were hydrolyzed to peptides and low molecular weight selenocompounds. Analysis of the gastrointestinal hydrolysates by anion exchange HPLC-ICP-MS showed that the bioaccessible selenium was mainly present as selenomethionine, a good bioavailable source of selenium, which accounted for 73% of the sum of the detected species. This study demonstrates the feasibility of producing selenium-biofortified edible mushrooms using selenium-rich agricultural by-products as growth substrates. The proposed approach can be used to evaluate whether selenium-contaminated plant waste materials harvested from high-selenium areas may be used to produce selenium-biofortified edible mushrooms based on the concentration, bioaccessibility and speciation of selenium in the mushrooms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Registration of ‘Endurance’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Endurance’ (Reg. No. CV-994, PI 639233) hard red winter wheat (Triticum aestivum L.) was released to certified seed growers with permission of the Oklahoma Agricultural Experiment Station and the USDA-ARS in 2004. Its name derives from the unique ability to endure and recover from extended and inte...

  6. A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region.

    PubMed

    Chawade, Aakash; Armoniené, Rita; Berg, Gunilla; Brazauskas, Gintaras; Frostgård, Gunilla; Geleta, Mulatu; Gorash, Andrii; Henriksson, Tina; Himanen, Kristiina; Ingver, Anne; Johansson, Eva; Jørgensen, Lise Nistrup; Koppel, Mati; Koppel, Reine; Makela, Pirjo; Ortiz, Rodomiro; Podyma, Wieslaw; Roitsch, Thomas; Ronis, Antanas; Svensson, Jan T; Vallenback, Pernilla; Weih, Martin

    2018-03-14

    The Baltic Sea is one of the largest brackish water bodies in the world. Eutrophication is a major concern in the Baltic Sea due to the leakage of nutrients to the sea with agriculture being the primary source. Wheat (Triticum aestivum L.) is the most widely grown crop in the countries surrounding the Baltic Sea and thus promoting sustainable agriculture practices for wheat cultivation will have a major impact on reducing pollution in the Baltic Sea. This approach requires identifying and addressing key challenges for sustainable wheat production in the region. Implementing new technologies for climate-friendly breeding and digital farming across all surrounding countries should promote sustainable intensification of agriculture in the region. In this review, we highlight major challenges for wheat cultivation in the Baltic Sea region and discuss various solutions integrating transnational collaboration for pre-breeding and technology sharing to accelerate development of low input wheat cultivars with improved host plant resistance to pathogen and enhanced adaptability to the changing climate. © 2018 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  7. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    PubMed

    Zhai, Shiyan; Song, Genxin; Qin, Yaochen; Ye, Xinyue; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  8. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach

    PubMed Central

    Qin, Yaochen; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention. PMID:28950027

  9. Allelopathy in agroecosystems: Wheat phytotoxicity and its possible roles in crop rotation.

    PubMed

    Lodhi, M A; Bilal, R; Malik, K A

    1987-08-01

    The germination rates of cotton and wheat seeds were significantly affected by various extracts of wheat mulch and soils collected from the wheat field. This toxicity was even more pronounced against seedling growth. Five allelochemics: ferulic,p-coumaric,p-OH benzoic, syringic, and vanillic acids, were identified from the wheat mulch and its associated soil. Quantitatively, ferulic acid was found at higher concentrations thanp-coumaric acid in the soil. Various concentrations of ferulic andp-coumaric acids were toxic to the growth of radish in a bioassay. The functional aspects of allelochemic transfer from decaying residue to soil and the subsequent microbial degradation within agroecosystems are discussed, particularly as they relate to wheat crop rotation, with wheat and cotton, in Pakistan.

  10. Revealing Pesticide Residues Under High Pesticide Stress in Taiwan's Agricultural Environment Probed by Fresh Honey Bee (Hymenoptera: Apidae) Pollen.

    PubMed

    Nai, Yu-Shin; Chen, Tsui-Yao; Chen, Yi-Cheng; Chen, Chun-Ting; Chen, Bor-Yann; Chen, Yue-Wen

    2017-10-01

    Significant pesticide residues are among the most serious problems for sustainable agriculture. In the beekeeping environment, pesticides not only impact a honey bee's survival, but they also contaminate bee products. Taiwan's agricultural environment has suffered from pesticide stress that was higher than that found in Europe and America. This study deciphered problems of pesticide residues in fresh honey bee pollen samples collected from 14 monitoring apiaries in Taiwan, which reflected significant contaminations within the honey bee population. In total, 155 pollen samples were screened for 232 pesticides, and 56 pesticides were detected. Among the residues, fluvalinate and chlorpyrifos showed the highest concentrations, followed by carbendazim, carbaryl, chlorfenapyr, imidacloprid, ethion, and flufenoxuron. The average frequency of pesticide residues detected in pollen samples was ca. 74.8%. The amounts and types of pesticides were higher in winter and in southwestern Taiwan. Moreover, five of these pollen samples were contaminated with 11-15 pesticides, with average levels between 1,560 and 6,390 μg/kg. Compared with the literature, this study emphasized that pollen gathered by honey bee was highly contaminated with more pesticides in Taiwan than in the America, France, and Spain. The ubiquity of pesticides in the pollen samples was likely due to the field applications of common pesticides. Recently, the Taiwanese government began to improve the pesticide policy. According to the resurvey data in 2016, there were reductions in several pesticide contamination parameters in pollen samples from west to southwest Taiwan. A long-term investigation of pollen pesticide residues should be conducted to inspect pesticides usage in Taiwan's agriculture. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. High spectral and spatial resolution hyperspectral imagery for quantifying Russian wheat aphid infestation in wheat using the constrained energy minimization classifier

    NASA Astrophysics Data System (ADS)

    Mirik, Mustafa; Ansley, R. James; Steddom, Karl; Rush, Charles M.; Michels, Gerald J.; Workneh, Fekede; Cui, Song; Elliott, Norman C.

    2014-01-01

    The effects of insect infestation in agricultural crops are of major ecological and economic interest because of reduced yield, increased cost of pest control and increased risk of environmental contamination from insecticide application. The Russian wheat aphid (RWA, Diuraphis noxia) is an insect pest that causes damage to wheat (Triticum aestivum L.). We proposed that concentrated RWA feeding areas, referred to as "hot spots," could be identified and isolated from uninfested areas within a field for site specific aphid management using remotely sensed data. Our objectives were to (1) investigate the reflectance characteristics of infested and uninfested wheat by RWA and (2) evaluate utility of airborne hyperspectral imagery with 1-m spatial resolution for detecting, quantifying, and mapping RWA infested areas in commercial winter wheat fields using the constrained energy minimization classifier. Percent surface reflectance from uninfested wheat was lower in the visible and higher in the near infrared portions of the spectrum when compared with RWA-infested wheat. The overall classification accuracies of >89% for damage detection were achieved. These results indicate that hyperspectral imagery can be effectively used for accurate detection and quantification of RWA infestation in wheat for site-specific aphid management.

  12. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    PubMed

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A Workshop Report on Wheat Genome Sequencing

    PubMed Central

    Gill, Bikram S.; Appels, Rudi; Botha-Oberholster, Anna-Maria; Buell, C. Robin; Bennetzen, Jeffrey L.; Chalhoub, Boulos; Chumley, Forrest; Dvořák, Jan; Iwanaga, Masaru; Keller, Beat; Li, Wanlong; McCombie, W. Richard; Ogihara, Yasunari; Quetier, Francis; Sasaki, Takuji

    2004-01-01

    Sponsored by the National Science Foundation and the U.S. Department of Agriculture, a wheat genome sequencing workshop was held November 10–11, 2003, in Washington, DC. It brought together 63 scientists of diverse research interests and institutions, including 45 from the United States and 18 from a dozen foreign countries (see list of participants at http://www.ksu.edu/igrow). The objectives of the workshop were to discuss the status of wheat genomics, obtain feedback from ongoing genome sequencing projects, and develop strategies for sequencing the wheat genome. The purpose of this report is to convey the information discussed at the workshop and provide the basis for an ongoing dialogue, bringing forth comments and suggestions from the genetics community. PMID:15514080

  14. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model.

    PubMed

    Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2018-08-01

    The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Residual efficacy of methoprene for control of Tribolium castaneum (Coleoptera: Tenebrionidae) larvae at different temperatures on varnished wood, concrete, and wheat.

    PubMed

    Wijayaratne, L K Wolly; Fields, Paul G; Arthur, Frank H

    2012-04-01

    The residual efficacy of the juvenile hormone analog methoprene (Diacon II) was evaluated in bioassays using larvae of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) exposed on unsealed concrete or varnished wood treated with a liquid formulation and held at different temperatures. When these two types of surfaces were stored at 20, 30 or 35 degrees C for 0-24 wk, the percentage of adult emergence on concrete increased with time. In contrast, there was no adult emergence from larvae exposed to varnished wood at 24 wk after treatment at any of these temperatures. The presence of flour reduced residual efficacy of methoprene on concrete, but not on varnished wood, with no differences between cleaning frequencies. Methoprene was also stable for 48 h on concrete held at 65 degrees C and wheat, Triticum aestivum L., held at 46 degrees C. Results show that methoprene is stable at a range of temperatures commonly encountered in indoor food storage facilities and at high temperatures attained during insecticidal heat treatments of structures. The residual persistence of methoprene applied to different surface substrates may be affected more by the substrate than by temperature.

  16. Registration of ‘Shirley’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Shirley’ (Reg. No. CV-, PI) soft red winter (SRW) wheat (Triticum aestivum L.) was developed by the Virginia Agricultural Experiment Station and released in March 2008. Shirley was derived from the three-way cross VA94-52-25 / ‘Coker 9835’ (PI 548846 PVPO) // VA96-54-234. Shirley is widely adapted ...

  17. Contribution of Crop Models to Adaptation in Wheat.

    PubMed

    Chenu, Karine; Porter, John Roy; Martre, Pierre; Basso, Bruno; Chapman, Scott Cameron; Ewert, Frank; Bindi, Marco; Asseng, Senthold

    2017-06-01

    With world population growing quickly, agriculture needs to produce more with fewer inputs while being environmentally friendly. In a context of changing environments, crop models are useful tools to simulate crop yields. Wheat (Triticum spp.) crop models have been evolving since the 1960s to translate processes related to crop growth and development into mathematical equations. These have been used over decades for agronomic purposes, and have more recently incorporated advances in the modeling of environmental footprints, biotic constraints, trait and gene effects, climate change impact, and the upscaling of global change impacts. This review outlines the potential and limitations of modern wheat crop models in assisting agronomists, breeders, and policymakers to address the current and future challenges facing agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Global wheat production potentials and management flexibility under the representative concentration pathways

    NASA Astrophysics Data System (ADS)

    Balkovic, Juraj; van der Velde, Marijn; Skalsky, Rastislav; Xiong, Wei; Folberth, Christian; Khabarov, Nikolay; Smirnov, Alexey

    2014-05-01

    Global wheat production is strongly linked with food security as wheat is one of the main sources of human nutrition. Increasing or stabilizing wheat yields in response to climate change is therefore imperative. To do so will require agricultural management interventions that have different levels of flexibility at regional level. Climate change is expected to worsen wheat growing conditions in many places and thus negatively impact on future management opportunities for sustainable intensification. We quantified, in a spatially explicit manner, global wheat yield developments under the envelope of Representative Concentration Pathways (RCP 2.6, 4.5, 6.0 and 8.5) under current and alternative fertilization and irrigation management to estimate future flexibility to cope with climate change impacts. A large-scale implementation of the EPIC model was integrated with the most recent information on global wheat cultivation currently available, and it was used to simulate regional and global wheat yields and production under historical climate and the RCP-driven and bias-corrected HadGEM2-ES climate projections. Fertilization and irrigation management scenarios were designed to project actual and exploitable (under current irrigation infrastructure) yields as well as the climate- and water-limited yield potentials. With current nutrient and water management, and across all RCPs, the global wheat production at the end of the century decreased from 50 to 100 Mt - with RCP2.6 having the lowest and RCP8.5 the highest impact. Despite the decrease in global wheat production potential on current cropland, the exploitable and climatic production gap of respectively 350 and 580 Mt indicates a considerable flexibility to counteract negative climate change impacts across all RCPs. Agricultural management could increase global wheat production by approximately 30% through intensified fertilization and 50% through improved fertilization and extended irrigation if nutrients or water

  19. Carbon dioxide and water vapor fluxes of winter wheat and tallgrass prairie ecosystems

    USDA-ARS?s Scientific Manuscript database

    Winter wheat (Triticum aestivum L.) and tallgrass prairie are common land cover types in the Southern Plains of the United States. In recent years, agricultural expansion into native grasslands has been extensive, particularly either managed pasture or dryland crops such as wheat. In this study, we ...

  20. From early farmers to Norman Borlaug - the making of modern wheat.

    PubMed

    Vergauwen, David; De Smet, Ive

    2017-09-11

    If we wander through the countryside, passing fields of wheat, it is apparent that this crop is reasonably short in stature and that the stems carry large ears. However, this was not always the case. If we take a look at depictions of wheat throughout history, we observe that wheat used to be fairly tall. It was not until the second half of the 20 th century that dwarf wheat varieties started to dominate the agricultural landscape. Underlying this short stature are the Reduced height (Rht) genes, which encode DELLA proteins and which formed the cornerstone of the Green Revolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ethiopian Wheat Yield and Yield Gap Estimation: A Spatial Small Area Integrated Data Approach

    NASA Astrophysics Data System (ADS)

    Mann, M.; Warner, J.

    2015-12-01

    Despite the collection of routine annual agricultural surveys and significant advances in GIS and remote sensing products, little econometric research has been undertaken in predicting developing nation's agricultural yields. In this paper, we explore the determinants of wheat output per hectare in Ethiopia during the 2011-2013 Meher crop seasons aggregated to the woreda administrative area. Using a panel data approach, combining national agricultural field surveys with relevant GIS and remote sensing products, the model explains nearly 40% of the total variation in wheat output per hectare across the country. The model also identifies specific contributors to wheat yields that include farm management techniques (eg. area planted, improved seed, fertilizer, irrigation), weather (eg. rainfall), water availability (vegetation and moisture deficit indexes) and policy intervention. Our findings suggest that woredas produce between 9.8 and 86.5% of their potential wheat output per hectare given their altitude, weather conditions, terrain, and plant health. At the median, Amhara, Oromiya, SNNP, and Tigray produce 48.6, 51.5, 49.7, and 61.3% of their local attainable yields, respectively. This research has a broad range of applications, especially from a public policy perspective: identifying causes of yield fluctuations, remotely evaluating larger agricultural intervention packages, and analyzing relative yield potential. Overall, the combination of field surveys with spatial data can be used to identify management priorities for improving production at a variety of administrative levels.

  2. Hydrothermal pretreatment of several lignocellulosic mixtures containing wheat straw and two hardwood residues available in Southern Europe.

    PubMed

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work studied the processing of biomass mixtures containing three lignocellulosic materials largely available in Southern Europe, eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP). The mixtures were chemically characterized, and their pretreatment, by autohydrolysis, evaluated within a severity factor (logR0) ranging from 1.73 up to 4.24. A simple modeling strategy was used to optimize the autohydrolysis conditions based on the chemical characterization of the liquid fraction. The solid fraction was characterized to quantify the polysaccharide and lignin content. The pretreatment conditions for maximal saccharides recovery in the liquid fraction were at a severity range (logR0) of 3.65-3.72, independently of the mixture tested, which suggests that autohydrolysis can effectively process mixtures of lignocellulosic materials for further biochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering.

    PubMed

    Zhao, Xinqing; Xiong, Liang; Zhang, Mingming; Bai, Fengwu

    2016-09-01

    Production of fuel ethanol from lignocellulosic feedstocks such as agricultural and forestry residues is receiving increasing attention due to the unsustainable supply of fossil fuels. Three key challenges include high cellulase production cost, toxicity of the cellulosic hydrolysate to microbial strains, and poor ability of fermenting microorganisms to utilize certain fermentable sugars in the hydrolysate. In this article, studies on searching of natural microbial strains for production of unique cellulase for biorefinery of agricultural and forestry wastes, as well as development of strains for improved cellulase production were reviewed. In addition, progress in the construction of yeast strains with improved stress tolerance and the capability to fully utilize xylose and glucose in the cellulosic hydrolysate was also summarized. With the superior microbial strains for high titer cellulase production and efficient utilization of all fermentable sugars in the hydrolysate, economic biofuels production from agricultural residues and forestry wastes can be realized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Assessment of agroforestry residue potentials for the bioeconomy in the European Union.

    PubMed

    Thorenz, Andrea; Wietschel, Lars; Stindt, Dennis; Tuma, Axel

    2018-03-01

    The biobased chemical industry is characterised by strong growth. Innovative products and materials such as biopolymers have been developed, and current European demand for biopolymers exceeds the domestic supply. Agroforestry residues can serve as main sources of the basic building blocks for chemicals and materials. This work assesses sustainably available agroforestry residues to feed a high added-value materials and product bioeconomy. To evaluate bioeconomic potential, a structured three-step approach is applied. Cultivation practices, sustainability issues, legislative restrictions, technical limitations and competitive applications are considered. All data regarding bioeconomic potential are processed on a regional level and mapped by ArcGIS. Our results identify wheat straw as the most promising source in the agricultural sector, followed by maize stover, barley straw and rape straw, which all contain a total concentration of lignocellulose of more than 80% of dry matter. In the forestry sector, residue bark from two coniferous species, spruce and pine, is the most promising source, with approximately 70% lignocellulose. Additionally, coniferous bark contains considerable amounts of tannin, which has attracted increasing interest for industrial utilisation. A sensitivity analysis concerning removal rates, residue-to-crop ratios, changes in farming technologies and competing applications is applied at the end of the study to consolidate our results.

  5. Registration of ‘Shirley’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Shirley’ (Reg. No. CV-1039, PI 656753) soft red winter (SRW) wheat (Triticum aestivum L.), developed and tested as VA03W-409 by the Virginia Agricultural Experiment Station, was released in March 2008. Shirley was derived from the three-way cross VA94-52-25/‘Coker 9835’//VA96-54-234. Shirley is wid...

  6. Biophysical parameters in a wheat producer region in southern Brazil

    NASA Astrophysics Data System (ADS)

    Leivas, Janice F.; de C. Teixeira, Antonio Heriberto; Andrade, Ricardo G.; de C. Victoria, Daniel; Bolfe, Edson L.; Cruz, Caroline R.

    2014-10-01

    Wheat (Triticum aestivum) is the second most produced cereal in the world, and has major importance in the global agricultural economy. Brazil is a large producer of wheat, especially the Rio Grande do Sul state, located in the south of the country. The purpose of this study was to analyze the estimation of biophysical parameters - evapotranspiration (ET), biomass (BIO) and water productivity (WP) - from satellite images of the municipalities with large areas planted with wheat in Rio Grande do Sul (RS). The evapotranspiration rate was obtained using the SAFER Model (Simple Algorithm for Retrieving Evapotranspiration) on MODIS (Moderate Resolution Imaging Spectroradiometer) images taken in the agricultural year 2012. In order to obtain biomass and water productivity rates we applied the Monteith model and the ratio between BIO and ET. In the beginning of the cycle (the planting period) we observed low values for ET, BIO and WP. During the development period, we observed an increase in the values of the parameters and decline at the end of the cycle, for the period of the wheat harvest. The SAFER model proved effective for estimating the biophysical parameters evapotranspiration, biomass production and water productivity in areas planted with wheat in Brazilian Southern. The methodology can be used for monitoring the crops' water conditions and biomass using satellite images, assisting in estimates of productivity and crop yield. The results may assist the understanding of biophysical properties of important agro-ecosystems, like wheat crop, and are important to improve the rational use of water resources.

  7. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review.

    PubMed

    Väisänen, Taneli; Haapala, Antti; Lappalainen, Reijo; Tomppo, Laura

    2016-08-01

    Natural fiber-polymer composites (NFPCs) are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residues from the industrial and agricultural processes are still underutilized as low-value energy sources. Organic materials are commonly disposed of or subjected to the traditional waste management methods, such as landfilling, composting or anaerobic digestion. The use of organic waste and residue materials in NFPCs represents an ecologically friendly and a substantially higher value alternative. This is a comprehensive review examining how organic waste and residues could be utilized in the future as reinforcements or additives for NFPCs from the perspective of the recently reported work in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 40 CFR 180.227 - Dicamba; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... herbicide dicamba, 3,6-dichloro-o-anisic acid, including its metabolites and degradates, in or on the... Wheat, straw 30.0 (2) Tolerances are established for residues of the herbicide dicamba, 3,6-dichloro-o... residues of the herbicide dicamba, 3,6-dichloro-o-anisic acid, including its metabolites and degradates, in...

  9. Investigating the effect of previous treatments on wheat biomass over multiple spatial frequencies

    NASA Astrophysics Data System (ADS)

    Milne, A. E.; Castellanos, M. T.; Cartagena, M. C.; Tarquis, A. M.; Lark, R. M.

    2010-09-01

    In this study we use the maximum overlap discrete packet transform (MODWPT) to investigate residual effects on wheat biomass of fertigation treatments applied to a previous crop. The wheat crop covered nine subplots from a previous experiment on melon response to fertigation. Each subplot had previously received a different level of applied nitrogen. Many factors affect wheat biomass, causing it to vary at different spatial frequencies. We hypothesize that these will include residual effects from fertilizer application (at relatively low spatial frequencies) and the local influence of individual plants from the previous melon crop (at high frequency). To test this hypothesis we use the MODWPT to identify the dominant spatial frequencies of wheat biomass variation, and analyse the relationship to both the previous fertilizer application and the location of individual melon plants in the previous crop. The MODWPT is particularly appropriate for this because it allows us first to identify the key spatial frequencies in the wheat biomass objectively and to analyse them, and their relationship to hypothesized driving factors without any assumptions of uniformity (stationarity) of wheat-biomass variation. The results showed that the applied nitrogen dominated the wheat biomass response, and that there was a noticeable component of wheat-biomass variation at the spatial frequency that corresponds to the melon cropping. We expected wheat biomass to be negatively correlated with the position of melons in the previous crop, due to uptake of the applied nitrogen. The MODWPT, which allows us to detect changes in correlation between variables at different frequencies, showed that such a relationship was found across part of the experiment but not uniformly.

  10. Agricultural residues and energy crops as potentially economical and novel substrates for microbial production of butanol (a biofuel)

    USDA-ARS?s Scientific Manuscript database

    This review describes production of acetone butanol ethanol (ABE) from a variety of agricultural residues and energy crops employing biochemical or fermentation processes. A number of organisms are available for this bioconversion including Clostridium beijerinckii P260, C. beijerinckii BA101, C. a...

  11. A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for chlorpyrifos residue determination in Chinese agricultural smaples

    USDA-ARS?s Scientific Manuscript database

    A monoclonal antibody-based competitive antibody-coated enzyme-linked immunosorbent assay (ELISA) was developed and optimized for determining chlorpyrifos residue in agricultural products. The IC50 and IC10 of this ELISA were 3.3 ng/mL and 0.1 ng/mL respectively. The average recoveries recovery rate...

  12. Emission factors of atmospheric and climatic pollutants from crop residues burning.

    PubMed

    Santiago-De La Rosa, Naxieli; González-Cardoso, Griselda; Figueroa-Lara, José de Jesús; Gutiérrez-Arzaluz, Mirella; Octaviano-Villasana, Claudia; Ramírez-Hernández, Irma Fabiola; Mugica-Álvarez, Violeta

    2018-04-13

    Biomass burning is a common agricultural practice, because it allows elimination of postharvesting residues; nevertheless, it involves an inefficient combustion process that generates atmospheric pollutants emission, which has implications on health and climate change. This work focuses on the estimation of emission factors (EFs) of PM 2.5 , PM 10 , organic carbon (OC), elemental carbon (EC), carbon monoxide (CO), carbon dioxide (CO 2 ), and methane (CH 4 ) of residues from burning alfalfa, barley, beans, cotton, maize, rice, sorghum, and wheat in Mexico. Chemical characteristics of the residues were determined to establish their relationship with EFs, as well as with the modified combustion efficiency (MCE). Essays were carried out in an open combustion chamber with isokinetic sampling, following modified EPA 201-A method. EFs did not present statistical differences among different varieties of the same crop, but were statistically different among different crops, showing that generic values of EFs for all the agricultural residues can introduce significant uncertainties when used for climatic and atmospheric pollutant inventories. EFs of PM 2.5 ranged from 1.19 to 11.30 g kg -1 , and of PM 10 from 1.77 to 21.56 g kg -1 . EFs of EC correlated with lignin content, whereas EFs of OC correlated inversely with carbon content. EFs of EC and OC in PM 2.5 ranged from 0.15 to 0.41 g kg -1 and from 0.33 to 5.29 g kg -1 , respectively, and in PM 10 , from 0.17 to 0.43 g kg -1 and from 0.54 to 11.06 g kg -1 . CO 2 represented the largest gaseous emissions volume with 1053.35-1850.82 g kg -1 , whereas the lowest was CH 4 with 1.61-5.59 g kg -1 . CO ranged from 28.85 to 155.71 g kg -1 , correlating inversely with carbon content and MCE. EFs were used to calculate emissions from eight agricultural residues burning in the country during 2016, to know the potential mitigation of climatic and atmospheric pollutants, provided this practice was banned. The emission factors

  13. What Will Be the Benefits of Biotech Wheat for European Agriculture?

    PubMed

    Ricroch, Agnès E

    2017-01-01

    In European countries, wheat occupies the largest crop area with high yielding production. France, a major producer and exporter in Europe, ranks the fifth producer worldwide. Biotic stresses are European farmers' major challenges (fungal and viral diseases, and insect pests) followed by abiotic ones such as drought and grain protein composition. During the last 40 years, 1136 scientific articles on biotech wheat were published by USA followed by China, Australia, Canada, and European Union with the UK. European research focuses on pests and diseases resistances using widely marker-assisted selection (MAS). Transgenesis is used in basic research to develop resistance against some fungi (Fusarium head blight) while RNA interference (RNAi) silencing is used against some fungi and virus. Transgenic plants were also transformed with genes from various species for drought tolerance. The UK (mostly with transgenesis and site-specific nucleases) and France (with no transgenic tools but with MAS and site-specific nucleases) are the main countries carrying out research programs for both biotic stress and drought tolerance. Thus, few European countries used transgenesis for gluten protein composition and RNAi-mediated silencing in celiac disease. Because of vandalism field trials of transgenics dropped since 2000. No transgenic wheat is cultivated in Europe for political reasons.

  14. Urease activity as an index for assessing the maturity of cow manure and wheat residue vermicomposts.

    PubMed

    Sudkolai, Saber Tayebi; Nourbakhsh, Farshid

    2017-06-01

    The establishment of a reliable index is an essential need to assess the degree of stability and maturity of solid wastes vermicomposts. The objective of this study was to investigate the effects of vermicomposting process on some chemical (pH, EC, OC, TN, lignin and C:N ratio) and biochemical properties of the cow manure (CM) and wheat residue (WR). Results demonstrated that during vermicomposting process of CM and WR urease activity was highly correlated with the time of vermicomposting (r=-0.97 ∗∗ for CM and r=-0.99 ∗∗ for WR), and well able to show the stability of organic waste. The urease activity showed significant correlations with the C:N ratio during the vermicomposting of CM and WR (r=0.89 ∗ and r=0.93 ∗∗ respectively) therefore it can be considered as a reliable indicator for determining the maturity and stability of organic wastes during vermicomposting process. Copyright © 2017. Published by Elsevier Ltd.

  15. An asparagine residue at the N-terminus affects the maturation process of low molecular weight glutenin subunits of wheat endosperm

    PubMed Central

    2014-01-01

    Background Wheat glutenin polymers are made up of two main subunit types, the high- (HMW-GS) and low- (LMW-GS) molecular weight subunits. These latter are represented by heterogeneous proteins. The most common, based on the first amino acid of the mature sequence, are known as LMW-m and LMW-s types. The mature sequences differ as a consequence of three extra amino acids (MET-) at the N-terminus of LMW-m types. The nucleotide sequences of their encoding genes are, however, nearly identical, so that the relationship between gene and protein sequences is difficult to ascertain. It has been hypothesized that the presence of an asparagine residue in position 23 of the complete coding sequence for the LMW-s type might account for the observed three-residue shortened sequence, as a consequence of cleavage at the asparagine by an asparaginyl endopeptidase. Results We performed site-directed mutagenesis of a LMW-s gene to replace asparagine at position 23 with threonine and thus convert it to a candidate LMW-m type gene. Similarly, a candidate LMW-m type gene was mutated at position 23 to replace threonine with asparagine. Next, we produced transgenic durum wheat (cultivar Svevo) lines by introducing the mutated versions of the LMW-m and LMW-s genes, along with the wild type counterpart of the LMW-m gene. Proteomic comparisons between the transgenic and null segregant plants enabled identification of transgenic proteins by mass spectrometry analyses and Edman N-terminal sequencing. Conclusions Our results show that the formation of LMW-s type relies on the presence of an asparagine residue close to the N-terminus generated by signal peptide cleavage, and that LMW-GS can be quantitatively processed most likely by vacuolar asparaginyl endoproteases, suggesting that those accumulated in the vacuole are not sequestered into stable aggregates that would hinder the action of proteolytic enzymes. Rather, whatever is the mechanism of glutenin polymer transport to the vacuole, the

  16. [An experimental proficiency test for ability to screen 104 residual pesticides in agricultural products].

    PubMed

    Tsumura, Yukari; Ishimitsu, Susumu; Otaki, Kayo; Uchimi, Hiroyuki; Matsumoto, Nobuyuki; Daba, Masaki; Tsuchiya, Tetsu; Ukyo, Masaho; Tonogai, Yasuhide

    2003-10-01

    An experimental proficiency test program for ability to screen 104 residual pesticides in agricultural products has been conducted. Eight Japanese laboratories joined the program. Items tested in the present study were limit of detection, internal proficiency test (self spike) and external proficiency test (blind spike). All 104 pesticides were well detected and recovered from agricultural foods in the internal proficiency test. However, the results of the external proficiency test did not completely agree with those of the internal proficiency tests. After 5 rounds of the blind spike test, the ratio of the number of correctly detected pesticides to that of actually contained ones (49 total) ranged from 65% to 100% among laboratories. The numbers of mistakenly detected pesticides by a laboratory were 0 to 15. Thus, there was a great difference among the laboratories in the ability to screen multiresidual pesticides.

  17. Agricultural management affects below ground carbon input estimations

    NASA Astrophysics Data System (ADS)

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Mayer, Jochen

    2017-04-01

    Root biomass and rhizodeposition carbon (C release by living roots) are among the most relevant root parameters for studies of plant response to environmental change, soil C modelling or estimations of soil C sequestration. Below ground C inputs of agricultural crops are typically estimated from above ground biomass or yield, thereby implying constant below to above ground C ratios. Agricultural management practices affect above ground biomass considerably; however, their effects on below ground C inputs are only poorly understood. Our aims were therefore to (i) quantify root biomass C and rhizodeposition C of maize and wheat grown in agricultural management systems with different fertilization intensities and (ii) determine management effects on below/above ground C ratios and vertical distribution of below ground C inputs into soil. We conducted a comprehensive field study on two Swiss long-term field trials, DOK (Basel) and ZOFE (Zurich), with silage (DOK) and grain (ZOFE) maize in 2013 and winter wheat in 2014 (ZOFE) and 2015 (DOK). Three treatments in DOK (2 bio-organic, 1 mixed conventional) and 4 treatments in ZOFE (1 without, 1 manure, 2 mineral fertilization) reflected increasing fertilization intensities. In each of 4 replicated field plots per treatment, one microplot (steel tube of 0.5m depth) was inserted into soil, covering an area of 0.1m2. The microplot plants were pulse-labelled with 13C-CO2 in weekly intervals throughout the respective growing season. After harvest, the microplot soil was sampled in three soil depths (0 - 0.25, 0.25 - 0.5, 0.5 - 0.75m), roots were separated from soil by picking and wet sieving, and root and soil samples were analysed for their δ13C values by IRMS. Carbon rhizodeposition was calculated from 13C-excess values in bulk soil and roots. (i) Average root biomasses of maize and wheat were 1.9 and 1.4 tha 1, respectively, in DOK and 0.9 and 1.1 tha 1, respectively, in ZOFE. Average amounts of C rhizodeposition of maize

  18. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.

    PubMed

    Bharathiraja, S; Suriya, J; Krishnan, M; Manivasagan, P; Kim, S-K

    Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually. © 2017 Elsevier Inc. All rights reserved.

  19. Effects of herbicide applications in wheat fields

    PubMed Central

    Varshney, Sugandha; Hayat, Shamshul; Alyemeni, Mohammed Nasser; Ahmad, Aqil

    2012-01-01

    The present review encompasses the physiological and yield constraints of herbicide applications with special reference to wheat productivity. Post-independence lagging of Indian agriculture to feed its population led to haphazard use of chemical pesticides and weedicides which deteriorated the productivity pay-off particularly of wheat and rice. Past some decades witnessed the potential use of certain phytohormones in augmenting abiotic stress to get rid of yield gap and productivity constraints. We summed up with reviewing the potential role of these natural regulators in overcoming above mentioned drawbacks to substitute or to integrate these chemicals with the use of plant hormones. PMID:22516826

  20. Registration of 'Norden' hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Grain yield, protein content, and straw strength are the three primary traits that growers consider when selecting wheat cultivars in the Red River Valley region of Minnesota and North Dakota. ‘Norden’ (PI 665250) was released by the University of Minnesota Agricultural Experiment Station in 2012 b...

  1. FEASIBILITY STUDY TO PRODUCE BIODIESEL FROM LOW COST OILS AND NEW CATALYSTS DERIVED FROM AGRICULTURAL & FORESTRY RESIDUES - PHASE I

    EPA Science Inventory

    This research will develop and demonstrate the feasibility of preparing reusable and recoverable solid, porous acid and base catalysts for biodiesel production using activated carbon generated from agricultural and forestry residues (i.e., a sustainable biomass).  These ne...

  2. Wheat glutenin: the "tail" of the 1By protein subunits.

    PubMed

    Nunes-Miranda, Júlio D; Bancel, Emmanuelle; Viala, Didier; Chambon, Christophe; Capelo, José L; Branlard, Gérard; Ravel, Catherine; Igrejas, Gilberto

    2017-10-03

    Gluten-forming storage proteins play a major role in the viscoelastic properties of wheat dough through the formation of a continuous proteinaceous network. The high-molecular-weight glutenin subunits represent a functionally important subgroup of gluten proteins by promoting the formation of large glutenin polymers through interchain disulphide bonds between glutenin subunits. Here, we present evidences that y-type glutenin subunits encoded at the Glu-B1 locus are prone to proteolytic processing at the C-terminus tail, leading to the loss of the unique cysteine residue present at the C-terminal domain. Results obtained by intact mass measurement and immunochemistry for each proteoform indicate that the proteolytic cleavage appears to occur at the carboxyl-side of two conserved asparagine residues at the C-terminal domain start. Hence, we hypothesize that the responsible enzymes are a class of cysteine endopeptidases - asparaginyl endopeptidases - described in post-translational processing of other storage proteins in wheat. Biological significance The reported study provides new insights into wheat storage protein maturation. In view of the importance of gluten proteins on dough viscoelastic properties and end-product quality, the reported C-terminal domain cleavage of high-molecular-weight glutenin subunits is of particular interest, since this domain possesses a unique conserved cysteine residue which is assumed to participate in gluten polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Climate Change Impact Assessment for Wheat and Rice Productivity, Haryana, India

    NASA Astrophysics Data System (ADS)

    Rana, M.; Singh, K. K.; Kumari, N.

    2017-12-01

    Agriculture presents a core of the India Economy and provides food and livelihood activities to much of the Indian population. However, the changing climate is putting challenges to agriculture. The mean temperature in India is increased by 0.1-0.3 degC in Kharif and 0.3-0.7 degC during rabi by 2010, and projected to further increase by 0.4-0.2 degC during Kharif and to 1.1-4.5degC in rabi by 2070. Similarly mean rainfall is projected to increase up to 10% during kharif and rabi by 2070.At same time, there is an increased possibility of climate extremes, such as the timing of onset of monsoon, intensities and frequency of floods and droughts (S.A. Khan et al.,2009).In addition, the rapid population growth at a rate of 1.2% per annum, expected to reach 1.53 billion by the end of 2030; is also a critical issue of this century. Keeping in mind the above facts, this study is carried out in one of major agriculture state in India. The related field data collected from the ongoing experiments in agriculture universities/institutes in the respective state and observed weather data from India Meteorological Dept.(IMD), New Delhi and future climate scenarios data from India Institute of Tropical Meteorology(IITM). Validated CERES Wheat and Rice model embedded in DSSATv4.6 used for simulating the climate change impacts. The yield simulations of crop models were obtained separately for baseline and future data The simulation result indicates significant impact of climate change on both wheat and rice yield. The reason for same attributed to increase in temperature that majorly impact rabi wheat and extreme weather events for Kharif rice. Keywords: Climate Change, CERES Rice-Wheat, Yield, Validation

  4. Assessing wheat yield, Biomass, and water productivity responses to growth stage based irrigation water allocation

    USDA-ARS?s Scientific Manuscript database

    Increasing irrigated wheat yields is important to the overall profitability of limited-irrigation cropping systems in western Kansas. A simulation study was conducted to (1) validate APSIM's (Agricultural Production Systems sIMulator) ability to simulate wheat growth and yield in Kansas, and (2) app...

