Science.gov

Sample records for agricultural sector model

  1. Agriculture Sectors

    EPA Pesticide Factsheets

    The Agriculture sectors comprise establishments primarily engaged in growing crops, raising animals, and harvesting fish and other animals. Find information on compliance, enforcement and guidance on EPA laws and regulations on the NAICS 111 & 112 sectors.

  2. Forest and Agricultural Sector Optimization Model (FASOM): Model structure and policy applications. Forest Service research paper

    SciTech Connect

    Adams, D.M.; Alig, R.J.; Callaway, J.M.; McCarl, B.A.; Winnett, S.M.

    1996-09-01

    The Forest and Agricultural Sector Opimization Model (FASOM) is a dynamic, nonlinear programming model of the forest and agricultural sectors in the United States. The FASOM model initially was developed to evaluate welfare and market impacts of alternative policies for sequestering carbon in trees but also has been applied to a wider range of forest and agricultural sector policy scenarios. The authors describe the model structure and give selected examples of policy applications. A summary of the data sources, input data file format, and the methods used to develop the input data files also are provided.

  3. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as

  4. Flood damage modeling based on expert knowledge: Insights from French damage model for agricultural sector

    NASA Astrophysics Data System (ADS)

    Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline

    2014-05-01

    In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. Howerver, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving

  5. Flood damage modeling based on expert knowledge: Insights from French damage model for agricultural sector

    NASA Astrophysics Data System (ADS)

    Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline

    2015-04-01

    In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. However, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving

  6. Economic effects of ozone on US agriculture: a sector modeling approach

    SciTech Connect

    Hamilton, S.A.

    1985-01-01

    Tropospheric ozone is a pollutant that has detrimental effects on crop yields. The level of ambient ozone can be reduced by environmental policy changes and enforcement. The purpose of this study was to estimate the welfare effects of such changes in ambient ozone using recently available plant response data and an economically consistent approach. A 25% reduction in ambient ozone was estimated to increase total welfare by approximately $1.7 billion. About 40% of the benefits accrue to producers, 25% to domestic consumers and 35% to foreign consumers. These benefits estimates do not consider compliance costs. A variety of changes in ambient ozone are considered for ranges of crop sensitivity. The analysis was conducted using a mathematical-programming sector model of the US agriculture. The model is a long-run equilibrium model encompassing regional production of the major crops and livestock products, as well as processing and export activities. Proposals for improving the performance of sector models were examined. Alternative methods for incorporating aggregate response assumptions were found to have little effect on estimates of total welfare changes but had important consequences for the distributional effects between producers and consumers.

  7. Optimization model for the allocation of water resources based on the maximization of employment in the agriculture and industry sectors

    NASA Astrophysics Data System (ADS)

    Habibi Davijani, M.; Banihabib, M. E.; Nadjafzadeh Anvar, A.; Hashemi, S. R.

    2016-02-01

    In many discussions, work force is mentioned as the most important factor of production. Principally, work force is a factor which can compensate for the physical and material limitations and shortcomings of other factors to a large extent which can help increase the production level. On the other hand, employment is considered as an effective factor in social issues. The goal of the present research is the allocation of water resources so as to maximize the number of jobs created in the industry and agriculture sectors. An objective that has attracted the attention of policy makers involved in water supply and distribution is the maximization of the interests of beneficiaries and consumers in case of certain policies adopted. The present model applies the particle swarm optimization (PSO) algorithm in order to determine the optimum amount of water allocated to each water-demanding sector, area under cultivation, agricultural production, employment in the agriculture sector, industrial production and employment in the industry sector. Based on the results obtained from this research, by optimally allocating water resources in the central desert region of Iran, 1096 jobs can be created in the industry and agriculture sectors, which constitutes an improvement of about 13% relative to the previous situation (non-optimal water utilization). It is also worth mentioning that by optimizing the employment factor as a social parameter, the other areas such as the economic sector are influenced as well. For example, in this investigation, the resulting economic benefits (incomes) have improved from 73 billion Rials at baseline employment figures to 112 billion Rials in the case of optimized employment condition. Therefore, it is necessary to change the inter-sector and intra-sector water allocation models in this region, because this change not only leads to more jobs in this area, but also causes an improvement in the region's economic conditions.

  8. Empirical support for global integrated assessment modeling: Productivity trends and technological change in developing countries' agriculture and electric power sectors

    SciTech Connect

    Sathaye, Jayant A.

    2000-04-01

    Integrated assessment (IA) modeling of climate policy is increasingly global in nature, with models incorporating regional disaggregation. The existing empirical basis for IA modeling, however, largely arises from research on industrialized economies. Given the growing importance of developing countries in determining long-term global energy and carbon emissions trends, filling this gap with improved statistical information on developing countries' energy and carbon-emissions characteristics is an important priority for enhancing IA modeling. Earlier research at LBNL on this topic has focused on assembling and analyzing statistical data on productivity trends and technological change in the energy-intensive manufacturing sectors of five developing countries, India, Brazil, Mexico, Indonesia, and South Korea. The proposed work will extend this analysis to the agriculture and electric power sectors in India, South Korea, and two other developing countries. They will also examine the impact of alternative model specifications on estimates of productivity growth and technological change for each of the three sectors, and estimate the contribution of various capital inputs--imported vs. indigenous, rigid vs. malleable-- in contributing to productivity growth and technological change. The project has already produced a data resource on the manufacturing sector which is being shared with IA modelers. This will be extended to the agriculture and electric power sectors, which would also be made accessible to IA modeling groups seeking to enhance the empirical descriptions of developing country characteristics. The project will entail basic statistical and econometric analysis of productivity and energy trends in these developing country sectors, with parameter estimates also made available to modeling groups. The parameter estimates will be developed using alternative model specifications that could be directly utilized by the existing IAMs for the manufacturing

  9. Modelling the water-agricultural sector in Rosetta, Egypt: exploring the interaction between water and food

    NASA Astrophysics Data System (ADS)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia; Savic, Dragan; Kapelan, Zoran

    2014-05-01

    An integrated System Dynamics Model for the Rosetta region, Egypt, assessing local water balance and agricultural yield to 2050, is presented. Fifty-seven simulations are analysed to better understand potential impacts on water and food security resulting from climate and social change and local/regional policy decisions related to the agricultural sector. Water limitation is a national issue: Egypt relies on the Nile for >95% of supply, and the flow of which is regulated by the Aswan High Dam. Egypt's share water of Aswan water is limited to 55 x 19 m3 yr-1. Any reduction in supply to the reservoir or increase in demand (e.g. from an expanding agricultural sector), has the potential to lead to a serious food and water supply situation. Results show current water resource over-exploitation. The remaining suite of 56 simulations, divided into seven scenarios, also mostly show resource overexploitation. Only under significant increases to Nile flow volumes was the trend reversed. Despite this, by threading together multiple local policies to reduce demand and improve/maintain supply, water resource exploitation can be mitigated while allowing for agricultural development. By changing cropping patterns, it is possible to improve yield and revenue, while using up to 21% less water in 2050 when compared with today. The results are useful in highlighting pathways to improving future water resource availability. Many policies should be considered in parallel, introducing redundancy into the policy framework. We do not suggest actual policy measures; this was beyond the scope of the work. This work highlights the utility of systems modelling of complex systems such as the water-food nexus, with the potential to extend the methodology to other studies and scales. In particular, the benefit of being able to easily modify and extend existing models in light of results from initial modelling efforts is cited. Analysis of initial results led to the hypothesis that by producing

  10. Agricultural sector impacts of making ethanol from grain

    SciTech Connect

    Hertzmark, D.; Ray, D.; Parvin, G.

    1980-03-01

    This report presents the results of a model of the effects on the agricultural sector of producing ethanol from corn in the United States between 1979 and 1983. The model is aggregated at the national level, and results are given for all of the major food and feed crops, ethanol joint products, farm income, government payment, and agricultural exports. A stochastic simulation was performed to ascertain the impacts of yield and demand variations on aggregate performance figures. Results indicate minimal impacts on the agricultural sector for production levels of less than 1 billion gallons of ethanol per year. For higher production levels, corn prices will rise sharply, the agricultural sector will be more vulnerable to variations in yields and demands, and joint-product values will fall. Possibilities for ameliorating such effects are discussed, and such concepts as net energy and the biomass refinery are explored.

  11. Economic Drought Impact on Agriculture: analysis of all agricultural sectors affected

    NASA Astrophysics Data System (ADS)

    Gil, M.; Garrido, A.; Hernández-Mora, N.

    2012-04-01

    The analysis of drought impacts is essential to define efficient and sustainable management and mitigation. In this paper we present a detailed analysis of the impacts of the 2004-2008 drought in the agricultural sector in the Ebro river basin (Spain). An econometric model is applied in order to determine the magnitude of the economic loss attributable to water scarcity. Both the direct impacts of drought on agricultural productivity and the indirect impacts of drought on agricultural employment and agroindustry in the Ebro basin are evaluated. The econometric model measures losses in the economic value of irrigated and rainfed agricultural production, of agricultural employment and of Gross Value Added both from the agricultural sector and the agro-industrial sector. The explanatory variables include an index of water availability (reservoir storage levels for irrigated agriculture and accumulated rainfall for rainfed agriculture), a price index representative of the mix of crops grown in each region, and a time variable. The model allows for differentiating the impacts due to water scarcity from other sources of economic losses. Results show how the impacts diminish as we approach the macro-economic indicators from those directly dependent on water abstractions and precipitation. Sectors directly dependent on water are the most affected with identifiable economic losses resulting from the lack of water. From the management perspective implications of these findings are key to develop mitigation measures to reduce drought risk exposure. These results suggest that more open agricultural markets, and wider and more flexible procurement strategies of the agro-industry reduces the socio-economic exposure to drought cycles. This paper presents the results of research conducted under PREEMPT project (Policy relevant assessment of the socioeconomic effects of droughts and floods, ECHO - grant agreement # 070401/2010/579119/SUB/C4), which constitutes an effort to provide

  12. Competences in demand within the Spanish agricultural engineering sector

    NASA Astrophysics Data System (ADS)

    Perdigones, Alicia; Valera, Diego Luis; Moreda, Guillermo Pedro; García, Jose Luis

    2014-09-01

    The Rural Engineering Department (Technical University of Madrid) ran three competence surveys during the 2006-2007 and 2007-2008 academic years and evaluated: (1) the competences gained by agricultural engineer's degree and agricultural technical engineer's degree students (360 respondents); (2) the competences demanded by agricultural employers (50 farming sector employers); (3) competences required by farming sector professionals and former students (70 professionals). The surveys show significant differences between what competences agricultural employers require of graduates and the competences they acquire during their agricultural engineering degree courses. Recruiters are looking for generic competences such as the ability to coordinate groups and place less importance on knowledge of engineering, biology, applied economics and legislation. Of the computer-related competences, those most in demand by sector professionals were related to the use of Microsoft Office/Excel (used by 79% of professionals). Surveys were used to redesign some subjects of the degrees.

  13. Analysis of methods and models for assessing the direct and indirect economic impacts of CO/sub 2/-induced environmental changes in the agricultural sector of the US economy

    SciTech Connect

    Callaway, J.M.; Cronin, F.J.; Currie, J.W.; Tawil, J.

    1982-08-01

    The overall purpose of this research was to assist the US Department of Energy (DOE) in developing methods for assessing the direct and indirect economic impacts due to the effects of increases in the ambient concentration of CO/sub 2/ on agricultural production. First, a comprehensive literature search was undertaken to determine what types of models and methods have been developed, which could be effectively used to conduct assessments of the direct and indirect economic impacts of CO/sub 2/ buildup. Specific attention was focused upon models and methods for assessing the physical impacts of CO/sub 2/-induced environmental changes on crop yields; national and multi-regional agricultural sector models; and macroeconomic models of the US economy. The second task involved a thorough investigation of the research efforts being conducted by other public and private sector organizations in order to determine how more recent analytical methods being developed outside of DOE could be effectively integrated into a more comprehensive analysis of the direct economic impacts of CO/sub 2/ buildup. The third and final task involved synthesizing the information gathered in the first two tasks into a systematic framework for assessing the direct and indirect economic impacts of CO/sub 2/-induced environmental changes originating in the agricultural sector of the US economy. It is concluded that the direct economic impacts of CO/sub 2/ on the agricultural sector and the indirect economic impacts caused by spillover effects from agriculture to other sectors of the economy will be pervasive; however, the direction and magnitude of these impacts on producers and consumers cannot be determined a priori.

  14. Implications of climate change damage for agriculture: sectoral evidence from Pakistan.

    PubMed

    Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem

    2016-10-01

    This paper gives a projection of the possible damage of climate change on the agriculture sector of Pakistan for the period 2012-2037, based on a dynamic approach, using an environment-related applied computable general equilibrium model (CGE). Climate damage projections depict an upward trend for the period of review and are found to be higher than the global average. Further, the damage to the agricultural sector exceeds that for the overall economy. By sector, climatic damage disproportionately affects the major and minor crops, livestock and fisheries. The largest losses following climate change, relative to the other agricultural sectors, are expected for livestock. The reason for this is the orthodox system of production for livestock, with a low adaptability to negative shocks of climate change. Overall, the findings reveal the high exposure of the agriculture sector to climate damage. In this regard, policymakers in Pakistan should take seriously the effects of climate change on agriculture and consider suitable technology to mitigate those damages.

  15. Agricultural sectoral demand and crop productivity response across the world

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Cassidy, E. S.; Foley, J. A.

    2013-12-01

    With an increasing and increasingly affluent population, humans will need to roughly double agricultural production by 2050. Continued yield growth forms the foundation of all future strategies aiming to increase agricultural production while slowing or eliminating cropland expansion. However, a recent analysis by one of our co-authors has shown that yield trends in many important maize, wheat and rice growing regions have begun stagnating or declining from the highs seen during the green revolution (Ray et al. 2013). Additional research by our group has shown that nearly 50% of new agricultural production since the 1960s has gone not to direct human consumption, but instead to animal feed and other industrial uses. Our analysis for GLP looks at the convergence of these two trends by examining time series utilization data for 16 of the biggest crops to determine how demand from different sectors has shaped our land-use and intensification strategies around the world. Before rushing headlong into the next agricultural doubling, it would be prudent to first consult our recent agricultural history to better understand what was driving past changes in production. Using newly developed time series dataset - a fusion of cropland maps with historic agricultural census data gathered from around the world - we can examine yield and harvested area trends over the last half century for 16 top crops. We combine this data with utilization rates from the FAO Food Balance Sheet to see how demand from different sectors - food, feed, and other - has influenced long-term growth trends from the green revolution forward. We will show how intensification trends over time and across regions have grown or contracted depending on what is driving the change in production capacity. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428. doi:10.1371/journal.pone.0066428

  16. Evaluation of the Food and Agriculture Sector Criticality Assessment Tool (FASCAT) and the Collected Data.

    PubMed

    Huff, Andrew G; Hodges, James S; Kennedy, Shaun P; Kircher, Amy

    2015-08-01

    To protect and secure food resources for the United States, it is crucial to have a method to compare food systems' criticality. In 2007, the U.S. government funded development of the Food and Agriculture Sector Criticality Assessment Tool (FASCAT) to determine which food and agriculture systems were most critical to the nation. FASCAT was developed in a collaborative process involving government officials and food industry subject matter experts (SMEs). After development, data were collected using FASCAT to quantify threats, vulnerabilities, consequences, and the impacts on the United States from failure of evaluated food and agriculture systems. To examine FASCAT's utility, linear regression models were used to determine: (1) which groups of questions posed in FASCAT were better predictors of cumulative criticality scores; (2) whether the items included in FASCAT's criticality method or the smaller subset of FASCAT items included in DHS's risk analysis method predicted similar criticality scores. Akaike's information criterion was used to determine which regression models best described criticality, and a mixed linear model was used to shrink estimates of criticality for individual food and agriculture systems. The results indicated that: (1) some of the questions used in FASCAT strongly predicted food or agriculture system criticality; (2) the FASCAT criticality formula was a stronger predictor of criticality compared to the DHS risk formula; (3) the cumulative criticality formula predicted criticality more strongly than weighted criticality formula; and (4) the mixed linear regression model did not change the rank-order of food and agriculture system criticality to a large degree.

  17. Competences in Demand within the Spanish Agricultural Engineering Sector

    ERIC Educational Resources Information Center

    Perdigones, Alicia; Valera, Diego Luis; Moreda, Guillermo Pedro; García, Jose Luis

    2014-01-01

    The Rural Engineering Department (Technical University of Madrid) ran three competence surveys during the 2006-2007 and 2007-2008 academic years and evaluated: (1) the competences gained by agricultural engineer's degree and agricultural technical engineer's degree students (360 respondents); (2) the competences demanded by agricultural employers…

  18. Integrated assessment of conservation opportunities in the irrigated agriculture sector of the Pacific Northwest Region

    SciTech Connect

    Harrer, B.J.; Lezberg, A.J.; Wilfert, G.L.

    1985-02-01

    This report documents research to identify the potential energy savings and cost per kWh saved for implementing currently available energy conservation measures in the irrigated agriculture sector of the Pacific Northwest. A computer model that simulates the energy consumption process of irrigation systems and estimates the levelized costs of undertaking conservation investments is the primary analytical tool used in this research. Using engineering and economic input parameters for the various conservation measures that could potentially be implemented in irrigated agriculture, the Irrigation Sector Energy Planning (ISEP) model generates estimates of energy savings and cost per kWh saved for the measures. All parameters input to the ISEP model are based upon empirical field data. Results provided by the ISEP model indicate tht by the year 2003 a total of approximately 158.6 average MW of energy could potentially be saved in the Pacific Northwest irrigation sector on all sprinkler-irrigated acres. Approximately 130.4 average MW can be saved on acres currently by sprinkler, while an additional 28.2 average MW could be saved on new acres that are forecast to come under irrigation in the next 20 years. The largest share of the total savings (47%) is estimated to come from the use of low-pressure irrigation. Over 60% of the total potential savings 158.6 average MW is estimated to be available for a cost per kWh saved of 20 mills or less and over 75% could be achieved for a cost of 30 mills or less. Savings from low-pressure irrigation and the redesign of fittings and mainlines will normally cost less than 20 mills per kWh saved. Almost all of the savings that are estimated to cost more than 30 mills per kWh saved to obtain are savings from improved irrigation scheduling on irrigated acres that use surface water and have low average pumping lifts.

  19. Entrepreneurship Education and Training Needs of Family Businesses Operating in the Agricultural Sector of India

    ERIC Educational Resources Information Center

    Sandhu, Navjot; Hussain, Javed; Matlay, Harry

    2012-01-01

    Purpose: The purpose of this paper is to investigate the entrepreneurship education and training (EET) needs of small family businesses operating in the agricultural sector of the Indian economy. Design/methodology/approach: Quantitative and qualitative data were collected through a survey of 122 agricultural family firms in the Indian state of…

  20. Probabilistic Projections of Climate Change Impacts on the Agricultural Sector in Bangladesh

    NASA Astrophysics Data System (ADS)

    Ruane, A. C.; Rosenzweig, C.; Major, D. C.

    2008-12-01

    We describe a novel approach to impact assessment that generates probabilistic distributions of climate change impacts by passing model and societal uncertainties in a continuous manner throughout the assessment process. Rather than driving impact models with conditions based upon summary statistics from an ensemble of global climate models (GCMs) or relying on a prescribed range of inputs, end-to-end assessment is conducted for a wide variety of GCMs and emissions scenarios. The resulting distribution of impacts may be used to elucidate internal dynamics of the system and to attach model and societal-based probabilities to individual outcomes. To demonstrate the method, preliminary results from a World Bank project on the effect of climate change on Bangladesh's agricultural sector are presented. Working with a wide range of collaborators in Bangladesh, 48 climate change scenarios (16 GCMs and 3 emissions scenarios) were generated from 2020-2100 for each of 16 regions in Bangladesh. These scenarios were then used to drive the Decision Support System for Agrotechnology Transfer (DSSAT) biophysical model for major cereal crops. Output generated from a smaller subset of hydrologic and coastal model scenarios is then used to adjust the yield production to account for projected river floods in the Ganges/Brahmaputra/Meghna basin and coastal inundation from the Bay of Bengal, respectively. The result is a probabilistic distribution of agricultural impacts for Bangladesh that retains model and societal uncertainties throughout the assessment process.

  1. Ammonia Emissions from the Agriculture Sector of Argentina in a Context of Changing Technologies and Practices

    NASA Astrophysics Data System (ADS)

    Dawidowski, L. E.

    2015-12-01

    Agriculture is a key sector of the Argentinean economy, accounting for 6 to 8 5% of the GDP in the last ten years. Argentina switched in the 90´s from an articulated co-evolution between extensive livestock and crop farming, with annual rotation of crops and livestock, to intensive decoupled practices. Under these new production schemes, ecosystems were supplied with more nutrients, generating increasing levels of wastes. Other changes have also occurred, associated with the shift of the agricultural frontier and the consequent reduction in the cattle stock. In addition, changes related to climate through the strong increase in rainfall in the 80s and 90s in the west Pampas, helped to boost agricultural development. The agriculture sector accounts for practically all NH3 emissions in Argentina, however no inventory has been thus far available. To bridge this gap and particularly to have accurate input information to run coupled atmospheric chemistry models for secondary inorganic aerosols, we estimated 2000-2012 NH3 emissions, both at national and spatially disaggregated levels. Of particular interest for us was also temporal disaggregation as crops growing and temperature exhibit strong seasonal variability. As no NH3 inventory was available we also estimated related N2O emissions to verify our estimates with those of national GHG emission inventory (NEI). National NH3 emissions in 2012 amounted to 309.9 Gg, use of fertilizers accounted for 43.6%, manure management 18,9%, manure in pasture 36,0% and agricultural waste burning 1.5%. Our N2O estimates are in good agreement with the GHG-NEI. NH3 estimates in the EDGAR database for 2008 are 84.0% higher than ours for this year, and exhibit more significant differences per category, namely 113,6% higher for use of fertilizers and about 500% higher for agricultural waste burning. Urea dominates national NH3 emissions, accounting for 32,8% of the total and its use for wheat and corn crops dominates the trend.

  2. Conceptualizations of water security in the agricultural sector: Perceptions, practices, and paradigms

    NASA Astrophysics Data System (ADS)

    Malekian, Atefe; Hayati, Dariush; Aarts, Noelle

    2017-01-01

    Conceptions of agricultural water security are conditioned by larger understandings of being and reality. It is still unclear what such understandings mean for perspectives on water security in general and on causes and solutions related to perceived water security risks and problems in agricultural sector in particular. Based on a systematic literature review, three conceptualizations of water security, related to different paradigms, are presented. Also the consequences of such conceptualizations for determining research objectives, research activities, and research outcomes on agricultural water security are discussed. The results showed that agricultural water security from a positivist paradigm referred to tangible and measurable water-related hazards and threats, such as floods and droughts, pollution, and so forth. A constructivist approach to agricultural water security, constituted by a process of interaction and negotiation, pointed at perceptions of water security of farmers and other stakeholders involved in agricultural sector. A critical approach to agricultural water security focused on the processes of securing vulnerable farmers and others from wider political, social, and natural impediments to sufficient water supplies. The conclusions of the study suggest that paradigms, underlying approaches should be expressed, clarified, and related to one another in order to find optimal and complementary ways to study water security issues in agricultural sector.

  3. Environmental and socio-economic vulnerability of agricultural sector in Armenia.

    PubMed

    Melkonyan, Ani

    2014-08-01

    Being a mountainous country, Armenia has undergone different kinds of natural disasters, such as droughts, floods, and storms, which have a direct influence on economy and are expected to occur more frequently in terms of climate change, raising the need to estimate economic vulnerability especially in agricultural sector. Agriculture plays a great role in national economy of Armenia, with 21% share in Gross Domestic Production (GDP). For this reason, the estimation of agricultural resources of the country, their vulnerability towards current and future climate, and assessment of economical loss of the agricultural crop production due to climate change are the main goals of the given study. Crop productivity in dependence on climatic elements - temperature, radiation, precipitation, wind field, etc. has been estimated, further on interpolating these relations for future climate conditions using climate projections in the region for the time period of 2011-2040. Data on air temperature, precipitation, relative humidity, wind speed and direction for the period of 1966-2011 have been taken from 30 stations from the measuring network of Armenian State Hydrometeorological Service. Other climatic parameters like potential and actual evapotranspiration, soil temperature and humidity, field capacity, and wilting point have been calculated with the help of an AMBAV/AMBETTI (agroclimatic) model (German Weather Service). The results showed that temperature increase accompanied with evapotranspiration increase and water availability decrease especially in low and mid-low altitudes (where the main national crop production is centralized) caused a significant shift in the phenological phases of crops, which is very important information for effective farming dates, giving an opportunity to raise efficiency of agricultural production through minimizing the yield loss due to unfavorable climatic conditions. With the help of macroeconomical analysis of the crop market, it was

  4. Ergonomics and design in the Brazilian agricultural sector: a proposal to build matrix of contradictions.

    PubMed

    Tosetto, Thaís; Camarotto, João Alberto

    2012-01-01

    The paper presents a correlation between the parameters of classical TRIZ and variables of analysis of the EWA to construct a matrix of contradictions in ergonomics, with the objective of assisting the designing processes in the Brazilian agricultural sector. Given the representativeness of the sector in the economy, the boundary conditions in which the activities are developed and their impact on the health of workers, this proposal should contribute to the development of adaptable solutions and the promotion of Decent Work.

  5. Spatially complex land change: The Indirect effect of Brazil's agricultural sector on land use in Amazonia.

    PubMed

    Richards, Peter D; Walker, Robert T; Arima, Eugenio Y

    2014-11-01

    Soybean farming has brought economic development to parts of South America, as well as environmental hopes and concerns. A substantial hope resides in the decoupling of Brazil's agricultural sector from deforestation in the Amazon region, in which case expansive agriculture need not imply forest degradation. However, concerns have also been voiced about the potential indirect effects of agriculture. This article addresses these indirect effects forthe case of the Brazilian Amazon since 2002. Our work finds that as much as thirty-two percent of deforestation, or the loss of more than 30,000 km(2) of Amazon forest, is attributable, indirectly, to Brazil's soybean sector. However, we also observe that the magnitude of the indirect impact of the agriculture sector on forest loss in the Amazon has declined markedly since 2006. We also find a shift in the underlying causes of indirect land use change in the Amazon, and suggest that land appreciation in agricultural regions has supplanted farm expansions as a source of indirect land use change. Our results are broadly congruent with recent work recognizing the success of policy changes in mitigating the impact of soybean expansion on forest loss in the Amazon. However, they also caution that the soybean sector may continue to incentivize land clearings through its impact on regional land markets.

  6. Spatially complex land change: The Indirect effect of Brazil's agricultural sector on land use in Amazonia

    PubMed Central

    Richards, Peter D.; Walker, Robert T.; Arima, Eugenio Y.

    2014-01-01

    Soybean farming has brought economic development to parts of South America, as well as environmental hopes and concerns. A substantial hope resides in the decoupling of Brazil's agricultural sector from deforestation in the Amazon region, in which case expansive agriculture need not imply forest degradation. However, concerns have also been voiced about the potential indirect effects of agriculture. This article addresses these indirect effects forthe case of the Brazilian Amazon since 2002. Our work finds that as much as thirty-two percent of deforestation, or the loss of more than 30,000 km2 of Amazon forest, is attributable, indirectly, to Brazil's soybean sector. However, we also observe that the magnitude of the indirect impact of the agriculture sector on forest loss in the Amazon has declined markedly since 2006. We also find a shift in the underlying causes of indirect land use change in the Amazon, and suggest that land appreciation in agricultural regions has supplanted farm expansions as a source of indirect land use change. Our results are broadly congruent with recent work recognizing the success of policy changes in mitigating the impact of soybean expansion on forest loss in the Amazon. However, they also caution that the soybean sector may continue to incentivize land clearings through its impact on regional land markets. PMID:25492993

  7. Hospital expenses in a sector model.

    PubMed Central

    Friedman, B; Pliska, S R

    1985-01-01

    This review summarizes the capabilities and contributions of quantitative sector models for understanding trends in hospital expenses and the effects thereon of various public policies. After some brief historical notes on the use of analogous models in other policy areas, the general classes of national, partial, and narrow health sector models are introduced with special attention to method of validation and behavioral structure. Fourteen published models, described and critically reviewed with regard to these criteria, are assessed for their individual application to important policy and behavioral issues. Suggestions are offered for improvements and new initiatives in the use of sector models both in forecasting and in the study of procompetitive policies and reimbursement rule changes. PMID:3918960

  8. A Spatial Data Model Desing For The Management Of Agricultural Data (Farmer, Agricultural Land And Agricultural Production)

    NASA Astrophysics Data System (ADS)

    Taşkanat, Talha; İbrahim İnan, Halil

    2016-04-01

    Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and

  9. Vulnerability of U.S. Agriculture and Energy Sectors to Changes in Climate and Socioeconomics

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Voisin, N.; Liu, L.; Bramer, L.; Fortin, D.; Huang, M.; Hathaway, J.; Kyle, P.; Leung, L. R.; Li, H. Y.; Liu, Y.; Patel, P.; Pulsipher, T.; Rice, J.; Tesfa, T. K.; Vernon, C. R.; Zhou, Y.

    2014-12-01

    A prominent integrated assessment model (IAM), the Global Change Assessment Model (GCAM), has been coupled with the Community Land Model (CLM) of the Community Earth system model (CESM) to assess the vulnerability of the US agriculture and energy sectors to future water shortages under changing climate and socioeconomics. This study utilizes the regionalized version of GCAM for the U.S. with 50-state. GCAM-USA includes a detailed representation of water demands and tracks them at multiple spatial scales and annual scale. A spatial and temporal disaggregation approach is developed to project the annual regional water demand simulations into a daily time step and 1/8o spatial resolution for input to CLM, which has been coupled to a river routing model and generic water management model applicable globally at 1/2o resolution and regionally at 1/8o resolution. The coupled modeling framework demonstrated reasonable ability to simulate the historical flow regulation and water supply over the continental U.S. The coupled modeling framework has been used to investigate: 1) Which water use sector (agriculture or energy) and subbasins in the conterminous U.S. will experience water deficits in future decades; 2) What are the drivers for the deficit (i.e., water availability, water demands, or both); 3) Will climate mitigation policies alleviate or exacerbate the situation; and lastly 4) How will the frequency , severity, and spatial extent of water deficits (hot spots) evolve under a non-mitigation scenario (RCP8.5) in which conventional fossil-fueled technologies prevail versus a mitigation scenario (RCP4.5) in which the carbon price causes a shift toward renewables and expansion of bioenergy productions. Results show that irrigation will face greater water deficit overall except in the northeastern U.S. Water deficit is greatest in the western U.S. except the Pacific Northwest. Human footprints on the regulated flows are most pronounced over the Rio Grande, Colorado, Great

  10. 31 CFR 542.528 - Policy on activities related to the agricultural sector of Syria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Policy on activities related to the agricultural sector of Syria. 542.528 Section 542.528 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY SYRIAN...

  11. Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector

    SciTech Connect

    Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.; Menard, R.J.; Hellwinckel, C.M.; West, Tristram O.

    2010-09-10

    This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to higher demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.

  12. Which environmental problems get policy attention? Examining energy and agricultural sector policies in Sweden

    SciTech Connect

    Engstroem, Rebecka Nilsson, Mans Finnveden, Goeran

    2008-05-15

    Not all environmental problems get the same level of policy attention. An interesting question is thus why certain aspects receive attention and others do not. This paper studies the level of policy attention given to different environmental aspects in agriculture and energy policy in Sweden and explores empirically some factors that can explain the level of attention. The first step was to explore the link between environmental issue characteristics and the level of policy attention. The level of policy attention was measured through a content analysis of Swedish government bills. The results from the content analysis are clear and stable over the studied time period. In the agriculture sector biodiversity and toxicity are in focus whereas in the energy sector climate change and resources are given the attention. Besides these aspects, the attention is limited. These results were compared with the results from sector-wide environmental assessments of the same sectors. These assessments were based on hybrid input-output analysis and life cycle assessment methodologies. A main finding from the study is that issue importance is a necessary but not a sufficient condition for policy attention. Other explanations are needed to understand which environmental issues get attention in sectoral policy. Our assessment showed that while the level of knowledge does not provide an explanation, the presence of strong and well-organised stakeholders within the sector, with an interest in having a certain issue on the agenda, might be decisive for issue attention. Path dependency and limited attention capacity are other important factors.

  13. Rabi multi-sector reservoir simulation model

    SciTech Connect

    Bruijnzeels, C.; O`Halloran, C.

    1995-12-31

    To ensure optimum ultimate recovery of the 46 meter thick oil rim of the Rabi Field in Gabon, a full field simulation model was required. Due to it`s size and complexity, with local cusping, coning and geological circumstances dominating individual well behavior, a single full field model would be too large for existing hardware. A method was developed to simulate the full field with 5 separate sector models, whilst allowing the development in one sector model to have an effect on the boundary conditions of another sector. In this manner, the 13 x 4.5 km field could be simulated with a horizontal well spacing down to 175 meter. This paper focuses on the method used to attach single 3-phase tank cells to a sector simulation grid in order to represent non-simulated parts of the field. It also describes the history matching methodology and how to run a multisector model in forecasting mode. This method can be used for any reservoir, where size and complexity require large reservoir simulation models that normally could not be modeled within the constraints of available computer facilities. Detailed studies can be conducted on specific parts of a field, whilst allowing for dynamic flow and pressure effects caused by the rest of the field.

  14. What Drives Indirect Land Use Change? How Brazil's Agriculture Sector Influences Frontier Deforestation.

    PubMed

    Richards, Peter

    2015-09-01

    From 2000-2005 high returns to soybeans set off an unprecedented expansion of agricultural production across Brazil. The expansion occurred concurrently to a sharp rise in deforestation, leading academics and policy makers to question the extent and means by which the growing agricultural sector was driving regional forest loss. In this article we consider and question the underlying drivers of indirect land use change, namely the potential impact of soybean expansion on beef prices and of land use displacement, via migration. We then present field level results documenting the displacement process in northern Mato Grosso and western Pará States of the Amazon. Our results question the extent to which tropical Amazon deforestation is attributable to land use displacement; however, we argue that the agricultural sector may drive deforestation through other channels, namely through regional land markets.

  15. What Drives Indirect Land Use Change? How Brazil's Agriculture Sector Influences Frontier Deforestation

    PubMed Central

    Richards, Peter

    2015-01-01

    From 2000-2005 high returns to soybeans set off an unprecedented expansion of agricultural production across Brazil. The expansion occurred concurrently to a sharp rise in deforestation, leading academics and policy makers to question the extent and means by which the growing agricultural sector was driving regional forest loss. In this article we consider and question the underlying drivers of indirect land use change, namely the potential impact of soybean expansion on beef prices and of land use displacement, via migration. We then present field level results documenting the displacement process in northern Mato Grosso and western Pará States of the Amazon. Our results question the extent to which tropical Amazon deforestation is attributable to land use displacement; however, we argue that the agricultural sector may drive deforestation through other channels, namely through regional land markets. PMID:26985080

  16. Next Generation Agricultural System Data, Models and Knowledge Products: Introduction

    NASA Technical Reports Server (NTRS)

    Antle, John M.; Jones, James W.; Rosenzweig, Cynthia E.

    2016-01-01

    Agricultural system models have become important tools to provide predictive and assessment capability to a growing array of decision-makers in the private and public sectors. Despite ongoing research and model improvements, many of the agricultural models today are direct descendants of research investments initially made 30-40 years ago, and many of the major advances in data, information and communication technology (ICT) of the past decade have not been fully exploited. The purpose of this Special Issue of Agricultural Systems is to lay the foundation for the next generation of agricultural systems data, models and knowledge products. The Special Issue is based on a 'NextGen' study led by the Agricultural Model Intercomparison and Improvement Project (AgMIP) with support from the Bill and Melinda Gates Foundation.

  17. Hidden sector DM models and Higgs physics

    SciTech Connect

    Ko, P.

    2014-06-24

    We present an extension of the standard model to dark sector with an unbroken local dark U(1){sub X} symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1){sub X} case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1){sub X} is spontaneously broken, because of a mixing with a new neutral scalar boson in the models.

  18. Mathematical Models for the Education Sector, A Survey. (Les Modeles Mathematiques du Sector Enseignement.) Technical Report.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    The purposes of this volume are to report a survey of current practice in the construction and use of mathematical models for the education sector: to identify the most important technical and substantive problems confronting the model-building effort; and to bridge the gap between the advancing research pursuit of model-building and the lagging…

  19. A Decision Support System for Climate Change Adaptation in Rainfed Sectors of Agriculture for Central Europe

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Berki, Imre; Drüszler, Áron; Eredics, Attila; Gálos, Borbála; Illés, Gábor; Móricz, Norbert; Rasztovits, Ervin; Czimber, Kornél

    2013-04-01

    • Background and aims: Rainfed sectors of agriculture such as nature-close forestry, non-irrigated agriculture and animal husbandry on nature-close pastures are threatened by projected climate change especially in low-elevation regions in Southeast Europe, where precipitation is the limiting factor of production and ecosystem stability. Therefore the importance of complex, long term management planning and of land use optimization is increasing. The aim of the Decision Support System under development is to raise awareness and initiate preparation for frequency increase of extreme events, disasters and economic losses in the mentioned sectors. • Services provided: The Decision Support System provides GIS-supported information about the most important regional and local risks and mitigation options regarding climate change impacts, projected for reference periods until 2100 (e.g. land cover/use and expectable changes, potential production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.). The projections are referring first of all on biological production (natural produce), but the System includes also social and economic consequences. • Methods: In the raster based system, the latest image processing technology is used. We apply fuzzy membership functions, Support Vector Machine and Maximum Likelihood classifier. The System is developed in the first step for a reference area in SW Hungary (Zala county). • Novelty: The coherent, fine-scale regional system integrates the basic information about present and projected climates, extremes, hydrology and soil conditions and expected production potential for three sectors of agriculture as options for land use and conservation. • Funding: The development of the Decision Support System "Agrárklíma" is supported by TÁMOP-4.2.2.A-11/1/KONV and 4.2.2.B-10/1-2010-0018 "Talentum" joint EU-national research projects. Keywords: climate change

  20. Representing Extremes in Agricultural Models

    NASA Technical Reports Server (NTRS)

    Ruane, Alex

    2015-01-01

    AgMIP and related projects are conducting several activities to understand and improve crop model response to extreme events. This involves crop model studies as well as the generation of climate datasets and scenarios more capable of capturing extremes. Models are typically less responsive to extreme events than we observe, and miss several forms of extreme events. Models also can capture interactive effects between climate change and climate extremes. Additional work is needed to understand response of markets and economic systems to food shocks. AgMIP is planning a Coordinated Global and Regional Assessment of Climate Change Impacts on Agricultural Production and Food Security with an aim to inform the IPCC Sixth Assessment Report.

  1. Extending the Agricultural Extension Model. Preliminary Draft.

    ERIC Educational Resources Information Center

    Rogers, Everett M.; And Others

    The purposes of this report are: to describe the main elements of the U.S. agricultural extension model and its effects on the agricultural revolution; to analyze attempts to extend this model to non-agricultural technology and/or to less developed countries; and to draw general conclusions about the diffusion of technological innovations, with…

  2. Communicating Climate Change in the Agricultural Sector: Insights from Surveys and Interviews with Agricultural Advisors in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Prokopy, L. S.; Carlton, S.; Dunn, M.

    2014-12-01

    Understanding U.S. agricultural stakeholder views about the existence of climate change and what influences these views is central to developing communication in support of adaptation and mitigation. It has been postulated in the literature that extreme weather events can shape people's climate change beliefs and adaptation attitudes. In this presentation, we use data from pre- and post-extreme event surveys and interviews to examine the effects of the 2012 Midwestern US drought on agricultural advisors' climate change beliefs, adaptation attitudes, and risk perceptions. We found that neither climate change beliefs nor attitudes toward adaptation changed significantly as a result of the drought. Risk perceptions did change, however, with advisors becoming more concerned about risks from drought and pests and less concerned about risks related to flooding and ponding. Qualitative interviews revealed that while advisors readily accept the occurrence of extreme weather as a risk, the irregularity and unpredictability of extreme events for specific localities limits day-to-day consideration in respect to prescribed management advice. Instead, advisors' attention is directed towards planning for short-term changes encompassing weather, pests, and the market, as well as planning for long-term trends related to water availability. These findings provide important insights for communicating climate change in this critical sector while illustrating the importance of social science research in planning and executing communication campaigns.

  3. Pesticide Health and Safety Challenges Facing Informal Sector Workers: A Case of Small-scale Agricultural Workers in Tanzania.

    PubMed

    Ngowi, Aiwerasia; Mrema, Ezra; Kishinhi, Stephen

    2016-08-01

    The Tanzania informal sector is growing fast, with precarious working conditions and particular hazards for women and children in agriculture. Hazardous agricultural chemicals including pesticides are mostly imported and have been used for many years. Despite the role played by pesticides in food security and vector control, these chemicals are responsible for acute and chronic illnesses among communities. The availability of obsolete persistent organic pesticides on the open market indicates existence of an inadequate regulatory system. People who get injured or ill in the agriculture sector in Tanzania receive health services in primary health care facilities where professionals have little or no knowledge of pesticides. We are presenting the pesticide health and safety challenges faced by small-scale farmers who fall in the informal sector. Achievements that have been made by the government and other players to reduce and prevent pesticide exposures and poisoning are also outlined.

  4. Climate change mitigation in the agricultural sector- an analysis of marginal abatement costs of climate mitigation in global paddy rice agriculture based on DNDC simulations

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, J.; Beach, R.; Salas, W.; Ingraham, P.; Ragnauth, S.

    2012-12-01

    Authors: Jia Li1, Robert H. Beach2, Changsheng Li3, William Salas4, Pete Ingraham5, Shaun Ragnauth1 INSTITUTIONS (ALL): 1. Climate Change Division, US Environmental Protection Agency, Washington, DC, United States. 2. RTI International, Durham, NC, United States. 3. ESRC, University of New Hampshire, Durham, NH, United States. 4. Applied Geosolutions, LLC, Newmarket, NH, United States. Global agriculture sector faces the dual challenge of climate change mitigation and providing food security for a growing population. In a new study, the U.S. EPA has developed an analysis of mitigation of non-CO2 greenhouse gases for the global agriculture sector. We estimate global greenhouse gas (GHG) emissions from paddy rice cultivation and rice yields under baseline management conditions as well as for alternative mitigation options. These biophysical effects are combined with data on input use and costs to estimate marginal abatement cost curves and evaluate the cost-effectiveness of mitigation options for global rice cropping systems. DNDC, a process-based crop model, is used to simulate crop yields, methane and nitrous oxide emissions, as well as soil carbon sequestration of the various rice cropping systems (irrigated and rainfed, and single, double, triple and mixed rotations) under local climatic and soil conditions at a 0.5 degree resolution at the global scale. We evaluate the impacts of various management alternatives (e.g., flooding methods, fertilizer applications, and crop residue management) on crop yields and GHG emissions and report the spatial and temporal distributions of the outcomes. The analysis provides important insights on the potential for closing the production efficiency gaps and the trade-offs and synergies between GHG mitigation and food security in different parts of the world.

  5. Process heat in California: Applications and potential for solar energy in the industrial, agricultural and commercial sectors

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Bartera, R. E.; Davis, E. S.; Hlavka, G. E.; Pivirotto, D. S.; Yanow, G.

    1978-01-01

    A summary of the results of a survey of potential applications of solar energy for supplying process heat requirements in the industrial, agricultural, and commercial sectors of California is presented. Technical, economic, and institutional characteristics of the three sectors are examined. Specific applications for solar energy are then discussed. Finally, implications for California energy policy are discussed along with recommendations for possible actions by the State of California.

  6. Reheating the Standard Model from a hidden sector

    NASA Astrophysics Data System (ADS)

    Tenkanen, Tommi; Vaskonen, Ville

    2016-10-01

    We consider a scenario where the inflaton decays to a hidden sector thermally decoupled from the visible Standard Model sector. A tiny portal coupling between the hidden and the visible sectors later heats the visible sector so that the Standard Model degrees of freedom come to dominate the energy density of the Universe before big bang nucleosynthesis. We find that this scenario is viable, although obtaining the correct dark matter abundance and retaining successful big bang nucleosynthesis is not obvious. We also show that the isocurvature perturbations constituted by a primordial Higgs condensate are not problematic for the viability of the scenario.

  7. Climate change impact modelling needs to include cross-sectoral interactions

    NASA Astrophysics Data System (ADS)

    Harrison, Paula A.; Dunford, Robert W.; Holman, Ian P.; Rounsevell, Mark D. A.

    2016-09-01

    Climate change impact assessments often apply models of individual sectors such as agriculture, forestry and water use without considering interactions between these sectors. This is likely to lead to misrepresentation of impacts, and consequently to poor decisions about climate adaptation. However, no published research assesses the differences between impacts simulated by single-sector and integrated models. Here we compare 14 indicators derived from a set of impact models run within single-sector and integrated frameworks across a range of climate and socio-economic scenarios in Europe. We show that single-sector studies misrepresent the spatial pattern, direction and magnitude of most impacts because they omit the complex interdependencies within human and environmental systems. The discrepancies are particularly pronounced for indicators such as food production and water exploitation, which are highly influenced by other sectors through changes in demand, land suitability and resource competition. Furthermore, the discrepancies are greater under different socio-economic scenarios than different climate scenarios, and at the sub-regional rather than Europe-wide scale.

  8. Technology choice and development in Brazil: An assessment of Brazil's alternative fuel program and the agriculture, manufacturing, energy, and service sectors

    NASA Astrophysics Data System (ADS)

    Nolan, Lucy A.

    Technology choice profoundly affects a country's development process because capital-intensive and labor-intensive technologies have different socioeconomic linkages within the economy. This research examines the impacts of technology choice through the use of a social accounting matrix (SAM) framework. SAM-based modeling determines the direct and indirect effects of technology choice on development, particularly poverty alleviation in Brazil. Brazil's alternative fuel program was analyzed as a special example of technology choice. Two ethanol production technologies and the gasoline sector were compared; to make the study more robust, labor and capital intensive technologies were evaluated in the production of agriculture, manufacturing, energy, and services. Growth in these economic sectors was examined to assess the effects on employment, factor and household income, energy intensity, and carbon dioxide costs. Poverty alleviation was a focus, so income to unskilled agriculture labor, unskilled non-agriculture labor, and income to rural and urban households in poverty was also analyzed. The major research finding is that overall, labor-intensive technologies generate more employment, factor and household income, environmental and energy benefits to Brazil's economy than capital-intensive technologies. In addition, labor-intensive technologies make a particular contribution to poverty alleviation. The results suggest that policies to encourage the adoption of these technologies, especially in the agriculture and renewable energy sectors, are important because of their intersectoral linkages within the economy. Many studies have shown that Brazil's fuel ethanol program has helped to realize multiple macroeconomic objectives. However, this is the first empirical study to quantify its household income effects. The ethanol industry generated the most household income of the energy sectors. The research confirms a key finding of the appropriate technology literature

  9. Model Evaluation and Uncertainty in Agricultural Impacts Assessments: Results and Strategies from the Agricultural Model Intercomparison and Improvement Project (AgMIP)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Hatfield, J.; Jones, J. W.; Ruane, A. C.

    2012-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is an international effort to assess the state of global agricultural modeling and to understand climate impacts on the agricultural sector. AgMIP connects the climate science, crop modeling, and agricultural economic modeling communities to generate probabilistic projections of current and future climate impacts. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. This presentation will describe the general approach of AgMIP, highlight AgMIP efforts to evaluate climate, crop, and economic models, and discuss AgMIP uncertainty assessments. Model evaluation efforts will be outlined using examples from various facets of AgMIP, including climate scenario generation, the wheat crop model intercomparison, and the global agricultural economics model intercomparison being led in collaboration with the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Strategies developed to quantify uncertainty in each component of AgMIP, as well as the propagation of uncertainty through the climate-crop-economic modeling framework, will be detailed and preliminary uncertainty assessments that highlight crucial areas requiring improved models and data collection will be introduced.

  10. Quantifying the Value of Satellite Imagery in Agriculture and other Sectors

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Abbott, P. C.; Escobar, V. M.

    2013-12-01

    This study focused on quantifying the commercial value of satellite remote sensing for agriculture. Commercial value from satellite imagery arises when improved information leads to better economic decisions. We identified five areas of application of remote sensing to agriculture where there is this potential: crop management (precision agriculture), insurance, real estate assessment, crop forecasting, and environmental monitoring. These applications can be divided between public information (crop forecasting) and those that may generate private commercial value (crop management), with both public and private information dimensions in some categories. Public information applications of remote sensing have been more successful in the past, and are likely to generate more economic value in the future. It was found that several issues have limited realization of the potential to generate private value from remote sensing in agriculture. The scale of use is small to the high cost of acquiring and interpreting large images has limited the cost effectiveness to individual farmers. Insurance, environmental monitoring, and crop management services by cooperatives or consultants may be cases overcoming this limitation. The greatest opportunities for potential commercial value from agriculture are probably in the crop forecasting area, especially where agricultural statistics services are not as well developed, since public market information benefits a broad range of economic actors, not limited to countries where forecasts are made. We estimate here the value from components of USDA's World Agricultural Supply and Demand Estimates (WASDE) forecasts for corn, indicating potential value increasing in the range of 60 to 240 million if improved satellite based information enhances those forecasts. The research was conducted by agricultural economists at Purdue University, and will be the basis for further evaluation of the use of satellite data within the NASA Carbon

  11. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Overview and Progress

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Hatfield, J.; Jones, J. W.; Ruane, A. C.

