Sample records for agricultural soil samples

  1. Sampling for Soil Carbon Stock Assessment in Rocky Agricultural Soils

    NASA Technical Reports Server (NTRS)

    Beem-Miller, Jeffrey P.; Kong, Angela Y. Y.; Ogle, Stephen; Wolfe, David

    2016-01-01

    Coring methods commonly employed in soil organic C (SOC) stock assessment may not accurately capture soil rock fragment (RF) content or soil bulk density (rho (sub b)) in rocky agricultural soils, potentially biasing SOC stock estimates. Quantitative pits are considered less biased than coring methods but are invasive and often cost-prohibitive. We compared fixed-depth and mass-based estimates of SOC stocks (0.3-meters depth) for hammer, hydraulic push, and rotary coring methods relative to quantitative pits at four agricultural sites ranging in RF content from less than 0.01 to 0.24 cubic meters per cubic meter. Sampling costs were also compared. Coring methods significantly underestimated RF content at all rocky sites, but significant differences (p is less than 0.05) in SOC stocks between pits and corers were only found with the hammer method using the fixed-depth approach at the less than 0.01 cubic meters per cubic meter RF site (pit, 5.80 kilograms C per square meter; hammer, 4.74 kilograms C per square meter) and at the 0.14 cubic meters per cubic meter RF site (pit, 8.81 kilograms C per square meter; hammer, 6.71 kilograms C per square meter). The hammer corer also underestimated rho (sub b) at all sites as did the hydraulic push corer at the 0.21 cubic meters per cubic meter RF site. No significant differences in mass-based SOC stock estimates were observed between pits and corers. Our results indicate that (i) calculating SOC stocks on a mass basis can overcome biases in RF and rho (sub b) estimates introduced by sampling equipment and (ii) a quantitative pit is the optimal sampling method for establishing reference soil masses, followed by rotary and then hydraulic push corers.

  2. Screening of pesticide residues in soil and water samples from agricultural settings

    PubMed Central

    Akogbéto, Martin C; Djouaka, Rousseau F; Kindé-Gazard, Dorothée A

    2006-01-01

    Background The role of agricultural practices in the selection of insecticide resistance in malaria vectors has so far been hypothesized without clear evidence. Many mosquito species, Anopheles gambiae in particular, lay their eggs in breeding sites located around agricultural settings. There is a probability that, as a result of farming activities, insecticide residues may be found in soil and water, where they exercise a selection pressure on the larval stage of various populations of mosquitoes. To confirm this hypothesis, a study was conducted in the Republic of Benin to assess the environmental hazards which can be generated from massive use of pesticides in agricultural settings. Methods Lacking an HPLC machine for direct quantification of insecticide residues in samples, this investigation was performed using indirect bioassays focussed on the study of factors inhibiting the normal growth of mosquito larvae in breeding sites. The speed of development was monitored as well as the yield of rearing An. gambiae larvae in breeding sites reconstituted with water and soil samples collected in agricultural areas known to be under pesticide pressure. Two strains of An. gambiae were used in this indirect bioassay: the pyrethroid-susceptible Kisumu strain and the resistant Ladji strain. The key approach in this methodology is based on comparison of the growth of larvae in test and in control breeding sites, the test samples having been collected from two vegetable farms. Results Results obtained clearly show the presence of inhibiting factors on test samples. A normal growth of larvae was observed in control samples. In breeding sites simulated by using a few grams of soil samples from the two vegetable farms under constant insecticide treatments (test samples), a poor hatching rate of Anopheles eggs coupled with a retarded growth of larvae and a low yield of adult mosquitoes from hatched eggs, was noticed. Conclusion Toxic factors inhibiting the hatching of anopheles

  3. GEMAS: Colours of dry and moist agricultural soil samples of Europe

    NASA Astrophysics Data System (ADS)

    Klug, Martin; Fabian, Karl; Reimann, Clemens

    2016-04-01

    High resolution HDR colour images of all Ap samples from the GEMAS survey were acquired using a GeoTek Linescan camera. Three measurements of dry and wet samples with increasing exposure time and increasing illumination settings produced a set of colour images at 50μm resolution. Automated image processing was used to calibrate the six images per sample with respect to the synchronously measured X-Rite colorchecker chart. The calibrated images were then fit to Munsell soil colours that were measured in the same way. The results provide overview maps of dry and moist European soil colours. Because colour is closely linked to iron mineralogy, carbonate, silicate and organic carbon content the results can be correlated to magnetic, mineralogical, and geochemical properties. In combination with the full GEMAS chemical and physical measurements, this yields a valuable data set for calibration and interpretation of visible satellite colour data with respect to chemical composition and geological background, soil moisture, and soil degradation. This data set will help to develop new methods for world-wide characterization and monitoring of agricultural soils which is essential for quantifying geologic and human impact on the critical zone environment. It furthermore enables the scientific community and governmental authorities to monitor consequences of climatic change, to plan and administrate economic and ecological land use, and to use the data set for forensic applications.

  4. Analytical Results for Agricultural Soils Samples from a Monitoring Program Near Deer Trail, Colorado (USA)

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.