  5. Registration of ‘3434’ Wheat

    USDA-ARS?s Scientific Manuscript database

    The soft red winter (SRW) wheat (Triticum aestivum L.) cultivar ‘3434’ (Reg. No. CV-, PI) was developed by the Virginia Agricultural Experiment Station and released in March 2008. Cultivar 3434 was derived from the three-way cross ‘Roane’ (PI 612958) / ’Coker 9835’ (PI 548846 PVPO) // VA96W-270. Cul...

  6. Oxidation in Acidic Medium of Lignins from Agricultural Residues

    NASA Astrophysics Data System (ADS)

    Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto

    Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

  7. Electron beam agrobionanotechnologies for agriculture and food industry enabled by electron accelerators

    NASA Astrophysics Data System (ADS)

    Pavlov, Y. S.; Revina, A. A.; Souvorova, O. V.; Voropaeva, N. L.; Chekmar, D. V.; Abkhalimov, E. V.; Zavyalov, M. A.; Filippovich, V. P.

    2017-12-01

    Electron beam (EB) radiation technologies have been employed to increase efficiency of biologically active nanochips developed for agricultural plants seed pre-treatment with purpose of enhancing crop yield and productivity. Iron-containing nanoparticles (NPs), synthesized in reverse micelles following known radiation-chemical technique, have served as a multifunctional biologically active and phytosanitary substance of the chips. Porous chip carriers activation has been performed by EB ionization (doze 20kGy) of the active carbons (AC) prepared from agricultural waste and by-products: Jerusalem artichoke (Helianthus tuberosus) straw, rape (Brassica napus L. ssp. oleifera Metzg) straw, camelina (Camelina sativa (L.) Crantz) straw, wheat (Triticum aestivum) straw. Three methods, UV-VIS spectrophotometry, Electron Paramagnetic Resonance (EPR) spectroscopy, cyclic voltammetry (CV) have been used for process control and characterization of radiation-activated and NPs-modified ACs. The results show a notable effect of ACs activation by electron beam radiation, evidenced by FeNPs-adsorption capacity increase. Studies of the impact of Fe NPs-containing nanochip technology on enhancement of seeds germination rate and seedlings vigour suggest that reported electron beam radiation treatment techniques of the ACs from selected agricultural residues may be advantageous for industrial application.

  8. Studies on adsorption of phenol from wastewater by agricultural waste.

    PubMed

    Girish, C R; Ramachandramurty, V

    2013-07-01

    In this paper, preliminary investigation of various agricultural wastes-Rice mill residue (RM), Wheat mill reside (WM), Dall mill residue (DM) and the Banana peels (BM) was carried out to study their ability to be used as adsorbents for phenol-removal from wastewater. This study reports the feasibility of employing dal mill residue waste (DM) as an adsorbent for removing phenol from wastewater. The performance of DM was compared with the commercially available activated carbon (CAC). Batch mode experiments were conducted with activated DM to study the effects of initial concentration of phenol, pH and the temperature of aqueous solution on adsorption. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models and the isotherm data fitted well to the Freundlich isotherm with monolayer adsorption capacity of 6.189 mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first order and pseudo-second- order equation. The experimental data fitted very well with the pseudo-first-order kinetic model. The FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of phenol. Finally, the DM was found to be a promising adsorbent for phenol adsorption as compared to activated carbon.

  9. A Phenology-based Method For Identifying the Planting Fraction of Winter Wheat Using Moderate-resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Dong, J.; Liu, W.; Han, W.; Lei, T.; Xia, J.; Yuan, W.

    2017-12-01

    Winter wheat is a staple food crop for most of the world's population, and the area and spatial distribution of winter wheat are key elements in estimating crop production and ensuring food security. However, winter wheat planting areas contain substantial spatial heterogeneity with mixed pixels for coarse- and moderate-resolution satellite data, leading to significant errors in crop acreage estimation. This study has developed a phenology-based approach using moderate-resolution satellite data to estimate sub-pixel planting fractions of winter wheat. Based on unmanned aerial vehicle (UAV) observations, the unique characteristics of winter wheat with high vegetation index values at the heading stage (May) and low values at the harvest stage (June) were investigated. The differences in vegetation index between heading and harvest stages increased with the planting fraction of winter wheat, and therefore the planting fractions were estimated by comparing the NDVI differences of a given pixel with those of predetermined pure winter wheat and non-winter wheat pixels. This approach was evaluated using aerial images and agricultural statistical data in an intensive agricultural region, Shandong Province in North China. The method explained 60% and 85% of the spatial variation in county- and municipal-level statistical data, respectively. More importantly, the predetermined pure winter wheat and non-winter wheat pixels can be automatically identified using MODIS data according to their NDVI differences, which strengthens the potential to use this method at regional and global scales without any field observations as references.

  10. Development of an Intermediate-Scale Aerobic Bioreactor to Regenerate Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Finger, Barry W.; Strayer, Richard F.

    1994-01-01

    Three Intermediate-Scale Aerobic Bioreactors were designed, fabricated, and operated. They utilized mixed microbial communities to bio-degrade plant residues. The continuously stirred tank reactors operated at a working volume of 8 L, and the average oxygen mass transfer coefficient, k(sub L)a, was 0.01 s(exp -1). Mixing time was 35 s. An experiment using inedible wheat residues, a replenishment rate of 0.125/day, and a solids loading rate of 20 gdw/day yielded a 48% reduction in biomass. Bioreactor effluent was successfully used to regenerate a wheat hydroponic nutrient solution. Over 80% of available potassium, calcium, and other minerals were recovered and recycled in the 76-day wheat growth experiment.

  11. Heavy Metal Contents of Soils, Durum and Bread Wheats in Harran Plain, Southeast Turkey

    NASA Astrophysics Data System (ADS)

    Büyükkılıç Yanardaǧ, Asuman

    2013-04-01

    Soils are vital for regulating the biological effects and mobility of metals in nature. Iron and zinc are some of the essential nutrients for plants and animals, while other metals are potentially toxic such as lead and cadmium. Toxic heavy metals (HMs) can be taken up easily by organisms. HMs inputs to soil via the application of metal-contained fertilizers often exceed outputs in crops and drainage waters, thus toxic HMs content in many agricultural soils tends to be gradually increasing. Thus adverse human health effects due to soil-plant and plant-human transfer of HMs have been enhanced. HMs may cause harmful effects on human health due to the ingestion of food grain grown in soils. The objectives of this study were (1) to understand the chemistry of metals in soils for managing their agricultural and ecological impacts, (2) to identify metal uptakes of different genotypes of wheat. Concentrations of HMs (Cd, Zn, Ni, Mn, Cu, Mo, Pb) in wheat were investigated in different agricultural areas in Southeast, Turkey. The results showed that concentrations of HMs were in following order: Mn>Ni>Zn>Cu>Pb>Mo>Cd in surface and next to surface soil and Mn>Zn>Cu>Pb> Ni>Mo>Cd in wheat, respectively. HMs concentrations of several soil samples exceeded the permissible limits of Europe standard except for Ni and Mn. In addition, concentration of Cd, Zn, Cu, and Pb were higher in bread wheat than in durum wheat; however, concentration of Mn, Ni and Mo were higher in durum wheat than in bread wheat. Unusual amount of heavy metals found in some fertilizers used in the Southeast region of Turkey, it becomes an important subject to determine the amount of metals added to the soil every year. Heavy metals uptake by plants still remains to be an interest for researchers. As the heavy metals contents of plants were below the threshold levels, we conclude that the quality of wheat is high and it should receive attention in national and international markets. Keywords: Heavy Metals

  12. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China

    PubMed Central

    Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981–2014 and detailed observed data of spring wheat from 1981–2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological

  13. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    PubMed

    Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological

  14. High spectral and spatial resolution hyperspectral imagery for quantifying Russian wheat aphid infestation in wheat using the constrained energy minimization classifier

    USDA-ARS?s Scientific Manuscript database

    The effects of insect infestation in agricultural crops are of major ecological and economic interest because of reduced yield, increased cost of pest control, and increased risk of environmental contamination from insecticide application. The Russian wheat aphid (RWA, Diuraphis noxia) is an insect...

  15. Registration of ‘3434’ Wheat

    USDA-ARS?s Scientific Manuscript database

    Soft red winter (SRW) wheat (Triticum aestivum L.) cultivar 3434 (Reg. No. CV-1040, PI 656754) developed and tested as VA03W-434 by the Virginia Agricultural Experiment Station was released in March 2008. Cultivar 3434 was derived from the three-way cross ‘Roane’/‘Coker 9835’//VA96W-270. Cultivar 34...

  16. Potential for the use of germinated wheat and soybeans to enhance human nutrition.

    PubMed

    Finney, P L

    1978-01-01

    Wheat and soybeans are the major agricultural exports of the United States. The U.S. sells more of each crop than any other nation. Soybeans are the main staple in China, but the U.S. sells more soybeans than China grows. For hundreds of millions of other people, wheat is the main staple. And yet, most Americans eat whole grains of neither wheat nor soybeans. In the United States, many nutrients of wheat and soybeans are lost in processing or are fed to animals. A highly significant share of the wheat nutrients are lost from the main foodstream when the germ and bran (with aleurone) portions are separated. Whole soybeans are carefully processed for food by only a handful of Americans.

  17. Carbon dioxide, methane, and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature

    NASA Astrophysics Data System (ADS)

    Zou, Jianwen; Huang, Yao; Zong, Lianggang; Zheng, Xunhua; Wang, Yuesi

    2004-10-01

    Field measurements were made from June 2001 to May 2002 to evaluate the effect of crop residue application and temperature on CO2, CH4, and N2O emissions within an entire rice-wheat rotation season. Rapeseed cake and wheat straw were incorporated into the soil at a rate of 2.25 t hm-2 when the rice crop was transplanted in June 2001. Compared with the control, the incorporation of rapeseed cake enhanced the emissions of CO2, CH4, and N2O in the rice-growing season by 12.3%, 252.3%, and 17.5%, respectively, while no further effect was held on the emissions of CO2 and N2O in the following wheatgrowing season. The incorporation of wheat straw enhanced the emissions of CO2 and CH4 by 7.1% and 249.6%, respectively, but reduced the N2O emission by 18.8% in the rice-growing season. Significant reductions of 17.8% for the CO2 and of 12.9% for the N2O emission were observed in the following wheatgrowing season. A positive correlation existed between the emissions of N2O and CO2 ( R 2 = 0.445, n = 73, p < 0.001) from the rice-growing season when N2O was emitted. A trade-off relationship between the emissions of CH4 and N2O was found in the rice-growing season. The CH4 emission was significantly correlated with the CO2 emission for the period from rice transplantation to field drainage, but not for the entire rice-growing season. In addition, air temperature was found to regulate the CO2 emissions from the non-waterlogged period over the entire rice-wheat rotation season and the N2O emissions from the nonwaterlogged period of the rice-growing season, which can be quantitatively described by an exponential function. The temperature coefficient ( Q 10) was then evaluated to be 2.3±0.2 for the CO2 emission and 3.9±0.4 for the N2O emission, respectively.

  18. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  19. Effect of fertilizer prepared from human feces and straw on germination, growth and development of wheat

    NASA Astrophysics Data System (ADS)

    Liu, Dianlei; Xie, Beizhen; Dong, Chen; Liu, Guanghui; Hu, Dawei; Qin, Youcai; Li, Hongyan; Liu, Hong

    2018-04-01

    Solid waste treatment is one of the most important rate-limiting steps in the material circulation and energy flow of Bioregenerative Life Support System (BLSS). In our previous work, an efficient and controllable solid waste bio-convertor has been built and a solid waste degradation efficiency of 41.0% has been reached during a 105-d BLSS experiment. However, the fermented residues should be further utilized to fulfill the closure of the system. One solution might be to use the residues as the fertilizer for plant cultivation. Thus in this study, substrates were prepared using different ratios of the fermented residues to the vermiculite. And the influences of different ratios of the fermented residues on the seed germination, growth, photosynthetic characteristics and antioxidant capacity of wheat were studied. The results showed that the optimal rate of the fermented residue was 5%. With this ratio, the seed germination reached 97.3% with the root length, shoot length and biomass production as 59 mm, 52 mm and 150 mg, respectively, at the 4th day. Besides, the highest straw height of 25.1 cm was obtained at the 21st day. The salinity adversely affected the growth and some relevant metabolic processes of wheat. The Group-40% led to the lowest seed germination of 34.7% and the minimum straw height of 15 cm. This inhibition might be caused by the high Na content of 2118 mg/kg in the fermented residues. Chlorophyll b was more sensitive to the mineral nutrition stress and affects the wheat photosynthetic characteristics. Higher reactive oxygen species levels and reduced antioxidant enzymes may contribute, directly and/or indirectly, to the decline in the observed pigment contents in wheat.

  20. Registration of ‘WB3768’ wheat

    USDA-ARS?s Scientific Manuscript database

    ‘WB3768’ (Reg. No. CV-1100, PI 670158) hard white winter wheat (Triticum aestivum L.) was developed and released by the Montana Agricultural Experiment Station in September 2013. An exclusive license for commercialization of WB3768 was granted to Monsanto. WB3768 is of unknown pedigree, derived from...

  1. Novel rust resistance in wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    The Puccinia fungi that cause wheat rust diseases are among the most globally destructive agricultural pathogens. The most effective and utilized defense against rust is genetic resistance. The vast majority of rust resistance is racespecific conferred by single genes rapidly overcome by the pathoge...

  2. Probabilistic Change of Wheat Productivity and Water Use in China

    NASA Astrophysics Data System (ADS)

    Liu, Yujie; Chen, Qiaomin

    2017-04-01

    Impacts of climate change on agriculture are a major concern worldwide, but uncertainties of climate models and emission scenarios may hamper efforts to adapt to climate change. In this paper, a probabilistic approach is used to estimate the uncertainties and simulate impacts of global warming on wheat production and water use in the main wheat cultivation regions of China, with a global mean temperature (GMT) increase scale relative to 1961-90 values. From output of 20 climate scenarios of the Intergovernmental Panel on Climate Change Data Distribution Centre, median values of projected changes in monthly mean climate variables for representative stations are adapted. These are used to drive the Crop Environment Resource Synthesis (CERES)-Wheat model to simulate wheat production and water use under baseline and global warming scenarios, with and without consideration of carbon dioxide (CO2) fertilization effects. Results show that, because of temperature increase, projected wheat-growing periods for GMT changes of 18, 28, and 38C would shorten, with averaged median values of 3.94%, 6.90%, and 9.67%, respectively. There is a high probability of decreasing (increasing) changes in yield and water-use efficiency under higher temperature scenarios without (with) consideration of CO2 fertilization effects. Elevated CO2 concentration generally compensates for the negative effects of warming temperatures on production. Moreover, positive effects of elevated CO2 concentration on grain yield increase with warming temperatures. The findings could be critical for climate-change-driven agricultural production that ensures global food security.

  3. The natural abundance of 13C with different agricultural management by NIRS with fibre optic probe technology.

    PubMed

    Fuentes, Mariela; González-Martín, Inmaculada; Hernández-Hierro, Jose Miguel; Hidalgo, Claudia; Govaerts, Bram; Etchevers, Jorge; Sayre, Ken D; Dendooven, Luc

    2009-06-30

    In the present study the natural abundance of (13)C is quantified in agricultural soils in Mexico which have been submitted to different agronomic practices, zero and conventional tillage, retention of crop residues (with and without) and rotation of crops (wheat and maize) for 17 years, which have influenced the physical, chemical and biological characteristics of the soil. The natural abundance of C13 is quantified by near infrared spectra (NIRS) with a remote reflectance fibre optic probe, applying the probe directly to the soil samples. Discriminate partial least squares analysis of the near infrared spectra allowed to classify soils with and without residues, regardless of the type of tillage or rotation systems used with a prediction rate of 90% in the internal validation and 94% in the external validation. The NIRS calibration model using a modified partial least squares regression allowed to determine the delta(13)C in soils with or without residues, with multiple correlation coefficients 0.81 and standard error prediction 0.5 per thousand in soils with residues and 0.92 and 0.2 per thousand in soils without residues. The ratio performance deviation for the quantification of delta(13)C in soil was 2.5 in soil with residues and 3.8 without residues. This indicated that the model was adequate to determine the delta(13)C of unknown soils in the -16.2 per thousand to -20.4 per thousand range. The development of the NIR calibration permits analytic determinations of the values of delta(13)C in unknown agricultural soils in less time, employing a non-destructive method, by the application of the fibre optic probe of remote reflectance to the soil sample.

  4. Registration of ‘Ok101’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Ok101’ (Reg. no. CV-932, PI 631493) is a hard red winter wheat (Triticum aestivum L.) developed cooperatively by the Oklahoma Agricultural Experiment Station and the USDA-ARS, and released in March 2001. Ok101 was released for its high tolerance to acidic soil, broad adaptation to both dual-purpose...

  5. Registration of Anton Hard White Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Anton’ (Reg. No. CV PI 651043) hard white winter wheat (Triticum aestivum L.) was developed by the USDA-ARS and the Nebraska Agricultural Experiment Station and released in December, 2007. "Anton" was selected from the cross WA691213-27/N86L177//‘Platte’. Anton primarily was released for its lo...

  6. ASSESSMENT FOR FUTURE ENVIRONMENTAL PROBLEMS - AGRICULTURAL RESIDUES

    EPA Science Inventory

    This assessment was undertaken to determine whether agricultural burning constitutes an environmental problem in the United States. Preliminary indications are that agricultural burning is not likely to become a national problem. The report summarizes available information on loc...

  7. CANCER MORTALITY IN FOUR NORTHERN WHEAT PRODUCING STATES

    EPA Science Inventory

    Chlorophenoxy herbicides are used both in cereal grain agriculture and in nonagricultural settings such as right-of-ways, lawns, and parks. Minnesota, North Dakota, South Dakota, and Montana grow most of the spring and durum wheat produced in the United States. More than 90% of s...

  8. Three-Dimension Visualization for Primary Wheat Diseases Based on Simulation Model

    NASA Astrophysics Data System (ADS)

    Shijuan, Li; Yeping, Zhu

    Crop simulation model has been becoming the core of agricultural production management and resource optimization management. Displaying crop growth process makes user observe the crop growth and development intuitionisticly. On the basis of understanding and grasping the occurrence condition, popularity season, key impact factors for main wheat diseases of stripe rust, leaf rust, stem rust, head blight and powdery mildew from research material and literature, we designed 3D visualization model for wheat growth and diseases occurrence. The model system will help farmer, technician and decision-maker to use crop growth simulation model better and provide decision-making support. Now 3D visualization model for wheat growth on the basis of simulation model has been developed, and the visualization model for primary wheat diseases is in the process of development.

  9. Residual soil nitrate content and profitability of five cropping systems in northwest Iowa.

    PubMed

    De Haan, Robert L; Schuiteman, Matthew A; Vos, Ronald J

    2017-01-01

    Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall) soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall). The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L.) with a cereal rye (Secale cereale L.) cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.)-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L.) Merr.)-winter wheat (Triticum aestivum L.)-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1) was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss) for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy.

  10. Registration of ‘SY Clearstone 2CL’ wheat

    USDA-ARS?s Scientific Manuscript database

    ‘SY Clearstone 2CL’ (Reg. No. CV-1094, PI 668090) hard red winter wheat (Triticum aestivum L.) was developed by the Montana Agricultural Experiment Station and released in September 2012 through a marketing agreement with Syngenta Seeds. SY Clearstone 2CL is a two-gene Clearfield backcross-derivativ...

  11. Correlation between agricultural markets in dynamic perspective-Evidence from China and the US futures markets

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Lin; Wang, Dong-Hua; Tu, Jing-Qing; Li, Sai-Ping

    2016-12-01

    Emerging as the earliest futures markets, agricultural futures markets play an important role in risk aversion and price discovery. With the integration of global economy, the linkage between domestic and international futures markets becomes closer than ever. By using the thermal optimal path (TOP) method, this paper selects soybean, corn and wheat as the representatives to study the dynamic lead-lag relationship between the Chinese and American markets in both returns and volatility. The results indicate that: (1) For the futures return, different kinds of agricultural futures lead-lag relationship between China and the US varied before 2014 both in direction and order in different time periods. However, China leads the US for all the three kinds we study after 2014. (2) Agricultural commodities subject to less import restrictions and government regulations in China such as soybean are more susceptible to the fluctuations from the international markets. On the other hand, lower foreign trade openness and more government regulation species such as wheat are less affected by fluctuations from outside. (3) The volatility transmission from the US to China wheat futures market takes longer time than soybean, which suggests that China's soybean futures market is more closely linked to the international agricultural futures market than wheat.

  12. Partial Optimization of Endo-1, 4-Β-Xylanase Production by Aureobasidium pullulans Using Agro-Industrial Residues

    PubMed Central

    Nasr, Shaghayegh; Soudi, Mohammad Reza; Hatef Salmanian, Ali; Ghadam, Parinaz

    2013-01-01

    Objective(s) : Although bacteria and molds are the pioneering microorganisms for production of many enzymes, yet yeasts provide safe and reliable sources of enzymes with applications in food and feed. Materials and Methods: Single xylanase producer yeast was isolated from plant residues based on formation of transparent halo zones on xylan agar plates. The isolate showed much greater endo-1, 4-β-xylanase activity of 2.73 IU/ml after optimization of the initial extrinsic conditions. It was shown that the strain was also able to produce β-xylosidase (0.179 IU/ml) and α-arabinofuranosidase (0.063 IU/ml). Identification of the isolate was carried out and the endo-1, 4-β-xylanaseproduction by feeding the yeast cells on agro-industrial residues was optimized using one factor at a time approach. Results: The enzyme producer strain was identified as Aureobasidiumpullulans. Based on the optimization approach, an incubation time of 48 hr at 27°C, inoculum size of 2% (v/v), initial pH value of 4 and agitation rate of 90 rpm were found to be the optimal conditions for achieving maximum yield of the enzyme. Xylan, containing agricultural residues, was evaluated as low-cost alternative carbon source for production of xylanolytic enzymes. The production of xylanase enzyme in media containing wheat bran as the sole carbon source was very similar to that of the medium containing pure beechwoodxylan. Conclusion:This finding indicates the feasibility of growing of A. pullulans strain SN090 on wheat bran as an alternate economical substrate in order for reducing the costs of enzyme production and using this fortified agro-industrial byproduct in formulation of animal feed. PMID:24570830

  13. Identification of Soil Properties and Organophosphate Residues From Agricultural Land in Wanasari Sub-District, Brebes, Indonesia

    NASA Astrophysics Data System (ADS)

    Joko, Tri; Anggoro, Sutrisno; Sunoko, Henna Rya; Rachmawati, Savitri

    2018-02-01

    Organophosphates have been used to eradicate pests and prevent losses from harvest failures caused by pest attack. It is undeniable that the organophosphate persist in soil. This study aims to identify the organophosphate residue and soil properties include pH, soil texture, and permeability. The soil samples were taken from cropland in 10 villages, Wanasari sub-district, Brebes, Indonesia. Organophosphate residue determined by gas chromatography using Flame Photometric Detector. Soil texture was determined by soil texture triangle from NRCS USDA, and the permeability value was determined by falling head method. The mean value of chlorpyrifos, profenofos, diazinon were 0.0078; 0.0388; 0.2271 mg/l respectively. The soil texture varies from clay, silt clay, loam, silt loam, and silt clay loam with permeability value at 10-7 with the soil pH value between 6.4 - 8.1. The results showed that organophosphate residues found in the soil and its potential affect the soil fertility decline. We recommend to conduct routine soil quality analysis to prevent soil damage in the agricultural environment.

  14. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    PubMed

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  15. Mitigation of dimethazone residues in soil and runoff water from agricultural field.

    PubMed

    Antonious, George F

    2011-01-01

    Dimethazone, also known as clomazone [2-[(2-chlorophenyl) methyl]- 4,4-dimethyl-3-isoxaolidinone] is a pre-emergent nonionic herbicide commonly used in agriculture. A field study was conducted on a silty-loam soil of 10 % slope to monitor off-site movement and persistence of dimethazone in soil under three management practices. Eighteen plots of 22 x 3.7 m each were separated using stainless steel metal borders and the soil in six plots was mixed with municipal sewage sludge (MSS) and yard waste (YW) compost (MSS+YW) at 15 t acre⁻¹ on dry weight basis, six plots were mixed with MSS at 15 t acre⁻¹, and six unamended plots (NM) were used for comparison purposes. The objectives of this investigation were to: (i) monitor the dissipation and half-life (T₁/₂) of dimethazone in soil under three management practices; (ii) determine the concentration of dimethazone residues in runoff and infiltration water following natural rainfall events; and (iii) assess the impact of soil amendments on the transport of NO₃, NH₄, and P into surface and subsurface water. Gas chromatography/mass spectrometery (GC/MS) analyses of soil extracts indicated the presence of ion fragments at m/z 125 and 204 that can be used for identification of dimethazone residues. Intitial deposits of dimethazone varied from 1.3 μg g⁻¹ dry native soil to 3.2 and 11.8 μg g⁻¹ dry soil in MSS and MSS+YW amended soil, respectively. Decline of dimethazone residues in the top 15 cm native soil and soil incorporated with amendments revealed half-life (T₁/₂) values of 18.8, 25.1, and 43.0 days in MSS+YW, MSS, and NM treatments, respectively. Addition of MSS+YW mix and MSS alone to native soil increased water infiltration, lowering surface runoff water volume and dimethazone residues in runoff following natural rainfall events.

  16. Can plastic mulching replace irrigation in dryland agriculture?

    NASA Astrophysics Data System (ADS)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Increasing water use efficiency (WUE) is a key strategy to maintaining crops yield without over-exploiting the scarce water resource. Plastic mulching technology for wheat and maize has been commonly used in China, but their effect on yield, soil moisture, evapotranspiration (ET), and WUE has not been compared with traditional irrigation method. Using a meta-analysis approach, we quantitatively examined the efficacy of plastic mulching in comparison with traditional irrigation in dryland agriculture. Our results showed that plastic mulching technique resulted in yield increase comparable to irrigated crops but used 24% less water. By covering the ridges with plastic and channeling rainwater into a very narrow planting zone (furrow), plastic mulching increased WUE and available soil moisture. Higher WUE in plastic-mulched croplands was likely a result of greater proportion of available water being used for transpiration than evaporation. If problems related to production costs and residual plastic pollution could be managed, plastic mulching technology would become a promising strategy for dryland farming in other regions.

  17. Structural and molecular basis of starch viscosity in hexaploid wheat.

    PubMed

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  18. Effects of cerium oxide nanoparticles on soil enzymatic activities and wheat grass nutrients uptake

    NASA Astrophysics Data System (ADS)

    Li, Biting; Chen, Yirui; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    The US National Science Foundation estimated that the use of nanomaterials and nanotechnology would reach a global market value of 1 million this year. Concomitant with the wide applications of nanoparticles is an increasing risk of adverse effects to the environment and human health. As a common nanomaterial used as a fuel catalyst and polish material, cerium (IV) oxide nanoparticles (CeO2 NP) were tested for their potential impact on soil health and plant growth. Through exposure by air, water, and solid deposition, nanoparticles may accumulate in soils and impact agricultural systems. The objectives of this research were to determine whether CeO2 NPs affect the growth of wheat grass and selected soil enzyme activities chose as indicators of soil health. Wheat grass was grown in plant boxes containing CeO2 NPs mixed with agricultural soil at different concentrations. Two control groups were included: one consisting of soil with plants but no CeO2 NPs, and one containing only soil, i.e., no NP or wheat plants added. The plants were grown for 10 weeks and harvested every two weeks in a laboratory under sodium growth lights. At the end of the each growing period, two weeks, soils were assayed for phosphatase, β-glucosidase, and urease activities, and NPK values. Spectrophotometer analyses were used to assess enzyme activities, and NPK values were tested by Clemson Agricultural Center. Wheat yields were estimated by shoot and root lengths and weights.

  19. Dwarf Wheat grown aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dwarf wheat were photographed aboard the International Space Station in April 2002. Lessons from on-orbit research on plants will have applications to terrestrial agriculture as well as for long-term space missions. Alternative agricultural systems that can efficiently produce greater quantities of high-quality crops in a small area are important for future space expeditions. Also regenerative life-support systems that include plants will be an important component of long-term space missions. Data from the Biomass Production System (BPS) and the Photosynthesis Experiment and System Testing and Operations (PESTO) will advance controlled-environment agricultural systems and will help farmers produce better, healthier crops in a small area. This same knowledge is critical to closed-loop life support systems for spacecraft. The BPS comprises a miniature environmental control system for four plant growth chambers, all in the volume of two space shuttle lockers. The experience with the BPS on orbit is providing valuable design and operational lessons that will be incorporated into the Plant Growth Units. The objective of PESTO was to flight verify the BPS hardware and to determine how the microgravity environment affects the photosynthesis and metabolic function of Super Dwarf wheat and Brassica rapa (a member of the mustard family).

  20. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.

    PubMed

    Scholtz, M T; Bidleman, T F

    2007-05-01

    In the first part of this paper, a simple coupled dynamic soil-atmosphere model for studying the gaseous exchange of pesticide soil residues with the atmosphere is described and evaluated by comparing model results with published measurements of pesticide concentrations in air and soil. In Part II, the model is used to study the concentration profiles of pesticide residues in both undisturbed and annually tilled agricultural soils. Future trends are estimated for the measured air and soil concentrations of lindane and six highly persistent pesticides (toxaphene, p,p'-DDE, dieldrin, cis- and trans-chlordane and trans-nonachlor) over a twenty-year period due to volatilization and leaching into the deeper soil. Wet deposition and particle associated pesticide deposition (that increase soil residue concentrations) and soil erosion, degradation in the soil (other than for lindane) and run-off in precipitation are not considered in this study. Estimates of the rain deposition fluxes are reported that show that, other than for lindane, net volatilization fluxes greatly exceed rain deposition fluxes. The model shows that the persistent pesticides studied are highly immobile in soil and that loss of these highly persistent residues from the soil is by volatilization rather than leaching into the deeper soil. The soil residue levels of these six pesticides are currently sources of net volatilization to the atmosphere and will remain so for many years. The maximum rate of volatilization from the soil was simulated by setting the atmospheric background concentration to zero; these simulations show that the rates of volatilization will not be significantly increased since soil resistance rather than the atmospheric concentration controls the volatilization rates. Annual tilling of the soils increases the volatilization loss to the atmosphere. Nonetheless, the model predicts that, if only air-soil exchange is considered, more than 76% of current persistent pesticide residues

  1. Comparative growth characteristics and yield attributes of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes) on different substrates in India.

    PubMed

    Jandaik, Savita; Singh, Rajender; Sharma, Mamta

    2013-01-01

    The present study investigated the effects of four forestry byproducts (sawdust of oak, mango, khair, and tuni) and three agricultural residues (paddy straw, wheat straw, and soybean waste) along with four supplements (wheat bran, rice bran, corn flour, and gram powder) on growth characteristics (spawn run and primordial formation) and yield of Ganoderma lucidum. There were significant differences (P=0.05) in yield regardless of substrates and supplements used in experimentation. Among substrates, agriculture residues supported better yield and biological efficiency of G. lucidum compared to forestry byproducts irrespective of the supplements. The highest yield (82.5 g) and biological efficiency (27.5%) were recorded from paddy straw supplemented with wheat bran, which invariably resulted in significantly higher yield compared to the unsupplemented check(s) or other supplements used in this study.

  2. Australian wheat production expected to decrease by the late 21st century.

    PubMed

    Wang, Bin; Liu, De L; O'Leary, Garry J; Asseng, Senthold; Macadam, Ian; Lines-Kelly, Rebecca; Yang, Xihua; Clark, Anthony; Crean, Jason; Sides, Timothy; Xing, Hongtao; Mi, Chunrong; Yu, Qiang

    2018-06-01

    Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat-growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041-2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO 2 emission scenario by 2081-2100 due to increasing losses in suitable wheat-growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production. © 2017 John Wiley & Sons Ltd.

  3. Kansas environmental and resource study: A Great Plains model. Extraction of agricultural statistics from ERTS-1 data of Kansas. [wheat inventory and agriculture land use

    NASA Technical Reports Server (NTRS)

    Morain, S. A. (Principal Investigator); Williams, D. L.

    1974-01-01

    The author has identified the following significant results. Wheat area, yield, and production statistics as derived from satellite image analysis, combined with a weather model, are presented for a ten county area in southwest Kansas. The data (representing the 1972-73 crop year) are compared for accuracy against both the USDA August estimate and its final (official) tabulation. The area estimates from imagery for both dryland and irrigated winter wheat were within 5% of the official figures for the same area, and predated them by almost one year. Yield on dryland wheat was estimated by the Thompson weather model to within 0.1% of the observed yield. A combined irrigated and dryland wheat production estimate for the ten county area was completed in July, 1973 and was within 1% of the production reported by USDA in February, 1974.

  4. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    PubMed

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree

  5. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment.

    PubMed

    Wang, Yangyang; Li, Fangfang; Song, Jian; Xiao, Ruiyang; Luo, Lin; Yang, Zhihui; Chai, Liyuan

    2018-04-12

    Red mud (RM) was used to remediate heavy metal-contaminated soils. Experiments with two different dosages of RM added to soils were carried out in this study. It was found that soil pH increased 0.3 and 0.5 unit with the dosage of 3 and 5% (wt%), respectively. At the dosage of 5%, the highest stabilization efficiencies for Cd, Pb, Cu and Zn reached 67.95, 64.21, 43.73 and 63.73%, respectively. The addition of RM obviously transferred Cd from the exchangeable fraction to the residual fraction. Meanwhile, in comparison with the control (no RM added), it reduced 24.38, 49.20, 19.42 and 8.89% of Cd, Pb, Cu and Zn in wheat grains at the RM addition dosage of 5%, respectively. At the same time, the yield of wheat grains increased 17.81 and 24.66% at the RM addition dosage of 3 and 5%, respectively. Finally, the addition of RM did not change the soil bacterial community. These results indicate that RM has a great potential in stabilizing heavy metals in calcareous agricultural soils.

  6. Agricultural Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Tam, A.; Jain, M.

    2016-12-01

    This research includes two projects pertaining to agricultural systems' adaption to climate change. The first research project focuses on the wheat yielding regions of India. Wheat is a major staple crop and many rural households and smallholder farmers rely on crop yields for survival. We examine the impacts of weather variability and groundwater depletion on agricultural systems, using geospatial analysis and satellite-based analysis and household-based and census data sets. We use these methods to estimate the crop yields and identify what factors are associated with low versus high yielding regions. This can help identify strategies that should be further promoted to increase crop yields. The second research project is a literature review. We conduct a meta-analysis and synthetic review on literature about agricultural adaptation to climate change. We sort through numerous articles to identify and examine articles that associate socio-economic, biophysical, and perceptional factors to farmers' adaption to climate change. Our preliminary results show that researchers tend to associate few factors to a farmers' vulnerability and adaptive capacity, and most of the research conducted is concentrated in North America, whereas tropical regions that are highly vulnerable to weather variability are underrepresented by literature. There are no conclusive results in both research projects as of so far.

  7. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  8. New isotopic evidence of lead contamination in wheat grain from atmospheric fallout.

    PubMed

    Yang, Jun; Chen, Tongbin; Lei, Mei; Zhou, Xiaoyong; Huang, Qifei; Ma, Chuang; Gu, Runyao; Guo, Guanghui

    2015-10-01

    Crops could accumulate trace metals by soil-root transfer and foliar uptake from atmospheric fallout, and an accurate assessment of pollution sources is a prerequisite for preventing heavy metal pollution in agricultural products. In this study, we examined Pb isotope rates to trace the sources of Pb in wheat grain grown in suburbs. Results showed that, even in zones with scarcely any air pollution spots, atmospheric fallout was still a considerable source of Pb accumulation in wheat. The concentration of Pb in wheat grain has poor correlation with that in farm soil. The Pb concentration in wheat grains with dust in bran coat was significantly higher than that in wheat grains, which indicates that Pb may accumulate by foliar uptake. The Pb isotope rate has obvious differences between the soil and atmospheric fallout, and scatter ratio is significantly closer between the wheat grain and atmospheric fallout. Atmospheric fallout is a more significant source of Pb concentration in wheat grains than in soil. As far as we know, this is the first study on the main sources of lead in grain crop (wheat) samples with isotope. This study aims to improve our understanding of the translocation of foliar-absorbed metals to nonexposed parts of plants.

  9. Evaluation of grain dimension and weight using backcross recombinant inbred lines (BRILs) between wild and domesticated Emmer wheat

    USDA-ARS?s Scientific Manuscript database

    Emmer wheat (Triticum turgidum ssp. dicoccum) represents the primitive situation in the domestication of AABB tetraploid wheat. As one of the earliest domesticated grain species, it was a principal crop in the development and spread of Neolithic agriculture in the Old World. Grain weight and dimensi...