    2012-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is an international effort to assess the state of global agricultural modeling and to understand climate impacts on the agricultural sector. AgMIP connects the climate science, crop modeling, and agricultural economic modeling communities to generate probabilistic projections of current and future climate impacts. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. This presentation will describe the general approach of AgMIP and highlight its findings and activities. AgMIP crop model intercomparisons have been established for wheat (27 models participating), maize (25 models), and rice (15+ models), and are being established for sugarcane, soybean, sorghum/millet, and peanut. In coordination with these pilots, methodologies to utilize weather generators and downscaled climate simulations for agricultural applications are under development. An AgMIP global agricultural economics model intercomparison with participation of 11 international groups is ongoing, and a number of global biophysical models are currently being evaluated for future climate impacts on agricultural lands both as part of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) and for contribution to the IPCC Fifth Assessment Report (AR5). AgMIP is also organizing regional research efforts, and has already held workshops in South America, Sub-Saharan Africa, South Asia, Europe, and North America. Outcomes from these meetings have informed AgMIP activities, and 10 research teams from Sub-Saharan Africa and South Asia have been selected for project funding. Additional activities are planned for Australia and East Asia. As the AgMIP research community continues to work towards its goals, three key cross-cutting scientific challenges have emerged and are being

  12. Methodology for Modeling Building Energy Performance across the Commercial Sector

    SciTech Connect

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  13. How to engage across sectors: lessons from agriculture and nutrition in the Brazilian School Feeding Program

    PubMed Central

    Hawkes, Corinna; Brazil, Bettina Gerken; de Castro, Inês Rugani Ribeiro; Jaime, Patricia Constante

    2016-01-01

    ABSTRACT OBJECTIVE To provide insights for nutrition and public health practitioners on how to engage with other sectors to achieve public health goals. Specifically, this study provides lessons from the example of integrating family farming and a nutrition into a legal framework in Brazil on how to successfully shift other sectors toward nutrition goals. METHODS The study analyzed policy processes that led to a Brazilian law linking family farming with the National School Feeding Program. Main actors involved with the development of the law were interviewed and their narratives were analyzed using a well-established theoretical framework. RESULTS The study provides five key lessons for promoting intersectorality. First, nutrition and health practitioners can afford to embrace bold ideas when working with other sectors. Second, they should engage with more powerful sectors (or subsectors) and position nutrition goals as providing solutions that meet the interests of these sector. Third is the need to focus on a common goal – which may not be explicitly nutrition-related – as the focus of the intersectoral action. Fourth, philosophical, political, and governance spaces are needed to bring together different sectors. Fifth, evidence on the success of the intersectoral approach increases the acceptance of the process. CONCLUSIONS This study on policy processes shows how a convergence of factors enabled a link between family farming and school feeding in Brazil. It highlights that there are strategies to engage other sectors toward nutrition goals which provides benefits for all sectors involved. PMID:27533363

  14. Developing an Integrated Information System for the Food Sector. Agricultural Economic Report No. 575.

    ERIC Educational Resources Information Center

    Manchester, Alden

    This document proposes an information system for the food sector that integrates measures of prices, quantities, and values. It suggests that such an integrated information system provides more information about many developments in the food sector than a system that separately measures prices, quantities, or values. Concepts and approaches…

  15. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  16. ISI-MIP: The Inter-Sectoral Impact Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Huber, V.; Dahlemann, S.; Frieler, K.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.

    2013-12-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. The unique cross-sectoral scope of the project provides the opportunity to study cascading effects of impacts in interacting sectors and to identify regional 'hot spots' where multiple sectors experience extreme impacts. Another emphasis lies on the development of novel metrics to describe societal impacts of a warmer climate. We briefly outline the methodological framework, and then present selected results of the first, fast-tracked phase of ISI-MIP. The fast track brought together 35 global impact models internationally, spanning five sectors across human society and the natural world (agriculture, water, natural ecosystems, health and coastal infrastructure), and using the latest generation of global climate simulations (RCP projections from the CMIP5 archive) and socioeconomic drivers provided within the SSP process. We also introduce the second phase of the project, which will enlarge the scope of ISI-MIP by encompassing further impact sectors (e.g., forestry, fisheries, permafrost) and regional modeling approaches. The focus for the next round of simulations will be the validation and improvement of models based on historical observations and the analysis of variability and extreme events. Last but not least, we discuss the longer-term objective of ISI-MIP to initiate a coordinated, ongoing impact assessment process, driven by the entire impact community and in parallel with well-established climate model intercomparisons (CMIP).

  17. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    SciTech Connect

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2012-12-12

    The goal of this study is to develop a new bottom-up industry sector energy-modeling framework with an agenda of addressing least cost regional and global carbon reduction strategies, improving the capabilities and limitations of the existing models that allows trading across regions and countries as an alternative.

  18. White dwarfs constraints on dark sector models with light particles

    SciTech Connect

    Ubaldi, Lorenzo

    2014-06-24

    The white dwarf luminosity function is well understood in terms of standard model physics and leaves little room for exotic cooling mechanisms related to the possible existence of new weakly interacting light particles. This puts significant constraints on the parameter space of models that contain a massive dark photon and light dark sector particles.

  19. Catchment-scale evaluation of environmental regulations in the agricultural sector in Ireland (Invited)

    NASA Astrophysics Data System (ADS)

    Melland, A. R.; Jordan, P.; Mellander, P.; Wall, D. J.; Buckley, C.; Mechan, S.; Shortle, G.

    2010-12-01

    The European Union (EU) Nitrates Directive regulations in Ireland limits the use of agricultural fertilisers to agronomic optima and aims to minimise surplus phosphorus (P) and nitrogen (N) losses to the aquatic environment. The legislated measures include limits on nutrient application according to soil P status, crop type and livestock intensity and restricts chemical and organic fertiliser spreading and ploughing to periods of the year with typically lower exposure of nutrients to runoff and leaching. These agricultural policies are being evaluated in an Agricultural Catchments Programme in six representative catchments dominated by moderate to high intensity grassland and arable enterprises across Ireland (Fealy et al., 2010). An experimental programme has been established to provide a baseline of farm nutrient management and water body quality during the early years of the measures and to provide estimates of trajectories towards (or otherwise) water quality targets. A ‘nutrient transfer continuum’ from source, through pathways, to delivery and impact in a water body receptor describes the different phases of diffuse pollution and is being used as a framework for evaluation. Compliance with Irish standards at different levels of the continuum is being evaluated and demonstrative studies are being conducted to provide evidence of linkages between source and delivery to validate conceptual models of P and N transfers in time and space in each catchment. Source compliance is being evaluated through census soil testing and a survey of nutrient management practice and farmyard infrastructure. Mobilisation and pathways of nutrient transfers do not have chemical standards except where a groundwater body acts as both a receptor and a pathway. To demonstrate these linkages, however, representative groundwater pathways are being monitored through piezometer, chemical end-member and tracer studies, and surface water pathways are being evaluated through subcatchment

  20. Fatal work-related injuries in the agriculture production sector among youth in the United States, 1992-2002.

    PubMed

    Hard, David L; Myers, John R

    2006-01-01

    Youth working on farms face unique risks that are not present for many other young workers, including machinery, large animals, electrical hazards, chemical hazards and excessive noise. This research identified the number and rate of occupational fatalities for youth working in the agriculture production industry, which is most closely affiliated with farming, for the years 1992-2002. The Census of Fatal Occupational Injuries (CFOI), developed by the Bureau of Labor Statistics (BLS), was the database used for the analysis. There were 310 work-related deaths to youth less than 20 years of age from 1992 through 2002 in the agriculture production sector. This compares to 1,958 total fatalities for all workers less than 20 years of age for the same time period. The number of agricultural production fatalities to youth has shown a general downward trend over this time period. The rates were higher for young workers in agriculture production than for young workers in all industries by a factor of 3.6. Fifteen year olds had the highest fatality rates with the crop production sector having a rate six times that of all 15 year old workers. The objective of this descriptive research was to identify, prioritize and publicize the risks to children and youth who work on farms in order to provide public health and safety professionals relevant information upon which to base decisions for interventions or other prevention activities for this priority population. This research also has direct applications for farm parents and safety and health professionals who work with the priority population of young agricultural workers.

  1. Modeling of pesticide emissions from agricultural ecosystems

    NASA Astrophysics Data System (ADS)

    Li, Rong

    2012-04-01

    Pesticides are applied to crops and soils to improve agricultural yields, but the use of pesticides has become highly regulated because of concerns about their adverse effects on human health and environment. Estimating pesticide emission rates from soils and crops is a key component for risk assessment for pesticide registration, identification of pesticide sources to the contamination of sensitive ecosystems, and appreciation of transport and fate of pesticides in the environment. Pesticide emission rates involve processes occurring in the soil, in the atmosphere, and on vegetation surfaces and are highly dependent on soil texture, agricultural practices, and meteorology, which vary significantly with location and/or time. To take all these factors into account for simulating pesticide emissions from large agricultural ecosystems, this study coupled a comprehensive meteorological model with a dynamic pesticide emission model. The combined model calculates hourly emission rates from both emission sources: current applications and soil residues resulting from historical use. The coupled modeling system is used to compute a gridded (36 × 36 km) hourly toxaphene emission inventory for North America for the year 2000 using a published U.S. toxaphene residue inventory and a Mexican toxaphene residue inventory developed using its historical application rates and a cropland inventory. To my knowledge, this is the first such hourly toxaphene emission inventory for North America. Results show that modeled emission rates have strong diurnal and seasonal variations at a given location and over the entire domain. The simulated total toxaphene emission from contaminated agricultural soils in North America in 2000 was about 255 t, which compares reasonably well to a published annual estimate. Most emissions occur in spring and summer, with domain-wide emission rates in April, May and, June of 36, 51, and 35 t/month, respectively. The spatial distribution of emissions depends

  2. General and Partial Equilibrium Modeling of Sectoral Policies to Address Climate Change in the United States

    SciTech Connect

    Pizer, William; Burtraw, Dallas; Harrington, Winston; Newell, Richard; Sanchirico, James; Toman, Michael

    2003-03-31

    This document provides technical documentation for work using detailed sectoral models to calibrate a general equilibrium analysis of market and non-market sectoral policies to address climate change. Results of this work can be found in the companion paper, "Modeling Costs of Economy-wide versus Sectoral Climate Policies Using Combined Aggregate-Sectoral Model".

  3. A carbon footprint simulation model for the cork oak sector.

    PubMed

    Demertzi, Martha; Paulo, Joana Amaral; Arroja, Luís; Dias, Ana Cláudia

    2016-10-01

    In the present study, a simulation model for the calculation of the carbon footprint of the cork oak sector (CCFM) is developed for the first time. A life cycle approach is adopted including the forest management, manufacturing, use and end-of-life stages. CCFM allows the user to insert the cork type used as raw material and its respective quantity and the distances in-between the various stages. The user can choose among different end-of-life destination options for the used cork products. The option of inserting different inputs, allows the use of the present simulation model for different cork oak systems, in different countries and with different conditions. CCFM allows the identification of the stages and products with the greatest carbon footprint and thus, a better management of the sector from an environmental perspective. The Portuguese cork oak sector is used as an application example of the model. The results obtained showed that the agglomeration industry is the hotspot for the carbon footprint of the cork sector mainly due to the production of the resins that are mixed with the cork granules for the production of agglomerated cork products. The consideration of the biogenic carbon emissions and sequestration of carbon at the forest in the carbon footprint, resulted to a great decrease of the sector's carbon footprint. Future actions for improvement are suggested in order to decrease the carbon footprint of the entire cork sector. It was found that by decreasing by 10% the emission factor of the agglomeration and transformation industries, substituting the transport trucks by more recent ones and by decreasing by 10% the cork products reaching the landfilling end-of-life destinations (while increasing the quantities reaching incineration and recycling), a decrease of the total CF (excluding the biogenic emissions and sequestration) of the entire cork industry by 10% can be achieved.

  4. The U.S. Farm Sector in the Mid-1980's. Agricultural Economic Report Number 548.

    ERIC Educational Resources Information Center

    Reimund, Donn A.; And Others

    This report compares several farm characteristics of the mid-1980s with those of a decade earlier to document the real amount of change in the farm sector. Farms are stratified into five groups based on their farm income: rural residence, small family, family, large family, and very large. Sources and levels of farm operator income and wealth are…

  5. System Dynamics Modelling of the Power Sector in Mauritius

    NASA Astrophysics Data System (ADS)

    Deenapanray, Prakash N. K.; Bassi, Andrea M.

    2015-12-01

    A system dynamics model has been developed for the power sector of Mauritius, which captures a range of complex interactions between the economic, social and environmental aspects of the national economy, with deeper emphasis on the role of energy in these interactions. The model has been validated by replicating the historical trends of key development indicators, and its results were compared to the projections of the national utility company. The validation process shows that the model provides a faithful representation of the actual electricity sector of Mauritius, and can be easily adapted to the use of different assumptions. This paper describes the main characteristics of the model and its results as compared to electricity demand projections carried out by the Central Electricity Board to 2022. The results suggest that further analysis could be done to test alternative low carbon investment scenarios.

  6. Public sector administration of ecological economics systems using mediated modeling.

    PubMed

    van den Belt, Marjan; Kenyan, Jennifer R; Krueger, Elizabeth; Maynard, Alison; Roy, Matthew Galen; Raphael, Ian

    2010-01-01

    In today's climate of government outsourcing and multiple stakeholder involvement in public sector management and service delivery, it is more important than ever to rethink and redesign the structure of how policy decisions are made, implemented, monitored, and adapted to new realities. The traditional command-and-control approach is now less effective because an increasing amount of responsibility to deliver public goods and services falls on networks of nongovernment agencies. Even though public administrators are seeking new decision-making models in an increasingly more complex environment, the public sector currently only sparsely utilizes Mediated Modeling (MM). There is growing evidence, however, that by employing MM and similar tools, public interest networks can be better equipped to deal with their long-term viability while maintaining the short-term needs of their clients. However, it may require a shift in organizational culture within and between organizations to achieve the desired results. This paper explores the successes and barriers to implementing MM and similar tools in the public sector and offers insights into utilizing them through a review of case studies and interdisciplinary literature. We aim to raise a broader interest in MM and similar tools among public sector administrators at various administrative levels. We focus primarily, but not exclusively, on those cases operating at the interface of ecology and socio-economic systems.

  7. Multi-basin, Multi-sector Drought Economic Impact Model in Python: Development and Applications

    NASA Astrophysics Data System (ADS)

    Gutenson, J. L.; Zhu, L.; Ernest, A. N. S.; Oubeidillah, A.; Bearden, B.; Johnson, T. G.

    2015-12-01

    Drought is one of the most economically disastrous natural hazards, one whose impacts are exacerbated by the lack of abrupt onset and offset that define tornados and hurricanes. In the United States, about 30 billion dollars losses is caused by drought in 2012, resulting in widespread economic impacts for societies, industries, agriculture, and recreation. And in California, the drought cost statewide economic losses about 2.2 billion, with a total loss of 17,100 seasonal and part-time jobs. Driven by a variety of factors including climate change, population growth, increased water demands, alteration to land cover, drought occurs widely all over the world. Drought economic consequence assessment tool are greatly needed to allow decision makers and stakeholders to anticipate and manage effectively. In this study, current drought economic impact modeling methods were reviewed. Most of these models only deal with the impact in the agricultural sector with a focus on a single basin; few of these models analyze long term impact. However, drought impacts are rarely restricted to basin boundaries, and cascading economic impacts are likely to be significant. A holistic approach to multi-basin, multi-sector drought economic impact assessment is needed.In this work, we developed a new model for drought economic impact assessment, Drought Economic Impact Model in Python (PyDEM). This model classified all business establishments into thirteen categories based on NAICS, and using a continuous dynamic social accounting matrix approach, coupled with calculation of the indirect consequences for the local and regional economies and the various resilience. In addition, Environmental Policy Integrated Climate model was combined for analyzing drought caused soil erosion together with agriculture production, and then the long term impacts of drought were achieved. A visible output of this model was presented in GIS. In this presentation, Choctawhatchee-Pea-Yellow River Basins, Alabama

  8. Energy-economy interactions revisited within a comprehensive sectoral model

    SciTech Connect

    Hanson, D. A.; Laitner, J. A.

    2000-07-24

    This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

  9. Community Change and the Farm Sector: Impacts of Rural Development on Agriculture.

    ERIC Educational Resources Information Center

    Beaulieu, Lionel J.; Molnar, Joseph J.

    Findings from current literature form the basis for this examination of five critical elements of change and development within the local community setting which impact on agriculture: population, employment, land, water, and environment. Renewed rural population growth during the 1970's has reversed small farm trends but placed strains on local…

  10. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 2: Part 4, Transportation sector; Part 5, Forestry sector; Part 6, Agricultural sector

    SciTech Connect

    Not Available

    1994-10-01

    This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and address programmatic issues such as minimum reporting requirements, time parameters, international projects, confidentiality, and certification. Together, the General Guidelines and the guidance in these supporting documents will provide concepts and approaches needed to prepare the reporting forms. This second volume of sector-specific guidance covers the transportation sector, the forestry sector, and the agricultural sector.

  11. Agricultural model intercomparison and improvement project: Overview of model intercomparisons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvement of crop simulation models to better estimate growth and yield is one of the objectives of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The overall goal of AgMIP is to provide an assessment of crop model through rigorous intercomparisons and evaluate future clim...

  12. The agricultural model intercomparison and improvement project (AgMIP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agricultural sector faces the challenge of increasing production to provide food security for the projected human population of 9 billion by mid-century, while protecting the environment and the functioning of its ecosystems. These challenges are compounded by the need to adapt to climate change...

  13. Regulatory Information By Sector

    EPA Pesticide Factsheets

    Find environmental regulatory, compliance, & enforcement information for various business, industry and government sectors, listed by NAICS code. Sectors include agriculture, automotive, petroleum manufacturing, oil & gas extraction & other manufacturing

  14. Modeling the Heterogeneous Effects of GHG Mitigation Policies on Global Agriculture and Forestry

    NASA Astrophysics Data System (ADS)

    Golub, A.; Henderson, B.; Hertel, T. W.; Rose, S. K.; Sohngen, B.

    2010-12-01

    Agriculture and forestry are envisioned as potentially key sectors for climate change mitigation policy, yet the depth of analysis of mitigation options and their economic consequences remains remarkably shallow in comparison to that for industrial mitigation. Farming and land use change - much of it induced by agriculture -account for one-third of global greenhouse gas (GHG) emissions. Any serious attempt to curtail these emissions will involve changes in the way farming is conducted, as well as placing limits on agricultural expansion into areas currently under more carbon-intensive land cover. However, agriculture and forestry are extremely heterogeneous, both in the technology and intensity of production, as well as in the GHG emissions intensity of these activities. And these differences, in turn, give rise to significant changes in the distribution of agricultural production, trade and consumption in the wake of mitigation policies. This paper assesses such distributional impacts via a global economic analysis undertaken with a modified version of the GTAP model. The paper builds on a global general equilibrium GTAP-AEZ-GHG model (Golub et al., 2009). This is a unified modeling framework that links the agricultural, forestry, food processing and other sectors through land, and other factor markets and international trade, and incorporates different land-types, land uses and related CO2 and non-CO2 GHG emissions and sequestration. The economic data underlying this work is the global GTAP data base aggregated up to 19 regions and 29 sectors. The model incorporates mitigation cost curves for different regions and sectors based on information from the US-EPA. The forestry component of the model is calibrated to the results of the state of the art partial equilibrium global forestry model of Sohngen and Mendelson (2007). Forest carbon sequestration at both the extensive and intensive margins are modeled separately to better isolate land competition between

  15. Environmental and economic development consequences of forest and agricultural sector policies in Latin America (a synthesis of case studies of Costa Rica, Ecuador, and Bolivia)

    SciTech Connect

    Stewart, R.; Gibson, D.

    1994-04-15

    This paper draws heavily on the results of case studies in Bolivia, Costa Rica, and Ecuador to explain how sectoral policies have tilted land use decisions against forestry and in favor of agriculture, and to present estimates of the economic development effects of those decisions. The paper summarizes information on forests and forest industries of the three countries, and it describes the framework within which policies are designed. It presents the effects of sectoral policies on land use and forest management, and then quantifies and discusses economic costs of relevant sectoral policies. Conclusions and recommendations for policy reform are offered.

  16. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    SciTech Connect

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the

  17. Ergonomics Perspective in Agricultural Research: A User-Centred Approach Using CAD and Digital Human Modeling (DHM) Technologies

    NASA Astrophysics Data System (ADS)

    Patel, Thaneswer; Sanjog, J.; Karmakar, Sougata

    2016-09-01

    Computer-aided Design (CAD) and Digital Human Modeling (DHM) (specialized CAD software for virtual human representation) technologies endow unique opportunities to incorporate human factors pro-actively in design development. Challenges of enhancing agricultural productivity through improvement of agricultural tools/machineries and better human-machine compatibility can be ensured by adoption of these modern technologies. Objectives of present work are to provide the detailed scenario of CAD and DHM applications in agricultural sector; and finding out means for wide adoption of these technologies for design and development of cost-effective, user-friendly, efficient and safe agricultural tools/equipment and operator's workplace. Extensive literature review has been conducted for systematic segregation and representation of available information towards drawing inferences. Although applications of various CAD software have momentum in agricultural research particularly for design and manufacturing of agricultural equipment/machinery, use of DHM is still at its infancy in this sector. Current review discusses about reasons of less adoption of these technologies in agricultural sector and steps to be taken for their wide adoption. It also suggests possible future research directions to come up with better ergonomic design strategies for improvement of agricultural equipment/machines and workstations through application of CAD and DHM.

  18. Modelling income distribution impacts of water sector projects in Bangladesh.

    PubMed

    Ahmed, C S; Jones, S

    1991-09-01

    Dynamic analysis was conducted to assess the long-term impacts of water sector projects on agricultural income distribution, and sensitivity analysis was conducted to check the robustness of the 5 assumptions in this study of income distribution and water sector projects in Bangladesh. 7 transitions are analyzed for mutually exclusive irrigation and flooding projects: Nonirrigation to 1) LLP irrigation, 2) STW irrigation, 3) DTW irrigation, 4) major gravity irrigation, and manually operated shallow tubewell irrigation (MOSTI) and Flood Control Projects (FCD) of 6) medium flooded to shallow flooded, and 7) deeply flooded to shallow flooded. 5 analytical stages are involved: 1) farm budgets are derived with and without project cropping patterns for each transition. 2) Estimates are generated for value added/hectare from each transition. 3) Assumptions are made about the number of social classes, distribution of land ownership between classes, extent of tenancy for each social class, term of tenancy contracts, and extent of hiring of labor for each social class. 4) Annual value added/hectare is distributed among social classes. 5) Using Gini coefficients and simple ratios, the distribution of income between classes is estimated for with and without transition. Assumption I is that there are 4 social classes defined by land acreage: large farmers (5 acres), medium farmers (1.5-5.0), small farmers, (.01-1.49), and landless. Assumption II is that land distribution follows the 1978 Land Occupancy Survey (LOS). Biases, if any, are indicated. Assumption III is that large farmers sharecrop out 15% of land to small farmers. Assumption IV is that landlords provide nonirrigated crop land and take 50% of the crop, and, under irrigation, provide 50% of the fertilizer, pesticide, and irrigation costs and take 50% of the crop. Assumption V is that hired and family labor is assumed to be 40% for small farmers, 60% for medium farmers, and 80% for large farmers. It is understood that

  19. Spatial Modeling of Indian Agriculture, Economic Activity and Population under Climate Change

    NASA Astrophysics Data System (ADS)

    McCord, G. C.

    2010-12-01

    We present a spatial model of economic activity and human population built on physical geography that takes particular account of its effects through agricultural productivity and transport costs for trade. A major component of this work is an agricultural model, driven in part by high-resolution climate data and model output. We put forward India as the initial region for this modeling work; India is a relatively data-rich country, it exhibits significant within-country spatial and temporal variation in agricultural productivity, urbanization rates, and population growth rates, and the climate dynamics of the monsoon are well-studied and expected to change on decadal time scales. Agricultural productivity is modeled as a function of soil, climate, and technology variables. Farmers locate optimally given varying geography and transport costs; in turn, food availability defines urbanization rates and economic activity in non-agricultural sectors. This “social system” integrated assessment model is a step towards a valuable policy tool, but requires a significant mobilization of data and a grid-cell-level system of equations to describe the underlying dynamics of the model. We test against past trends of social-natural system progression in demography, human location, income, food production, etc., and argue that the model could be used to assess future trends under varying climate change scenarios, and eventually serve to model feedbacks through effects on migration, population growth rates, or economic activity.

  20. Effects of dynamic agricultural decision making in an ecohydrological model

    NASA Astrophysics Data System (ADS)

    Reichenau, T. G.; Krimly, T.; Schneider, K.

    2012-04-01

    Due to various interdependencies between the cycles of water, carbon, nitrogen, and energy the impacts of climate change on ecohydrological systems can only be investigated in an integrative way. Furthermore, the human intervention in the environmental processes makes the system even more complex. On the one hand human impact affects natural systems. On the other hand the changing natural systems have a feedback on human decision making. One of the most important examples for this kind of interaction can be found in the agricultural sector. Management dates (planting, fertilization, harvesting) are chosen based on meteorological conditions and yield expectations. A faster development of crops under a warmer climate causes shorter cropping seasons. The choice of crops depends on their profitability, which is mainly determined by market prizes, the agro-political framework, and the (climate dependent) crop yield. This study investigates these relations for the district Günzburg located in the Upper Danube catchment in southern Germany. The modeling system DANUBIA was used to perform dynamically coupled simulations of plant growth, surface and soil hydrological processes, soil nitrogen transformations, and agricultural decision making. The agro-economic model simulates decisions on management dates (based on meteorological conditions and the crops' development state), on fertilization intensities (based on yield expectations), and on choice of crops (based on profitability). The environmental models included in DANUBIA are to a great extent process based to enable its use in a climate change scenario context. Scenario model runs until 2058 were performed using an IPCC A1B forcing. In consecutive runs, dynamic crop management, dynamic crop selection, and a changing agro-political framework were activated. Effects of these model features on hydrological and ecological variables were analyzed separately by comparing the results to a model run with constant crop

  1. Shaping Collective Functions in Privatized Agricultural Knowledge and Information Systems: The Positioning and Embedding of a Network Broker in the Dutch Dairy Sector

    ERIC Educational Resources Information Center

    Klerkx, Laurens; Leeuwis, Cees

    2009-01-01

    This paper examines new organizational arrangements that have emerged in the context of a privatized extension system. It investigates the positioning and embedding of a network broker aimed at enhancing interaction in the privatized agricultural knowledge and information system (AKIS), to assess whether tensions reported in other sectors also…

  2. Higgs sector of the supersymmetric reduced 331 model

    NASA Astrophysics Data System (ADS)

    Ferreira, J. G., Jr.; Pires, C. A. de S.; da Silva, P. S. Rodrigues; Sampieri, A.

    2013-11-01

    A supersymmetric version of the recently proposed reduced minimal 331 model is considered and its Higgs sector is investigated. We focus on the mass spectrum of the lightest scalars of the model. We show that the Higgs mass of 125 GeV requires substantial radiative corrections. However, stops may develop small mixing and must have a mass around TeV. Moreover, some soft supersymmetry breaking terms may lie at the electroweak scale, which alleviates some tension concerning the fine-tuning of the related parameters. The lightest doubly charged scalar may have a mass of around a few hundreds of GeV, which can be probed at the LHC, while the remaining scalars of the model have masses at the TeV scale.

  3. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions--Application of system dynamics modeling for the case of Latvia.

    PubMed

    Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio

    2015-09-15

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to "neutralize" the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries.

  4. Agriculture

    EPA Pesticide Factsheets

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  5. Modeling technical change in climate analysis: evidence from agricultural crop damages.

    PubMed

    Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem

    2017-03-29

    This study accounts for the Hicks neutral technical change in a calibrated model of climate analysis, to identify the optimum level of technical change for addressing climate changes. It demonstrates the reduction to crop damages, the costs to technical change, and the net gains for the adoption of technical change for a climate-sensitive Pakistan economy. The calibrated model assesses the net gains of technical change for the overall economy and at the agriculture-specific level. The study finds that the gains of technical change are overwhelmingly higher than the costs across the agriculture subsectors. The gains and costs following technical change differ substantially for different crops. More importantly, the study finds a cost-effective optimal level of technical change that potentially reduces crop damages to a minimum possible level. The study therefore contends that the climate policy for Pakistan should consider the role of technical change in addressing climate impacts on the agriculture sector.

  6. Trends in multi-pollutant emissions from a technology-linked inventory for India: II. Residential, agricultural and informal industry sectors

    NASA Astrophysics Data System (ADS)

    Pandey, Apoorva; Sadavarte, Pankaj; Rao, Anand B.; Venkataraman, Chandra

    2014-12-01

    Dispersed traditional combustion technologies, characterized by inefficient combustion and significant emissions, are widely used in residential cooking and "informal industries" including brick production, food and agricultural product processing operations like drying and cooking operations related to sugarcane juice, milk, food-grain, jute, silk, tea and coffee. In addition, seasonal agricultural residue burning in field is a discontinuous source of significant emissions. Here we estimate fuel consumption in these sectors and agricultural residue burned using detailed technology divisions and survey-based primary data for 2010 and projected between 1996 and 2015. In the residential sector, a decline in the fraction of solid biomass users for cooking from 79% in 1996 to 65% in 2010 was offset by a growing population, leading to a nearly constant population of solid biomass users, with a corresponding increase in the population of LPG users. Emissions from agriculture followed the growth in agricultural production and diesel use by tractors and pumps. Trends in emissions from the informal industries sector followed those in coal combustion in brick kilns. Residential biomass cooking stoves were the largest contributors to emissions of PM2.5, OC, CO, NMVOC and CH4. Highest emitting technologies of BC were residential kerosene wick lamps. Emissions of SO2 were largely from coal combustion in Bull's trench kilns and other brick manufacturing technologies. Diesel use in tractors was the major source of NOx emissions. Uncertainties in emission estimates were principally from highly uncertain emission factors, particularly for technologies in the informal industries.

  7. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    SciTech Connect

    Not Available

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  8. The role of country-to-region assignments in global integrated modeling of energy, agriculture, land use, and climate

    NASA Astrophysics Data System (ADS)

    Kyle, P.; Patel, P.; Calvin, K. V.

    2014-12-01

    Global integrated assessment models used for understanding the linkages between the future energy, agriculture, and climate systems typically represent between 8 and 30 geopolitical macro-regions, balancing the benefits of geographic resolution with the costs of additional data collection, processing, analysis, and computing resources. As these models are continually being improved and updated in order to address new questions for the research and policy communities, it is worth examining the consequences of the country-to-region mapping schemes used for model results. This study presents an application of a data processing system built for the GCAM integrated assessment model that allows any country-to-region assignments, with a minimum of four geopolitical regions and a maximum of 185. We test ten different mapping schemes, including the specific mappings used in existing major integrated assessment models. We also explore the impacts of clustering nations into regions according to the similarity of the structure of each nation's energy and agricultural sectors, as indicated by multivariate analysis. Scenarios examined include a reference scenario, a low-emissions scenario, and scenarios with agricultural and buildings sector climate change impacts. We find that at the global level, the major output variables (primary energy, agricultural land use) are surprisingly similar regardless of regional assignments, but at finer geographic scales, differences are pronounced. We suggest that enhancing geographic resolution is advantageous for analysis of climate impacts on the buildings and agricultural sectors, due to the spatial heterogeneity of these drivers.

  9. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  10. Quality assurance of weather data for agricultural system model input

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...

  11. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; Asseng, S.; Basso, B.; Ewert, F.; Wallach, D.; Baigorria, G.; Winter, J. M.

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with

  12. Decadal Climate Information Needs of Stakeholders for Decision Support in Water and Agriculture Production Sectors: A Case Study in the Missouri River Basin

    NASA Astrophysics Data System (ADS)

    Mehta, V. M.; Knutson, C.; Rosenberg, N.

    2012-12-01

    Many decadal climate prediction efforts have been initiated under the World Climate Research Programme's Coupled Model Intercomparison Project 5. There is considerable ongoing discussion about model deficiencies, initialization techniques, and data requirements, but not much attention is being given to decadal climate information (DCI) needs of stakeholders for decision support. We report the results of exploratory activities undertaken to assess DCI needs in water resources and agriculture sectors, using the Missouri River Basin (the Basin) as a case study. This assessment was achieved through discussions with 120 representative stakeholders. Stakeholders' awareness of decadal dry and wet spells and their societal impacts in the Basin is established; and stakeholders' DCI needs and potential barriers to their use of DCI are enumerated. We find that impacts, including economic impacts, of DCV on water and agricultural production in the Basin are distinctly identifiable and characterizable. Stakeholders have clear notions about their needs for DCI and have offered specific suggestions as to how these might be met. But, while stakeholders are eager to have climate information, including decadal climate outlooks (DCOs), there are many barriers to the use of such information. The first and foremost is that the credibility of DCOs is yet to be established. Secondly, the nature of institutional rules and regulations, laws, and legal precedents that pose obstacles to the use of DCOs must be better understood and means to modify these, where possible, must be sought. For the benefit of climate scientists, these and other stakeholder needs will also be articulated in this talk. We are engaged in a project to assess simulation and hindcast skills of DCV phenomena and their associations with hydro-meteorological variability in the Basin in the HadCM3, GFDL-CM2.1, NCAR CCSM4, and MIROC5 global coupled models participating in the WCRP's CMIP5 project. Results from this project

  13. Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Jones, J.; Hatfield, J.; Antle, J. M.; Mutter, C.; Ruane, A. C.

    2013-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. Currently, AgMIP has over 575 participants from more than 45 countries contributing their expertise to over 30 projects and activities. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models with a strong grounding in observations of current agricultural systems around the world. The performance of agricultural models in current climate forms a key basis for our understanding of how crops will respond to future climate changes, and thus AgMIP has a particular focus on extreme heat and drought. Climate, crop model, economics, and information technology protocols are used to guide coordinated AgMIP research activities around the world, along with cross-cutting themes that address aggregation, uncertainty, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other global trends. Research activities include ongoing crop-specific assessments (e.g., maize, wheat, sugarcane, rice) and improvement activities, global gridded crop and economic model intercomparisons, and many other initiatives that allow for the better evaluation of the impacts of climate change on agricultural production and food security around the world. AgMIP activities are improving the representation of crop response to changing carbon dioxide, temperature extremes, and water

  14. Applying the World Water and Agriculture Model to Filling Scenarios for the Grand Ethiopian Renaissance Dam

    SciTech Connect

    Villa, Daniel L.; Tidwell, Vincent C.; Passell, Howard D.; Roberts, Barry L.

    2016-11-01

    The World Water and Agriculture Model has been used to simulate water, hydropower, and food sector effects in Egypt, Sudan, and Ethiopia during the filling of the Grand Ethiopian Renaissance Dam reservoir. This unique capability allows tradeoffs to be made between filling policies for the Grand Ethiopian Renaissance Dam reservoir. This Nile River Basin study is presented to illustrate the capacity to use the World Water and Agriculture Model to simulate regional food security issues while keeping a global perspective. The study uses runoff data from the Intergovernmental Panel for Climate Change Coupled Model Inter-comparison Project Phase 5 and information from the literature in order to establish a reasonable set of hydrological initial conditions. Gross Domestic Product and population growth are modelled exogenously based on a composite projection of United Nations and World Bank data. The effects of the Grand Ethiopian Renaissance Dam under various percentages of water withheld are presented.

  15. Building a Comprehensive Mill-Level Database for the Industrial Sectors Integrated Solutions (ISIS) Model of the U.S. Pulp and Paper Sector

    EPA Science Inventory

    The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant sector-based analyses that are performed in conjunction with ...

  16. Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree

    SciTech Connect

    Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal; Blanc, Elodie; Calvin, Katherine V.; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Lotze-Campen, Hermann; von Lampe, Martin; Mason d'Croz, Daniel; van Meijl, Hans; Mueller, C.; Reilly, J. M.; Robertson, Richard; Sands, Ronald; Schmitz, Christoph; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Willenbockel, Dirk

    2014-01-01

    Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.

  17. Evaluating the Impacts of Climate variability on Agriculture: an integrated modeling approach

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Miralles-Wilhelm, F. R.; Podestá, G. P.; Broad, K.; Letson, D.

    2005-05-01

    Climate variability is just one factor that affects agriculture, other factors such as socio-economic conditions, demographic changes, land use and land cover changes, and water allocation policies also have significant impacts. In this research, the exposure of Florida agriculture to multiple stresses is analyzed using an integrated modeling approach, based on system dynamics modeling principles. The model consists of five interacting sectors of population, land use, water use, pollution and economy. Land use is further divided into urban/industrial, farmland, commercial forest, and state forest. Water use consists of demand for domestic, industrial, agricultural, environmental, and recreational purposes. The framework of the model is described, and the results of alternate policy runs and a sensitivity analysis are presented. The integrated model is used to explore three policy scenarios. First, we explore if current trends of demographic change, water use and land use continue, what will happen under different climate variability scenarios (i.e., change in temperature and precipitation, both in time and space). Second, we explore scenarios with changes in water demand and supply through adding desalinization plants, reducing water losses, preserving water through efficient use, changing crop variety and pattern, and importing virtual water. Third, we explore scenarios based on land use changes considering land allocation for alternate uses (e.g., changing commercial forest to agricultural use) and changing land use within certain category (e.g., different crops within agricultural land use). The research advances work on estimating the impacts of climate variability on agriculture by considering dynamic interaction among multiple influencing factors. The results should help agencies involved in management of agriculture and water resources in Florida to develop policies for sustainable management of these resources.

  18. The Development Model Electronic Commerce of Regional Agriculture

    NASA Astrophysics Data System (ADS)

    Kang, Jun; Cai, Lecai; Li, Hongchan

    With the developing of the agricultural information, it is inevitable trend of the development of agricultural electronic commercial affairs. On the basis of existing study on the development application model of e-commerce, combined with the character of the agricultural information, compared with the developing model from the theory and reality, a new development model electronic commerce of regional agriculture base on the government is put up, and such key issues as problems of the security applications, payment mode, sharing mechanisms, and legal protection are analyzed, etc. The among coordination mechanism of the region is discussed on, it is significance for regulating the development of agricultural e-commerce and promoting the regional economical development.

  19. Tube vibration in a half-scale sector model of a helical tube steam generator

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.

    1983-12-01

    This paper presents the experimental technique and results of tests on a half-scale sector model of a steam generator helical coil tube bank. A series of tests was performed: (1) bench tests of a single helical tube in air; (2) tests of the sector model in air; (3) tests of the sector model in stationary water to determine natural frequencies and damping; (4) tests in flow. The experimental results reveal the general characteristics of the sector model and provide the information for the design evaluation of a helical tube array to avoid detrimental fluidelastic instability.

  20. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework.

    PubMed

    Warszawski, Lila; Frieler, Katja; Huber, Veronika; Piontek, Franziska; Serdeczny, Olivia; Schewe, Jacob

    2014-03-04

    The Inter-Sectoral Impact Model Intercomparison Project offers a framework to compare climate impact projections in different sectors and at different scales. Consistent climate and socio-economic input data provide the basis for a cross-sectoral integration of impact projections. The project is designed to enable quantitative synthesis of climate change impacts at different levels of global warming. This report briefly outlines the objectives and framework of the first, fast-tracked phase of Inter-Sectoral Impact Model Intercomparison Project, based on global impact models, and provides an overview of the participating models, input data, and scenario set-up.

  1. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  2. Phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  3. Modeling diffusion of electrical appliances in the residential sector

    SciTech Connect

    McNeil, Michael A.; Letschert, Virginie E.

    2009-11-22

    This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.

  4. Water Constraints in an Electric Sector Capacity Expansion Model

    SciTech Connect

    Macknick, Jordan; Cohen, Stuart; Newmark, Robin; Martinez, Andrew; Sullivan, Patrick; Tidwell, Vince

    2015-07-17

    This analysis provides a description of the first U.S. national electricity capacity expansion model to incorporate water resource availability and costs as a constraint for the future development of the electricity sector. The Regional Energy Deployment System (ReEDS) model was modified to incorporate water resource availability constraints and costs in each of its 134 Balancing Area (BA) regions along with differences in costs and efficiencies of cooling systems. Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013b). Scenarios analyzed include a business-as-usual 3 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. scenario without water constraints as well as four scenarios that include water constraints and allow for different cooling systems and types of water resources to be utilized. This analysis provides insight into where water resource constraints could affect the choice, configuration, or location of new electricity technologies.

  5. Model documentation report: Residential sector demand module of the national energy modeling system

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

  6. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector.

    PubMed

    Bustamante, Mercedes; Robledo-Abad, Carmenza; Harper, Richard; Mbow, Cheikh; Ravindranat, Nijavalli H; Sperling, Frank; Haberl, Helmut; Pinto, Alexandre de Siqueira; Smith, Pete

    2014-10-01

    The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces

  7. Integration of agricultural and energy system models for biofuel assessment

    EPA Science Inventory

    This paper presents a coupled modeling framework to capture the dynamic linkages between agricultural and energy markets that have been enhanced through the expansion of biofuel production, as well as the environmental impacts resulting from this expansion. The framework incorpor...

  8. Integrating seasonal climate prediction and agricultural models for insights into agricultural practice

    PubMed Central

    Hansen, James W

    2005-01-01

    Interest in integrating crop simulation models with dynamic seasonal climate forecast models is expanding in response to a perceived opportunity to add value to seasonal climate forecasts for agriculture. Integrated modelling may help to address some obstacles to effective agricultural use of climate information. First, modelling can address the mismatch between farmers' needs and available operational forecasts. Probabilistic crop yield forecasts are directly relevant to farmers' livelihood decisions and, at a different scale, to early warning and market applications. Second, credible ex ante evidence of livelihood benefits, using integrated climate–crop–economic modelling in a value-of-information framework, may assist in the challenge of obtaining institutional, financial and political support; and inform targeting for greatest benefit. Third, integrated modelling can reduce the risk and learning time associated with adaptation and adoption, and related uncertainty on the part of advisors and advocates. It can provide insights to advisors, and enhance site-specific interpretation of recommendations when driven by spatial data. Model-based ‘discussion support systems’ contribute to learning and farmer–researcher dialogue. Integrated climate–crop modelling may play a genuine, but limited role in efforts to support climate risk management in agriculture, but only if they are used appropriately, with understanding of their capabilities and limitations, and with cautious evaluation of model predictions and of the insights that arises from model-based decision analysis. PMID:16433092

  9. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  10. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison.

    PubMed

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C; Müller, Christoph; Arneth, Almut; Boote, Kenneth J; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A M; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W

    2014-03-04

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  11. Developing a model policy on youth employment in agriculture.

    PubMed

    Miller, Mary E; Lee, Barbara C

    2014-01-01

    The goal of this project was to develop a model policy that agricultural employers could adopt specific to youth employment, including age-appropriate assignments, training needs for adolescent workers, ideal supervision, and mentoring by adult workers. Methods included discussions at a national conference of agricultural employers, a survey of employers' perspectives on young workers, forming a task force to draft a model policy, and finalizing the policy document. The process resulted in a template that can be used by agricultural employers for immediate adoption, or to be customized and adapted for their unique company. Given new trends in agriculture to use certification systems, safety audits, and voluntary safety standards in addition to the regulatory process, there is value in having a voluntary "best practice" model policy that can be adopted in settings where safeguarding young farm workers is a priority.

  12. Innovation evaluation model for macro-construction sector companies: A study in Spain.

    PubMed

    Zubizarreta, Mikel; Cuadrado, Jesús; Iradi, Jon; García, Harkaitz; Orbe, Aimar

    2017-04-01

    The innovativeness of the traditional construction sector, composed of construction companies or contractors, is not one of its strong points. Likewise, its poor productivity in comparison with other sectors, such as manufacturing, has historically been criticized. Similar features are found in the Spanish traditional construction sector, which it has been described as not very innovative. However, certain characteristics of the sector may explain this behavior; the companies invest in R+D less than in other sectors and release fewer patents, so traditional innovation evaluation indicators do not reflect the true extent of its innovative activity. While previous research has focused on general innovation evaluation models, limited research has been done regarding innovation evaluation in the macro-construction sector, which includes, apart from the traditional construction companies or contractors, all companies related to the infrastructure life-cycle. Therefore, in this research an innovation evaluation model has been developed for macro-construction sector companies and is applied in the Spanish case. The model may be applied to the macro-construction sector companies in other countries, requiring the adaption of the model to the specific characteristics of the sector in that country, in consultation with a panel of experts at a national level.

  13. A Model for Education in Agriculture below College Level for Thailand with Emphasis on Education in Agriculture in the Private Agricultural School.

    ERIC Educational Resources Information Center

    Tesna, Dharm

    The purpose of the study was to develop a model for a privately supported institution teaching agriculture in Thailand. Information was obtained from related agencies in Thailand and international sources about the needs and problems of education in agriculture. The primary inquiry focused on the value of the education in agriculture to Thailand…

  14. Probabilistic assessment of agricultural droughts using graphical models

    NASA Astrophysics Data System (ADS)

    Ramadas, Meenu; Govindaraju, Rao S.

    2015-07-01

    Agricultural droughts are often characterized by soil moisture in the root zone of the soil, but crop needs are rarely factored into the analysis. Since water needs vary with crops, agricultural drought incidences in a region can be characterized better if crop responses to soil water deficits are also accounted for in the drought index. This study investigates agricultural droughts driven by plant stress due to soil moisture deficits using crop stress functions available in the literature. Crop water stress is assumed to begin at the soil moisture level corresponding to incipient stomatal closure, and reaches its maximum at the crop's wilting point. Using available location-specific crop acreage data, a weighted crop water stress function is computed. A new probabilistic agricultural drought index is then developed within a hidden Markov model (HMM) framework that provides model uncertainty in drought classification and accounts for time dependence between drought states. The proposed index allows probabilistic classification of the drought states and takes due cognizance of the stress experienced by the crop due to soil moisture deficit. The capabilities of HMM model formulations for assessing agricultural droughts are compared to those of current drought indices such as standardized precipitation evapotranspiration index (SPEI) and self-calibrating Palmer drought severity index (SC-PDSI). The HMM model identified critical drought events and several drought occurrences that are not detected by either SPEI or SC-PDSI, and shows promise as a tool for agricultural drought studies.

  15. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  16. Modelling pollination services across agricultural landscapes

    PubMed Central

    Lonsdorf, Eric; Kremen, Claire; Ricketts, Taylor; Winfree, Rachael; Williams, Neal; Greenleaf, Sarah

    2009-01-01

    Background and Aims Crop pollination by bees and other animals is an essential ecosystem service. Ensuring the maintenance of the service requires a full understanding of the contributions of landscape elements to pollinator populations and crop pollination. Here, the first quantitative model that predicts pollinator abundance on a landscape is described and tested. Methods Using information on pollinator nesting resources, floral resources and foraging distances, the model predicts the relative abundance of pollinators within nesting habitats. From these nesting areas, it then predicts relative abundances of pollinators on the farms requiring pollination services. Model outputs are compared with data from coffee in Costa Rica, watermelon and sunflower in California and watermelon in New Jersey–Pennsylvania (NJPA). Key Results Results from Costa Rica and California, comparing field estimates of pollinator abundance, richness or services with model estimates, are encouraging, explaining up to 80 % of variance among farms. However, the model did not predict observed pollinator abundances on NJPA, so continued model improvement and testing are necessary. The inability of the model to predict pollinator abundances in the NJPA landscape may be due to not accounting for fine-scale floral and nesting resources within the landscapes surrounding farms, rather than the logic of our model. Conclusions The importance of fine-scale resources for pollinator service delivery was supported by sensitivity analyses indicating that the model's predictions depend largely on estimates of nesting and floral resources within crops. Despite the need for more research at the finer-scale, the approach fills an important gap by providing quantitative and mechanistic model from which to evaluate policy decisions and develop land-use plans that promote pollination conservation and service delivery. PMID:19324897

  17. Automated canopy estimator (ACE): Enhancing crop modelling and decision making in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Caribbean agriculture sector is dominated by small holdings, which are overly reliant on rainfall and highly dependent on manual means of optimization. The sector is therefore very vulnerable to the vagaries of climate variability and change, with rainfall variations being of particular concern...

  18. UNIVERSAL INDUSTRIAL SECTORS INTEGRATED SOLUTIONS MODEL FOR PULP AND PAPER MANUFACTURING INDUSTRY – UISIS-PNP

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has developed a model for the pulp and paper sector that provides an integrated approach for investigating, developing, and evaluating strategies for reducing the emissions of interest. The Universal Industrial Sectors Integrated Sol...

  19. Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan

    NASA Astrophysics Data System (ADS)

    Irfan, Muhammad; Riaz, Muhammad; Arif, Muhammad Saleem; Shahzad, Sher Muhammad; Saleem, Farhan; -Rahman, Naveed-ur; van den Berg, Leon; Abbas, Farhat

    2014-02-01

    A long-term energy crisis has resulted in increased combustion of biomass fuel in industrial and household sectors in Pakistan. We report results of a study on the emission characteristics of rice husk, rice straw, corncobs and bagasse since they are frequently used as biomass fuel and differed remarkably in physico-chemical and combustion characteristics. Emission concentrations and emission factors were determined experimentally by burning the biomass fuel using a burning tower. Modified combustion efficiency (MCE) of rice husk, rice straw, corncobs and bagasse was >0.97 indicating that combustion was dominated by flaming mode. Emission factors of gaseous pollutants CO, CO2, NO2, NO, NOx and SO2 for rice straw were calculated to be 17.19 ± 0.28, 1090.07 ± 24.0, 0.89 ± 0.03, 1.48 ± 0.04, 3.16 ± 0.08 and 0.38 ± 0.03 g kg-1 respectively which were significantly (p < 0.05) higher compared to those from rice husk (14.05 ± 0.18, 880.48 ± 8.99, 0.19 ± 0.01, 1.38 ± 0.02, 2.31 ± 0.04 and 0.11 ± 0.03 g kg-1), corncobs (8.63 ± 0.12, 595.44 ± 10.38, 0.16 ± 0.01, 0.70 ± 0.01, 1.23 ± 0.02 and 0.02 ± 0.00 g kg-1) and bagasse (12.39 ± 0.08, 937.03 ± 9.07, 0.36 ± 0.03, 1.44 ± 0.02, 2.57 ± 0.04 and 0.18 ± 0.02 g kg-1). Total emissions of CO, CO2, NO2, NO, NOx and SO2 were estimated to be 3.68, 230.51, 0.05, 0.36, 0.60 and 0.03 Gg for rice husk, 33.75, 2140.35, 1.75, 2.91, 6.20 and 0.75 Gg for rice straw, 1.11, 76.28, 0.02, 0.02 and 0.03 Gg for corncobs and 42.12, 3185.53, 1.22, 4.90, 8.74 and 0.61 Gg for bagasse respectively. Rice straw, however, had significantly (p < 0.05) higher potential of gaseous pollutant emission factors. Bagasse had the highest values of total emissions followed by rice straw, rice husk and corncobs. Rice straw and bagasse, on cumulative basis, contributed more than 90% of total emissions of gaseous pollutants. Results reported in this study are important in formulating provincial and regional emission budgets of gaseous pollutants

  20. Ecohydrological modeling: the consideration of agricultural trees is essential in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; von Bloh, Werner; Shi, Sinan; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall and direct degradation of ecosystems. Human population growth and socioeconomic changes, notably on the Eastern and Southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive ecohydrological model. Here we present here the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL, "Lund-Potsdam-Jena managed Land"): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was then successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. A first application of the model indicates that, currently, agricultural trees consume in average more irrigation water per hectare than annual crops. Also, different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. This is very relevant since the Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 74% from climate change and population growth if irrigation systems and conveyance are not improved. Additionally, future water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios by the end of the century (1). The importance of including agricultural trees in the ecohydrological models is also shown in the results concerning soil organic carbon (SOC). Since in former model

  1. A basket two-part model to analyze medical expenditure on interdependent multiple sectors.

    PubMed

    Sugawara, Shinya; Wu, Tianyi; Yamanishi, Kenji

    2016-09-01

    This study proposes a novel statistical methodology to analyze expenditure on multiple medical sectors using consumer data. Conventionally, medical expenditure has been analyzed by two-part models, which separately consider purchase decision and amount of expenditure. We extend the traditional two-part models by adding the step of basket analysis for dimension reduction. This new step enables us to analyze complicated interdependence between multiple sectors without an identification problem. As an empirical application for the proposed method, we analyze data of 13 medical sectors from the Medical Expenditure Panel Survey. In comparison with the results of previous studies that analyzed the multiple sector independently, our method provides more detailed implications of the impacts of individual socioeconomic status on the composition of joint purchases from multiple medical sectors; our method has a better prediction performance.