  10. Evaluation of grain dimension and weight using backcross recombinant inbred lines (BRILs) between wild and domesticated emmer wheat

    USDA-ARS?s Scientific Manuscript database

    Emmer wheat (Triticum turgidum ssp. dicoccum) represents the primitive situation in the domestication of AABB tetraploid wheat. As one of the earliest domesticated grain species, it was a principal crop in the development and spread of Neolithic agriculture in the Old World. Grain weight and dimensi...

  11. Biochemical and functional properties of wheat gliadins: a review.

    PubMed

    Barak, Sheweta; Mudgil, Deepak; Khatkar, B S

    2015-01-01

    Gliadins account for 40-50% of the total storage proteins of wheat and are classified into four subcategories, α-, β-, γ-, and ω-gliadins. They have also been classified as ω5-, ω1, 2-, α/β-, and γ-gliadins on the basis of their primary structure and molecular weight. Cysteine residues of gliadins mainly form intramolecular disulfide bonds, although α-gliadins with odd numbers of cysteine residues have also been reported. Gliadins are generally regarded to possess globular protein structure, though recent studies report that the α/β-gliadins have compact globular structures and γ- and ω-gliadins have extended rod-like structures. Newer techniques such as Mass Spectrometry with the development of matrix-assisted laser desorption/ionization (MALDI) in combination with time-of-flight mass spectrometry (TOFMS) have been employed to determine the molecular weight of purified ω- gliadins and to carry out the direct analysis of bread and durum wheat gliadins. Few gliadin alleles and components, such as Gli-B1b, Gli-B2c and Gli-A2b in bread wheat cultivars, γ-45 in pasta, γ-gliadins in cookies, lower gliadin content for chapatti and alteration in Gli 2 loci in tortillas have been reported to improve the product quality, respectively. Further studies are needed in order to elucidate the precise role of gliadin subgroups in dough strength and product quality.

  12. Microbial production of biopolymers from the renewable resource wheat straw.

    PubMed

    Gasser, E; Ballmann, P; Dröge, S; Bohn, J; König, H

    2014-10-01

    Production of poly-ß-hydroxybutyrate (PHB) and the chemical basic compound lactate from the agricultural crop 'wheat straw' as a renewable carbon resource. A thermal pressure hydrolysis procedure for the breakdown of wheat straw was applied. By this means, the wheat straw was converted into a partially solubilized hemicellulosic fraction, consisting of sugar monomers, and an insoluble cellulosic fraction, containing cellulose, lignin and a small portion of hemicellulose. The insoluble cellulosic fraction was further hydrolysed by commercial enzymes in monomers. The production of PHB from the sugar monomers originating from hemicellulose or cellulose was achieved by the isolates Bacillus licheniformis IMW KHC 3 and Bacillus megaterium IMW KNaC 2. The basic chemical compound, lactate, a starting compound for the production of polylactide (PLA), was formed by some heterofermentative lactic acid bacteria (LAB) able to grow with xylose from the hemicellulosic wheat straw hydrolysate. Two strains were selected which were able to produce PHB from the sugars both from the hemicellulosic and the cellulosic fraction of the wheat straw. In addition, some of the LAB tested were capable of producing lactate from the hemicellulosic hydrolysate. The renewable resource wheat straw could serve as a substrate for microbiologically produced basic chemicals and biodegradable plastics. © 2014 The Society for Applied Microbiology.

  13. Rooting out Defense Mechanisms in Wheat against Plant Parasitic Nematodes

    USDA-ARS?s Scientific Manuscript database

    Root-lesion nematodes (Pratylenchus spp.) are soil borne pathogens of many important agricultural crops including wheat. Pratylenchus invade root cells and feed using a stylet, resulting in cell death. Common signs of Pratylenchus damage are root lesions, girdling, and lack of lateral branching. ...

  14. The pricing behavior comparison of Canada and Australia exporter in wheat international market using Pricing to Market (PTM) and Residual Demand Elasticity (RDE)

    NASA Astrophysics Data System (ADS)

    Wibowo, R. P.; Sumono; Iddrisu, Y.; Darus, M.; Sihombing, L. P.; Jufri

    2018-02-01

    This paper try to identify and examined the degree of market power on wheat international market by 2 major exporting countries comprising Canada and Australia by using the Pricing to Market (PTM) method and Residual Demand Elasticity (RDE) method. The PTM method found that Canada impose noncompetitive strategy by applying price discrimination and apply market power to their importing. Different results come from Australian exporter as they are not using their market power to the importing. Conflicting result arise from estimation using RDE and PTM method suggest that the need to extend the theoretical model of both model by expand its economic and econometric model to have consistent expected result theoretically and empirically.

  15. Anchoring durum wheat diversity in the reality of traditional agricultural systems: varieties, seed management, and farmers’ perception in two Moroccan regions

    PubMed Central

    2014-01-01

    Background Traditional agrosystems are the places were crop species have evolved and continue to evolve under a combination of human and environmental pressures. A better knowledge of the mechanisms underlying the dynamics of crop diversity in these agrosystems is crucial to sustain food security and farmers’ self-reliance. It requires as a first step, anchoring a description of the available diversity in its geographical, environmental, cultural and socio-economic context. Methods We conducted interviews with farmers cultivating durum wheat in two contrasted traditional agrosystems of Morocco in the Pre-Rif (163 farmers) and in the oases of the Atlas Mountains (110 farmers). We documented the varietal diversity of durum wheat, the main characteristics of the farms, the farming and seed management practices applied to durum wheat, and the farmers’ perception of their varieties. Results As expected in traditional agrosystems, farmers largely practiced diversified subsistence agriculture on small plots and relied on on-farm seed production or informal seed exchange networks. Heterogeneity nevertheless prevailed on many variables, especially on the modernization of practices in the Pre-Rif region. Fourteen (resp. 11) traditional and 5 (resp. 3) modern varieties were identified in the Pre-Rif region (resp. in the Atlas Mountains). The majority of farmers grew a single variety, and most traditional varieties were distributed in restricted geographical areas. At the farm level, more than half of the varieties were renewed in the last decade in the Pre-Rif, a more rapid renewal than in the Atlas Mountain. Modern varieties were more prevalent in the Pre-Rif region and were integrated in the traditional practices of seed production, selection and exchange. They were clearly distinguished by the farmers from the landraces, the last ones being appreciated for their quality traits. Conclusions The surveyed traditional agrosystems constitute open, dynamic and heterogeneous

  16. Soil organic carbon dynamics in wheat-maize cropping systems of north China: application of isotope approach to long-term experiments

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, X.; Xu, M.; Zhang, W.

    2013-12-01

    Soil organic carbon (SOC) in agro-ecosystem is largely influencedby agricultural practices such as croppingand fertilization. However, quantifying the contributions of various crops has been lacking. Here, we applied isotopic approachto study SOC dynamics under wheat-maize rotation with variousfertilization treatments atthree long-term experiment sites innorth China. Three treatments were chosen: no fertilizer (control), chemical nitrogen-phosphorus-potassium (NPK) and NPK plus straw (NPKS).Soil samples were collected from0-20, 20-40, 40-60, 60-80 and 80-100cm after 13 and 20 years of treatment, and SOC and its stable 13C compositions were determined. Generally, SOC content significantly decreased with depths, from 8.2 ×1.4 g kg-1 (in 0-20 cm) to 3.3×1.0 g kg-1 (in 80-100 cm) across all treatments and sites. Soil δ13C values at all depths, treatments and sites ranged from -24.2‰ to -21.6‰, averaged -22.8‰, indicating that ~70% of SOC was derived from wheat and previous C3 plant, and ~30% from maize and previous C4 plant.Both SOC and soil δ13C were significantly affected by fertilization managements, especiallyin 0-40 cm where linear relationship occurred between SOC and estimated C input. Overall, the slop of the linear equation, i.e., conversion efficiency, was four times greater for wheat-derived C relative to that for maize residue C. Our study indicated that maize-derived C contributed less to C sequestration in wheat-maize rotation system of north China. Figure 1. Relationships between SOC stock (0-40 cm) and accumulated C input for wheat (C3), maize (C4) and total. Significance is marked with one (P < 0.05), two (P < 0.01) and three (P < 0.001) asterisks.

  17. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    PubMed

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Global wheat production potentials and management flexibility under the representative concentration pathways

    NASA Astrophysics Data System (ADS)

    Balkovič, Juraj; van der Velde, Marijn; Skalský, Rastislav; Xiong, Wei; Folberth, Christian; Khabarov, Nikolay; Smirnov, Alexey; Mueller, Nathaniel D.; Obersteiner, Michael

    2014-11-01

    Wheat is the third largest crop globally and an essential source of calories in human diets. Maintaining and increasing global wheat production is therefore strongly linked to food security. A large geographic variation in wheat yields across similar climates points to sizeable yield gaps in many nations, and indicates a regionally variable flexibility to increase wheat production. Wheat is particularly sensitive to a changing climate thus limiting management opportunities to enable (sustainable) intensification with potentially significant implications for future wheat production. We present a comprehensive global evaluation of future wheat yields and production under distinct Representative Concentration Pathways (RCPs) using the Environmental Policy Integrated Climate (EPIC) agro-ecosystem model. We project, in a geographically explicit manner, future wheat production pathways for rainfed and irrigated wheat systems. We explore agricultural management flexibility by quantifying the development of wheat yield potentials under current, rainfed, exploitable (given current irrigation infrastructure), and irrigated intensification levels. Globally, because of climate change, wheat production under conventional management (around the year 2000) would decrease across all RCPs by 37 to 52 and 54 to 103 Mt in the 2050s and 2090s, respectively. However, the exploitable and potential production gap will stay above 350 and 580 Mt, respectively, for all RCPs and time horizons, indicating that negative impacts of climate change can globally be offset by adequate intensification using currently existing irrigation infrastructure and nutrient additions. Future world wheat production on cropland already under cultivation can be increased by ~ 35% through intensified fertilization and ~ 50% through increased fertilization and extended irrigation, if sufficient water would be available. Significant potential can still be exploited, especially in rainfed wheat systems in Russia

  19. Effects of organic and conventional production systems and cultivars on the technological properties of winter wheat.

    PubMed

    Ceseviciene, Jurgita; Slepetiene, Alvyra; Leistrumaite, Alge; Ruzgas, Vytautas; Slepetys, Jonas

    2012-11-01

    The current study aimed to estimate the effects of organic and conventional production systems and four winter wheat (Triticum aestivum L.) bread cultivars on the technological properties of grain, flour, dough and bread, to increase current knowledge regarding the interactions of the technological properties of winter wheat and assess the cultivars for their suitability for organic production systems. All the technological properties winter wheat which were investigated were significantly affected by the agricultural production system and cultivars, and some of them, mostly grain quality parameters, by the harvest year. Grain from organic winter wheat had significantly lower protein and gluten contents, lower sedimentation and flour water absorption values, shorter dough stability time and lower loaf volume, but higher values of starch content and stronger gluten, compared with grain from the conventional wheat. For both production systems significant positive correlations of protein content with gluten content, sedimentation value, dough stability time, loaf volume, farinograph water absorption, and negative with starch content, gluten index were determined. Statistically significant differences between agricultural production systems were found. The cultivars Ada and Alma had better technological properties that make them more suitable for the organic production system, compared to Širvinta 1 and Zentos. Copyright © 2012 Society of Chemical Industry.

  20. Hyperspectral imaging to identify salt-tolerant wheat lines

    NASA Astrophysics Data System (ADS)

    Moghimi, Ali; Yang, Ce; Miller, Marisa E.; Kianian, Shahryar; Marchetto, Peter

    2017-05-01

    In order to address the worldwide growing demand for food, agriculture is facing certain challenges and limitations. One of the important threats limiting crop productivity is salinity. Identifying salt tolerate varieties is crucial to mitigate the negative effects of this abiotic stress in agricultural production systems. Traditional measurement methods of this stress, such as biomass retention, are labor intensive, environmentally influenced, and often poorly correlated to salinity stress alone. In this study, hyperspectral imaging, as a non-destructive and rapid method, was utilized to expedite the process of identifying relatively the most salt tolerant line among four wheat lines including Triticum aestivum var. Kharchia, T. aestivum var. Chinese Spring, (Ae. columnaris) T. aestivum var. Chinese Spring, and (Ae. speltoides) T. aestivum var. Chinese Spring. To examine the possibility of early detection of a salt tolerant line, image acquisition was started one day after stress induction and continued on three, seven, and 12 days after adding salt. Simplex volume maximization (SiVM) method was deployed to detect superior wheat lines in response to salt stress. The results of analyzing images taken as soon as one day after salt induction revealed that Kharchia and (columnaris)Chinese Spring are the most tolerant wheat lines, while (speltoides) Chinese Spring was a moderately susceptible, and Chinese Spring was a relatively susceptible line to salt stress. These results were confirmed with the measuring biomass performed several weeks later.

  1. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains

    NASA Astrophysics Data System (ADS)

    Bhatia, A.; Pathak, H.; Jain, N.; Singh, P. K.; Singh, A. K.

    Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice-wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH 4 emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH 4 emissions. The carbon equivalent emission from rice-wheat systems varied between 3816 and 4886 kg C equivalent ha -1 depending upon fertilizer and organic amendment. GWP of rice-wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice-wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.

  2. Row Ratios of Intercropping Maize and Soybean Can Affect Agronomic Efficiency of the System and Subsequent Wheat

    PubMed Central

    Zhang, Yitao; Liu, Jian; Zhang, Jizong; Liu, Hongbin; Liu, Shen; Zhai, Limei; Wang, Hongyuan; Lei, Qiuliang; Ren, Tianzhi; Yin, Changbin

    2015-01-01

    Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating

  3. Comparison of the composting process using ear corn residue and three other conventional bulking agents during cow manure composting under high-moisture conditions.

    PubMed

    Hanajima, Dai

    2014-10-01

    To elucidate the characteristics of ear corn residue as a bulking agent, the composting process using this residue was compared with processes using three other conventional materials such as sawdust, wheat straw and rice husk, employing a bench-scale composting reactor. As evaluated via biochemical oxygen demand (BOD), ear corn residue contains 3.3 and 2.0 times more easily digestible materials than sawdust and rice husk, respectively. In addition, mixing ear corn residue with manure resulted in reduced bulk density, which was the same as that of wheat straw and was 0.58 and 0.67 times lower than that of sawdust and a rice husk mixture, respectively. To evaluate temperature generation during the composting process, the maximum temperature and area under the temperature curve (AUCTEMP) were compared among the mixed composts of four bulking agents. Maximum temperature (54.3°C) as well as AUCTEMP (7310°C●h) of ear corn residue were significantly higher than those of sawdust and rice husk (P<0.05), and they are similar to that of wheat straw mixed compost. Along with the value of AUCTEMP, the highest organic matter losses of 31.1% were observed in ear corn residue mixed compost, followed by wheat straw, saw dust and rice husk. © 2014 Japanese Society of Animal Science.

  4. Residual phytotoxicity of parthenium: Impact on some winter crops, weeds and soil properties.

    PubMed

    Khaliq, Abdul; Aslam, Farhena; Matloob, Amar; Hussain, Saddam; Tanveer, Asif; Alsaadawi, Ibrahim; Geng, Mingjian

    2015-12-01

    Phytotoxic effects of parthenium residues incorporation and parthenium-infested rhizospheric soil on emergence and seedling growth of winter crops (wheat and canola) and weed species (wild oat and canary grass) were examined in different pot studies. In first experiment, parthenium whole plant residues were incorporated at 6 and 8 g kg(-1) soil five days prior to sowing. Pots without residues incorporation were maintained as control. In a second study, parthenium-infested rhizospheric soil collected from different depths (15 and 22.5 cm) and collar regions (horizontal distance away from plant trunk, 15 and 22.5 cm), was used as growing medium. Parthenium-free soil was used as control. Parthenium residues amendment as well as its rhizospheric soil was detrimental for emergence and seedling growth of all test species. Incorporation of parthenium residues reduced the final emergence of canola, wild oat and canary grass by 11-20%, 20-29% and 20-27%, respectively; however wheat emergence was unaffected. Moreover, seedling biomass of wheat, canola, wild oat and canary grass was reduced in the range of 41-48%, 53-61%, 31-45% and 30-45% by parthenium residues incorporation. In second study, soil collected from a rhizospheric depth of 15 cm and collar distance of 15 cm reduced the emergence and seedling growth by 15% and 40%, respectively averaged across different test species. Parthenium residues incorporation and infested rhizospheric soil increased the soil phenolics, electrical conductivity, organic carbon and nitrogen contents over control soils with the exception of pH that was declined. All test species manifested reduced chlorophyll and increased phenolic contents in response to parthenium residues incorporation and infested rhizospheric soil. The inhibition in emergence and seedling growth of all test species was associated with increase in phenolic contents. Parthenium residues incorporation at 8 g kg(-1) soil and upper parthenium-infested rhizospheric soil (15 cm

  5. Characterization of selenium-enriched wheat by agronomic biofortification.

    PubMed

    Galinha, Catarina; Sánchez-Martínez, María; Pacheco, Adriano M G; Freitas, Maria do Carmo; Coutinho, José; Maçãs, Benvindo; Almeida, Ana Sofia; Pérez-Corona, María Teresa; Madrid, Yolanda; Wolterbeek, Hubert T

    2015-07-01

    Agronomic biofortification of staple crops is an effective way to enhance their contents in essential nutrients up the food chain, with a view to correcting for their deficiencies in animal or human status. Selenium (Se) is one such case, for its uneven distribution in the continental crust and, therefore, in agricultural lands easily translates into substantial variation in nutritional intakes. Cereals are far from being the main sources of Se on a content basis, but they are likely the major contributors to intake on a dietary basis. To assess their potential to assimilate and biotransform Se, bread and durum wheat were enriched with Se through foliar and soil addition at an equivalent field rate of 100 g of Se per hectare (ha), using sodium selenate and sodium selenite as Se-supplementation matrices, in actual field conditions throughout. Biotransformation of inorganic Se was evaluated by using HPLC-ICP-MS after enzymatic hydrolysis for Se-species extraction in the resulting mature wheat grains. Selenomethionine and Se(VI) were identified and quantified: the former was the predominant species, representing 70-100 % of the total Se in samples; the maximum amount of inorganic Se was below 5 %. These results were similar for both supplementation methods and for both wheat varieties. Judging from the present results, one can conclude that agronomic biofortification of wheat may improve the nutritional quality of wheat grains with significant amounts of selenomethionine, which is an attractive option for increasing the Se status in human diets through Se-enriched, wheat-based foodstuff.

  6. Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid

    PubMed Central

    Fu, Maoqiang; Xu, Manyu; Zhang, Chunling

    2014-01-01

    The harpin protein Hpa1 has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing resistance to pathogens and insect pests. For these effects, the 10–40 residue fragment (Hpa110–42) isolated from the Hpa1 sequence is 1.3- to 7.5-fold more effective than the full-length protein. Here it is reported that the expression of Hpa110–42 under the direction of an insect-induced promoter induces the phloem-based defence to English grain aphid, a dominant species of wheat aphids. The expression of Hpa110–42 was found to compromise the colonization preference of aphids on the plant and further inhibit aphid reproduction in leaf colonies. In Hpa110–42-expressing wheat lines, moreover, aphid feeding from the phloem was repressed in correlation with the phloem-based defence. This defensive mechanism was shown as enhanced expression of wheat genes encoding phloem lectin proteins (PP2-A1 and PP2-A2) and β-1,3-glucan synthase-like enzymes (GSL2, GSL10, and GSL12). Both PP2-A and β-1,3-glucan formed high molecular mass polymers to block phloem sieve plate pores and therefore impede aphid feeding from the phloem. However, the phloem-based defence was impaired by treating plants with ethylene signalling inhibitors, suggesting the requirement for the ethylene signalling pathway. In addition, if Hpa110–42-expressing plants were subjected to attack by a small number of aphids, they newly acquired agriculturally beneficial characters, such as enhanced vegetative growth and increased tiller numbers and grain output values. These results suggest that the defensive and developmental roles of Hpa110–42 can be integrated into the germplasm of this agriculturally significant crop. PMID:24676030

  7. Simulation of Climate Change Impacts on Wheat-Fallow Cropping Systems

    USDA-ARS?s Scientific Manuscript database

    Agricultural system simulation models are predictive tools for assessing climate change impacts on crop production. In this study, RZWQM2 that contains the DSSAT 4.0-CERES model was evaluated for simulating climate change impacts on wheat growth. The model was calibrated and validated using data fro...

  8. Effect of climate change on agriculture sustainability in Jordan

    NASA Astrophysics Data System (ADS)

    Khresat, S.

    2009-04-01

    Jordan is a vulnerable country in terms of climate change impact. In the latest assessment report published by the Intergovernmental Panel on Climate Change. Jordan will suffer from reduced agricultural productivity due to more erratic rainfall patterns, reduced freshwater resources and increased temperatures. The Initial National Communication (INC) to the United Nations Framework Convention to Climate Change (UNFCCC) foresees that over the next three decades, Jordan will witness a rise in temperature, drop in rainfall, reduced ground cover, reduced water availability, heat-waves, and more frequent dust storms. Coupled with the effect of continuing drought incidents, plant cover removal was greatly accelerated. Climate change can impact agricultural sustainability in Jordan in two interrelated ways: first, by diminishing the long-term ability of agroecosystems to provide food and fiber locally; and second, by inducing shifts in agricultural regions that may encroach upon natural habitats, at the expense of floral and faunal diversity. Global warming may encourage the expansion of agricultural activities into regions now occupied by natural ecosystems such as rangelands in the Badia region and forests. Such encroachment will have adverse effects on the fragile ecosystem in those areas (Badia and steppe areas). Primary model test results showed that the reduction of rainfall by 10 to 20% had a negative impact while the increase in rainfall by 10 to 20% had a positive impact on grain yield for both barley and wheat at the different temperature regimes. This is due to the fact that water is the main limiting growth factor for wheat and barley under rainfed agriculture on Jordan. The warming (increase in temperature by 1 to 4˚ C) had negative impact on barley grain yield while it had a positive impact on grain yield of wheat.

  9. Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues.

    PubMed

    Kaushik, Priya; Garg, V K

    2004-09-01

    In India, thousands of tons of textile mill sludge are produced every year. We studied the ability of epigeic earthworm Eisenia foetida to transform textile mill sludge mixed with cow dung and/or agricultural residues into value added product, i.e., vermicompost. The growth, maturation, mortality, cocoon production, hatching success and the number of hatchlings were monitored in a range of different feed mixtures for 11 weeks in the laboratory under controlled environmental conditions. The maximum growth and reproduction was obtained in 100% cow dung, but worms grew and reproduced favorably in 80% cow dung + 20% solid textile mill sludge and 70% cow dung + 30% solid textile mill sludge also. Addition of agricultural residues had adverse effects on growth and reproduction of worms. Vermicomposting resulted in significant reduction in C:N ratio and increase in TKN, TP, TK and TCa after 77 days of worm activity in all the feeds. Vermicomposting can be an alternate technology for the management of textile mill sludge if mixed with cow dung in appropriate quantities. Copyright 2003 Elsevier Ltd.

  10. Release of ‘UI Platinum’ hard white spring wheat

    USDA-ARS?s Scientific Manuscript database

    ‘UI Platinum’ (Reg. No. CV------, PI 672533) hard white spring wheat (Triticum aestivum L.) was developed by the Idaho Agricultural Experiment Station and released in 2014. UI Platinum was derived from the cross ‘Blanca Grande’ x ‘Jerome’ and tested under experimental numbers A01178S, IDO694, and I...

  11. Improved crop residue cover estimates by coupling spectral indices for residue and moisture

    USDA-ARS?s Scientific Manuscript database

    Remote sensing assessment of soil residue cover (fR) and tillage intensity will improve our predictions of the impact of agricultural practices and promote sustainable management. Spectral indices for estimating fR are sensitive to soil and residue water content, therefore, the uncertainty of estima...

  12. CO2 Dynamics in winter wheat and canola under different management practices in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Wagle, P.; Manjunatha, P.; Gowda, P. H.; Northup, B. K.; Neel, J. P. S.; Turner, K.; Steiner, J. L.

    2017-12-01

    Rising atmospheric carbon dioxide (CO2) concentration and increased air temperature and climatic variability concerns have prompted considerable interest regarding CO2 dynamics of terrestrial ecosystems in response to major climatic and biophysical factors. However, detailed information on CO2 dynamics in winter wheat (Triticum aestivum L.) and canola (Brassica napus L.) under different agricultural management practices is lacking. As a part of the GRL-FLUXNET, a cluster of eight eddy covariance (EC) systems was deployed on the 420-ha Grazinglands Research on agroEcosystems and the ENvironment (GREEN) Farm at the United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Grazinglands Research Laboratory (GRL), El Reno, OK. The GRL is also one of 18 USDA-ARS Long-Term Agroecosystem Research (LTAR) network sites in the United States. A 4-year crop rotation plan at the farm includes winter wheat for grain only, graze-grain, and graze-out, and canola under conventional till and no-till management conditions. Biometric measurements such as biomass, leaf area index (LAI), canopy cover %, canopy height, and chlorophyll content were collected approximately every 16 days to coincide with Landsat satellite overpass dates. As expected, biomass and LAI were highest in the grain only wheat fields followed by graze-grain and graze-out wheat fields, but they were similar for till and no-till wheat fields within the same grazing practice. Biomass and LAI were similar in till and no-till canola in fall 2016, but both were substantially lower in no-till compared to tilled canola during spring 2017 due to more severe winter damage. Because net ecosystem CO2 exchange (NEE) is strongly regulated by vegetation cover, the magnitudes of NEE were highest in the grain only wheat fields due to more biomass and LAI, followed by graze-grain and graze-out wheat fields. Similarly, the magnitudes of NEE were also higher in tilled canola (i.e., higher biomass and LAI) than

  13. Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: eucalyptus residues, wheat straw and olive tree pruning.

    PubMed

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Marques, Susana; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-isothermal conditions (195-230°C) and the non-cellulosic saccharides were recovered in the liquid fraction while cellulose and lignin remained in the solid fraction. The acid post-hydrolysis of the soluble oligosaccharides was studied by optimizing sulfuric acid concentration (1-4%w/w) and reaction time (10-60 min), employing a factorial (2(2)) experimental design. The solids resulting from pretreatment were submitted to enzymatic hydrolysis by applying commercial cellulolytic enzymes Celluclast® 1.5L and Novozyme® 188 (0.225 and 0.025 g/g solid, respectively). This strategy provides high total monosaccharide recovery or high glucose recovery from lignocellulosic materials, depending on the autohydrolysis conditions applied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Earthworm tolerance to residual agricultural pesticide contamination: field and experimental assessment of detoxification capabilities.

    PubMed

    Givaudan, Nicolas; Binet, Françoise; Le Bot, Barbara; Wiegand, Claudia

    2014-09-01

    This study investigates if acclimatization to residual pesticide contamination in agricultural soils is reflected in detoxification, antioxidant enzyme activities and energy budget of earthworms. Five fields within a joint agricultural area exhibited different chemical and farming histories from conventional cultivation to organic pasture. Soil multiresidual pesticide analysis revealed up to 9 molecules including atrazine up to 2.4 ng g(-1) dry soil. Exposure history of endogeic Aporrectodea caliginosa and Allolobophora chlorotica modified their responses to pesticides. In the field, activities of soluble glutathione-S-transferases (sGST) and catalase increased with soil pesticide contamination in A. caliginosa. Pesticide stress was reflected in depletion of energy reserves in A. chlorotica. Acute exposure of pre-adapted and naïve A. caliginosa to pesticides (fungicide Opus(®), 0.1 μg active ingredient epoxiconazole g(-1) dry soil, RoundUp Flash(®), 2.5 μg active ingredient glyphosate g(-1) dry soil, and their mixture), revealed that environmental pre-exposure accelerated activation of the detoxification enzyme sGST towards epoxiconazole. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Eco-efficient agriculture for producing higher yields with lower greenhouse gas emissions: a case study of intensive irrigation wheat production in China

    NASA Astrophysics Data System (ADS)

    Cui, Z. L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.

    2013-10-01

    Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the tradeoff between crop productivity and GHG emissions in intensive agricultural production is not well understood. In this study, we investigated 33 sites of on-farm experiments to evaluate the tradeoff between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive irrigation wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. However, in both the HY and CP systems, wheat grain yield response to GHG emissions fit a linear-plateau model, whereas the curve for grain yield from the HY system was always higher than that from the CP system. Compared to the CP system, grain yield was 44% (2.6 Mg ha-1) higher in the HY system, while GHG emissions increased by only 2.5%, and GHG emission intensity was reduced by 29%. The current intensive irrigation wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6.05 Mg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 40% (5.96 Mg ha-1, and 2890 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 41% with a simultaneous reduction in GHG emissions by 38% (8.55 Mg ha-1, and 2961 kg CO2 eq ha-1, respectively). In the future, we suggest moving the tradeoff relationships and calculations from grain yield and GHG emissions, to new measures of productivity and environmental protection using innovative management technologies. This shift in focus is critical to achieve food and environmental security.

  16. Dissipation kinetics of organophosphorus pesticides in milled toasted maize and wheat flour (gofio) during storage.

    PubMed

    González-Curbelo, Miguel Ángel; Socas-Rodríguez, Bárbara; Herrero, Miguel; Herrera-Herrera, Antonio V; Hernández-Borges, Javier

    2017-08-15

    The dissipation/degradation of the pesticides dimethoate, terbufos, disulfoton, and pirimiphos-methyl were evaluated in milled toasted maize and wheat flour (gofio) during three months of storage. Their dissipation kinetics and residual levels were determined, as well as their possible decomposition into some of their main transformation products (disulfoton sulfoxide, terbufos sulfone and disulfoton sulfone). For this purpose, pesticide-free milled toasted maize and wheat samples were spiked with the pesticides, and they were then stored in the darkness at ambient temperature in a closed container to simulate current storage conditions of such packed food. A multiresidue analysis based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method was performed for the simultaneous determination of these pesticides and their metabolites. After three months of storage, the dissipation of residues ranged between 34% (pirimiphos-methyl) and 86% (disulfoton) for maize gofio and between 69% (terbufos) and 92% (disulfoton and pirimiphos-methyl) for wheat gofio. The results demonstrated that the degradation was slower in gofio than in wheat gofio and that none of the selected metabolites were detected in any of the samples. Dissipation curves of all studied pesticides fitted to a first-order decay curve in both types of cereals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Environmental consequences of deltamethrin residues in cattle feces in an African agricultural landscape.

    PubMed

    Sands, Bryony; Mgidiswa, Neludo; Nyamukondiwa, Casper; Wall, Richard

    2018-03-01

    Pyrethroid insecticides are widely used to control ectoparasites of livestock, particularly ticks and biting flies. Their use in African livestock systems is increasing, driven by the need to increase productivity and local food security. However, insecticide residues present in the dung after treatment are toxic to dung-inhabiting insects. In a semiarid agricultural habitat in Botswana, dung beetle adult mortality, brood ball production, and larval survival were compared between untreated cattle dung and cattle dung spiked with deltamethrin, to give concentrations of 0.01, 0.1, 0.5, or 1 ppm. Cattle dung-baited pitfall traps were used to measure repellent effects of deltamethrin in dung on Scarabaeidae. Dung decomposition rate was also examined. There was significantly increased mortality of adult dung beetles colonizing pats that contained deltamethrin compared to insecticide-free pats. Brood ball production was significantly reduced at concentrations of 1 ppm; larval survival was significantly reduced in dung containing 0.1 ppm deltamethrin and above. There was no difference in the number of Scarabaeidae attracted to dung containing any of the deltamethrin concentrations. Dung decomposition was significantly reduced even at the lowest concentration (0.01 ppm) compared to insecticide-free dung. The widespread use of deltamethrin in African agricultural ecosystems is a significant cause for concern; sustained use is likely to damage dung beetle populations and their provision of environmentally and economically important ecosystem services. Contaminated dung buried by paracoprid (tunneling) beetles may retain insecticidal effects, with impacts on developing larvae below ground. Lethal and sublethal effects on entire dung beetle (Scarabaeidae) communities could impair ecosystem function in agricultural landscapes.

  18. Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L.) improves dough mixing properties by their incorporation into glutenin polymers.

    PubMed

    Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.

  19. Overexpression of Avenin-Like b Proteins in Bread Wheat (Triticum aestivum L.) Improves Dough Mixing Properties by Their Incorporation into Glutenin Polymers

    PubMed Central

    Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength. PMID:23843964

  20. Global bioenergy potential from high-lignin agricultural residue

    PubMed Central

    Mendu, Venugopal; Shearin, Tom; Campbell, J. Elliott; Stork, Jozsef; Jae, Jungho; Crocker, Mark; Huber, George; DeBolt, Seth

    2012-01-01

    Almost one-quarter of the world's population has basic energy needs that are not being met. Efforts to increase renewable energy resources in developing countries where per capita energy availability is low are needed. Herein, we examine integrated dual use farming for sustained food security and agro-bioenergy development. Many nonedible crop residues are used for animal feed or reincorporated into the soil to maintain fertility. By contrast, drupe endocarp biomass represents a high-lignin feedstock that is a waste stream from food crops, such as coconut (Cocos nucifera) shell, which is nonedible, not of use for livestock feed, and not reintegrated into soil in an agricultural setting. Because of high-lignin content, endocarp biomass has optimal energy-to-weight returns, applicable to small-scale gasification for bioelectricity. Using spatial datasets for 12 principal drupe commodity groups that have notable endocarp byproduct, we examine both their potential energy contribution by decentralized gasification and relationship to regions of energy poverty. Globally, between 24 million and 31 million tons of drupe endocarp biomass is available per year, primarily driven by coconut production. Endocarp biomass used in small-scale decentralized gasification systems (15–40% efficiency) could contribute to the total energy requirement of several countries, the highest being Sri Lanka (8–30%) followed by Philippines (7–25%), Indonesia (4–13%), and India (1–3%). While representing a modest gain in global energy resources, mitigating energy poverty via decentralized renewable energy sources is proposed for rural communities in developing countries, where the greatest disparity between societal allowances exist. PMID:22355123

  1. Residual soil nitrate content and profitability of five cropping systems in northwest Iowa

    PubMed Central

    Schuiteman, Matthew A.; Vos, Ronald J.

    2017-01-01

    Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall) soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall). The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L.) with a cereal rye (Secale cereale L.) cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.)-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L.) Merr.)-winter wheat (Triticum aestivum L.)-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1) was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss) for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy. PMID:28248976

  2. Registration of ‘Mace’ hard red winter wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Mace’ (Reg. No. CV PI 651043) hard red winter wheat (Triticum aestivum L.) was developed by the USDA-ARS and the Nebraska Agricultural Experiment Station and released in December, 2007. Mace was selected from the cross Yuma//PI 372129/3/CO850034/4/4*Yuma/5/(KS91H184/Arlin S//KS91HW29/3/NE89526)....

  3. Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight (FHB) of wheat caused mainly by members of the Fusarium graminearum species complex (FGSC) is a major threat to agricultural grain production, food safety, and animal health. The severity of disease epidemics and accumulation of associated trichothecene mycotoxins in wheat kerne...

  4. A diploid wheat TILLING resource for wheat functional genomics

    PubMed Central

    2012-01-01

    Background Triticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis. Results We developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb. Conclusion The mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability. PMID:23134614

  5. Ozonation and alkaline-peroxide pretreatment of wheat straw for Cryptococcus curvatus fermentation

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J. B.; Lin, S.; McKenzie, S.; Denvir, A.

    2000-01-01

    Crop residues in an Advanced Life Support System (ALS) contain many valuable components that could be recovered and used. Wheat is 60% inedible, with approximately 90% of the total sugars in the residue cellulose and hemicellulose. To release these sugars requires pretreatment followed by enzymatic hydrolysis. Cryptococcus curvatus, an oleaginous yeast, uses the sugars in cellulose and hemicellulose for growth and production of storage triglycerides. In this investigation, alkaline-peroxide and ozonation pretreatment methods were compared for their efficiency to release glucose and xylose to be used in the cultivation of C. curvatus. Leaching the biomass with water at 65 degrees C for 4 h prior to pretreatment facilitated saccharification. Alkaline-peroxide and ozone pretreatment were almost 100% and 80% saccharification efficient, respectively. The sugars derived from the hydrolysis of alkaline-peroxide-treated wheat straw supported the growth of C. curvatus and the production of edible single-cell oil.

  6. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  7. Metabolic fate and distribution of [{sup 14}C]1,3-dichloropropene in carrot, lettuce, radish, tomato, and wheat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnkow, D.E.; Byrne, S.L.; Huskin, M.A.

    1996-10-01

    This study examined the nature of the radioactive residue in carrot, lettuce, radish, tomato, and wheat grown in soil treated with uniformly {sup 14}C-labeled cis- and trans-1,3-dichloropropene (1,3-D). Each crop was grown in soil treated at or above the maximum use rate. Carrot root and top, lettuce, radish root and top, tomato fruit and vine, and wheat forage, straw and grain were harvested, processed, and analyzed. The {sup 14}C residues were subjected to sequential extraction with diethyl ether and aqueous acetonitrile. The residues that remained were subjected to extraction, fractionation, and hydrolysis with buffer, enzymes, acid, alkali, and strong oxidizingmore » agents. Analyses of the solubilized residues demonstrated that no detectable parent, 1,3-D, or the putative metabolites 3-chloroallyl alcohol and 3-chloroacrylic acid were present. The components of the extractable residue included most major plant constituents (i.e., protein, pigments, organic acids, sucrose, cellulose, and lignin). Thus, natural incorporation of the {sup 14}C-label into natural plant biochemicals is demonstrated.« less

  8. Poisoning of Canada geese in Texas by parathion sprayed for control of Russian wheat aphid

    USGS Publications Warehouse

    Flickinger, Edward L.; Juenger, Gary; Roffe, Thomas J.; Smith, Milton R.; Irwin, Roy J.

    1991-01-01

    Approximately 200 Canada geese (Branta canadensis) died at a playa lake in the Texas Panhandle shortly after a winter wheat field in the basin adjacent to the lake was treated with parathion to control newly invading Russian wheat aphids (Diuraphis noxia). No evidence of infectious disease was diagnosed during necropsies of geese. Brain ChE activities were depressed up to 77% below normal. Parathion residues in GI tract contents of geese ranged from 4 to 34 ppm. Based on this evidence, parathion was responsible for the goose mortalities. Parathion applications to winter wheat will undoubtedly increase if parathion is applied for control of both Russian wheat aphids and greenbugs (Schizaphis graminum). Geese may potentially be exposed to widespread applications of parathion from fall to spring, essentially their entire wintering period.

  9. Ameliorating Effects of Biochar Derived from Poultry Manure and White Clover Residues on Soil Nutrient Status and Plant growth Promotion - Greenhouse Experiments

    PubMed Central

    Abbasi, M. Kaleem; Anwar, Ahsan Ali

    2015-01-01

    Biochar application to agricultural soils is rapidly emerging as a new management strategy for its potential role in carbon sequestration, soil quality improvements, and plant growth promotion. The aim of our study was to investigate the effects of biochars derived from white clover residues and poultry manure on soil quality characteristics, growth and N accumulation in maize (Zea mays L.) and wheat (Triticum aestivum L.) grown in a loam soil under greenhouse conditions. Treatments comprised of: untreated control; mineral N fertilizer (urea N, UN) at the rate of 200, and 100 mg N kg-1, white clover residues biochar (WCRB), poultry manure biochar (PMB) at 30 Mg ha–1, and the possible combinations of WCRB+PMB (50:50), UN+WCRB (50:50), UN+PMB (50:50), and UN+WCRB+PMB (50:25:25). The treatments were arranged in a completely randomized design with three replications. Results indicated a significant increase in the growth and biomass production of maize and wheat supplemented with biochars alone or mixed with N fertilizer. Biochars treatments showed varying impact on plant growth depended upon the type of the biochar, and in general plant growth under PMB was significantly higher than that recorded under WCRB. The growth characteristics in the combined treatments (half biochar+half N) were either higher or equivalent to that recorded under full fertilizer N treatment (N200). The biochar treatments WCRB, PMB, and WCRB+PMB (50:50) increased maize shoot N by 18, 26 and 21%, respectively compared to the control while wheat shoot N did not show positive response. The N-uptake by maize treated with WCRB, PMB, and WCRB+PMB (50:50) was 54, 116, and 90 mg g-1 compared to the 33 mg g-1 in the control while the N-uptake by wheat was 41, 60, and 53 mg g-1 compared to 24 mg g-1 in the control. The mixed treatments (half biochar+half N) increased N-uptake by 2.3folds in maize and 1.7 to 2.5folds in wheat compared to the N100 showing increasing effect of biochar on N use efficiency

  10. Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor.

    PubMed

    Michelin, Michele; Polizeli, Maria de Lourdes T M; Ruzene, Denise S; Silva, Daniel P; Vicente, António A; Jorge, João A; Terenzi, Héctor F; Teixeira, José A

    2012-01-01

    The xylanase biosynthesis is induced by its substrate-xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and β-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.

  11. A Recessive Pollination Control System for Wheat Based on Intein-Mediated Protein Splicing.

    PubMed

    Gils, Mario

    2017-01-01

    A transgene-expression system for wheat that relies on the complementation of inactive precursor protein fragments through a split-intein system is described. The N- and C-terminal fragments of a barnase gene from Bacillus amyloliquifaciens were fused to intein sequences from Synechocystis sp. and transformed into wheat plants. Upon translation, both barnase fragments are assembled by an autocatalytic intein-mediated trans-splicing reaction, thus forming a cytotoxic enzyme. This chapter focuses on the use of introns and flexible polypeptide linkers to foster the expression of a split-barnase expression system in plants. The methods and protocols that were employed with the objective to test the effects of such genetic elements on transgene expression and to find the optimal design of expression vectors for use in wheat are provided. Split-inteins can be used to form an agriculturally important trait (male sterility) in wheat plants. The use of this principle for the production of hybrid wheat seed is described. The suggested toolbox will hopefully be a valuable contribution to future optimization strategies in this commercially important crop.

  12. Mining Centuries Old In situ Conserved Turkish Wheat Landraces for Grain Yield and Stripe Rust Resistance Genes

    PubMed Central

    Sehgal, Deepmala; Dreisigacker, Susanne; Belen, Savaş; Küçüközdemir, Ümran; Mert, Zafer; Özer, Emel; Morgounov, Alexey

    2016-01-01

    Wheat landraces in Turkey are an important genetic resource for wheat improvement. An exhaustive 5-year (2009–2014) effort made by the International Winter Wheat Improvement Programme (IWWIP), a cooperative program between the Ministry of Food, Agriculture and Livestock of Turkey, the International Center for Maize and Wheat Improvement (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA), led to the collection and documentation of around 2000 landrace populations from 55 provinces throughout Turkey. This study reports the genetic characterization of a subset of bread wheat landraces collected in 2010 from 11 diverse provinces using genotyping-by-sequencing (GBS) technology. The potential of this collection to identify loci determining grain yield and stripe rust resistance via genome-wide association (GWA) analysis was explored. A high genetic diversity (diversity index = 0.260) and a moderate population structure based on highly inherited spike traits was revealed in the panel. The linkage disequilibrium decayed at 10 cM across the whole genome and was slower as compared to other landrace collections. In addition to previously reported QTL, GWA analysis also identified new candidate genomic regions for stripe rust resistance, grain yield, and spike productivity components. New candidate genomic regions reflect the potential of this landrace collection to further increase genetic diversity in elite germplasm. PMID:27917192

  13. Effects of protein in wheat flour on retrogradation of wheat starch.

    PubMed

    Xijun, Lian; Junjie, Guo; Danli, Wang; Lin, Li; Jiaran, Zhu

    2014-08-01

    Albumins, globulins, gliadins, and glutenins were isolated from wheat flour and the effects of those proteins on retrogradation of wheat starch were investigated. The results showed that only glutenins retarded retrogradation of wheat starch and other 3 proteins promoted it. The results of IR spectra proved that no S-S linkage formed during retrogradation of wheat starch blended with wheat proteins. Combination of wheat starch and globulins or gliadins through glucosidic bonds hindered the hydrolysis of wheat starch by α-amylase. The melting peak temperatures of retrograded wheat starch attached to different proteins were 128.46, 126.14, 132.03, 121.65, and 134.84 °C for the control with no protein, albumins, glutenins, globulins, gliadins groups, respectively, and there was no second melting temperature for albumins group. Interaction of wheat proteins and starch in retrograded wheat starch greatly decreased the endothermic enthalpy (△H) of retrograded wheat starch. Retrograded wheat starch bound to gliadins might be a new kind of resistant starch based on glycosidic bond between starch and protein. © 2014 Institute of Food Technologists®

  14. Measurement of trichothecene mycotoxins in wheat using a biolayer interferometry-based biosensor

    USDA-ARS?s Scientific Manuscript database

    Mycotoxins are secondary metabolites produced by fungi. The fungi can infest a variety of important agricultural commodities including wheat, barley, maize, peanuts, and tree nuts. Certain of the mycotoxins are potential threats to animal and human health and, for this reason, extensive monitoring i...

  15. Growth and Productivity Response of Hybrid Rice to Application of Animal Manures, Plant Residues and Phosphorus

    PubMed Central

    Amanullah; Khan, Shams-ul-Tamraiz; Iqbal, Asif; Fahad, Shah

    2016-01-01

    The objective of this research was to evaluate the impact of organic sources (animal manures vs. plant residues at the rate of 10 t ha−1 each) on the productivity of hybrid rice (Oryza sativa L.) production under different levels of phosphorus (0, 30, 60, and 90 kg P ha−1) fertilization. Two separate field experiments were conducted. In experiment (1), impact of three animal manures sources (cattle, sheep, and poultry manures) and P levels were studied along with one control plot (no animal manure and P applied) was investigated. In experiment (2), three plant residues sources (peach leaves, garlic residues, and wheat straw) and P levels were studied along with one control plot (no plant residues and P applied). Both the experiments were carried out on small land farmer field at District Swabi, Khyber Pakhtunkhwa Province (Northwest Pakistan) during summer 2015. The results revealed that in both experiments the control plot had significantly (p ≤ 0.05) less productivity than the average of all treated plots with organic sources and P level. The increase in P levels in both experiments (animal manure vs. plant residues) resulted in higher rice productivity (90 > 60 > 30 > 0 kg P ha−1). In the experiment under animal manures, application of poultry manure increased rice productivity as compared with sheep and cattle manures (poultry > sheep > cattle manures). In the experiment under plant residues, application of peach leaves or garlic residues had higher rice productivity than wheat straw (peach leaves = garlic residues > wheat straw). On average, rice grown under animal manures produced about 20% higher grain yield than rice grown under crop residues. We conclude from this study that application of 90 kg P ha−1 along with combined application of animal manures, especially poultry manure increases rice productivity. Also, the use of either garlic residues or peach leaves, never applied before as organic manures, can increase crop productivity and will help

  16. Disintegration of the agricultural by-product wheat bran under subcritical conditions.

    PubMed

    Reisinger, Michael; Tirpanalan, Özge; Pruksasri, Suwattana; Kneifel, Wolfgang; Novalin, Senad

    2018-02-10

    The disintegration of destarched wheat bran in water and sulfuric acid (pH 3) under subcritical conditions (275-300 °C) and at short reaction times (1-4 min) was investigated. A cascade process comprising a stepwise separation of the liquid was applied to reduce the formation of undesired degradation products. The highest degree of biomass disintegration (67% dry mass solubilization) was achieved by application of a cascade process at 275 °C (pH 3). Regarding the dissolution of carbohydrates (monomeric and oligomeric form), the total glucose yields remained below 60%, while the total xylose and arabinose yields were about 76% and 67%. Approximately 74% of the protein and 95% of the mineral fraction could be extracted. The application of the cascade process enabled a substantially reduced formation of degradation products. When operating hydrothermally and subcritically in order to avoid some problematic aspects of a biorefinery, an extensive disintegration and monomerization of wheat bran and its constituents remains difficult even under the tested conditions (300 °C, pH 3). However, the applied cascade process proved to be useful to increase the yields and to substantially reduce the formation of undesired degradation products. Despite this fact, increased water consumption has to be conceded. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  17. Enhancing Nutritional Contents of Lentinus sajor-caju Using Residual Biogas Slurry Waste of Detoxified Mahua Cake Mixed with Wheat Straw

    PubMed Central

    Gupta, Aditi; Sharma, Satyawati; Kumar, Ashwani; Alam, Pravej; Ahmad, Parvaiz

    2016-01-01

    Residual biogas slurries (BGS) of detoxified mahua cake and cow dung were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS). Supplementation with 20% BGS gave a maximum yield of 1155 gkg-1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase (p ≤ 0.05) in protein content (29.6-38.9%), sugars (29.1-32.3%) and minerals (N, P, K, Fe, Zn) was observed in the fruit bodies. Principle component analysis (PCA) was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%), lignin (%), celluloses (%), and C/N ratio were closely correlated in comparison to Fe, N, and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake) in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%), hemicelluloses (14.1-23.1%) and lignin (27.4-39.23%) in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of L. sajor-caju by resourceful utilization of BGS. PMID:27790187

  18. Development of dynamic wheat crop model in ISAM and estimation of impacts of environmental factors on wheat production in India

    NASA Astrophysics Data System (ADS)

    Gahlot, S.; Lin, T. S.; Jain, A. K.; Baidya Roy, S.; Sehgal, V. K.; Dhakar, R.

    2017-12-01

    With changing environmental conditions, such as climate and elevated atmospheric CO2 concentrations, questions about food security can be answered by modeling crops based on our understanding of the dynamic crop growth processes and interactions between the crops and their environment in the form of carbon, water and energy fluxes. These interactions and their effect on cropland ecosystems are non-linear because of the feedback mechanisms. Hence, process-based modelling approach can be used to conduct numerical experiments to derive insights into these processes and interactive feedbacks. In this study we have implemented dynamic crop growth processes for wheat into a data-modeling framework, Integrated Science Assessment Model (ISAM), to estimate the impacts of different factors like CO2 fertilization, irrigation, nitrogen limitation and climate change on wheat in India. In specific, we have implemented wheat-specific phenology, C3 photosynthesis mechanism and phenology-specific carbon allocation schemes for assimilated carbon to leaf, stem, root and grain pools. Crop growth limiting stress factors like nutrients, temperature and light have been included. The impact of high temperatures on leaf senescence, anthesis and grain filling has been modeled and found to be causing significant reduction in yield in the recent years. Field data from an experimental wheat site located at the Indian Agricultural Research Institute (IARI), New Delhi, India has been collected for aboveground biomass and leaf area index (LAI) for two growing seasons 2014-15 and 2015-16. This data has been used to study the phenology, growing season length, thermal requirements and growth stages of wheat. Using the field data, the dynamic model for wheat has been evaluated for the site level seasonal variability in leaf area index (LAI) and aboveground biomass. The variations in carbon, water and energy fluxes, plant height and rooting depth have been analyzed on the site level. Model experiments

  19. Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation.

    PubMed

    Sainju, Upendra M; Lenssen, Andrew; Caesar-Thonthat, Thecan; Waddell, Jed

    2006-01-01

    Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the northern Great Plains have resulted in low soil organic carbon (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)], and Conservation Reserve Program (CRP) planting on plant C input, SOC, and particulate organic carbon (POC). A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) from 1998 to 2003 in Havre, MT. Total plant biomass returned to the soil from 1998 to 2003 was greater in CW (15.5 Mg ha(-1)) than in other rotations. Residue cover, amount, and C content in 2004 were 33 to 86% greater in NT than in CT and greater in CRP than in crop rotations. Residue amount (2.47 Mg ha(-1)) and C content (0.96 Mg ha(-1)) were greater in NT with CW than in other treatments, except in CT with CRP and W-F and in NT with CRP and W-W-F. The SOC at the 0- to 5-cm depth was 23% greater in NT (6.4 Mg ha(-1)) than in CT. The POC was not influenced by tillage and crop rotation, but POC to SOC ratio at the 0- to 20-cm depth was greater in NT with W-L (369 g kg(-1) SOC) than in CT with CW, W-F, and W-L. From 1998 to 2003, SOC at the 0- to 20-cm depth decreased by 4% in CT but increased by 3% in NT. Carbon can be sequestered in dryland soils and plant residue in areas previously under CRP using reduced tillage and increased cropping intensity, such as NT with CW, compared with traditional practice, such as CT with W-F system, and the content can be similar to that in CRP planting.

  20. WheatGenome.info: an integrated database and portal for wheat genome information.

    PubMed

    Lai, Kaitao; Berkman, Paul J; Lorenc, Michal Tadeusz; Duran, Chris; Smits, Lars; Manoli, Sahana; Stiller, Jiri; Edwards, David

    2012-02-01

    Bread wheat (Triticum aestivum) is one of the most important crop plants, globally providing staple food for a large proportion of the human population. However, improvement of this crop has been limited due to its large and complex genome. Advances in genomics are supporting wheat crop improvement. We provide a variety of web-based systems hosting wheat genome and genomic data to support wheat research and crop improvement. WheatGenome.info is an integrated database resource which includes multiple web-based applications. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second-generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This system includes links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/.

  1. Soil carbon fractions under maize-wheat system: effect of tillage and nutrient management.

    PubMed

    Sandeep, S; Manjaiah, K M; Pal, Sharmistha; Singh, A K

    2016-01-01

    Soil organic carbon plays a major role in sustaining agroecosystems and maintaining environmental quality as it acts as a major source and sink of atmospheric carbon. The present study aims to assess the impact of agricultural management practices on soil organic carbon pools in a maize-wheat cropping system of Indo-Gangetic Plains, India. Soil samples from a split plot design with two tillage systems (bed planting and conventional tillage) and six nutrient treatments (T1 = control, T2 = 120 kg urea-N ha(-1), T3 = T2 (25 % N substituted by FYM), T4 = T2 (25 % N substituted by sewage sludge), T5 = T2 + crop residue, T6 = 100 % organic source (50 % FYM + 25 % biofertilizer + 25 % crop residue) were used for determining the organic carbon pools. Results show that there was a significant improvement in Walkley and Black carbon in soil under integrated and organic nutrient management treatments. KMnO4-oxidizable carbon content of soil varied from 0.63 to 1.50 g kg(-1) in soils and was found to be a better indicator for monitoring the impact of agricultural management practices on quality of soil organic carbon than microbial biomass carbon. Tillage and its interaction were found to significantly influence only those soil organic carbon fractions closely associated with aggregate stability viz, labile polysaccharides and glomalin. The highest amount of C4-derived carbon was found to be in plots receiving recommended doses of N as urea (29 %) followed by control plots (25 %). The carbon management index ranged between 82 to 195 and was better in integrated nutrient sources than ones receiving recommended doses of nutrients through mineral fertilizers alone.

  2. Global Synthesis of Drought Effects on Maize and Wheat Production

    PubMed Central

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2016-01-01

    Drought has been a major cause of agricultural disaster, yet how it affects the vulnerability of maize and wheat production in combination with several co-varying factors (i.e., phenological phases, agro-climatic regions, soil texture) remains unclear. Using a data synthesis approach, this study aims to better characterize the effects of those co-varying factors with drought and to provide critical information on minimizing yield loss. We collected data from peer-reviewed publications between 1980 and 2015 which examined maize and wheat yield responses to drought using field experiments. We performed unweighted analysis using the log response ratio to calculate the bootstrapped confidence limits of yield responses and calculated drought sensitivities with regards to those co-varying factors. Our results showed that yield reduction varied with species, with wheat having lower yield reduction (20.6%) compared to maize (39.3%) at approximately 40% water reduction. Maize was also more sensitive to drought than wheat, particularly during reproductive phase and equally sensitive in the dryland and non-dryland regions. While no yield difference was observed among regions or different soil texture, wheat cultivation in the dryland was more prone to yield loss than in the non-dryland region. Informed by these results, we discuss potential causes and possible approaches that may minimize drought impacts. PMID:27223810

  3. Residual susceptibility of the red imported fire ant (Hymenoptera: Formicidae) to four agricultural insecticides.

    PubMed

    Seagraves, Michael P; McPherson, Robert M

    2003-06-01

    The red imported fire ant, Solenopsis invicta Buren, is an abundant predator in cropping systems throughout its range. It has been documented to be an important predator of numerous crop pests, as well as being an agricultural pest itself. Information on the impact of insecticides on natural enemies such as fire ants is necessary for the integration of biological and chemical control tactics in an effective pest management program. Therefore, a residual vial bioassay was developed to determine the concentration-mortality responses of S. invicta workers to four commonly used insecticides: acephate, chlorpyrifos, methomyl and lambda-cyhalothrin. Fire ant workers showed a mortality response to serial dilutions to all four chemicals. Methomyl (LC50 0.04 microg/vial, fiducial limits 0.03-0.06) was the most toxic, followed by chlorpyrifos (LC50 0.11 microg/vial, fiducial limits 0.07-0.17) and acephate (LC50 0.76 microg/vial, fiducial limits 0.50-1.04). Of the chemicals assayed, it took a much higher concentration of lambda-cyhalothrin (LC50 2.30 microg/vial, fiducial limits 1.57-3.59) to kill 50% of the workers compared with the other three chemicals. The results of this study demonstrate the wide range in responses of fire ants to four insecticides that are labeled and commonly used on numerous agricultural crops throughout the United States. These results further suggest the possibility of using a discriminating dose of lambda-cyhalothrin to control the target pest species while conserving fire ants in the agricultural systems in which their predatory behavior is beneficial to the integrated pest management program.

  4. 7 CFR 29.427 - Pesticide residue standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Pesticide residue standards. 29.427 Section 29.427... REGULATIONS TOBACCO INSPECTION Regulations Miscellaneous § 29.427 Pesticide residue standards. The maximum concentration of residues of the following pesticides allowed in flue-cured or burley tobacco, expressed as...

  5. 7 CFR 29.427 - Pesticide residue standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Pesticide residue standards. 29.427 Section 29.427... REGULATIONS TOBACCO INSPECTION Regulations Miscellaneous § 29.427 Pesticide residue standards. The maximum concentration of residues of the following pesticides allowed in flue-cured or burley tobacco, expressed as...

  6. 7 CFR 29.427 - Pesticide residue standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Pesticide residue standards. 29.427 Section 29.427... REGULATIONS TOBACCO INSPECTION Regulations Miscellaneous § 29.427 Pesticide residue standards. The maximum concentration of residues of the following pesticides allowed in flue-cured or burley tobacco, expressed as...

  7. 7 CFR 29.427 - Pesticide residue standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Pesticide residue standards. 29.427 Section 29.427... REGULATIONS TOBACCO INSPECTION Regulations Miscellaneous § 29.427 Pesticide residue standards. The maximum concentration of residues of the following pesticides allowed in flue-cured or burley tobacco, expressed as...

  8. 7 CFR 29.427 - Pesticide residue standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Pesticide residue standards. 29.427 Section 29.427... REGULATIONS TOBACCO INSPECTION Regulations Miscellaneous § 29.427 Pesticide residue standards. The maximum concentration of residues of the following pesticides allowed in flue-cured or burley tobacco, expressed as...

  9. Possible space weather influence on the Earth wheat prices

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, L.; Yom Din, G.; Dorman, L.

    We present development of our study of possible influence of space weather modulated by cycle of solar activity on the price bursts in the Earth markets In our previous works 1 2 we showed that correspondent response may have place in the specific locations characterized by a high sensitivity of the weather cloudiness in particular to cosmic ray variation b risk zone agriculture c isolated wheat market with limited external supply of agriculture production We showed that in this situation we may wait specific price burst reaction on unfavorable phase of solar activity and space weather what lead to corresponding abnormalities in the local weather and next crop failure We showed that main types of manifestation of this connection are a Distribution of intervals between price bursts must be like to the distribution of intervals between correspondent extremes of solar activity minimums or maximums b price asymmetry between opposite states of solar activity price in the one type of activity state is systematically higher then in the opposite one We showed in our previous publications that this influence in interval distribution is detected with high reliability in Mediaeval England 1250-1700 both for wheat prices and price of consumables basket We showed that for period of Maunder Minimum price asymmetry of wheat prices observed all prices in minimum state of solar activity was higher the prices in the next maximum state We showed later that this price asymmetry had place in 20-th century in USA durum prices too In

  10. Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat

    PubMed Central

    Foley, Rhonda C.; Kidd, Brendan N.; Hane, James K.; Anderson, Jonathan P.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction. PMID:27031952

  11. Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat.

    PubMed

    Foley, Rhonda C; Kidd, Brendan N; Hane, James K; Anderson, Jonathan P; Singh, Karam B

    2016-01-01

    Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction.

  12. ASSOCIATION BETWEEN CANCER MORTALITY AND WHEAT ACREAGE AS A SURROGATE FOR CHLOROPHENOXY HERBICIDES IN COUNTIES OF OUR NORTHERN STATES

    EPA Science Inventory

    Chlorophenoxy herbicides which have endocrine disrupting properties, are used widely both in cereal grain agriculture and in non-agricultural settings, such as right-of-ways, lawns, and parks. Most of the spring and durum wheat produced in the U.S. is grown in four northern stat...

  13. Effect of Ozone Treatment on Deoxynivalenol and Wheat Quality

    PubMed Central

    Wang, Li; Shao, Huili; Luo, Xiaohu; Wang, Ren; Li, Yongfu; Li, Yanan; Luo, Yingpeng; Chen, Zhengxing

    2016-01-01

    Deoxynivalenol (DON) is a secondary metabolite produced by Fusarium fungi, which is found in a wide range of agricultural products, especially in wheat, barley, oat and corn. In this study, the distribution of DON in the wheat kernel and the effect of exposure time to ozone on DON detoxification were investigated. A high concentration of toxin was found in the outer part of the kernel, and DON was injected from the outside to the inside. The degradation rates of DON were 26.40%, 39.16%, and 53.48% after the samples were exposed to 75 mg/L ozone for 30, 60, and 90 min, respectively. The effect of ozonation on wheat flour quality and nutrition was also evaluated. No significant differences (P > 0.05) were found in protein content, fatty acid value, amino acid content, starch content, carbonyl and carboxyl content, and swelling power of ozone-treated samples. Moreover, the ozone-treated samples exhibited higher tenacity and whiteness, as well as lower extensibility and yellowness. This finding indicated that ozone treatment can simultaneously reduce DON levels and improve flour quality. PMID:26812055

  14. Registration of 'Linkert' spring wheat with good straw strength and adult plant resistance to the Ug99 family of stem rust races

    USDA-ARS?s Scientific Manuscript database

    Straw strength is one of the most important criteria for spring wheat cultivar selection in the north central U.S. ‘Linkert’ (PI 672164) hard red spring wheat was released by the University of Minnesota Agricultural Experiment Station in 2013 and has very good straw strength, high grain protein con...

  15. Assessing the Agricultural Vulnerability for India under Changing Climate

    NASA Astrophysics Data System (ADS)

    Sharma, Tarul; Vardhan Murari, Harsha; Karmakar, Subhankar; Ghosh, Subimal; Singh, Jitendra

    2016-04-01

    Global climate change has proven to show majorly negative impacts for the far future. These negative impacts adversely affect almost all the fields including agriculture, water resources, tourism, and marine ecosystem. Among these, the effects on agriculture are considered to be of prime importance since its regional impacts can directly affect the global food security. Under such lines, it becomes essential to understand how climate change directs agricultural production for a region along with its vulnerability. In India, rice and wheat are considered as major staple diet and hence understanding its production loss/gain due to regional vulnerability to climate change becomes necessary. Here, an attempt has been made to understand the agricultural vulnerability for rice and wheat, considering yield as a function of temperature and precipitation during growing period. In order to accomplish this objective, the ratio of actual to potential evapo-transpiration has been considered which serves as a reliable indicator; with more this ratio towards unity, less vulnerable will be the region. The current objective needs an integration of climatic, hydrological and agricultural parameters; that can be achieved by simulating a climate data driven hydrologic (Variable Infiltration Capacity, VIC) model and a crop (Decision Support System for Agrotechnology Transfer, DSSAT) model. The proposed framework is an attempt to derive a crop vulnerability map that can facilitate in strategizing adaption practices which can reduce the adverse impacts of climate change in future.

  16. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species.

    PubMed

    Menardo, Fabrizio; Praz, Coraline R; Wyder, Stefan; Ben-David, Roi; Bourras, Salim; Matsumae, Hiromi; McNally, Kaitlin E; Parlange, Francis; Riba, Andrea; Roffler, Stefan; Schaefer, Luisa K; Shimizu, Kentaro K; Valenti, Luca; Zbinden, Helen; Wicker, Thomas; Keller, Beat

    2016-02-01

    Throughout the history of agriculture, many new crop species (polyploids or artificial hybrids) have been introduced to diversify products or to increase yield. However, little is known about how these new crops influence the evolution of new pathogens and diseases. Triticale is an artificial hybrid of wheat and rye, and it was resistant to the fungal pathogen powdery mildew (Blumeria graminis) until 2001 (refs. 1,2,3). We sequenced and compared the genomes of 46 powdery mildew isolates covering several formae speciales. We found that B. graminis f. sp. triticale, which grows on triticale and wheat, is a hybrid between wheat powdery mildew (B. graminis f. sp. tritici) and mildew specialized on rye (B. graminis f. sp. secalis). Our data show that the hybrid of the two mildews specialized on two different hosts can infect the hybrid plant species originating from those two hosts. We conclude that hybridization between mildews specialized on different species is a mechanism of adaptation to new crops introduced by agriculture.

  17. pH-dependence of pesticide adsorption by wheat-residue-derived black carbon.

    PubMed

    Yang, Yaning; Chun, Yuan; Sheng, Guangyao; Huang, Minsheng

    2004-08-03

    The potential of black carbon as an adsorbent for pesticides in soils may be strongly influenced by the properties of the adsorbent and pesticides and by the environmental conditions. This study evaluated the effect of pH on the adsorption of diuron, bromoxynil, and ametryne by a wheat (Triticum aestivum L.) residue derived black carbon (WC) as compared to a commercial activated carbon (AC). The pH drift method indicated that WC had a point of zero charge of 4.2, much lower than that of 7.8 for AC. The density of oxygen-containing surface functional groups, measured by the Boehm titration, on WC was 5.4 times higher than that on AC, resulting in a pesticide adsorption by WC being 30-50% of that by AC, due to the blockage of WC surface by the waters associated with the functional groups. A small decrease (5.5%/unit pH) in diuron adsorption by WC with increase in pH resulted from increased deprotonation of surface functional groups at higher pH values. A much larger decrease (14-21%/unit pH) in bromoxynil adsorption by WC with increase in pH resulted from the deprotonation of both the adsorbate and surface functional groups of the adsorbent. The deprotonation reduced the adsorptive interaction between bromoxynil and the neutral carbon surface and increased the electrical repulsion between the negatively charged WC surface and bromoxynil anions. Deprotonation of ametryne with increase in pH over the low pH range increased its fraction of molecular form and thus adsorption on WC by 15%/unit pH. Further increase in pH resulted in a 20%/unit pH decrease in ametryne adsorption by WC due primarily to the development of a negative charge on the surface of WC. The pH-dependent adsorption of pesticides by black carbon may significantly influence their environmental fate in soils.

  18. Reticulated origin of domesticated emmer wheat supports a dynamic model for the emergence of agriculture in the fertile crescent.

    PubMed

    Civáň, Peter; Ivaničová, Zuzana; Brown, Terence A

    2013-01-01

    We used supernetworks with datasets of nuclear gene sequences and novel markers detecting retrotransposon insertions in ribosomal DNA loci to reassess the evolutionary relationships among tetraploid wheats. We show that domesticated emmer has a reticulated genetic ancestry, sharing phylogenetic signals with wild populations from all parts of the wild range. The extent of the genetic reticulation cannot be explained by post-domestication gene flow between cultivated emmer and wild plants, and the phylogenetic relationships among tetraploid wheats are incompatible with simple linear descent of the domesticates from a single wild population. A more parsimonious explanation of the data is that domesticated emmer originates from a hybridized population of different wild lineages. The observed diversity and reticulation patterns indicate that wild emmer evolved in the southern Levant, and that the wild emmer populations in south-eastern Turkey and the Zagros Mountains are relatively recent reticulate descendants of a subset of the Levantine wild populations. Based on our results we propose a new model for the emergence of domesticated emmer. During a pre-domestication period, diverse wild populations were collected from a large area west of the Euphrates and cultivated in mixed stands. Within these cultivated stands, hybridization gave rise to lineages displaying reticulated genealogical relationships with their ancestral populations. Gradual movement of early farmers out of the Levant introduced the pre-domesticated reticulated lineages to the northern and eastern parts of the Fertile Crescent, giving rise to the local wild populations but also facilitating fixation of domestication traits. Our model is consistent with the protracted and dispersed transition to agriculture indicated by the archaeobotanical evidence, and also with previous genetic data affiliating domesticated emmer with the wild populations in southeast Turkey. Unlike other protracted models, we assume

  19. Weed science and management, in soil sciences, land cover, and land use

    USDA-ARS?s Scientific Manuscript database

    An integral component of conservation agriculture systems in cotton is the use of a high-residue winter cover crop; however, terminating such cover crops is a cost and planting into high-residue is a challenge. Black oat, rye, and wheat winter cover crops were flattened with a straight-blade mechan...

  20. Assessing the mitigation potential of agricultural systems by optimization of the agricultural management: A modeling study on 8 agricultural observation sites across Europe with the process based model LandscapeDNDC

    NASA Astrophysics Data System (ADS)

    Molina Herrera, Saul; Haas, Edwin; Klatt, Steffen; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus

    2014-05-01

    The use of mineral nitrogen (N) fertilizers increase crop yields but cause the biggest anthropogenic source of nitrous oxide (N2O) emissions and strongly contribute to surface water eutrophication (e.g. nitrate leaching). The necessity to identify affordable strategies that improve crop production while improving ecosystem services are in continuous debate between policy decision makers and farmers. In this line, a lack commitment from farmers to enforce laws might result in the reduction of benefits. For this reason, farmers should aim to increase crop production and to reduce environmental harm by the adoption of precision climate smart agriculture tools applied to management practices for instance. In this study we present optimized strategies for 8 sites (agricultural and grassland ecosystems) with long term field observation across Europe to show the mitigation potential to reduce reactive nitrogen losses under the constrain of keeping yields at observed levels. LandscapeDNDC simulations of crop yields and associated nitrogen losses (N2O emissions and NO3 leaching) were evaluated against long term field measurements. The sites presented different management regimes including the main commodity crops (maize, wheat, barley, rape seeds, etc) and fertilization amendments (synthetic and organic fertilizers) in Europe. The simulations reproduced the observed yields, captured N2O emissions and NO3 leaching losses with high statistical presicion (r2), acurrency (ME) and agreement (RMSPEn). The mitigation potentials to reduce N losses while keeping yields at observed levels for all 8 sites were assesed by Monte Carlo optimizations of the individual underlying multi year agricultural management options (timings of planting and harvest, fertilization & manure applications and rates, residues management). In this study we present for all 8 agricultural observations sites their individual mitigation potentials to reduce N losses for multi year rotations. The conclusions

  1. Registration of DGE-3, a durum wheat disomic substitution line 1E(1B) involving a wheatgrass chromosome

    USDA-ARS?s Scientific Manuscript database

    Durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes) alien disomic substitution 1E(1B) line DGE-3 (PI 665473) was developed by the U.S. Department of AgricultureAgricultural Research Service, Northern Crop Science Lab, Cereal Crops Research Unit, Fargo, ND and released in 2012. It was ...

  2. Emergy evaluation of the contribution of irrigation water, and its utilization, in three agricultural systems in China

    NASA Astrophysics Data System (ADS)

    Chen, Dan; Luo, Zhaohui; Webber, Michael; Chen, Jing; Wang, Weiguang

    2014-09-01

    Emergy theory and method are used to evaluate the contribution of irrigation water, and the process of its utilization, in three agricultural systems. The agricultural systems evaluated in this study were rice, wheat, and oilseed rape productions in an irrigation pumping district of China. A corresponding framework for emergy evaluation and sensitivity analysis methods was proposed. Two new indices, the fraction of irrigation water ( FIW), and the irrigation intensity of agriculture ( IIA), were developed to depict the contribution of irrigation water. The calculated FIW indicated that irrigation water used for the rice production system (34.7%) contributed more than irrigation water used for wheat (5.3%) and oilseed rape (11.2%) production systems in a typical dry year. The wheat production with an IIA of 19.0 had the highest net benefit from irrigation compared to the rice (2.9) and oilseed rape (8.9) productions. The transformities of the systems' products represented different energy efficiencies for rice (2.50E + 05 sej·J-1), wheat (1.66E + 05 sej·J-1) and oilseed rape (2.14E + 05 sej·J-1) production systems. According to several emergy indices, of the three systems evaluated, the rice system had the greatest level of sustainability. However, all of them were less sustainable than the ecological agricultural systems. A sensitivity analysis showed that the emergy inputs of irrigation water and nitrogenous fertilizer were the highest sensitivity factors influencing the emergy ratios. Best Management Practices, and other agroecological strategies, could be implemented to make further improvements in the sustainability of the three systems.

  3. Identification of wheat sensitization using an in-house wheat extract in Coca-10% alcohol solution in children with wheat anaphylaxis.

    PubMed

    Pacharn, Punchama; Kumjim, Sasaros; Tattiyapong, Puntanat; Jirapongsananuruk, Orathai; Piboonpocanun, Surapon

    2016-06-01

    Identification of wheat sensitization by a skin prick test (SPT) is essential for children with wheat-induced anaphylaxis, since oral food challenge can cause serious adverse effects. Wheat allergens are both water/salt and alcohol soluble. The preparation of wheat extract for SPT containing both water/salt and alcohol soluble allergen is needed. To determine if a wheat extract using Coca's solution containing 10% alcohol (Coca-10% EtOH), prepared in-house, contians both water/salt and alcohol soluble allergens. Serum of children with a history of anaphylaxis after wheat ingestion was used. Wheat flour was extracted in Coca-10% alcohol solution. An SPT with both commercial and in-house wheat extracts was performed as well as specific IgE (sIgE) for wheat and omega-5 gliadin. Direct and IgE inhibition immunoblots were performed to determine serum sIgE levels against water/salt as well as alcohol soluble (gliadins and glutenins) allergens in the extracts. Six children with history of wheat anaphylaxis had positive SPT to both commercial and in-house extracts. They also had different levels of sIgE against wheat and omega-5 gliadin allergens. The results of direct immunoblotting showed all tested sera had sIgE bound to ~35 kDa wheat protein. Further IgE inhibition immunoblotting identified the ~35 kDa wheat protein as gliadin but not gluten allergen. The in-house prepared Coca-10% EtOH solution could extract both water/salt and alcohol soluble allergens. The ~35 kDa gliadin appears to be a major wheat allergen among tested individuals.