  2. General structure of democratic mass matrix of quark sector in E6 model

    NASA Astrophysics Data System (ADS)

    Ciftci, R.; ćiftci, A. K.

    2016-03-01

    An extension of the Standard Model (SM) fermion sector, which is inspired by the E6 Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.

  3. Scale Issues in Modeling the Water Resources Sector in National Economic Models: A Case study of China

    NASA Astrophysics Data System (ADS)

    Strzepek, K. M.; Kirshen, P.; Yohe, G.

    2001-05-01

    unable to find any global or regional datasets of groundwater.. Combining Surface and Groundwater Supply Functions Water Demand Curves. Water Use data is reported on political regions. Water Supply is reported and modeled on river basin regions. It is necessary to allocate water demands to river basins. To accomplish this China's 9 major river basins were divided into 36 hydroeconomic regions. The counties were then allocated to one of the 36-hydroeconomic zones. The county-level water use data was aggregated to 5 major water use sectors: 1)industry; 2)urban municipal and vegetable gardens: 3) major irrigation; 4) Energy and 5)Other agriculture (forestry, pasture; fishery). Sectoral Demand functions that include price and income elasticity were developed for the 5 sectors for each of the 9 major river basin. The supply and demand curves were aggregated at a variety of geographical scales as well as levels of economic sectoral aggregation. Implications for investment and sustainable development policies were examined for the various aggregation using partial and general equilibrium modeling of the Chinese economy. These results and policy implications for China as well as insights and recommendation for other developing countries will be presented.

  4. Building a Comprehensive Mill-Level Database for the Industrial Sectors Integrated Solutions (ISIS) Model of the U.S. Pulp and Paper Sector

    PubMed Central

    Modak, Nabanita; Spence, Kelley; Sood, Saloni; Rosati, Jacky Ann

    2015-01-01

    Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector. PMID:25806516

  5. Building a comprehensive mill-level database for the Industrial Sectors Integrated Solutions (ISIS) model of the U.S. pulp and paper sector.

    PubMed

    Modak, Nabanita; Spence, Kelley; Sood, Saloni; Rosati, Jacky Ann

    2015-01-01

    Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector.

  6. Modeling global distribution of agricultural insecticides in surface waters.

    PubMed

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts.

  7. Greenhouse gas mitigation options in the forestry sector of The Gambia: Analysis based on COMAP model

    SciTech Connect

    Jallow, B.P.

    1996-12-31

    Results of the 1993 Greenhouse Gas Emissions Inventory of The Gambia showed net CO{sub 2} emissions of over (1.66 x 10{sup 6} tons) and 1% was due to uptake by plantations (0.01 x 10{sup 6} tons). This is a clear indication that there is need to identify changes in the land-use policy, law and tenure that discourages forest clearing at the same time significantly influencing the sustainable distribution of land among forestry, rangeland and livestock, and agriculture. About 11% of the total area of The Gambia is either fallow or barren flats that once supported vegetation and hence is still capable of supporting vegetation. The US Country Study Programme has provided the Government of The Gambia through the National Climate Committee funds to conduct Assessment of Mitigation Options to Reduce Greenhouse Gas Emissions. The Forestry Sector is one area for which assessment is being conducted. The assessment is expected to end in September 1996. The Comprehensive Mitigation Analysis Process (COMAP) is one of the Models supplied to the National Climate Committee by the Lawrence Berkeley Laboratory, on behalf of the US Country Study Programme, and is being used to conduct the analysis in The Gambia.

  8. Incorporating agricultural land cover in conceptual rainfall runoff models

    NASA Astrophysics Data System (ADS)

    Euser, Tanja; Hrachowitz, Markus; Winsemius, Hessel; Savenije, Hubert

    2015-04-01

    Incorporating spatially variable information is a frequently discussed option to increase the performance of (semi) distributed conceptual rainfall runoff models. One of the methods to do this is by using these spatially variable information to delineate Hydrological Response Units (HRUs) within a catchment. This study tests whether the incorporation of an additional agricultural HRU in a conceptual hydrological model can better reflect the spatial differences in runoff generation and therefore improve the simulation of the wetting phase in autumn. The study area is the meso-scale Ourthe catchment in Belgium. A previous study in this area showed that spatial patterns in runoff generation were already better represented by incorporation of a wetland and a hillslope HRU, compared to a lumped model structure. The influences which are considered by including an agriculture HRU are increased drainage speed due to roads, plough pans and increased infiltration excess overland flow (drainage pipes area only limited present), and variable vegetation patterns due to sowing and harvesting. In addition, the vegetation is not modelled as a static resistance towards evaporation, but the Jarvis stress functions are used to increase the realism of the modelled transpiration; in land-surface models the Jarvis stress functions are already often used for modelling transpiration. The results show that an agricultural conceptualisation in addition to wetland and hillslope conceptualisations leads to small improvements in the modelled discharge. However, the influence is larger on the representation of spatial patterns and the modelled contributions of different HRUs to the total discharge.

  9. Wisconsin's Model Academic Standards for Agricultural Education. Bulletin No. 9003.

    ERIC Educational Resources Information Center

    Fortier, John D.; Albrecht, Bryan D.; Grady, Susan M.; Gagnon, Dean P.; Wendt, Sharon, W.

    These model academic standards for agricultural education in Wisconsin represent the work of a task force of educators, parents, and business people with input from the public. The introductory section of this bulletin defines the academic standards and discusses developing the standards, using the standards, relating the standards to all…

  10. Agricultural Model for the Nile Basin Decision Support System

    NASA Astrophysics Data System (ADS)

    van der Bolt, Frank; Seid, Abdulkarim

    2014-05-01

    To analyze options for increasing food supply in the Nile basin the Nile Agricultural Model (AM) was developed. The AM includes state-of-the-art descriptions of biophysical, hydrological and economic processes and realizes a coherent and consistent integration of hydrology, agronomy and economics. The AM covers both the agro-ecological domain (water, crop productivity) and the economic domain (food supply, demand, and trade) and allows to evaluate the macro-economic and hydrological impacts of scenarios for agricultural development. Starting with the hydrological information from the NileBasin-DSS the AM calculates the available water for agriculture, the crop production and irrigation requirements with the FAO-model AquaCrop. With the global commodity trade model MAGNET scenarios for land development and conversion are evaluated. The AM predicts consequences for trade, food security and development based on soil and water availability, crop allocation, food demand and food policy. The model will be used as a decision support tool to contribute to more productive and sustainable agriculture in individual Nile countries and the whole region.

  11. Econometrics and data of the 9 sector Dynamic General Equilibrium Model. Volume III. Final report

    SciTech Connect

    Berndt, E.R.; Fraumeni, B.M.; Hudson, E.A.; Jorgenson, D.W.; Stoker, T.M.

    1981-03-01

    This report presents the econometrics and data of the 9 sector Dynamic General Equilibrium Model. There are two key components of 9DGEM - the model of household behavior and the model of produconcrneer behavior. The household model is concerned with decisions on consumption, saving, labor supply and the composition of consumption. The producer model is concerned with output price formation and determination of input patterns and purchases for each of the nine producing sectors. These components form the behavioral basis of DGEM. The remaining components are concerned with constraints, balance conditions, accounting, and government revenues and expenditures (these elements are developed in the report on the model specification).

  12. Modeling Sustainable Agricultural Residue Removal at the Subfield Scale

    SciTech Connect

    Muth, D.J.; McCorkle, D.S.; Koch, J.B.; Bryden, K.M.

    2012-05-02

    This study developed a computational strategy that utilizes data inputs from multiple spatial scales to investigate how variability within individual fields can impact sustainable residue removal for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in limiting soil erosion and maintaining soil C, health, and productivity. Increased availability of subfield-scale data sets such as grain yield data, high-fidelity digital elevation models, and soil characteristic data provides an opportunity to investigate the impacts of subfield-scale variability on sustainable agricultural residue removal. Using three representative fields in Iowa, this study contrasted the results of current NRCS conservation management planning analysis with subfield-scale analysis for rake-and-bale removal of agricultural residue. The results of the comparison show that the field-average assumptions used in NRCS conservation management planning may lead to unsustainable residue removal decisions for significant portions of some fields. This highlights the need for additional research on subfield-scale sustainable agricultural residue removal including the development of real-time variable removal technologies for agricultural residue.

  13. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect

    1995-02-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  14. Agrochemical fate models applied in agricultural areas from Colombia

    NASA Astrophysics Data System (ADS)

    Garcia-Santos, Glenda; Yang, Jing; Andreoli, Romano; Binder, Claudia

    2010-05-01

    The misuse application of pesticides in mainly agricultural catchments can lead to severe problems for humans and environment. Especially in developing countries where there is often found overuse of agrochemicals and incipient or lack of water quality monitoring at local and regional levels, models are needed for decision making and hot spots identification. However, the complexity of the water cycle contrasts strongly with the scarce data availability, limiting the number of analysis, techniques, and models available to researchers. Therefore there is a strong need for model simplification able to appropriate model complexity and still represent the processes. We have developed a new model so-called Westpa-Pest to improve water quality management of an agricultural catchment located in the highlands of Colombia. Westpa-Pest is based on the fully distributed hydrologic model Wetspa and a fate pesticide module. We have applied a multi-criteria analysis for model selection under the conditions and data availability found in the region and compared with the new developed Westpa-Pest model. Furthermore, both models were empirically calibrated and validated. The following questions were addressed i) what are the strengths and weaknesses of the models?, ii) which are the most sensitive parameters of each model?, iii) what happens with uncertainties in soil parameters?, and iv) how sensitive are the transfer coefficients?

  15. Modeling Agriculture and Land Use in an Integrated Assessment Framework

    SciTech Connect

    Sands, Ronald D.; Leimbach, Marian

    2003-01-01

    The Agriculture and Land Use (AgLU) model is a top-down economic model with just enough structure to simulate global land use change and the resulting carbon emissions over one century. These simulations are done with and without a carbon policy represented by a positive carbon price. Increases in the carbon price create incentives for production of commercial biomass that affect the distribution of other land types and, therefore, carbon emissions from land use change. Commercial biomass provides a link between the agricultural and energy systems. The ICLIPS core model uses AgLU to provide estimates of carbon emissions from land use change as one component of total greenhouse gas emissions.

  16. A two-sector model of land use and deforestation: Funding urban development with a tax on urban and rural employment

    SciTech Connect

    Jones, D.W.; O'Neill, R.V.

    1992-07-17

    We model a small country with an urban manufacturing sector and a rural agricultural sector. Government taxes rural and urban employment to finance urban infrastructure which contributes to urban production. The manufacturing wage is fixed, leading to urban unemployment. Expansion of cultivated area involves deforestation at frontiers. An increment to urban infrastructure may draw resources into the city but a large enough addition to infrastructure may cause the tax rate to rise by more than urban labor productivity, which would exacerbate frontier deforestation. Improvement of rural transportation raises rural wages, reduces the urban unemployment rate, and extends the area under cultivation, causing deforestation; it also reduces the employment tax rate, which permits expansion of fixed-wage urban manufacturing. Such a wide, sectoral distribution of benefits may help explain the popularity of such policies despite their damage to frontier forest resources.

  17. Agricultural and Environmental Input Parameters for the Biosphere Model

    SciTech Connect

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  18. Climate Risk Management and Decision Support Tools for the Agriculture Sector in Lao PDR, Bangladesh, and Indonesia

    NASA Astrophysics Data System (ADS)

    Allis, E. C.; Greene, A. M.; Cousin, R.

    2014-12-01

    We describe a comprehensive project for developing climate information and decision support / climate risk management tools in Lao PDR, Bangladesh and Indonesia. Mechanisms are developed for bringing the benefits of these tools to both policy makers and poor rural farmers, with the goal of enabling better management, at the farm level, of the risks associated with climate variability and change. The project comprises several interwoven threads, differentially applied in the different study regions. These include data management and quality control, development of seasonal forecast capabilities, use of dynamic cropping calendars and climate advisories, the development of longer-term climate information for both past and future and a weather index insurance component. Stakeholder engagement and capacity building served as reinforcing and complementary elements to all components. In this talk we will provide a project overview, show how the various components fit together and describe some lessons learned in this attempt to promote the uptake of actionable climate information from farmer to policy level. The applied research project was led by the International Research Institute for Climate and Society (IRI) at Columbia University with funding from the International Fund for Agriculture Development (IFAD) and in close collaboration with our regional partners at the Centre for Climate Risk and Opportunity Management in Southeast Asia Pacific (at Bogor Agricultural University in Indonesia), Indonesia's National Agency for Meteorology, Climatology and Geophysics (BMKG), Lao PDR's National Agriculture and Forestry Research Institute (NAFRI), Laotian Department of Meteorology and Hydrology (DMH), WorldFish Center, Bangladesh Meteorology Department (BMD), and CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

  19. Toward a New Generation of Agricultural System Data, Models, and Knowledge Products: State of Agricultural Systems Science

    NASA Technical Reports Server (NTRS)

    Jones, James W.; Antle, John M.; Basso, Bruno; Boote, Kenneth J.; Conant, Richard T.; Foster, Ian; Godfray, H. Charles J.; Herrero, Mario; Howitt, Richard E.; Janssen, Sander; Keating, Brian A.; Munoz-Carpena, Rafael; Porter, Cheryl H.; Rosenzweig, Cynthia; Wheeler, Tim R.

    2016-01-01

    We review the current state of agricultural systems science, focusing in particular on the capabilities and limitations of agricultural systems models. We discuss the state of models relative to five different Use Cases spanning field, farm, landscape, regional, and global spatial scales and engaging questions in past, current, and future time periods. Contributions from multiple disciplines have made major advances relevant to a wide range of agricultural system model applications at various spatial and temporal scales. Although current agricultural systems models have features that are needed for the Use Cases, we found that all of them have limitations and need to be improved. We identified common limitations across all Use Cases, namely 1) a scarcity of data for developing, evaluating, and applying agricultural system models and 2) inadequate knowledge systems that effectively communicate model results to society. We argue that these limitations are greater obstacles to progress than gaps in conceptual theory or available methods for using system models. New initiatives on open data show promise for addressing the data problem, but there also needs to be a cultural change among agricultural researchers to ensure that data for addressing the range of Use Cases are available for future model improvements and applications. We conclude that multiple platforms and multiple models are needed for model applications for different purposes. The Use Cases provide a useful framework for considering capabilities and limitations of existing models and data.

  20. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  1. A general holographic insulator/superconductor model with dark matter sector away from the probe limit

    NASA Astrophysics Data System (ADS)

    Peng, Yan; Pan, Qiyuan; Liu, Yunqi

    2017-02-01

    We investigate holographic phase transitions with dark matter sector in the AdS soliton background away from the probe limit. In cases of weak backreaction, we find that the larger coupling parameter α makes the gap of condensation shallower and the critical chemical potential keeps as a constant. In contrast, for very heavy backreaction, the dark matter sector could affect the critical chemical potential and the order of phase transitions. We also find the jump of the holographic topological entanglement entropy corresponds to a first order transition between superconducting states in this model with dark matter sector. More importantly, for certain sets of parameters, we observe novel phenomenon of retrograde condensation. In a word, the dark matter sector provides richer physics in the phase structure and the holographic superconductor properties are helpful in understanding dark matter.

  2. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  3. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect

    1995-03-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  4. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  5. Modeling of Internal State and Performance of an Ironmaking Blast Furnace: Slot vs Sector Geometries

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing

    2016-04-01

    Mathematical modeling is a cost-effective method to understand internal state and predict performance of ironmaking blast furnace (BF) for improving productivity and maintaining stability. In the past studies, both slot and sector geometries were used for BF modeling. In this paper, a mathematical model is described for simulating the complex behaviors of solid, gas and liquid multiphase flow, heat and mass transfers, and chemical reactions in a BF. Then the model is used to compare different model configurations, viz. slot and sector geometries by investigating their effects on predicted behaviors, in terms of two aspects: (i) internal state including cohesive zone, velocity, temperature, components concentration, reduction degree, gas utilization, and (ii) performance indicators including liquid output at the bottom and gas utilization rate at the furnace top. The comparisons show that on one hand, predictions of internal state of the furnace such as fluid flow and thermo-chemical phenomena using the slot and sector geometries are qualitatively comparable but quantitatively different. Both sector and slot geometries give a similar cohesive zone shape but the sector geometry gives a higher cohesive zone near the wall and faster reduction. On the other hand, the two geometries can produce similar performance indicators including gas utilization at the furnace top and liquid output at the bottom. Such a study is useful in selecting geometry for numerically examining BF operation with respect to different needs.

  6. Urban Agriculture Programs on the Rise: Agriculture Education Model Can Reach Students Other Classes Leave Behind

    ERIC Educational Resources Information Center

    Fritsch, Julie M.

    2013-01-01

    Agricultural education begins with hands-on classroom and laboratory instruction. Because agriculture is such a broad topic, schools typically tailor agriculture class offerings to match the interests of the student population, needs of nearby businesses and industry, or topics relevant to their state's standard assessments. Within most…

  7. Modelling tools to support the harmonization of Water Framework Directive and Common Agricultural Policy

    NASA Astrophysics Data System (ADS)

    Tediosi, A.; Bulgheroni, C.; Sali, G.; Facchi, A.; Gandolfi, C.

    2009-04-01

    After a few years from the delivery of the EU Water Framework Directive (WFD) the need to link agriculture and WFD has emerged as one of the highest priorities; therefore, it is important to discuss on how the EU Common Agricultural Policy (CAP) can contribute to the achievements of the WFD objectives. The recent CAP reform - known as Mid Term Review (MTR) or Fischler Reform - has increased the opportunities, offering to farmers increased support to address some environmental issues. The central novelty coming from the MTR is the introduction of a farm single payment which aims to the Decoupling of EU Agricultural Support from production. Other MTR important topics deal with the Modulation of the payments, the Cross-Compliance and the strengthening of the Rural Development policy. All these new elements will affect the farmers' behaviour, steering their productive choices for the future, which, in turn, will have consequences on the water demand for irrigation. Indeed, from the water quantity viewpoint, agriculture is a large consumer and improving water use efficiency is one of the main issues at stake, following the increasing impacts of water scarcity and droughts across Europe in a context of climate change. According to a recent survey of the European Commission the saving potential in the agricultural sector is 43% of present abstraction and 95% of it is concentrated in southern europe. Many models have been developed to forecast the farmers' behaviour as a consequence of agricultural policies, both at sector and regional level; all of them are founded on Mathematical Programming techniques and many of them use the Positive approach, which better fits the territorial dimension. A large body of literature also exists focusing on the assessment of irrigation water requirements. The examples of conjunctive modelling of the two aspects are however much more limited. The work presented has got some innovative aspects: not only does it couple an economical model

  8. Simulation modelling for resource allocation and planning in the health sector.

    PubMed

    Lehaney, B; Hlupic, V

    1995-12-01

    This paper provides a review of the use of simulation for resource planning in the health sector. Case examples of simulation in health are provided, and the modelling problems are explored. The successes and failures of simulation modelling in this context are examined, and an approach for improving the processes, and outcomes, by the use of soft systems methodology, is suggested.

  9. A Regional Model for Seasonal Sea Ice Prediction in the Pacific Sector of the Arctic

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Li, Y.; Chen, D.; Zhang, Q.; Li, C.; Niu, F.; Sun, Y.

    2015-12-01

    The recent results from a linear Markov model for seasonal prediction of pan-Arctic sea ice concentration (SIC) show that sea ice in the Pacific sector has the lowest predictability compared to other regions. One reason could be that the climate variability in the Atlantic sector is so dominant that other signals in the Arctic climate system do not appear in the leading modes used for model construction. This study develops a regional Markov model to improve seasonal forecasting of SIC in the Pacific sector. The model climate system consists of various combinations of the monthly mean series of SIC, sea surface temperature (SST), surface air temperature (SAT), pressure/geopotential height fields and winds at pressure levels. Multivariate empirical orthogonal functions (MEOF) and rotated MEOF are applied to each set of data to reduce the model dimensions. After a series of experiments, the final model configuration selects 23 rotated MEOF modes from a data matrix of three variables (SIC, SST and SAT). This regional model shows considerable improvement in the prediction skill in the Pacific sector in all seasons. The anomaly correlation skill increases by 0.2 at 1- to 4-month leads in the Bering Sea, and by 0.1 at 1- to 10-month leads in the Sea of Okhotsk. In general, the model performs better in summer and fall than in winter and spring. On average, the correlation skill can reach 0.6 at a 2-month (4-month) lead in the Bering Sea (the Sea of Okhotsk).

  10. Assessing and modelling ecohydrologic processes at the agricultural field scale

    NASA Astrophysics Data System (ADS)

    Basso, Bruno

    2015-04-01

    One of the primary goals of agricultural management is to increase the amount of crop produced per unit of fertilizer and water used. World record corn yields demonstrated that water use efficiency can increase fourfold with improved agronomic management and cultivars able to tolerate high densities. Planting crops with higher plant density can lead to significant yield increases, and increase plant transpiration vs. soil water evaporation. Precision agriculture technologies have been adopted for the last twenty years but seldom have the data collected been converted to information that led farmers to different agronomic management. These methods are intuitively appealing, but yield maps and other spatial layers of data need to be properly analyzed and interpreted to truly become valuable. Current agro-mechanic and geospatial technologies allow us to implement a spatially variable plan for agronomic inputs including seeding rate, cultivars, pesticides, herbicides, fertilizers, and water. Crop models are valuable tools to evaluate the impact of management strategies (e.g., cover crops, tile drains, and genetically-improved cultivars) on yield, soil carbon sequestration, leaching and greenhouse gas emissions. They can help farmers identify adaptation strategies to current and future climate conditions. In this paper I illustrate the key role that precision agriculture technologies (yield mapping technologies, within season soil and crop sensing), crop modeling and weather can play in dealing with the impact of climate variability on soil ecohydrologic processes. Case studies are presented to illustrate this concept.

  11. MODELING OF MACROSCALE AGRICULTURAL ELEMENTS IN PESTICIDE EXPOSURE

    EPA Science Inventory

    Yuma County, Arizona, is the site of year around agriculture. To understand the role of agricultural pesticide exposures experienced by children, urinary metabolite concentrations were compared with agricultural use of pesticides. The urinary metabolite and household data wer...

  12. Business model innovation in the water sector in developing countries.

    PubMed

    Gebauer, Heiko; Saul, Caroline Jennings

    2014-08-01

    Various technologies have been deployed in household devices or micro-water treatment plants for mitigating fluoride and arsenic, and thereby provide safe and affordable drinking water in low-income countries. While the technologies have improved considerably, organizations still face challenges in making them financially sustainable. Financial sustainability questions the business models behind these water technologies. This article makes three contributions to business models in the context of fluoride and arsenic mitigation. Firstly, we describe four business models: A) low-value devices given away to people living in extreme poverty, B) high-value devices sold to low-income customers, C) communities as beneficiaries of micro-water treatment plants and D) entrepreneurs as franchisees for selling water services and highlight the emergence of hybrid business models. Secondly, we show current business model innovations such as cost transparency & cost reductions, secured & extended water payments, business diversification and distribution channels. Thirdly, we describe skills and competencies as part of capacity building for creating even more business model innovations. Together, these three contributions will create more awareness of the role of business models in scaling-up water treatment technologies.

  13. An energy used model of the residential sector

    NASA Astrophysics Data System (ADS)

    Oneal, D. L.; Hirst, E.

    1980-11-01

    An energy simulation model for residential energy uses and costs from 1970 through 2000 estimates annual consumption of four fuels, eight end uses, and three housing types. The model also evaluates annual equipment installation, ownership, and equipment costs including charges for improving thermal performance of new and existing housing. An example of the model application is given by estimating the energy and economic factors of alternate water heating conservation options; they show the advantages of heat pump water heaters over conventional and solar units.

  14. Methane Emissions From Global Paddy Rice Agriculture - a New Estimate Based on DNDC Model Simulations

    NASA Astrophysics Data System (ADS)

    Hagen, S. C.; Li, C.; Salas, W.; Ingraham, P.; Li, J.; Beach, R.; Frolking, S.

    2012-12-01

    Roughly one-quarter of global methane emissions to the atmosphere come from the agricultural sector. Agricultural emissions are dominated by livestock (ruminants) and paddy-rice agriculture. We report on a new estimate of global methane emissions from paddy rice c.2010, based on DNDC model simulations of rice cropping around the world. We first generated a global map of rice cropping at 0.5°-resolution, based on existing global crop maps and various other published data. For each 0.5° grid cell that has rice agriculture, we simulated all rice cropping systems that our mapping indicated to be occurring there - irrigated and/or rainfed; single-rice, double-rice, triple-rice, and/or rice-rotated with other upland crops - under local climate and soil conditions, with assumptions about crop management (e.g., fertilizer type and amount, irrigation, flooding frequency and duration, manure application, tillage, crop residue management). We estimate global paddy rice emissions at 23 Tg CH4/yr from 120 Mha of rice paddies (land area) and 160 Mha of rice cropping (harvested area) for the baseline management scenario. We also report on the spatial distribution of these emissions, and the impacts of various management alternatives (flooding methods, fertilizer types, crop residue incorporation etc.) on yield, soil carbon sequestration and emissions of methane and nitrous oxide. For example, simulations with continuous flooding on all paddies increased simulated global paddy rice emissions to 33 Tg CH4/yr, while simulations where all fertilizer was applied as ammonium sulfate reduced simulated global paddy rice emissions to about 19 Tg CH4/yr. Simulated global paddy rice yield was about 320 Tg C in grain.

  15. Phenomenology of the minimal B-L extension of the standard model: The Higgs sector

    SciTech Connect

    Basso, Lorenzo; Moretti, Stefano; Pruna, Giovanni Marco

    2011-03-01

    We investigate the phenomenology of the Higgs sector of the minimal B-L extension of the standard model. We present results for both the foreseen energy stages of the Large Hadron Collider ({radical}(s)=7 and 14 TeV). We show that in such a scenario several novel production and decay channels involving the two physical Higgs states could be accessed at such a machine. Amongst these, several Higgs signatures have very distinctive features with respect to those of other models with an enlarged Higgs sector, as they involve interactions of Higgs bosons between themselves, with Z{sup '} bosons as well as with heavy neutrinos.

  16. Advancing a Conceptual Model of Evidence-Based Practice Implementation in Public Service Sectors

    PubMed Central

    Hurlburt, Michael; Horwitz, Sarah McCue

    2010-01-01

    Implementation science is a quickly growing discipline. Lessons learned from business and medical settings are being applied but it is unclear how well they translate to settings with different historical origins and customs (e.g., public mental health, social service, alcohol/drug sectors). The purpose of this paper is to propose a multi-level, four phase model of the implementation process (i.e., Exploration, Adoption/Preparation, Implementation, Sustainment), derived from extant literature, and apply it to public sector services. We highlight features of the model likely to be particularly important in each phase, while considering the outer and inner contexts (i.e., levels) of public sector service systems. PMID:21197565

  17. World agriculture and climate change: Current modeling issues

    SciTech Connect

    Darwin, R.

    1996-12-31

    Recent studies suggest that although global increases in temperature and changes in precipitation patterns during the next century will affect world agriculture, farmer adaptations are likely to prevent climate change from jeopardizing world food production. The costs and benefits of global climate change, however, are not equally distributed around the world. Agricultural production may increase in high latitude and alpine areas, but decrease in tropical and some other areas. Also, land use changes that accompany climate-induced shifts in cropland and permanent pasture are likely to raise additional social and environmental issues. Despite these advances, some important aspects of climate change have not been adequately simulated in global models. These include the effects that climate-induced changes in water resources are likely to have on agricultural production, the well-documented beneficial effects of higher concentrations of atmospheric carbon dioxide on plant growth and water use, and the cooling effects of tropospheric emissions of sulfur dioxide. In addition, past research generally relied on equilibrium climates based on a doubling of atmospheric carbon dioxide. Now, however, results from transient climate change experiments are available.

  18. Renormalization of the Higgs sector in the triplet model

    NASA Astrophysics Data System (ADS)

    Aoki, Mayumi; Kanemura, Shinya; Kikuchi, Mariko; Yagyu, Kei

    2012-08-01

    We study radiative corrections to the mass spectrum and the triple Higgs boson coupling in the model with an additional Y = 1 triplet field. In this model, the vacuum expectation value for the triplet field is strongly constrained from the electroweak precision data, under which characteristic mass spectrum appear at the tree level; i.e., mH++2 - mH+2 ≃ mH+2 - mA2 and mA2 ≃ mH2, where the CP-even (H), the CP-odd (A) and the doubly-charged (H±±) as well as the singly-charged (H±) Higgs bosons are the triplet-like. We evaluate how the tree-level formulae are modified at the one-loop level. The hhh coupling for the standard model-like Higgs boson (h) is also calculated at the one-loop level. One-loop corrections to these quantities can be large enough for identification of the model by future precision data at the LHC or the International Linear Collider.

  19. Sector-Wide Transformational Leadership--How Effectively Is the EFQM Excellence Model[R] Used in the UK FE Sector?

    ERIC Educational Resources Information Center

    Cartmell, Jonathan; Binsardi, Ben; McLean, Alexis

    2011-01-01

    This seminal study investigates the use of the EFQM Excellence Model[R] in the UK Further Education sector. Following initial interviews with Senior Managers and Quality Consultants, an online survey was sent to Principals and Senior Managers in all Colleges across the UK to critically investigate the relationship between the use of the Model and…

  20. Extension of Standard Model in Multi-spinor Field Formalism - Visible and Dark Sectors

    NASA Astrophysics Data System (ADS)

    Sogami, Ikuo S.

    With multi-spinor fields which behave as triple-tensor products of the Dirac spinors, the Standard Model is extended so as to embrace three families of ordinary quarks and leptons in the visible sector and an additional family of exotic quarks and leptons in the dark sector of our Universe. Apart from the gauge and Higgs fields of the Standard Model symmetry G, new gauge and Higgs fields of a symmetry isomorphic to G are postulated to exist in the dark sector. It is the bi-quadratic interaction between visible and dark Higgs fields that opens a main portal to the dark sector. Breakdowns of the visible and dark electroweak symmetries result in the Higgs boson with mass 125 GeV and a new boson which can be related to the diphoton excess around 750 GeV. Subsequent to a common inationary phase and a reheating period, the visible and dark sectors follow weakly-interacting paths of thermal histories. We propose scenarios for dark matter in which no dark nuclear reaction takes place. A candidate for the main component of the dark matter is a stable dark hadron with spin 3/2, and the upper limit of its mass is estimated to be 15.1 GeV/c2.

  1. A new baseline of organic carbon stock in European agricultural soils using a modelling approach.

    PubMed

    Lugato, Emanuele; Panagos, Panos; Bampa, Francesca; Jones, Arwyn; Montanarella, Luca

    2014-01-01

    Proposed European policy in the agricultural sector will place higher emphasis on soil organic carbon (SOC), both as an indicator of soil quality and as a means to offset CO2 emissions through soil carbon (C) sequestration. Despite detailed national SOC data sets in several European Union (EU) Member States, a consistent C stock estimation at EU scale remains problematic. Data are often not directly comparable, different methods have been used to obtain values (e.g. sampling, laboratory analysis) and access may be restricted. Therefore, any evolution of EU policies on C accounting and sequestration may be constrained by a lack of an accurate SOC estimation and the availability of tools to carry out scenario analysis, especially for agricultural soils. In this context, a comprehensive model platform was established at a pan-European scale (EU + Serbia, Bosnia and Herzegovina, Croatia, Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) using the agro-ecosystem SOC model CENTURY. Almost 164 000 combinations of soil-climate-land use were computed, including the main arable crops, orchards and pasture. The model was implemented with the main management practices (e.g. irrigation, mineral and organic fertilization, tillage) derived from official statistics. The model results were tested against inventories from the European Environment and Observation Network (EIONET) and approximately 20 000 soil samples from the 2009 LUCAS survey, a monitoring project aiming at producing the first coherent, comprehensive and harmonized top-soil data set of the EU based on harmonized sampling and analytical methods. The CENTURY model estimation of the current 0-30 cm SOC stock of agricultural soils was 17.63 Gt; the model uncertainty estimation was below 36% in half of the NUTS2 regions considered. The model predicted an overall increase of this pool according to different climate-emission scenarios up to 2100, with C loss in the south and east of the area

  2. Improving the representation of agricultural management in land surface models

    NASA Astrophysics Data System (ADS)

    Sacks, William J.

    To gain a better understanding of processes affecting crop yield, as well as two-way feedbacks between agricultural management and climate, a number of groups have recently incorporated croplands into regional and global land surface models. However, many aspects of agricultural management are still treated in a rudimentary way in these models. For my doctoral research, I have aimed to improve the representation of two key agricultural processes in land surface models: crop phenology and irrigation. In addition, I have investigated the effects of these processes on both crop yields and climate. First, I assembled a dataset of global crop planting and harvesting dates for nineteen crops. I also investigated climatic and non-climatic factors that drive planting date decisions around the world. Second, I investigated trends and variability in crop planting dates and development progress across the U.S. I showed a trend to earlier planting of corn and soybeans, along with a trend to a longer crop growth period, and particularly a lengthening reproductive period in corn. In addition, I showed that growing degree days are a good predictor of the length of the vegetative period in corn, but less so for the reproductive period. Third, I used these observed trends along with the Agro-IBIS model to explore the implications of changes in crop phenology for both crop yields and fluxes of water and energy. I estimated that the trend to longer-season corn cultivars over the last three decades can account for 26% of the observed yield trend in the U.S. In addition, I found that earlier planting and longer-season cultivars shift the seasonality of water and energy fluxes, and have a small effect on annual-average fluxes. Finally, I investigated the effects of irrigation on climate, finding that this effect is significant in some large regions of the globe. Although the global-average temperature change was small, the large regional changes are important for both crop yields and

  3. Models for residential-and commercial-sector energy conservation analysis: Applications, limitations, and future potential

    NASA Astrophysics Data System (ADS)

    Cole, H. E.; Fuller, R. E.

    1980-09-01

    Four of the major models used by DOE for energy conservation analyses in the residential and commercial building sectors are reviewed and critically analyzed to determine how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. The most effective role for each model in addressing future issues of buildings energy conservation policy and analysis is assessed. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  4. Analysis of the research and development effort in the private sector to reduce energy consumption in irrigated agriculture

    SciTech Connect

    Rogers, E.A.; Cone, B.W.

    1980-09-01

    Manufacturers of irrigation equipment perform research and development in an effort to improve or maintain their position in a very competitive market. The market forces and conditions that create the intense competition and provide incentive for invention are described. Particular emphasis is placed on the market force of increased energy costs, but the analysis is developed from the perspective that energy is but one of many inputs to agricultural production. The analysis is based upon published literature, patent activity profiles, microeconomic theory, and conversations with many representatives of the irrigation industry. The published literature provides an understanding of the historical development of irrigation technology, a description of the industry's structure, and various data, which were important for the quantitative analyses. The patent activity profiles, obtained from the US Patent Office, provided details of patent activity within the irrigation industry over the past decade. Microeconomic theory was used to estimate industry-wide research and development expenditures on energy-conserving products. The results of these analyses were then compared with the insights gained from conversations with the industry representatives.

  5. Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review.

    PubMed

    Schoumans, O F; Chardon, W J; Bechmann, M E; Gascuel-Odoux, C; Hofman, G; Kronvang, B; Rubæk, G H; Ulén, B; Dorioz, J-M

    2014-01-15

    The EU Water Framework Directive (WFD) obliges Member States to improve the quality of surface water and groundwater. The measures implemented to date have reduced the contribution of point sources of pollution, and hence diffuse pollution from agriculture has become more important. In many catchments the water quality remains poor. COST Action 869 was an EU initiative to improve surface water quality that ran from 2006 to 2011, in which 30 countries participated. Its main aim was a scientific evaluation of the suitability and cost-effectiveness of options for reducing nutrient loss from rural areas to surface waters at catchment scale, including the feasibility of the options under different climatic and geographical conditions. This paper gives an overview of various categories of mitigation options in relation to phosphorus (P). The individual measures are described in terms of their mode of action, applicability, effectiveness, time frame, environmental side-effects (N cycling) and cost. In total, 83 measures were evaluated in COST Action 869.

  6. Embedding an evolving agricultural system within a water resources planning model

    NASA Astrophysics Data System (ADS)

    Young, C.; Joyce, B.; Purkey, D.; Dale, L.; Mehta, V.

    2008-12-01

    The Water Evaluation and Planning (WEAP) system is a comprehensive, fully integrated water basin analysis tool. It is a simulation model that includes a robust and flexible representation of water demands from all sectors and flexible, programmable operating rules for infrastructure elements such as reservoirs, canals, and hydropower projects. Additionally, it has watershed rainfall-runoff modeling capabilities that allow all portions of the water infrastructure and demand to be dynamically nested within the underlying hydrological processes. WEAP also allows for linking with other models to provide feedback mechanisms whereby the management regime can be altered to respond to changing water supply conditions. This study presents an application wherein the year-to-year cropping decisions of farmers in California's Central Valley are reactive to changes in water supply conditions. To capture this dynamic, we have included in WEAP a link to an agricultural economics model (the Central Valley Production Model) that relates cropping decisions to water supply conditions (surface water allocations and depth to groundwater) and economic considerations (cost of electricity) at the time of planting. This linked model was used to evaluate changes in water supply and demand in the context of projected climate change over the next century.

  7. The Role of Agriculture in the Economic Development of West Virginia: An Input-Output Analysis. Miscellaneous Publication No. 20.

    ERIC Educational Resources Information Center

    D'Souza, Gerard E.; And Others

    This study deals with the structural interrelationships among agricultural sub-sectors, and between the agricultural and non-agricultural sectors of the West Virginia economy. The study is intended to offer information on which to base sound economic development decisions. An input-output economic model is used in order to focus on the interaction…

  8. Modeling Climate Impacts on Agriculture in South East South America

    NASA Astrophysics Data System (ADS)

    Ines, A. M.; Baethgen, W.; Greene, A. M.; Goddard, L. M.

    2013-12-01

    In the past two decades, a rapid expansion of croplands in South East South America is observed. This drastic change in landuse is seen to be due to two major factors - climate and economics. Converting marginal lands into agricultural lands is possible due to the increase in annual precipitation in the region and the increasing prices of soybeans and higher demands for grain crops have played a key role to this expansion. But the question is, how sustainable is the current trend in the future? A modeling study is conducted to evaluate the impacts of climate on agriculture in the Southern Cone of South America. We examine the impacts of climate variability and current climate change to crop yields using crop simulation models. Using the results of our current climate analysis as a baseline, we evaluate the impacts of future climate change in the next 10-30 years. Climate projections include scenarios considering only global warming, ozone and both impacting the near-term climate of the future in the region and considering decadal variability. We aim to evaluate the vulnerability of the current system to climate change. This paper will present the results of our modeling study.

  9. Generalization of the Aoki-Yoshikawa sectoral productivity model based on extreme physical information principle

    NASA Astrophysics Data System (ADS)

    Bednarek, Ilona; Makowski, Marcin; Piotrowski, Edward W.; Sładkowski, Jan; Syska, Jacek

    2015-06-01

    This paper presents a continuous variable generalization of the Aoki-Yoshikawa sectoral productivity model. Information theoretical methods from the Frieden-Soffer extreme physical information statistical estimation methodology were used to construct exact solutions. Both approaches coincide in first order approximation. The approach proposed here can be successfully applied in other fields of research.

  10. A Regulatory Model of Governmental Coordinating Activities in the Higher Education Sector.

    ERIC Educational Resources Information Center

    Thompson, Fred; Zumeta, William

    1981-01-01

    Compares governmental coordinating activities in the higher education sector with regulatory governmental activities in other industries. Findings indicated that a great percentage of regulatory policies in higher education are based on industrial organization theory-based prescriptive models. The inappropriateness of these policies for higher…

  11. Factors that Affect Synergies in Mergers, at Banking Sector: Simulation with a Dynamic Model

    NASA Astrophysics Data System (ADS)

    Yiannis, Triantafyllopoulos; Sakas, Damianos P.; Konstantopoulos, Nikolaos

    2007-12-01

    This article examines the factors that affect the intended synergy following an M&A, as they have emerged from the study of the M&A's that have taken place as yet in the Bank Sector of an EU country. On the basis of quality research, dynamic simulation models have been created for two out of the five factors.

  12. Modeling Financial Innovation and Economic Growth: Why the Financial Sector Matters to the Real Economy

    ERIC Educational Resources Information Center

    Chou, Yuan K.

    2007-01-01

    The author devises a simple way of incorporating the financial sector into a growth model that is pedagogically useful. Financial innovation raises the efficiency of financial intermediation by increasing the variety of financial products and services, resulting in improved matching of the needs of individual savers with those of firms raising…

  13. Vector field models of modified gravity and the dark sector

    SciTech Connect

    Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.

    2010-05-15

    We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.

  14. Linking knowledge and action through mental models of sustainable agriculture.

    PubMed

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-09-09

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer "mental models" of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems.

  15. Integrating High Resolution Water Footprint and GIS for Promoting Water Efficiency in the Agricultural Sector: A Case Study of Plantation Crops in the Jordan Valley.

    PubMed

    Shtull-Trauring, Eliav; Aviani, Ido; Avisar, Dror; Bernstein, Nirit

    2016-01-01

    Addressing the global challenges to water security requires a better understanding of humanity's use of water, especially the agricultural sector that accounts for 70% of global withdrawals. This study combined high resolution-data with a GIS system to analyze the impact of agricultural practices, crop type, and spatial factors such as drainage basins, climate, and soil type on the Water Footprint (WF) of agricultural crops. The area of the study, the northern Lower Jordan Valley, covers 1121 ha in which three main plantation crops are grown: banana (cultivated in open-fields or net-houses), avocado and palm-dates. High-resolution data sources included GIS layers of the cultivated crops and a drainage pipe-system installed in the study area; meteorological data (2000-2013); and crop parameters (yield and irrigation recommendations). First, the study compared the WF of the different crops on the basis of yield and energy produced as well as a comparison to global values and local irrigation recommendations. The results showed that net-house banana has the lowest WF based on all different criteria. However, while palm-dates showed the highest WF for the yield criteria, it had the second lowest WF for energy produced, emphasizing the importance of using multiple parameters for low and high yield crop comparisons. Next, the regional WF of each drainage basin in the study area was calculated, demonstrating the strong influence of the Gray WF, an indication of the amount of freshwater required for pollution assimilation. Finally, the benefits of integrating GIS and WF were demonstrated by computing the effect of adopting net-house cultivation throughout the area of study with a result a reduction of 1.3 MCM irrigation water per year. Integrating the WF methodology and local high-resolution data using GIS can therefore promote and help quantify the benefits of adopting site-appropriate crops and agricultural practices that lower the WF by increasing yield, reducing water

  16. Integrating High Resolution Water Footprint and GIS for Promoting Water Efficiency in the Agricultural Sector: A Case Study of Plantation Crops in the Jordan Valley

    PubMed Central

    Shtull-Trauring, Eliav; Aviani, Ido; Avisar, Dror; Bernstein, Nirit

    2016-01-01

    Addressing the global challenges to water security requires a better understanding of humanity's use of water, especially the agricultural sector that accounts for 70% of global withdrawals. This study combined high resolution-data with a GIS system to analyze the impact of agricultural practices, crop type, and spatial factors such as drainage basins, climate, and soil type on the Water Footprint (WF) of agricultural crops. The area of the study, the northern Lower Jordan Valley, covers 1121 ha in which three main plantation crops are grown: banana (cultivated in open-fields or net-houses), avocado and palm-dates. High-resolution data sources included GIS layers of the cultivated crops and a drainage pipe-system installed in the study area; meteorological data (2000–2013); and crop parameters (yield and irrigation recommendations). First, the study compared the WF of the different crops on the basis of yield and energy produced as well as a comparison to global values and local irrigation recommendations. The results showed that net-house banana has the lowest WF based on all different criteria. However, while palm-dates showed the highest WF for the yield criteria, it had the second lowest WF for energy produced, emphasizing the importance of using multiple parameters for low and high yield crop comparisons. Next, the regional WF of each drainage basin in the study area was calculated, demonstrating the strong influence of the Gray WF, an indication of the amount of freshwater required for pollution assimilation. Finally, the benefits of integrating GIS and WF were demonstrated by computing the effect of adopting net-house cultivation throughout the area of study with a result a reduction of 1.3 MCM irrigation water per year. Integrating the WF methodology and local high-resolution data using GIS can therefore promote and help quantify the benefits of adopting site-appropriate crops and agricultural practices that lower the WF by increasing yield, reducing

  17. Modelling Cryptosporidium oocysts transport in small ungauged agricultural catchments.

    PubMed

    Tang, Jialiang; McDonald, Stephen; Peng, Xinhua; Samadder, Sukha R; Murphy, Thomas M; Holden, Nicholas M

    2011-06-01

    Cryptosporidium is an environmentally robust pathogen that has caused severe waterborne disease outbreaks worldwide. The main source of zoonotic Cryptosporidium parvum oocysts in human drinking water is likely to be from farm animals via catchment pathways with water as the main transport vector. The vast majority of small agricultural catchments are ungauged therefore it is difficult to use a process model to predict and understand the mechanisms and activities that regulate the risk of surface water contamination from agricultural areas. For this study, two ungauged agricultural catchments in Ireland were used to model Cryptosporidium oocyst transport using SWAT2005 on a daily basis with reference data from adjacent catchment gauging stations. The results indicated that SWAT2005 could simulate stream flow with good agreement between prediction and observation on a monthly basis (R(2) from 0.94 to 0.83 and E (efficiency) from 0.92 to 0.66), but Cryptosporidium oocyst concentration results were less reliable (R(2) from 0.20 to 0.37, P < 0.05; with poor E -0.37 to -2.57). A sensitivity analysis using independent parameter perturbation indicated that temperature was the most important parameter regulating oocyst transport in the study catchments and that the timing of manure application relative to the occurrence of water runoff event was critical. The results also showed that grazing management had little influence on predicted oocyst transport while fields fertilized with manure were the key critical source areas for microbial contaminations in the study catchments. It was concluded that the approach presented could be used to assist with understanding the epidemiology of waterborne cryptosporidiosis outbreaks and to improve catchment management for the safety of the general public health.

  18. Modeling a phosphorus credit trading program in an agricultural watershed.

    PubMed

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2014-10-01

    Water quality and economic models were linked to assess the economic and environmental benefits of implementing a phosphorus credit trading program in an agricultural sub-basin of Lake Okeechobee watershed, Florida, United States. The water quality model determined the effects of rainfall, land use type, and agricultural management practices on the amount of total phosphorus (TP) discharged. TP loadings generated at the farm level, reaching the nearby streams, and attenuated to the sub-basin outlet from all sources within the sub-basin, were estimated at 106.4, 91, and 85 mtons yr(-)(1), respectively. Almost 95% of the TP loadings reaching the nearby streams were attributed to agriculture sources, and only 1.2% originated from urban areas, accounting for a combined TP load of 87.9 mtons yr(-)(1). In order to compare a Least-Cost Abatement approach to a Command-and-Control approach, the most cost effective cap of 30% TP reduction was selected, and the individual allocation was set at a TP load target of 1.6 kg ha(-1) yr(-1) (at the nearby stream level). The Least-Cost Abatement approach generated a potential cost savings of 27% ($1.3 million per year), based on an optimal credit price of $179. Dairies (major buyer), ornamentals, row crops, and sod farms were identified as potential credit buyers, whereas citrus, improved pastures (major seller), and urban areas were identified as potential credit sellers. Almost 81% of the TP credits available for trading were exchanged. The methodology presented here can be adapted to deal with different forms of trading sources, contaminants, or other technologies and management practices.

  19. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  20. Accounting for agriculture in modelling the global terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Bondeau, A.; Smith, P.; Schaphoff, S.; Zaehle, S.; Smith, B.; Sitch, S.; Gerten, D.; Schröder, B.; Lucht, W.; Cramer, W.