  4. Major controlling factors and prediction models for arsenic uptake from soil to wheat plants.

    PubMed

    Dai, Yunchao; Lv, Jialong; Liu, Ke; Zhao, Xiaoyan; Cao, Yingfei

    2016-08-01

    The application of current Chinese agriculture soil quality standards fails to evaluate the land utilization functions appropriately due to the diversity of soil properties and plant species. Therefore, the standards should be amended. A greenhouse experiment was conducted to investigate arsenic (As) enrichment in various soils from 18 Chinese provinces in parallel with As transfer to 8 wheat varieties. The goal of the study was to build and calibrate soil-wheat threshold models to forecast the As threshold of wheat soils. In Shaanxi soils, Wanmai and Jimai were the most sensitive and insensitive wheat varieties, respectively; and in Jiangxi soils, Zhengmai and Xumai were the most sensitive and insensitive wheat varieties, respectively. Relationships between soil properties and the bioconcentration factor (BCF) were built based on stepwise multiple linear regressions. Soil pH was the best predictor of BCF, and after normalizing the regression equation (Log BCF=0.2054 pH- 3.2055, R(2)=0.8474, n=14, p<0.001), we obtained a calibrated model. Using the calibrated model, a continuous soil-wheat threshold equation (HC5=10((-0.2054 pH+2.9935))+9.2) was obtained for the species-sensitive distribution curve, which was built on Chinese food safety standards. The threshold equation is a helpful tool that can be applied to estimate As uptake from soil to wheat. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid.

    PubMed

    Fu, Maoqiang; Xu, Manyu; Zhou, Ting; Wang, Defu; Tian, Shan; Han, Liping; Dong, Hansong; Zhang, Chunling

    2014-04-01

    The harpin protein Hpa1 has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing resistance to pathogens and insect pests. For these effects, the 10-40 residue fragment (Hpa1₁₀₋₄₂) isolated from the Hpa1 sequence is 1.3- to 7.5-fold more effective than the full-length protein. Here it is reported that the expression of Hpa1₁₀₋₄₂ under the direction of an insect-induced promoter induces the phloem-based defence to English grain aphid, a dominant species of wheat aphids. The expression of Hpa1₁₀₋₄₂ was found to compromise the colonization preference of aphids on the plant and further inhibit aphid reproduction in leaf colonies. In Hpa1₁₀₋₄₂-expressing wheat lines, moreover, aphid feeding from the phloem was repressed in correlation with the phloem-based defence. This defensive mechanism was shown as enhanced expression of wheat genes encoding phloem lectin proteins (PP2-A1 and PP2-A2) and β-1,3-glucan synthase-like enzymes (GSL2, GSL10, and GSL12). Both PP2-A and β-1,3-glucan formed high molecular mass polymers to block phloem sieve plate pores and therefore impede aphid feeding from the phloem. However, the phloem-based defence was impaired by treating plants with ethylene signalling inhibitors, suggesting the requirement for the ethylene signalling pathway. In addition, if Hpa1₁₀₋₄₂-expressing plants were subjected to attack by a small number of aphids, they newly acquired agriculturally beneficial characters, such as enhanced vegetative growth and increased tiller numbers and grain output values. These results suggest that the defensive and developmental roles of Hpa1₁₀₋₄₂ can be integrated into the germplasm of this agriculturally significant crop.

  6. Rapid and simple immunochemical screening combined with hand-shaking extraction for thiamethoxam residue in agricultural products.

    PubMed

    Watanabe, Eiki; Kobara, Yuso; Miyake, Shiro

    2013-06-01

    With the aim of expanding the applicability of a kit-based enzyme-linked immunosorbent assay (ELISA) for the neonicotinoid insecticide thiamethoxam, the ELISA was newly applied to three kinds of agricultural samples (green pepper, eggplant and spinach). To offer the ELISA as a screening analysis for thiamethoxam residues, a rapid and simple method of extraction by hand-shaking was used, and speed-up and simplification of the sample treatment before the ELISA analysis were examined. Finally, the validity of the ELISA combined with the proposed extraction method was verified against a reference high-performance liquid chromatography (HPLC) method using real-world agricultural samples. There were no marked matrix effects derived from green pepper and eggplant extracts. On the other hand, although the effect due to a pigment in spinach extract on the assay performance was significant, it was effectively avoided by increasing the dilution level of the spinach extract. For thiamethoxam-spiked samples, acceptable recoveries of 97.9-109.1% and coefficients of variation of 0.3-11.5% were obtained. Inspection of the validity of the ELISA by comparison with the reference HPLC method showed that the two analytical results were very similar, and a high correlation was found between them (r>0.997). The evaluated ELISA combined with hand-shaking extraction provided a rapid and simple screening analysis that was quantitative and reliable for the detection of thiamethoxam in complex agricultural products. © 2012 Society of Chemical Industry.

  7. Performance Monitoring: Evaluating a Wheat Straw PRB for Nitrate Removal at an Agricultural Operation

    EPA Science Inventory

    The U.S. EPA Office of Research and Development’s National Risk Management Research Laboratory (NRMRL) is conducting long-term monitoring of a wheat straw permeable reactive barrier (PRB) for remediation of ground water contaminated with nitrate from a now-closed swine concentrat...

  8. Human health risk assessment of heavy metals in the irrigated area of Jinghui, Shaanxi, China, in terms of wheat flour consumption.

    PubMed

    Lei, Lingming; Liang, Dongli; Yu, Dasong; Chen, Yupeng; Song, Weiwei; Li, Jun

    2015-10-01

    Contamination of heavy metals (HMs) in agricultural soil has become a serious environmental problem because it poses a serious threat to human health by entering into food chains. Wheat is a staple food of the majority of the world's population; therefore, understanding the relationship between HM concentration in soils and its accumulation in wheat grain is imperative. This study assessed the concentrations of HMs (i.e., Hg, As, Cd, Cr, Pb, Cu, Zn, and Ni) in agricultural soils (a loess soil, eum-orthic anthrosol) and wheat flour in the historical irrigated area of Jinghui, Northwest China. The potential human health risks of HMs among local residents were also determined by evaluating the consumption of wheat flour. Results showed that the mean soil concentrations of HMs exceeded the corresponding natural background values of agricultural surface soil in Shaanxi: 0.07 mg kg(-1) for Hg, 15.4 mg kg(-1) for As, 0.25 mg kg(-1) for Cd, 75.5 mg kg(-1) for Cr, 27.2 mg kg(-1) for Pb, 28.1 mg kg(-1) for Cu, 81.1 mg kg(-1) for Zn, and 36.6 mg kg(-1) for Ni, respectively. However, all of the mean concentrations of HMs in soil were within the safety limits set by the Chinese regulation (HJ332-2006). The total HM concentrations in wheat flour were 0.0017 mg kg(-1) for Hg, 0.028 mg kg(-1) for As, 0.020 mg kg(-1) for Cd, 0.109 mg kg(-1) for Cr, 0.128 mg kg(-1) for Pb, 2.66 mg kg(-1) for Cu, 24.20 mg kg(-1) for Zn, and 0.20 mg kg(-1) for Ni, and they were significantly lower than the tolerance limits of Chinese standards. However, 15% of the wheat flour samples exceeded the Chinese standard (GB2762-2012) for Pb. This study highlighted the human health risks in the relationship of wheat flour consumption for both adults and children with HMs accumulated area. HMs did not cause noncarcinogenic risks in the area (HI < 1) except for children in Jingyang county; Cd generated the greatest carcinogenic risk, which poses a potential health risk to consumers. The results obtained in

  9. Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China.

    PubMed

    Shi, Gao Ling; Lou, Lai Qing; Zhang, Shuai; Xia, Xue Wei; Cai, Qing Sheng

    2013-12-01

    Field studies were conducted to investigate arsenic (As), copper (Cu), and zinc (Zn) contamination in agricultural soils and wheat crops at two areas in Huaibei, China. Area A is in the proximity of Shuoli coal mine. In area B, three coal mines and a coal cleaning plant were distributed. The potential health risk of As, Cu, and Zn exposure to the local inhabitants through consumption of wheat grains was also estimated. The results showed that significantly higher (p<0.05) concentrations of As, Cu, and Zn were found in soils collected from area B than in those from area A. Arsenic concentrations in wheat sampled from area A were negatively correlated with the distance from the coal mine (p<0.001). Concentrations of Cu and Zn in wheat seedlings and grains collected from area B were significantly higher (p<0.05) than in those collected from area A, with the exception of Zn in wheat seedlings. Concentrations of Cu and Zn in most wheat grain samples were above the permissible limits of Cu and Zn in edible plants set by the Food and Agriculture Organization/World Health Organization. The hazard index of aggregate risk through consumption of wheat grains was 2.3-2.4 for rural inhabitants and 1.4-1.5 for urban inhabitants. The average intake of inorganic As for rural inhabitants in Huaibei was above 10 μg day(-1). These findings indicated that the inhabitants around the coal mine are experiencing a significant potential health risk due to the consumption of locally grown wheat.

  10. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.

    PubMed

    Ovenden, Ben; Milgate, Andrew; Wade, Len J; Rebetzke, Greg J; Holland, James B

    2018-05-31

    Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat under field conditions. A panel of 358 varieties and breeding lines constrained for maturity was evaluated under rainfed and irrigated treatments across two locations and two years. Whole-genome marker profiles and factor analytic mixed models were used to generate genomic estimated breeding values (GEBVs) for specific environments and environment groups. Additive genetic variance was smaller than residual genetic variance for WSCC, such that genotypic values were dominated by residual genetic effects rather than additive breeding values. As a result, GEBVs were not accurate predictors of genotypic values of the extant lines, but GEBVs should be reliable selection criteria to choose parents for intermating to produce new populations. The accuracy of GEBVs for untested lines was sufficient to increase predicted genetic gain from genomic selection per unit time compared to phenotypic selection if the breeding cycle is reduced by half by the use of GEBVs in off-season generations. Further, genomic prediction accuracy depended on having phenotypic data from environments with strong correlations with target production environments to build prediction models. By combining high-density marker genotypes, stress-managed field evaluations, and mixed models that model simultaneously covariances among genotypes and covariances of complex trait performance between pairs of environments, we were able to train models with good accuracy to facilitate genetic gain from genomic selection. Copyright © 2018 Ovenden et al.

  11. Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt

    NASA Astrophysics Data System (ADS)

    Jain, M.; Singh, Balwinder; Srivastava, A. A. K.; Malik, R. K.; McDonald, A. J.; Lobell, D. B.

    2017-09-01

    Food security will be increasingly challenged by climate change, natural resource degradation, and population growth. Wheat yields, in particular, have already stagnated in many regions and will be further affected by warming temperatures. Despite these challenges, wheat yields can be increased by improving management practices in regions with existing yield gaps. To identify the magnitude and causes of current yield gaps in India, one of the largest wheat producers globally, we produced 30 meter resolution yield maps from 2001 to 2015 across the Indo-Gangetic Plains (IGP), the nation’s main wheat belt. Yield maps were derived using a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data. This is one of the first attempts to apply this method to a smallholder agriculture system, where ground calibration data are rarely available. We find that yields can be increased by 11% on average and up to 32% in the eastern IGP by improving management to current best practices within a given district. Additionally, if current best practices from the highest-yielding state of Punjab are implemented in the eastern IGP, yields could increase by almost 110%. Considering the factors that most influence yields, later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies to reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to increasing wheat yields in this globally-important agricultural region.

  12. Wheat: The Whole Story.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  13. Efficacy of zinc compounds in controlling Fusarium head blight and deoxynivalenol formation in wheat (Triticum aestivum L.).

    PubMed

    Savi, Geovana D; Piacentini, Karim C; de Souza, Stephany Ramos; Costa, Maíra E B; Santos, Cristina M R; Scussel, Vildes M

    2015-07-16

    The efficiency of zinc compounds (zinc sulfate, ZnSO4 and zinc oxide, ZnO in regular and nanosize, respectively) on wheat plants was evaluated against growth of Fusarium graminearum and DON formation. In addition, any possible effects on the grain microstructures were observed by scanning electron microscopy (SEM), and the remaining residue of Zn on wheat plants was analyzed. The plants were inoculated with F. graminearum and treated with Zn compounds (100mM) onto spikelets at the anthesis stage. When wheat plants reached maturation, grains were harvested and evaluated for Fusarium (number of colonies, CFU/g), DON formation, and SEM observation, followed by determination of possible remaining Zn residue. The groups treated with ZnSO4 and ZnO-NP showed a reduction in number of CFU of F. graminearum when compared to the control. Similarly for DON formation, i.e. the toxin was reduced to non-detected levels in the treated group. ZnO-NP efficiently reduced F. graminearum and DON formation in the grains at low concentration. Zn remained within the international recommended level for consumption and the treatment did not cause any damage to wheat grains. New strategies of control using Zn compounds in addition to conventional treatments could increase the efficiency against FBH and DON formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Behavioural responses of wheat stem sawflies to wheat volatiles

    Treesearch

    D. Piesik; D. K. Weaver; J. B. Runyon; M. Buteler; G. E. Peck; W. L. Morrill

    2008-01-01

    1) Adult wheat stem sawflies Cephus cinctus, pests of cultivated cereals that also infests wild grasses, migrate into wheat fields where they oviposit in elongating, succulent stems. 2) Volatiles released by wheat plants at susceptible stages were analyzed to determine potential semiochemical compounds. Seven major compounds were identified and...

  15. Impact on fetal growth of prenatal exposure to pesticides due to agricultural activities: a prospective cohort study in Brittany, France

    PubMed Central

    2010-01-01

    Background Pesticide use is widespread in agriculture. Several studies have shown that pesticides used in agricultural fields can contaminate the domestic environment and thus be an important source of pesticide exposure of populations residing nearby. Epidemiological studies that have examined the health effects of in utero pesticide exposure from residence near agricultural activities suggest adverse effects, but the results are inconsistent. Our purpose was to investigate the effect on intrauterine growth of such exposure due to agricultural activities in the residential municipality. Methods A prospective birth cohort recruited 3421 pregnant women in a French agricultural region (Brittany, 2002-2006) through gynecologists, ultrasonographers, and maternity hospitals during routine prenatal care visits before 19 weeks of gestation. The national agricultural census in 2000 provided the percentages of the municipality area devoted to cultivation of corn, wheat, colza, peas, potatoes, and fresh vegetables. Results Birth weight and the risk of fetal growth restriction were not associated with agricultural activities in the municipality of residence in early pregnancy. Children whose mother lived in a municipality where peas were grown had a smaller head circumference at birth than those in municipalities not growing peas (-0.2 cm, p = 0.0002). Head circumference also tended to be lower when wheat was grown, but not to a statistically significant degree (p-trend = 0.10). Risk of an infant with a small head circumference was higher for mothers living in a municipality where peas (OR = 2.2; 95% CI = 1.2-3.6) or potatoes (OR = 1.5; 95% CI = 0.9-2.4) were grown. Conclusions Agricultural activities in the municipality of residence may have negative effects on cranial growth. Cultivation of pea crops and, to a lesser degree, potato and wheat crops, may negatively affect head circumference. Insecticides, including organophosphate insecticides, were applied to most of the

  16. Effects of management practices on reflectance of spring wheat canopies. [Williston, North Dakota Agricultural Experiment Station

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Bauer, M. E.; Crecelius, D. W.; Hixson, M. M. (Principal Investigator)

    1980-01-01

    The effects of available soil moisture, planting date, nitrogen fertilization, and cultivar on reflectance of spring wheat (Triticum aestivum L.) canopies were investigated. Spectral measurements were acquired on eight dates throughout the growing season, along with measurements of crop maturity stage, leaf area index, biomass, plant height, percent soil cover, and soil moisture. Planting date and available soil moisture were the primary agronomic factors which affected reflectance of spring wheat canopies from tillering to maturity. Comparisons of treatments indicated that during the seedling and tillering stages planting date was associated with 36 percent and 85 percent of variation in red and near infrared reflectances, respectively. As the wheat headed and matured, less of the variation in reflectance was associated with planting date and more with available soil moisture. By mid July, soil moisture accounted for 73 percent and 69 percent of the variation in reflectance in red and near infrared bands, respectively. Differences in spectral reflectance among treatments were attributed to changes in leaf area index, biomass, and percent soil cover. Cultivar and N fertilization rate were associated with very little of the variation in the reflectance of these canopies.

  17. A novel highly differentially expressed gene in wheat endosperm associated with bread quality

    PubMed Central

    Furtado, A.; Bundock, P. C.; Banks, P. M.; Fox, G.; Yin, X.; Henry, R. J.

    2015-01-01

    Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5’-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production. PMID:26011437

  18. A novel highly differentially expressed gene in wheat endosperm associated with bread quality.

    PubMed

    Furtado, A; Bundock, P C; Banks, P M; Fox, G; Yin, X; Henry, R J

    2015-05-26

    Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5'-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production.

  19. Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome

    USDA-ARS?s Scientific Manuscript database

    The Inland Pacific Northwest encompasses 1.6 million cropland hectares and is a major wheat-producing area in the western United States. The climate throughout the region is semi-arid, making the availability of water a significant challenge for agriculture. We conducted a three-year field study inv...

  20. Breeding for CLEARFIELD Herbicide Tolerance: Registration of ‘ND901CL’ Spring Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘ND901CL’ (Reg. No. CV-1029, PI 655233) hard red spring wheat (HRSW) (Triticum aestivum L.) was developed at NorthDakota State University (NDSU) and released by the North Dakota Agricultural Experiment Station (NDAES). ND901CLwas released in 2008 primarily for its tolerance to imadazolinone herbicid...

  1. Anaerobic degradation of inedible crop residues produced in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Schwingel, W. R.; Sager, J. C.

    1996-01-01

    An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system.

  2. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    PubMed

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  3. Dust-associated Microbiomes from Dryland Wheat Fields Differ with Tillage Practice and Biosolids Application

    USDA-ARS?s Scientific Manuscript database

    Wind erosion is a significant threat to the productivity and sustainability of agricultural soils. In the dryland winter wheat (Triticum aestivum L.)-fallow region of Inland Pacific Northwest of the USA (PNW), farmers increasingly use conservation tillage practices to control wind erosion. In addit...

  4. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models.

    PubMed

    Mehra, Lucky K; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S

    2016-01-01

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of

  5. Evolution and Intensity of Hail in Wheat and Barley

    NASA Astrophysics Data System (ADS)

    Bernaldo de Quirós, I.; Saa Requejo, A.; Tarquis, A. M.; Burgaz, F.

    2009-04-01

    The cereals have represented a very important place in the agriculture along the history. The current expansion and growth of the energetic markets are changing the role of the agriculture. The cereals, with other crops, are becoming more significant as suppliers of raw material for the production of biofuels. The purpose of the present project is to carry out a study about the hail in cereals. The survey is focus in wheat and barley as they both represent the highest cereal production of Spain. Four provinces have been chosen (those with the values of production are higher): Burgos and Zaragoza for the wheat and Cuenca and Valladolid for the barley. The materials and methods that we had available for the study of the evolution and intensity of the damages for hail include an analysis of the correlation between the ratios of agricultural insurances provided by ENESA and the number of days of annual hail (from 1981 to 2007). At the same time, one weather station per province was selected by the longest more complete data recorded (from 1963 to 2007) to perform an analysis of monthly time series of the number of hail days (HD). The results of the study show us that there is no relation between the ratio of the agricultural insurances and the number of hail days. This can be due to the large area of which the ratio refers to and the low density of meteorological stations to cover the hail that is registered in every of the four provinces. On the other hand, it is observed that monthly HD time series don't show a change in pattern except in one of the stations studied. Therefore with the information available we cannot state that there are clear changes in the evolution of the hail registered for each province.

  6. Induction of wheat straw delignification by Trametes species

    PubMed Central

    Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M.; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena

    2016-01-01

    Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains. PMID:27216645

  7. The influences of selected soil properties on Pb availability and its transfer to wheat (Triticum aestivum L.) in a polluted calcareous soil.

    PubMed

    Safari, Yaser; Delavar, Mohammad-Amir; Zhang, Chaosheng; Esfandiarpour-Boroujeni, Isa; Owliaie, Hamid-Reza

    2015-12-01

    Accumulated anthropogenic heavy metals in the surface layer of agricultural soils may be transferred through the food chain via plant uptake processes. The objectives of this study were to assess the spatial distribution of lead (Pb) in the soils and wheat plants and to determine the soil properties which may affect the Pb transferring from soil to wheat plants in Zanjan Zinc Town area, northwestern Iran. A total of 110 topsoil samples (0-20 cm) were systematically collected from an agricultural area near a large metallurgical factory for the analyses of physico-chemical properties and total and bioavailable Pb concentrations. Furthermore, a total of 65 wheat samples collected at the same soil sampling locations were analyzed for Pb concentration in different plant parts. The results showed that elevated Pb concentrations were mostly found in soils located surrounding the industrial source of pollution. The bioavailable Pb concentration in the studied soils was up to 128.4 mg kg(-1), which was relatively high considering the observed soil alkalinity. 24.6% of the wheat grain samples exceeded the FAO/WHO maximum permitted concentration of Pb in wheat grain (0.2 mg kg(-1)). Correlation analyses revealed that soil organic matter, soil pH, and clay content showed insignificant correlation with Pb concentration in the soil and wheat grains, whereas calcium carbonate content showed significantly negative correlations with both total and bioavailable Pb in the soil, and Pb content in wheat grains, demonstrating the strong influences of calcium carbonate on Pb bioavailability in the polluted calcareous soils.

  8. A modelling approach to evaluate the long-term effect of soil texture on spring wheat productivity under a rain-fed condition.

    PubMed

    He, Yong; Hou, Lingling; Wang, Hong; Hu, Kelin; McConkey, Brian

    2014-07-30

    Soil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat (Triticum aestivum L.) from two soil textures (silt loam and clay) under rain-fed condition were analyzed. Regression analysis showed that wheat grown in silt loam soil is more sensitive to WU than wheat grown in clay soil, indicating that the wheat grown in clay soil has higher drought tolerance than that grown in silt loam. Yield variation can be explained by WU other than by precipitation use (PU). These results demonstrated that the DSSAT-CERES-Wheat model can be used to evaluate the WU of different soil textures and assess the feasibility of wheat production under various conditions. These outcomes can improve our understanding of the long-term effect of soil texture on spring wheat productivity in rain-fed condition.

  9. Improved wheat for baking.

    PubMed

    Faridi, H; Finley, J W

    1989-01-01

    To bakers, wheat quality means the performance characteristics of the flour milled from the wheat when used in specific wheat products. The tremendous increase in the number of wheat cultivars grown in the U.S. in recent years, along with the unusual climate, new advances in milling technology, and increased automation of baking lines, have resulted in bakery production problems partly attributed to wheat flour quality. In this review various factors affecting wheat quality are explained. Concerns of bread and cookie/cracker manufacturers on deterioration of the wheat quality are discussed, and, finally, some solutions are proposed.

  10. Impacts of Stratospheric Sulfate Geoengineering on Chinese Agricultural Production

    NASA Astrophysics Data System (ADS)

    Xia, L.; Robock, A.

    2012-12-01

    Possible food supply change is one of the most important concerns in the discussion of stratospheric sulfate geoengineering. In China, the high population density and strong summer monsoon influence on agriculture make this region sensitive to climate changes, such as reductions of precipitation, temperature, and solar radiation spurred by stratospheric sulfate injection. We used results from the Geoengineering Model Intercomparison Project G2 scenario to force the Decision Support System for Agrotechnology Transfer (DSSAT) crop model to predict crop yield changes from rice, maize, and winter wheat. We first evaluated the DSSAT model by forcing it with daily observed weather data and management practices for the period 1978-2008 for all the provinces in China, and compared the results to observations of the yields of the three major crops in China. We then created two 50-year sets of climate anomalies using the results from eight climate models, for 1%/year increase of CO2 and for G2 (1%/year increase of CO2 balanced by insolation reduction), and compared the resulting agricultural responses. Considering that geoengineering could happen in the future, we used two geoengineering starting years, 2020 and 2060. For 2020, we increased the mean temperature by 1°C and started the CO2 concentration at 410 ppm. For 2060, we increased temperature by 2°C and started the CO2 concentration at 550 ppm. Without changing agriculture technology, we find that compared to the control run, geoengineering with the G2 scenario starting in 2020 or 2060 would both moderately increase rice and winter wheat production due to the CO2 fertilization effect, but the increasing rates are different. However, as a C4 crop, without a significant CO2 fertilization effect, maize production would decrease slightly because of regional drought. Compared to the reference run, the three crops all have less heat stress in southern China and their yields increase, but in northern China cooler

  11. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  12. MALFORMATIONS AND OTHER ADVERSE PERINATAL OUTCOMES IN FOUR U.S. WHEAT-PRODUCING STATES

    EPA Science Inventory

    ABSTRACT
    Chlorophenoxy herbicides are widely used in the U.S. and Western Europe in
    grain agriculture and for weed control. Most of the spring and durum wheat
    produced in the U.S. is grown in Minnesota, Montana, North Dakota, and
    South Dakota, with over 85% of th...

  13. Production of green biodegradable plastics of poly(3-hydroxybutyrate) from renewable resources of agricultural residues.

    PubMed

    Dahman, Yaser; Ugwu, Charles U

    2014-08-01

    This work describes potential opportunities for utilization of agro-industrial residues to produce green biodegradable plastics of poly(3-hydroxybutyrate) (PHB). Wheat straws were examined with good efficacy of carbon substrates using Cupriavidus necator. Production was examined in separate hydrolysis and fermentation (SHF) in the presence and absence of WS hydrolysis enzymes, and in simultaneous saccharification and fermentation (SSF) with enzymes. Results showed that production of PHB in SSF was more efficient in terms of viable cell count, cell dry weight, and PHB production and yield compared to those of SHF and glucose-control cultures. While glucose control experiment produced 4.6 g/L PHB; SSF produced 10.0 g/L compared to 7.1 g/L in SHF when utilizing enzymes during WS hydrolysis. Results showed that most of sugars produced during the hydrolysis were consumed in SHF (~98 %) compared to 89.2 % in SSF. Results also demonstrated that a combination of glucose and xylose can compensate for the excess carbon required for enhancing PHB production by C. necator. However, higher concentration of sugars at the beginning of fermentation in SHF can lead to cell inhibition and consequently catabolite repressions. Accordingly, results demonstrated that the gradual release of sugars in SSF enhanced PHB production. Moreover, the presence of sugars other than glucose and xylose can eliminate PHB degradation in medium of low carbon substrate concentrations in SSF.

  14. Taking inventory of woody residuals

    Treesearch

    David McKeever

    2003-01-01

    USDA Forest Service analysis finds 104 million tons of woody residuals available for recovery in the U.S., with wood in MSW and C&D debris streams comprising 28 million tons. The U.S. Department of Agriculture Forest Service conducts a variety of analyses to estimate the quantity of woody residuals in the United States. Its Forest Products Laboratory in Madison,...

  15. Case study of developing an integrated water and nitrogen scheme for agricultural systems on the North China Plain

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Tao, F.; Luo, Y.; Ma, J.

    2013-12-01

    Appropriate irrigation and nitrogen fertilization, along with suitable crop management strategies, are essential prerequisites for optimum yields in agricultural systems. This research attempts to provide a scientific basis for sustainable agricultural production management for the North China Plain and other semi-arid regions. Based on a series of 72 treatments over 2003-2008, an optimized water and nitrogen scheme for winter wheat/summer maize cropping system was developed. Integrated systems incorporating 120 mm of water with 80 kg N ha-1 N fertilizer were used to simulate winter wheat yields in Hebei and 120 mm of water with 120 kg N ha-1 were used to simulate winter wheat yields in Shandong and Henan provinces in 2000-2007. Similarly, integrated treatments of 40 kg N ha-1 N fertilizer were used to simulate summer maize yields in Hebei, and 80 kg N ha-1 was used to simulate summer maize yields in Shandong and Henan provinces in 2000-2007. Under the optimized scheme, 341.74 107 mm ha-1 of water and 575.79 104 Mg of urea fertilizer could be saved per year under the wheat/maize rotation system. Despite slight drops in the yields of wheat and maize in some areas, water and fertilizer saving has tremendous long-term eco-environmental benefits.

  16. Genetic variation of wheat streak mosaic virus in the United States Pacific Northwest.

    PubMed

    Robinson, Megan D; Murray, Timothy D

    2013-01-01

    Wheat streak mosaic virus (WSMV), the cause of wheat streak mosaic, is a widespread and damaging pathogen of wheat. WSMV is not a chronic problem of annual wheat in the United States Pacific Northwest but could negatively affect the establishment of perennial wheat, which is being developed as an alternative to annual wheat to prevent soil erosion. Fifty local isolates of WSMV were collected from 2008 to 2010 near Lewiston, ID, Pullman, WA, and the United States Department of Agriculture Central Ferry Research Station, near Pomeroy, WA to determine the amount of genetic variation present in the region. The coat protein gene from each isolate was sequenced and the data subjected to four different methods of phylogenetic analyses. Two well-supported clades of WSMV were identified. Isolates in clade I share sequence similarity with isolates from Central Europe; this is the first report of isolates from Central Europe being reported in the United States. Isolates in clade II are similar to isolates originating from Australia, Argentina, and the American Pacific Northwest. Nine isolates showed evidence of recombination and the same two well-supported clades were observed when recombinant isolates were omitted from the analysis. More polymorphic sites, parsimony informative sites, and increased diversity were observed in clade II than clade I, suggesting more recent establishment of the virus in the latter. The observed diversity within both clades could make breeding for durable disease resistance in perennial wheat difficult if there is a differential response of WSMV resistance genes to isolates from different clades.

  17. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    NASA Technical Reports Server (NTRS)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  18. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.

    PubMed

    Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding

    2012-05-01

    Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

  19. Effect of perfluorooctane sulfonate on the conformation of wheat germ acid phosphatase.

    PubMed

    Xu, Dongmei; Jin, Jianchang; Shen, Tong; Wang, Yanhua

    2013-11-01

    Fluorescence spectroscopy was used to study the quenching mechanism, the type of force and the binding sites of perfluorooctane sulfonate (PFOS) on wheat germ acid phosphatase (ACPase). The results showed that the quenching effect of PFOS on ACPase was mainly due to a static quenching mechanism that occurred via the formation of hydrogen bonds and van der Waals forces. The results from synchronous fluorescence spectroscopy demonstrated that PFOS interacts with ACPase close to the tryptophan residues. In addition, synchronous fluorescence spectroscopy also showed that PFOS increases the hydrophobicity of the microenvironment of the tyrosine residues, hence decreasing the local polarity.

  20. The Effect of Crop Insurance on Technical Efficiency of Wheat Farmers in Kermanshah Province: A Corrected Ordinary Least Square Approach

    NASA Astrophysics Data System (ADS)

    Agahi, Hossein; Zarafshani, Kiumars; Behjat, Amir-Mohsen

    The purpose of this study was to describe the effect of crop insurance on agricultural production among dry wheat farmers in Kermanshah province. The population of this study consisted of dry wheat farmers. Data used in this study was collected using stratified multi-stage cluster sampling method and face to face interview with 251 farmers in three different climate regions: tropical, temperate and cold during 2003-2004 crop years. The procedures used for determining farmers' technical efficiency was Corrected Ordinary Least Square (COLS). Findings revealed that crop insurance has positive effect on temperate and tropical regions. However, the production difference between insured and uninsured farmers in cold region was non-significant. It is therefore concluded that technical efficiency of agricultural production in Kermanshah province is a function of crop insurance as well as other variables such as crop management practices, personal characteristics and fair distribution of agricultural inputs.

  1. Estimating Drought Thresholds for Wheat in the Canadian Prairies Using Remote Sensing Products

    NASA Astrophysics Data System (ADS)

    Munoz Hernandez, A.

    2013-12-01

    Droughts affect millions of people around the world, and depending on their duration and intensity, crops, cattle, and ecosystems can be decimated. One of the most susceptible economic sectors to drought is agriculture. Planners in the agricultural sector understand that drought conditions translate into lower yields, and subsequently reduced profits, but the relationship between drought thresholds and economic impacts remain unclear. This project focuses on estimating the Standardized Precipitation Index (SPI) for the Palliser Triangle to develop an understanding of the relationship between droughts and economic impacts on the production of wheat. The Palliser Triangle is a semi-arid region that experiences severe episodic droughts and is located primarily within two provinces: Alberta and Saskatchewan. The region supports a variety of crops including grains, oilseed, and forage crops, but predominantly wheat. The SPI is a probability index based entirely on precipitation deficits that identifies drought conditions with negative values and wet conditions using positive values. For this project, the SPI was estimated on a monthly basis for a period of thirty-four years utilizing precipitation data from the North American Land Data Assimilation Systems (NDLAS) with a resolution of 1/8 degrees. Agricultural data was collected from Statistics Canada, Agriculture Division on a yearly basis for each agricultural district located within the study area. The SPI estimated values were compared against the yield reduction of wheat for a period of thirty years using statistical linear regression. The combination of highest r-squared and lowest standard error was selected. The use of remote sensing products in Canada is optimal since the in-situ measurement networks are very sparse. However, selecting the appropriate satellite products is challenging. The Tropical Rainfall Measuring Mission (TRMM) has been successfully used to improve the understanding of precipitation within

  2. Quantitation of dityrosine in wheat flour and dough by liquid chromatography-tandem mass spectrometry.

    PubMed

    Hanft, Franziska; Koehler, Peter

    2005-04-06

    A method for the quantitation of dityrosine in wheat flour and dough by high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) using an isotope dilution assay with the internal standard 3,3'-(13)C(2)-dityrosine in the single-reaction monitoring mode was developed. The method consisted of the release of protein-bound dityrosine by hydrolysis in 4 mol/L hydrochloric acid/8.9 mol/L propionic acid for 24 h at 110 degrees C after addition of the internal standard, cleanup by C(18) solid-phase extraction, and HPLC-MS/MS. The limit of detection of dityrosine was 80 ng/g of sample (0.22 nmol/g), and the limit of quantitation was 270 ng/g of sample (0.75 nmol/g). The method was sensitive enough to analyze wheat flour and dough and to study the effect of flour improvers on the dityrosine content. Furthermore, the effect of the mixing time was studied. The dityrosine concentration in the flour was 0.66 nmol/g. After we mixed a dough to peak consistency, the dityrosine concentration doubled and remained constant on further mixing. Overdoses of hydrogen peroxide and hexose oxidase (HOX, E.C. 1.1.3.5) resulted in a strongly increased dityrosine content, whereas no increase of the dityrosine concentration was found after the addition of ascorbic acid and potassium bromate. Calculation of the percentage of dimeric tyrosine showed that less than 0.1% of the tyrosine residues of wheat protein were cross-linked. Therefore, dityrosine residues seem to play only a very minor role in the structure of wheat gluten.

  3. Low level impurities in imported wheat are a likely source of feral transgenic oilseed rape (Brassica napus L.) in Switzerland.

    PubMed

    Schulze, Juerg; Brodmann, Peter; Oehen, Bernadette; Bagutti, Claudia

    2015-11-01

    In Switzerland, the cultivation of genetically modified (GM) oilseed rape (Brassica napus L.) and the use of its seeds for food and feed are not permitted. Nevertheless, the GM oilseed rape events GT73, MS8×RF3, MS8 and RF3 have recently been found in the Rhine port of Basel, Switzerland. The sources of GM oilseed rape seeds have been unknown. The main agricultural good being imported at the Rhine port of Basel is wheat and from 2010 to 2013, 19% of all Swiss wheat imports originated from Canada. As over 90% of all oilseed rape grown in Canada is GM, we hypothesised that imports of Canadian wheat may contain low level impurities of GM oilseed rape. Therefore, waste fraction samples gathered during the mechanical cleaning of Canadian wheat from two Swiss grain mills were analysed by separating oilseed rape seeds from waste fraction samples and testing DNA of pooled seeds for the presence of transgenes by real-time PCR. Furthermore, oilseed rape seeds from each grain mill were sown in a germination experiment, and seedling DNA was tested for the presence of transgenes by real-time PCR. GT73, MS8×RF3, MS8 and RF3 oilseed rape was detected among seed samples and seedlings of both grain mills. Based on this data, we projected a mean proportion of 0.005% of oilseed rape in wheat imported from Canada. Besides Canadian wheat, the Rhine port of Basel does not import any other significant amounts of agricultural products from GM oilseed rape producing countries. We therefore conclude that Canadian wheat is the major source of unintended introduction of GM oilseed rape seeds into Switzerland.

  4. Entomopathogens in conjunction with imidacloprid could be used to manage wireworms (Coleoptera: Elateridae) on spring wheat

    USDA-ARS?s Scientific Manuscript database

    The soil-dwelling larvae of click beetles (wireworms) (Coleoptera: Elateridae) are serious pests of several agricultural crops worldwide. Hypnoidus bicolor and Limonius californicus are two major wireworm species damaging to spring wheat, particularly in the Golden Triangle, an important cereal-grow...

  5. Agricultural policies and biomass fuels

    NASA Astrophysics Data System (ADS)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  6. Salt-soluble proteins from wheat-derived foodstuffs show lower allergenic potency than those from raw flour.

    PubMed

    de Gregorio, Marta; Armentia, Alicia; Díaz-Perales, Araceli; Palacín, Arantxa; Dueñas-Laita, Antonio; Martín, Blanca; Salcedo, Gabriel; Sánchez-Monge, Rosa

    2009-04-22

    Salt-soluble proteins from wheat flour have been described as main allergens associated with both baker's asthma and food allergy. However, most studies have used raw flour as starting material, thus not considering potential changes in allergenic properties induced by the heat treatment and other industrial processing to produce wheat-derived foodstuffs. Salt extracts from different commercial wheat-derived products were obtained and their allergenic properties investigated by IgE-immunodetection, ELISA assays, and skin prick test. The IgE-binding capacity of salt-soluble proteins from commercial breads and cooked pastas was reduced around 50% compared with that of raw flour, the reduction being less dramatic in noncooked pastas and biscuits. Several wheat-derived foodstuffs showed major IgE-binding components of 20 and 35 kDa, identified as avenin-like and globulin proteins, respectively. These proteins, as well as most flour and bread salt-soluble proteins, were hydrolyzed when subjected to simulated gastrointestinal digestion. However, the digested products still exhibited a residual IgE-binding capacity. Therefore, processing of wheat flour to obtain derived foodstuffs decreases the IgE binding-capacity of the major salt-soluble wheat proteins. Moreover, simulated gastric fluid digestion further inactivates some heat-resistant IgE-binding proteins.

  7. [Responses of rice-wheat rotation system in south Jiangsu to organic-inorganic compound fertilizers].

    PubMed

    Tian, Heng-Da; Zhang, Li; Zhang, Jian-Chao; Wang, Qiu-Jun; Xu, Da-Bing; Yibati, Halihashi; Xu, Jia-Le; Huang, Qi-Wei

    2011-11-01

    In 2006-2007, a field trial was conducted to study the effects of applying three kinds of organic-inorganic compound fertilizers [rapeseed cake compost plus inorganic fertilizers (RCC), pig manure compost plus inorganic fertilizers (PMC), and Chinese medicine residues plus inorganic fertilizers (CMC)] on the crop growth and nitrogen (N) use efficiency of rice-wheat rotation system in South Jiangsu. Grain yield of wheat and rice in the different fertilization treatments was significantly higher than the control (no fertilization). In treatments RCC, PMC and CMC, the wheat yield was 13.1%, 32.2% and 39.3% lower than that of the NPK compound fertilizer (CF, 6760 kg x hm(-2)), respectively, but the rice yield (8504-9449 kg x hm(-2)) was significantly higher than that (7919 kg x hm(-2)) of CF, with an increment of 7.4%-19.3%. In wheat season, the aboveground dry mass, N accumulation, and N use efficiency in treatments RCC, PMC, and CMC were lower than those of CF, but in rice season, these parameters were significantly higher than or as the same as CF. In sum, all the test three compound fertilizers had positive effects on the rice yield and its nitrogen use efficiency in the rice-wheat rotation system, being most significant for RCC.

  8. Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose.

    PubMed

    Chandra, Richard P; Arantes, Valdeir; Saddler, Jack

    2015-06-01

    The origins of lignocellulosic biomass and the pretreatment used to enhance enzyme accessibility to the cellulosic component are known to be strongly influenced by various substrate characteristics. To assess the impact that fibre properties might have on enzymatic hydrolysis, seven agricultural residues were characterised before and after steam pretreatment using a single pretreatment condition (190°C, 5min, 3% SO2) previously shown to enhance fractionation and hydrolysis of the cellulosic component of corn stover. When the fibre length, width and coarseness, viscosity, water retention value and cellulose crystallinity were monitored, no clear correlation was observed between any single substrate characteristic and the substrate's ease of enzymatic hydrolysis. However, the amount of hemicellulose that was solubilised during pretreatment correlated (r(2)=0.98) with the effectiveness of enzyme hydrolysis of each pretreated substrate. Simons's staining, to measure the cellulose accessibility, showed good correlation (r(2)=0.83) with hemicellulose removal and the extent of enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Wheat streak mosaic virus resistance in eight wheat germplasm lines

    USDA-ARS?s Scientific Manuscript database

    Wheat Streak Mosaic Virus (WSMV) disease is an important disease in wheat. Use of resistant cultivars is the most effective approach to reduce the yield losses caused by the disease. To identify new sources of resistance to WSMV, eight resistant wheat lines that were selected based on the results fr...

  10. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2015 Crop

    USDA-ARS?s Scientific Manuscript database

    Nine experimental lines of hard spring wheat were grown at up to five locations in 2015 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Sprin...

  11. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    USDA-ARS?s Scientific Manuscript database

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  12. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2014 Crop

    USDA-ARS?s Scientific Manuscript database

    Eleven experimental lines of hard spring wheat were grown at up to five locations in 2014 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spr...

  13. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation.

    PubMed

    Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  14. Evolutionary Genomics of Wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat is the world’s largest and most important food crop for direct human consumption, therefore, continued wheat improvement is paramount for feeding an ever-increasing human population. Wheat improvement is tightly associated with the characterization and understanding of wheat evolution and gene...

  15. The AgMIP Wheat Pilot: A multi-model approach for climate change impact assessments.

    NASA Astrophysics Data System (ADS)

    Asseng, S.

    2012-12-01

    Asseng S., F. Ewert, C. Rosenzweig, J.W. Jones, J.L. Hatfield, A. Ruane, K.J. Boote, P. Thorburn, R.P. Rötter, D. Cammarano, N. Brisson, B. Basso, P. Martre, D. Ripoche, P. Bertuzzi, P. Steduto, L. Heng, M.A. Semenov, P. Stratonovitch, C. Stockle, G. O'Leary, P.K. Aggarwal, S. Naresh Kumar, C. Izaurralde, J.W. White, L.A. Hunt, R. Grant, K.C. Kersebaum, T. Palosuo, J. Hooker, T. Osborne, J. Wolf, I. Supit, J.E. Olesen, J. Doltra, C. Nendel, S. Gayler, J. Ingwersen, E. Priesack, T. Streck, F. Tao, C. Müller, K. Waha, R. Goldberg, C. Angulo, I. Shcherbak, C. Biernath, D. Wallach, M. Travasso, A. Challinor. Abstract: Crop simulation models have been used to assess the impact of climate change on agriculture. These assessments are often carried out with a single model in a limited number of environments and without determining the uncertainty of simulated impacts. There is a need for a coordinated effort bringing together multiple modeling teams which has been recognized by the Agricultural Model Intercomparison and Improvement Project (AgMIP; www.agmip.org). AgMIP aims to provide more robust estimates of climate impacts on crop yields and agricultural trade, including estimates of associated uncertainties. Here, we present the AgMIP Wheat Pilot Study, the most comprehensive model intercomparison of the response of wheat crops to climate change to date, including 27 wheat models. Crop model uncertainties in assessing climate change impacts are explored and compared with field experimental and Global Circulation Model uncertainties. Causes of impact uncertainties and ways to reduce these are discussed.

  16. Impacts of El Niño-Southern Oscillation on the wheat market: A global dynamic analysis

    PubMed Central

    2017-01-01

    Although the widespread influence of the El Niño-Southern Oscillation (ENSO) occurrences on crop yields of the main agricultural commodities is well known, the global socio-economic consequences of ENSO still remain uncertain. Given the global importance of wheat for global consumption by providing 20% of global calories and nourishment, the monitoring and prediction of ENSO-induced variations in the worldwide wheat market are essential for allowing national governments to manage the associated risks and to ensure the supplies of wheat for consumers, including the underprivileged. To this end, we propose a global dynamic model for the analysis of ENSO impacts on wheat yield anomalies, export prices, exports and stock-to-use ratios. Our framework focuses on seven countries/regions: the six main wheat-exporting countries—the United States, Argentina, Australia, Canada, the EU, and the group of the main Black Sea export countries, i.e. Russia, Ukraine, and Kazakhstan—plus the rest of the world. The study shows that La Niña exerts, on average, a stronger and negative impact on wheat yield anomalies, exports and stock-to-use ratios than El Niño. In contrast, wheat export prices are positively related to La Niña occurrences evidencing, once again, its steady impact in both the short and long run. Our findings emphasize the importance of the two ENSO extreme phases for the worldwide wheat market. PMID:28594886

  17. Impacts of El Niño-Southern Oscillation on the wheat market: A global dynamic analysis.

    PubMed

    Gutierrez, Luciano

    2017-01-01

    Although the widespread influence of the El Niño-Southern Oscillation (ENSO) occurrences on crop yields of the main agricultural commodities is well known, the global socio-economic consequences of ENSO still remain uncertain. Given the global importance of wheat for global consumption by providing 20% of global calories and nourishment, the monitoring and prediction of ENSO-induced variations in the worldwide wheat market are essential for allowing national governments to manage the associated risks and to ensure the supplies of wheat for consumers, including the underprivileged. To this end, we propose a global dynamic model for the analysis of ENSO impacts on wheat yield anomalies, export prices, exports and stock-to-use ratios. Our framework focuses on seven countries/regions: the six main wheat-exporting countries-the United States, Argentina, Australia, Canada, the EU, and the group of the main Black Sea export countries, i.e. Russia, Ukraine, and Kazakhstan-plus the rest of the world. The study shows that La Niña exerts, on average, a stronger and negative impact on wheat yield anomalies, exports and stock-to-use ratios than El Niño. In contrast, wheat export prices are positively related to La Niña occurrences evidencing, once again, its steady impact in both the short and long run. Our findings emphasize the importance of the two ENSO extreme phases for the worldwide wheat market.

  18. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination.

    PubMed

    Rizwan, Muhammad; Meunier, Jean-Dominique; Miche, Hélène; Keller, Catherine

    2012-03-30

    Agricultural soil contamination and subsequently crops still require alternative solutions to reduce associated environmental risks. The effects of silica application on alleviating cadmium (Cd) phytotoxicity in wheat plants were investigated in a 71-day pot experiment conducted with a historically contaminated agricultural soil. We used amorphous silica (ASi) that had been extracted from a diatomite mine for Si distribution at 0, 1, 10 and 15 ton ASi ha(-1). ASi applications increased plant biomass and plant Si concentrations, reduced the available Cd in the soil and the Cd translocation to shoots, while Cd was more efficiently sequestrated in roots. But ASi is limiting for Si uptake by plants. We conclude that significant plant-available Si in soil contributes to decreased Cd concentrations in wheat shoots and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars.

    PubMed

    Ertas, Murat; Han, Qiang; Jameel, Hasan; Chang, Hou-min

    2014-01-01

    Wheat straw was pretreated using an autohydrolysis process with different temperatures (160-200 °C) and times (10-20 min) in order to allow the recovery of hemicellulose in the filtrate and help open up the structure of the biomass for improved accessibility of enzymes during enzymatic hydrolysis. Autohydrolysis at 190 °C for 10 min provided the highest overall sugar (12.2/100g raw wheat straw) in the autohydrolysis filtrate and recovered 62.3% of solid residue. Before enzymatic hydrolysis, the pulps obtained from each pretreatment condition were subjected to a refining post-treatment to improve enzyme accessibility. Enzymatic hydrolysis was performed for all the pretreated solids with and without refining post-treatment at the enzyme loadings of 4 and 10 FPU/g oven dry substrate for 96 h. A total of 30.4 g sugars can be recovered from 100g wheat straw at 180 °C for 20 min with 4 FPU/g enzyme charge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The case of the missing wheat

    NASA Astrophysics Data System (ADS)

    Lobell, David B.

    2012-06-01

    In Lewis Carroll's Through the Looking Glass, Alice finds herself running as fast as she can but not moving anywhere. The Red Queen explains to her 'Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that.' Such is the situation in global agriculture. Global demand for agricultural products continues to rise as population grows and people get richer. As they get richer, people have fewer babies but eat more. And they use a lot more energy, which is increasingly derived from agricultural products. Crop technologies have to move incredibly fast just to keep up. Remarkably, over the past 50 years they have, with yields (production per hectare of land) for most crops more than doubling since 1960, and real prices of food falling for most of the period. In many ways we have come to take continued yield growth for granted. But, as Lin and Huybers show [1] elsewhere in this issue, there is increasing evidence that this growth has stalled in many regions. The question is not new—people have worried about the pace of yield growth since at least the days of Malthus [2, 3]. But Lin and Huybers [1] use updated data and bring a new rigor to identifying where stagnation is statistically significant, for example by taking care to account for year-to-year correlation in yields. They report that for slightly more than half of the regions that they inspected, it is likely (80% chance) that yield growth has already flattened out. For many of these countries, responsible for about one quarter of global wheat production, the stagnation has very likely occurred (95% chance). Why are yields of wheat stagnating in so many areas? At least four suspects seem plausible. One narrative is that for years the real price of wheat was declining, providing little incentive for innovation. The most obvious consequence was a major decline in investment in research and development in most

  1. Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology.

    PubMed

    Tepe, Ozlem; Dursun, Arzu Y

    2014-01-01

    In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12-0.21% w/v) and yeast extract (0.12-0.3% w/v) and relatively high wheat bran (~5-6% w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B (2) showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity.

  2. Multi-pollutant emissions from the burning of major agricultural residues in China and the related health-economic effects

    NASA Astrophysics Data System (ADS)

    Li, Chunlin; Hu, Yunjie; Zhang, Fei; Chen, Jianmin; Ma, Zhen; Ye, Xingnan; Yang, Xin; Wang, Lin; Tang, Xingfu; Zhang, Renhe; Mu, Mu; Wang, Guihua; Kan, Haidong; Wang, Xinming; Mellouki, Abdelwahid

    2017-04-01

    Multi-pollutants in smoke particulate matter (SPM) were identified and quantified for the biomass burning of five major agricultural residues (wheat, rice, corn, cotton, and soybean straw) in China by an aerosol chamber system combined with various measurement techniques. The primary emission factors (EFs) for PM1. 0 and PM2. 5 are 3.04-12.64 and 3.25-15.16 g kg-1. Organic carbon (OC), elemental carbon (EC), water-soluble inorganics (WSIs), water-soluble organic acids (WSOAs), water-soluble amine salts (WSAs), trace mineral elements (THMs), polycyclic aromatic hydrocarbons (PAHs), and phenols in smoke PM1. 0/PM2. 5 are 1.34-6.04/1.54-7.42, 0.58-2.08/0.61-2.18, 0.51-3.52/0.52-3.81, 0.13-0.64/0.14-0.77, (4.39-85.72/4.51-104.79) × 10-3, (11.8-51.1/14.0-131.6) × 10-3, (1.1-4.0/1.8-8.3) × 10-3, and (7.7-23.5/9.7-41.5) × 10-3 g kg-1, respectively. Black carbon (BC) mainly exists in PM1. 0; heavy-metal-bearing particles favour residing in the range of smoke PM1. 0-2. 5, which is also confirmed by individual particle analysis. With respect to the five scenarios of burning activities, the average emissions and overall propagation of uncertainties at the 95 % confidence interval (CI) of SPM from agricultural open burning in China in 2012 were estimated to be 1005.7 (-24.6, 33.7 %), 901.4 (-24.4, 33.5 %), 432.4 (-24.2, 33.5 %), 134.2 (-24., 34.0 %), 249.8 (-25.4, 34.9 %), 25.1 (-33.3, 41.4 %), 5.8 (-30.1, 38.5 %), 8.7 (-26.6, 35.6 %), 0.5 (-26.0, 34.9 %), and 2.7 (-26.1, 35.1 %) Gg for PM2. 5, PM1. 0, OC, EC, WSI, WSOA, WSA, THM, PAHs, and phenols , respectively. The emissions were further spatio-temporally characterized using a geographic information system (GIS) in different regions in the summer and autumn post-harvest periods. It was found that less than 25 % of the total emissions were released during the summer harvest, which was mainly contributed by the North Plain and the centre of China, especially Henan, Shandong, and Anhui, which are the top three provinces

  3. Cover Crops and Fertilization Alter Nitrogen Loss in Organic and Conventional Conservation Agriculture Systems

    PubMed Central

    Shelton, Rebecca E.; Jacobsen, Krista L.; McCulley, Rebecca L.

    2018-01-01

    Agroecosystem nitrogen (N) loss produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, conservation agricultural management practices aimed at reducing N loss are increasingly adopted. However, the ecosystem consequences of these practices have not been well-studied. We quantified N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems in Kentucky, USA. Three systems were evaluated: (1) an unfertilized, organic system with cover crops hairy vetch (Vicia villosa), winter wheat (Triticum aestivum), or a mix of the two (bi-culture); (2) an organic system with a hairy vetch cover crop employing three fertilization schemes (0 N, organic N, or a fertilizer N-credit approach); and (3) a conventional system with a winter wheat cover crop and three fertilization schemes (0 N, urea N, or organic N). In the unfertilized organic system, cover crop species affected NO3-N leaching (vetch > bi-culture > wheat) and N2O-N emissions and yield during corn growth (vetch, bi-culture > wheat). Fertilization increased soil inorganic N, gaseous N loss, N leaching, and yield in the organic vetch and conventional wheat systems. Fertilizer scheme affected the magnitude of growing season N2O-N loss in the organic vetch system (organic N > fertilizer N-credit) and the timing of loss (organic N delayed N2O-N loss vs. urea) and NO3-N leaching (urea >> organic N) in the conventional wheat system, but had no effect on yield. Cover crop selection and N fertilization techniques can reduce N leaching and greenhouse gas emissions without sacrificing yield, thereby enhancing N conservation in both organic and conventional conservation agriculture systems. PMID:29403512

  4. PlantGI: a database for searching gene indices in agricultural plants developed at NIAB, Korea

    PubMed Central

    Kim, Chang Kug; Choi, Ji Weon; Park, DongSuk; Kang, Man Jung; Seol, Young-Joo; Hyun, Do Yoon; Hahn, Jang Ho

    2008-01-01

    The Plant Gene Index (PlantGI) database is developed as a web-based search system with search capabilities for keywords to provide information on gene indices specifically for agricultural plants. The database contains specific Gene Index information for ten agricultural species, namely, rice, Chinese cabbage, wheat, maize, soybean, barley, mushroom, Arabidopsis, hot pepper and tomato. PlantGI differs from other Gene Index databases in being specific to agricultural plant species and thus complements services from similar other developments. The database includes options for interactive mining of EST CONTIGS and assembled EST data for user specific keyword queries. The current version of PlantGI contains a total of 34,000 EST CONTIGS data for rice (8488 records), wheat (8560 records), maize (4570 records), soybean (3726 records), barley (3417 records), Chinese cabbage (3602 records), tomato (1236 records), hot pepper (998 records), mushroom (130 records) and Arabidopsis (8 records). Availability The database is available for free at http://www.niab.go.kr/nabic/. PMID:18685722

  5. Nitrogen deposition and its contribution to nutrient inputs to intensively managed agricultural ecosystems.

    PubMed

    He, Chun-E; Wang, Xin; Liu, Xuejun; Fangmeier, Andreas; Christie, Peter; Zhang, Fusuo

    2010-01-01

    Interest in nitrogen inputs via atmospheric deposition to agricultural ecosystems has increased recently, especially on the North China Plain because of extremely intensive agricultural systems and rapid urbanization in this region. Nitrogen deposition may make a significant contribution to crop N requirements but may also impose a considerable nutrient burden on the environment in general. We quantified total N deposition at two locations, Dongbeiwang near Beijing and Quzhou in Hebei province, over a two-year period from 2005 to 2007 using an 15N tracer method, the integrated total N input (ITNI) system. Total airborne N inputs to a maize wheat rotation system at both locations ranged from 99 to 117 kg N x ha(-1) x yr(-1), with higher N deposition during the maize season (57-66 kg N/ha) than the wheat season (42-51 kg N/ha). Plant available N from deposition for maize and wheat was about 52 kg N x ha(-1) x yr(-1), accounting for 50% of the total N deposition or 31% of total N uptake by the two crop species. In addition, a correction factor was derived for the maize season to adjust values obtained from small pots (0.057 m2) compared with field trays (0.98 m2) because of higher plant density in the pots. The results indicate that atmospheric N deposition is a very important N input and must be taken into account when calculating nutrient budgets in very intensively managed agricultural ecosystems.

  6. Priorities for worldwide remote sensing of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.

    1985-01-01

    The world's crops are ranked according to total harvested area, and comparisons are made among major world regions of differences in crops produced. The eight leading world crops are wheat, rice, corn, barley, millet, soybeans, sorghum, and cotton. Regionally, millet and sorghum are most important in Africa, wheat is the most extensively grown crop in north-central America, Europe, USSR, and Oceania; corn is the dominant crop in South America; and rice is the most extensively grown crop in Asia. Agriculture in the USA is considered in more detail to show the national economic impact of variations in value per hectare among crops. On the world scene, the cereals are the most important crops, but locally, such crops as tobacco can play a dominant role.

  7. Resistance to Wheat streak mosaic virus identified in synthetic wheat lines

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) is a significant pathogen in wheat that causes economic loss each year. WSMV is typically controlled using cultural practices such as the removal of volunteer wheat. Genetic resistance is limited. Until recently, no varieties have been available with major resista...

  8. Impact of diverse soil microbial communities on crop residues decomposition

    NASA Astrophysics Data System (ADS)

    Mrad, Fida; Bennegadi-Laurent, Nadia; Ailhas, Jérôme; Leblanc, Nathalie; Trinsoutrot-Gattin, Isabelle; Laval, Karine; Gattin, Richard

    2017-04-01

    Soils provide many basic ecosystem services for our society and most of these services are carried out by the soil communities, thus influencing soils quality. Soil organic matter (SOM) can be considered as one of the most important soil quality indices for it plays a determinant role in many physical, chemical and biological processes, such as soil structure and erosion resistance, cation exchange capacity, nutrient cycling and biological activity (Andrews et al., 2004). Since a long time, exogenous organic inputs are largely used for improving agricultural soils, affecting highly soil fertility and productivity. The use of organic amendments such as crop residues influences the soil microbial populations' diversity and abundance. In the meantime, soil microbial communities play a major role in the organic matter degradation, and the effect of different microbial communities on the decomposition of crop residues is not well documented. In this context, studying the impact of crop residues on soil microbial ecology and the processes controlling the fate of plant residues in different management practices is essential for understanding the long-term environmental and agronomic effects on soil and organic matters. Our purpose in the present work was to investigate the decomposition by two contrasting microbial communities of three crop residues, and compare the effect of different residues amendments on the abundance and function of each soil microbial communities. Among the main crops which produce large amounts of residues, we focused on three different plants: wheat (Triticum aestivum L.), rape (Brassica napus) and sunflower (Helianthus annuus). The residues degradation in two soils of different management practices and the microbial activity were evaluated by: microbial abundance (microbial carbon, culturable bacteria, total DNA, qPCR), in combination with functional indicators (enzymatic assays and Biolog substrate utilization), kinetics of C and N

  9. Production of anti-streptococcal liamocins from agricultural biomass by Aureobasidium pullulans.

    PubMed

    Leathers, Timothy D; Price, Neil P J; Manitchotpisit, Pennapa; Bischoff, Kenneth M

    2016-12-01

    Liamocins are unique heavier-than-water "oils" produced by certain strains of the fungus Aureobasidium pullulans. Liamocins have antibacterial activity with specificity for Streptococcus sp. Previous studies reported that liamocin yields were highest from strains of A. pullulans belonging to phylogenetic clades 8, 9, and 11, cultured on medium containing sucrose. In this study, 27 strains from these clades were examined for the first time for production of liamocins from agricultural biomass substrates. Liamocin yields were highest from strains in phylogenetic clade 11, and yields were higher from cultures grown on sucrose than from those grown on pretreated wheat straw. However, when supplementary enzymes (cellulase, β-glucosidase, and xylanase) were added, liamocin production on pretreated wheat straw was equivalent to that on sucrose. Liamocins produced from wheat straw were free of the melanin contamination common in sucrose-grown cultures. Furthermore, MALDI-TOF MS analysis showed that liamocins produced from wheat straw were under-acetylated, resulting in higher proportions of the mannitol A1 and B1 species of liamocin, the latter of which has the highest biological activity against Streptococcus sp.

  10. Benefits to world agriculture through remote sensing

    NASA Technical Reports Server (NTRS)

    Buffalano, A. C.; Kochanowski, P.

    1976-01-01

    Remote sensing of agricultural land permits crop classification and mensuration which can lead to improved forecasts of production. This technique is particularly important for nations which do not already have an accurate agricultural reporting system. Better forecasts have important economic effects. International grain traders can make better decisions about when to store, buy, and sell. Farmers can make better planting decisions by taking advantage of production estimates for areas out of phase with their own agricultural calendar. World economic benefits will accrue to both buyers and sellers because of increased food supply and price stabilization. This paper reviews the econometric models used to establish this scenario and estimates the dollar value of benefits for world wheat as 200 million dollars annually for the United States and 300 to 400 million dollars annually for the rest of the world.

  11. Expression of the Maize Dof1 Transcription Factor in Wheat and Sorghum

    PubMed Central

    Peña, Pamela A.; Quach, Truyen; Sato, Shirley; Ge, Zhengxiang; Nersesian, Natalya; Changa, Taity; Dweikat, Ismail; Soundararajan, Madhavan; Clemente, Tom E.

    2017-01-01

    Nitrogen is essential for plant growth and development. Improving the ability of plants to acquire and assimilate nitrogen more efficiently is a key agronomic parameter that will augment sustainability in agriculture. A transcription factor approach was pursued to address improvement of nitrogen use efficiency in two major commodity crops. To this end, the Zea mays Dof1 (ZmDof1) transcription factor was expressed in both wheat (Triticum aestivum) and sorghum (Sorghum bicolor) either constitutively, UBI4 promoter from sugarcane, or in a tissue specific fashion via the maize rbcS1 promoter. The primary transcription activation target of ZmDof1, phosphoenolpyruvate carboxylase (PEPC), is observed in transgenic wheat events. Expression ZmDof1 under control of the rbcs1 promoter translates to increase in biomass and yield components in wheat. However, constitutive expression of ZmDof1 led to the down-regulation of genes involved in photosynthesis and the functional apparatus of chloroplasts, and an outcome that negatively impacts photosynthesis, height, and biomass in wheat. Similar patterns were also observed in sorghum transgenic events harboring the constitutive expression cassette of ZmDof1. These results indicate that transcription factor strategies to boost agronomic phenotypic outcomes in crops need to consider expression patterns of the genetic elements to be introduced. PMID:28424717

  12. 40 CFR 180.337 - Oxytetracycline; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Oxytetracycline; tolerance for... § 180.337 Oxytetracycline; tolerance for residues. Tolerances are established for residues of the pesticide oxytetracycline in or on the following raw agricultural commodities: Commodity Parts per million...

  13. 9 CFR 381.80 - General; biological residues.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false General; biological residues. 381.80 Section 381.80 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Carcasses and Parts § 381.80 General; biological residues. (a) The carcasses or parts of carcasses of all...

  14. Endosulfan in China 2-emissions and residues.

    PubMed

    Jia, Hongliang; Sun, Yeqing; Li, Yi-Fan; Tian, Chongguo; Wang, Degao; Yang, Meng; Ding, Yongshen; Ma, Jianmin

    2009-05-01

    Endosulfan is one of the organochlorine pesticides (OCPs) and also a candidate to be included in a group of new persistent organic pollutants (UNEP 2007). The first national endosulfan usage inventories in China with 1/4 degrees longitude by 1/6 degrees latitude resolution has been reported in an accompanying paper. In the second part of the paper, we compiled the gridded historical emissions and soil residues of endosulfan in China from the usage inventories. Based on the residue/emission data, gridded concentrations of endosulfan in Chinese soil and air have been calculated. These inventories will provide valuable data for the further study of endosulfan. Emission and residue of endosulfan were calculated from endosulfan usage by using a simplified gridded pesticide emission and residue model-SGPERM, which is an integrated modeling system combining mathematical model, database management system, and geographic information system. By using the emission and residue inventories, annual air and soil concentrations of endosulfan in each cell were determined. Historical gridded emission and residue inventories of alpha- and beta-endosulfan in agricultural soil in China with 1/4 degrees longitude by 1/6 degrees latitude resolution have been created. Total emissions were around 10,800 t, with alpha-endosulfan at 7,400 t and beta-endosulfan at 3,400 t from 1994 to 2004. The highest residues were 140 t for alpha-endosulfan and 390 t for beta-endosulfan, and the lowest residues were 0.7 t for alpha-endosulfan and 170 t for beta-endosulfan in 2004 in Chinese agricultural soil where endosulfan was applied. Based on the emission and residue inventories, concentrations of alpha- and beta-endosulfan in Chinese air and agricultural surface soil were also calculated for each grid cell. We have estimated annual averaged air concentrations and the annual minimum and maximum soil concentrations across China. The real concentrations will be different from season to season. Although

  15. Acceptability of wheat-sorghum composite flour products: an assessment.

    PubMed

    Keregero, M M; Mtebe, K

    1994-12-01

    The acceptability of sorghum as human food has been a problem in Tanzania even in regions showing promising potential for its production and utilization. Reasons given for low acceptability of sorghum products as human foods include unpleasant colour, aroma, mouthfeel, taste, unpleasant aftertaste and stomachfeel. An acceptability test of selected sorghum products was, therefore, conducted in the Department of Food Science and Technology, Sokoine University of Agriculture, Morogoro, Tanzania. The objective of the test was to determine consumers' preference for the following wheat-sorghum composite flour products: bread and buns or 'maandazi'. The products were prepared using sorghum flour composited with wheat flour in the following proportions: 100% brown sorghum flour (standard products); and 80:20%; 60:40%; 40:60% and 20:80% for wheat/sorghum (white and brown) composite flours. Results indicated that in the case of composite flour bread, preference for the product improved as the amount of sorghum flour decreased. In the case of buns or 'maandazi' the 100% sorghum flour products of both white and brown were equally preferred. Buns prepared from 100% sorghum flour of white and brown varieties showed promising potential in the improvement of the acceptability of sorghum products. Taking advantage of such products, especially in villages, could enhance sorghum utilization in rural communities.

  16. Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Fang, Zheng; Deng, Wei; Zhang, Yanli; Ding, Xiang; Tang, Mingjin; Liu, Tengyu; Hu, Qihou; Zhu, Ming; Wang, Zhaoyi; Yang, Weiqiang; Huang, Zhonghui; Song, Wei; Bi, Xinhui; Chen, Jianmin; Sun, Yele; George, Christian; Wang, Xinming

    2017-12-01

    Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50 % of the total speciated NMHCs emission (2.47 to 5.04 g kg-1), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg-1) and primary organic carbon (POC, 2.05 to 4.11 gC kg-1), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) × 1010 molecule cm-3 s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3 % of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen- and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes.

  17. Multiresidue analysis of 47 pesticides in cooked wheat flour and polished rice by liquid chromatography with tandem mass spectrometry.

    PubMed

    Lee, Sung Jung; Park, Hyeong Jin; Kim, Wooseong; Jin, Jong Sung; Abd El-Aty, A M; Shim, Jae-Han; Shin, Sung Chul

    2009-04-01

    Liquid chromatography in conjunction with tandem mass spectrometry was used to directly quantify of 47 pesticide residues from cooked wheat flour and polished rice, which are the most widely consumed cereals in the Republic of Korea. The sample clean-up was carried out according to the method established by the Korea Food and Drug Administration. The mobile phase for liquid chromatography separation consisted of water and 5 mm methanolic ammonium formate. Tandem mass spectroscopy experiments were performed in electrospray ionization positive mode and the multiple reaction monitoring mode. The matrix effects estimated for the 47 pesticides had a mean value of 99% and ranged from 45 to 147%. High recoveries (70-140%) and relative standard deviations (< or = 20%) were achieved for most of the pesticides tested. The method used in this study allowed for rapid quantification and identification of low levels of pesticides in cooked wheat flour and polished rice samples. Of the screened pesticide residues, only tricyclazole and fenobucarb were found in polished rice samples. However, no samples contained residues above the MRL established by the Korea Food and Drug Administration.

  18. [Properties and localization of Mg- and Ca-ATpase activities in wheat embryo cell nuclei].

    PubMed

    Vasil'eva, N A; Belkina, G G; Stepanenko, S Y; Atalykova, F I; Oparin, A I

    1978-05-01

    The isolated nuclei of wheat embryo possess the ATPase activity. The addition of Mg2+ and Ca2+ significantly increases the activities of nuclear ATPases, whereas Hg2+, Cu2+ and Mn2+ inhibit the activity. The activating effect of Mg2+ is enhanced by an addition of Na and K ions. The activity of wheat embryo nuclear Mg-ATPase is higher than its Ca-ATPase activity; both ATPases also differ in their pH optima. Separation of total nuclear protein according to the solubility of its individual protein components in wheat and strong salt solutions, using the detergents, as well as ammonium sulfate precipitation and dialysis do not result in separation of Mg-activated and Ca-activated ATPases, although their levels of activities and ratios change in the course of fractionation. The Mg- and Ca-ATPase activities of the wheat embryo nuclei were found in the nuclear fraction of albumin, in nonhistone proteins and nuclear membranes. In the albumin nuclear fraction and subfractions of non-histone proteins the higher level of activity is observed in Ca-ATPase, whereas in the nuclei and soluble fractions of residual proteins in Mg-ATPase.

  19. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation

    PubMed Central

    Nitsos, Christos; Triantafyllidis, Kostas

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones. PMID:26609521

  20. Bird use of agricultural fields under reduced and conventional tillage in the Texas Panhandle

    USGS Publications Warehouse

    Flickinger, Edward L.; Pendleton, G.W.

    1994-01-01

    We conducted bird surveys in reduced-tillage and conventional tillage fields in spring, summer, fall, and winter from 1987 to 1991 in the Texas Panhandle. Eastern meadowlarks, longspurs, and savannah sparrows were more common in reduced-tillage (sorghum and wheat stubble) fields than in conventionally tilled (plowed) fields in at least 1 season. Other species also had patterns suggestive of greater abundance in reduced-tillage fields. Hornedlarks, which prefer habitat with sparse vegetation, were more abundant in plowed fields in all seasons except summer. Bird diversity was greater in reduced-tillage fields than in conventionally tilled fields in summer. Cover density and height were greater in reduced tillage fields in all seasons except spring. Cover density and height rather than cover composition (e.g.,grain stubble or live plants) seemed to be the important factors affecting bird distribution. Patterns of bird abundance between sorghum and wheat stubble fields also were dependent on cover. Herbicide use was not greater in reduced-tillage fields than in conventionally tilled fields. Reduced-tillage agriculture for sorghum and wheat farming should be encouraged in the southern Great Plains as a means of improving the attractiveness of agricultural land to many bird species.

  1. Organic farming increases richness of fungal taxa in the wheat phyllosphere.

    PubMed

    Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

    2017-07-01

    Organic farming is often advocated as an approach to mitigate biodiversity loss on agricultural land. The phyllosphere provides a habitat for diverse fungal communities that are important for plant health and productivity. However, it is still unknown how organic farming affects the diversity of phyllosphere fungi in major crops. We sampled wheat leaves from 22 organically and conventionally cultivated fields in Sweden, paired based on their geographical location and wheat cultivar. Fungal communities were described using amplicon sequencing and real-time PCR. Species richness was higher on wheat leaves from organically managed fields, with a mean of 54 operational taxonomic units (OTUs) compared with 40 OTUs for conventionally managed fields. The main components of the fungal community were similar throughout the 350-km-long sampling area, and seven OTUs were present in all fields: Zymoseptoria, Dioszegia fristingensis, Cladosporium, Dioszegia hungarica, Cryptococcus, Ascochyta and Dioszegia. Fungal abundance was highly variable between fields, 10 3 -10 5 internal transcribed spacer copies per ng wheat DNA, but did not differ between cropping systems. Further analyses showed that weed biomass was the strongest explanatory variable for fungal community composition and OTU richness. These findings help provide a more comprehensive understanding of the effect of organic farming on the diversity of organism groups in different habitats within the agroecosystem. © 2017 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.

  2. Eighteen cases of wheat allergy and wheat-dependent exercise-induced urticaria/anaphylaxis sensitized by hydrolyzed wheat protein in soap.