    2003-04-01

    Among the different approaches that investigate the role of the terrestrial biosphere within the global carbon cycle, Dynamic Global Vegetation Models (DGVMs) are an important tool. They represent the major biogeochemical mechanisms (carbon and water fluxes), depending on climate and soil, in order to simulate vegetation type (tree/grass, evergreen/deciduous, etc) as well as ecosystem function. The models should be validated for different features at various scales, in order to be used to assess the future terrestrial productivity in relation to climate change scenarios. The Lund-Potsdam-Jena (LPJ) model (Sitch et al. 2002) is one of the few existing DGVMs, from which some interesting features have been validated like the seasonal atmospheric CO2 concentrations as measured at the global network of monitoring stations, the increase of the growing season length in the northern areas (Lucht et al. 2002), the runoff of large catchment (Gerten et al. Nice 2003, session HS25). In agreement with other models, LPJ estimates that the terrestrial biosphere is currently a carbon sink that will reduce in the middle of the century because of climate change (Cramer et al. 2000). However, regarding the terrestrial productivity, land use and cover change might be even more important than climate change. Until now, none of the global vegetation models were considering agriculture, or in the best case, agricultural areas were represented as a grassland. We describe the first implementation of crop parameterization within LPJ. As compared to natural vegetation, the main features of crops that must be accounted for in a global vegetation model are: i) the specific phenology, related to the sowing date, ii) the farming practices (nutrient inputs, irrigation), iii) the man-made dynamics (harvest, choice of variety, crop rotation). In a first step we consider the 8 crops types for which a global land cover data set is available for the 20th Century (RIVM). A simple phenological model

  1. Analysis of the industrial sector representation in the Fossil2 energy-economic model

    SciTech Connect

    Wise, M.A.; Woodruff, M.G.; Ashton, W.B.

    1992-08-01

    The Fossil2 energy-economic model is used by the US Department of Energy (DOE) for a variety of energy and environmental policy analyses. A number of improvements to the model are under way or are being considered. This report was prepared by the Pacific Northwest Laboratory (PNL) to provide a clearer understanding of the current industrial sector module of Fossil2 and to explore strategies for improving it. The report includes a detailed description of the structure and decision logic of the industrial sector module, along with results from several simulation exercises to demonstrate the behavior of the module in different policy scenarios and under different values of key model parameters. The cases were run with the Fossil2 model at PNL using the National Energy Strategy Actions Case of 1991 as the point of departure. The report also includes a discussion of suggested industrial sector module improvements. These improvements include changes in the way the current model is used; on- and off-line adjustments to some of the model`s parameters; and significant changes to include more detail on the industrial processes, technologies, and regions of the country being modeled. The potential benefits and costs of these changes are also discussed.

  2. Hidden sector dark matter models for the Galactic Center gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Gratia, Pierre; Hooper, Dan; McDermott, Samuel D.

    2014-07-01

    The gamma-ray excess observed from the Galactic Center can be interpreted as dark matter particles annihilating into standard model fermions with a cross section near that expected for a thermal relic. Although many particle physics models have been shown to be able to account for this signal, the fact that this particle has not yet been observed in direct detection experiments somewhat restricts the nature of its interactions. One way to suppress the dark matter's elastic scattering cross section with nuclei is to consider models in which the dark matter is part of a hidden sector. In such models, the dark matter can annihilate into other hidden sector particles, which then decay into standard model fermions through a small degree of mixing with the photon, Z, or Higgs bosons. After discussing the gamma-ray signal from hidden sector dark matter in general terms, we consider two concrete realizations: a hidden photon model in which the dark matter annihilates into a pair of vector gauge bosons that decay through kinetic mixing with the photon, and a scenario within the generalized next-to-minimal supersymmetric standard model in which the dark matter is a singlino-like neutralino that annihilates into a pair of singlet Higgs bosons, which decay through their mixing with the Higgs bosons of the minimal supersymmetric standard model.

  3. Application Of Colored Petri Net In Modeling Ofan Agricultural Enterprise Informationmanagement System

    NASA Astrophysics Data System (ADS)

    Zhang, Fangtian; Wang, Kaiyi; Sui, Jin; Liu, Chang; Liu, Zhongqiang

    Business system modeling of an agricultural enterprise is one of the difficulties in developing and researching an agricultural enterprise management information system. Given the inadequate description of concurrent and synchronal events in the traditional modeling methods, this paper presents a modeling method, which uses Colored Petri Net. The paper discusses the application of Colored Petri Net in system modeling with the example of an agricultural enterprise production management system model, and analyzes the feasibility and effectiveness of that model.

  4. Model-independent indirect detection constraints on hidden sector dark matter

    NASA Astrophysics Data System (ADS)

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.; Xue, Wei

    2016-06-01

    If dark matter inhabits an expanded ``hidden sector'', annihilations may proceed through sequential decays or multi-body final states. We map out the potential signals and current constraints on such a framework in indirect searches, using a model-independent setup based on multi-step hierarchical cascade decays. While remaining agnostic to the details of the hidden sector model, our framework captures the generic broadening of the spectrum of secondary particles (photons, neutrinos, e+e- and bar p p) relative to the case of direct annihilation to Standard Model particles. We explore how indirect constraints on dark matter annihilation limit the parameter space for such cascade/multi-particle decays. We investigate limits from the cosmic microwave background by Planck, the Fermi measurement of photons from the dwarf galaxies, and positron data from AMS-02. The presence of a hidden sector can change the constraints on the dark matter by up to an order of magnitude in either direction (although the effect can be much smaller). We find that generally the bound from the Fermi dwarfs is most constraining for annihilations to photon-rich final states, while AMS-02 is most constraining for electron and muon final states; however in certain instances the CMB bounds overtake both, due to their approximate independence on the details of the hidden sector cascade. We provide the full set of cascade spectra considered here as publicly available code with examples at http://web.mit.edu/lns/research/CascadeSpectra.html.

  5. Watershed Modeling in areas with Intensive Agricultural Irrigation

    NASA Astrophysics Data System (ADS)

    Wyss, J. R.; Watson, B. J.

    2011-12-01

    Irrigation in agricultural intensive watersheds affects soil moisture content, plays a major role in the overall water balance and also influences the hydrologic regime. Historically, irrigation in watershed modeling has been very difficult to simulate and was simulated in one of three general ways. 1) irrigation water was withdrawan from the model and never applied to the land, 2) ignored and assumed insignificant and 3) input as a constant by modifying atmospheric forcing files. For the Loading Simulation Program C++ (LSPC) model developed for the Flint River Watershed in southwest Georgia, we received a summary report of a study conducted to determine irrigation application depth, as well as spatial mapping of irrigated fields in the state of Georgia. The summary report provided minimum, mean, and maximum irrigation depth for both surface water and groundwater sources and the spatial mapping provided over 10,300 irrigated fields located within the boundaries of the Flint River Watershed. With this information we were able to calculate irrigation volume applied to the land by source water type. We discuss how these data were incorporated into the LSPC watershed modeling effort and demonstrate the utility and function of the model for irrigation application. We also investigate impacts to water balance and the hydrologic regime through a series of scenarios in the agriculturally dominated landscape of Ichawaynochaway Creek (HUC 03130009). The scenarios compare and contrast our approach with 1) ignoring irrigation both application and water withdrawal, and 2) only withdrawing the water and not applying it back to the land. We demonstrate the importance of properly simulating irrigation application in heavily influenced areas. The approach we have taken is applicable in other areas in the southeastern United States or any area that is highly influenced by irrigation practices.

  6. An optimization model to agroindustrial sector in antioquia (Colombia, South America)

    NASA Astrophysics Data System (ADS)

    Fernandez, J.

    2015-06-01

    This paper develops a proposal of a general optimization model for the flower industry, which is defined by using discrete simulation and nonlinear optimization, whose mathematical models have been solved by using ProModel simulation tools and Gams optimization. It defines the operations that constitute the production and marketing of the sector, statistically validated data taken directly from each operation through field work, the discrete simulation model of the operations and the linear optimization model of the entire industry chain are raised. The model is solved with the tools described above and presents the results validated in a case study.

  7. Inter-sectoral comparison of model uncertainty of climate change impacts in Africa

    NASA Astrophysics Data System (ADS)

    van Griensven, Ann; Vetter, Tobias; Piontek, Franzisca; Gosling, Simon N.; Kamali, Bahareh; Reinhardt, Julia; Dinkneh, Aklilu; Yang, Hong; Alemayehu, Tadesse

    2016-04-01

    We present the model results and their uncertainties of an inter-sectoral impact model inter-comparison initiative (ISI-MIP) for climate change impacts in Africa. The study includes results on hydrological, crop and health aspects. The impact models used ensemble inputs consisting of 20 time series of daily rainfall and temperature data obtained from 5 Global Circulation Models (GCMs) and 4 Representative concentration pathway (RCP). In this study, we analysed model uncertainty for the Regional Hydrological Models, Global Hydrological Models, Malaria models and Crop models. For the regional hydrological models, we used 2 African test cases: the Blue Nile in Eastern Africa and the Niger in Western Africa. For both basins, the main sources of uncertainty are originating from the GCM and RCPs, while the uncertainty of the regional hydrological models is relatively low. The hydrological model uncertainty becomes more important when predicting changes on low flows compared to mean or high flows. For the other sectors, the impact models have the largest share of uncertainty compared to GCM and RCP, especially for Malaria and crop modelling. The overall conclusion of the ISI-MIP is that it is strongly advised to use ensemble modeling approach for climate change impact studies throughout the whole modelling chain.

  8. Analysis of the industrial sector representation in the Fossil2 energy-economic model

    SciTech Connect

    Wise, M.A.; Woodruff, M.G.; Ashton, W.B.

    1992-08-01

    The Fossil2 energy-economic model is used by the US Department of Energy (DOE) for a variety of energy and environmental policy analyses. A number of improvements to the model are under way or are being considered. This report was prepared by the Pacific Northwest Laboratory (PNL) to provide a clearer understanding of the current industrial sector module of Fossil2 and to explore strategies for improving it. The report includes a detailed description of the structure and decision logic of the industrial sector module, along with results from several simulation exercises to demonstrate the behavior of the module in different policy scenarios and under different values of key model parameters. The cases were run with the Fossil2 model at PNL using the National Energy Strategy Actions Case of 1991 as the point of departure. The report also includes a discussion of suggested industrial sector module improvements. These improvements include changes in the way the current model is used; on- and off-line adjustments to some of the model's parameters; and significant changes to include more detail on the industrial processes, technologies, and regions of the country being modeled. The potential benefits and costs of these changes are also discussed.

  9. Linking knowledge and action through mental models of sustainable agriculture

    PubMed Central

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-01-01

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer “mental models” of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems. PMID:25157158

  10. An inverse problem for a mathematical model of aquaponic agriculture

    NASA Astrophysics Data System (ADS)

    Bobak, Carly; Kunze, Herb

    2017-01-01

    Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.

  11. Strategies and models for agricultural sustainability in developing Asian countries.

    PubMed

    Kesavan, P C; Swaminathan, M S

    2008-02-27

    The green revolution of the 1960s and 1970s which resulted in dramatic yield increases in the developing Asian countries is now showing signs of fatigue in productivity gains. Intensive agriculture practiced without adherence to the scientific principles and ecological aspects has led to loss of soil health, and depletion of freshwater resources and agrobiodiversity. With progressive diversion of arable land for non-agricultural purposes, the challenge of feeding the growing population without, at the same time, annexing more forestland and depleting the rest of life is indeed daunting. Further, even with food availability through production/procurement, millions of marginal farming, fishing and landless rural families have very low or no access to food due to lack of income-generating livelihoods. Approximately 200 million rural women, children and men in India alone fall in this category. Under these circumstances, the evergreen revolution (pro-nature, pro-poor, pro-women and pro-employment/livelihood oriented ecoagriculture) under varied terms are proposed for achieving productivity in perpetuity. In the proposed 'biovillage paradigm', eco-friendly agriculture is promoted along with on- and non-farm eco-enterprises based on sustainable management of natural resources. Concurrently, the modern ICT-based village knowledge centres provide time- and locale-specific, demand-driven information needed for evergreen revolution and ecotechnologies. With a system of 'farm and marine production by masses', the twin goals of ecoagriculture and eco-livelihoods are addressed. The principles, strategies and models of these are briefly discussed in this paper.

  12. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-11-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.

  13. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-06-01

    Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.

  14. Hidden Sector Dark Matter Models for the Galactic Center Gamma-Ray Excess

    SciTech Connect

    Berlin, Asher; Gratia, Pierre; Hooper, Dan; McDermott, Samuel D.

    2014-07-24

    The gamma-ray excess observed from the Galactic Center can be interpreted as dark matter particles annihilating into Standard Model fermions with a cross section near that expected for a thermal relic. Although many particle physics models have been shown to be able to account for this signal, the fact that this particle has not yet been observed in direct detection experiments somewhat restricts the nature of its interactions. One way to suppress the dark matter's elastic scattering cross section with nuclei is to consider models in which the dark matter is part of a hidden sector. In such models, the dark matter can annihilate into other hidden sector particles, which then decay into Standard Model fermions through a small degree of mixing with the photon, Z, or Higgs bosons. After discussing the gamma-ray signal from hidden sector dark matter in general terms, we consider two concrete realizations: a hidden photon model in which the dark matter annihilates into a pair of vector gauge bosons that decay through kinetic mixing with the photon, and a scenario within the generalized NMSSM in which the dark matter is a singlino-like neutralino that annihilates into a pair of singlet Higgs bosons, which decay through their mixing with the Higgs bosons of the MSSM.

  15. Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland.

    PubMed

    Kolasa-Wiecek, Alicja

    2015-04-01

    The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (-0.64) as the most important variables. The adjusted coefficient is suitable and equals R2=0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption.

  16. Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)

    SciTech Connect

    Ross, M.H.; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W.

    1993-05-01

    The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

  17. Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.

    2015-12-01

    Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.

  18. Sidewalks and City Streets: A Model for Vibrant Agricultural Education in Urban American Communities

    ERIC Educational Resources Information Center

    Brown, Nicholas R.; Kelsey, Kathleen D.

    2013-01-01

    In 2005, The National Council for Agricultural Education (NCAE) unveiled The Long Range Goal for Agricultural Education also known as 10 x 15. According to NCAE, the primary goal of 10 x 15 was to create 10,000 new agricultural education programs by 2015 that focused on an integrated model of classroom and laboratory instruction, experiential…

  19. The Higgs sector of the minimal B- L model at future Linear Colliders

    NASA Astrophysics Data System (ADS)

    Basso, Lorenzo; Moretti, Stefano; Pruna, Giovanni Marco

    2011-08-01

    We investigate the phenomenology of the Higgs sector of the minimal B- L extension of the Standard Model at a future e + e - Linear Collider. We consider the discovery potential of both a sub-TeV and a multi-TeV machine. We show that, within such a theoretical scenario, several novel production and decay channels involving the two physical Higgs states, precluded at the LHC, could experimentally be accessed at such machines. Amongst these, several Higgs signatures have very distinctive features with respect to those of other models with enlarged Higgs sector, as they involve interactions of Higgs bosons between themselves, with Z' bosons as well as with heavy neutrinos. In particular, we present the scope of the Z' strahlung process for single and double Higgs production, the only suitable mechanism enabling one to access an almost decoupled heavy scalar state (therefore outside the LHC range).

  20. Optimal control problem for the three-sector economic model of a cluster

    NASA Astrophysics Data System (ADS)

    Murzabekov, Zainel; Aipanov, Shamshi; Usubalieva, Saltanat

    2016-08-01

    The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired final state. To solve the optimal control problem with finite-horizon planning, in case of fixed ends of trajectories, with box constraints, the method of Lagrange multipliers of a special type is used. This approach allows to represent the desired control in the form of synthesis control, depending on state of the system and current time. The results of numerical calculations for an instance of three-sector model of the economy show the effectiveness of the proposed method.

  1. Determining fundamental parameters from the chargino sector in left right supersymmetric models

    NASA Astrophysics Data System (ADS)

    Alvarez-Moraga, Nibaldo

    2006-07-01

    Analytical expressions relating the fundamental parameters describing the chargino sector in the context of the left-right supersymmetric model are constructed. A general complex extension of the real non-symmetric chargino mass matrix including all possible CP-violating phases is considered. The method used for such an effect is the projector formalism based on the explicit knowledge of two unitary matrices diagonalizing the chargino mass matrix. Some possible scenarios allowing us to extract analytical and numerical values for the unknown parameters are considered. Moreover, an algorithm allowing us to disentangle the fundamental parameters of the chargino sector, based on possible measurements of some class of cross-section observables related to the chargino pair production in e+e- annihilation processes, is described. Some comparisons with the corresponding results in the context of the minimal supersymmetric standard model are given.

  2. Land use efficiency: anticipating future demand for land-sector greenhouse gas emissions abatement and managing trade-offs with agriculture, water, and biodiversity.

    PubMed

    Bryan, Brett A; Crossman, Neville D; Nolan, Martin; Li, Jing; Navarro, Javier; Connor, Jeffery D

    2015-11-01

    Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia's intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade-offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society's preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services.

  3. Monitoring and modeling agricultural drought for famine early warning (Invited)

    NASA Astrophysics Data System (ADS)

    Verdin, J. P.; Funk, C.; Budde, M. E.; Lietzow, R.; Senay, G. B.; Smith, R.; Pedreros, D.; Rowland, J.; Artan, G. A.; Husak, G. J.; Michaelsen, J.; Adoum, A.; Galu, G.; Magadzire, T.; Rodriguez, M.

    2009-12-01

    The Famine Early Warning Systems Network (FEWS NET) makes quantitative estimates of food insecure populations, and identifies the places and periods during which action must be taken to assist them. Subsistence agriculture and pastoralism are the predominant livelihood systems being monitored, and they are especially drought-sensitive. At the same time, conventional climate observation networks in developing countries are often sparse and late in reporting. Consequently, remote sensing has played a significant role since FEWS NET began in 1985. Initially there was heavy reliance on vegetation index imagery from AVHRR to identify anomalies in landscape greenness indicative of drought. In the latter part of the 1990s, satellite rainfall estimates added a second, independent basis for identification of drought. They are used to force crop water balance models for the principal rainfed staple crops in twenty FEWS NET countries. Such models reveal seasonal moisture deficits associated with yield reduction on a spatially continuous basis. In 2002, irrigated crops in southwest Asia became a concern, and prompted the implementation of a gridded energy balance model to simulate the seasonal mountain snow pack, the main source of irrigation water. MODIS land surface temperature data are also applied in these areas to directly estimate actual seasonal evapotranspiration on the irrigated lands. The approach reveals situations of reduced irrigation water supply and crop production due to drought. The availability of MODIS data after 2000 also brought renewed interest in vegetation index imagery. MODIS NDVI data have proven to be of high quality, thanks to significant spectral and spatial resolution improvements over AVHRR. They are vital to producing rapid harvest assessments for drought-impacted countries in Africa and Asia. The global food crisis that emerged in 2008 has led to expansion of FEWS NET monitoring to over 50 additional countries. Unlike previous practice, these

  4. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect

    Roop, J.M.; Kaplan, D.T.

    1984-09-01

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  5. Problems with heterogeneity in physically based agricultural catchment models

    NASA Astrophysics Data System (ADS)

    Hansen, Jeppe Rølmer; Refsgaard, Jens Christian; Hansen, Søren; Ernstsen, Vibeke

    2007-08-01

    SummaryLumped conceptual rainfall-runoff models and physically based distributed models are being used successfully for simulating daily discharge at catchment scale. Physically based models are more desirable for simulation of the fate of agrochemicals (e.g. nitrate) because they rely on physical equations for flow and transport. The literature shows that the average response (e.g. percolation and leaching) at field scale can be simulated successfully by using effective or standard values in the parameterisation of these models. However, in areas characterised by a high degree of spatial variability the physically based models sometimes fail to simulate the discharge dynamics at catchment scale properly possibly due to the lack of representation of sub-grid variability. This paper presents an agricultural physically based distributed model concept which included 3561 combinations of root zone simulations of percolation and leaching that was distributed within a 622 km 2 catchment according to land use, climate, soil types, etc. This was thought to account for all heterogeneity within the catchment but did not. It was shown that a much simpler model with less than 100 combinations of root zone calculations partially including important variability at the catchment scale could simulate discharge equally well and in some cases better than the complex one. The most important parameter heterogeneity to include in the conceptualisation step apparently was sub-grid variation of soil physical parameters and variability of crop growth. The variation of crop growth was forced by restricting the rooting depth which potentially lumped other heterogeneities into this property. The results also suggest that the groundwater table that constitutes the lower boundary condition in the unsaturated zone is another important factor. However, this was difficult to examine because of the modelling approach that did not feature feedback from the saturated to the unsaturated zone. A list

  6. The Global 2000 Report to the President. Volume Three. Documentation on the Government's Global Sectoral Models: The Government's "Global Model."

    ERIC Educational Resources Information Center

    Barney, Gerald O., Ed.

    The third volume of the Global 2000 study presents basic information ("documentation") on the long-term sectoral models used by the U.S. government to project global trends in population, resources, and the environment. Its threefold purposes are: (1) to present all this basic information in a single volume, (2) to provide an…

  7. The Economic Impacts of Bioenergy Crop Production on U.S. Agriculture

    SciTech Connect

    Dr. Daniel De La Torre Ugarte

    2000-07-01

    The oil embargoes of the 1970s raised concerns about energy security. Large scale production of bioenergy crops could have significant impacts on the US agricultural sector in terms of quantities, prices and production location of traditional crops as well as farm income. USDA, UT and ORNL modified an agricultural sector model to include switchgrass, hybrid poplar, and willow.

  8. A GIS-based hedonic price model for agricultural land

    NASA Astrophysics Data System (ADS)

    Demetriou, Demetris

    2015-06-01

    Land consolidation is a very effective land management planning approach that aims towards rural/agricultural sustainable development. Land reallocation which involves land tenure restructuring is the most important, complex and time consuming component of land consolidation. Land reallocation relies on land valuation since its fundamental principle provides that after consolidation, each landowner shall be granted a property of an aggregate value that is approximately the same as the value of the property owned prior to consolidation. Therefore, land value is the crucial factor for the land reallocation process and hence for the success and acceptance of the final land consolidation plan. Land valuation is a process of assigning values to all parcels (and its contents) and it is usually carried out by an ad-hoc committee. However, the process faces some problems such as it is time consuming hence costly, outcomes may present inconsistency since it is carried out manually and empirically without employing systematic analytical tools and in particular spatial analysis tools and techniques such as statistical/mathematical. A solution to these problems can be the employment of mass appraisal land valuation methods using automated valuation models (AVM) based on international standards. In this context, this paper presents a spatial based linear hedonic price model which has been developed and tested in a case study land consolidation area in Cyprus. Results showed that the AVM is capable to produce acceptable in terms of accuracy and reliability land values and to reduce time hence cost required by around 80%.

  9. Variation of the NMVOC speciation in the solvent sector and the sensitivity of modelled tropospheric ozone

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, E.; Coates, J.; Denier van der Gon, H. A. C.; Visschedijk, A. J. H.; Butler, T. M.

    2016-06-01

    Non-methane volatile organic compounds (NMVOCs) are detrimental to human health owing to the toxicity of many of the NMVOC species, as well as their role in the formation of secondary air pollutants such as tropospheric ozone (O3) and secondary organic aerosol. The speciation and amount of NMVOCs emitted into the troposphere are represented in emission inventories (EIs) for input to chemical transport models that predict air pollutant levels. Much of the information in EIs pertaining to speciation of NMVOCs is likely outdated, but before taking on the task of providing an up-to-date and highly speciated EI, a better understanding of the sensitivity of models to the change in NMVOC input would be highly beneficial. According to the EIs, the solvent sector is the most important sector for NMVOC emissions. Here, the sensitivity of modelled tropospheric O3 to NMVOC emission inventory speciation was investigated by comparing the maximum potential difference in O3 produced using a variety of reported solvent sector EI speciations in an idealized study using a box model. The sensitivity was tested using three chemical mechanisms that describe O3 production chemistry, typically employed for different types of modelling scales - point (MCM v3.2), regional (RADM2), and global (MOZART-4). In the box model simulations, a maximum difference of 15 ppbv (ca. 22% of the mean O3 mixing ratio of 69 ppbv) between the different EI speciations of the solvent sector was calculated. In comparison, for the same EI speciation, but comparing the three different mechanisms, a maximum difference of 6.7 ppbv was observed. Relationships were found between the relative contribution of NMVOC compound classes (alkanes and oxygenated species) in the speciations to the amount of Ox produced in the box model. These results indicate that modelled tropospheric O3 is sensitive to the speciation of NMVOCs as specified by emission inventories, suggesting that detailed updates to the EI speciation

  10. Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, S. X.; Ran, L. M.; Pleim, J. E.; Cooter, E.; Bash, J. O.; Benson, V.; Hao, J. M.

    2015-06-01

    Atmospheric ammonia (NH3) plays an important role in atmospheric aerosol chemistry. China is one of the largest NH3 emitting countries with the majority of NH3 emissions coming from agricultural practices, such as fertilizer application and livestock production. The current NH3 emission estimates in China are mainly based on pre-defined emission factors that lack temporal or spatial details, which are needed to accurately predict NH3 emissions. This study provides the first online estimate of NH3 emissions from agricultural fertilizer application in China, using an agricultural fertilizer modeling system which couples a regional air quality model (the Community Multi-scale Air Quality model, or CMAQ) and an agro-ecosystem model (the Environmental Policy Integrated Climate model, or EPIC). This method improves the spatial and temporal resolution of NH3 emissions from this sector. We combined the cropland area data of 14 crops from 2710 counties with the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data to determine the crop distribution. The fertilizer application rates and methods for different crops were collected at provincial or agricultural region levels. The EPIC outputs of daily fertilizer application and soil characteristics were input into the CMAQ model and the hourly NH3 emissions were calculated online with CMAQ running. The estimated agricultural fertilizer NH3 emissions in this study were approximately 3 Tg in 2011. The regions with the highest modeled emission rates are located in the North China Plain. Seasonally, peak ammonia emissions occur from April to July. Compared with previous researches, this study considers an increased number of influencing factors, such as meteorological fields, soil and fertilizer application, and provides improved NH3 emissions with higher spatial and temporal resolution.

  11. Colombia and Cuba, contrasting models in Latin America's health sector reform.

    PubMed

    De Vos, Pol; De Ceukelaire, Wim; Van der Stuyft, Patrick

    2006-10-01

    Latin American national health systems were drastically overhauled by the health sector reforms the 1990s. Governments were urged by donors and by the international financial institutions to make major institutional changes, including the separation of purchaser and provider functions and privatization. This article first analyses a striking paradox of the far-reaching reform measures: contrary to what is imposed on public health services, after privatization purchaser and provider functions are reunited. Then we compare two contrasting examples: Colombia, which is internationally promoted as a successful--and radical--example of 'market-oriented' health care reform, and Cuba, which followed a highly 'conservative' path to adapt its public system to the new conditions since the 1990s, going against the model of the international institutions. The Colombian reform has not been able to materialize its promises of universality, improved equity, efficiency and better quality, while Cuban health care remains free, accessible for everybody and of good quality. Finally, we argue that the basic premises of the ongoing health sector reforms in Latin America are not based on the people's needs, but are strongly influenced by the needs of foreign--especially North American--corporations. However, an alternative model of health sector reform, such as the Cuban one, can probably not be pursued without fundamental changes in the economic and political foundations of Latin American societies.

  12. Zoning of agricultural field using a fuzzy indicators model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for deciding how to subdivide a field into a few relatively homogenous zones is using applications of fuzzy sets theory. Data collected from a precision agriculture study in central Texas...

  13. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect

    Not Available

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  14. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation research activity for historical period model intercomparison and future climate change conditions with participation of multiple crop and agricultural economic model groups around the...

  15. Modeling Electricity Sector Vulnerabilities and Costs Associated with Water Temperatures Under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.

    2014-12-01

    The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.

  16. Peer Review of FASOM-GHG Model

    EPA Pesticide Factsheets

    Information on EPA's peer review of the Forestry and Agricultural Sector Optimization Model with Greenhouse Gases (FASOM-GHG) partial equilibrium sectoral model for the Agency, the Administration, and Congress.

  17. Modelling carbon stocks and fluxes in the wood product sector: a comparative review.

    PubMed

    Brunet-Navarro, Pau; Jochheim, Hubert; Muys, Bart

    2016-07-01

    In addition to forest ecosystems, wood products are carbon pools that can be strategically managed to mitigate climate change. Wood product models (WPMs) simulating the carbon balance of wood production, use and end of life can complement forest growth models to evaluate the mitigation potential of the forest sector as a whole. WPMs can be used to compare scenarios of product use and explore mitigation strategies. A considerable number of WPMs have been developed in the last three decades, but there is no review available analysing their functionality and performance. This study analyses and compares 41 WPMs. One surprising initial result was that we discovered the erroneous implementation of a few concepts and assumptions in some of the models. We further described and compared the models using six model characteristics (bucking allocation, industrial processes, carbon pools, product removal, recycling and substitution effects) and three model-use characteristics (system boundaries, model initialization and evaluation of results). Using a set of indicators based on the model characteristics, we classified models using a hierarchical clustering technique and differentiated them according to their increasing degrees of complexity and varying levels of user support. For purposes of simulating carbon stock in wood products, models with a simple structure may be sufficient, but to compare climate change mitigation options, complex models are needed. The number of models has increased substantially over the last ten years, introducing more diversity and accuracy. Calculation of substitution effects and recycling has also become more prominent. However, the lack of data is still an important constraint for a more realistic estimation of carbon stocks and fluxes. Therefore, if the sector wants to demonstrate the environmental quality of its products, it should make it a priority to provide reliable life cycle inventory data, particularly regarding aspects of time and

  18. Water and energy conservation modeling in Pacific Northwest irrigated agriculture

    SciTech Connect

    Houston, J.E. Jr.

    1984-01-01

    Irrigated agriculture and electrical energy supply in the Pacific Northwest are intricately bound by mutual dependence on Columbia River Basin water. Diversion and instream demands on the water have intensified through recent development in the region. Water conservation opportunities exist in present irrigation that could supplement regional firm hydroelectricity. A two-level mathematical programming model is developed to evaluate irrigator production and regional price responses to water and electricity conservation policies. Stage one emphasizes decision criteria at producer level - irrigable land, water, electricity and labor demand, and water response yields on major crops. Irrigators choose cropping and irrigation mixes and rates at expected commodity prices under resource constraints consistent with regional policy. Stage two employs production and resource use solutions from stage one in a regional allocation and price equilibrium-seeking program. Alfalfa, apple, and potato prices are determined endogenously, and a decomposition-type linkage reiterates production area response to regional equilibrium prices. Baseline irrigated acreage, water electricity, production, and crop prices are estimated for 1982. Water pricing policies reflecting the opportunity value of Columbia River water for hydrogeneration indicate increasing net social benefits, net farm returns, and hydropower potential accruing from conservation in irrigation.

  19. The Parallel System for Integrating Impact Models and Sectors (pSIMS)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian

    2014-01-01

    We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.

  20. Modelling Approach to Assess Future Agricultural Water Demand

    NASA Astrophysics Data System (ADS)

    Spano, D.; Mancosu, N.; Orang, M.; Sarreshteh, S.; Snyder, R. L.

    2013-12-01

    The combination of long-term climate changes (e.g., warmer average temperatures) and extremes events (e.g., droughts) can have decisive impacts on water demand, with further implications on the ecosystems. In countries already affected by water scarcity, water management problems are becoming increasingly serious. The sustainable management of available water resources at the global, regional, and site-specific level is necessary. In agriculture, the first step is to compute how much water is needed by crops in regards to climate conditions. Modelling approach can be a way to compute crop water requirement (CWR). In this study, the improved version of the SIMETAW model was used. The model is a user friendly soil water balance model, developed by the University of California, Davis, the California Department of Water Resource, and the University of Sassari. The SIMETAW# model assesses CWR and generates hypothetical irrigation scheduling for a wide range of irrigated crops experiencing full, deficit, or no irrigation. The model computes the evapotranspiration of the applied water (ETaw), which is the sum of the net amount of irrigation water needed to match losses due to the crop evapotranspiration (ETc). ETaw is determined by first computing reference evapotranspiration (ETo) using the daily standardized Reference Evapotranspiration equation. ETaw is computed as ETaw = CETc - CEr, where CETc and CE are the cumulative total crop ET and effective rainfall values, respectively. Crop evapotranspiration is estimated as ETc = ETo x Kc, where Kc is the corrected midseason tabular crop coefficient, adjusted for climate conditions. The net irrigation amounts are determined from a daily soil water balance, using an integrated approach that considers soil and crop management information, and the daily ETc estimates. Using input information on irrigation system distribution uniformity and runoff, when appropriate, the model estimates the applied water to the low quarter of the

  1. Instability in interacting dark sector: an appropriate holographic Ricci dark energy model

    NASA Astrophysics Data System (ADS)

    Herrera, Ramón; Hipólito-Ricaldi, W. S.; Videla, Nelson

    2016-08-01

    In this paper we investigate the consequences of phantom crossing considering the perturbative dynamics in models with interaction in their dark sector. By mean of a general study of gauge-invariant variables in comoving gauge, we relate the sources of instabilities in the structure formation process with the phantom crossing. In order to illustrate these relations and its consequences in more detail, we consider a specific case of an holographic dark energy interacting with dark matter. We find that in spite of the model is in excellent agreement with observational data at background level, however it is plagued of instabilities in its perturbative dynamics. We reconstruct the model in order to avoid these undesirable instabilities, and we show that this implies a modification of the concordance model at background. Also we find drastic changes on the parameters space in our model when instabilities are avoided.

  2. Cosmic strings in hidden sectors: 1. Radiation of standard model particles

    SciTech Connect

    Long, Andrew J.; Hyde, Jeffrey M.; Vachaspati, Tanmay E-mail: jmhyde@asu.edu

    2014-09-01

    In hidden sector models with an extra U(1) gauge group, new fields can interact with the Standard Model only through gauge kinetic mixing and the Higgs portal. After the U(1) is spontaneously broken, these interactions couple the resultant cosmic strings to Standard Model particles. We calculate the spectrum of radiation emitted by these ''dark strings'' in the form of Higgs bosons, Z bosons, and Standard Model fermions assuming that string tension is above the TeV scale. We also calculate the scattering cross sections of Standard Model fermions on dark strings due to the Aharonov-Bohm interaction. These radiation and scattering calculations will be applied in a subsequent paper to study the cosmological evolution and observational signatures of dark strings.

  3. A Conceptual Model of Intrapreneurship in the Iranian Agricultural Extension Organization: Implications for HRD

    ERIC Educational Resources Information Center

    Karimi, Asef; Malekmohamadi, Iraj; Daryani, Mahmoud Ahmadpour; Rezvanfar, Ahmad

    2011-01-01

    Purpose: This study seeks to build a conceptual model of agricultural extension intrapreneurship that discusses the concept and phenomenon of intrapreneurship as well as its prerequisites and outcomes. The proposed model is intended to depict the main factors that affect the phenomena of intrapreneurship within the agricultural extension…

  4. Model Course of Study for Agricultural Programs in Iowa. Preparing for the Future.

    ERIC Educational Resources Information Center

    Martin, Robert A.; And Others

    Each section contained in this packet is necessary for designing an effective program of agriculture education. The curriculum guide that is developed from this model should include the same sections. The model includes: (1) community description; (2) school description; (3) goals and objectives of education in agriculture; (4) evaluation policy;…

  5. Model-independent indirect detection constraints on hidden sector dark matter

    SciTech Connect

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.; Xue, Wei

    2016-06-10

    If dark matter inhabits an expanded “hidden sector”, annihilations may proceed through sequential decays or multi-body final states. We map out the potential signals and current constraints on such a framework in indirect searches, using a model-independent setup based on multi-step hierarchical cascade decays. While remaining agnostic to the details of the hidden sector model, our framework captures the generic broadening of the spectrum of secondary particles (photons, neutrinos, e{sup +}e{sup −} and p-barp) relative to the case of direct annihilation to Standard Model particles. We explore how indirect constraints on dark matter annihilation limit the parameter space for such cascade/multi-particle decays. We investigate limits from the cosmic microwave background by Planck, the Fermi measurement of photons from the dwarf galaxies, and positron data from AMS-02. The presence of a hidden sector can change the constraints on the dark matter by up to an order of magnitude in either direction (although the effect can be much smaller). We find that generally the bound from the Fermi dwarfs is most constraining for annihilations to photon-rich final states, while AMS-02 is most constraining for electron and muon final states; however in certain instances the CMB bounds overtake both, due to their approximate independence on the details of the hidden sector cascade. We provide the full set of cascade spectra considered here as publicly available code with examples at http://web.mit.edu/lns/research/CascadeSpectra.html.

  6. Collaborative evaluation and market research converge: an innovative model agricultural development program evaluation in Southern Sudan.

    PubMed

    O'Sullivan, John M; O'Sullivan, Rita

    2012-11-01

    In June and July 2006 a team of outside experts arrived in Yei, Southern Sudan through an AID project to provide support to a local agricultural development project. The team brought evaluation, agricultural marketing and financial management expertise to the in-country partners looking at steps to rebuild the economy of the war ravaged region. A partnership of local officials, agricultural development staff, and students worked with the outside team to craft a survey of agricultural traders working between northern Uganda and Southern Sudan the steps approach of a collaborative model. The goal was to create a market directory of use to producers, government officials and others interested in stimulating agricultural trade. The directory of agricultural producers and distributors served as an agricultural development and promotion tool as did the collaborative process itself.

  7. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    PubMed

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources.

  8. Classical Lagrangians and Finsler structures for the nonminimal fermion sector of the standard model extension

    NASA Astrophysics Data System (ADS)

    Schreck, M.

    2016-05-01

    This article is devoted to finding classical point-particle equivalents for the fermion sector of the nonminimal standard model extension (SME). For a series of nonminimal operators, such Lagrangians are derived at first order in Lorentz violation using the algebraic concept of Gröbner bases. Subsequently, the Lagrangians serve as a basis for reanalyzing the results of certain kinematic tests of special relativity that were carried out in the past century. Thereby, a number of new constraints on coefficients of the nonminimal SME is obtained. In the last part of the paper we point out connections to Finsler geometry.

  9. Casimir effect at finite temperature for pure-photon sector of the minimal Standard Model Extension

    NASA Astrophysics Data System (ADS)

    Santos, A. F.; Khanna, Faqir C.

    2016-12-01

    Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.

  10. Modeling irrigation-based climate change adaptation in agriculture: Model development and evaluation in Northeast China

    NASA Astrophysics Data System (ADS)

    Okada, Masashi; Iizumi, Toshichika; Sakurai, Gen; Hanasaki, Naota; Sakai, Toru; Okamoto, Katsuo; Yokozawa, Masayuki

    2015-09-01

    Replacing a rainfed cropping system with an irrigated one is widely assumed to be an effective measure for climate change adaptation. However, many agricultural impact studies have not necessarily accounted for the space-time variations in the water availability under changing climate and land use. Moreover, many hydrologic and agricultural assessments of climate change impacts are not fully integrated. To overcome this shortcoming, a tool that can simultaneously simulate the dynamic interactions between crop production and water resources in a watershed is essential. Here we propose the regional production and circulation coupled model (CROVER) by embedding the PRYSBI-2 (Process-based Regional Yield Simulator with Bayesian Inference version 2) large-area crop model into the global water resources model (called H08), and apply this model to the Songhua River watershed in Northeast China. The evaluation reveals that the model's performance in capturing the major characteristics of historical change in surface soil moisture, river discharge, actual crop evapotranspiration, and soybean yield relative to the reference data during the interval 1979-2010 is satisfactory accurate. The simulation experiments using the model demonstrated that subregional irrigation management, such as designating the area to which irrigation is primarily applied, has measurable influences on the regional crop production in a drought year. This finding suggests that reassessing climate change risk in agriculture using this type of modeling is crucial not to overestimate potential of irrigation-based adaptation.

  11. Neutrino sector and proton lifetime in a realistic SUSY S O (10 ) model

    NASA Astrophysics Data System (ADS)

    Severson, Matthew

    2015-11-01

    In this work I present a complete analysis of proton decay in an S O (10 ) model previously proposed by Dutta, Mimura, and Mohapatra. The 10 , 126 ¯ , and 120 Yukawa couplings contributing to fermion masses in this model have well-motivated restrictions on their textures intended to give favorable results for proton lifetime as well as a realistic fermion sector without the need for fine-tuning and for either type-I or type-II dominance in the neutrino mass matrix. I obtain a valid fit for the entire fermion sector for both types of seesaw dominance, including θ13 in good agreement with the most recent data. For the case with type-II seesaw, I find that using the Yukawa couplings fixed by the successful fermion sector fit, proton partial lifetime limits are satisfied for nearly every pertinent decay mode, even for nearly arbitrary values of the triplet Higgs mixing parameters, with only the K+ν ¯ mode requiring a minor O (1 0-1) cancellation in order to satisfy the experimental limit. I also find a maximum lifetime for that mode of τ (K+ν ¯ )˜1036 yr , which should be tested by forthcoming experiments. For the type-I seesaw case, I find that all six pertinent decay modes of interest are satisfied for values of the triplet mixing parameters giving no major enhancement, with modes other than K+ν ¯ easily satisfied for arbitrary mixing values, and with a maximum lifetime for K+ν ¯ of nearly 1038 yr .

  12. Landuse and agricultural management practice web-service (LAMPS) for agroecosystem modeling and conservation planning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The USDA Natural Resources Conservation Service is developing a Land Management and Operation Database (LMOD) which contains potential model input, howe...

  13. Population health improvement: a community health business model that engages partners in all sectors.

    PubMed

    Kindig, David A; Isham, George

    2014-01-01

    Because population health improvement requires action on multiple determinants--including medical care, health behaviors, and the social and physical environments--no single entity can be held accountable for achieving improved outcomes. Medical organizations, government, schools, businesses, and community organizations all need to make substantial changes in how they approach health and how they allocate resources. To this end, we suggest the development of multisectoral community health business partnership models. Such collaborative efforts are needed by sectors and actors not accustomed to working together. Healthcare executives can play important leadership roles in fostering or supporting such partnerships in local and national arenas where they have influence. In this article, we develop the following components of this argument: defining a community health business model; defining population health and the Triple Aim concept; reaching beyond core mission to help create the model; discussing the shift for care delivery beyond healthcare organizations to other community sectors; examining who should lead in developing the community business model; discussing where the resources for a community business model might come from; identifying that better evidence is needed to inform where to make cost-effective investments; and proposing some next steps. The approach we have outlined is a departure from much current policy and management practice. But new models are needed as a road map to drive action--not just thinking--to address the enormous challenge of improving population health. While we applaud continuing calls to improve health and reduce disparities, progress will require more robust incentives, strategies, and action than have been in practice to date. Our hope is that ideas presented here will help to catalyze a collective, multisectoral response to this critical social and economic challenge.

  14. ELICITED EXPERT PERCEPTIONS FOR CLIMATE CHANGE RISKS AND ADAPTATION IN AGRICULTURE AND FOOD PRODUCTION THROUGH MENTAL MODELS APPROACH

    NASA Astrophysics Data System (ADS)

    Suda, Eiko; Kubota, Hiromi; Baba, Kenshi; Hijioka, Yasuaki; Takahashi, Kiyoshi; Hanasaki, Naota

    Impacts of climate change have become obvious in agriculture and food production in Japan these days, and researches to adapt to their risks have been conducted as a key effort to cope with the climate change. Numerous scientific findings on climate change impacts have been presented so far; however, prospective risks to be adapted to and their management in the context of individual on-site situations have not been investigated in detail. The structure of climate change risks and their management vary depending on geographical and social features in the regions where the adaptation options should be applied; therefore, a practical adaptation strategy should consider actual on-site situations. This study intended to clarify climate change risks to be adapted to in the Japanese agricultural sector, and factors to be considered in adaptation options, for encouragement of decision-making on adaptation implementation in the field. Semi-structured individual interviews have been conducted with 9 multidisciplinary experts engaging in climate change impacts research in agricultural production, economics, engineering, policy, and so on. Based on the results of the interviews, and the latest literatures available for risk assessment and adaptation, an expert mental model including their perceptions which cover the process from climate change impacts assessment to adaptation has been developed. The prospective risks, adaptation options, and issues to be examined to progress the development of practical and effective adaptation options and to support individual or social decision-making, have been shown on the developed expert mental model. It is the basic information for developing social communication and stakeholders cooperations in climate change adaptation strategies in agriculture and food production in Japan.

  15. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint

    SciTech Connect

    Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

    2014-05-01

    Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  16. Psychosocial sources of stress and burnout in the construction sector: a structural equation model.

    PubMed

    Meliá, Josep L; Becerril, Marta

    2007-11-01

    This study develops and tests a structural equation model of social stress factors in the construction industry. Leadership behaviours, role conflict and mobbing behaviours are considered exogenous sources of stress; the experience of tension and burnout are considered mediator variables; and psychological well-being, propensity to quit and perceived quality are the final dependent variables. A sample of Spanish construction workers participated voluntarily and anonymously in the study. After considering the indices of modification, leadership showed direct effects on the propensity to quit and perceived quality. The overall fit of the model is adequate (chi2 (13)= 10.69, p = .637, GFI= .975, AGFI= .93, RMR= .230, NFI= .969, TLI= 1.016, CFI= 1.000, RMSEA= .329). Construction has been considered a sector characterized more by high physical risks than socially-related risks. In this context, these findings about the effects of social sources of stress in construction raise new questions about the organizational characteristics of the sector and their psychosocial risks.

  17. The neutralino sector in the U(1)-extended supersymmetric Standard Model

    NASA Astrophysics Data System (ADS)

    Choi, S. Y.; Haber, H. E.; Kalinowski, J.; Zerwas, P. M.

    2007-08-01

    Motivated by grand unified theories and string theories we analyze the general structure of the neutralino sector in the USSM, an extension of the minimal supersymmetric Standard Model that involves a broken extra U(1) gauge symmetry. This supersymmetric U(1)-extended model includes an Abelian gauge superfield and a Higgs singlet superfield in addition to the standard gauge and Higgs superfields of the MSSM. The interactions between the MSSM fields and the new fields are in general weak and the mixing is small, so that the coupling of the two subsystems can be treated perturbatively. As a result, the mass spectrum and mixing matrix in the neutralino sector can be analyzed analytically and the structure of this 6-state system is under good theoretical control. We describe the decay modes of the new states and the impact of this extension on decays of the original MSSM neutralinos, including radiative transitions in cross-over zones. Production channels in cascade decays at the LHC and pair production at ee colliders are also discussed.

  18. Stratification in a Dual Economy: A Sectoral Model of Earnings Determination.

    ERIC Educational Resources Information Center

    Beck, E.M.; And Others

    1978-01-01

    Examined in this paper is the importance of industrial sectors for the process of earnings determination. Findings indicate that there are significant differences in labor force composition and economic status between core and periphery industrial sectors. (Author/EB)

  19. Modeling climate change impact in hospitality sector, using building resources consumption signature

    NASA Astrophysics Data System (ADS)

    Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima

    2016-04-01

    Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using the building energy and water signature. This methodology is applied to sixteen hotels (nine in Lisbon and seven in Algarve) with four and five stars rating. The results show that is expect an increase in water and electricity consumption (manly due to the increase in

  20. Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.

    SciTech Connect

    Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-02-28

    Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for

  1. State of science of phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  2. Curriculum Guidelines for a Distance Education Course in Urban Agriculture Based on an Eclectic Model.

    ERIC Educational Resources Information Center

    Gaum, Wilma G.; van Rooyen, Hugo G.

    1997-01-01

    Describes research to develop curriculum guidelines for a distance education course in urban agriculture. The course, designed to train the teacher, is based on an eclectic curriculum design model. The course is aimed at the socioeconomic empowerment of urban farmers and is based on sustainable ecological-agricultural principles, an…

  3. A New Extension Model: The Memorial Middle School Agricultural Extension and Education Center

    ERIC Educational Resources Information Center

    Skelton, Peter; Seevers, Brenda

    2010-01-01

    The Memorial Middle School Agricultural Extension and Education Center is a new model for Extension. The center applies the Cooperative Extension Service System philosophy and mission to developing public education-based programs. Programming primarily serves middle school students and teachers through agricultural and natural resource science…

  4. The relationship between carbon dioxide and agriculture in Ghana: a comparison of VECM and ARDL model.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-06-01

    In this paper, the relationship between carbon dioxide and agriculture in Ghana was investigated by comparing a Vector Error Correction Model (VECM) and Autoregressive Distributed Lag (ARDL) Model. Ten study variables spanning from 1961 to 2012 were employed from the Food Agricultural Organization. Results from the study show that carbon dioxide emissions affect the percentage annual change of agricultural area, coarse grain production, cocoa bean production, fruit production, vegetable production, and the total livestock per hectare of the agricultural area. The vector error correction model and the autoregressive distributed lag model show evidence of a causal relationship between carbon dioxide emissions and agriculture; however, the relationship decreases periodically which may die over-time. All the endogenous variables except total primary vegetable production lead to carbon dioxide emissions, which may be due to poor agricultural practices to meet the growing food demand in Ghana. The autoregressive distributed lag bounds test shows evidence of a long-run equilibrium relationship between the percentage annual change of agricultural area, cocoa bean production, total livestock per hectare of agricultural area, total pulses production, total primary vegetable production, and carbon dioxide emissions. It is important to end hunger and ensure people have access to safe and nutritious food, especially the poor, orphans, pregnant women, and children under-5 years in order to reduce maternal and infant mortalities. Nevertheless, it is also important that the Government of Ghana institutes agricultural policies that focus on promoting a sustainable agriculture using environmental friendly agricultural practices. The study recommends an integration of climate change measures into Ghana's national strategies, policies and planning in order to strengthen the country's effort to achieving a sustainable environment.

  5. Fuzzy-Klassen Model for Development Disparities Analysis based on Gross Regional Domestic Product Sector of a Region

    NASA Astrophysics Data System (ADS)

    Ai, Tb.; Wardoyo, Retantyo

    2015-08-01

    Analysis of regional development imbalances quadrant has a very important meaning in order to see the extent of achievement of the development of certain areas as well as the difference. Factors that could be used as a tool to measure the inequality of development is to look at the average growth and development contribution of each sector of Gross Regional Domestic Product (GRDP) based on the analyzed region and the reference region. This study discusses the development of a model to determine the regional development imbalances using fuzzy approach system, and the rules of typology Klassen. The model is then called fuzzy-Klassen. Implications Product Mamdani fuzzy system is used in the model as an inference engine to generate output after defuzzyfication process. Application of MATLAB is used as a tool of analysis in this study. The test a result of Kota Cilegon is shows that there are significant differences between traditional Klassen typology analyses with the results of the model developed. Fuzzy model-Klassen shows GRDP sector inequality Cilegon City is dominated by Quadrant I (K4), where status is the sector forward and grows exponentially. While the traditional Klassen typology, half of GRDP sector is dominated by Quadrant IV (K4) with a sector that is lagging relative status.