    PubMed

    Kobayashi, Tomoko; Ito, Tomonobu; Kawakami, Hiroshi; Fuzishiro, Kanzan; Hirano, Hirofumi; Okubo, Yukari; Tsuboi, Ryoji

    2015-08-01

    Glupearl 19S, an acid-hydrolyzed wheat protein (HWP), is used widely in Japan as a moisturizing ingredient in facial soaps. Since 2010, there has been an increasing number of reports of contact urticaria and wheat allergy resulting from the use of products containing this substance. Sixty-one patients who had used HWP-containing facial soap visited our hospital. Thirty-five of these experienced urticaria or anaphylaxis after consuming wheat-containing food. Eighteen of the 35 patients tested positive to 0.01% Glupearl 19S solution. Wheat-specific IgE and serum gluten-specific IgE were higher in the patients with HWP allergy than in non-HWP allergy patients. Among the patients who tested positive to Glupearl 19S on the skin prick test, nine experienced HWP-wheat-dependent exercise-induced anaphylaxis, and four experienced food-dependent anaphylaxis. Moreover, four of these patients not only experienced food-dependent anaphylaxis but also a worsening of the symptoms during exercise. The clinical symptomology was so variable that the patients were classified into six groups. We found that patients with HWP allergy tended to manifest symptoms of both HWP-wheat-dependent exercise-induced anaphylaxis and contact urticaria. The etiology of hydrolyzed wheat protein allergy is unknown. Patients with a history of these symptoms need to be informed about the risk of consuming wheat-containing foods and the importance of excluding such items from their diet. © 2015 The International Society of Dermatology.

  3. Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw.

    PubMed

    Oliva-Taravilla, Alfredo; Moreno, Antonio D; Demuez, Marie; Ibarra, David; Tomás-Pejó, Elia; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-01-01

    Laccase enzymes are promising detoxifying agents during lignocellulosic bioethanol production from wheat straw. However, they affect the enzymatic hydrolysis of this material by lowering the glucose recovery yields. This work aimed at explaining the negative effects of laccase on enzymatic hydrolysis. Relative glucose recovery in presence of laccase (10IU/g substrate) with model cellulosic substrate (Sigmacell) at 10% (w/v) was almost 10% points lower (P<0.01) than in the absence of laccase. This fact could be due to an increase in the competition of cellulose binding sites between the enzymes and a slight inhibition of β-glucosidase activity. However, enzymatic hydrolysis and infrared spectra of laccase-treated and untreated wheat straw filtered pretreated residue (WS-FPR), revealed that a grafting process of phenoxy radicals onto the lignin fiber could be the cause of diminished accessibility of cellulases to cellulose in pretreated wheat straw. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Detection of Organophosphorus Pesticides in Wheat by Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction Combined with HPLC

    PubMed Central

    Quan, Ji; Hu, Zeshu

    2018-01-01

    Food safety issues closely related to human health have always received widespread attention from the world society. As a basic food source, wheat is the fundamental support of human survival; therefore, the detection of pesticide residues in wheat is very necessary. In this work, the ultrasonic-assisted ionic liquid-dispersive liquid-liquid microextraction (DLLME) method was firstly proposed, and the extraction and analysis of three organophosphorus pesticides were carried out by combining high-performance liquid chromatography (HPLC). The extraction efficiencies of three ionic liquids with bis(trifluoromethylsulfonyl)imide (Tf2N) anion were compared by extracting organophosphorus in wheat samples. It was found that the use of 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([OMIM][Tf2N]) had both high enrichment efficiency and appropriate extraction recovery. Finally, the method was used for the determination of three wheat samples, and the recoveries of them were 74.8–112.5%, 71.8–104.5%, and 83.8–115.5%, respectively. The results show that the method proposed is simple, fast, and efficient, which can be applied to the extraction of organic matters in wheat samples. PMID:29854562

  5. Characterization of recombinant dihydrodipicolinate synthase from the bread wheat Triticum aestivum.

    PubMed

    Gupta, Ruchi; Hogan, Campbell J; Perugini, Matthew A; Soares da Costa, Tatiana P

    2018-05-09

    Recombinant wheat DHDPS was produced for the first time in milligram quantities and shown to be an enzymatically active tetramer in solution using analytical ultracentrifugation and small angle X-ray scattering. Wheat is an important cereal crop with an extensive role in global food supply. Given our rapidly growing population, strategies to increase the nutritional value and production of bread wheat are of major significance in agricultural science to satisfy our dietary requirements. Lysine is one of the most limiting essential amino acids in wheat, thus, a thorough understanding of lysine biosynthesis is of upmost importance to improve its nutritional value. Dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7) catalyzes the first committed step in the lysine biosynthesis pathway of plants. Here, we report for the first time the expression and purification of recombinant DHDPS from the bread wheat Triticum aestivum (Ta-DHDPS). The optimized protocol yielded 36 mg of > 98% pure recombinant Ta-DHDPS per liter of culture. Enzyme kinetic studies demonstrate that the recombinant Ta-DHDPS has a K M (pyruvate) of 0.45 mM, K M (l-aspartate-4-semialdehyde) of 0.07 mM, k cat of 56 s -1 , and is inhibited by lysine (IC 50 LYS of 0.033 mM), which agree well with previous studies using labor-intensive purification from wheat suspension cultures. We subsequently employed circular dichroism spectroscopy, analytical ultracentrifugation and small angle X-ray scattering to show that the recombinant enzyme is folded with 60% α/β structure and exists as a 7.5 S tetrameric species with a R g of 33 Å and D max of 118 Å. This study is the first to report the biophysical properties of the recombinant Ta-DHDPS in aqueous solution and offers an excellent platform for future studies aimed at improving nutritional value and primary production of bread wheat.

  6. Performance of Vegetation Indices for Wheat Yield Forecasting for Punjab, Pakistan

    NASA Astrophysics Data System (ADS)

    Dempewolf, J.; Becker-Reshef, I.; Adusei, B.; Barker, B.

    2013-12-01

    corresponded well with reported values. NDVI-based forecasts showed high correlations of r squared = 0.881 and RMSE 11%. The VCI performed similarly well with r squared = 0.886 and RMSE 11%. WDRVI performed better than either of the other indices with r squared = 0.909 and RMSE 10%, probably due to the increased sensitivity of the index at high values. Wheat yields in Pakistan show on average a slow but steady annual increase but overall are comparatively stable due to the fact that the majority of fields are irrigated. The next steps in this study will be to compare NDVI- with WDRVI-based yield forecasts in other environments dominated by rain-fed agriculture, such as Ukraine, Australia and the United States.

  7. Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress

    USDA-ARS?s Scientific Manuscript database

    Here we argue for a research initiative on gene-for-gene (g-f-g) interactions between wheat and its parasites. One aim is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to biotic stress are integrated in an import...

  8. The infection and impact of Azorhizobium caulinodans ORS571 on wheat (Triticum aestivum L.).

    PubMed

    Liu, Huawei; Wang, Xiaojing; Qi, Huaiting; Wang, Qian; Chen, Yongchao; Li, Qiang; Zhang, Yuying; Qiu, Li; Fontana, Julia Elise; Zhang, Baohong; Wang, Weiling; Xie, Yingge

    2017-01-01

    Based on our previous study, cereal crop wheat (Triticum aestivum L.) could be infected by rhizobia Azorhizobium caulinodans ORS571, and form para-nodules with the induction of 2.4-dichlorophenoxyacetic acid, a common plant growth regulator. To enhance this infection and the potential agricultural application, we compared six different infection methods (Direct seed dip; Seed germination dip; Pruned-root dip; Foliar spray; Circum-soil dip; Seed dip and circum-soil dip) for achieving the high efficient infection of A. caulinodans into wheat plants by employing a green fluorescent protein (gfp)-labeled Azorhizobium caulinodans strain ORS571. With proper methods, copious rhizobia could enter the interior and promote the growth of wheat to the hilt. Circum-soil dip was proved to be the most efficient method, seed germination dip and pruned-root dip is the last recommended to infect wheat, seed germination dip and seed dip and circum-soil dip showed better effects on plant growth, pruned-root dip did not show too much effect on plant growth. This study laid the foundation for understanding the interaction between rhizobia and cereal crops and the growth-promoting function of rhizobia.

  9. Effect of Irrigation to Winter Wheat on the Radiation Use Efficiency and Yield of Summer Maize in a Double Cropping System

    PubMed Central

    Quanqi, Li; Yuhai, Chen; Xunbo, Zhou; Songlie, Yu; Changcheng, Guo

    2012-01-01

    In north China, double cropping of winter wheat and summer maize is a widely adopted agricultural practice, and irrigation is required to obtain a high yield from winter wheat, which results in rapid aquifer depletion. In this experiment conducted in 2001-2002, 2002-2003, and 2004-2005, we studied the effects of irrigation regimes during specific winter wheat growing stage with winter wheat and summer maize double cropping systems; we measured soil moisture before sowing (SMBS), the photosynthetic active radiation (PAR) capture ratio, grain yield, and the radiation use efficiency (RUE) of summer maize. During the winter wheat growing season, irrigation was applied at the jointing, heading, or milking stage, respectively. The results showed that increased amounts of irrigation and irrigation later in the winter wheat growing season improved SMBS for summer maize. The PAR capture ratio significantly (LSD, P < 0.05) increased with increased SMBS, primarily in the 3 spikes leaves. With improved SMBS, both the grain yield and RUE increased in all the treatments. These results indicate that winter wheat should be irrigated in later stages to achieve reasonable grain yield for both crops. PMID:22654613

  10. Enzymatic determination of soluble and insoluble dietary fiber in rice and wheat bran.

    PubMed

    Gonçalvez, A A; Badiale-Furlong, E; de Souza-Soares, L A; Siervs, S T

    1998-12-01

    The information about dietary fiber presents controversies in many research areas such as in nomenclature, related illnesses, recommended quantities and terminology, mainly because of lack of analytical data. Different needs and interests for the dietary fiber composition of foods and forages have led to a proliferation of methods for its analysis. This research, a further adaptation of the enzymatic method of Asp et al. (1983) for its application is proposed for rice and wheat bran, byproducts of agroindustries in the southern region of Rio Grande do Sul (Brazil). The inclusion of Amyloglucosidase in the proposed methodology contributed to the decrease in the content of residual starch at the end of the experiment, like Prosky et al (1992). To increase the efficiency of the enzyme system in this type of samples, other changes were made with respect to incubation time and proteolytic enzyme concentration. In the final adaptation, a decrease of 51.33% of the starch content was observed in rice bran (RB) and of 52.93% in wheat bran (WB). This decrease was also verified in the model system (MS) (52.08%), which demonstrates the adequacy of the proposed adaptation. With respect to the residual protein, it was verified that the measures adopted provoked a reduction of 42.15% (RB), 52.19% (WB) and 42.11% (MS) as compared to the original method. Then the proposed conditions has been shown to be efficient in decreasing the level of interference (indigestible starch and protein) in the quantification of dietary fiber in rice and wheat bran.

  11. Water footprint assessment along the wheat-bread value chain towards the sustainable use of freshwater in South Africa

    NASA Astrophysics Data System (ADS)

    Mohlotsane, Pascalina; Owusu-Sekyere, Enoch; Jordaan, Henry

    2017-04-01

    A significant amount of water is used in food production. The current increase in demand for food and impact of climate change place much pressure on the available water resources. South Africa is soon approaching complete utilisation of its available surface water, with irrigated agriculture accountable for about 63% of the country's available water use. This poses a threat to food security. Wheat is the largest winter cereal crop produced in South Africa, approximately 80% of this wheat is used to produce Bread. Bread consumption in South Africa is estimated at 2.8 billion loaves per annum. About 62 loaves of bread are consumed per person per annum with noticeable differences in preferences. Therefore, it is important to account for the amount of water used along the wheat-bread production chain. In this paper, we examined water footprint along the wheat-bread value chain. The water footprint concept provides an appropriate framework for analysis to find the link between the consumption of agricultural goods and the use of water resources. The paper employed the Global Water Footprint Standard approach to calculating the volumetric green, blue and grey water footprint along the wheat-bread value chain. Our findings reveal that wheat production at the farm level accounts for 99.95 percent of the total water footprint of the bread, while processing and wholesale levels only account for 0.56 per cent. Our findings highlight the importance of effective and efficient water use at the farm level for wheat production. Specifically, the total water footprint of wheat bread is 937.42m3.ton-1. The green water component was found to be 190.59m3.ton-1 and that of blue water was 745.28 m3.ton-1. Grey water footprint accounted for only 1.55 m3.ton-1. The results indicate that the amount of water used at farm level is the largest contributor to the total water footprint of bread. Given the blue water scarcity situation in South Africa, it is very critical for wheat producers to

  12. Detection of residual organochlorine and organophosphorus pesticides in agricultural soil in Rio Verde region of San Luis Potosi, Mexico.

    PubMed

    Velasco, Antonio; Hernández, Sergio; Ramírez, Martha; Ortíz, Irmene

    2014-01-01

    Organochlorine pesticides were intensively used in Mexico from 1950 until their ban and restriction in 1991. However, the presence of these compounds is commonly reported in many regions of the country. The aim of the present study was to identify and quantify residual organochlorine and organophosphorus pesticides in agricultural soil in Rio Verde region, San Luis Potosi state, which has been identified as possibly polluted by pesticides. Composed samples from 24 zones covering an area of approximately 5,440 ha were analyzed. The most frequently found pesticides were p,p'-DDT followed by ,p,p'-DDE, heptachlor, endosulfan and γ-HCH whose frequency rates were 100, 91, 83 and 54%, respectively. The concentration of p,p'-DDT in the crops grown in these soils was in the following order: chili > maize > tomato > alfalfa. The results obtained in this study show that p,p'-DDT values are lower or similar to those found in other agricultural regions of Mexico. Methyl and ethyl parathion were the most frequent organophosphate pesticide detected in 100% and 62.5% of the samples with average concentrations of 25.20 and 47.48 μg kg(-1), respectively. More research is needed to establish the background levels of pesticides in agricultural soils and their potential ecological and human health effects in this region.

  13. Spatial decision supporting for winter wheat irrigation and fertilizer optimizing in North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Yang, Hao; Dong, Yansheng; Yu, Haiyang

    2014-11-01

    Production management of winter wheat is more complicated than other crops since its growth period is covered all four seasons and growth environment is very complex with frozen injury, drought, insect or disease injury and others. In traditional irrigation and fertilizer management, agricultural technicians or farmers mainly make decision based on phenology, planting experience to carry out artificial fertilizer and irrigation management. For example, wheat needs more nitrogen fertilizer in jointing and booting stage by experience, then when the wheat grow to the two growth periods, the farmer will fertilize to the wheat whether it needs or not. We developed a spatial decision support system for optimizing irrigation and fertilizer measures based on WebGIS, which monitoring winter wheat growth and soil moisture content by combining a crop model, remote sensing data and wireless sensors data, then reasoning professional management schedule from expert knowledge warehouse. This system is developed by ArcIMS, IDL in server-side and JQuery, Google Maps API, ASP.NET in client-side. All computing tasks are run on server-side, such as computing 11 normal vegetable indexes (NDVI/ NDWI/ NDWI2/ NRI/ NSI/ WI/ G_SWIR/ G_SWIR2/ SPSI/ TVDI/ VSWI) and custom VI of remote sensing image by IDL; while real-time building map configuration file and generating thematic map by ArcIMS.

  14. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn.

    PubMed

    Wang, Shiyu; Wu, Wenyong; Liu, Fei; Liao, Renkuan; Hu, Yaqi

    2017-06-01

    The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd wheat grains, their ranking was as follows: Zn < Pb < Cr < Cu < As < Hg wheat grains were 0.25, 0.0045, 5.42 × 10 -4 , 0.009, 4.03 × 10 -4 , 0.11, and 0.054, respectively.

  15. Ceres model application for increasing preparedness to climate variability in agricultural planning

    NASA Astrophysics Data System (ADS)

    Popova, Z.; Kercheva, M.

    2003-04-01

    -to-year variability of yield (CV=5.6-6%). Long-term wheat yields were much more stable (CV=17-23% on Chromic Luvisol) than those of maize. In this case droughts covered 40% of the years when yield losses were 25-30% on the average. Soils of high water holding capacity (as Vertisol) provided additionally 50-150mm-water storage for evapotranspiration and thus reduced frequency of drought under both crops to 20-25% of the years. Agriculture on this soil should be more sustainable (CV=8-8.5% for yield under wheat and CV=14.6% respectively under maize). Reduction of yield during dry vegetation periods was 10-15% under wheat and 22% under maize if compared with productivity under sufficient soil water. Risk assessment of groundwater pollution showed that N-leaching hazards were associated mostly with moderately permeable Chromic Luvisol and high precipitation during the periods of low transpiration rate of both crops. Frequency analyses of seasonal N- losses, proved that half of the wheat and 3% of maize vegetation seasons were susceptible to significant N-leaching (10-45 kg N/ha for "N200" fertilization level) on Chromic Luvisol. Simulated irrigation scenarios did not influence vegetation drainage. Another risky situations occurred in 3% of the years of wet fallow after dry rainfed maize vegetation when up to 30% of fertilization dose might be leached on Chromic Luvisol. Earlier wheat sowing (on the 1st of October) and adjusted fertilization rates and timing to maximum N-uptake under both crops mitigated environmental hazards. Drainage-controlling irrigation scheduling decreased maize fallow state drainage by 30-40 % in half of the years and proved to be economically optimal. Such measure though may tend to increase vulnerability of ecosystem to climate variability by increasing residual soil nitrogen at the end of vegetation.

  16. Response of Russian wheat aphid resistance in wheat and barley to four Diuraphis (Hemiptera: Aphididae) species.

    PubMed

    Puterka, Gary J; Scott, J Nicholson; Brown, Michael J; Hammon, R W

    2013-04-01

    Three Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were known to exist in the United States before the 1986 appearance of the Russian wheat aphid, Diuraphis noxia Kurdjumov. The Russian wheat aphid soon became a significant pest of wheat although other endemic Diuraphis species were known to infest wheat. Wheat and barley entries resistant and susceptible to Russian wheat aphid biotype 2 were evaluated against all four Diuraphis species to determine their host interrelationships. Leaf chlorosis, leaf roll, leaf number, plant height, and infestation levels were assessed 21 d after the plants were infested by aphids in a no-choice caged environment. D. mexicana was unable to survive on wheat by 21 d after infestation and effects on the plant damage variables were negligible. D. frequens survived at low levels on resistant and susceptible plant entries and had a low impact on plant damage and growth. Russian wheat aphid biotype 2 and D. tritici were damaged most wheat and barley lines except the Russian wheat aphid biotype 2-resistant wheat lines containing genes from Dn7, STARS 2414-11, and CI2401; and resistant barley containing genes from STARS 9577B and 9301B. Russian wheat aphid biotype 2 and D. tritici reduced the growth of resistant plants by 25-50% and susceptible entries by 65-75%. Reductions at this level are typical under no-choice studies but resistant cultivars do not have these reductions under field conditions. The Russian wheat aphid biotype 2 resistant wheat lines would be effective in managing both wheat pest species.

  17. Climate change impacts on main agricultural activities in the Oltenia Plain (Romania)

    NASA Astrophysics Data System (ADS)

    Mitrica, B.; Mateescu, E.; Dragota, C.; Busuioc, A.; Grigorescu, I.; Popovici, A.

    2012-04-01

    Understanding the key drivers of agriculture in relation to climate change as well as their interrelationship with land management decisions and policies, one may be able to project future agricultural productions under certain economic, environmental, and social scenarios in order to minimize their negative impacts. The paper is aiming to stress upon the importance of modelling the potential impact of climate change on crop production, particularly under the current conditions when natural resources and food supplies are shortening in many parts of the world. Under the given circumstances, in assessing the impact of climate change on agriculture in the Oltenia Plain, the authors used a simulation model CERES (Crop-Environment Resource Synthesis), developed as a predictive and deterministic model, used for basic and applied research on the effects of climate (thermal regime, water stress) and management (fertilization practices, irrigation) on the growth and yield of different crops. In assessing the impact of climate change on maize and autumn wheat crops two applications of CERES model were used: CERES-Wheat and CERES-Maize overlapping two regional climatic scenarios for 2021-2050 and 2071-2100 periods. These models describe, based on daily data the basic biophysical processes which take place at the soil-plant-atmosphere interface as a response to the variability of different processes such as: photosynthesis, specific phonological phases, evapotranspiration, water dynamics in soil etc. Assessing the impact of climate change on agricultural productivity under the two regional climatic scenarios (2021-2050 and 2071-2100) will reveal their potential consequences on the main agricultural crops in the Oltenia Plain (autumn wheat and maize) depending on the interaction between local climatic conditions, the effect rising CO2 on photosynthesis and the genetical type of crops. Therefore, the autumn wheat benefits from the interaction between the rise of CO2 and air

  18. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    PubMed

    von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2012-01-01

    In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).

  19. Indirect Effect of a Transgenic Wheat on Aphids through Enhanced Powdery Mildew Resistance

    PubMed Central

    von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2012-01-01

    In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids). PMID:23056284

  20. Evaluation and reselection of wheat resistance to Russian wheat aphid biotype 2

    USDA-ARS?s Scientific Manuscript database

    Russian wheat aphid (RWA, Diuraphis noxia, Mordvilko) biotype 2 (RWA2) is virulent to most known RWA resistance genes and severely threatens wheat production in the hard winter wheat area of the US western Great Plains. We determined RWA2 reactions of 386 cultivars from China, 227 advanced breeding...

  1. Effect of fruit and vegetable processing on reduction of synthetic pyrethroid residues.

    PubMed

    Chauhan, Reena; Kumari, Beena; Rana, M K

    2014-01-01

    In this review, we emphasize that the advantages associated with applying pesticides to enhance agricultural productivity must be weighed against the possible health hazards arising from the appearance of toxic pesticide residues in food. First and foremost, pesticides should be handled and applied in compliance with good agricultural practices to minimize environmental or food commodity contamination.In developing countries, good agricultural practices are not fully abided by.When vegetables are produced in such countries, pesticides are applied or prospectively applied at each growth stage of the crop. Hence, contamination of vegetables and other food commodities occur. It is well known that processing of food derived from pesticide treated crop commodities can serve to reduce residues that reach consumers. Food safety can therefore partially be enhanced by employing suitable food processing techniques and appropriate storage periods, even in developing countries. Even common and simple household processing techniques for certain foods acquire significance as means to reduce the intake of harmful pesticide food residues.Pesticide residue levels in post-harvest raw agricultural commodities (RAC) are affected by the storage, handling and the processing steps they pass through, while being prepared for human consumption. The review of cogent literature presented in this article demonstrated differences among the pyrethroid insecticide residues present on or in foods, depending on how the RAC from which they came were processed for consumption. Peeling vegetables or fruit reduced pyrethroid residues the most (60-100% ), and juicing was nearly as effective in reducing residues (70-100% ). The least reduction occurred for foodstuffs that were only washed with tap water (I 0-70% ). Washing RACs with saline water and detergent was more effective(34-60%) in reducing residues than was simple washing under tap water. Freezing is also effective in reducing residue levels and

  2. Combined impact of climate change, cultivar shift, and sowing date on spring wheat phenology in Northern China

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Tao, Fulu; Shen, Yanjun; Qi, Yongqing

    2016-08-01

    Distinct climate changes since the end of the 1980s have led to clear responses in crop phenology in many parts of the world. This study investigated the trends in the dates of spring wheat phenology in relation to mean temperature for different growth stages. It also analyzed the impacts of climate change, cultivar shift, and sowing date adjustments on phenological events/phases of spring wheat in northern China (NC). The results showed that significant changes have occurred in spring wheat phenology in NC due to climate warming in the past 30 years. Specifically, the dates of anthesis and maturity of spring wheat advanced on average by 1.8 and 1.7 day (10 yr)-1. Moreover, while the vegetative growth period (VGP) shortened at most stations, the reproductive growth period (RGP) prolonged slightly at half of the investigated stations. As a result, the whole growth period (WGP) of spring wheat shortened at most stations. The findings from the Agricultural Production Systems Simulator (APSIM)-Wheat model simulated results for six representative stations further suggested that temperature rise generally shortened the spring wheat growth period in NC. Although the warming trend shortened the lengths of VGP, RGP, and WGP, the shift of new cultivars with high accumulated temperature requirements, to some extent, mitigated and adapted to the ongoing climate change. Furthermore, shifts in sowing date exerted significant impacts on the phenology of spring wheat. Generally, an advanced sowing date was able to lower the rise in mean temperature during the different growth stages (i.e., VGP, RGP, and WGP) of spring wheat. As a result, the lengths of the growth stages should be prolonged. Both measures (cultivar shift and sowing date adjustments) could be vital adaptation strategies of spring wheat to a warming climate, with potentially beneficial effects in terms of productivity.

  3. MORTALITY FROM DIABETES MELLITUS (TYPE 2) AND ISCHEMIC HEART DISEASE IN FOUR U.S. WHEAT-PRODUCING STATES: A HYPOTHESIS

    EPA Science Inventory

    In this ecologic study we examined ischemic heart disease (IHD) and diabetes mortality in rural agricultural counties of Minnesota, Montana, North Dakota, and South Dakota, in association with environmental exposure to chlorophenoxy herbicides, using wheat acreage as a surrogate ...

  4. Characterization of some bread wheat genotypes using molecular markers for drought tolerance.

    PubMed

    Ateş Sönmezoğlu, Özlem; Terzi, Begüm

    2018-02-01

    Because of its wide geographical adaptation and importance in human nutrition, wheat is one of the most important crops in the world. However, wheat yield has reduced due to drought stress posing threat to sustainability and world food security in agricultural production. The first stage of drought tolerant variety breeding occurs on the molecular and biochemical characterization and classification of wheat genotypes. The aim of the present study is characterization of widely grown bread wheat cultivars and breeding lines for drought tolerance so as to be adapted to different regions in Turkey. The genotypes were screened with molecular markers for the presence of QTLs mapped to different chromosomes. Results of the molecular studies identified and detected 15 polymorphic SSR markers which gave the clearest PCR bands among the control genotypes. At the end of the research, bread wheat genotypes which were classified for tolerance or sensitivity to drought and the genetic similarity within control varieties were determined by molecular markers. According to SSR based dendrogram, two main groups were obtained for drought tolerance. At end of the molecular screening with SSR primers, genetic similarity coefficients were obtained that ranged from 0.14 to 0.71. The ones numbered 8 and 11 were the closest genotypes to drought tolerant cultivar Gerek 79 and the furthest genotypes from this cultivar were number 16 and to drought sensitive cultivar Sultan 95. The genotypes as drought tolerance due to their SSR markers scores are expected to provide useful information for drought related molecular breeding studies.

  5. Material Utilization of Organic Residues.

    PubMed

    Peinemann, Jan Christoph; Pleissner, Daniel

    2018-02-01

    Each year, 1.3 billion tons of food waste is generated globally. This waste traces back to industrial and agricultural producers, bakeries, restaurants, and households. Furthermore, lignocellulosic materials, including grass clippings, leaves, bushes, shrubs, and woods, appear in large amounts. Depending on the region, organic waste is either composted, burned directly, or converted into biogas. All of the options set aside the fact that organic residues are valuable resources containing carbohydrates, lipids, proteins, and phosphorus. Firstly, it is clear that avoidance of organic residues is imperative. However, the residues that accumulate nonetheless should be utilized by material means before energy production is targeted. This review presents different processes for the microbial utilization of organic residues towards compounds that are of great importance for the bioeconomy. The focus thereby is on the challenges coming along with downstream processing when the utilization of organic residues is carried out decentralized. Furthermore, a future process for producing lactic acid from organic residues is sketched.

  6. Population density and distribution of wheat bugs infesting durum wheat in Sardinia, Italy.

    PubMed

    Salis, Luigi; Goula, Marta; Izquierdo, Jordi; Gordún, Elena

    2013-01-01

    Wheat is a very important crop in Italy, and is infested by wheat bugs belonging to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Many wheat bug infestations have been reported in the north, south, and center of Italy, both in the past as well as recently. The present study was carried out in Sardinia, Italy, during two years (2007 and 2008). The objective of this study was to determine the species and distribution of wheat bugs in durum wheat fields in Sardinia, and to estimate their population density in order to know the incidence of the pest on the island. Sampling took place twice a year (May and June) in three zones, representative of durum wheat cropping in the island. Four species of wheat bugs were found; the predominant species was Eurygaster austriaca (Schrank), followed by Aelia germari (Kuster), Eurygaster maura L., and Aelia acuminata L. The average density of wheat bugs was low (1.1 individuals/m²), but in certain areas it was above the damage threshold (4 individuals/m²). For this reason, the conclusion of the study is that this pest should be monitored in order to control outbreaks and prevent their further spread.

  7. Population Density and Distribution of Wheat Bugs Infesting Durum Wheat in Sardinia, Italy

    PubMed Central

    Salis, Luigi; Goula, Marta; Izquierdo, Jordi; Gordún, Elena

    2013-01-01

    Wheat is a very important crop in Italy, and is infested by wheat bugs belonging to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Many wheat bug infestations have been reported in the north, south, and center of Italy, both in the past as well as recently. The present study was carried out in Sardinia, Italy, during two years (2007 and 2008). The objective of this study was to determine the species and distribution of wheat bugs in durum wheat fields in Sardinia, and to estimate their population density in order to know the incidence of the pest on the island. Sampling took place twice a year (May and June) in three zones, representative of durum wheat cropping in the island. Four species of wheat bugs were found; the predominant species was Eurygaster austriaca (Schrank), followed by Aelia germari (Kuster), Eurygaster maura L., and Aelia acuminata L. The average density of wheat bugs was low (1.1 individuals/m2), but in certain areas it was above the damage threshold (4 individuals/m2). For this reason, the conclusion of the study is that this pest should be monitored in order to control outbreaks and prevent their further spread. PMID:23906035

  8. Effect of N fertilization and tillage on nitrous oxide (N2O) loss from soil under wheat production

    USGS Publications Warehouse

    Bansal, Sheel; Aberle, Ezra; Teboh, Jasper; Yuja, Szilvia; Liebig, Mark; Meier, Jacob; Boyd, Alec

    2017-01-01

    Nitrous oxide (N2O-N) is one of the most important gases in the atmosphere because it is 300 times more powerful than carbon dioxide in its ability to trap heat, and is a key chemical agent of ozone depletion. The amount of N2O-N emitted from agricultural fields can be quite high, depending on the complex interplay between N fertility and residue management, plant N uptake, microbial processes, environmental conditions, and wet-up and dry-down events. High N fertilizer rates generally increase yields, but may disproportionately increase N2O-N losses due to prolonged residence time in soil when not used by the crop, and incomplete decomposition of excess N-compounds by microbes. Tillage could also affect N2O-N losses through changes in soil moisture content. Though nitrogen monoxide (NO) is one form of N lost from the soil, especially under conventional tillage, this study objective was to quantify N2O loss in wheat fields from applied urea on soil under no-till (NT) versus incorporated urea under conventional till (CT).

  9. Fuel gas production from animal and agricultural residues and biomass. Quarterly coordination meeting, December 11-12, 1978, Denver, Colorado. Second Quarterly progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, D L; Ashare, E; Wentworth, R L

    1979-01-05

    The tenth quarterly coordination meeting of the methane production group of the Fuels from Biomass Systems Branch, US Department of Energy was held at Denver, Colorado, December 11-12, 1978. Progress reports were presented by the contractors and a site visit was made to the Solar Energy Research Institute, Golden, Colorado. A meeting agenda, a list of attendees, and progress are presented. Report titles are: pipeline fuel gas from an environmental feedlot; operation of a 50,000 gallon anaerobic digester at the Monroe State Dairy Farm near Monroe, Washington; anaerobic fermentation of livestock and crop residues; anaerobic fermentation of agricultural residues -more » potential for improvement and implementation; heat treatment of organics for increasing anaerobic biodegradability; and biological conversion of biomass to methane. (DC)« less

  10. Simulating dryland water availability and spring wheat production under various management practices in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Agricultural system models are useful tools to synthesize field experimental data and to extrapolate the results to longer periods of weather and other cropping systems. The objectives of this study were: 1) to quantify the effects of planting date, seeding rate, and tillage on spring wheat producti...

  11. Cassava; African perspective on space agriculture

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Njemanze, Philip; Nweke, Felix; Space Agriculture Task Force, J.; Katayama, Naomi; Yamashita, Masamichi

    Looking on African perspective in space agriculture may contribute to increase diversity, and enforce robustness for advanced life support capability. Cassava, Manihot esculentaand, is one of major crop in Africa, and could be a candidate of space food materials. Since resource is limited for space agriculture in many aspects, crop yield should be high in efficiency, and robust as well. The efficiency is measured by farming space and time. Harvest yield of cassava is about 41 MJ/ m2 (70 ton/ha) after 11 months of farming. Among rice, wheat, potato, and sweet potato, cassava is ranked to the first place (40 m2 ) in terms of farming area required to supply energy of 5 MJ/day, which is recommended for one person. Production of cassava could be made under poor condition, such as acidic soil, shortage of fertilizer, draught. Laterite, similar to Martian regolith. Propagation made by stem cutting is an advantage of cassava in space agriculture avoiding entomophilous or anemophilous process to pollinate. Feature of crop storage capability is additional factor that determines the efficiency in the whole process of agriculture. Cassava root tuber can be left in soil until its consumption. Cassava might be an African contribution to space agriculture.

  12. Mineral Nutritional Yield and Nutrient Density of Locally Adapted Wheat Genotypes under Organic Production

    PubMed Central

    Moreira-Ascarrunz, Sergio Daniel; Larsson, Hans; Prieto-Linde, Maria Luisa; Johansson, Eva

    2016-01-01

    The aim of the present investigation was to investigate the nutritional yield, nutrient density, stability, and adaptability of organically produced wheat for sustainable and nutritional high value food production. This study evaluated the nutritional yield of four minerals (Fe, Zn, Cu, and Mg) in 19 wheat genotypes, selected as being locally adapted under organic agriculture conditions. The new metric of nutritional yield was calculated for each genotype and they were evaluated for stability using the Additive Main effects and Multiplicative Interaction (AMMI) stability analysis and for genotypic value, stability, and adaptability using the Best Linear Unbiased Prediction (BLUP procedure). The results indicated that there were genotypes suitable for production under organic agriculture conditions with satisfactory yields (>4000 kg·ha−1). Furthermore, these genotypes showed high nutritional yield and nutrient density for the four minerals studied. Additionally, since these genotypes were stable and adaptable over three environmentally different years, they were designated “balanced genotypes” for the four minerals and for the aforementioned characteristics. Selection and breeding of such “balanced genotypes” may offer an alternative to producing nutritious food under low-input agriculture conditions. Furthermore, the type of evaluation presented here may also be of interest for implementation in research conducted in developing countries, following the objectives of producing enough nutrients for a growing population. PMID:28231184

  13. The impact of sea surface temperature on winter wheat in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Capa-Morocho, Mirian; Rodríguez-Fonseca, Belen; Ruiz-Ramos, Margarita

    2016-04-01

    Climate variability is the main driver of changes in crops yield, especially for rainfed production systems. This is also the case of Iberian Peninsula (IP) (Capa-Morocho et al., 2014), where wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. Previous works have shown that large-scale oceanic patterns have a significant impact on precipitation over IP (Rodriguez-Fonseca and de Castro, 2002; Rodríguez-Fonseca et al., 2006). The existence of some predictability of precipitation has encouraged us to analyze the possible predictability of the wheat yield in the IP using sea surface temperature (SST) anomalies as predictor. For this purpose, a crop model site specific calibrated for the Northeast of IP and several reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that wheat yield anomalies are associated with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) SST. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures and precipitation experienced by the crop during flowering and grain filling. Results from this study could have important implications for predictability issues in agricultural planning and management, such as insurance coverage, changes in sowing dates and choice of species and varieties.

  14. Growing wheat in Biosphere 2 under elevated CO2: observations and modeling

    NASA Technical Reports Server (NTRS)

    Tubiello, F. N.; Mahato, T.; Morton, T.; Druitt, J. W.; Volk, T.; Marino, B. D.

    1999-01-01

    Spring wheat (Triticum aestivum L., cv. Yecora Rojo) was grown in the intensive agricultural biome (IAB) of Biosphere 2 during the l995-l996 winter/spring season. Environmental conditions were characterized by a day/night temperature regime of 27/17 degrees C, relative humidity (RH) levels around 45%, mean atmospheric CO2 concentration of 450 ppmv, and natural light conditions with mean intensities about half of outside levels. Weekly samples of above-ground plant matter were collected throughout the growing season and phenological events recorded. A computer model, CERES-Wheat, previously tested under both field and controlled conditions, was used to simulate the observed crop growth and to help in data analysis. We found that CERES-Wheat simulated the data collected at Biosphere 2 to within 10% of observed, thus suggesting that wheat growth inside the IAB was comparable to that documented in other environments. The model predicts phenological stages and final dry matter (DM) production within l0% of the observed data. Measured DM production rates, normalized for light absorbed by the crop. suggested photosynthetic efficiencies intermediate between those observed under optimal field conditions and those recorded in NASA-Controlled Ecological Life-Support Systems (CELSS). We suggest that such a difference can be explained primarily in terms of low light levels inside the IAB, with additional effects due to elevated CO2 concentrations and diffuse light fractions.

  15. 40 CFR 180.420 - Fluridone; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (free and bound) of the herbicide fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl)phenyl]-4(1H)-5-[3... established for residues of the herbicide fluridone in the following raw agricultural commodities: Commodity... following irrigated crops and crop groupings for residues of the herbicide fluridone resulting from use of...

  16. Gas-liquid chromatographic determination of resmethrin in corn, cornmeal, flour, and wheat.

    PubMed

    Simonaitis, R A; Cail, R S

    1975-09-01

    A gas-liquid chromatographic (GLC) method was developed for the determination of residues of resmethrin ((5-benzyl-3-furyl)methyl cis-trans-(+/-)-2,2-dimethyl-3-(2-methylpropenyl)-cyclopropanecarboxylate) in corn, cornmeal, flour, and wheat. The commodity, fortified with resmethrin, was extracted by tumbling with pentane and transferred to acetonitrile, the fat was partitioned off, and the sample was chromatographed with 3% ethyl acetate in pentane on Florisil containing 0.5% water. The resmethrin residue was determined by GLC with a flame ionization detector. The results were compared with known standards that had undergone the same cleanup procedures. The method was sensitive to concentrations of resmethrin to 0.2 ppm, recoveries averaged 83%, and reproducibility was good.

  17. The xylanase inhibitor TAXI-III counteracts the necrotic activity of a Fusarium graminearum xylanase in vitro and in durum wheat transgenic plants.

    PubMed

    Moscetti, Ilaria; Faoro, Franco; Moro, Stefano; Sabbadin, Davide; Sella, Luca; Favaron, Francesco; D'Ovidio, Renato

    2015-08-01

    The xylanase inhibitor TAXI-III has been proven to delay Fusarium head blight (FHB) symptoms caused by Fusarium graminearum in transgenic durum wheat plants. To elucidate the molecular mechanism underlying the capacity of the TAXI-III transgenic plants to limit FHB symptoms, we treated wheat tissues with the xylanase FGSG_03624, hitherto shown to induce cell death and hydrogen peroxide accumulation. Experiments performed on lemmas of flowering wheat spikes and wheat cell suspension cultures demonstrated that pre-incubation of xylanase FGSG_03624 with TAXI-III significantly decreased cell death. Most interestingly, a reduced cell death relative to control non-transgenic plants was also obtained by treating, with the same xylanase, lemmas of TAXI-III transgenic plants. Molecular modelling studies predicted an interaction between the TAXI-III residue H395 and residues E122 and E214 belonging to the active site of xylanase FGSG_03624. These results provide, for the first time, clear indications in vitro and in planta that a xylanase inhibitor can prevent the necrotic activity of a xylanase, and suggest that the reduced FHB symptoms on transgenic TAXI-III plants may be a result not only of the direct inhibition of xylanase activity secreted by the pathogen, but also of the capacity of TAXI-III to avoid host cell death. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  18. Variation in Susceptibility to Wheat dwarf virus among Wild and Domesticated Wheat

    PubMed Central

    Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna

    2015-01-01

    We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat. PMID

  19. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community--a field study.

    PubMed

    Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas

    2011-01-01

    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the

  20. Space weather influence on the agriculture technology and wheat prices in the medieval England (1259-1703) through cosmic ray/solar activity cycle variations

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Pustil'Nik, L. A.; Yom Din, G.

    2003-04-01

    The database of Professor Rogers (1887), which includes wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray intensity variations. The main object of our statistical analysis is investigation of bursts of prices. Our study shows that bursts and troughs of wheat prices take place at extreme states (maximums or minimums) of solar activity cycles. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by cosmic ray intensity solar cycle variations, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. The medians of both samples have the values of 11.00 and 10.7 years; standard deviations are 1.44 and 1.53 years for prices and for solar activity, respectively. The hypothesis that the frequency distributions are the same for both of the samples have significance level >95%. In the next step we analyzed direct links between wheat prices and cosmic ray cycle variations in the 17th Century, for which both wheat prices and cosmic ray intensity (derived from Be-10 isotope data) are available. We show that for all seven solar activity minimums (cosmic ray intensity maximums) the observed prices were higher than prices for the seven intervals of maximal solar activity (100% sign correlation). This result, combined with the conclusion of similarity of statistical properties of the price and solar activity extremes can be considered as direct evidence of a causal connection between wheat prices bursts and solar activity/cosmic ray intensity extremes.

  1. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    PubMed

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Nanostructured silicon nitride from wheat and rice husks

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Wollmershauser, J. A.; Feng, C. R.

    2016-04-01

    Nanoparticles, submicron-diameter tubes, and rods of Si3N4 were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si3N4 with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si3N4. In a two-step process, where pure SiC was produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si3N4 combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.

  3. Pesticide residue quantification analysis by hyperspectral imaging sensors

    NASA Astrophysics Data System (ADS)

    Liao, Yuan-Hsun; Lo, Wei-Sheng; Guo, Horng-Yuh; Kao, Ching-Hua; Chou, Tau-Meu; Chen, Junne-Jih; Wen, Chia-Hsien; Lin, Chinsu; Chen, Hsian-Min; Ouyang, Yen-Chieh; Wu, Chao-Cheng; Chen, Shih-Yu; Chang, Chein-I.

    2015-05-01

    Pesticide residue detection in agriculture crops is a challenging issue and is even more difficult to quantify pesticide residue resident in agriculture produces and fruits. This paper conducts a series of base-line experiments which are particularly designed for three specific pesticides commonly used in Taiwan. The materials used for experiments are single leaves of vegetable produces which are being contaminated by various amount of concentration of pesticides. Two sensors are used to collected data. One is Fourier Transform Infrared (FTIR) spectroscopy. The other is a hyperspectral sensor, called Geophysical and Environmental Research (GER) 2600 spectroradiometer which is a batteryoperated field portable spectroradiometer with full real-time data acquisition from 350 nm to 2500 nm. In order to quantify data with different levels of pesticide residue concentration, several measures for spectral discrimination are developed. Mores specifically, new measures for calculating relative power between two sensors are particularly designed to be able to evaluate effectiveness of each of sensors in quantifying the used pesticide residues. The experimental results show that the GER is a better sensor than FTIR in the sense of pesticide residue quantification.

  4. Wheat Ear Detection in Plots by Segmenting Mobile Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    Velumani, K.; Oude Elberink, S.; Yang, M. Y.; Baret, F.

    2017-09-01

    The use of Light Detection and Ranging (LiDAR) to study agricultural crop traits is becoming popular. Wheat plant traits such as crop height, biomass fractions and plant population are of interest to agronomists and biologists for the assessment of a genotype's performance in the environment. Among these performance indicators, plant population in the field is still widely estimated through manual counting which is a tedious and labour intensive task. The goal of this study is to explore the suitability of LiDAR observations to automate the counting process by the individual detection of wheat ears in the agricultural field. However, this is a challenging task owing to the random cropping pattern and noisy returns present in the point cloud. The goal is achieved by first segmenting the 3D point cloud followed by the classification of segments into ears and non-ears. In this study, two segmentation techniques: a) voxel-based segmentation and b) mean shift segmentation were adapted to suit the segmentation of plant point clouds. An ear classification strategy was developed to distinguish the ear segments from leaves and stems. Finally, the ears extracted by the automatic methods were compared with reference ear segments prepared by manual segmentation. Both the methods had an average detection rate of 85 %, aggregated over different flowering stages. The voxel-based approach performed well for late flowering stages (wheat crops aged 210 days or more) with a mean percentage accuracy of 94 % and takes less than 20 seconds to process 50,000 points with an average point density of 16  points/cm2. Meanwhile, the mean shift approach showed comparatively better counting accuracy of 95% for early flowering stage (crops aged below 225 days) and takes approximately 4 minutes to process 50,000 points.

  5. Effect of manure under different nitrogen application rates on winter wheat production and soil fertility in dryland

    NASA Astrophysics Data System (ADS)

    Zhang, H. Q.; Yu, X. Y.; Zhai, B. N.; Jin, Z. Y.; Wang, Z. H.

    2016-08-01

    Exploring an effective fertilization practice is crucial for achieving a sustainable dryland winter wheat cropping system. Following a split-plot design, this study was conducted to investigate the combined effect of manure (-M or +M; main plot) and various rates of nitrogen (N) fertilizer (0, 75, 150, 225, and 300 kg N ha-1; sub plot) on grain yield, water and N use efficiencies of winter wheat, and soil nutrients. The results showed that the treatments with manure improved the grain yield by 8%, and WUE by 10% relative to that without manure throughout the study years. The highest winter wheat yield and WUE were both recorded in the M+N225 treatment, which were not significantly different from those for M+N75 and M+N150 treatment. In contrast, high levels of N fertilizer (> 150 kg N ha-1) combined with manure not only caused a reduction in the N use efficiency (NUE), but it also caused an increase in the soil residual nitrate-N (from 43.7 to 188.9 kg ha-1) relative to without manure. After three years of continuous cropping, the treatment combining manure with 150 kg N ha-1 fertilizer had the highest SOM, available P and available K, which was 24%, 379% and 102% higher than that for unfertilized treatment (CK), and 10%, 267%, and 55% higher than that for without manure, respectively. Thus, the combination of manure (17.5 t ha-1 poultry or 30 t ha-1 pig manure) with 75-150 kg N ha-1 N fertilizer is recommended for improving winter wheat yield, water and N use efficiencies, and reducing soil nitrate-N residue as well.

  6. Binary mixtures of waxy wheat and conventional wheat as measured by nir reflectance

    USDA-ARS?s Scientific Manuscript database

    Waxy wheat contains very low concentration (generally <2%) of amylose in endosperm starch, in contrast to conventional wheat whose starch is typically 20% amylose, with the balance being the branched macromolecule, amylopectin. With the release of a commercial hard winter waxy wheat cultivar in the ...

  7. An endogenous reference gene of common and durum wheat for detection of genetically modified wheat.

    PubMed

    Imai, Shinjiro; Tanaka, Keiko; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Matsuoka, Yasuyuki; Arami, Shin-Ichiro; Sato, Megumi; Haraguchi, Hiroyuki; Kurimoto, Youichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2012-01-01

    To develop a method for detecting GM wheat that may be marketed in the near future, we evaluated the proline-rich protein (PRP) gene as an endogenous reference gene of common wheat (Triticum aestivum L.) and durum wheat (Triticum durum L.). Real-time PCR analysis showed that only DNA of wheat was amplified and no amplification product was observed for phylogenetically related cereals, indicating that the PRP detection system is specific to wheat. The intensities of the amplification products and Ct values among all wheat samples used in this study were very similar, with no nonspecific or additional amplification, indicating that the PRP detection system has high sequence stability. The limit of detection was estimated at 5 haploid genome copies. The PRP region was demonstrated to be present as a single or double copy in the common wheat haploid genome. Furthermore, the PRP detection system showed a highly linear relationship between Ct values and the amount of plasmid DNA, indicating that an appropriate calibration curve could be constructed for quantitative detection of GM wheat. All these results indicate that the PRP gene is a suitable endogenous reference gene for PCR-based detection of GM wheat.

  8. Effect of differently pelletized digestate on the plant growth of spring wheat

    NASA Astrophysics Data System (ADS)

    Dietrich, Nils; Knoop, Christine; Raab, Thomas

    2017-04-01

    In Germany, biowaste is used in more than 100 biogas plants and has increasing potential as a fermentation substrate. To optimise waste cycle management organic digestates should be redistributed and innovative products for soil amendment of agricultural areas could be developed. The BMBF-funded VeNGA project seeks to find answers on how to improve the properties of soil amendments produced from fermentation residues. Here, we report findings from our study that focuses on plant growth and soil development. Within a three-month rhizotron experiment, the influence of differently prepared fermentation residues on the root development of summer wheat was investigated. The four variants of the prepared digestate (rolled pellet, pressed pellet, shredded, loose) were tested under constant conditions in the greenhouse on two soils with different textures (sandy and loamy-sand). All fermentation residues originated from the same batch and were composted before the preparation to ensure adequate hygienisation. Depending on preparation type and soil substrate significant differences in root growth and root development have been observed. Plant growth was most intense in the rhizotron experiment with the loose digestate, indicating high nutrient availability due to the large surface area of the organic matter. Plant growth in the substrate with the rolled and pressed pellets was less pronounced, indicating a more persistent stability of the pellets. In rhizotrons applied with rolled and pressed pellets root growth into the mineral fabric was significantly lower in sandy substrate than in the loamy-sand. However, in the sandy substrate root growth within the rolled pellets was more intense than in the substrate with the pressed pellets. Obviously, the different production techniques of the pellets seem to have an influence on the rooting of the pellets and facilitate the long term stability of soil organic carbon. Furthermore, the comparison of the two different textures

  9. The status of parametric studies in radar agriculture

    NASA Technical Reports Server (NTRS)

    Morain, S. A.

    1972-01-01

    Outlined is an information system based on the use of remote sensor data and the design, testing, and implementation of interpretation keys for agriculture. The task of crop identification from radar imagery emphasizes dichotomous keys and the effects of frequency, angular and other microwave dependencies of crops for use in discrimination. A mosaic is formulated from imagery and used to study acres in wheat for spread of circular irrigation, spread of crops, and other phenomena.

  10. Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields.

    PubMed

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators.

  11. Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields

    PubMed Central

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F.; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators. PMID:23382979

  12. [Wheat anaphylaxis or wheat-dependent exercise-induced anaphylaxis caused by use of a soap product which contains hydrolyzed wheat proteins. -a report of 12 cases-].

    PubMed

    Sugiyama, Akiko; Kishikawa, Reiko; Nishie, Haruko; Takeuchi, Satoshi; Shimoda, Terufumi; Iwanaga, Tomoaki; Nishima, Sankei; Furue, Masutaka

    2011-11-01

    Recently, it has become a social problem that hydrolyzed wheat protein in facial soap can induce wheat allergy including wheat-dependent exercise-induced anaphylaxis (WDEIA). We described the clinical characteristics of the patients related. We collected 12 cases who had had a medical examination from January to October in 2010. All the patients were female and mean age was 36.0± 9.9 years. All of them had had no prior symptoms history of wheat allergy, they gradually developed wheat anaphylaxis or WDEIA in an average of 2 years after they started to use a soap product in question which contains hydrolyzed wheat proteins. Most patients suffered immediate contact allergic reactions after or at the time of washing their face with the soap product. 10 of 12 patients showed a low level of IgE to CAP-recombinant ω-5-gliadin. Episodes of anaphylaxis were prevented by avoiding both intake of wheat-containing foods and usage of the soap product. We concluded that their wheat anaphylaxis is likely to be caused by epicutaneous sensitization of the hydrolyzed wheat proteins in the soap product. It was important that physicians should know the possibility of sensitization from non-dietary antigen.

  13. Reinforcement Effect of Alkali-Hydrolyzed Wheat Gluten and Shear-Degraded Wheat Starch in Carboxylated Styrene-Butadiene Composites

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  14. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid (RWA) Diuraphis noxia (Mordvilko) is a major pest of winter wheat and barley in the United States. RWA induces stress to the wheat crop by damaging plant foliage, lowering the greenness of plants, and affecting productivity. Multispectral remote sensing is effective at dete...

  15. Organic and inorganic amendments affect soil concentration and accumulation of cadmium and lead in wheat in calcareous alkaline soils

    USDA-ARS?s Scientific Manuscript database

    Irrigation with untreated effluent in periurban agriculture could result in accumulation and bioconcentrations of cadmium (Cd) and lead (Pb). Different amendments were used to investigate their effect on availability, concentration, and uptake of metals by wheat in texturally different soils. Crop w...

  16. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat.

    PubMed

    Oyiga, Benedict C; Sharma, Ram C; Baum, Michael; Ogbonnaya, Francis C; Léon, Jens; Ballvora, Agim

    2018-05-01

    The increasing salinization of agricultural lands is a threat to global wheat production. Understanding of the mechanistic basis of salt tolerance (ST) is essential for developing breeding and selection strategies that would allow for increased wheat production under saline conditions to meet the increasing global demand. We used a set that consists of 150 internationally derived winter and facultative wheat cultivars genotyped with a 90K SNP chip and phenotyped for ST across three growth stages and for ionic (leaf K + and Na +  contents) traits to dissect the genetic architecture regulating ST in wheat. Genome-wide association mapping revealed 187 Single Nucleotide Polymorphism (SNPs) (R 2  = 3.00-30.67%), representing 37 quantitative trait loci (QTL), significantly associated with the ST traits. Of these, four QTL on 1BS, 2AL, 2BS and 3AL were associated with ST across the three growth stages and with the ionic traits. Novel QTL were also detected on 1BS and 1DL. Candidate genes linked to these polymorphisms were uncovered, and expression analyses were performed and validated on them under saline and non-saline conditions using transcriptomics and qRT-PCR data. Expressed sequence comparisons in contrasting ST wheat genotypes identified several non-synonymous/missense mutation sites that are contributory to the ST trait variations, indicating the biological relevance of these polymorphisms that can be exploited in breeding for ST in wheat. © 2017 The Authors. Plant, Cell & Environment published by JohnWiley & Sons Ltd.

  17. Provisions of the Food Security Act of 1985. Agricultural Information Bulletin Number 498.

    ERIC Educational Resources Information Center

    Glaser, Lewrene K.

    This report summarizes the 18 titles of the Food Security Act of 1985 and compares it with previous legislation where applicable. It describes the act's provisions for dairy; wool and mohair; wheat; feed grains; cotton; rice; peanuts; soybeans; sugar; other general commodity provisions; trade; conservation; credit; agricultural research,…

  18. Quantitative Research on the Relationship between Yield of Winter Wheat and Agroclimatological Resources—the Case Study from Yanzhou District, Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Yan, Maoling; Liu, Pingzeng; Zhang, Chao; Zheng, Yong; Wang, Xizhi; Zhang, Yan; Chen, Weijie; Zhao, Rui

    2018-01-01

    Agroclimatological resources provide material and energy for agricultural production. This study is aimed to analyze the impact of selected climate factors change on wheat yield over the different growth period applied quantitatively method, by comparing two different time division modules of wheat growth cycle- monthly empirical-statistical multiple regression models ( From October to June of next year ) and growth stage empirical-statistical multiple regression models (Including sowing stage, seedling stage, tillering stage, overwintering period, regreening period, jointing stage, heading stage, maturity stage) analysis of relationship between agrometeorological data and growth stage records and winter wheat production in Yanzhou, Shandong Province of China. Correlation analysis(CA)was done for 35 years (from 1981 to 2015) between crop yield and corresponding weather parameters including daily mean temperature, sunshine duration, and average daily precipitation selected from 18 different meteorological factors. The results shows that the greatest impact on the winter wheat yield is the precipitation overwintering period in this area, each 1mm increase in daily mean rainfall was associated with 201.64 kg/hm2 lowered output. Moreover, the temperature and sunshine duration in heading period and maturity stage also exert significant influence on the output, every 1°C increase in daily mean temperature was associated with 199.85kg/hm2 adding output, every 1h increase in mean sunshine duration was associated with 130.68kg/hm2 reduced output. Comparing with the results of experiment which using months as step sizes and using farming as step sizes was in better agreement with the fluctuation in meteorological yield, offered a better explanation on the growth mechanism of wheat. Eventually the results indicated that 3 factors affects the yield during different growing periods of wheat in different extent and provided more specific reference to guide the agricultural

  19. Combined use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale.

    PubMed

    Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen

    2017-01-01

    Timely and accurate information on crop yield is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to enable temporal resolution of an image every 3-5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat assessment at regional scale. For the former, we adapt a previously developed approach for Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m resolution that allows automatic mapping of winter crops taking into account knowledge on crop calendar and without ground truth data. For the latter, we use a generalized winter wheat yield model that is based on NDVI-peak estimation and MODIS data, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A has a positive impact both for winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times comparing to the single satellite usage.

  20. Biolistic Transformation of Wheat.

    PubMed

    Tassy, Caroline; Barret, Pierre

    2017-01-01

    The wheat genome encodes some 100,000 genes. To understand how the expression of these genes is regulated it will be necessary to carry out many genetic transformation experiments. Robust protocols that allow scientists to transform a wide range of wheat genotypes are therefore required. In this chapter, we describe a protocol for biolistic transformation of wheat that uses immature embryos and small quantities of DNA cassettes. An original method for DNA cassette purification is also described. This protocol can be used to transform a wide range of wheat genotypes and other related species.

  1. Thermochemical pretreatment of lignocellulose residues: assessment of the effect on operational conditions and their interactions on the characteristics of leachable fraction.

    PubMed

    Vásquez, Denisse; Contreras, Elsa; Palma, Carolyn; Carvajal, Andrea

    2015-01-01

    Annually, large amounts of agricultural residues are produced in Chile, which can be turned into a good opportunity to diversify the energy matrix. These residues have a slow hydrolysis stage during anaerobic digestion; therefore, the application of a pretreatment seems to be an alternative to improve the process. This work focused on applying a thermochemical pretreatment with NaOH on two lignocellulosic residues. The experiments were performed according to a 2(4) factorial design. The factors studied in a 2(4) factorial design were: temperature (60 and 120 °C), pretreatment time (10 and 30 minutes), NaOH dose (2 and 4%), and residue size (<1 and 1-3 mm for wheat straw; 1-5 and 5-10 mm for corn stover). The analyzed response variables were the solubilization of organic matter, and the biodegradability of the lignocellulose hydrolysate. The statistical analysis of the data allowed the identification of the experimental conditions that maximized solubilization of organic matter and biodegradability. The main results showed that more aggressive experimental conditions could increase the breaking down of the structure; in addition, the time of pretreatment was not significant. Conversely, the less aggressive experimental conditions, regarding regent dosage and downsizing, favored the release of biodegradable organic matter. The main conclusion of this study was the identification of the operational conditions of the thermochemical pretreatment that promote maximum biogas production, which was caused due to the solubilization of a large amount of organic matter, but not because of the increase in biodegradability of the released organic matter.

  2. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting... such wheat, other than moisture, remain unaltered. Cracked wheat contains not more than 15 percent of...

  3. DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications

    PubMed Central

    Pérez, Angela L.; Anderson, Kim A.

    2014-01-01

    Cadmium is a common impurity in phosphatic fertilizers and may contribute to soil Cd accumulation. Changes in total and bioavailable Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input was investigated. Three year field studies were conducted using three dose levels of cadmium-rich, commercial, phosphate fertilizers applied at four agricultural sites. Labile Cd concentrations, measured using the passive sampling device Diffusive Gradients in Thin Films (CdDGT), increased with increasing fertilizer application rates. Cd also accumulated in the edible portion of wheat and potato crops grown at the sites, and showed strong positive dose response with fertilizer treatment. Regression models were calculated for each site, year, and for individual crops. Model comparisons indicated that soil physical and chemical parameters in addition to soil Cd fractions, were important determinants of CdDGT. Significant factors contributing to CdDGT concentrations were Cd from fertilizer input (Cdfertilizer), pH, cation exchange capacity (CEC), and total recoverable Cd (Cdtotal). Important factors used to determine Cd concentrations in wheat grain (Cdwheat) and in potato (Cdpotato) were as follows: Cdwheat:Cdfertilizer, and CdDGT; and Cdpotato:Cdfertilizer, CdDGT, % O.M. The effective concentration, CE, calculated from DGT did not correlate well with Cdwheat or with Cdpotato. Direct measurements of CdDGT correlated better with Cd found in edible plant tissue. The modeling approach presented in this study helps to estimate Cd accumulation in plant tissue over multiple years and in distinct agricultural soil systems. PMID:19552942

  4. Crop residue harvest impacts wind erodibility and simulated loss in the Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Crop residue removal can affect the susceptibility of soil loss on wind erosion-prone soils such as those of the central Great Plains, US. Six on-farm trials conducted from 2011 to 2013 in Kansas determined the effects of winter wheat (Triticum aestivum L.), corn (Zea mays L.), and grain sorghum (So...

  5. Modeling the Effects of Pelleting on the Logistics of Distillers Grains Shipping

    USDA-ARS?s Scientific Manuscript database

    The energy security needs of energy importing nations continue to escalate. It is clear that biofuels can help meet some of the increasing need for energy. Theoretically, these can be produced from a variety of biological materials, including agricultural residues (such as corn stover and wheat st...

  6. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils.

    PubMed

    Cambier, Philippe; Pot, Valérie; Mercier, Vincent; Michaud, Aurélia; Benoit, Pierre; Revallier, Agathe; Houot, Sabine

    2014-11-15

    Recycling composted organic residues in agriculture can reduce the need of mineral fertilizers and improve the physicochemical and biological properties of cultivated soils. However, some trace elements may accumulate in soils following repeated applications and impact other compartments of the agrosystems. This study aims at evaluating the long-term impact of such practices on the composition of soil leaching water, especially on trace metal concentrations. The field experiment QualiAgro started in 1998 on typical loess Luvisol of the Paris Basin, with a maize-wheat crop succession and five modalities: spreading of three different urban waste composts, farmyard manure (FYM), and no organic amendment (CTR). Inputs of trace metals have been close to regulatory limits, but supplies of organic matter and nitrogen overpassed common practices. Soil solutions were collected from wick lysimeters at 45 and 100 cm in one plot for each modality, during two drainage periods after the last spreading. Despite wide temporal variations, a significant effect of treatments on major solutes appears at 45 cm: DOC, Ca, K, Mg, Na, nitrate, sulphate and chloride concentrations were higher in most amended plots compared to CTR. Cu concentrations were also significantly higher in leachates of amended plots compared to CTR, whereas no clear effect emerged for Zn. The influence of amendments on solute concentrations appeared weaker at 1 m than at 45 cm, but still significant and positive for major anions and DOC. Average concentrations of Cu and Zn at 1m depth lied in the ranges [2.5; 3.8] and [2.5; 10.5 μg/L], respectively, with values slightly higher for plots amended with sewage sludge compost or FYM than for CTR. However, leaching of both metals was less than 1% of their respective inputs through organic amendments. For Cd, most values were <0.05 μg/L. So, metals added through spreading of compost or manure during 14 years may have increased metal concentrations in leachates of

  7. Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties.

    PubMed

    Shewry, P R; Gilbert, S M; Savage, A W J; Tatham, A S; Wan, Y-F; Belton, P S; Wellner, N; D'Ovidio, R; Békés, F; Halford, N G

    2003-02-01

    The gene encoding high-molecular-weight (HMW) subunit 1Bx20 was isolated from durum wheat cv. Lira. It encodes a mature protein of 774 amino acid residues with an M(r) of 83,913. Comparison with the sequence of subunit 1Bx7 showed over 96% identity, the main difference being the substitution of two cysteine residues in the N-terminal domain of subunit 1Bx7 with tyrosine residues in 1Bx20. Comparison of the structures and stabilities of the two subunits purified from wheat using Fourier-transform infra-red and circular dichroism spectroscopy showed no significant differences. However, incorporation of subunit 1Bx7 into a base flour gave increased dough strength and stability measured by Mixograph analysis, while incorporation of subunit 1Bx20 resulted in small positive or negative effects on the parameters measured. It is concluded that the different effects of the two subunits could relate to the differences in their cysteine contents, thereby affecting the cross-linking and hence properties of the glutenin polymers.

  8. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85.

    PubMed

    Li, Qiang; Siles, Jose A; Thompson, Ian P

    2010-10-01

    Succinic acid is a platform molecule that has recently generated considerable interests. Production of succinate from waste orange peel and wheat straw by consolidated bioprocessing that combines cellulose hydrolysis and sugar fermentation, using a cellulolytic bacterium, Fibrobacter succinogenes S85, was studied. Orange peel contains D-limonene, which is a well-known antibacterial agent. Its effects on batch cultures of F. succinogenes S85 were examined. The minimal concentrations of limonene found to inhibit succinate and acetate generation and bacterial growth were 0.01%, 0.1%, and 0.06% (v/v), respectively. Both pre-treated orange peel by steam distillation to remove D: -limonene and intact wheat straw were used as feedstocks. Increasing the substrate concentrations of both feedstocks, from 5 to 60 g/L, elevated succinate concentration and productivity but lowered the yield. In addition, pre-treated orange peel generated greater succinate productivities than wheat straw but had similar resultant titres. The greatest succinate titres were 1.9 and 2.0 g/L for pre-treated orange peel and wheat straw, respectively. This work demonstrated that agricultural waste such as wheat straw and orange peel can be biotransformed to succinic acid by a one-step consolidated bioprocessing. Measures to increase fermentation efficiency are also discussed.

  9. Growth of wheat and lettuce and enzyme activities of soils under garlic stalk decomposition for different durations.

    PubMed

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2017-07-01

    Garlic (Allium sativum L.) stalk is a byproduct of garlic production that is normally thought of as waste but is now considered a useful biological resource. It is necessary to utilize this resource efficiently and reasonably to reduce environmental pollution and achieve sustainable agricultural development. The effect of garlic stalk decomposed for different durations was investigated in this study using wheat (Triticum aestivum L.) and lettuce (Lactuca sativa var. crispa L.) as test plants. Garlic stalk in early stages of decomposition inhibited the shoot and root lengths of wheat and lettuce, but it promoted the shoot and root lengths in later stages; longer durations of garlic stalk decomposition significantly increased the shoot and root fresh weights of wheat and lettuce, whereas shorter decomposing durations significantly decreased the shoot and root fresh weights; and garlic stalk at different decomposition durations increased the activities of urease, sucrase and alkaline phosphatase in soil where wheat or lettuce was planted. Garlic stalk decomposed for 30 or 40 days could promote the growth of wheat and lettuce plants as well as soil enzyme activities. These results may provide a scientific basis for the study and application of garlic stalk. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    PubMed

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  11. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.).

    PubMed

    Crespo-Herrera, Leonardo A; Garkava-Gustavsson, Larisa; Åhman, Inger

    2017-01-01

    Wheat is globally one of the most important crops. With the current human population growth rate, there is an increasing need to raise wheat productivity by means of plant breeding, along with development of more efficient and sustainable agricultural systems. Damage by pathogens and pests, in combination with adverse climate effects, need to be counteracted by incorporating new germplasm that makes wheat more resistant/tolerant to such stress factors. Rye has been used as a source for improved resistance to pathogens and pests in wheat during more than 50 years. With new devastating stem and yellow rust pathotypes invading wheat at large acreage globally, along with new biotypes of pest insects, there is renewed interest in using rye as a source of resistance. Currently the proportion of wheat cultivars with rye chromatin varies between countries, with examples of up to 34%. There is mainly one rye source, Petkus, that has been widely exploited and that has contributed considerably to raise yields and increase disease resistance in wheat. Successively, the multiple disease resistances conferred by this source has been overcome by new pathotypes of leaf rust, yellow rust, stem rust and powdery mildew. However, there are several other rye sources reported to make wheat more resistant to various biotic constraints when their rye chromatin has been transferred to wheat. There is also development of knowledge on how to produce new rye translocation, substitution and addition lines. Here we compile information that may facilitate decision making for wheat breeders aiming to transfer resistance to biotic constraints from rye to elite wheat germplasm.

  12. Trace elements bioavailability to winter wheat (Triticum aestivum L.) grown subsequent to high biomass plants in a greenhouse study.

    PubMed

    Neu, Silke; Müller, Ingo; Herzig, Rolf; Dudel, E Gert

    2018-05-12

    Multielement-contaminated agricultural land requires the adaptation of agronomic practices to meet legal requirements for safe biomass production. The incorporation of bioenergy plants with, at least, moderate phytoextraction capacity into crop rotations with cereals can affect trace elements (TE) phytoavailability and, simultaneously, constitute economic revenues for farmers outside the food or forage sector. Hence, in a crop rotation pot study sunflower (Helianthus annuus L.), modified for high biomass and TE accumulation by chemical mutagenesis, was compared to winter oilseed rape (Brassica napus L.) as pre-crop. On two agricultural soils with different TE loads, the crops´ potential for phytoextraction and for impacts on TE uptake by subsequent winter wheat (Triticum aestivum L.) was studied. The results showed that rape tolerated high-level mixed contamination with metals (Cd, Pb and Zn) and As more than sunflower. In both soils, labile metals concentration increased and soil acidity remained high following sunflower. Furthermore, enhanced grain As accumulation in subsequent wheat was observed. By contrast, soil acidity and Cd or Zn accumulation of subsequent wheat decreased following rape. In the short term, moderate phytoextraction was superimposed by nutrient use or rhizosphere effects of pre-crops, which should be carefully monitored when designing crop rotations for contaminated land.

  13. No Adverse Effect of Genetically Modified Antifungal Wheat on Decomposition Dynamics and the Soil Fauna Community – A Field Study

    PubMed Central

    Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas

    2011-01-01

    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the

  14. Agriculture in Pending U.S. Free Trade Agreements with Colombia, Panama, and South Korea

    DTIC Science & Technology

    2010-02-04

    coffee, pineapple, bananas , and bakery products (Table 1). Agricultural imports accounted for 15% of total U.S. merchandise imports from Panama in...21.1% Raw Cane Sugar 15.9 29.1% Soybean Meal 59.0 13.7% Coffee a 15.3 27.9% Wheat 42.3 9.8% Fresh Pineapple 5.8 10.6% Rice 23.7 5.5% Fresh Bananas 3.4...Total Corn 625.7 37.3% Unroasted Coffee 805.0 45.5% Wheat 330.0 19.7% Fresh Roses 239.9 13.6% Soybean Meal 98.9 5.9% Fresh Bananas 162.7 9.2

  15. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural...

  16. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural...

  17. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat.

    PubMed

    Rahmatov, Mahbubjon; Rouse, Matthew N; Nirmala, Jayaveeramuthu; Danilova, Tatiana; Friebe, Bernd; Steffenson, Brian J; Johansson, Eva

    2016-07-01

    A new stem rust resistance gene Sr59 from Secale cereale was introgressed into wheat as a 2DS·2RL Robertsonian translocation. Emerging new races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici), from Africa threaten global wheat (Triticum aestivum L.) production. To broaden the resistance spectrum of wheat to these widely virulent African races, additional resistance genes must be identified from all possible gene pools. From the screening of a collection of wheat-rye (Secale cereale L.) chromosome substitution lines developed at the Swedish University of Agricultural Sciences, we described the line 'SLU238' 2R (2D) as possessing resistance to many races of P. graminis f. sp. tritici, including the widely virulent race TTKSK (isolate synonym Ug99) from Africa. The breakage-fusion mechanism of univalent chromosomes was used to produce a new Robertsonian translocation: T2DS·2RL. Molecular marker analysis and stem rust seedling assays at multiple generations confirmed that the stem rust resistance from 'SLU238' is present on the rye chromosome arm 2RL. Line TA5094 (#101) was derived from 'SLU238' and was found to be homozygous for the T2DS·2RL translocation. The stem rust resistance gene on chromosome 2RL arm was designated as Sr59. Although introgressions of rye chromosome arms into wheat have most often been facilitated by irradiation, this study highlights the utility of the breakage-fusion mechanism for rye chromatin introgression. Sr59 provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust.

  18. Accelerated Senescence and Enhanced Disease Resistance in Hybrid Chlorosis Lines Derived from Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii

    PubMed Central

    Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790

  19. Beyond the Green Revolution: New Approaches for Third World Agriculture. Worldwatch Paper 73.

    ERIC Educational Resources Information Center

    Wolf, Edward C.

    After 20 years, the "green revolution" is generally referred to as a milestone in the international agricultural movement. The introduction of new varieties of wheat and rice, along with fertilizers, pesticides, and mechanized farm equipment has produced a dramatic increase in world food production. This paper assesses the successes of…

  20. PM2.5 emissions and source profiles from open burning of crop residues

    NASA Astrophysics Data System (ADS)

    Ni, Haiyan; Tian, Jie; Wang, Xiaoliang; Wang, Qiyuan; Han, Yongming; Cao, Junji; Long, Xin; Chen, L.-W. Antony; Chow, Judith C.; Watson, John G.; Huang, Ru-Jin; Dusek, Ulrike

    2017-11-01

    Wheat straw, rice straw, and corn stalks, the major agricultural crop residues in China, were collected from six major crop producing regions, and burned in a laboratory combustion chamber to determine PM2.5 source profiles and speciated emission factors (EFs). Organic carbon (OC) and water-soluble ions (the sum of NH4+, Na+, K+, Mg2+, Ca2+, Cl-, NO3- and SO42-) are major constituents, accounting for 43.1 ± 8.3% and 27.4 ± 14.6% of PM2.5, respectively. Chloride (Cl-) and water-soluble potassium (K+) are the dominant ionic species, with an average abundance of 14.5 ± 8.2% and 6.4 ± 4.4% in PM2.5, respectively. The average K+/Cl- ratio is ∼0.4, lower than 2.8-5.4 for wood combustion. Similarity measures (i.e., Student's t-test, coefficient of divergence, correlations, and residual to uncertainty ratios) show the crop profiles are too similar for the species measured to be resolved from one another by receptor modeling. The largest difference was found between rice straw and corn stalk emissions, with higher OC and lower Cl- and K+ abundances (50%, 8%, and 3% of PM2.5, respectively) for corn stalks; lower OC, and higher Cl- and K+ abundances (38%, 21%, and 10% of PM2.5, respectively) for rice straw. Average EFs were 4.8 ± 3.1 g kg-1 for OC, 1.3 ± 0.8 g kg-1 for Cl- and 0.59 ± 0.56 g kg-1 for K+. Flaming and smoldering combustions resulted in an average modified combustion efficiency (MCE) of 0.92 ± 0.03, and low elemental carbon (EC) EFs (0.24 ± 0.12 g kg-1). OC/EC ratios from individual source profiles ranged from 12.9 ± 4.3 for rice straw to 24.1 ± 13.5 for wheat straw. The average K+/EC ratio was 2.4 ± 1.5, an order of magnitude higher than those from residential wood combustion (0.2-0.76). Elevated emission rates were found for OC (387 Gg yr-1) and Cl- (122 Gg yr-1), accounting for 44% and 14% of 2008 PM2.5 emissions in China.