  6. Droughts in the US: Modeling and Forecasting for Agriculture-Water Management and Adaptation

    NASA Astrophysics Data System (ADS)

    Perveen, S.; Devineni, N.; Lall, U.

    2012-12-01

    More than half of all US counties are currently mired in a drought that is considered the worst in decades. A persistent drought can not only lead to widespread impacts on water access with interstate implications (as has been shown in the Southeast US and Texas), chronic scarcity can emerge as a risk in regions where fossil aquifers have become the primary source of supply and are being depleted at rates much faster than recharge (e.g., Midwestern US). The standardized drought indices on which the drought declarations are made in the US so far consider only the static decision frameworks—where only the supply is the control variable and not the water consumption. If a location has low demands, drought as manifest in the usual indices does not really have "proportionate" social impact. Conversely, a modest drought as indicated by the traditional measures may have significant impacts where demand is close to the climatological mean value of precipitation. This may also lead to drought being declared too late or too soon. Against this fact, the importance of improved drought forecasting and preparedness for different sectors of the economy becomes increasingly important. The central issue we propose to address through this paper is the construction and testing of a drought index that considers regional water demands for specific purposes (e.g., crops, municipal use) and their temporal distribution over the year for continental US. Here, we have highlighted the use of the proposed index for three main sectors: (i) water management organizations, (ii) optimizing agricultural water use, and (iii) supply chain water risk. The drought index will consider day-to-day climate variability and sectoral demands to develop aggregate regional conditions or disaggregated indices for water users. For the daily temperature and precipitation data, we are using NLDAS dataset that is available from 1949 onwards. The national agricultural statistics services (NASS) online database has

  7. Feed and livestock model of the United States with an application to the possible effects on US agriculture of large-scale corn alcohol production

    SciTech Connect

    Silver, S.J.

    1983-01-01

    Models of the three major crops, corn ethanol production and the livestock economy are specfied and estimated. The models are simulated under various scenarios to determine the possible short-term and long-term effects on the US agriculture economy in the event the US engages in large-scale production of fermentation ethanol from corn. Such production would be the result of price incentives caused by a rapid increase in the price of crude oil. The ethanol would be used as octane booster in premium unleaded gasoline. In this analysis the author found that limiting the use of alcohol as blender to boost octane ratings of premium unleaded gasoline would have only minor effects on the crop and livestock economies of the US agricultural sector. He does feel, however, that expansion of its use into the broader gasohol market might result in a much larger impact on both the crops and livestock sectors of the US agricultural economy. He also analyzed the effects on the byproduct feed markets of the alcohol production and found that byproduct prices would probably remain sufficiently strong to make such production economically feasible.

  8. US Clean Energy Sector and the Opportunity for Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Inge, Carole Cameron

    2011-01-01

    The following paper sets forth the current understanding of the US clean energy demand and opportunity. As clean energy systems come online and technology is developed, modeling and simulation of these complex energy programs provides an untapped business opportunity. The US Department of Defense provides a great venue for developing new technology in the energy sector because it is demanding lower fuel costs, more energy efficiencies in its buildings and bases, and overall improvements in its carbon footprint. These issues coupled with the security issues faced by foreign dependence on oil will soon bring more clean energy innovations to the forefront (lighter batteries for soldiers, alternative fuel for jets, energy storage systems for ships, etc).

  9. The photino sector and a confining potential in a supersymmetric Lorentz-symmetry-violating model

    NASA Astrophysics Data System (ADS)

    Belich, H.; Bernald, L. D.; Gaete, Patricio; Helayël-Neto, J. A.

    2013-11-01

    We study the spectrum of the minimal supersymmetric extension of the Carroll-Field-Jackiw model for Electrodynamics with a topological Chern-Simons-like Lorentz-symmetry violating term. We identify a number of independent background fermion condensates, work out the gaugino dispersion relation and propose a photonic effective action to consider aspects of confinement induced by the SUSY background fermion condensates, which also appear to signal Lorentz-symmetry violation in the photino sector of the action. Our calculations of the static potential are carried out within the framework of the gauge-invariant but path-dependent variables formalism which are alternative to the Wilson loop approach. Our results show that the interaction energy contains a linear term leading to the confinement of static probe charges.

  10. Probing the Higgs sector of high-scale supersymmetry-breaking models at the Tevatron

    SciTech Connect

    Carena, Marcela; Draper, Patrick; Heinemeyer, Sven; Liu, Tao; Wagner, Carlos E. M.; Weiglein, Georg

    2011-03-01

    A canonical signature of the minimal supersymmetric standard model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and standard model (SM)-like couplings to the electroweak gauge bosons. In this paper we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY) breaking, including the constrained MSSM, minimal gauge-mediated SUSY breaking, and minimal anomaly-mediated SUSY breaking. We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb{sup -1} per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb{sup -1}, our projection shows that evidence at the 3{sigma} level for the light Higgs boson could be expected in extended regions of parameter space.

  11. Survey review of models for use in market penetration analysis: utility sector focus

    SciTech Connect

    Groncki, P.J.; Kydes, A.S.; Lamontagne, J.; Marcuse, W.; Vinjamuri, G.

    1980-11-01

    The ultimate benefits of federal expenditures in research and development for new technologies are dependent upon the degree of acceptance of these technologies. Market penetration considerations are central to the problem of quantifying the potential benefits. These benefits are inputs to the selection process of projects competing for finite R and D funds. Market penetration is the gradual acceptance of a new commodity or technology. The Office of Coal utilization is concerned with the specialized area of market penetration of new electric power generation technologies for both replacement and new capacity. The common measure of market penetration is the fraction of the market serviced by the challenging technology for each time point considered. The methodologies for estimating market penetration are divided into three generic classes: integrated energy/economy modeling systems, utility capacity expansion models, and technology substitution models. In general, the integrated energy/economy modeling systems have three advantages: they provide internally consistent macro, energy-economy scenarios, they account for the effect of prices on demand by fuel form, and they explicitly capture the effects of population growth and the level and structure of economic activity on energy demand. A variety of deficiencies appear in most energy-economy systems models. All of the methodologies may be applied at some level to questions of market penetration of new technologies in the utility sector; choice of methods for a particular analysis must be conditioned by the scope of the analysis, data availability, and the relative cost of alternative analysis.

  12. Probing the Higgs sector of high-scale supersymmetry-breaking models at the Tevatron.

    SciTech Connect

    Carena, M.; Draper, P.; Heinemeyer, S.; Liu, T.; Wagner, C. E. M.; Weiglein, G.

    2011-03-07

    A canonical signature of the minimal supersymmetric standard model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and standard model (SM)-like couplings to the electroweak gauge bosons. In this paper we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY) breaking, including the constrained MSSM, minimal gauge-mediated SUSY breaking, and minimal anomaly-mediated SUSY breaking. We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb{sup -1} per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb{sup -1}, our projection shows that evidence at the 3{sigma} level for the light Higgs boson could be expected in extended regions of parameter space.

  13. Estimating agricultural N2O emissions in France: comparison of a spatialized agro-ecosytem model (CERES-EGC) and a terrestrial biosphere model (O-CN)

    NASA Astrophysics Data System (ADS)

    Massad, R. S.; Prieur, V.; Boukari, E.; Lehuger, S.; Chaumartin, F.; Schultz, M.; Gabrielle, B.

    2012-04-01

    Nitrous oxide (N2O) is a major greenhouse gas and air pollutant. Considered over a 100 year period, it has 298 times more impact 'per unit weight' (Global warming potential) than carbon dioxide. The parties to the United Nations Framework Convention on Climate Change (UNFCCC), including France, are committed to estimate their national nitrous oxide (N2O) budgets and to establish regional programmes of N2O emissions reductions. Agricultural activities are gradually coming into focus as a major GHG emission sector; precise regional estimates of current N2O emissions from arable land are being needed, along with possible means for mitigating emissions. The use of biogeochemical simulation models to estimate N2O fluxes from agricultural soils has obvious benefits. These models provide a unique potential to mechanistically predict N2O emissions from arable soils on both the plot-scale and the regional/national scale on daily time resolutions. In this study we apply two biogeochemical simulation models: CERES-EGC and O-CN all over France for the year 2007 in the perspective of producing an inventory of N2O emissions from croplands. Simulated total N2O emissions from agricultural soils sum up to 20.4 Gg N-N2O/yr with the CERES-EGC model and to 95.1 Gg N-N2O/yr with the O-CN model. Even though the total emissions are largely different between the two models, the temporal and spatial distributions are comparable. When compared to the EDGAR 4.2 emission database we note that O-CN overestimates the annual emissions by approximately a factor of two, whereas CERES-EGC underestimates those emissions. These differences can be explained to a certain extent by the difference in land-use types considered in each of the models and the inventories.

  14. Research on agricultural ecology and environment analysis and modeling based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Chen, Hongfu; Wang, Mingsheng

    2009-07-01

    Analysis of agricultural ecology and environment is based on the data of agricultural resources, which are obtained by RS monitoring. The over-exploitation of farmlands will cause structural changes of the soil composition, and damage the planting environment and the agro-ecosystem. Through the research on the dynamic monitoring methods of multitemporal RS images and GIS technology, the crop growth status, crop acreage and other relevant information in agricultural production are extracted based on the monitor and analysis of the conditions of the fields and crop growth. The agro-ecological GIS platform is developed with the establishment of the agricultural resources management database, which manages spatial data, RS data and attribute data of agricultural resources. Using the RS, GIS analysis results, the reasons of agro-ecological destruction are analyzed and the evaluation methods are established. This paper puts forward the concept of utilization capacity of farmland, which describes farmland space for development and utilization that is influenced by the conditions of the land, water resources, climate, pesticides and chemical fertilizers and many other agricultural production factors. Assessment model of agricultural land use capacity is constructed with the help of Fuzzy. Assessing the utilization capacity of farmland can be helpful to agricultural production and ecological protection of farmland. This paper describes the application of the capacity evaluation model with simulated data in two aspects, namely, in evaluating the status of farmland development and utilization and in optimal planting.

  15. Optical modeling of agricultural fields and rough-textured rock and mineral surfaces

    NASA Technical Reports Server (NTRS)

    Suits, G. H.; Vincent, R. K.; Horwitz, H. M.; Erickson, J. D.

    1973-01-01

    Review was made of past models for describing the reflectance and/or emittance properties of agricultural/forestry and geological targets in an effort to select the best theoretical models. An extension of the six parameter Allen-Gayle-Richardson model was chosen as the agricultural plant canopy model. The model is used to predict the bidirectional reflectance of a field crop from known laboratory spectra of crop components and approximate plant geometry. The selected geological model is based on Mie theory and radiative transfer equations, and will assess the effect of textural variations of the spectral emittance of natural rock surfaces.

  16. Global emission projections for the transportation sector using dynamic technology modeling

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.

    2014-06-01

    In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable detail on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC (Intergovernmental Panel on Climate Change) scenarios (A1B, A2, B1, and B2). With global fossil-fuel use (oil and coal) in the transportation sector in the range of 128-171 EJ across the four scenarios, global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of non-methane total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM) in the year 2030. At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two

  17. Global emission projections for the transportation sector using dynamic technology modeling

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.

    2013-12-01

    In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable details on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC scenarios (A1B, A2, B1, and B2). We project that global fossil-fuel use (oil and coal) in the transportation sector will be in the range of 3.0-4.0 Gt across the four scenarios in the year 2030. Corresponding global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM). At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to

  18. Global emission projections for the transportation sector using dynamic technology modeling

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.

    2013-09-01

    In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable details on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC scenarios (A1B, A2, B1, and B2). We project that global fossil-fuel use (oil and coal) in the transportation sector will be in the range of 3.0-4.0 Gt across the four scenarios in the year 2030. Corresponding global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM). At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to

  19. Chapter 3: Cropland Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2013, cropland agriculture resulted in total emissions of approximately 209 MMT CO2 eq. of greenhouse gases (GHG). Cropland agriculture is responsible for almost half (46%) of all emissions from the agricultural sector. Nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) emissions from c...

  20. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  1. Basing care reforms on evidence: The Kenya health sector costing model

    PubMed Central

    2011-01-01

    Background The Government of the Republic of Kenya is in the process of implementing health care reforms. However, poor knowledge about costs of health care services is perceived as a major obstacle towards evidence-based, effective and efficient health care reforms. Against this background, the Ministry of Health of Kenya in cooperation with its development partners conducted a comprehensive costing exercise and subsequently developed the Kenya Health Sector Costing Model in order to fill this data gap. Methods Based on standard methodology of costing of health care services in developing countries, standard questionnaires and analyses were employed in 207 health care facilities representing different trustees (e.g. Government, Faith Based/Nongovernmental, private-for-profit organisations), levels of care and regions (urban, rural). In addition, a total of 1369 patients were randomly selected and asked about their demand-sided costs. A standard step-down costing methodology was applied to calculate the costs per service unit and per diagnosis of the financial year 2006/2007. Results The total costs of essential health care services in Kenya were calculated as 690 million Euros or 18.65 Euro per capita. 54% were incurred by public sector facilities, 17% by Faith Based and other Nongovernmental facilities and 23% in the private sector. Some 6% of the total cost is due to the overall administration provided directly by the Ministry and its decentralised organs. Around 37% of this cost is absorbed by salaries and 22% by drugs and medical supplies. Generally, costs of lower levels of care are lower than of higher levels, but health centres are an exemption. They have higher costs per service unit than district hospitals. Conclusions The results of this study signify that the costs of health care services are quite high compared with the Kenyan domestic product, but a major share are fixed costs so that an increasing coverage does not necessarily increase the health

  2. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  3. Using Multispectral Analysis in GIS to Model the Potential for Urban Agriculture in Philadelphia

    NASA Astrophysics Data System (ADS)

    Dmochowski, J. E.; Cooper, W. P.

    2010-12-01

    In the context of growing concerns about the international food system’s dependence on fossil fuels, soil degradation, climate change, and other diverse issues, a number of initiatives have arisen to develop and implement sustainable agricultural practices. Many seeking to reform the food system look to urban agriculture as a means to create localized, sustainable agricultural production, while simultaneously providing a locus for community building, encouraging better nutrition, and promoting the rebirth of depressed urban areas. The actual impact of such system, however, is not well understood, and many critics of urban agriculture regard its implementation as impractical and unrealistic. This project uses multispectral imagery from United States Department of Agriculture’s National Agricultural Imagery Program with a one-meter resolution to quantify the potential for increasing urban agriculture in an effort to create a sustainable food system in Philadelphia. Color infrared images are classified with a minimum distance algorithm in ArcGIS to generate baseline data on vegetative cover in Philadelphia. These data, in addition to mapping on the ground, form the basis of a model of land suitable for conversion to agriculture in Philadelphia, which will help address questions related to potential yields, workforce, and energy requirements. This research will help city planners, entrepreneurs, community leaders, and citizens understand how urban agriculture can contribute to creating a sustainable food system in a major North American city.

  4. GREENHOUSE GAS MITIGATION POTENTIAL IN U.S. FORESTRY AND AGRICULTURE

    EPA Science Inventory

    This report describes the FASOM-GHG model (Forestry and Agriculture Sector Optimization Model with Greenhouse Gases), the GHG mitigation scenarios for U.S. forestry and agriculture run through the FASOM-GHG model, and the results and insights that are generated. GHG mitigation po...

  5. Modeling the impacts of climate change and agricultural management practices on surface erosion in a dryland agricultural basin

    NASA Astrophysics Data System (ADS)

    Ottenbreit, E.; Adam, J. C.; Barber, M. E.

    2010-12-01

    The objective of this study is to investigate the effects of climate change and agricultural management practices on suspended sediment concentrations in the Potlach River basin in northwestern Idaho. Suspended sediment is a pollutant in many water systems and contributes to the impairment of streams. Conventional tillage practices and rain-on-snow events in the Palouse region of northern Idaho and eastern Washington can produce some of the highest sediment losses per acre in the United States. Climate change may lead to further problems as more frequent and intense winter storm events are predicted to occur. Many hydrological models have been developed which examine suspended sediment in river systems. The Potlatch River basin near Julietta, ID was examined using the Distributed Hydrology Soil Vegetation Model (DHSVM), which has a sediment module that includes surface erosion and channel sediment transport. DHSVM was calibrated and evaluated over the historical period of streamflow observations and was used to predict soil erosion rates and suspended sediment concentrations using a range of downscaled Global Climate Models (GCMs) emissions scenarios for the year 2045. Furthermore, the sensitivity of suspended sediment concentrations to conventional versus convservative tillage practices was explored. The results show that as the projected climate-driven intensity of storms increase, more sediment is predicted in the Potlatch River. Suspended sediment and streamflow are predicted to increase during the late fall through the early spring. This increase occurs during times of heightened runoff when suspended sediment concentration in the river is highest. Three tillage scenarios were incorporated into DHSVM for winter wheat: conventional till, reduced till, and no till. Erosion and suspended sediment were higher during storm events under conventional agricultural tillage scenarios. In the long-term, this research can lead to examination of the effects of climate

  6. Preparing Rehabilitation Counselors for Private Sector Practice within a CORE Accredited Generalist Educational Model

    ERIC Educational Resources Information Center

    Zanskas, Stephen; Leahy, Michael

    2007-01-01

    As private sector rehabilitation has matured as a field of practice, the issue of how rehabilitation counselor educators can effectively prepare rehabilitation counselors for practice in this setting remains. This article reviews the literature regarding the training needs of rehabilitation counselors entering private sector practice, and proposes…

  7. A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties

    NASA Astrophysics Data System (ADS)

    Frieler, K.; Levermann, A.; Elliott, J.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Döll, P.; Falloon, P.; Fekete, B.; Folberth, C.; Friend, A. D.; Gellhorn, C.; Gosling, S. N.; Haddeland, I.; Khabarov, N.; Lomas, M.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A. C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.; Huber, V.; Piontek, F.; Warszawski, L.; Schewe, J.; Lotze-Campen, H.; Schellnhuber, H. J.

    2015-07-01

    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation

  8. Multi objectives model to optimise the economical value of agriculture water use in Gaza Strip

    NASA Astrophysics Data System (ADS)

    Ouda, O.; Bardossy, A.

    2003-04-01

    Multi objectives model to optimise the economical value of agriculture water use in Gaza Strip. O. Ouda (1), A. Bárdossy (1) (1) Institut fuer Wasserbau, Universitaet Stuttgart Fax: +49-(0)711-685-4746/ e-mail: omar.ouda@iws.uni-stuttgart.de Key words: Multi objectives model, agriculture water use, and Gaza Strip. ============================================================================ Abstract The Gaza Strip faces a serious water shortage problem, with a present water shortage of about 61 Mm3/year. The problem is projected to become even larger in the future due to a high population growth of about 3.2%. The water deficit is presently covered by abstraction of the groundwater beyond the sustainable yield, where groundwater is the only natural source in Gaza strip. Irrigated agriculture consumed about 60% (90 Mm3/year) of water in Gaza strip. The economical value of water used for agriculture propose is very low in comparison with water opportunity cost of 1 US/m3 , ( seawater desalination cost). A Multi objective optimisation model (MOM) based on mathematical programming techniques aimed to optimise the economical return value of agriculture water use has been formulated, where 20 crops distributed over 16 zones have been considered. The available agriculture area, Available treated wastewater, Local agriculture products demand were considered as constrains. Irrigation water demand for each crop for three meteorological conditions dry, wet and average year, and Average product prices were considered as variables. A modification of the MOM models has been made toward equitable profit distribution (US/hectare) among the different 16 zones, where additional constrain of minimum profit per hectare in each zone has been implemented. Finally a sensitivity analysis for the effect of water price, crop price and crop products demand on the model output has been made. The MOM presents a good analytical basis for policy makers toward optimising the economical return of

  9. Modeling the Value of Integrated Canadian and U.S. Power Sector Expansion

    SciTech Connect

    Cole, Wesley, Beiter, Philipp; Steinberg, Daniel

    2016-09-08

    The United States and Canada power systems are not isolated. Cross-border transmission and coordination of system operation create an interconnected power system, which results in combined imports and exports of electricity of greater than 70 TWh per year [1]. Currently, over 5 GW of new international transmission lines are in various stages of permitting and development. These lines may enable greater integration and coordination of the U.S. and Canada systems, which can in turn reduce challenges associated with integration of high penetrations of variable renewables. Furthermore, low-cost Canadian resources, such as wind and hydro, could contribute to compliance with the EPA's recently released Clean Power Plan. Improving integration and coordination internationally will reduce the costs of accessing these resources. This analysis work build on previous work by Ibanez and Zinaman [2]. In this work we seek to better understand the value of additional interconnection between the U.S. and Canadian power systems. Specifically, we quantify the value of additional interconnection and coordination within the Canadian-US integrated power system under scenarios in which large reductions (>80%) in power sector CO2 emissions are achieved. We explore how the ability to add additional cross-border transmission impacts capacity investment, the generation mix, system costs, and the ability of the system to integrate variable renewable energy into the power system. This analysis uses the Regional Energy Deployment System (ReEDS) capacity expansion model [3], [4] to quantify the value of the integrated power system expansion of the United States and Canada. ReEDS is an optimization model that assesses the deployment and operation (including transmission) of the electricity sector of the contiguous United States and Canadian provinces from 2016 through 2050. It has the ability to model the integration of renewable energy technologies into the grid. ReEDS captures renewable energy

  10. Modelling of the atmospheric dispersion of mercury emitted from the power sector in Poland

    NASA Astrophysics Data System (ADS)

    Zyśk, J.; Roustan, Y.; Wyrwa, A.

    2015-07-01

    Poland belongs to the group of EU countries with the highest levels of mercury emissions, with a large portion of these emissions being related to coal combustion. This paper presents a modelling analysis of the impact that the Polish power sector has on the atmospheric concentrations of mercury. A detailed mercury emission inventory is used to analyse the concentration and deposition of mercury. For this study, a chemical scheme devoted to mercury transformations in the atmosphere was implemented into the Polyphemus air quality system. The system was then used to perform simulations for 2008 in two domains i.e. over Europe and over Poland. The impact of various parameters on concentration and wet scavenging of mercury has been analysed. The results of the mercury ambient concentrations and depositions, are presented. Additionally, the contribution of natural and anthropogenic sources to mercury deposition in Poland is shown. The performed works showed that the national sources have low impact to overall deposition, however local contribution in wet deposition of big emitters may reach 50%. Sensitive analysis showed a significant impact of reaction with bromine compound and scavenging coefficient on modelled results of mercury concentration and deposition.

  11. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    SciTech Connect

    1998-01-01

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  12. Process-based modelling of regional water demand for electricity, industry and municipal sectors in Integrated Assessment Models.

    NASA Astrophysics Data System (ADS)

    Bijl, David L.; Bogaart, Patrick W.; Kram, Tom; De Vries, Bert J. M.; Van Vuuren, Detlef P.

    2014-05-01

    Integrated Assessment Models (IAMs) are a prime tool for studying global scale interactions between the human and natural earth systems. Our research contributes to this field by modelling water, food and energy demand as outcomes of more physical processes and by adding links between them. As part of this ambition, we here describe a model for water demand in the electricity generation, industrial and municipal sectors, going beyond previous modelling efforts. For instance, by coupling water demand to energy inputs, the model directly couples water efficiency to fuel efficiency of power plants. We present electricity, industry and municipal water demand models and develop water demand projections for the new Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs) for climate research. Our regional-level demand models contribute to understanding the extent of crossing planetary boundaries and the scope for solutions such as virtual water trade or efficiency improvements. We also discuss how we plan to link demand and supply models, and how the usefulness for policy makers can be increased.

  13. Renormalization group equation study of the scalar sector of the minimal B-L extension of the standard model

    SciTech Connect

    Basso, Lorenzo; Moretti, Stefano; Pruna, Giovanni Marco

    2010-09-01

    We present the complete set of renormalization group equations at one loop for the nonexotic minimal U(1) extension of the standard model (SM). It includes all models that are anomaly-free with the SM fermion content augmented by one right-handed neutrino per generation. We then pursue the numerical study of the pure B-L model, deriving the triviality and vacuum stability bounds on an enlarged scalar sector comprising one additional Higgs singlet field with respect to the SM.

  14. Market distortions and technological progress in agriculture

    SciTech Connect

    Alston, J.M.; Pardey, P.G.

    1993-05-01

    It is widely believed that price policies have contributed to low rates of productivity growth in agriculture, but there has been little progress to date in work on the relationship between price distortions and agricultural productivity or agricultural research. Given the importance of technological change in agriculture, it is important to know whether price policies impede investments in R&D and productivity growth. In this article, a theoretical analysis indicates that the effects of commodity price policies on incentives of government and industry to invest in agricultural research are ambiguous. While the results suggest a general tendency of policies that protect producers to encourage greater research investments, the opposite result cannot be ruled out. A statistical model using international, cross-sectional, time-series data shows that agricultural research investments are significantly correlated, but negatively, with rates of producer protection. The implication is that some factor other than price policy is responsible for both the low rates of public-sector investments in agricultural research worldwide, and the low rates of productivity growth in less-developed countries. Research administrators in more- and less-developed countries alike typically consider a multiplicity of goals when setting research priorities and research budgets. Therefore, an alternative explanation of low agricultural productivity and underinvestment in agricultural research may be that public-sector research policy has been misguided. 24 refs., 6 figs., 1 tab.

  15. Climate change induced transformations of agricultural systems: insights from a global model

    NASA Astrophysics Data System (ADS)

    Leclère, D.; Havlík, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M.

    2014-12-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis.

  16. ImSET 3.1: Impact of Sector Energy Technologies Model Description and User's Guide

    SciTech Connect

    Scott, Michael J.; Livingston, Olga V.; Balducci, Patrick J.; Roop, Joseph M.; Schultz, Robert W.

    2009-05-22

    This 3.1 version of the Impact of Sector Energy Technologies (ImSET) model represents the next generation of the previously-built ImSET model (ImSET 2.0) that was developed in 2005 to estimate the macroeconomic impacts of energy-efficient technology in buildings. In particular, a special-purpose version of the Benchmark National Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE)–developed energy-saving technologies. In comparison with the previous versions of the model, this version features the use of the U.S. Bureau of Economic Analysis 2002 national input-output table and the central processing code has been moved from the FORTRAN legacy operating environment to a modern C++ code. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act. While it does not include the ability to model certain dynamic features of markets for labor and other factors of production featured in the more complex models, for most purposes these excluded features are not critical. The analysis is credible as long as the assumption is made that relative prices in the economy would not be substantially affected by energy efficiency investments. In most cases, the expected scale of these investments is small enough that neither labor markets nor production cost relationships should seriously affect national prices as the investments are made. The exact timing of impacts on gross product, employment, and national wage income from energy efficiency investments is not well-enough understood that much special insight can be gained from the additional dynamic sophistication of a macroeconomic simulation model. Thus, we believe that this version of ImSET is a cost-effective solution to estimating the economic

  17. Reverse engineering of legacy agricultural phenology modeling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A program which implements predictive phenology modeling is a valuable tool for growers and scientists. Such a program was created in the late 1980's by the creators of general phenology modeling as proof of their techniques. However, this first program could not continue to meet the needs of the fi...

  18. A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research.

    PubMed

    Ireland, J J; Roberts, R M; Palmer, G H; Bauman, D E; Bazer, F W

    2008-10-01

    Research on domestic animals (cattle, swine, sheep, goats, poultry, horses, and aquatic species) at land grant institutions is integral to improving the global competitiveness of US animal agriculture and to resolving complex animal and human diseases. However, dwindling federal and state budgets, years of stagnant funding from USDA for the Competitive State Research, Education, and Extension Service National Research Initiative (CSREES-NRI) Competitive Grants Program, significant reductions in farm animal species and in numbers at land grant institutions, and declining enrollment for graduate studies in animal science are diminishing the resources necessary to conduct research on domestic species. Consequently, recruitment of scientists who use such models to conduct research relevant to animal agriculture and biomedicine at land grant institutions is in jeopardy. Concerned stakeholders have addressed this critical problem by conducting workshops, holding a series of meetings with USDA and National Institutes of Health (NIH) officials, and developing a white paper to propose solutions to obstacles impeding the use of domestic species as dual-purpose animal models for high-priority problems common to agriculture and biomedicine. In addition to shortfalls in research support and human resources, overwhelming use of mouse models in biomedicine, lack of advocacy from university administrators, long-standing cultural barriers between agriculture and human medicine, inadequate grantsmanship by animal scientists, and a scarcity of key reagents and resources are major roadblocks to progress. Solutions will require a large financial enhancement of USDA's Competitive Grants Program, educational programs geared toward explaining how research using agricultural animals benefits both animal agriculture and human health, and the development of a new mind-set in land grant institutions that fosters greater cooperation among basic and applied researchers. Recruitment of

  19. Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast

    DOE PAGES

    Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui; ...

    2016-02-11

    Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance inmore » regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.« less

  20. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  1. Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast

    SciTech Connect

    Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui; Nair, Sujithkumar Surendran

    2016-02-11

    Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance in regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.

  2. Enhancing research capacity across healthcare and higher education sectors: development and evaluation of an integrated model

    PubMed Central

    2012-01-01

    Background With current policy in healthcare research, in the United Kingdom and internationally, focused on development of research excellence in individuals and teams, building capacity for implementation and translation of research is paramount among the professionals who use that research in daily practice. The judicious use of research outcomes and evaluation of best evidence and practice in healthcare is integrally linked to the research capacity and capabilities of the workforce. In addition to promoting high quality research, mechanisms for actively enhancing research capacity more generally must be in place to address the complexities that both undermine and facilitate this activity. Methods A comprehensive collaborative model for building research capacity in one health professional group, speech and language therapy, was developed in a region within the UK and is presented here. The North East of England and the strong research ethos of this profession in addressing complex interventions offered a fertile context for developing and implementing a model which integrated the healthcare and university sectors. Two key frameworks underpin this model. The first addresses the individual participants’ potential trajectory from research consciousness to research participative to research active. The second embeds a model developed for general practitioners into a broader framework of practice-academic partnership and knowledge and skills exchange, and considers external drivers and impacts on practice and patient outcomes as key elements. Results and discussion The integration of practice and academia has been successful in building a culture of research activity within one healthcare profession in a region in the UK and has resulted, to date, in a series of research related outcomes. Understanding the key components of this partnership and the explicit strategies used has driven the implementation of the model and are discussed here. Conclusions A strong

  3. A regional structural model for the northern sector of the Calabrian Arc (southern Italy)

    NASA Astrophysics Data System (ADS)

    Van Dijk, J. P.; Bello, M.; Brancaleoni, G. P.; Cantarella, G.; Costa, V.; Frixa, A.; Golfetto, F.; Merlini, S.; Riva, M.; Torricelli, S.; Toscano, C.; Zerilli, A.

    2000-10-01

    model describing the Eocene to Recent evolution of this sector of the Central Mediterranean Mountain Chain.

  4. The seduction of models. Chinampa agriculture in Mexico.

    PubMed

    Chapin, M

    1988-01-01

    Considerable excitement accompanied Mexico's plan in the mid-1970s to build "Chinampas," in the swampy region of Veracruz and Tabasco, that is, agriculture involving the construction of raised farming beds in shallow lakes or marshes. The plan was devised by Mexico's Instituto Nacional de Investigaciones sobre los Recursos Bioticos (INIREB). Perfected by the inhabitants of the Valley of Mexico before the Spanish Conquest, chinampas had nearly vanished except in a few isolated and shrinking areas around Mexico City. The chinampas have been steadily constricted in recent years as Mexico City has extended out and swallowed the best known of them, Xochimilco. The introduction of chinampa technology in Tucta, a Chontal village of approximately 300 families in 1978, began on a grand scale. The INI's objectives for the project were: to provide the landless Chontale Indians with permanent employment; to bring about self-sufficient food production in the area; to ensure a constant production of vegetables for the internal market of Villahermosa; to strengthen indigenous cultural identity; and to develop a real alternative for the incorporation of swampland into productive activities. In 1979, INIREB became involved in a 2nd chinampa project in the "ejido" of El Castillo, Veracruz. El Castillo was selected as an experimental project site because of the lake as well as the village's proximity to INIREB's central office in Xalapa, rather than community interest in chinampas. The examples of chinampa technology transfer presented had different outcomes, but they shared several crucial defects. In both cases, the stated and unstated objectives of project managers had little fit with the interests and needs of the farmers. The 2 projects were designed and implemented by outside technicians without significant local participation, and both rapidly fell apart when "beneficiaries" failed to cooperate. The Chontal case is notable because, after a series of failures, it finally worked

  5. Object-Oriented Agricultural System Modeling: Component-Driven Nutrient Dynamics and Crop Yield Simulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Challenges in agro-ecosystem conservation management have created demand for state-of-the-art, integrated, and flexible modeling tools. For example, agricultural system modeling tools are needed which are robust and fast enough to be applied on large watershed scales, but which are also able to sim...

  6. Definition of zones with different levels of productivity within an agricultural field using fuzzy modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for the definition of zones with different levels of productivity is based on fuzzy indicator model. Fuzzy indicator model for identification of zones with different levels of productivit...

  7. MODELING LONG-TERM NITRATE BASE-FLOW LOADING FROM TWO AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    Nitrate contamination of ground water from agricultural practices may be contributing to the eutrophication of the Chesapeake Bay, degrading water quality and aquatic habitats. Groundwater flow and nitrate transport and fate are modeled, using MODFLOW and MT3D computer models, in...

  8. Application of the precision agricultural landscape modeling system in semiarid environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Precision Agricultural Landscape Modeling System (PALMS) is a terrain and weather driven, distributed parameter hydrological-biophysical model primarily used in the Midwestern United States. Recently, research was started to evaluate the effectiveness of PALMS on irrigated and on dryland croppin...

  9. Simulating semiarid dryland cropping systems using the precision agricultural landscape modeling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Precision Agricultural Landscape Modeling System (PALMS) is a terrain and weather driven, and distributed parameter hydrological-biophysical model primarily used in the Midwestern United States. Recently, research was started to evaluate the effectiveness of PALMS on irrigated and on dryland cro...

  10. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    NASA Astrophysics Data System (ADS)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  11. TRACKING THE EMISSION OF CARBON DIOXIDE BY NATION, SECTOR, AND FUEL TYPE: A TRACE GAS ACCOUNTING SYSTEM (TGAS)

    EPA Science Inventory

    The paper describes a new way to estimate an efficient econometric model of global emissions of carbon dioxide (CO2) by nation, sector, and fuel type. Equations for fuel intensity are estimated for coal, oil, natural gas, electricity, and heat for six sectors: agricultural, indus...

  12. The Agriculture Model Intercomparison and Improvement Project (AgMIP) (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2010-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and world agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Historical period results will spur model improvement and interaction among major modeling groups, while future period results will lead directly to tests of adaptation and mitigation strategies across a range of scales. AgMIP will consist of a multi-scale impact assessment utilizing the latest methods for climate and agricultural scenario generation. Scenarios and modeling protocols will be distributed on the web, and multi-model results will be collated and analyzed to ensure the widest possible coverage of agricultural crops and regions. AgMIP will place regional changes in agricultural production in a global context that reflects new trading opportunities, imbalances, and shortages in world markets resulting from climate change and other driving forces for food supply. Such projections are essential inputs from the Vulnerability, Impacts, and Adaptation (VIA) research community to the Intergovernmental Panel on Climate Change Fifth Assessment (AR5), now underway, and the UN Framework Convention on Climate Change. They will set the context for local-scale vulnerability and adaptation studies, supply test scenarios for national-scale development of trade policy instruments, provide critical information on changing supply and demand for water resources, and elucidate interactive effects of climate change and land use change. AgMIP will not only provide crucially-needed new global estimates of how climate change will affect food supply and hunger in the

  13. Modelling of a downdraft gasifier fed by agricultural residues

    SciTech Connect

    Antonopoulos, I.-S.; Karagiannidis, A.; Gkouletsos, A.; Perkoulidis, G.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Development of software for downdraft gasification simulation. Black-Right-Pointing-Pointer Prediction of the syngas concentration. Black-Right-Pointing-Pointer Prediction of the syngas heating value. Black-Right-Pointing-Pointer Investigation of the temperature effect in reduction zone in syngas concentration. - Abstract: A non-stoichiometric model for a downdraft gasifier was developed in order to simulate the overall gasification process. Mass and energy balances of the gasifier were calculated and the composition of produced syngas was predicted. The capacity of the modeled gasifier was assumed to be 0.5 MW, with an Equivalence Ratio (EQ) of 0.45. The model incorporates the chemical reactions and species involved, while it starts by selecting all species containing C, H, and O, or any other dominant elements. Olive wood, miscanthus and cardoon were tested in the formulated model for a temperature range of 800-1200 Degree-Sign C, in order to examine the syngas composition and the moisture impact on the supplied fuel. Model results were then used in order to design an olive wood gasification reactor.

  14. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3

    SciTech Connect

    1998-01-01

    This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

  15. Model Learner Outcomes for Agriculture/Agribusiness Education.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul.

    Chapter 1 of this document contains sets of statements adopted by the Minnesota State Board of Education or Minnesota State Legislature. They represent the hierarchy used by Department of Education staff to develop model learner outcomes for each subject area. Contents include learner values, education system values, philosophy of education,…

  16. Designing a Model for Entrepreneurial Intentions of Agricultural Students

    ERIC Educational Resources Information Center

    Najafabadi, Maryam Omidi; Zamani, Maryam; Mirdamadi, Mehdi

    2016-01-01

    The authors used Ajzen's theory of planned behavior and Shapero's entrepreneurial event model as well as entrepreneurial cognition theory to identify the relationship among entrepreneurial skills, self-efficacy, attitudes toward entrepreneurship, psychological traits, social norms, perceived desirability, social support, and entrepreneurial…

  17. Modelling of agricultural combination driver behaviour from the aspect of safety of movement.

    PubMed

    Szczepaniak, Jan; Tanaś, Wojciech; Pawłowski, Tadeusz; Kromulski, Jacek

    2014-01-01

    Statistics show that the travel of agricultural machinery to a work area and their movement during labour is the source of many serious accidents. The most dangerous in consequences prove to be those that occur during transport and associated with maneuvering tractors and machinery (about 30% of all fatal accidents). It can be assumed that at least some of these accidents were caused indirectly by the specific design features of agricultural machines which adversely affect the driveability. The single- and multi-loop structures of the driver-vehicle system models are formulated to study the contributions of various preview and prediction strategies to the path tracking and dynamic performance of the articulated vehicle. In the presented study the compensatory model of driver utilizes the lateral acceleration of the tractor, roll angle of trailer sprung mass and the articulation rate as the internal motion feedback variables. The control model of steering of an agricultural set has been implemented in the Matlab/Simulink environment. The model has been constructed with the use of stochastic methods and operational transmittances describing the various components of the system. The model operational transmittances has been estimated using Box-Jenkins and continuous-time process models from input-output data. The model has been tested using experimental data from road investigation of the agricultural set.

  18. An enhanced export coefficient based optimization model for supporting agricultural nonpoint source pollution mitigation under uncertainty.

    PubMed

    Rong, Qiangqiang; Cai, Yanpeng; Chen, Bing; Yue, Wencong; Yin, Xin'an; Tan, Qian

    2017-02-15

    In this research, an export coefficient based dual inexact two-stage stochastic credibility constrained programming (ECDITSCCP) model was developed through integrating an improved export coefficient model (ECM), interval linear programming (ILP), fuzzy credibility constrained programming (FCCP) and a fuzzy expected value equation within a general two stage programming (TSP) framework. The proposed ECDITSCCP model can effectively address multiple uncertainties expressed as random variables, fuzzy numbers, pure and dual intervals. Also, the model can provide a direct linkage between pre-regulated management policies and the associated economic implications. Moreover, the solutions under multiple credibility levels can be obtained for providing potential decision alternatives for decision makers. The proposed model was then applied to identify optimal land use structures for agricultural NPS pollution mitigation in a representative upstream subcatchment of the Miyun Reservoir watershed in north China. Optimal solutions of the model were successfully obtained, indicating desired land use patterns and nutrient discharge schemes to get a maximum agricultural system benefits under a limited discharge permit. Also, numerous results under multiple credibility levels could provide policy makers with several options, which could help get an appropriate balance between system benefits and pollution mitigation. The developed ECDITSCCP model can be effectively applied to addressing the uncertain information in agricultural systems and shows great applicability to the land use adjustment for agricultural NPS pollution mitigation.

  19. Stochastic and Deterministic Models for Agricultural Production Networks

    DTIC Science & Technology

    2007-02-22

    the stochastic system are developed . Simulations, sensi- tivity and generalized sensitivity analyses are given. Finally, it is shown how diseases may...animals to and from a farm with animals infected by a disease will have effects that quickly spread through the system. Nurseries supplying the farm will...because it is both the second largest swine industry in the United States, and is local to us. Our goal was to develop a model that could be used to

  20. The Agricultural Model Intercomparison and Improvement Project (AgMIP) Town Hall

    NASA Technical Reports Server (NTRS)

    Ruane, Alex; Rosenzweig, Cynthia; Kyle, Page; Basso, Bruno; Winter, Jonathan; Asseng, Senthold

    2015-01-01

    AgMIP (www.agmip.org) is an international community of climate, crop, livestock, economics, and IT experts working to further the development and application of multi-model, multi-scale, multi-disciplinary agricultural models that can inform policy and decision makers around the world. This meeting will engage the AGU community by providing a brief overview of AgMIP, in particular its new plans for a Coordinated Global and Regional Assessment of climate change impacts on agriculture and food security for AR6. This Town Hall will help identify opportunities for participants to become involved in AgMIP and its 30+ activities.

  1. Targeting, out-scaling and prioritising climate-smart interventions in agricultural systems: Lessons from applying a generic framework to the livestock sector in sub-Saharan Africa.

    PubMed

    Notenbaert, An; Pfeifer, Catherine; Silvestri, Silvia; Herrero, Mario

    2017-02-01

    As a result of population growth, urbanization and climate change, agricultural systems around the world face enormous pressure on the use of resources. There is a pressing need for wide-scale innovation leading to development that improves the livelihoods and food security of the world's population while at the same time addressing climate change adaptation and mitigation. A variety of promising climate-smart interventions have been identified. However, what remains is the prioritization of interventions for investment and broad dissemination. The suitability and adoption of interventions depends on a variety of bio-physical and socio-economic factors. Also their impacts, when adopted and out-scaled, are likely to be highly heterogeneous. This heterogeneity expresses itself not only spatially and temporally but also in terms of the stakeholders affected, some might win and some might lose. A mechanism that can facilitate a systematic, holistic assessment of the likely spread and consequential impact of potential interventions is one way of improving the selection and targeting of such options. In this paper we provide climate smart agriculture (CSA) planners and implementers at all levels with a generic framework for evaluating and prioritising potential interventions. This entails an iterative process of mapping out recommendation domains, assessing adoption potential and estimating impacts. Through examples, related to livestock production in sub-Saharan Africa, we demonstrate each of the steps and how they are interlinked. The framework is applicable in many different forms, scales and settings. It has a wide applicability beyond the examples presented and we hope to stimulate readers to integrate the concepts in the planning process for climate-smart agriculture, which invariably involves multi-stakeholder, multi-scale and multi-objective decision-making.

  2. Visible and hidden sectors in a model with Maxwell and Chern-Simons gauge dynamics

    NASA Astrophysics Data System (ADS)

    Ireson, Edwin; Schaposnik, Fidel A.; Tallarita, Gianni

    2016-11-01

    We study a U(1) × U(1) gauge theory discussing its vortex solutions and supersymmetric extension. In our set-up, the dynamics of one of two Abelian gauge fields is governed by a Maxwell term, the other by a Chern-Simons term. The two sectors interact via a BF gauge field mixing and a Higgs portal term that connects the two complex scalars. We also consider the supersymmetric version of this system which allows to find for the bosonic sector BPS equations in which an additional real scalar field enters into play. We study numerically the field equations finding vortex solutions with both magnetic flux and electric charge.

  3. A steady state model of agricultural waste pyrolysis: A mini review.

    PubMed

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types.

  4. Evaluating the APEX model for simulating streamflow and water quality on ten agricultural watersheds in the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulation models are increasingly used to assess water quality constituent losses from agricultural systems. Mis-use often gives irrelevant or erroneous answers. The Agricultural Policy Environmental Extender (APEX) model is emerging as one of the premier modeling tools for fields, farms, and agr...

  5. Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report

    SciTech Connect

    Cole, Henry E.; Fullen, Robert E.

    1980-09-01

    This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  6. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    NASA Astrophysics Data System (ADS)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  7. Sustainable conjunctive water management in irrigated agriculture: Model formulation and application to the Yaqui Valley, Mexico

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit; Addams, C. Lee; Minjares, José Luis; Gorelick, Steven M.

    2006-10-01

    This paper investigates strategies to alleviate the effects of droughts on the profitability and sustainability of irrigated agriculture. These strategies include conjunctive management of surface water and groundwater resources, and engineered improvements such as lining of irrigation canals and addition of regional pumping well capacity. A spatially distributed simulation-optimization model was developed for an irrigated system consisting of multiple surface water reservoirs and an alluvial aquifer. The simulation model consists of an agronomic component and simulators describing the hydrologic system. The physical models account for storage and flow through the reservoirs, routing through the irrigation canals, and regional groundwater flow. The agronomic model describes crop productivity as a function of irrigation quantity and salinity, and determines agricultural profit. A profit maximization problem was formulated and solved using large-scale constrained gradient-based optimization. The model was applied to a real-world conjunctive surface water/groundwater management problem in the Yaqui Valley, an irrigated agricultural region in Sonora, Mexico. The model reproduces recorded reductions in agricultural production during a historical drought. These reductions were caused by a decline in surface water availability and limited installed pumping capacity. Results indicate that the impact of the historical 8-year drought could have been significantly reduced without affecting profit in wet years by better managing surface water and groundwater resources. Namely, groundwater could have been more heavily relied upon and surface water allocation capped at a sustainable level as an operating rule. Lining the irrigation canals would have resulted in water savings of 30% of historical reservoir releases during wet years, which could have been used in subsequent drier years to increase agricultural production. The benefits of a greater reliance on groundwater pumping

  8. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  9. The Study on "Academic Game"-Oriented English Course Model for Postgraduates in Agricultural Universities

    ERIC Educational Resources Information Center

    Xia, Xinrong

    2010-01-01

    Based on the analysis of the questionnaire survey on learning motivation and learning needs of postgraduates and their demands and suggestions on English teaching, the paper makes a beneficial exploration on English course model for postgraduates in agricultural universities. Under the guidance of academic game theory, the "language skills+…

  10. Current Water Deficit Stress Simulations in Selected Agricultural System Simulation Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    System models, which adequately simulate plant water stress effects, are valuable tools for developing management practices with improved water use efficiency in agriculture. Plants experience water stress when its supply in the soil fails to meet the demand. Although it is easy to define the conc...

  11. Teaching Diversified Organic Crop Production Using the Community Supported Agriculture Farming System Model

    ERIC Educational Resources Information Center

    Falk, Constance L.; Pao, Pauline; Cramer, Christopher S.

    2005-01-01

    An organic garden operated as a community supported agriculture (CSA) venture on the New Mexico State University (NMSU) main campus was begun in January 2002. Students enroll in an organic vegetable production class during spring and fall semesters to help manage and work on the project. The CSA model of farming involves the sale of shares to…

  12. Evaluation of the precision agricultural landscape modeling system (PALMS) in the semiarid Texas southern high plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  13. Evaluation of the Precision Agricultural Landscape Modeling System (PALMS) in the Semiarid Texas Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  14. Data Base for a Job Opportunity Vocational Agricultural Program Planning Model.

    ERIC Educational Resources Information Center

    Baggett, Connie D.; And Others

    A job opportunity-based curriculum planning model was developed for high school vocational agriculture programs. Three objectives were to identify boundaries of the geographical area within which past program graduates obtained entry-level position, title and description of position, and areas of high school specialization; number and titles of…

  15. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    NASA Astrophysics Data System (ADS)

    Xi, Maolong; Lu, Dan; Gui, Dongwei; Qi, Zhiming; Zhang, Guannan

    2017-01-01

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.

  16. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    DOE PAGES

    Xi, Maolong; Lu, Dan; Gui, Dongwei; ...

    2016-11-27

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so asmore » to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.« less

  17. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    SciTech Connect

    Xi, Maolong; Lu, Dan; Gui, Dongwei; Qi, Zhiming; Zhang, Guannan

    2016-11-27

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.

  18. How Do Private Sector Schools Serve the Public Good by Fostering Inclusive Service Delivery Models?

    ERIC Educational Resources Information Center

    Scanlan, Martin; Tichy, Karen

    2014-01-01

    Conversations about promoting educational reforms that redress educational inequities often ignore private schools as irrelevant. Yet pursuits of inclusivity in private sector schools serve the public interest. This article focuses on how the system of Catholic schools in the Archdiocese of St. Louis has been purposefully striving for 2 decades to…

  19. An integrated Modelling framework to monitor and predict trends of agricultural management (iMSoil)

    NASA Astrophysics Data System (ADS)

    Keller, Armin; Della Peruta, Raneiro; Schaepman, Michael; Gomez, Marta; Mann, Stefan; Schulin, Rainer

    2014-05-01

    Agricultural systems lay at the interface between natural ecosystems and the anthroposphere. Various drivers induce pressures on the agricultural systems, leading to changes in farming practice. The limitation of available land and the socio-economic drivers are likely to result in further intensification of agricultural land management, with implications on fertilization practices, soil and pest management, as well as crop and livestock production. In order to steer the development into desired directions, tools are required by which the effects of these pressures on agricultural management and resulting impacts on soil functioning can be detected as early as possible, future scenarios predicted and suitable management options and policies defined. In this context, the use of integrated models can play a major role in providing long-term predictions of soil quality and assessing the sustainability of agricultural soil management. Significant progress has been made in this field over the last decades. Some of these integrated modelling frameworks include biophysical parameters, but often the inherent characteristics and detailed processes of the soil system have been very simplified. The development of such tools has been hampered in the past by a lack of spatially explicit soil and land management information at regional scale. The iMSoil project, funded by the Swiss National Science Foundation in the national research programme NRP68 "soil as a resource" (www.nrp68.ch) aims at developing and implementing an integrated modeling framework (IMF) which can overcome the limitations mentioned above, by combining socio-economic, agricultural land management, and biophysical models, in order to predict the long-term impacts of different socio-economic scenarios on the soil quality. In our presentation we briefly outline the approach that is based on an interdisciplinary modular framework that builds on already existing monitoring tools and model components that are

  20. Agricultural livelihoods in coastal Bangladesh under climate and environmental change--a model framework.

    PubMed

    Lázár, Attila N; Clarke, Derek; Adams, Helen; Akanda, Abdur Razzaque; Szabo, Sylvia; Nicholls, Robert J; Matthews, Zoe; Begum, Dilruba; Saleh, Abul Fazal M; Abedin, Md Anwarul; Payo, Andres; Streatfield, Peter Kim; Hutton, Craig; Mondal, M Shahjahan; Moslehuddin, Abu Zofar Md

    2015-06-01

    Coastal Bangladesh experiences significant poverty and hazards today and is highly vulnerable to climate and environmental change over the coming decades. Coastal stakeholders are demanding information to assist in the decision making processes, including simulation models to explore how different interventions, under different plausible future socio-economic and environmental scenarios, could alleviate environmental risks and promote development. Many existing simulation models neglect the complex interdependencies between the socio-economic and environmental system of coastal Bangladesh. Here an integrated approach has been proposed to develop a simulation model to support agriculture and poverty-based analysis and decision-making in coastal Bangladesh. In particular, we show how a simulation model of farmer's livelihoods at the household level can be achieved. An extended version of the FAO's CROPWAT agriculture model has been integrated with a downscaled regional demography model to simulate net agriculture profit. This is used together with a household income-expenses balance and a loans logical tree to simulate the evolution of food security indicators and poverty levels. Modelling identifies salinity and temperature stress as limiting factors to crop productivity and fertilisation due to atmospheric carbon dioxide concentrations as a reinforcing factor. The crop simulation results compare well with expected outcomes but also reveal some unexpected behaviours. For example, under current model assumptions, temperature is more important than salinity for crop production. The agriculture-based livelihood and poverty simulations highlight the critical significance of debt through informal and formal loans set at such levels as to persistently undermine the well-being of agriculture-dependent households. Simulations also indicate that progressive approaches to agriculture (i.e. diversification) might not provide the clear economic benefit from the perspective of

  1. Global Transformations and Agriculture.

    ERIC Educational Resources Information Center

    Campbell, Rex R.

    1990-01-01

    Examines worldwide political, economic, and social transformations and their impact on agriculture, focusing on biotechnology. Discusses rise of international corporations and accompanying constraints on government power. Sees trend toward increasing agribusiness role in world food and agricultural sectors. Calls for broader views and research in…

  2. Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs: Supplemental Material

    NASA Technical Reports Server (NTRS)

    Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.

    2015-01-01

    Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.

  3. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    PubMed

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability.

  4. Evaluation of groundwater pollution risk (GPR) from agricultural activities using DRASTIC model and GIS

    NASA Astrophysics Data System (ADS)

    Mohd Ariffin, Sabrina; Zawawi, Mohamed Azwan Mohamed; Che Man, Hasfalina

    2016-06-01

    Groundwater Pollution risk (GPR) map which utilized groundwater quality is important in order to prevent the groundwater contaminant concentration due to the agricultural activities. DRASTIC model and GIS application are two important tools that had been used for accessing and predicting the quality of groundwater. These supplementary tools are calculating, visualizing, and presenting the GPR by using DRASTIC index for each hydrogeologic factor through ArcGIS software. This study was covered approximately Selangor basin area where the GPR has been defined. There are four categories of agricultural activities in the Selangor basin which are animal husbandary areas, horticultural lands, short term crops and tree, palm and other permanent crops. The map showed that the “low” zones of GPR occupied 56% of the east side of the Selangor basin, 34% of the west side of the Selangor basin exposed to “medium” zones of GPR and the “high” zones of GPR covered 10% at the north side and the south to the west side of the Selangor basin. As a particular, for agricultural activities which is 52% of Selangor basin area, the “low”, ‘’medium” and “high” zones of GPR was occupied as 42%, 43% and 15% respectively. Based on four categories of agricultural landuse, GPR map validated by nitrate distribution map, shows that the 99% of the variation in nitrate distribution zones are explained by GPR zones. In conclusion, groundwater pollution risk was affected by agricultural activities.

  5. Identifying Hydrologic Processes in Agricultural Watersheds Using Precipitation-Runoff Models

    USGS Publications Warehouse

    Linard, Joshua I.; Wolock, David M.; Webb, Richard M.T.; Wieczorek, Michael

    2009-01-01

    Understanding the fate and transport of agricultural chemicals applied to agricultural fields will assist in designing the most effective strategies to prevent water-quality impairments. At a watershed scale, the processes controlling the fate and transport of agricultural chemicals are generally understood only conceptually. To examine the applicability of conceptual models to the processes actually occurring, two precipitation-runoff models - the Soil and Water Assessment Tool (SWAT) and the Water, Energy, and Biogeochemical Model (WEBMOD) - were applied in different agricultural settings of the contiguous United States. Each model, through different physical processes, simulated the transport of water to a stream from the surface, the unsaturated zone, and the saturated zone. Models were calibrated for watersheds in Maryland, Indiana, and Nebraska. The calibrated sets of input parameters for each model at each watershed are discussed, and the criteria used to validate the models are explained. The SWAT and WEBMOD model results at each watershed conformed to each other and to the processes identified in each watershed's conceptual hydrology. In Maryland the conceptual understanding of the hydrology indicated groundwater flow was the largest annual source of streamflow; the simulation results for the validation period confirm this. The dominant source of water to the Indiana watershed was thought to be tile drains. Although tile drains were not explicitly simulated in the SWAT model, a large component of streamflow was received from lateral flow, which could be attributed to tile drains. Being able to explicitly account for tile drains, WEBMOD indicated water from tile drains constituted most of the annual streamflow in the Indiana watershed. The Nebraska models indicated annual streamflow was composed primarily of perennial groundwater flow and infiltration-excess runoff, which conformed to the conceptual hydrology developed for that watershed. The hydrologic

  6. Improving an Agent-Based Model by Using Interdisciplinary Approaches for Analyzing Structural Change in Agriculture

    NASA Astrophysics Data System (ADS)

    Appel, Franziska; Ostermeyer, Arlette; Balmann, Alfons; Larsen, Karin

    Structural change in the German dairy sector seems to be lagged behind. Heterogeneous farm structures, a low efficiency and profitability are persistent although farms operate under similar market and policy conditions. This raises the questions whether these structures are path dependent and how they can eventually be overcome. To answer these questions we use the agent-based model AgriPoliS. The aim of our project is to improve assumptions in AgriPoliS by using it as an experimental laboratory. In a second part AgriPoliS will be used in stakeholder workshops to define scenarios for the dairy sector and communicate and discuss results to practitioners and decision makers.

  7. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  8. Leptogenesis and CP violation in SU(5) models with lepton flavor mixing originating from the right-handed sector

    NASA Astrophysics Data System (ADS)

    Päs, H.; Schumacher, E.

    2014-05-01

    We discuss neutrino masses and mixing in the context of seesaw type I models with three right-handed Majorana neutrinos and an approximately diagonal Dirac sector. This ansatz is motivated by the idea that the flavor structure in the right-handed Majorana masses is responsible for the large mixing angles, whereas the small mixing angle θ13 originates from the Dirac Yukawa couplings in analogy to the quark sector. To obtain θ13≈0.15 we study a possible SU(5) grand unified theory realization with a U(1)×Z2'×Z2''×Z2''' flavor symmetry and include a complex perturbation parameter in the Dirac mass matrix. The consequences for CP violating phases and effects on leptogenesis are investigated.

  9. Development of a distributed agricultural drought prediction model based on TOPMODEL and GIS

    NASA Astrophysics Data System (ADS)

    Xu, Jingwen; Zhang, Wanchang; Wang, Changquan; Zhu, Xuemei; Chen, Jiongfeng

    2009-07-01

    Drought disasters occur frequently in eastern China and are typical in China and even in the world. Severe droughts seriously affect the agricultural production, social and economic development, ecology and human life. In this paper, a new agricultural drought prediction model was developed based on GIS technology and TOPMODEL, which is a physically based watershed hydrological model that simulates the variable-source-area concept of stream-flow generation and has been widely used to study a variety of research areas. In this study, the original TOPMODEL was extended to be a distributed hydrological model. The watershed is divided into a number of regular grids, corresponding to the grids of DEM, and each grid is viewed as a sub-basin. So the surface runoff production was calculated at each grid. The runoff at each grid is routed along the stream flow direction to the main watershed outlet respectively at different velocity depending on the slop of this grid and watershed-average routing velocity. The soil moisture is predicted using the new distributed hydrological model. Finally, drought prediction is conducted by combining the predicted soil moisture and drought indices. The new model was tested in Linyi watershed, Shandong province, China. The results show that the model performs well in agricultural drought prediction.

  10. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Progress and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2011-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Recent progress and the current status of AgMIP will be presented, highlighting three areas of activity: preliminary results from crop pilot studies, outcomes from regional workshops, and emerging scientific challenges. AgMIP crop modeling efforts are being led by pilot studies, which have been established for wheat, maize, rice, and sugarcane. These crop-specific initiatives have proven instrumental in testing and contributing to AgMIP protocols, as well as creating preliminary results for aggregation and input to agricultural trade models. Regional workshops are being held to encourage collaborations and set research activities in motion for key agricultural areas. The first of these workshops was hosted by Embrapa and UNICAMP and held in Campinas, Brazil. Outcomes from this meeting have informed crop modeling research activities within South America, AgMIP protocols, and future regional workshops. Several scientific challenges have emerged and are currently being addressed by AgMIP researchers. Areas of particular interest include geospatial weather generation, ensemble methods for climate scenarios and crop models, spatial aggregation of field-scale yields to regional and global production, and characterization of future changes in climate variability.

  11. Enterprise Funds: Evolving Models for Private Sector Development in Central and Eastern Europe

    DTIC Science & Technology

    1994-03-01

    and program strategies and plans for sustainability, (2) their overall performance, (3) their management practices, and (4) oversight by U.S...to for information on the business climate in the countries of operation. The enterprise funds’ strategies to dispose of investments include sale to... Strategies of loan programs developed. Poland and Hungary had taken some steps toward the creation of a private sector before the collapse of communism

  12. New Security and Justice Sector Partnership Models: Implications of the Arab Uprisings

    DTIC Science & Technology

    2014-01-01

    Tunisia, Egypt, and Libya—not to mention a leadership change in Yemen, some measure of constitutional reform in Morocco , and violent protests in Bahrain...uprisings decreased as budget constraints began to take effect. Bahrain, Egypt, Tunisia, and Libya all received more SJS, while Jordan, Yemen, and Morocco ...justice sector assistance and promoting reform in this region. This research was conducted within the International Security and Defense Policy Center

  13. A Sectored-One-Dimensional Model for Simulating Combustion Instabilities in Premix Combustors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    1999-01-01

    A one-dimensional, CFD based combustor simulation has been developed that exhibits self-excited, thermoacoustic oscillations in premixed combustor geometries that typically have large, abrupt changes in cross sectional area. The combustor geometry is approximated by dividing it into a finite number of one-dimensional sectors. Within each sector, the equations of motion are integrated numerically, along with a species transport and a reaction equation. Across the sectors, mass and energy are conserved, and momentum loss is prescribed using appropriately compatible boundary conditions that account for the area change. The resulting simulation and associated boundary conditions essentially represent a one-dimensional, multi-block technique. Details of the simulation code are presented herein. Results are then shown comparing experimentally observed and simulated operation of a particular combustor rig that exhibited different instabilities at different operating points. It will be shown that the simulation closely matched the rig data in oscillation amplitudes, frequencies, and operating points at which the instabilities occurred. Finally, advantages and limitations of the simulation technique are discussed.

  14. PATHWAY: a simulation model of radionuclide-transport through agricultural food chains

    SciTech Connect

    Kirchner, T.B.; Whicker, F.W.; Otis, M.D.

    1982-01-01

    PATHWAY simulates the transport of radionuclides from fallout through an agricultural ecosystem. The agro-ecosystem is subdivided into several land management units, each of which is used either for grazing animals, for growing hay, or for growing food crops. The model simulates the transport of radionuclides by both discrete events and continuous, time-dependent processes. The discrete events include tillage of soil, harvest and storage of crops,and deposition of fallout. The continuous processes include the transport of radionuclides due to resuspension, weathering, rain splash, percolation, leaching, adsorption and desorption of radionuclides in the soil, root uptake, foliar absorption, growth and senescence of vegetation, and the ingestion assimilation, and excretion of radionuclides by animals. Preliminary validation studies indicate that the model dynamics and simulated values of radionuclide concentrations in several agricultural products agree well with measured values when the model is driven with site specific data on deposition from world-wide fallout.

  15. Is "the perfect model" really needed? - Analysis of the quality level of climate information necessary for supporting adaptation in agriculture and forestry

    NASA Astrophysics Data System (ADS)

    Gálos, Borbála; Ostler, Wolf-Uwe; Csáki, Péter; Bidló, András; Panferov, Oleg

    2016-04-01

    agriculture a questionnaire has been carried out among 180 farms of different sizes and specializations (mostly arable farming and viniculture) in Reinland-Palatine, Germany. The results show that almost all farmers use the weather information daily and are in need of weather forecast. More than a half requires also the forecast on extreme events. However the farmers require more qualitative (e.g. temperature coarser than 1°C) than high-precision quantitative information in short and medium-term forecasts. Forestry requires long-term (30-100 years) climate projections. For the assessment of climate change impacts on forest distribution, production and tree species selection, monthly temperature means and precipitation sums are sufficient. Based on the results of regional climate models it will be shown how the bias, the spread and spatial resolution of the simulation results are affecting the accuracy of impact assessments. Our analyses can help to fill the gap between climate services and the needs of impact researchers and end users in agriculture and forestry. User-relevant climate information can contribute to appropriate adaptation support services and management options in the two sectors. Keywords: regional climate projections, climate impact assessment, agriculture, forestry, adaptation support, accuracy of climate information Funding: The research is supported by the "Agroclimate-2" (VKSZ_12-1-2013-0034) joint EU-national research project.

  16. Towards a New Generation of Agricultural System Data, Models and Knowledge Products: Design and Improvement

    NASA Technical Reports Server (NTRS)

    Antle, John M.; Basso, Bruno; Conant, Richard T.; Godfray, H. Charles J.; Jones, James W.; Herrero, Mario; Howitt, Richard E.; Keating, Brian A.; Munoz-Carpena, Rafael; Rosenzweig, Cynthia

    2016-01-01

    This paper presents ideas for a new generation of agricultural system models that could meet the needs of a growing community of end-users exemplified by a set of Use Cases. We envision new data, models and knowledge products that could accelerate the innovation process that is needed to achieve the goal of achieving sustainable local, regional and global food security. We identify desirable features for models, and describe some of the potential advances that we envisage for model components and their integration. We propose an implementation strategy that would link a "pre-competitive" space for model development to a "competitive space" for knowledge product development and through private-public partnerships for new data infrastructure. Specific model improvements would be based on further testing and evaluation of existing models, the development and testing of modular model components and integration, and linkages of model integration platforms to new data management and visualization tools.

  17. Comparing Supply-Side Specifications in Models of Global Agriculture and the Food System

    SciTech Connect

    Robinson, Sherman; van Meijl, Hans; Willenbockel, Dirk; Valin, Hugo; Fujimori, Shinichiro; Masui, Toshihiko; Sands, Ronald; Wise, Marshall A.; Calvin, Katherine V.; Havlik, Petr; Mason d'Croz, Daniel; Tabeau, Andrzej; Kavallari, Aikaterini; Schmitz, Christoph; Dietrich, Jan P.; von Lampe, Martin

    2014-01-01

    This paper compares the theoretical specification of production and technical change across the partial equilibrium (PE) and computable general equilibrium (CGE) models of the global agricultural and food system included in the AgMIP model comparison study. The two modeling approaches have different theoretical underpinnings concerning the scope of economic activity they capture and how they represent technology and the behavior of supply and demand in markets. This paper focuses on their different specifications of technology and supply behavior, comparing their theoretical and empirical treatments. While the models differ widely in their specifications of technology, both within and between the PE and CGE classes of models, we find that the theoretical responsiveness of supply to changes in prices can be similar, depending on parameter choices that define the behavior of supply functions over the domain of applicability defined by the common scenarios used in the AgMIP comparisons. In particular, we compare the theoretical specification of supply in CGE models with neoclassical production functions and PE models that focus on land and crop yields in agriculture. In practice, however, comparability of results given parameter choices is an empirical question, and the models differ in their sensitivity to variations in specification. To illustrate the issues, sensitivity analysis is done with one global CGE model, MAGNET, to indicate how the results vary with different specification of technical change, and how they compare with the results from PE models.

  18. Metals Sector

    EPA Pesticide Factsheets

    Find environmental regulatory information about the metals sector (NAICS 331 & 332), including NESHAPs for metal coatings, effluent guidelines for metal products, combustion compliance assistance, and information about foundry sand recycling.

  19. Modelling of agricultural diffuse pollution and mitigation measures effectiveness in Wallonia (Belgium)

    NASA Astrophysics Data System (ADS)

    Sohier, C.; Deraedt, D.; Degré, A.

    2012-04-01

    Implementation of European directives in the environmental field and, specially, in the water management field, generates a request from policy-makers for news tools able to evaluate impact of management measures aiming at reducing pressures on ecosystems. In Wallonia (Southern Region of Belgium), the Nitrate Directive (EEC/676/91) was transposed into the "Walloon action plan for nitrogen sustainable management in agriculture" (PGDA1) in 2002. In 2007, a second plan was launched to reinforce some topics (PGDA2). Furthermore, the goal of "good quality" of surface waters and groundwater imposed by the Water Framework Directive poses new challenges in water management. In this context, a "soil and vadose" hydrological model is used in order to evaluate diffuse pollutions and efficiency of mitigation measures. This model, called EPICgrid, has been developed at catchment scale with an original modular concept on the basis of the field scale "water-soil-plant" EPIC model (Williams J.R., Jones C.A., Dyke P.T. (1984). A modelling approach to determining the relationship between erosion and soil productivity. Transactions of the ASAE. 27, 129-144). The model estimates, for each HRU identified into a 1km2 grid, water and nutrients flows into the plant-soil-vadose zone system (Sohier C., Degré A., Dautrebande S. (2009). From root zone modelling to regional forecasting of nitrate concentration in recharge flows - The case of the Walloon Region (Belgium). Journal of Hydrology, Volume 369, Issues 3-4, 15 May 2009, Pages 350-359). The model is used to make prospective simulations in order to evaluate the impact of measures currently performed to reduce the effect of diffuse pollution on water surface quality and groundwater quality, at regional scale. Response of the soil-vadose zone to agricultural practices modification is analyzed for the deadlines of the Water Framework Directive: 2015, 2021 and 2027, taking into account two climatic scenarios. Simulations results showed

  20. REDD+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling.

    PubMed

    Salvini, G; Ligtenberg, A; van Paassen, A; Bregt, A K; Avitabile, V; Herold, M

    2016-05-01

    Finding land use strategies that merge land-based climate change mitigation measures and adaptation strategies is still an open issue in climate discourse. This article explores synergies and trade-offs between REDD+, a scheme that focuses mainly on mitigation through forest conservation, with "Climate Smart Agriculture", an approach that emphasizes adaptive agriculture. We introduce a framework for ex-ante assessment of the impact of land management policies and interventions and for quantifying their impacts on land-based mitigation and adaptation goals. The framework includes a companion modelling (ComMod) process informed by interviews with policymakers, local experts and local farmers. The ComMod process consists of a Role-Playing Game with local farmers and an Agent Based Model. The game provided a participatory means to develop policy and climate change scenarios. These scenarios were then used as inputs to the Agent Based Model, a spatially explicit model to simulate landscape dynamics and the associated carbon emissions over decades. We applied the framework using as case study a community in central Vietnam, characterized by deforestation for subsistence agriculture and cultivation of acacias as a cash crop. The main findings show that the framework is useful in guiding consideration of local stakeholders' goals, needs and constraints. Additionally the framework provided beneficial information to policymakers, pointing to ways that policies might be re-designed to make them better tailored to local circumstances and therefore more effective in addressing synergistically climate change mitigation and adaptation objectives.

  1. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen losses from cropland soil in Europe

    NASA Astrophysics Data System (ADS)

    Leip, A.; Marchi, G.; Koeble, R.; Kempen, M.; Britz, W.; Li, C.

    2007-07-01

    For the comprehensive assessment of the policy impact on greenhouse gas emissions from agricultural soils both socio-economic aspects and the environmental heterogeneity of the landscape are important factors that must be considered. We developed a modelling framework that links the large-scale economic model for agriculture CAPRI with the bio-geochemistry model DNDC to simulate greenhouse gas fluxes, carbon stock changes and the nitrogen budget of agricultural soils in Europe. The framework allows the ex-ante simulation of agricultural or agri-environmental policy impacts on wide range of environmental problems such as climate change (greenhouse gas emissions), air pollution and groundwater pollution. Those environmental impacts can be analysed in the context of economic and social indicators as calculated by the economic model. The methodology consists in four steps (i) the definition of appropriate calculation units that can be considered as homogeneous in terms of economic behaviour and environmental response; (ii) downscaling of regional agricultural statistics and farm management information from a CAPRI simulation run into the spatial calculation units; (iii) setting up of environmental model scenarios and model runs; and finally (iv) aggregating results for interpretation. We show first results of the nitrogen budget in cropland for the area of fourteen countries of the European Union. These results, in terms of estimated nitrogen fluxes, must still be considered as illustrative as needs for improvements in input data (e.g. the soil map) and management data (yield estimates) have been identified and will be the focus of future work. Nevertheless, we highlight inter-dependencies between farmer's choices of land uses and the environmental impact of different cultivation systems.

  2. Assessing the mitigation potential of agricultural systems by optimization of the agricultural management: A modeling study on 8 agricultural observation sites across Europe with the process based model LandscapeDNDC

    NASA Astrophysics Data System (ADS)

    Molina Herrera, Saul; Haas, Edwin; Klatt, Steffen; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus

    2014-05-01

    The use of mineral nitrogen (N) fertilizers increase crop yields but cause the biggest anthropogenic source of nitrous oxide (N2O) emissions and strongly contribute to surface water eutrophication (e.g. nitrate leaching). The necessity to identify affordable strategies that improve crop production while improving ecosystem services are in continuous debate between policy decision makers and farmers. In this line, a lack commitment from farmers to enforce laws might result in the reduction of benefits. For this reason, farmers should aim to increase crop production and to reduce environmental harm by the adoption of precision climate smart agriculture tools applied to management practices for instance. In this study we present optimized strategies for 8 sites (agricultural and grassland ecosystems) with long term field observation across Europe to show the mitigation potential to reduce reactive nitrogen losses under the constrain of keeping yields at observed levels. LandscapeDNDC simulations of crop yields and associated nitrogen losses (N2O emissions and NO3 leaching) were evaluated against long term field measurements. The sites presented different management regimes including the main commodity crops (maize, wheat, barley, rape seeds, etc) and fertilization amendments (synthetic and organic fertilizers) in Europe. The simulations reproduced the observed yields, captured N2O emissions and NO3 leaching losses with high statistical presicion (r2), acurrency (ME) and agreement (RMSPEn). The mitigation potentials to reduce N losses while keeping yields at observed levels for all 8 sites were assesed by Monte Carlo optimizations of the individual underlying multi year agricultural management options (timings of planting and harvest, fertilization & manure applications and rates, residues management). In this study we present for all 8 agricultural observations sites their individual mitigation potentials to reduce N losses for multi year rotations. The conclusions

  3. Introduction The Role of the Agricultural Model Intercomparison and Improvement Project

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Hillel, Daniel

    2015-01-01

    Climate impacts on agriculture are of increasing concern in both the scientific and policy communities because of the need to ensure food security for a growing population. A special challenge is posed by the changes in the frequency and intensity of heat-waves, droughts, and episodic rainstorms already underway in many parts of the world. Changes in production are directly linked to such variations in temperature and precipitation during the growing season, and often to offseason changes in weather affecting soil-water storage and availability to crops. This is not an isolated problem but one of both global and regional importance, because of impacts on the livelihoods of smallholder farmers as well as consequences for the world food trade system. This two-part set the Agricultural Model Intercomparison and Improvement Project (AgMIP): Integrated Crop and Economic Assessments is the first to be entirely devoted to AgMIP (www.agmip.org). AgMIP is a major international research program focused on climate change and agriculture. The goal of the two parts is to advance the field by providing detailed information on new simulation techniques and assessments being conducted by this program. It presents information about new methods of global and regional integrated assessment, results from agricultural regions, and adaptation strategies for maintaining food security under changing climate conditions.

  4. Nitrate-Nitrogen Leaching and Modeling in Intensive Agriculture Farmland in China

    PubMed Central

    Xu, Ligang; Xu, Jin

    2013-01-01

    Protecting water resources from nitrate-nitrogen (NO3-N) contamination is an important public health concern and a major national environmental issue in China. Loss of NO3-N in soils due to leaching is not only one of the most important problems in agriculture farming, but is also the main factor causing nitrogen pollution in aquatic environments. Three typical intensive agriculture farmlands in Jiangyin City in China are selected as a case study for NO3-N leaching and modeling in the soil profile. In this study, the transport and fate of NO3-N within the soil profile and nitrate leaching to drains were analyzed by comparing field data with the simulation results of the LEACHM model. Comparisons between measured and simulated data indicated that the NO3-N concentrations in the soil and nitrate leaching to drains are controlled by the fertilizer practice, the initial conditions and the rainfall depth and distribution. Moreover, the study reveals that the LEACHM model gives a fair description of the NO3-N dynamics in the soil and subsurface drainage at the field scale. It can also be concluded that the model after calibration is a useful tool to optimize as a function of the combination “climate-crop-soil-bottom boundary condition” the nitrogen application strategy resulting for the environment in an acceptable level of nitrate leaching. The findings in this paper help to demonstrate the distribution and migration of nitrogen in intensive agriculture farmlands, as well as to explore the mechanism of groundwater contamination resulting from agricultural activities. PMID:23983629

  5. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    D. Muth; K. M. Bryden

    2003-12-01

    Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40

  6. User's Guide for the Agricultural Non-Point Source (AGNPS) Pollution Model Data Generator

    USGS Publications Warehouse

    Finn, Michael P.; Scheidt, Douglas J.; Jaromack, Gregory M.

    2003-01-01

    BACKGROUND Throughout this user guide, we refer to datasets that we used in conjunction with developing of this software for supporting cartographic research and producing the datasets to conduct research. However, this software can be used with these datasets or with more 'generic' versions of data of the appropriate type. For example, throughout the guide, we refer to national land cover data (NLCD) and digital elevation model (DEM) data from the U.S. Geological Survey (USGS) at a 30-m resolution, but any digital terrain model or land cover data at any appropriate resolution will produce results. Another key point to keep in mind is to use a consistent data resolution for all the datasets per model run. The U.S. Department of Agriculture (USDA) developed the Agricultural Nonpoint Source (AGNPS) pollution model of watershed hydrology in response to the complex problem of managing nonpoint sources of pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient transport from watersheds that have agriculture as their prime use. The model operates on a cell basis and is a distributed parameter, event-based model. The model requires 22 input parameters. Output parameters are grouped primarily by hydrology, sediment, and chemical output (Young and others, 1995.) Elevation, land cover, and soil are the base data from which to extract the 22 input parameters required by the AGNPS. For automatic parameter extraction, follow the general process described in this guide of extraction from the geospatial data through the AGNPS Data Generator to generate input parameters required by the pollution model (Finn and others, 2002.)

  7. Cost-effective means of reducing ammonia emissions from UK agriculture using the NARSES model

    NASA Astrophysics Data System (ADS)

    Webb, J.; Ryan, M.; Anthony, S. G.; Brewer, A.; Laws, J.; Aller, M. F.; Misselbrook, T. H.

    To comply with International agreements to improve air quality, signatory states need to reduce emissions of ammonia (NH 3). Since the majority of NH 3 emissions come from agriculture, measures may need to be implemented by the farming industry. Member states of the EU will, by 2010, require large pig and poultry production units to reduce NH 3 emissions to comply with the integrated pollution prevention and control directive (IPPC). The NARSES model uses a mass-flow method to estimate NH 3 emission from UK agriculture and to identify the most cost-effective means of reducing NH 3 emissions. Model runs were carried out to assess the likely impact of the IPPC Directive on UK NH 3 emissions and the sensitivity of model output to input data on the costs and abatement efficiencies of proposed abatement measures. The impact of the IPPC Directive is likely to be small, offering a reduction of c. 8700 t, 3.5% of total UK agricultural NH 3 emissions. Even large (30%) changes in our estimates of cost or changes of 10% in our estimates of abatement efficiency will make little difference to the ranking of abatement techniques according to cost-effectiveness. The most cost-effective reductions may be achieved by replacing urea fertilizer with ammonium nitrate, immediate incorporation of manures and slurries to tillage land by discs, storing all FYM and poultry manures before spreading to land and applying slurries to grassland by trailing shoe.

  8. Who Talks to Whom in Malawi's Agricultural Research Information Network?

    ERIC Educational Resources Information Center

    Mapila, Mariam A. T. J.; Yauney, Jason; Thangata, Paul; Droppelmann, Klaus; Mazunda, John

    2016-01-01

    Purpose: The sector-wide approach currently dominates as the strategy for developing the agricultural sector of many African countries. Although recognised that collaborative agricultural research is vital in ensuring success of sector-wide agricultural development strategies; there have been few efforts to understand the dynamics of national…

  9. Towards a more comprehensive modelling framework to quantify vertical and lateral carbon fluxes in the agricultural soils of the EU

    NASA Astrophysics Data System (ADS)

    Lugato, Emanuele; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Borrelli, Pasquale

    2016-04-01

    Under the international protocols aiming at reducing the climate change impact, the land use sector is, likely, one of most complex to be accounted for greenhouse gas (GHG) emission and removal. This is related to its fragmentation and the complex biogeochemical feedbacks interacting with the human activity. Among those feedbacks, the role of erosion in the global carbon (C) cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km2 resolution across the agricultural soils of the European Union (EU). Based on data-driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 out of 187 Mha have C erosion rates <0.05 Mg C ha-1 yr-1, although some hot-spot areas showed eroded soil organic C >0.45 Mg C ha-1 yr-1. Exploring different assumptions on short-term enhancement C mineralization during soil displacement/transport, enrichment factor of eroded C and sub-soil organic C composition, we estimated an average net CO2 flux ranging from -2.28 (source) to +3.73 (sink) Tg yr-1 of CO2eq, in comparison with a baseline without erosion. Moreover, the erosion-induced sink of atmospheric carbon was comprised between 0 to 50% of the carbon transported by erosion and varied markedly across the EU. While we first integrated most of all relevant processes and C fluxes in a comprehensive model framework, additional experimental data need to be collected for representing specific processes in a more mechanistic way.

  10. Has the Swap Influenced Aid Flows in the Health Sector?

    PubMed

    Sweeney, Rohan; Mortimer, Duncan

    2016-05-01

    The sector wide approach (SWAp) emerged during the 1990s as a mechanism for managing aid from the multiplicity of development partners that operate in the recipient country's health, education or agricultural sectors. Health SWAps aim to give increased control to recipient governments, allowing greater domestic influence over how health aid is allocated and facilitating allocative efficiency gains. This paper assesses whether health SWAps have increased recipient control of health aid via increased general sector-support and have facilitated (re)allocations of health aid across disease areas. Using a uniquely compiled panel data set of countries receiving development assistance for health over the period 1990-2010, we employ fixed effects and dynamic panel models to assess the impact of introducing a health SWAp on levels of general sector-support for health and allocations of health-sector aid across key funding silos (including HIV, 'maternal and child health' and 'sector-support'). Our results suggest that health SWAps have influenced health-sector aid flows in a manner consistent with increased recipient control and improvements in allocative efficiency.

  11. The Agricultural Policy/Environmental Extender (Apex) Model: An Emerging Tool for Landscape and Watershed Environmental Analyses

    SciTech Connect

    Gassman, Philip W.; Williams, Jimmy R.; Wang, Xiuying; Saleh, Ali; Osei, Edward; Hauck, Larry; Izaurralde, Roberto C.; Flowers, Joan

    2010-06-01

    The Agricultural Policy Environmental eXtender (APEX) model was developed by the Blacklands Research and Extension Center in Temple, Texas. APEX is a flexible and dynamic tool that is capable of simulating a wide array of management practices, cropping systems, and other land uses across a broad range of agricultural landscapes, including whole farms and small watersheds.

  12. Agricultural intensification escalates future conservation costs.

    PubMed

    Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L; Koh, Lian Pin; Pascual, Unai

    2013-05-07

    The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive "slash-and-burn" farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives.

  13. Agricultural intensification escalates future conservation costs

    PubMed Central

    Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L.; Koh, Lian Pin; Pascual, Unai

    2013-01-01

    The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive “slash-and-burn” farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives. PMID:23589860

  14. A hydro-economic modelling framework for optimal management of groundwater nitrate pollution from agriculture

    NASA Astrophysics Data System (ADS)

    Peña-Haro, Salvador; Pulido-Velazquez, Manuel; Sahuquillo, Andrés

    2009-06-01

    SummaryA hydro-economic modelling framework is developed for determining optimal management of groundwater nitrate pollution from agriculture. A holistic optimization model determines the spatial and temporal fertilizer application rate that maximizes the net benefits in agriculture constrained by the quality requirements in groundwater at various control sites. Since emissions (nitrogen loading rates) are what can be controlled, but the concentrations are the policy targets, we need to relate both. Agronomic simulations are used to obtain the nitrate leached, while numerical groundwater flow and solute transport simulation models were used to develop unit source solutions that were assembled into a pollutant concentration response matrix. The integration of the response matrix in the constraints of the management model allows simulating by superposition the evolution of groundwater nitrate concentration over time at different points of interest throughout the aquifer resulting from multiple pollutant sources distributed over time and space. In this way, the modelling framework relates the fertilizer loads with the nitrate concentration at the control sites. The benefits in agriculture were determined through crop prices and crop production functions. This research aims to contribute to the ongoing policy process in the Europe Union (the Water Framework Directive) providing a tool for analyzing the opportunity cost of measures for reducing nitrogen loadings and assessing their effectiveness for maintaining groundwater nitrate concentration within the target levels. The management model was applied to a hypothetical groundwater system. Optimal solutions of fertilizer use to problems with different initial conditions, planning horizons, and recovery times were determined. The illustrative example shows the importance of the location of the pollution sources in relation to the control sites, and how both the selected planning horizon and the target recovery time can

  15. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model

    NASA Astrophysics Data System (ADS)

    FitzHugh, T. W.; Mackay, D. S.

    2000-09-01

    The accuracy of agricultural nonpoint source pollution models depends in part on how well model input parameters describe the relevant characteristics of the watershed. The spatial extent of input parameter aggregation has previously been shown to have a substantial impact on model output. This study investigates this problem using the Soil and Water Assessment Tool (SWAT), a distributed-parameter agricultural nonpoint source pollution model. The primary question addressed here is: how does the size or number of subwatersheds used to partition the watershed affect model output, and what are the processes responsible for model behavior? SWAT was run on the Pheasant Branch watershed in Dane County, WI, using eight watershed delineations, each with a different number of subwatersheds. Model runs were conducted for the period 1990-1996. Streamflow and outlet sediment predictions were not seriously affected by changes in subwatershed size. The lack of change in outlet sediment is due to the transport-limited nature of the Pheasant Branch watershed and the stable transport capacity of the lower part of the channel network. This research identifies the importance of channel parameters in determining the behavior of SWAT's outlet sediment predictions. Sediment generation estimates do change substantially, dropping by 44% between the coarsest and the finest watershed delineations. This change is primarily due to the sensitivity of the runoff term in the Modified Universal Soil Loss Equation to the area of hydrologic response units (HRUs). This sensitivity likely occurs because SWAT was implemented in this study with a very detailed set of HRUs. In order to provide some insight on the scaling behavior of the model two indexes were derived using the mathematics of the model. The indexes predicted SWAT scaling behavior from the data inputs without a need for running the model. Such indexes could be useful for model users by providing a direct way to evaluate alternative models

  16. A novel model for estimating organic chemical bioconcentration in agricultural plants

    SciTech Connect

    Hung, H.; Mackay, D.; Di Guardo, A.

    1995-12-31

    There is increasing recognition that much human and wildlife exposure to organic contaminants can be traced through the food chain to bioconcentration in vegetation. For risk assessment, there is a need for an accurate model to predict organic chemical concentrations in plants. Existing models range from relatively simple correlations of concentrations using octanol-water or octanol-air partition coefficients, to complex models involving extensive physiological data. To satisfy the need for a relatively accurate model of intermediate complexity, a novel approach has been devised to predict organic chemical concentrations in agricultural plants as a function of soil and air concentrations, without the need for extensive plant physiological data. The plant is treated as three compartments, namely, leaves, roots and stems (including fruit and seeds). Data readily available from the literature, including chemical properties, volume, density and composition of each compartment; metabolic and growth rate of plant; and readily obtainable environmental conditions at the site are required as input. Results calculated from the model are compared with observed and experimentally-determined concentrations. It is suggested that the model, which includes a physiological database for agricultural plants, gives acceptably accurate predictions of chemical partitioning between plants, air and soil.

  17. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model.

    PubMed

    Sadat-Noori, Mahmood; Ebrahimi, Kumars

    2016-01-01

    Groundwater contamination is a major concern for groundwater resource managers worldwide. We evaluated groundwater pollution potential by producing a vulnerability map of an aquifer using a modified Depth to water, Net recharge, Aquifer media, Soil media, Topography, Impact of vadose zone, and Hydraulic conductivity (DRASTIC) model within a Geographic Information System (GIS) environment. The proposed modification which incorporated the use of statistical techniques optimizes the rating function of the DRASTIC model parameters, to obtain a more accurate vulnerability map. The new rates were computed using the relationships between the parameters and point data chloride concentrations in groundwater. The model was applied on Saveh-Nobaran plain in central Iran, and results showed that the coefficient of determination (R (2)) between the point data and the relevant vulnerability map increased significantly from 0.52 to 0.78 after modification. As compared to the original DRASTIC model, the modified version produced better vulnerability zonation. Additionally, single-parameter and parameter removal sensitivity analyses were performed to evaluate the relative importance of each DRASTIC parameter. The results from both analyses revealed that the vadose zone is the most sensitive parameter influencing the variability of the aquifers' vulnerability index. Based on the results, for non-point source pollution in agricultural areas, using the modified DRASTIC model is efficient compared to the original model. The proposed method can be effective for future groundwater assessment and plain-land management where agricultural activities are dominant.

  18. A simple model for predicting solute concentration in agricultural tile lines shortly after application

    NASA Astrophysics Data System (ADS)

    Steenhuis, T. S.; Bodnar, M.; Geohring, L. D.; Aburime, S.-A.; Wallach, R.

    Agricultural tile drainage lines have been implicated as a source of pesticide contamination of surface waters. Field experiments were conducted and a simple model was developed to examine preferential transport of applied chemicals to agricultural tile lines. The conceptual model consists of two linear reservoirs, one near the soil surface and one near the tile drain. The connection between the two reservoirs is via preferential flow paths with very little interaction with the soil matrix. The model assumes that only part of the field contributes solutes to the tile drain. The model was evaluated with data from the field experiments in which chloride, 2,4-D, and atrazine concentrations were measured on eight tile-drained plots that were irrigated twice. Atrazine was applied two months prior to the experiment, 2,4-D was sprayed just before the first irrigation, and chloride before the second irrigation. All three chemicals were found in the tile effluent shortly after the rainfall began. Generally, the concentration increased with increased flow rates and decreased exponentially after the rainfall ceased. Although the simple model could simulate the observed chloride concentration patterns in the tile outflow for six of the eight plots, strict validation was not possible because of the difficulty with independent measurement of the data needed for a preferential flow model applied to field conditions. The results show that, to simulate pesticide concentration in tile lines, methods that can measure field averaged preferential flow characteristics need to be developed.

  19. Modeling Agricultural Crop Production in China using AVHRR-based Vegetation Health Indices

    NASA Astrophysics Data System (ADS)

    Yang, B.; Kogan, F.; Guo, W.; Zhiyuan, P.; Xianfeng, J.

    Weather related crop losses have always been a concern for farmers On a wider scale it has always influenced decision of Governments traders and other policy makers for the purpose of balanced food supplies trade and distribution of aid to the nations in need Therefore national policy and decision makers are giving increasing importance to early assessment of crop losses in response to weather fluctuations This presentation emphasizes utility of AVHRR-based Vegetation health index VHI for early warning of drought-related losses of agricultural production in China The VHI is a three-channel index characterizing greenness vigor and temperature of land surface which can be used as proxy for estimation of how healthy and potentially productive could be vegetation China is the largest in the world producer of grain including wheat and rice and cotton In the major agricultural areas China s crop production is very dependent on weather The VHI being a proxy indicator of weather impact on vegetation showed some correlation with productivity of agricultural crops during the critical period of their development The periods of the strongest correlation were investigated and used to build regression models where crop yield deviation from technological trend was accepted as a dependent and VHI as independent variables The models were developed for several major crops including wheat corn and soybeans

  20. Regional scale cropland carbon budgets: evaluating a geospatial agricultural modeling system using inventory data

    SciTech Connect

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; Sahajpal, Ritvik; West, Tristram O.; Thomson, Allison M.; Xu, Min; Zhao, Kaiguang; LeDuc, Stephen D.; Williams, Jimmy R.

    2015-01-01

    Accurate quantification and clear understanding of regional scale cropland carbon (C) cycling is critical for designing effective policies and management practices that can contribute toward stabilizing atmospheric CO2 concentrations. However, extrapolating site-scale observations to regional scales represents a major challenge confronting the agricultural modeling community. This study introduces a novel geospatial agricultural modeling system (GAMS) exploring the integration of the mechanistic Environmental Policy Integrated Climate model, spatially-resolved data, surveyed management data, and supercomputing functions for cropland C budgets estimates. This modeling system creates spatially-explicit modeling units at a spatial resolution consistent with remotely-sensed crop identification and assigns cropping systems to each of them by geo-referencing surveyed crop management information at the county or state level. A parallel computing algorithm was also developed to facilitate the computationally intensive model runs and output post-processing and visualization. We evaluated GAMS against National Agricultural Statistics Service (NASS) reported crop yields and inventory estimated county-scale cropland C budgets averaged over 2000–2008. We observed good overall agreement, with spatial correlation of 0.89, 0.90, 0.41, and 0.87, for crop yields, Net Primary Production (NPP), Soil Organic C (SOC) change, and Net Ecosystem Exchange (NEE), respectively. However, we also detected notable differences in the magnitude of NPP and NEE, as well as in the spatial pattern of SOC change. By performing crop-specific annual comparisons, we discuss possible explanations for the discrepancies between GAMS and the inventory method, such as data requirements, representation of agroecosystem processes, completeness and accuracy of crop management data, and accuracy of crop area representation. Based on these analyses, we further discuss strategies to improve GAMS by updating input

  1. A radiative transfer model for microwave emissions from bare agricultural soils

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Paris, J. F.

    1975-01-01

    A radiative transfer model for microwave emissions from bare, stratified agricultural soils was developed to assist in the analysis of data gathered in the joint soil moisture experiment. The predictions of the model were compared with preliminary X band (2.8 cm) microwave and ground based observations. Measured brightness temperatures at vertical and horizontal polarizations can be used to estimate the moisture content of the top centimeter of soil with + or - 1 percent accuracy. It is also shown that the Stokes parameters can be used to distinguish between moisture and surface roughness effects.

  2. An occupational preference model of turnover behaviour: the case of Israel's medical sector employees.

    PubMed

    Mano-Negrin, R

    2001-01-01

    Occupational preferences and subsequent turnover behaviour are part of a complex relationship between employees and their occupational and organizational labour markets. Both markets contribute to matching skills and jobs. Differences in individual and occupational attributes can predict the direction and intensity of preferences for alternative organizations, occupations and job locations. Occupational preferences, which reflect the attractiveness of alternative positions within and outside the employing organization, are examined as central antecedents of occupation-specific turnover behaviour. The results of a logistic regression analysis, based on a cross-sectional occupational representative data set of 700 medical sector employees and a follow-up sample of 81 "quitters" suggest that turnover behaviour is influenced by organizational and occupational employment opportunities and occupational preferences.

  3. Modeling Spatial and Temporal Variability in Ammonia Emissions from Agricultural Fertilization

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Koloutsou-Vakakis, S.; Rood, M. J.

    2013-12-01

    Ammonia (NH3), is an important component of the reactive nitrogen cycle and a precursor to formation of atmospheric particulate matter (PM). Predicting regional PM concentrations and deposition of nitrogen species to ecosystems requires representative emission inventories. Emission inventories have traditionally been developed using top down approaches and more recently from data assimilation based on satellite and ground based ambient concentrations and wet deposition data. The National Emission Inventory (NEI) indicates agricultural fertilization as the predominant contributor (56%) to NH3 emissions in Midwest USA, in 2002. However, due to limited understanding of the complex interactions between fertilizer usage, farm practices, soil and meteorological conditions and absence of detailed statistical data, such emission estimates are currently based on generic emission factors, time-averaged temporal factors and coarse spatial resolution. Given the significance of this source, our study focuses on developing an improved NH3 emission inventory for agricultural fertilization at finer spatial and temporal scales for air quality modeling studies. Firstly, a high-spatial resolution 4 km x 4 km NH3 emission inventory for agricultural fertilization has been developed for Illinois by modifying spatial allocation of emissions based on combining crop-specific fertilization rates with cropland distribution in the Sparse Matrix Operator Kernel Emissions model. Net emission estimates of our method are within 2% of NEI, since both methods are constrained by fertilizer sales data. However, we identified localized crop-specific NH3 emission hotspots at sub-county resolutions absent in NEI. Secondly, we have adopted the use of the DeNitrification-DeComposition (DNDC) Biogeochemistry model to simulate the physical and chemical processes that control volatilization of nitrogen as NH3 to the atmosphere after fertilizer application and resolve the variability at the hourly scale

  4. A model for inventory of ammonia emissions from agriculture in the Netherlands

    NASA Astrophysics Data System (ADS)

    Velthof, G. L.; van Bruggen, C.; Groenestein, C. M.; de Haan, B. J.; Hoogeveen, M. W.; Huijsmans, J. F. M.

    2012-01-01

    Agriculture is the major source of ammonia (NH 3). Methodologies are needed to quantify national NH 3 emissions and to identify the most effective options to mitigate NH 3 emissions. Generally, NH 3 emissions from agriculture are quantified using a nitrogen (N) flow approach, in which the NH 3 emission is calculated from the N flows and NH 3 emission factors. Because of the direct dependency between NH 3 volatilization and Total Ammoniacal N (TAN; ammonium-N + N compounds readily broken down to ammonium) an approach based on TAN is preferred to calculate NH 3 emission instead of an approach based on total N. A TAN-based NH 3-inventory model was developed, called NEMA (National Emission Model for Ammonia). The total N excretion and the fraction of TAN in the excreted N are calculated from the feed composition and N digestibility of the components. TAN-based emission factors were derived or updated for housing systems, manure storage outside housing, manure application techniques, N fertilizer types, and grazing. The NEMA results show that the total NH 3 emission from agriculture in the Netherlands in 2009 was 88.8 Gg NH 3-N, of which 50% from housing, 37% from manure application, 9% from mineral N fertilizer, 3% from outside manure storage, and 1% from grazing. Cattle farming was the dominant source of NH 3 in the Netherlands (about 50% of the total NH 3 emission). The NH 3 emission expressed as percentage of the excreted N was 22% of the excreted N for poultry, 20% for pigs, 15% for cattle, and 12% for other livestock, which is mainly related to differences in emissions from housing systems. The calculated ammonia emission was most sensitive to changes in the fraction of TAN in the excreted manure and to the emission factor of manure application. From 2011, NEMA will be used as official methodology to calculate the national NH 3 emission from agriculture in the Netherlands.

  5. Slash and Burn Agriculture: A Dynamic Spatio-temporal Model of Shifting Cultivation Locations and Areas

    NASA Astrophysics Data System (ADS)

    Plagge, C. E.; Frolking, S.; Chini, L. P.; Hurtt, G.

    2008-12-01

    Shifting cultivation is a form of agriculture, also known as slash-and-burn or swidden agriculture, in which a plot of forest is cleared and then cultivated continuously for several years, after which it is abandoned to revert to natural vegetation, and then is subsequently re-cleared after a longer fallow period. Shifting cultivation is an important form of agriculture because it affects soil erosion rates, canopy cover in tropical forests, nutrient deficiency in soils, and also has an impact on the global carbon cycle. Because it is generally outside of the larger economy, shifting cultivation is not well-represented in large-scale earth system analyses. We investigated a new way to model shifting cultivation which will be included in a global land-use transitions model to better quantify this type of land use, both historically and into the future. Ultimately this study will improve simulations of changes in the Earth system and will aid in the study of the carbon cycle and thus climate change. Our model calculates the area of shifting cultivation in square kilometers per half-degree grid cell, using gridded population data, the fraction of that population that is rural, the fraction of global population that practices shifting cultivation, the crop area needed per person, and the length of cultivation plus the fallow. Locations of shifting cultivation were further constrained by variables such as potential vegetation biomass density, population density, fraction of land already in use, GDP per capita, and average winter temperatures. With this model, we generated global estimates for total cultivated area, total population involved in shifting cultivation, and total shifting cultivation area including fallow lands. From this model it was estimated that the total global area of shifting cultivation in 2000 was approximately 1.5 million km2 with 90,000 km2 of that actually in cultivation by 190 million people.

  6. Using logic models in a community-based agricultural injury prevention project.

    PubMed

    Helitzer, Deborah; Willging, Cathleen; Hathorn, Gary; Benally, Jeannie

    2009-01-01

    The National Institute for Occupational Safety and Health has long promoted the logic model as a useful tool in an evaluator's portfolio. Because a logic model supports a systematic approach to designing interventions, it is equally useful for program planners. Undertaken with community stakeholders, a logic model process articulates the underlying foundations of a particular programmatic effort and enhances program design and evaluation. Most often presented as sequenced diagrams or flow charts, logic models demonstrate relationships among the following components: statement of a problem, various causal and mitigating factors related to that problem, available resources to address the problem, theoretical foundations of the selected intervention, intervention goals and planned activities, and anticipated short- and long-term outcomes. This article describes a case example of how a logic model process was used to help community stakeholders on the Navajo Nation conceive, design, implement, and evaluate agricultural injury prevention projects.

  7. Review: Computer-based models for managing the water-resource problems of irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2015-09-01

    Irrigation is essential for achieving food security to the burgeoning global population but unplanned and injudicious expansion of irrigated areas causes waterlogging and salinization problems. Under this backdrop, groundwater resources management is a critical issue for fulfilling the increasing water demand for agricultural, industrial, and domestic uses. Various simulation and optimization approaches were used to solve the groundwater management problems. This paper presents a review of the individual and combined applications of simulation and optimization modeling for the management of groundwater-resource problems associated with irrigated agriculture. The study revealed that the combined use of simulation-optimization modeling is very suitable for achieving an optimal solution for groundwater-resource problems, even with a large number of variables. Independent model tools were used to solve the problems of uncertainty analysis and parameter estimation in groundwater modelling studies. Artificial neural networks were used to minimize the problem of computational complexity. The incorporation of socioeconomic aspects into the groundwater management modeling would be an important development in future studies.

  8. Incorporating representation of agricultural ecosystems and management within a dynamic biosphere model: Approach, validation, and significance

    NASA Astrophysics Data System (ADS)

    Kucharik, C.

    2004-12-01

    At the scale of individual fields, crop models have long been used to examine the interactions between soils, vegetation, the atmosphere and human management, using varied levels of numerical sophistication. While previous efforts have contributed significantly towards the advancement of modeling tools, the models themselves are not typically applied across larger continental scales due to a lack of crucial data. Furthermore, many times crop models are used to study a single quantity, process, or cycle in isolation, limiting their value in considering the important tradeoffs between competing ecosystem services such as food production, water quality, and sequestered carbon. In response to the need for a more integrated agricultural modeling approach across the continental scale, an updated agricultural version of a dynamic biosphere model (IBIS) now integrates representations of land-surface physics and soil physics, canopy physiology, terrestrial carbon and nitrogen balance, crop phenology, solute transport, and farm management into a single framework. This version of the IBIS model (Agro-IBIS) uses a short 20 to 60-minute timestep to simulate the rapid exchange of energy, carbon, water, and momentum between soils, vegetative canopies, and the atmosphere. The model can be driven either by site-specific meteorological data or by gridded climate datasets. Mechanistic crop models for corn, soybean, and wheat use physiologically-based representations of leaf photosynthesis, stomatal conductance, and plant respiration. Model validation has been performed using a variety of temporal scale data collected at the following spatial scales: (1) the precision-agriculture scale (5 m), (2) the individual field experiment scale (AmeriFlux), and (3) regional and continental scales using annual USDA county-level yield data and monthly satellite (AVHRR) observations of vegetation characteristics at 0.5 degree resolution. To date, the model has been used with great success to

  9. Gauge symmetry and non-Abelian topological sectors in a geometrically constrained model on the honeycomb lattice.

    PubMed

    Fendley, Paul; Moore, Joel E; Xu, Cenke

    2007-05-01

    We study a constrained statistical-mechanical model in two dimensions that has three useful descriptions. They are (i) the Ising model on the honeycomb lattice, constrained to have three up spins and three down spins on every hexagon, (ii) the three-color and fully packed loop model on the links of the honeycomb lattice, with loops around a single hexagon forbidden, and (iii) three Ising models on interleaved triangular lattices, with domain walls of the different Ising models not allowed to cross. Unlike the three-color model, the configuration space on the sphere or plane is connected under local moves. On higher-genus surfaces there are infinitely many dynamical sectors, labeled by a noncontractible set of nonintersecting loops. We demonstrate that at infinite temperature the transfer matrix admits an unusual structure related to a gauge symmetry for the same model on an anisotropic lattice. This enables us to diagonalize the original transfer matrix for up to 36 sites, finding an entropy per plaquette S/k{B} approximately 0.3661 ... centered and substantial evidence that the model is not critical. We also find the striking property that the eigenvalues of the transfer matrix on an anisotropic lattice are given in terms of Fibonacci numbers. We comment on the possibility of a topological phase, with infinite topological degeneracy, in an associated two-dimensional quantum model.

  10. Modeling the effect of social networks on adoption of multifunctional agriculture

    PubMed Central

    Manson, Steven M.; Jordan, Nicholas R.; Nelson, Kristen C.; Brummel, Rachel F.

    2014-01-01

    Rotational grazing (RG) has attracted much attention as a cornerstone of multifunctional agriculture (MFA) in animal systems, potentially capable of producing a range of goods and services of value to diverse stakeholders in agricultural landscapes and rural communities, as well as broader societal benefits. Despite these benefits, global adoption of MFA has been uneven, with some places seeing active participation, while others have seen limited growth. Recent conceptual models of MFA emphasize the potential for bottom-up processes and linkages among social and environmental systems to promote multifunctionality. Social networks are critical to these explanations but how and why these networks matter is unclear. We investigated fifty-three farms in three states in the United States (New York, Wisconsin, Pennsylvania) and developed a stylized model of social networks and systemic change in the dairy farming system. We found that social networks are important to RG adoption but their impact is contingent on social and spatial factors. Effects of networks on farmer decision making differ according to whether they comprise weak-tie relationships, which bridge across disparate people and organizations, or strong-tie relationships, which are shared by groups in which members are well known to one another. RG adoption is also dependent on features of the social landscape including the number of dairy households, the probability of neighboring farmers sharing strong ties, and the role of space in how networks are formed. The model replicates features of real-world adoption of RG practices in the Eastern US and illustrates pathways toward greater multifunctionality in the dairy landscape. Such models are likely to be of heuristic value in network-focused strategies for agricultural development. PMID:26744579

  11. Modeling Agricultural Nonpoint Source Pollution Using a Geographic Information System Approach

    NASA Astrophysics Data System (ADS)

    Emili, Lisa A.; Greene, Richard P.

    2013-01-01

    Agricultural non-point source (NPS) pollution, primarily sediment and nutrients, is the leading source of water-quality impacts to surface waters in North America. The overall goal of this study was to develop geographic information system (GIS) protocols to facilitate the spatial and temporal modeling of changes in soils, hydrology, and land-cover change at the watershed scale. In the first part of this article, we describe the use of GIS to spatially integrate watershed scale data on soil erodibility, land use, and runoff for the assessment of potential source areas within an intensively agricultural watershed. The agricultural non-point source pollution (AGNPS) model was used in the Muddy Creek, Ontario, watershed to evaluate the effectiveness of management strategies in decreasing sediment and nutrient [phosphorus (P)] pollution. This analysis was accompanied by the measurement of water-quality parameters (dissolved oxygen, pH, hardness, alkalinity, and turbidity) as well as sediment and P loadings to the creek. Practices aimed at increasing year-round soil cover would be most effective in decreasing sediment and P losses in this watershed. In the second part of this article, we describe a method for characterizing land-cover change in a dynamic urban fringe watershed. The GIS method we developed for the Blackberry Creek, Illinois, watershed will allow us to better account for temporal changes in land use, specifically corn and soybean cover, on an annual basis and to improve on the modeling of watershed processes shown for the Muddy Creek watershed. Our model can be used at different levels of planning with minimal data preprocessing, easily accessible data, and adjustable output scales.

  12. Modeling the effect of social networks on adoption of multifunctional agriculture.

    PubMed

    Manson, Steven M; Jordan, Nicholas R; Nelson, Kristen C; Brummel, Rachel F

    2016-01-01

    Rotational grazing (RG) has attracted much attention as a cornerstone of multifunctional agriculture (MFA) in animal systems, potentially capable of producing a range of goods and services of value to diverse stakeholders in agricultural landscapes and rural communities, as well as broader societal benefits. Despite these benefits, global adoption of MFA has been uneven, with some places seeing active participation, while others have seen limited growth. Recent conceptual models of MFA emphasize the potential for bottom-up processes and linkages among social and environmental systems to promote multifunctionality. Social networks are critical to these explanations but how and why these networks matter is unclear. We investigated fifty-three farms in three states in the United States (New York, Wisconsin, Pennsylvania) and developed a stylized model of social networks and systemic change in the dairy farming system. We found that social networks are important to RG adoption but their impact is contingent on social and spatial factors. Effects of networks on farmer decision making differ according to whether they comprise weak-tie relationships, which bridge across disparate people and organizations, or strong-tie relationships, which are shared by groups in which members are well known to one another. RG adoption is also dependent on features of the social landscape including the number of dairy households, the probability of neighboring farmers sharing strong ties, and the role of space in how networks are formed. The model replicates features of real-world adoption of RG practices in the Eastern US and illustrates pathways toward greater multifunctionality in the dairy landscape. Such models are likely to be of heuristic value in network-focused strategies for agricultural development.

  13. Modeling Soil Organic Carbon for Agricultural Land Use Under Various Management Practices

    NASA Astrophysics Data System (ADS)

    Kotamarthi, V. R.; Drewniak, B.; Song, J.; Prell, J.; Jacob, R. L.

    2009-12-01

    Bioenergy is generating tremendous interest as an alternative energy source that is both environmentally friendly and economically competitive. The amount of land designated for agriculture is expected to expand, including changes in the current distribution of crops, as demand for biofuels increases as a carbon neutral alternative fuel source. However, the influence of agriculture on the carbon cycle is complex, and varies depending on land use change and management practices. The purpose of this research is to integrate agriculture in the carbon-nitrogen based Community Land Model (CLM) to evaluate the above and below ground carbon storage for corn, soybean, and wheat crop lands. The new model, CLM-Crop simulates carbon allocation during four growth stages, a soybean nitrogen fixation scheme, fertilizer, and harvest practices. We present results from this model simulation, which includes the impact of a new dynamic roots module to simulate the changing root structure and depth with growing season based on the availability of water and nitrogen in the root zone and a retranslocation scheme to simulate redistribution of nitrogen from leaves, roots, and stems to grain during organ development for crop yields, leaf area index (LAI), carbon allocation, and changes in soil carbon budgets under various practices such as fertilizer and residue management. Simulated crop yields for corn, soybean and wheat are in general agreement with measurements. Initial model results indicate a loss of soil organic carbon over cultivated lands after removal of natural vegetation which continues in the following years. Soil carbon in crop lands is a strong function of the residue management and has the potential to impact crop yields significantly.

  14. Modeling agricultural nonpoint source pollution using a geographic information system approach.

    PubMed

    Emili, Lisa A; Greene, Richard P

    2013-01-01

    Agricultural non-point source (NPS) pollution, primarily sediment and nutrients, is the leading source of water-quality impacts to surface waters in North America. The overall goal of this study was to develop geographic information system (GIS) protocols to facilitate the spatial and temporal modeling of changes in soils, hydrology, and land-cover change at the watershed scale. In the first part of this article, we describe the use of GIS to spatially integrate watershed scale data on soil erodibility, land use, and runoff for the assessment of potential source areas within an intensively agricultural watershed. The agricultural non-point source pollution (AGNPS) model was used in the Muddy Creek, Ontario, watershed to evaluate the effectiveness of management strategies in decreasing sediment and nutrient [phosphorus (P)] pollution. This analysis was accompanied by the measurement of water-quality parameters (dissolved oxygen, pH, hardness, alkalinity, and turbidity) as well as sediment and P loadings to the creek. Practices aimed at increasing year-round soil cover would be most effective in decreasing sediment and P losses in this watershed. In the second part of this article, we describe a method for characterizing land-cover change in a dynamic urban fringe watershed. The GIS method we developed for the Blackberry Creek, Illinois, watershed will allow us to better account for temporal changes in land use, specifically corn and soybean cover, on an annual basis and to improve on the modeling of watershed processes shown for the Muddy Creek watershed. Our model can be used at different levels of planning with minimal data preprocessing, easily accessible data, and adjustable output scales.

  15. Evaluating the impacts of agricultural land management practices on water resources: A probabilistic hydrologic modeling approach.

    PubMed

    Prada, A F; Chu, M L; Guzman, J A; Moriasi, D N

    2017-02-24

    Evaluating the effectiveness of agricultural land management practices in minimizing environmental impacts using models is challenged by the presence of inherent uncertainties during the model development stage. One issue faced during the model development stage is the uncertainty involved in model parameterization. Using a single optimized set of parameters (one snapshot) to represent baseline conditions of the system limits the applicability and robustness of the model to properly represent future or alternative scenarios. The objective of this study was to develop a framework that facilitates model parameter selection while evaluating uncertainty to assess the impacts of land management practices at the watershed scale. The model framework was applied to the Lake Creek watershed located in southwestern Oklahoma, USA. A two-step probabilistic approach was implemented to parameterize the Agricultural Policy/Environmental eXtender (APEX) model using global uncertainty and sensitivity analysis to estimate the full spectrum of total monthly water yield (WYLD) and total monthly Nitrogen loads (N) in the watershed under different land management practices. Twenty-seven models were found to represent the baseline scenario in which uncertainty of up to 29% and 400% in WYLD and N, respectively, is plausible. Changing the land cover to pasture manifested the highest decrease in N to up to 30% for a full pasture coverage while changing to full winter wheat cover can increase the N up to 11%. The methodology developed in this study was able to quantify the full spectrum of system responses, the uncertainty associated with them, and the most important parameters that drive their variability. Results from this study can be used to develop strategic decisions on the risks and tradeoffs associated with different management alternatives that aim to increase productivity while also minimizing their environmental impacts.

  16. Modelling the bioaccumulation of persistent organic pollutants in agricultural food chains for regulatory exposure assessment.

    PubMed

    Takaki, Koki; Wade, Andrew J; Collins, Chris D

    2017-02-01

    New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.

  17. Uncertainty bounds using sector theory

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Schmidt, David K.

    1989-01-01

    An approach based on sector-stability theory can furnish a description of the uncertainty associated with the frequency response of a model, given sector-bounds on the individual parameters of the model. The application of the sector-based approach to the formulation of useful uncertainty descriptions for linear, time-invariant multivariable systems is presently explored, and the approach is applied to two generic forms of parameter uncertainty in order to investigate its advantages and limitations. The results obtained show that sector-uncertainty bounds can be used to evaluate the impact of parameter uncertainties on the frequency response of the design model.

  18. Accuracy of some simple models for predicting particulate interception and retention in agricultural systems

    SciTech Connect

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.

    1989-04-01

    The accuracy of three radionuclide transfer models for predicting the interception and retention of airborne particles by agricultural crops was tested using Pu-bearing aerosols released to the atmosphere from nuclear fuel facilities on the U.S. Department of Energy's Savannah River Plant, near Aiken, SC. The models evaluated were: (1) NRC, the model defined in U.S. Nuclear Regulatory Guide 1.109; (2) FOOD, a model similar to the NRC model that also predicts concentrations in grains; and (3) AGNS, a model developed from the NRC model for the southeastern United States. Plutonium concentrations in vegetation and grain were predicted from measured deposition rates and compared to concentrations observed in the field. Crops included wheat, soybeans, corn and cabbage. Although predictions of the three models differed by less than a factor of 4, they showed different abilities to predict concentrations observed in the field. The NRC and FOOD models consistently underpredicted the observed Pu concentrations for vegetation. The AGNS model was a more accurate predictor of Pu concentrations for vegetation. Both the FOOD and AGNS models accurately predicted the Pu concentrations for grains.

  19. SPATIO-TEMPORAL MODELING OF AGRICULTURAL YIELD DATA WITH AN APPLICATION TO PRICING CROP INSURANCE CONTRACTS

    PubMed Central

    Ozaki, Vitor A.; Ghosh, Sujit K.; Goodwin, Barry K.; Shirota, Ricardo

    2009-01-01

    This article presents a statistical model of agricultural yield data based on a set of hierarchical Bayesian models that allows joint modeling of temporal and spatial autocorrelation. This method captures a comprehensive range of the various uncertainties involved in predicting crop insurance premium rates as opposed to the more traditional ad hoc, two-stage methods that are typically based on independent estimation and prediction. A panel data set of county-average yield data was analyzed for 290 counties in the State of Paraná (Brazil) for the period of 1990 through 2002. Posterior predictive criteria are used to evaluate different model specifications. This article provides substantial improvements in the statistical and actuarial methods often applied to the calculation of insurance premium rates. These improvements are especially relevant to situations where data are limited. PMID:19890450

  20. A simple model of carbon in the soil profile for agricultural soils in Northwestern Europe

    NASA Astrophysics Data System (ADS)

    Taghizadeh-Toosi, Arezoo; Hutchings, Nicholas J.; Vejlin, Jonas; Christensen, Bent T.; Olesen, Jørgen E.

    2014-05-01

    World soil carbon (C) stocks are second to those in the ocean, and represent three times as much C as currently present in the atmosphere. The amount of C in soil may play a significant role in carbon exchanges between the atmosphere and the terrestrial environment. The C-TOOL model is a three-pool linked soil organic carbon (SOC) model in well-drained mineral soils under agricultural land management to allow generalized parameterization for estimating effects of management measures at medium to long time scales for the entire soil profile (0-100 cm). C-TOOL has been developed to enable simulations of SOC turnover in soil using temperature dependent first order kinetics for describing decomposition. Compared with many other SOC models, C-TOOL applies a less complicated structure, which facilitates easier calibration, and it requires only few inputs (i.e., average monthly air temperature, soil clay content,soil carbon-to-nitrogen ratio, and C inputs to the soil from plants and other sources). C-TOOL was parameterized using SOC and radiocarbon data from selected long-term field treatments in United Kingdom, Sweden and Denmark. However, less data were available for evaluation of subsoil C (25-100 cm) from the long-term experiments applied. In Denmark a national 7×7 km grid net was established in 1986 for soil C monitoring down to 100 cm depth. The results of SOC showed a significant decline from 1997 to 2009 in the 0-50 cm soil layer. This was mainly attributed to changes in the 25-50 cm layer, where a decline in SOC was found for all soil texture types. Across the period 1986 to 2009 there was clear tendency for increasing SOC on the sandy soils and reductions on the loamy soils. This effect is linked to land use, since grasslands and dairy farms are more abundant in the western parts of Denmark, where most of the sandy soils are located. The results and the data from soil monitoring have been used to validate the C-TOOL modelling approach used for accounting of

  1. Influence of coupling on atmosphere, sea ice and ocean regional models in the Ross Sea sector, Antarctica

    NASA Astrophysics Data System (ADS)

    Jourdain, Nicolas C.; Mathiot, Pierre; Gallée, Hubert; Barnier, Bernard

    2011-04-01

    Air-sea ice-ocean interactions in the Ross Sea sector form dense waters that feed the global thermohaline circulation. In this paper, we develop the new limited-area ocean-sea ice-atmosphere coupled model TANGO to simulate the Ross Sea sector. TANGO is built up by coupling the atmospheric limited-area model MAR to a regional configuration of the ocean-sea ice model NEMO. A method is then developed to identify the mechanisms by which local coupling affects the simulations. TANGO is shown to simulate realistic sea ice properties and atmospheric surface temperatures. These skills are mostly related to the skills of the stand alone atmospheric and oceanic models used to build TANGO. Nonetheless, air temperatures over ocean and winter sea ice thickness are found to be slightly improved in coupled simulations as compared to standard stand alone ones. Local atmosphere ocean feedbacks over the open ocean are found to significantly influence ocean temperature and salinity. In a stand alone ocean configuration, the dry and cold air produces an ocean cooling through sensible and latent heat loss. In a coupled configuration, the atmosphere is in turn moistened and warmed by the ocean; sensible and latent heat loss is therefore reduced as compared to the stand alone simulations. The atmosphere is found to be less sensitive to local feedbacks than the ocean. Effects of local feedbacks are increased in the coastal area because of the presence of sea ice. It is suggested that slow heat conduction within sea ice could amplify the feedbacks. These local feedbacks result in less sea ice production in polynyas in coupled mode, with a subsequent reduction in deep water formation.

  2. Reorienting Agricultural Education towards a Free Market Model Emphasizing Economic Understanding.

    ERIC Educational Resources Information Center

    Amberson, Max L.

    Agricultural education has grown and flourished in the past because it took students with farm backgrounds and helped them become better managers and producers, thus improving agriculture in general. Now that fewer students are coming from farms into agricultural education, agricultural education has lost its protected status and become just…

  3. Evaluating the Quality of the Learning Outcome in Healthcare Sector: The Expero4care Model

    ERIC Educational Resources Information Center

    Cervai, Sara; Polo, Federica

    2015-01-01

    Purpose: This paper aims to present the Expero4care model. Considering the growing need for a training evaluation model that does not simply fix processes, the Expero4care model represents the first attempt of a "quality model" dedicated to the learning outcomes of healthcare trainings. Design/Methodology/Approach: Created as development…

  4. Modeling the impacts of dryland agricultural reclamation on groundwater resources in Northern Egypt using sparse data

    NASA Astrophysics Data System (ADS)

    Switzman, Harris; Coulibaly, Paulin; Adeel, Zafar

    2015-01-01

    Demand for freshwater in many dryland environments is exerting negative impacts on the quality and availability of groundwater resources, particularly in areas where demand is high due to irrigation or industrial water requirements to support dryland agricultural reclamation. Often however, information available to diagnose the drivers of groundwater degradation and assess management options through modeling is sparse, particularly in low and middle-income countries. This study presents an approach for generating transient groundwater model inputs to assess the long-term impacts of dryland agricultural land reclamation on groundwater resources in a highly data-sparse context. The approach was applied to the area of Wadi El Natrun in Northern Egypt, where dryland reclamation and the associated water use has been aggressive since the 1960s. Statistical distributions of water use information were constructed from a variety of sparse field and literature estimates and then combined with remote sensing data in spatio-temporal infilling model to produce the groundwater model inputs of well-pumping and surface recharge. An ensemble of groundwater model inputs were generated and used in a 3D groundwater flow (MODFLOW) of Wadi El Natrun's multi-layer aquifer system to analyze trends in water levels and water budgets over time. Validation of results against monitoring records, and model performance statistics demonstrated that despite the extremely sparse data, the approach used in this study was capable of simulating the cumulative impacts of agricultural land reclamation reasonably well. The uncertainty associated with the groundwater model itself was greater than that associated with the ensemble of well-pumping and surface recharge estimates. Water budget analysis of the groundwater model output revealed that groundwater recharge has not changed significantly over time, while pumping has. As a result of these trends, groundwater was estimated to be in a deficit of

  5. Agricultural Education as a Medium for the Transmission of Western Science during British Rule in Malaya, 1905-1957

    ERIC Educational Resources Information Center

    Arman, Ezwan; Mamat, Mohd Zufri; Hasbullah, Maisarah

    2016-01-01

    This paper traces the transmission of Western science through the agricultural education sector during the British colonial administration of Malaya. This education system included three levels: elementary, intermediate and the school of agriculture. To understand the process by which Western science was transmitted in Malaya, Basalla's model was…

  6. Climate model emulation in an integrated assessment framework: a case study for mitigation policies in the electricity sector

    NASA Astrophysics Data System (ADS)

    Foley, A. M.; Holden, P. B.; Edwards, N. R.; Mercure, J.-F.; Salas, P.; Pollitt, H.; Chewpreecha, U.

    2016-02-01

    We present a carbon-cycle-climate modelling framework using model emulation, designed for integrated assessment modelling, which introduces a new emulator of the carbon cycle (GENIEem). We demonstrate that GENIEem successfully reproduces the CO2 concentrations of the Representative Concentration Pathways when forced with the corresponding CO2 emissions and non-CO2 forcing. To demonstrate its application as part of the integrated assessment framework, we use GENIEem along with an emulator of the climate (PLASIM-ENTSem) to evaluate global CO2 concentration levels and spatial temperature and precipitation response patterns resulting from CO2 emission scenarios. These scenarios are modelled using a macroeconometric model (E3MG) coupled to a model of technology substitution dynamics (FTT), and represent different emissions reduction policies applied solely in the electricity sector, without mitigation in the rest of the economy. The effect of cascading uncertainty is apparent, but despite uncertainties, it is clear that in all scenarios, global mean temperatures in excess of 2 °C above pre-industrial levels are projected by the end of the century. Our approach also highlights the regional temperature and precipitation patterns associated with the global mean temperature change occurring in these scenarios, enabling more robust impacts modelling and emphasizing the necessity of focusing on spatial patterns in addition to global mean temperature change.

  7. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    NASA Astrophysics Data System (ADS)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  8. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  9. Stochastic and recursive calibration for operational, large-scale, agricultural land and water use management models

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Kimball, J. S.; Jencso, K. G.

    2015-12-01

    Managing the impact of climatic cycles on agricultural production, on land allocation, and on the state of active and projected water sources is challenging. This is because in addition to the uncertainties associated with climate projections, it is difficult to anticipate how farmers will respond to climatic change or to economic and policy incentives. Some sophisticated decision support systems available to water managers consider farmers' adaptive behavior but they are data intensive and difficult to apply operationally over large regions. Satellite-based observational technologies, in conjunction with models and assimilation methods, create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents at seasonal scales.We present an integrated modeling framework that can be driven by satellite remote sensing to enable robust regional assessment and prediction of climatic and policy impacts on agricultural production, water resources, and management decisions. The core of this framework is a widely used model of agricultural production and resource allocation adapted to be used in conjunction with remote sensing inputs to quantify the amount of land and water farmers allocate for each crop they choose to grow on a seasonal basis in response to reduced or enhanced access to water due to climatic or policy restrictions. A recursive Bayesian update method is used to adjust the model parameters by assimilating information on crop acreage, production, and crop evapotranspiration as a proxy for water use that can be estimated from high spatial resolution satellite remote sensing. The data assimilation framework blends new and old information to avoid over-calibration to the specific conditions of a single year and permits the updating of parameters to track gradual changes in the agricultural system.This integrated framework provides an operational means of monitoring and forecasting what crops will be grown

  10. Building factorial regression models to explain and predict nitrate concentrations in groundwater under agricultural land

    NASA Astrophysics Data System (ADS)

    Stigter, T. Y.; Ribeiro, L.; Dill, A. M. M. Carvalho

    2008-07-01

    SummaryFactorial regression models, based on correspondence analysis, are built to explain the high nitrate concentrations in groundwater beneath an agricultural area in the south of Portugal, exceeding 300 mg/l, as a function of chemical variables, electrical conductivity (EC), land use and hydrogeological setting. Two important advantages of the proposed methodology are that qualitative parameters can be involved in the regression analysis and that multicollinearity is avoided. Regression is performed on eigenvectors extracted from the data similarity matrix, the first of which clearly reveals the impact of agricultural practices and hydrogeological setting on the groundwater chemistry of the study area. Significant correlation exists between response variable NO3- and explanatory variables Ca 2+, Cl -, SO42-, depth to water, aquifer media and land use. Substituting Cl - by the EC results in the most accurate regression model for nitrate, when disregarding the four largest outliers (model A). When built solely on land use and hydrogeological setting, the regression model (model B) is less accurate but more interesting from a practical viewpoint, as it is based on easily obtainable data and can be used to predict nitrate concentrations in groundwater in other areas with similar conditions. This is particularly useful for conservative contaminants, where risk and vulnerability assessment methods, based on assumed rather than established correlations, generally produce erroneous results. Another purpose of the models can be to predict the future evolution of nitrate concentrations under influence of changes in land use or fertilization practices, which occur in compliance with policies such as the Nitrates Directive. Model B predicts a 40% decrease in nitrate concentrations in groundwater of the study area, when horticulture is replaced by other land use with much lower fertilization and irrigation rates.

  11. Modeling of Movement of Field Gudgeon, Gnathopogon elongatus elongatus, in Agricultural Canals in Yatsu Paddy Fields

    NASA Astrophysics Data System (ADS)

    Takemura, Takeshi; Koizumi, Noriyuki; Mizutani, Masakazu; Mori, Atsushi; Watabe, Keiji

    It is important as quantitative information for making a decision of project sites for networking of water area, to predict reproductive process of fish population when consolidating fish-ways on points dividing fish habitat. To that end, it is necessary to predict the number of individuals migrating to new habitats. Hence, modeling of movement of individuals is necessary as a first step in population modeling. We constructed a mathematical model of movement of field gudgeon in agricultural canals, comparing with observed data obtained by our surveys. A unit time span of this model is 50 days. This model is able to consider existence of 2 types of movement, namely, individuals of sedentary type and individuals of ambulant type. Parameters of the model were decided based on observed data which correspond to 1 unit span. Next, moving distances of 6 individuals for 4 unit span were calculated using those parameters. A histogram of calculated values was similar to that of observed data which correspond to 4 unit span. The model is expected to provide an important immigration component to a population dynamics model which is currently under development. The population model is needed to predict population recovery processes where areas of paddy fields are joined in larger networks through construction of fish-ways.

  12. Using Coupled Hydrologic and Agro-economic Models to Evaluate the Impact of Agricultural Activity on Streamflows

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2014-12-01

    Irrigation substantially alters the timing and magnitude of surface water flows, and continued agricultural intensification to keep up with demand means perpetual stress on surface water resources. A critical challenge is to manage irrigation in a way that balances ecosystem health with sustaining agricultural economies. Coupled hydrologic-agroeconomic models are promising tools for meeting this challenge: the models can quantify 1) how water withdrawal for irrigation impacts streamflows, 2) how these impacts propagate through a surface water system, 3) how the amount of water available for irrigation changes the allocation of resources (e.g. land, water) to available crops, and 4) the impact of water availability on agricultural economies. However, these models can be very data intensive, which limits their applicability. We present a parsimonious coupled hydrologic-agroeconomic model that uses the Positive Mathematical Programming (PMP) method, extensively used in agricultural resource economics, and calibrates to data on allotment of agricultural inputs, available from sources such as the USDA's National Agricultural Statistics Service. PMP assumes that farmers allocate resources to maximize net revenues, justifying the use of optimality conditions to constrain the parameters of the agroeconomic model. We improve the standard PMP model by 1) having the calibrated model reproduce not only the observed input allotment but also the observed yield, and 2) using the ensemble Kalman filter equations to solve the mathematical programming problem recursively, which permits refinement of the model calibration as new observations become available. We demonstrate the proposed agroeconomic model by coupling it to HEC-HMS, a hydrologic model capable of simulating regional natural and man-made water distribution networks, to investigate the sensitivity of streamflows to the allocation of agricultural inputs (land and water) in response to changes in climatic and economic

  13. Changes in Discharge in an Agricultural Watershed in Iowa: Modeling and Projections

    NASA Astrophysics Data System (ADS)

    Villarini, G.

    2014-12-01

    Our improved capability to adapt to future changes in discharge is unavoidably linked to our capability to predict the magnitude or at least the direction of these changes. The importance of improving discharge projections is particularly relevant in an agricultural state like Iowa. Iowa has been affected by a sequence of extreme events over the most recent years, with the flood events of 1993, 2008, 2010, 2013 and 2014 interrupted by the droughts of 2012 and summer 2013. It is clear that too much or too little water will have severe economic and societal impacts for this state, and the agricultural U.S. Midwest more generally. Therefore, being able to increase our confidence in the direction and magnitude of the projected changes in discharge (from low to high flow) will be of key importance for improving our mitigation and management strategies during both flooding and droughts. Here we focus on the Raccoon River at Van Meter, Iowa, and use a statistical approach to examine projected changes in discharge. We build on statistical models using rainfall and harvested corn and soybean acreage to explain the observed stream flow variability. We then use projections of these two predictors to examine the projected discharge response. Results are based on seven state-of-the-art global climate models (GCMs) produced under the Fifth Coupled Model Intercomparison Project (CMIP5), and two representative concentration pathways (RCPs 4.5 and 8.5). We find that there is not a strong signal of change in the discharge projections under the RCP 4.5. On the other hand, the results for the RCP 8.5 point to a stronger changing signal, in particular increasing trends in the upper part of the discharge distribution. Examination of two hypothetical agricultural scenarios indicates that these increasing trends could be potentially offset by decreasing the extent of the agricultural production. Finally, we discuss how to move forward with the concept of return period for engineering

  14. Nutrient Models Developments Using Runoff-Nutrient Relationships in an Agricultural Prairie Basin, Manitoba.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Elliott, J. A.; Baulch, H. M.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient export to streams and lakes from agricultural activities can result in significant deterioration of water quality and aquatic ecosystem health. In Western Canada, particular concerns arise for prairie agricultural systems, which are dominated by the effects of a cold climate. Insufficient attention has been given to understand the links between cold region watershed responses and nutrient concentration and a robust watershed-scale modeling framework is needed to simulate nutrient concentration and loads. Long-term, field observations of nutrient concentration-runoff relationships were used to develop nutrient concentration models for the Tobacco Creek Model Watershed (TCMW) which drains into the Red River basin. Field observations include streamflow concentrations of N and P at multiple scales from two headwater basins. Distinct nutrient concentration-runoff models for snowmelt, rain on snow (ROS) and rainfall runoff processes were developed from observed runoff-nutrient concentration relationships. Snowmelt runoff had a moderately positive correlation with particulate nutrient concentrations but no correlation with that of dissolved nutrients. ROS runoff had a weak relationship with both particulate and dissolved nutrient concentrations. Rainfall runoff had the strongest positive correlation with particulate nutrient concentrations but no association with that of dissolved nutrients. The modeling approach also identified a clear hysteretic behavior in the relationship between runoff and particulate nutrient concentration during the 2013 snowmelt runoff event at the basin outlet gauge. The models provide insight into the hydrological controls on nutrient export from cold regions watersheds and the strong effects of inter-annual climatic variability. Snowmelt runoff is a reliable exporter of large nutrient loads while nutrient export by rainfall runoff exceeded snowmelt runoff during hydrologically wet summers such as 2002, 2005, 2011 and 2013.

  15. Simulating The Change In Agricultural Fruit Patterns In The Context of River Basin Modelling

    NASA Astrophysics Data System (ADS)

    Kloecking, B.; Laue, K.; Stroebl, B.

    A new concept has been developed for the integrated analysis of impacts of Global Change and direct human activities on the environment and the society in mesoscale river basins. The main steps of this approach are: (1) Developing a set of regional scenarios of change considering expected changes in climate, economic, demographic and social development, (2) Identification of indicators of sustainability for the impact assessment, (3) Impact analysis of the defined scenarios of development, (4) Evalu- ation of the different scenarios on the basis of the impact analysis to elaborate new stategies in regional development. All steps include consultations with actors and stakeholders. The concept is applied in the western part of Thuringia (7.500 km2), covering the basin of the Unstrut river. This part of the German Elbe river basin is highly suited for food production under the present conditions. Therefore it is a good site for vulnerability studies focused on agriculture. The development of agricultural land-use scenarios for the Unstrut region will be done in form of a bottom-up approach based on adaptation reactions of example farms within the expected boundary condi- tions such as the global food markets and other global economic trends as well as in- ternational agreements. Representing the present conditions in Thuringia, a referential land-use scenario was developed, assuming a complete realisation of the AGENDA 2000 resolutions. Impacts of changed land use in combination with climate change scenarios on plant production and on availability and quality of water are been inves- tigated with the help of a spatial distributed river basin model. A GIS-based approach was developed to locate the spatially not explicit land use scenarios. This approach allows to reproduce the agricultural fruit patterns of a region in a river basin model without taking into account the real field boundaries. First simulation results for the referential climate and land-use scenario

  16. Integrating agricultural and forestry GHG mitigation responses into general economy frameworks: Developing a family of response functions

    SciTech Connect

    Gillig, Dhazn; McCarl, Bruce A.; Sands, Ronald D.

    2004-07-01

    An econometrically estimated family of response functions is developed for characterizing potential responses to greenhouse gas mitigation policies by the agriculture and forestry sectors. The response functions are estimated based on results of an agricultural/forestry sector model. They provide estimates of sequestration and emission reductions in forestry and agriculture along with levels of sectoral production, prices, welfare, and environmental attributes given a carbon price, levels of demand for agricultural goods, and the energy price. Six alternative mitigation policies representing types of greenhouse gas offsets allowed are considered. Results indicate that the largest quantity of greenhouse gas offset consistently appears with the mitigation policy that pays for all opportunities. Restricting carbon payments (emission tax or sequestration subsidy) only to aff/deforestation or only to agricultural sequestration substantially reduces potential mitigation. Higher carbon prices lead to more sequestration, less emissions, reduced consumer and total welfare, improved environmental indicators and increased producer welfare.

  17. Boundary value problem of Pontryagin's maximum principle in a two-sector economy model with an integral utility function

    NASA Astrophysics Data System (ADS)

    Kiselev, Yu. N.; Orlov, M. V.; Orlov, S. M.

    2015-11-01

    An infinite-horizon two-sector economy model with a Cobb-Douglas production function and a utility function that is an integral functional with discounting and a logarithmic integrand is investigated. The application of Pontryagin's maximum principle yields a boundary value problem with special conditions at infinity. The search for the solution of the maximum-principle boundary value problem is complicated by singular modes in its optimal solution. In the construction of the solution to the problem, they are described in analytical form. Additionally, a special version of the sweep method in continuous form is proposed, which is of interest from theoretical and computational points of view. An important result is the proof of the optimality of the extremal solution obtained by applying the maximum-principle boundary value problem.

  18. The 2nd Order Focusing by Energy for TOF Sector Field Mass Analyzer with an Orthogonal Acceleration: Theory, Modeling, Experiment

    NASA Astrophysics Data System (ADS)

    Poteshin, S. S.; Chernyshev, D. M.; Sysoev, Alexey A.; Sysoev, Alexander A.

    Currently axially symmetric type of analyzer with an electrostatic sector fields (AESF) is rarely used to construct time-of-flight mass spectrometers. The main drawback, hindering the wider use of the analyzers of this type, is the lack of chromatic second-order focusing by energy. However, the configuration of AESF in combination with orthogonal accelerator (OA) allows to achieved it through compensation of energy aberrations of the analyzer in the system of orthogonal input of the ion beam. In the presented work the results of theoretical calculation, simulation and experimentally obtained data are compared. Characteristics of the analyzer with OA in a large extent depend on the parameters of the incoming ion beam. Data of modeling the 2nd stage of gas-dynamic interface, which have the greatest influence on the parameters of the ion beam, is provided.

  19. Bayesian spatial modelling and the significance of agricultural land use to scrub typhus infection in Taiwan.

    PubMed

    Wardrop, Nicola A; Kuo, Chi-Chien; Wang, Hsi-Chieh; Clements, Archie C A; Lee, Pei-Fen; Atkinson, Peter M

    2013-11-01

    Scrub typhus is transmitted by the larval stage of trombiculid mites. Environmental factors, including land cover and land use, are known to influence breeding and survival of trombiculid mites and, thus, also the spatial heterogeneity of scrub typhus risk. Here, a spatially autoregressive modelling framework was applied to scrub typhus incidence data from Taiwan, covering the period 2003 to 2011, to provide increased understanding of the spatial pattern of scrub typhus risk and the environmental and socioeconomic factors contributing to this pattern. A clear spatial pattern in scrub typhus incidence was observed within Taiwan, and incidence was found to be significantly correlated with several land cover classes, temperature, elevation, normalized difference vegetation index, rainfall, population density, average income and the proportion of the population that work in agriculture. The final multivariate regression model included statistically significant correlations between scrub typhus incidence and average income (negatively correlated), the proportion of land that contained mosaics of cropland and vegetation (positively correlated) and elevation (positively correlated). These results highlight the importance of land cover on scrub typhus incidence: mosaics of cropland and vegetation represent a transitional land cover type which can provide favourable habitats for rodents and, therefore, trombiculid mites. In Taiwan, these transitional land cover areas tend to occur in less populated and mountainous areas, following the frontier establishment and subsequent partial abandonment of agricultural cultivation, due to demographic and socioeconomic changes. Future land use policy decision-making should ensure that potential public health outcomes, such as modified risk of scrub typhus, are considered.

  20. Germany wide seasonal flood risk analysis for agricultural crops

    NASA Astrophysics Data System (ADS)

    Klaus, Stefan; Kreibich, Heidi; Kuhlmann, Bernd; Merz, Bruno; Schröter, Kai

    2016-04-01

    In recent years, large-scale flood risk analysis and mapping has gained attention. Regional to national risk assessments are needed, for example, for national risk policy developments, for large-scale disaster management planning and in the (re-)insurance industry. Despite increasing requests for comprehensive risk assessments some sectors have not received much scientific attention, one of these is the agricultural sector. In contrast to other sectors, agricultural crop losses depend strongly on the season. Also flood probability shows seasonal variation. Thus, the temporal superposition of high flood susceptibility of crops and high flood probability plays an important role for agricultural flood risk. To investigate this interrelation and provide a large-scale overview of agricultural flood risk in Germany, an agricultural crop loss model is used for crop susceptibility analyses and Germany wide seasonal flood-frequency analyses are undertaken to derive seasonal flood patterns. As a result, a Germany wide map of agricultural flood risk is shown as well as the crop type most at risk in a specific region. The risk maps may provide guidance for federal state-wide coordinated designation of retention areas.

  1. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-05-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented, to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions resulting from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of fertilizer applied, local meteorology, and ambient air concentrations. An evaluation of EPIC-simulated crop management activities associated with fertilizer application at planting compared with similar USDA state-level event estimates shows temporally progressive spatial patterns that agree well with one another. EPIC annual inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6 % low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  2. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-10-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions which result from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of inorganic NH3 fertilizer applied, soil processes, local meteorology, and ambient air concentrations. Initial fertilizer application often occurs when crops are planted. A state-level evaluation of EPIC-simulated, cumulative planted area compares well with similar USDA reported estimates. EPIC-annual, inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6% low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric particle nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  3. Modelling the effects of recent agricultural land use change on catchment flow and sediment generation

    NASA Astrophysics Data System (ADS)

    Escobar Ruiz, Veronica; Smith, Hugh; Blake, William

    2016-04-01

    Intensive agricultural practices can exacerbate runoff and soil erosion leading to detrimental impacts downstream. Physically-based models have previously been used to assess the impacts on flow and sediment transport in response to land use change, but there has been little investigation of the effect shorter-term changes linked to variations in the extent of cultivated land. The aim of this project is to quantify the impacts on flow generation and sediment transport of different catchment conditions related to both actual recent changes in agricultural land use as well as future change scenarios. To this end, a physically-based distributed hydrological model, SHETRAN was applied in the Blackwater catchment (12 km2) located in south-west England. Land cover was simulated on the basis of satellite-derived land cover maps (1990, 2000 and 2007) as well as a catchment-scale field survey (2011). Soils were represented in the model using five layers for five different soil types in which parameter values were varied in accordance with land use and literature values. Rainfall data (15 min) combined with monthly calculations of evapotranspiration using a simple temperature-based PE model were used to represent contemporary climatic conditions spanning 2010-2014. Calibration was undertaken for selected events during 2011 when land use information was concurrent with available flow and suspended sediment yield data. All land use simulations were then completed for the period 2010-2014 to enable the comparison of model outputs. This contribution will present preliminary results from these land use simulations alongside the effect of several future changes scenarios on catchment flow and sediment generation.

  4. Modeling the Integrated Expansion of the Canadian and U.S. Power Sectors with the Regional Energy Deployment System (ReEDS)

    SciTech Connect

    Zinaman, Owen; Ibanez, Eduardo; Heimiller, Donna; Eurek, Kelly; Mai, Trieu

    2015-07-02

    This document describes the development effort for creating a robust representation of the combined capacity expansion of the U.S. and Canadian electric sectors within the NREL ReEDS model. Thereafter, it demonstrates the newly established capability through an illustrative sensitivity analysis. In conducting the sensitivity analysis, we describe the value of an integrated modeling approach.

  5. A Satellite Based Modeling Framework for Estimating Seasonal Carbon Fluxes Over Agricultural Lands

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Izaurralde, R. C.; Sahajpal, R.; Houborg, R.; Milla, Z.

    2013-12-01

    Croplands are typically characterized by fine-scale heterogeneity, which makes it difficult to accurately estimate cropland carbon fluxes over large regions given the fairly coarse spatial resolution of high-frequency satellite observations. It is, however, important that we improve our ability to estimate spatially and temporally resolved carbon fluxes because croplands constitute a large land area and have a large impact on global carbon cycle. A Satellite based Dynamic Cropland Carbon (SDCC) modeling framework was developed to estimate spatially resolved crop specific daily carbon fluxes over large regions. This modeling framework uses the REGularized canopy reFLECtance (REGFLEC) model to estimate crop specific leaf area index (LAI) using downscaled MODIS reflectance data, and subsequently LAI estimates are integrated into the Environmental Policy Integrated Model (EPIC) model to determine daily net primary productivity (NPP) and net ecosystem productivity (NEP). Firstly, we evaluate the performance of this modeling framework over three eddy covariance flux tower sites (Bondville, IL; Fermi Agricultural Site, IL; and Rosemount site, MN). Daily NPP and NEP of corn and soybean crops are estimated (based on REGFLEC LAI) for year 2007 and 2008 over the flux tower sites and compared against flux tower observations and model estimates based on in-situ LAI. Secondly, we apply the SDCC framework for estimating regional NPP and NEP for corn, soybean and sorghum crops in Nebraska during year 2007 and 2008. The methods and results will be presented.

  6. A Satellite Based Modeling Framework for Estimating Seasonal Carbon Fluxes Over Agricultural Lands

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Houborg, R.; Izaurralde, R. C.

    2014-12-01

    Croplands are typically characterized by fine-scale heterogeneity, which makes it difficult to accurately estimate cropland carbon fluxes over large regions given the fairly coarse spatial resolution of high-frequency satellite observations. It is, however, important that we improve our ability to estimate spatially and temporally resolved carbon fluxes because croplands constitute a large land area and have a large impact on global carbon cycle. A Satellite based Dynamic Cropland Carbon (SDCC) modeling framework was developed to estimate spatially resolved crop specific daily carbon fluxes over large regions. This modeling framework uses the REGularized canopy reFLECtance (REGFLEC) model to estimate crop specific leaf area index (LAI) using downscaled MODIS reflectance data, and subsequently LAI estimates are integrated into the Environmental Policy Integrated Model (EPIC) model to determine daily net primary productivity (NPP) and net ecosystem productivity (NEP). Firstly, we evaluate the performance of this modeling framework over three eddy covariance flux tower sites (Bondville, IL; Fermi Agricultural Site, IL; and Rosemount site, MN). Daily NPP and NEP of corn and soybean crops are estimated (based on REGFLEC LAI) for year 2007 and 2008 over the flux tower sites and compared against flux tower observations and model estimates based on in-situ LAI. Secondly, we apply the SDCC framework for estimating regional NPP and NEP for corn, soybean and sorghum crops in Nebraska during year 2007 and 2008. The methods and results will be presented.

  7. LandSoil model application for erosion management in sustainable agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Follain, Stéphane; Raclot, Damien; Le Bissonnais, Yves

    2016-04-01

    Soil erosion and land degradation can lead to irreversible changes and landscape degradation. In order to achieve the sustainability of agricultural landscapes, the land use scenarios might be developed and tested for their erosion mitigation effects. Despite the importance of the long-term scenarios (which are complicated by predictability of climate change in a small scale, its effect on change in soil properties and crops, and the societal behaviour of individual players), the management decision have to be applied already now. Therefore the short-term and medium term scenarios to achieve the most effective soil management and the least soil erosion footprint are necessary to develop. With increasing importance of individual large erosion events, the event-based models, considering soil properties and landscape structures appears to be suitable. The LandSoil model (Ciampalini et al., 2012) - a landscape evolution model operating at the field/small catchment scale, have been applied in order to analyse the effect of different soil erosion mitigation and connectivity management practices in two different Mediterranean catchments. In the soil erosion scenarios the proposed measures targeted soil erosion on field or on catchment scale, and the effect of different extreme events on soil redistribution was evaluated under different spatial designs. Anna Smetanová has received the support of the AgreenSkills fellowship (under grant agreement n°267196). R. Ciampalini, S. Follain, Y. Le Bissonnais, LandSoil: A model for analysing the impact of erosion on agricultural landscape evolution, Geomorphology, 175-176, 2012, 25-37.

  8. Impact of energy prices on agricultural and energy markets: an integrated modeling approach

    EPA Science Inventory

    The accelerated growth in biofuels markets has both created and reinforced linkages between agricultural and energy markets. This study investigates the dynamics in biofuel and agricultural markets under alternative price scenarios for both crude oil and natural gas. Two energy ...

  9. High-resolution Coupled Regional Climate Modeling in the Atlantic Sector

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Hsieh, J.; Patricola, C. M.; Chang, P.; Li, M.

    2011-12-01

    Coupled Global Climate Models (CGCMs) that are used for centennial-scale climate projections typically lack sufficient horizontal resolution to properly resolve topographic features as well as fine-scale atmospheric and oceanic flow patterns that can have a significant impact on regional climate variability. A regional climate model can be used to carry out high-resolution climate simulations over specific regions on decadal timescales. Much of the research on regional climate modeling has been focused on the use of high-resolution uncoupled atmospheric models, but this approach neglects both the potential effects of air-sea feedbacks as well as the role of fine-scale oceanic phenomena, such as coastal upwelling, in regional climate variations. To address these omissions, we have developed a Coupled Regional Climate Model (CRCM), consisting of a high-resolution atmospheric model (WRF) coupled to a high-resolution ocean model (ROMS) in a region covering much of the Atlantic Ocean and surrounding continental areas. The two models use a common horizontal grid and exchange fluxes of momentum, heat, and freshwater every hour. We have carried out multi-year integrations using the CRCM at two different horizontal resolutions, 27km and 9km. We analyze tropical Atlantic variability in the CRCM simulations, focusing in particular on the statistics of simulated hurricanes, and the impact of air-sea interaction on the hurricane simulations. The CRCM produces fairly realistic hurricane activity, but with maximum intensities weaker than observations. To isolate the effect of air-sea interaction on hurricanes, we have also carried out a number of uncoupled (atmosphere-only) simulations of hurricane evolution initialized with "perfect initial conditions" obtained from the coupled integration, but using persisted sea surface temperatures as the surface boundary condition. Preliminary comparisons of the coupled and uncoupled simulations of hurricane evolution indicate that air

  10. Innovative health service delivery models in low and middle income countries - what can we learn from the private sector?

    PubMed Central

    2010-01-01

    Background The poor in low and middle income countries have limited access to health services due to limited purchasing power, residence in underserved areas, and inadequate health literacy. This produces significant gaps in health care delivery among a population that has a disproportionately large burden of disease. They frequently use the private health sector, due to perceived or actual gaps in public services. A subset of private health organizations, some called social enterprises, have developed novel approaches to increase the availability, affordability and quality of health care services to the poor through innovative health service delivery models. This study aims to characterize these models and identify areas of innovation that have led to effective provision of care for the poor. Methods An environmental scan of peer-reviewed and grey literature was conducted to select exemplars of innovation. A case series of organizations was then purposively sampled to maximize variation. These cases were examined using content analysis and constant comparison to characterize their strategies, focusing on business processes. Results After an initial sample of 46 studies, 10 case studies of exemplars were developed spanning different geography, disease areas and health service delivery models. These ten organizations had innovations in their marketing, financing, and operating strategies. These included approaches such a social marketing, cross-subsidy, high-volume, low cost models, and process reengineering. They tended to have a narrow clinical focus, which facilitates standardizing processes of care, and experimentation with novel delivery models. Despite being well-known, information on the social impact of these organizations was variable, with more data on availability and affordability and less on quality of care. Conclusions These private sector organizations demonstrate a range of innovations in health service delivery that have the potential to better

  11. A MAGNIFIED GLANCE INTO THE DARK SECTOR: PROBING COSMOLOGICAL MODELS WITH STRONG LENSING IN A1689

    SciTech Connect

    Magaña, Juan; Motta, V.; Cárdenas, Victor H.; Verdugo, T.; Jullo, Eric E-mail: veronica.motta@uv.cl E-mail: tomasverdugo@gmail.com

    2015-11-01

    In this paper we constrain four alternative models to the late cosmic acceleration in the universe: Chevallier–Polarski–Linder (CPL), interacting dark energy (IDE), Ricci holographic dark energy (HDE), and modified polytropic Cardassian (MPC). Strong lensing (SL) images of background galaxies produced by the galaxy cluster Abell 1689 are used to test these models. To perform this analysis we modify the LENSTOOL lens modeling code. The value added by this probe is compared with other complementary probes: Type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), and cosmic microwave background (CMB). We found that the CPL constraints obtained for the SL data are consistent with those estimated using the other probes. The IDE constraints are consistent with the complementary bounds only if large errors in the SL measurements are considered. The Ricci HDE and MPC constraints are weak, but they are similar to the BAO, SN Ia, and CMB estimations. We also compute the figure of merit as a tool to quantify the goodness of fit of the data. Our results suggest that the SL method provides statistically significant constraints on the CPL parameters but is weak for those of the other models. Finally, we show that the use of the SL measurements in galaxy clusters is a promising and powerful technique to constrain cosmological models. The advantage of this method is that cosmological parameters are estimated by modeling the SL features for each underlying cosmology. These estimations could be further improved by SL constraints coming from other galaxy clusters.

  12. A telepsychiatry model to support psychiatric outreach in the public sector in South Africa.

    PubMed

    Chipps, J; Ramlall, S; Mars, M

    2012-07-01

    The access of rural Mental Health Care Users in South Africa to specialist psychiatrists and quality mental health care is currently sub-optimal. Health professionals and planners working in psychiatry lack a well-defined and feasible outreach model to facilitate the delivery of services to remote and rural areas. In response to this challenge, a three-year action research telepsychiatry study was undertaken by the Departments of Psychiatry and TeleHealth at the University of KwaZulu-Natal, to develop a telepsychiatry outreach model based on local research and international evidence. The Model draws on needs and infrastructure assessments of the designated psychiatric hospitals in the province, a review of the published international evidence on telepsychiatry and videoconference-based education, and an evaluation of local clinical and educational telepsychiatry implementations in KwaZulu-Natal. The Model proposed is "virtual", i.e. not bound to provincial or district referral patterns, aims not to add to the burden on the current workforce and is intended to be integrated into psychiatry outreach services and policy. The Model should be subjected to in situ testing for validation and implementation. It is hoped that an implementation of this Model will improve the access of Mental Health Care Users to specialist psychiatry care.

  13. Data model for the collaboration between land administration systems and agricultural land parcel identification systems.

    PubMed

    Inan, Halil Ibrahim; Sagris, Valentina; Devos, Wim; Milenov, Pavel; van Oosterom, Peter; Zevenbergen, Jaap

    2010-12-01

    The Common Agricultural Policy (CAP) of the European Union (EU) has dramatically changed after 1992, and from then on the CAP focused on the management of direct income subsidies instead of production-based subsidies. For this focus, Member States (MS) are expected to establish Integrated Administration and Control System (IACS), including a Land Parcel Identification System (LPIS) as the spatial part of IACS. Different MS have chosen different solutions for their LPIS. Currently, some MS based their IACS/LPIS on data from their Land Administration Systems (LAS), and many others use purpose built special systems for their IACS/LPIS. The issue with these different IACS/LPIS is that they do not have standardized structures; rather, each represents a unique design in each MS, both in the case of LAS based or special systems. In this study, we aim at designing a core data model for those IACS/LPIS based on LAS. For this purpose, we make use of the ongoing standardization initiatives for LAS (Land Administration Domain Model: LADM) and IACS/LPIS (LPIS Core Model: LCM). The data model we propose in this study implies the collaboration between LADM and LCM and includes some extensions. Some basic issues with the collaboration model are discussed within this study: registration of farmers, land use rights and farming limitations, geometry/topology, temporal data management etc. For further explanation of the model structure, sample instance level diagrams illustrating some typical situations are also included.

  14. Climate Change for Agriculture, Forest Cover and 3d Urban Models

    NASA Astrophysics Data System (ADS)

    Kapoor, M.; Bassir, D.

    2014-11-01

    This research demonstrates the important role of the remote sensing in finding out the different parameters behind the agricultural crop change, forest cover and urban 3D models. Standalone software is developed to view and analysis the different factors effecting the change in crop productions. Open-source libraries from the Open Source Geospatial Foundation have been used for the development of the shape-file viewer. Software can be used to get the attribute information, scale, zoom in/out and pan the shapefiles. Environmental changes due to pollution and population that are increasing the urbanisation and decreasing the forest cover on the earth. Satellite imagery such as Landsat 5(1984) to Landsat TRIS/8 (2014), Landsat Data Continuity Mission (LDCM) and NDVI are used to analyse the different parameters that are effecting the agricultural crop production change and forest change. It is advisable for the development of good quality of NDVI and forest cover maps to use data collected from the same processing methods for the complete region. Management practices have been developed from the analysed data for the betterment of the crop and saving the forest cover

  15. Final Report on Hierarchical Coupled Modeling and Prediction of Regional Climate Change in the Atlantic Sector

    SciTech Connect

    Saravanan, Ramalingam

    2011-10-30

    During the course of this project, we have accomplished the following: a) Carried out studies of climate changes in the past using a hierarchy of intermediate coupled models (Chang et al., 2008; Wan et al 2009; Wen et al., 2010a,b) b) Completed the development of a Coupled Regional Climate Model (CRCM; Patricola et al., 2011a,b) c) Carried out studies testing hypotheses testing the origin of systematic errors in the CRCM (Patricola et al., 2011a,b) d) Carried out studies of the impact of air-sea interaction on hurricanes, in the context of barrier layer interactions (Balaguru et al)

  16. Modeling the impacts of regulatory frameworks on self-organization in dryland agricultural systems

    NASA Astrophysics Data System (ADS)

    Gower, D.; Caylor, K. K.; McCord, P. F.; Evans, T. P.

    2015-12-01

    The climatological conditions that characterize dryland environments - high potential evapotranspiration combined with low and variable total rainfall - pose challenges for farmers deciding when and how much to irrigate. These challenges are greater in developing countries where the absence of sufficient storage infrastructure means that irrigation water is sometimes applied to agricultural fields directly from rivers. Because soil moisture and river flow both depend on recent rainfall, high irrigation demand often coincides with low river flow, limiting access to water when it is most needed. These feedbacks can constrain the yield increases expected from irrigation in such settings. Scaled up to the catchment level, irrigation water availability varies spatially as well as temporally. Irrigators in upstream areas of the catchment have first access to river water but rely on a smaller drainage network while those in downstream areas are affected by the opposite conditions. During periods of high rainfall, downstream users have the greatest access to water while upstream users are then favored during drought intervals. In the absence of rules governing water access, these flow dynamics will constrain the distribution of potential agricultural yields within the catchment. A simple numerical model simulating catchment and irrigation processes was constructed in order to better understand how climate and geomorphologic characteristics affect crop yield, economic returns and the spatial distribution of irrigated areas. By assuming a statistically representative river network structure, the model was first used to explore the effect of unregulated irrigation withdrawals on these variables. Multiple water management programs, including withdrawal limits, rotational systems and flow minima, were then simulated and the results compared to the unregulated case. This analysis shows the potential for simple models to provide insight into complex irrigation systems and to make

  17. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods.

  18. Alternative Education/Alternative Revenue. A. Contract Training: Public and Private Sector Models.

    ERIC Educational Resources Information Center

    Lestina, Raymond; Curry, Beverly A.

    1989-01-01

    Highlights two models of contract education, using Triton College's (IL) programs as examples. Describes Triton's Employee Development Institute, which contracts to provide specific training to local businesses, and Triton's Continuing Education Center for Health Professionals (CECHP), which co-sponsors programs for the continuing education of…

  19. Exploring variations in the gauge sector of a six-dimensional flavour model

    SciTech Connect

    Frère, J.-M.; Libanov, M.; Mollet, S.; Troitsky, S.

    2015-03-15

    In the context of extra-dimensional models that describe three families of fermions (including their masses and mixing in terms of a single 6-dimensional family), we explore possible variations (including of the extra dimensions) and argue that the apparent plethora of variants does not lead to drastic changes in the expected phenomenology.

  20. A Regulatory Model of Governmental Coordinating Activities in the Higher Education Sector.

    ERIC Educational Resources Information Center

    Thompson, Fred; Zumeta, William

    1981-01-01

    Models of regulatory policy based on industrial organization theory can be applied to governmental coordination in higher education. They show that the relationship between costs and enrollment depends on student demand. When demand is stable or decreasing, governments should promote competition and keep costs down by reducing regulation. (RW)

  1. Contribution of the Executives in Bank Sector Mergers: Application with a Simulation Model

    NASA Astrophysics Data System (ADS)

    Sakas, Damianos P.; Konstantopoulos, Nikolaos; Triantafyllopoulos, Yiannis

    2007-12-01

    In this article we examine the factor «EMPLOYEES», both in the level of leadership as well as in the level of senior executives, in terms of the role it assumes during the negotiation process of a bank's attempt to a merger. A simulation is carried out with a dynamic model of the executives' negotiations.

  2. Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models

    EIA Publications

    2003-01-01

    This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

  3. Modeling Water and Carbon Budgets in Current and Future Agricultural Land Use

    NASA Astrophysics Data System (ADS)

    Drewniak, B.; Song, J.; Prell, J.; Kotamarthi, R.; Jacob, R.

    2008-12-01

    Biofuels are a key component of renewable energy mix proposed as a substitute to fossil fuels. Biofuels are suggested as both economical and having potential for reducing atmospheric emissions of carbon from the transportation sector, by building up soil carbon levels when planted on lands where these levels have been reduced by intensive tillage. The purpose of this research is to develop a carbon-nitrogen based crop module (CNC) for the community land model (CLM) and to improve the characterization of the below and above ground carbon sequestration for bioenergy crops. The CNC simulates planting, growing, maturing and harvesting stages for three major crops: maize, soybean and wheat. In addition, dynamic root module is implemented to simulate fine root distribution and development based on relative availability of soil water and nitrogen in the root zone. Coupled CLM-CNC models is used to study crop yields, geographic locations for bioenergy crop production and soil carbon changes. Bioenergy crop cultivation is based on current crop cultivation and future land use change dataset. Soil carbon change has been simulated based on carbon input to the soil from the leaf, stem and root, and carbon emission from soil carbon decomposition. Simulated water and carbon fluxes have been compared with field observations and soil carbon content has been examined under different harvest practices.

  4. Modeling water flow in a tile drainage network in glacial clayey tills in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    De Schepper, G.; Therrien, R.; Refsgaard, J.

    2013-12-01

    Tile drainage is a widespread water management practice applied to poorly drained production fields to increase crop productivity and reduce flooding risks. A challenge associated with water resources management in agricultural catchments is to properly understand and quantify the role of tile drainage for the catchment water balance. Only a few studies have been presented where different numerical modeling approaches were tested to simulate tile drainage at the field or catchment scale. These studies suggest that challenges still remainto represent correctly subsurface drainage networks in numerical models while accounting for their influence on water flow and transport. To investigate the impact of tile drains, a variably-saturated flow model has been applied to the Lillebaek agricultural catchment, Denmark. The Lillebaek catchment covers 5 ha and is underlain by about 30 m of Quaternary deposits that consist of a local sandy aquifer with upper and lower clayey till units. A tile drainage network is located in the upper clay till. Water table elevations are recorded daily in a network of piezometers within the catchment, as well as drainage and stream discharge. The control volume finite element HydroGeoSphere model is used to simulate 3D variably-saturated flow in the catchment, coupled with 1D open-channel flow in tile drains and 2D overland flow. That approach requires that the tile drainage network be represented explicitly in the model with 1D elements. The 3D field-scale hydrogeological model was first generated from a national-scale geological model for Denmark combined with available local borehole data. A reference model was then generated for 3D variably-saturated subsurface flow coupled with 2D overland flow. That reference model also incorporates discrete 1D elements to represent the entire drainage network, with a critical depth boundary condition applied to the outlet of the drainage networks. A series of simulation were performed to test the

  5. Geospatial Modeling and Disease Insect Vector Management at the USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geospatial modeling at the Center for Medical, Agricultural and Veterinary Entomology (CMAVE) is used assist in the surveillance of insect vectors and in the management of insect transmitted diseases. The most recent Geospatial Modeling/Technology Transfer success involves the prediction of Rift Val...

  6. Quantitative Assessment of Agricultural Runoff and Soil Erosion Using Mathematical Modeling: Applications in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Arhonditsis, G.; Giourga, C.; Loumou, A.; Koulouri, M.

    2002-09-01

    Three mathematical models, the runoff curve number equation, the universal soil loss equation, and the mass response functions, were evaluated for predicting nonpoint source nutrient loading from agricultural watersheds of the Mediterranean region. These methodologies were applied to a catchment, the gulf of Gera Basin, that is a typical terrestrial ecosystem of the islands of the Aegean archipelago. The calibration of the model parameters was based on data from experimental plots from which edge-of-field losses of sediment, water runoff, and nutrients were measured. Special emphasis was given to the transport of dissolved and solid-phase nutrients from their sources in the farmers' fields to the outlet of the watershed in order to estimate respective attenuation rates. It was found that nonpoint nutrient loading due to surface losses was high during winter, the contribution being between 50% and 80% of the total annual nutrient losses from the terrestrial ecosystem. The good fit between simulated and experimental data supports the view that these modeling procedures should be considered as reliable and effective methodological tools in Mediterranean areas for evaluating potential control measures, such as management practices for soil and water conservation and changes in land uses, aimed at diminishing soil loss and nutrient delivery to surface waters. Furthermore, the modifications of the general mathematical formulations and the experimental values of the model parameters provided by the study can be used in further application of these methodologies in watersheds with similar characteristics.

  7. Dynamic visual image modeling for 3D synthetic scenes in agricultural engineering

    NASA Astrophysics Data System (ADS)

    Gao, Li; Yan, Juntao; Li, Xiaobo; Ji, Yatai; Li, Xin

    The dynamic visual image modeling for 3D synthetic scenes by using dynamic multichannel binocular visual image based on the mobile self-organizing network. Technologies of 3D modeling synthetic scenes have been widely used in kinds of industries. The main purpose of this paper is to use multiple networks of dynamic visual monitors and sensors to observe an unattended area, to use the advantages of mobile network in rural areas for improving existing mobile network information service further and providing personalized information services. The goal of displaying is to provide perfect representation of synthetic scenes. Using low-power dynamic visual monitors and temperature/humidity sensor or GPS installed in the node equipment, monitoring data will be sent at scheduled time. Then through the mobile self-organizing network, 3D model is rebuilt by synthesizing the returned images. On this basis, we formalize a novel algorithm for multichannel binocular visual 3D images based on fast 3D modeling. Taking advantage of these low prices mobile, mobile self-organizing networks can get a large number of video from where is not suitable for human observation or unable to reach, and accurately synthetic 3D scene. This application will play a great role in promoting its application in agriculture.

  8. Modeling Regional Carbon Fluxes in Agriculture with New Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Lobell, D. B.; Asner, G. P.

    2001-12-01

    The uptake of carbon dioxide (CO2) in crop growth and the subsequent removal of carbon (C) through harvesting and soil decomposition determine the annual C balance of agroecosystems. While many small-scale experiments have studied C dynamics within fields, the most relevant scales for large-scale biogeochemical processes, as well as for land-use policies related to the Kyoto Protocol, are at the field to regional level. At these scales, models represent a useful alternative to direct measurements for quantifying C fluxes, yet they require information on climate, soil properties, and management that can vary greatly in space and time. In this study, we have developed a simple C model for agricultural systems that utilizes satellite remote sensing inputs to constrain both input and output fluxes of carbon. A sensitivity analysis was first performed to identify the most important parameters to constrain from satellite, and methodologies were then developed and/or adapted to fulfill these needs. A sample application of the model is given for an intensive wheat system in Northwest Mexico, where five Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images were collected in 2001. Future development and testing of this integrated modeling-remote sensing approach should greatly improve efforts to quantify local and regional C fluxes that are critical to climate change and land-use policy.

  9. Quantitative assessment of agricultural runoff and soil erosion using mathematical modeling: applications in the Mediterranean region.

    PubMed

    Arhonditsis, G; Giourga, C; Loumou, A; Koulouri, M

    2002-09-01

    Three mathematical models, the runoff curve number equation, the universal soil loss equation, and the mass response functions, were evaluated for predicting nonpoint source nutrient loading from agricultural watersheds of the Mediterranean region. These methodologies were applied to a catchment, the gulf of Gera Basin, that is a typical terrestrial ecosystem of the islands of the Aegean archipelago. The calibration of the model parameters was based on data from experimental plots from which edge-of-field losses of sediment, water runoff, and nutrients were measured. Special emphasis was given to the transport of dissolved and solid-phase nutrients from their sources in the farmers' fields to the outlet of the watershed in order to estimate respective attenuation rates. It was found that nonpoint nutrient loading due to surface losses was high during winter, the contribution being between 50% and 80% of the total annual nutrient losses from the terrestrial ecosystem. The good fit between simulated and experimental data supports the view that these modeling procedures should be considered as reliable and effective methodological tools in Mediterranean areas for evaluating potential control measures, such as management practices for soil and water conservation and changes in land uses, aimed at diminishing soil loss and nutrient delivery to surface waters. Furthermore, the modifications of the general mathematical formulations and the experimental values of the model parameters provided by the study can be used in further application of these methodologies in watersheds with similar characteristics.

  10. The police, social services and psychiatry cooperation in Denmark--a new model of working practice between governmental sectors. A description of the concept, process, practice and experience.

    PubMed

    Sestoft, D; Rasmussen, M F; Vitus, K; Kongsrud, L

    2014-01-01

    In 2004 a new model of working practice between three public sectors, the local Police Department, Social Services and Psychiatry/Mental Health Services (PSP) was introduced in the municipality of Frederiksberg, Denmark. The aim of this cooperation was to enhance support to vulnerable citizens, who do not belong solely to one of the three sectors and thereby often get lost in the system. The PSP cooperation was introduced to ensure that relevant information concerning vulnerable citizens was shared between the three sectors and to improve collaboration between the sectors involved in order to provide the needed support to the individual citizen. Due to the success of the PSP cooperation in Frederiksberg, the PSP model was implemented by law in Denmark in 2009. In order to evaluate the model, a qualitative study based on structured interviews, focus group discussions and observations, was performed in four selected municipalities in Denmark: Frederiksberg, Odense, Amager and Esbjerg. The evaluation was undertaken by the Danish National Centre for Social Research. It is concluded that the PSP cooperation draws attention to marginalized groups of citizens and helps to prevent social downfall and crime. Participants of the PSP cooperations further highlight positive changes in the cooperation between the involved sectors, which is thought to further improve the support to vulnerable citizens and thereby enhance both prevention and follow up of cases. Furthermore, the recommendations drawn from the evaluation are to adapt PSP cooperations to local conditions, avoid unnecessary red-tape, keep a constant focus on citizens' ethics, as well as involve the frontline workers in the individual sectors, i.e. those who are actually in contact with marginalized citizens.

  11. Evaluation of area source models to predict near ground level concentrations due to emissions released during agricultural applications.

    PubMed

    Nimmatoori, Praneeth; Kumar, Ashok

    2013-02-15

    The modeling of emissions to predict concentrations at downwind distances close to the area sources such as agricultural is of great interest for practical applications. In this study, three area source models used for agricultural sources - the Shear, the Parker, and the Smith models - are compared using two field data sets. Statistical performance measures are used to evaluate and compare the performance of the models. The evaluation results showed that the Shear model performed better than the Parker and the Smith models for all the near downwind distances under unstable conditions (B and C). The analysis of model algorithms indicate that the relatively better performance of the Shear model is due to the incorporation of a variation of wind speed and vertical eddy diffusivity (atmospheric turbulence) with height above the ground.

  12. Robust linear discriminant models to solve financial crisis in banking sectors

    NASA Astrophysics Data System (ADS)

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Idris, Faoziah; Ali, Hazlina; Omar, Zurni

    2014-12-01

    Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories. However, the performance of classical estimators in LDA highly depends on the assumptions of normality and homoscedasticity. Several robust estimators in LDA such as Minimum Covariance Determinant (MCD), S-estimators and Minimum Volume Ellipsoid (MVE) are addressed by many authors to alleviate the problem of non-robustness of the classical estimates. In this paper, we investigate on the financial crisis of the Malaysian banking institutions using robust LDA and classical LDA methods. Our objective is to distinguish the "distress" and "non-distress" banks in Malaysia by using the LDA models. Hit ratio is used to validate the accuracy predictive of LDA models. The performance of LDA is evaluated by estimating the misclassification rate via apparent error rate. The results and comparisons show that the robust estimators provide a better performance than the classical estimators for LDA.

  13. Modeling human impact in the past: a dynamic soil model as a step towards quantifying agricultural carrying capacity

    NASA Astrophysics Data System (ADS)

    Van Loo, Maarten; Verstraeten, Gert

    2015-04-01

    Humans have impacted their environment throughout history, especially since the introduction of widespread agriculture and the associated forest logging activities. For the Mediterranean region the idea existed that the soil erosion following the cultivation of land degraded the landscape to such an extent it caused crisis in ancient societies. In order to quantify the impact of ancient societies on the landscape a simple water balance driven crop yield model is coupled to a soil erosion model. The soil erosion model was validated based on a detailed 4000 year long chronology of sediment deposition in a small mountainous catchment (1250 m a.s.l.) in the territory of the ancient city of Sagalassos (SW Turkey). The historic sediment dynamics are modeled reasonably well, with a model efficiency of 0.75 and a relative root mean squared error of 0.23, based on 250 yr averages. The model is capable of simulating the soil erosion phase after major deforestation from the Iron Age onwards, as well as the depletion of soil reservoirs on limestone lithologies on the hillslopes and the resulting decrease in sediment delivery towards the central valley around the Roman period. Although the spatial pattern of crop yield changes drastically throughout time, following the changes in soil thickness, the simulations show that the average yields in the catchment stay relatively constant, and certainly not collapse completely. Average barley yield at 4000 BP is estimated around 400 kg/ha, whereas during Roman times this even increases to around 500 kg/ha. These estimates however assume optimal conditions with no limitations from soil nutrients and land availability in the central valley bottoms. The latter could have been an issue, since results show that during winter water losses under a highly degraded landscape could have increased significantly, potentially resulting in an expansion of the lake occupying the lowest parts of the catchment. These stresses would have forced farmers

  14. Dynamic regression modeling of daily nitrate-nitrogen concentrations in a large agricultural watershed.

    PubMed

    Feng, Zhujing; Schilling, Keith E; Chan, Kung-Sik

    2013-06-01

    Nitrate-nitrogen concentrations in rivers represent challenges for water supplies that use surface water sources. Nitrate concentrations are often modeled using time-series approaches, but previous efforts have typically relied on monthly time steps. In this study, we developed a dynamic regression model of daily nitrate concentrations in the Raccoon River, Iowa, that incorporated contemporaneous and lags of precipitation and discharge occurring at several locations around the basin. Results suggested that 95 % of the variation in daily nitrate concentrations measured at the outlet of a large agricultural watershed can be explained by time-series patterns of precipitation and discharge occurring in the basin. Discharge was found to be a more important regression variable than precipitation in our model but both regression parameters were strongly correlated with nitrate concentrations. The time-series model was consistent with known patterns of nitrate behavior in the watershed, successfully identifying contemporaneous dilution mechanisms from higher relief and urban areas of the basin while incorporating the delayed contribution of nitrate from tile-drained regions in a lagged response. The first difference of the model errors were modeled as an AR(16) process and suggest that daily nitrate concentration changes remain temporally correlated for more than 2 weeks although temporal correlation was stronger in the first few days before tapering off. Consequently, daily nitrate concentrations are non-stationary, i.e. of strong memory. Using time-series models to reliably forecast daily nitrate concentrations in a river based on patterns of precipitation and discharge occurring in its basin may be of great interest to water suppliers.

  15. A Learning Management Model Designed to Individualize the Learning of Skills, Concepts, and Attitudes Inherent in the Clerical Sector of Learning.

    ERIC Educational Resources Information Center

    Olson, Allan L.

    Clerical SOLO (Sector of Learning Opportunity), a program attempting individualized learning of concepts, skills, and attitudes traditionally taught in office practice and machines, was implemented during the 1969-70 school year by the Business Education Department of Rainier Beach High School. The Clerical SOLO curriculum model has accomplished…

  16. Relativistic geometric quantum phases from the Lorentz symmetry violation effects in the CPT-even gauge sector of Standard Model Extension

    NASA Astrophysics Data System (ADS)

    Bakke, K.; Belich, H.

    2015-11-01

    We discuss the appearance of geometric quantum phases for a Dirac neutral particle in the context of relativistic quantum mechanics based on possible scenarios of the Lorentz symmetry violation tensor background in the CPT-even gauge sector of Standard Model Extension. We assume that the Lorentz symmetry breaking is determined by a tensor background given by (KF)μναβ, then, relativistic analogues of the Anandan quantum phase [J. Anandan, Phys. Lett. A 138, 347 (1989)] are obtained based on the parity-even and parity-odd sectors of the tensor (KF)μναβ.

  17. Linking Remote Sensing Data and Energy Balance Models for a Scalable Agriculture Insurance System for sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Osgood, D. E.; McCarty, J. L.; Husak, G. J.; Hain, C.; Neigh, C. S. R.

    2014-12-01

    One of the most immediate and obvious impacts of climate change is on the weather-sensitive agriculture sector. Both local and global impacts on production of food will have a negative effect on the ability of humanity to meet its growing food demands. Agriculture has become more risky, particularly for farmers in the most vulnerable and food insecure regions of the world such as East Africa. Smallholders and low-income farmers need better financial tools to reduce the risk to food security while enabling productivity increases to meet the needs of a growing population. This paper will describe a recently funded project that brings together climate science, economics, and remote sensing expertise to focus on providing a scalable and sensor-independent remote sensing based product that can be used in developing regional rainfed agriculture insurance programs around the world. We will focus our efforts in Ethiopia and Kenya in East Africa and in Senegal and Burkina Faso in West Africa, where there are active index insurance pilots that can test the effectiveness of our remote sensing-based approach for use in the agriculture insurance industry. The paper will present the overall program, explain links to the insurance industry, and present comparisons of the four remote sensing datasets used to identify drought: the CHIRPS 30-year rainfall data product, the GIMMS 30-year vegetation data product from AVHRR, the ESA soil moisture ECV-30 year soil moisture data product, and a MODIS Evapotranspiration (ET) 15-year dataset. A summary of next year's plans for this project will be presented at the close of the presentation.

  18. The Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Jones, James W.; Hatfield, Jerry L.; Antle, John M.; Ruane, Alexander C.; Mutter, Carolyn Z.

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.

  19. Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z{sub 3} symmetry as an example

    SciTech Connect

    Ko, P.; Tang, Yong

    2015-01-16

    We show that hidden sector dark matter (DM) models with local dark gauge symmetries make a natural playground for the possible γ-ray excess from the galactic center (GC). We first discuss in detail the GC γ-ray excess in a scalar dark matter (DM) model with local Z{sub 3} symmetry which was recently proposed by the present authors. Within this model, scalar DM with mass 30–70 GeV is allowed due to the newly-opened (semi-)annihilation channels of a DM pair into dark Higgs ϕ and/or dark photon Z′ pair, and the γ-ray spectrum from the GC can be fit within this model. Then we argue that the GC gamma ray excess can be easily accommodated within hidden sector dark matter models where DM is stabilized by local gauge symmetries, due to the presence of dark Higgs (and also dark photon for Abelian dark gauge symmetry)

  20. Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z{sub 3} symmetry as an example

    SciTech Connect

    Ko, P.; Tang, Yong E-mail: ytang@kias.re.kr

    2015-01-01

    We show that hidden sector dark matter (DM) models with local dark gauge symmetries make a natural playground for the possible γ-ray excess from the galactic center (GC). We first discuss in detail the GC γ-ray excess in a scalar dark matter (DM) model with local Z{sub 3} symmetry which was recently proposed by the present authors. Within this model, scalar DM with mass 30–70 GeV is allowed due to the newly-opened (semi-)annihilation channels of a DM pair into dark Higgs φ and/or dark photon Z' pair, and the γ-ray spectrum from the GC can be fit within this model. Then we argue that the GC gamma ray excess can be easily accommodated within hidden sector dark matter models where DM is stabilized by local gauge symmetries, due to the presence of dark Higgs (and also dark photon for Abelian dark gauge symmetry)

  1. Applying an agent-based model of agricultural terraces coupled with a landscape evolution model to explore the impact of human decision-making on terraced terrain

    NASA Astrophysics Data System (ADS)

    Glaubius, Jennifer

    2016-04-01

    Agricultural terraces impact landscape evolution as a result of long-term human-landscape interactions, including decisions regarding terrace maintenance and abandonment. Modeling simulations are often employed to examine the sensitivity of landscapes to various factors, such as rainfall and land cover. Landscape evolution models, erosion models, and hydrological models have all previously been used to simulate the impact of agricultural terrace construction on terrain evolution, soil erosion, and hydrological connectivity. Human choices regarding individual terraces have not been included in these models to this point, despite recent recognition that maintenance and abandonment decisions alter transport and storage patterns of soil and water in terraced terrain. An agent-based model of human decisions related to agricultural terraces is implemented based on a conceptual model of agricultural terrace life cycle stages created from a literature review of terracing impacts. The agricultural terracing agent-based model is then coupled with a landscape evolution model to explore the role of human decisions in the evolution of terraced landscapes. To fully explore this type of co-evolved landscape, human decision-making and its feedbacks must be included in landscape evolution models. Project results may also have implications for management of terraced terrain based on how human choices in these environments affect soil loss and land degradation.

  2. Sectoral approaches to improve regional carbon budgets

    SciTech Connect

    Smith, Pete; Nabuurs, Gert-Jan; Marland, Gregg

    2008-06-01

    Humans utilise about 40% of the earth s net primary production (NPP) but the products of this NPP are often managed by different sectors, with timber and forest products managed by the forestry sector and food and fibre products from croplands and grasslands managed by the agricultural sector. Other significant anthropogenic impacts on the global carbon cycle include human utilization of fossil fuels and impacts on less intensively managed systems such as peatlands, wetlands and permafrost. A great deal of knowledge, expertise and data is available within each sector. We describe the contribution of sectoral carbon budgets to our understanding of the global carbon cycle. Whilst many sectors exhibit similarities for carbon budgeting, some key differences arise due to differences in goods and services provided, ecology, management practices used, landmanagement personnel responsible, policies affecting land management, data types and availability, and the drivers of change. We review the methods and data sources available for assessing sectoral carbon budgets, and describe some of key data limitations and uncertainties for each sector in different regions of the world. We identify the main gaps in our knowledge/data, show that coverage is better for the developed world for most sectors, and suggest how sectoral carbon budgets could be improved in the future. Research priorities include the development of shared protocols through site networks, a move to full carbon accounting within sectors, and the assessment of full greenhouse gas budgets.

  3. Vortices and magnetic bags in Abelian models with extended scalar sectors and some of their applications

    NASA Astrophysics Data System (ADS)

    Forgács, Péter; Lukács, Árpád

    2016-12-01

    A detailed study of vortices is presented in Ginzburg-Landau (or Abelian Higgs) models with two complex scalars (order parameters) assuming a general U (1 )×U (1 ) symmetric potential. Particular emphasis is given to the case in which only one of the scalars obtains a vacuum expectation value (VEV). It is found that for a significantly large domain in parameter space vortices with a scalar field condensate in their core [condensate core (CC)] coexist with Abrikosov-Nielsen-Olesen (ANO) vortices. Importantly, CC vortices are stable and have lower energy than the ANO ones. Magnetic bags or giant vortices of the order of 1000 flux quanta are favored to form for the range of parameters ("strong couplings") appearing for the superconducting state of liquid metallic hydrogen (LMH). Furthermore, it is argued that finite energy/unit length 1VEV vortices are smoothly connected to fractional flux 2VEV ones. Stable, finite energy CC-type vortices are also exhibited in the case when one of the scalar fields is neutral.

  4. Water and Nutrient Balances in a Large Tile-Drained Agricultural Catchment: A Distributed Modeling Study

    SciTech Connect

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2010-11-16

    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  5. A generic bio-economic farm model for environmental and economic assessment of agricultural systems.

    PubMed

    Janssen, Sander; Louhichi, Kamel; Kanellopoulos, Argyris; Zander, Peter; Flichman, Guillermo; Hengsdijk, Huib; Meuter, Eelco; Andersen, Erling; Belhouchette, Hatem; Blanco, Maria; Borkowski, Nina; Heckelei, Thomas; Hecker, Martin; Li, Hongtao; Oude Lansink, Alfons; Stokstad, Grete; Thorne, Peter; van Keulen, Herman; van Ittersum, Martin K

    2010-12-01

    Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models.

  6. A Generic Bio-Economic Farm Model for Environmental and Economic Assessment of Agricultural Systems

    PubMed Central

    Louhichi, Kamel; Kanellopoulos, Argyris; Zander, Peter; Flichman, Guillermo; Hengsdijk, Huib; Meuter, Eelco; Andersen, Erling; Belhouchette, Hatem; Blanco, Maria; Borkowski, Nina; Heckelei, Thomas; Hecker, Martin; Li, Hongtao; Oude Lansink, Alfons; Stokstad, Grete; Thorne, Peter; van Keulen, Herman; van Ittersum, Martin K.

    2010-01-01

    Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models. PMID:21113782

  7. Agricultural terraces montoring and modeling: a field survey in Chianti region, Firenze, Italy – Second part

    NASA Astrophysics Data System (ADS)

    Preti, Federico; Caruso, Marco; Dani, Andrea; Cassiani, Giorgio; Romano, Nunzio; Tarolli, Paolo

    2015-04-01

    The two abstracts present the design and set-up of an experimental campaign which aims at sup-porting the modeling (conceptual and numerical) of water circulation in a terraced slope, and its in-fluence on stability of retaining dry stone walls. The case study is located at "Fattoria di Lamole" (Greve in Chianti, Firenze, Italy). At Lamole site both ancient and recently restored or rebuilt (with different techniques) dry stone walls are present. Furthermore the intense vineyards cultivation makes it very representative in terms of range of external stresses that affect both hillslopes and wall. The survey is developed within the bigger framework of landscape preservation as a way to prevent hydrogeological instabilities and landslide risks. Second Part A second effort is devoted to couple hydrological, hydraulic and geotechnical modeling: - Flow directions and the drainage area have been derived from DTM (high-resolution digital terrain model obtained by a terrestrial laser scanner.), and served for the RPII index calcula-tion (Tarolli et al., 2013), that is coherent with the critical spots observed in situ and marked with GPS. - Direct shear test on undisturbed and reconstituted soil samples will offer an estimation of the Mohr-Coulomb failure envelope parameters (friction angle and cohesion). - Retention curves related with different depths have been derived. - Geoelectric analysis in order to locate the bedrock and to determine the subterranean water flows originated from controlled infitration tests (1 l/s discharge). - A simple dry-wall stability model has been carried out; this model analyses the wall stability with finite elements method, evaluating pressures derived from uphill water infiltration, stone friction and buoyancy in retaining wall layers: simulated deformation are suitable with the observed ones. Acknowledgements Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, National network for monitoring, modeling, and

  8. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe

    NASA Astrophysics Data System (ADS)

    Leip, A.; Marchi, G.; Koeble, R.; Kempen, M.; Britz, W.; Li, C.

    2008-01-01

    A comprehensive assessment of policy impact on greenhouse gas (GHG) emissions from agricultural soils requires careful consideration of both socio-economic aspects and the environmental heterogeneity of the landscape. We developed a modelling framework that links the large-scale economic model for agriculture CAPRI (Common Agricultural Policy Regional Impact assessment) with the biogeochemistry model DNDC (DeNitrification DeComposition) to simulate GHG fluxes, carbon stock changes and the nitrogen budget of agricultural soils in Europe. The framework allows the ex-ante simulation of agricultural or agri-environmental policy impacts on a wide range of environmental problems such as climate change (GHG emissions), air pollution and groundwater pollution. Those environmental impacts can be analyzed in the context of economic and social indicators as calculated by the economic model. The methodology consists of four steps: (i) definition of appropriate calculation units that can be considered as homogeneous in terms of economic behaviour and environmental response; (ii) downscaling of regional agricultural statistics and farm management information from a CAPRI simulation run into the spatial calculation units; (iii) designing environmental model scenarios and model runs; and finally (iv) aggregating results for interpretation. We show the first results of the nitrogen budget in croplands in fourteen countries of the European Union and discuss possibilities to improve the detailed assessment of nitrogen and carbon fluxes from European arable soils.

  9. Risk assessment of consuming agricultural products irrigated with reclaimed wastewater: An exposure model

    NASA Astrophysics Data System (ADS)

    van Ginneken, Meike; Oron, Gideon

    2000-09-01

    This study assesses health risks to consumers due to the use of agricultural products irrigated with reclaimed wastewater. The analysis is based on a definition of an exposure model which takes into account several parameters: (1) the quality of the applied wastewater, (2) the irrigation method, (3) the elapsed times between irrigation, harvest, and product consumption, and (4) the consumers' habits. The exposure model is used for numerical simulation of human consumers' risks using the Monte Carlo simulation method. The results of the numerical simulation show large deviations, probably caused by uncertainty (impreciseness in quality of input data) and variability due to diversity among populations. There is a 10-orders of magnitude difference in the risk of infection between the different exposure scenarios with the same water quality. This variation indicates the need for setting risk-based criteria for wastewater reclamation rather than single water quality guidelines. Extra data are required to decrease uncertainty in the risk assessment. Future research needs to include definition of acceptable risk criteria, more accurate dose-response modeling, information regarding pathogen survival in treated wastewater, additional data related to the passage of pathogens into and in the plants during irrigation, and information regarding the behavior patterns of the community of human consumers.

  10. Lifestyle of the Employees Working in Hamadan Public Sectors: Application of the Trans-Theoretical Model

    PubMed Central

    Abdi, Jalal; Eftekhar, Hassan; Mahmoodi, Mahmood; Shojaeizade, Davod; Sadeghi, Roya

    2015-01-01

    Background: A healthy lifestyle is a valuable source to reduce the prevalence of health problems, and promoteehealth. Objectives: The current study aimed to evaluate the lifestyle and obesity status of Hamadan public employees and their status based on the trans-theoretical model (TTM). Patients and Methods: This analytical cross-sectional study was performed in 2014 on 1200 public employees in Hamadan city, Iran selected through proportional stratified random sampling. Data collection was performed using a three-section questionnaire including demographic characteristics, The FANTASTIC lifestyle questionnaire, and the five-part algorithm. Data were analyzed by SPSS-20 using linear regression, Chi-square, Fisher exact test, and ANOVA. Results: The mean age of the employees was 38.12 ± 8.04 years. Most of the employees (61.7%) had favorable lifestyle. About half of the employees were at the preparation stage of TTM. Most of the employees were in a poor condition regarding the physical activity and healthy eating habits. In most of the evaluated items, females got higher scores than males. The associations between lifestyle and age, gender, work experience, income satisfaction, and marital status were significant. Moreover, the associations between obesity and work experience, marital status, number of offspring, and gender were significant (P < 0. 05). Significant predicting variables of obesity were age and work experience; they explained 31.2% variance of obesity (adjusted R2 = 0.312, R2 change = 0.01). Conclusions: Planning health education interventions for employees through effective approaches seems necessary. PMID:25838939

  11. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    NASA Astrophysics Data System (ADS)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause

  12. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  13. Reconstructing the contribution of the Weddell Sea sector, Antarctica, to sea level rise since the last glacial maximum, using numerical modelling constrained by field evidence.

    NASA Astrophysics Data System (ADS)

    Le Brocq, A.; Bentley, M.; Hubbard, A.; Fogwill, C.; Sugden, D.

    2008-12-01

    A numerical ice sheet model constrained by recent field evidence is employed to reconstruct the Last Glacial Maximum (LGM) ice sheet in the Weddell Sea Embayment (WSE). Previous modelling attempts have predicted an extensive grounding line advance (to the continental shelf break) in the WSE, leading to a large equivalent sea level contribution for the sector. The sector has therefore been considered as a potential source for a period of rapid sea level rise (MWP1a, 20 m rise in ~500 years). Recent field evidence suggests that the elevation change in the Ellsworth mountains at the LGM is lower than previously thought (~400 m). The numerical model applied in this paper suggests that a 400 m thicker ice sheet at the LGM does not support such an extensive grounding line advance. A range of ice sheet surfaces, resulting from different grounding line locations, lead to an equivalent sea level estimate of 1 - 3 m for this sector. It is therefore unlikely that the sector made a significant contribution to sea level rise since the LGM, and in particular to MWP1a. The reduced ice sheet size also has implications for the correction of GRACE data, from which Antarctic mass balance calculations have been derived.

  14. Model of Environmental Problems Priority Arising from the use of Environmental and Natural Resources in Machinery Sectors of Thailand

    NASA Astrophysics Data System (ADS)

    Sutthichaimethee, Pruethsan; Sawangdee, Yothin

    2016-05-01

    The objective of this research is to propose an indicator to evaluate environmental impacts from the Machinery sectors of Thailand, leading to more sustainable consumption and production in this sector of the economy. The factors used to calculate the Forward Linkage, Backward Linkage and Real Benefit were the Total Environmental Costs. The highest total environmental cost was Railway Equipment which needs to be resolved immediately because it uses natural resources more than its carrying capacity, higher environmental cost than standard, and contributes low real benefit. Electric Accumulator & Battery, Secondary Special Industrial Machinery, Motorcycle, Bicycle & Other Carriages, and Engines and Turbines need to be monitored closely because they are able to link to other production sectors more than any other production sectors do, and they have high environmental cost. To decide a sustainable development strategy of the country, therefore, results of this research must be used to support decision-making.

  15. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2013-08-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale

  16. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale.

    PubMed

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-11-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF.

  17. Optimal allocation of bulk water supplies to competing use sectors based on economic criterion - An application to the Chao Phraya River Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Divakar, L.; Babel, M. S.; Perret, S. R.; Gupta, A. Das

    2011-04-01

    SummaryThe study develops a model for optimal bulk allocations of limited available water based on an economic criterion to competing use sectors such as agriculture, domestic, industry and hydropower. The model comprises a reservoir operation module (ROM) and a water allocation module (WAM). ROM determines the amount of water available for allocation, which is used as an input to WAM with an objective function to maximize the net economic benefits of bulk allocations to different use sectors. The total net benefit functions for agriculture and hydropower sectors and the marginal net benefit from domestic and industrial sectors are established and are categorically taken as fixed in the present study. The developed model is applied to the Chao Phraya basin in Thailand. The case study results indicate that the WAM can improve net economic returns compared to the current water allocation practices.

  18. Thermal relics in hidden sectors

    SciTech Connect

    Feng, Jonathan L; Tu, Huitzu; Yu, Hai-Bo E-mail: huitzut@uci.edu

    2008-10-15

    Dark matter may be hidden, with no standard model gauge interactions. At the same time, in WIMPless models (WIMP: weakly interacting massive particles) with hidden matter masses proportional to hidden gauge couplings squared, the hidden dark matter's thermal relic density may naturally be in the right range, preserving the key quantitative virtue of WIMPs. We consider this possibility in detail. We first determine model-independent constraints on hidden sectors from big bang nucleosynthesis and the cosmic microwave background. Contrary to conventional wisdom, large hidden sectors are easily accommodated. A flavour-free version of the standard model is allowed if the hidden sector is just 30% colder than the observable sector after reheating. Alternatively, if the hidden sector contains a one-generation version of the standard model with characteristic mass scale below 1 MeV, even identical reheating temperatures are allowed. We then analyse hidden sector freeze-out in detail for a concrete model, solving the Boltzmann equation numerically and explaining the results from both observable and hidden sector points of view. We find that WIMPless dark matter does indeed obtain the correct relic density for masses in the range keV{approx}

  19. Opportunities and barriers for a crop-based energy sector in Ontario

    NASA Astrophysics Data System (ADS)

    Klupfel, Ellen Joanne

    This study investigates the existing opportunities and barriers for expanding the crop-based energy sector in Ontario. The investigation takes place at a time when growing concerns about sustainability---environmental, social, and economic---are encouraging the exploration of alternatives to energy systems based on fossil fuels, and concerns around the future viability of rural communities are making agriculturally-based and rural-based energy production systems attractive to many. To explore opportunities and barriers for the crop-based energy sector, this thesis addresses the question: What is the political-economic context within which the crop-based energy sector operates in Ontario? Taking an institutional approach, the study involved 26 interviews with individuals whose organizations influence Ontario's crop-based energy sector (that includes the biofuels ethanol and biodiesel), developed a model outlining relationships between the crop-based energy sector and other sectors of the economy, as well as the state, and implemented a survey of Ontario Members of Provincial Parliament's perspectives on biofuels. This research examines the balance of power of knowledge, production, security, finance, and technology for Ontario's crop-based energy sector. The overall balance of power currently rests with the petroleum sector. Through force field analysis, the study also identifies the key opportunities and barriers for the growth and development of the biofuels sector. These opportunities include climate change and rural development agendas, and the barriers include the petroleum sector, cost of production, and some sectors of the state. A few overarching conclusions emerge from this research: (1) Change in Ontario's crop-based energy sector is driven foremost by political and economic forces; (2) Climate change is the most significant driving force for the development and expansion of Ontario's crop-based energy sector; (3) Production cost and resistance from the

  20. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.

    PubMed

    Wu, Yiping; Liu, Shuguang

    2012-09-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  1. Evaluation of a watershed model to simulate sediment transport in a small agricultural watershed in Indiana

    USGS Publications Warehouse

    Arihood, L.D.

    1989-01-01

    The streamflow and sediment components of the watershed model, ' Hydrologic Simulation Program-Fortran ', were evaluated using 2 years and 9 months of data from a 2.7-sq mi agricultural watershed in Indiana. Hydrographs of simulated sediment concentration generally have smaller peaks and longer recessions than do hydrographs of measured data. The attenuation of simulated peaks was partly caused by difficulties in designing a representative channel system. Simulated surface runoff during low-intensity rainfall was greater than measured surface runoff; this caused an overestimation of sediment concentration and discharge. Rainfalls of low intensity were mostly absorbed by the soil, but the model predicted that the amount of surface runoff from such storms would be large. The overly large volume of simulated surface runoff transported more sediment than actually occurred. The mean absolute error of mean sediment concentrations during storms is 45% of the measured average concentration. The error resulted from a combination of error in recording streamflow and rainfall, in simulating streamflows, and in simulating sedimentation processes. The largest percent errors are associated with simulated maximum streamflows and average sediment discharges. The root-mean-square errors are 93 and 102% of the measured maximum streamflow and average sediment discharges. (USGS)

  2. Characterizing and modeling of extensive atrazine elution tailing for stable manure-amended agricultural soil.

    PubMed

    Akyol, Nihat Hakan

    2015-01-01

    Non-ideal sorption and extensive elution tailing behavior of atrazine was evaluated for an agricultural soil with and without stable manure amendment (10% by weight). A series of laboratory experiments showed that the sorption of atrazine was described by rate-limited, nonlinear reversible processes (Freundlich isotherm) for both non-amended and amended soil. Non-ideal transport of atrazine exhibited extensive low concentration elution tailing due to the most likely organic carbon fraction in the soil. This tailing behavior was more pronounced and extensive for soil with 10% stable-manure amendment. Two-site transport modeling analyses including non-linear sorption and rate-limited sorption-desorption provided a reasonably good match to the atrazine breakthrough curves but were unable to match the long-term concentration tailing, even for non-amended soil. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous-distribution function was used to successfully simulate atrazine transport early-time breakthrough and long-term concentration tailing for both non-amended and amended soil conditions.

  3. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  4. Three Dimensional Modeling of Agricultural Contamination of Groundwater: a Case Study in the Nebraska Management Systems Evaluation Area (MSEA) Site

    NASA Astrophysics Data System (ADS)

    Akbariyeh, S.; Snow, D. D.; Bartelt-Hunt, S.; Li, X.; Li, Y.

    2015-12-01

    Contamination of groundwater from nitrogen fertilizers and pesticides in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater, impacting future uses of this limited resource. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have been validated based on realistic three dimensional soil lithology, hydrological conditions, and historical changes in groundwater quality. In this work, contamination of groundwater in the Nebraska Management Systems Evaluation Area (MSEA) site was simulated based on extensive field data including (1) lithology from 69 wells and 11 test holes; (2) surface soil type, land use, and surface elevations; (3) 5-year groundwater level and flow velocity; (4) daily meteorological monitoring; (5) 5-year seasonal irrigation records; (6) 5-years of spatially intensive contaminant concentration in 40 multilevel monitoring wells; and (7) detailed cultivation records. Using this data, a three-dimensional vadose zone lithological framework was developed using a commercial software tool (RockworksTM). Based on the interpolated lithology, a hydrological model was developed using HYDRUS-3D to simulate water flow and contaminant transport. The model was validated through comparison of simulated atrazine and nitrate concentration with historical data from 40 wells and multilevel samplers. The validated model will be used to predict potential changes in ground water quality due to agricul