    2009-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District, MWRD), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colorado, USA. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream bed sediment. Soils for this study were defined as the plow zone of the dry land agricultural fields - the top twelve inches of the soil column. This report presents analytical results for the soil samples collected at the Metro District farm land near Deer Trail, Colorado, during three separate sampling events during 1999, 2000, and 2002. Soil samples taken in 1999 were to be a representation of the original baseline of the agricultural soils prior to any biosolids application. The soil samples taken in 2000 represent the soils after one application of biosolids to the middle field at each site and those taken in 2002 represent the soils after two applications. There have been no biosolids applied to any of the four control fields. The next soil sampling is scheduled for the spring of 2010. Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross

  5. GEMAS: Unmixing magnetic properties of European agricultural soil

    NASA Astrophysics Data System (ADS)

    Fabian, Karl; Reimann, Clemens; Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Nurgaliev, Danis

    2016-04-01

    High resolution magnetic measurements provide new methods for world-wide characterization and monitoring of agricultural soil which is essential for quantifying geologic and human impact on the critical zone environment and consequences of climatic change, for planning economic and ecological land use, and for forensic applications. Hysteresis measurements of all Ap samples from the GEMAS survey yield a comprehensive overview of mineral magnetic properties in European agricultural soil on a continental scale. Low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k were measured using a Bartington MS2B sensor. Hysteresis properties were determined by a J-coercivity spectrometer, built at the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T. The resulting data are used to create the first continental-scale maps of magnetic soil parameters. Because the GEMAS geochemical atlas contains a comprehensive set of geochemical data for the same soil samples, the new data can be used to map magnetic parameters in relation to chemical and geological parameters. The data set also provides a unique opportunity to analyze the magnetic mineral fraction of the soil samples by unmixing their IRM acquisition curves. The endmember coefficients are interpreted by linear inversion for other magnetic, physical and chemical properties which results in an unprecedented and detailed view of the mineral magnetic composition of European agricultural soils.

  6. Radiometric assessment of natural radioactivity levels of agricultural soil samples collected in Dakahlia, Egypt.

    PubMed

    Issa, Shams A M

    2013-01-01

    Determination of the natural radioactivity has been carried out, by using a gamma-ray spectrometry [NaI (Tl) 3″ × 3″] system, in surface soil samples collected from various locations in Dakahlia governorate, Egypt. These locations form the agriculturally important regions of Egypt. The study area has many industries such as chemical, paper, organic fertilisers and construction materials, and the soils of the study region are used as a construction material. Therefore, it becomes necessary to study the natural radioactivity levels in soil to assess the dose for the population in order to know the health risks. The activity concentrations of (226)Ra, (232)Th and (40)K in the soil ranged from 5.7 ± 0.3 to 140 ± 7, from 9.0 ± 0.4 to 139 ± 7 and from 22 ± 1 to 319 ± 16 Bq kg(-1), respectively. The absorbed dose rate, annual effective dose rate, radium equivalent (Req), excess lifetime cancer risk, hazard indices (Hex and Hin) and annual gonadal dose equivalent, which resulted from the natural radionuclides in the soil were calculated.

  7. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology

    PubMed Central

    Heil, Kurt

    2017-01-01

    Fast and accurate assessment of within-field variation is essential for detecting field-wide heterogeneity and contributing to improvements in the management of agricultural lands. The goal of this paper is to provide an overview of field scale characterization by electromagnetic induction, firstly with a focus on the applications of EM38 to salinity, soil texture, water content and soil water turnover, soil types and boundaries, nutrients and N-turnover and soil sampling designs. Furthermore, results concerning special applications in agriculture, horticulture and archaeology are included. In addition to these investigations, this survey also presents a wide range of practical methods for use. Secondly, the effectiveness of conductivity readings for a specific target in a specific locality is determined by the intensity at which soil factors influence these values in relationship to the desired information. The interpretation and utility of apparent electrical conductivity (ECa) readings are highly location- and soil-specific, so soil properties influencing the measurement of ECa must be clearly understood. From the various calibration results, it appears that regression constants for the relationships between ECa, electrical conductivity of aqueous soil extracts (ECe), texture, yield, etc., are not necessarily transferable from one region to another. The modelling of ECa, soil properties, climate and yield are important for identifying the location to which specific utilizations of ECa technology (e.g., ECa−texture relationships) can be appropriately applied. In general, the determination of absolute levels of ECa is frequently not possible, but it appears to be quite a robust method to detect relative differences, both spatially and temporally. Often, the use of ECa is restricted to its application as a covariate or the use of the readings in a relative sense rather than as absolute terms. PMID:29113048

  8. Heavy metals content in degraded agricultural soils of a mountain region related to soil properties

    NASA Astrophysics Data System (ADS)

    Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume; Zorpas, Antonis

    2017-04-01

    Agriculture has been practiced for long time in Mediterranean regions. Intensive agriculture and irrigation have developed mainly in the valleys and coastal areas. In the mountainous areas, dry farming has been practiced for centuries. Soils have been fertilized using mainly organic amendments. Plants extracted nutrients and other elements like heavy metals presented in soils and agricultural practices modified soil properties that could favor the presence of heavy metals. In this work, it has been checked the content of heavy metals in 100 agricultural soils samples of the NorthWest area of the province of Alicante (Spain) which has been long cultivated with cereals and olive trees, and now soils are abandoned and degraded because of the low agricultural yields. European policy has the aim to improve the sustainable agriculture and recover landscapes of mountain regions. So that, it is important to check the state of the soils (Marques et al. 2007). Soils samples (arable layer) were analyzed determining: pH (1:5, w/v, water extract), equivalent calcium carbonate content, organic matter by Walkley-Black method (Nelson and Sommers 1996), micronutrients (Cu, Fe, Mn, Zn) extracted with DTPA (Lindsay and Norvell, 1978) and measured by atomic absorption spectrometry, and total content of metals (Cd, Cr, Ni, Pb) measured in soil samples after microwave acid digestion (Moral et al. 1996), quantifying the content of metals by ICP analysis. The correlation between soil properties and metals. The results indicated that pH and carbonates are the most important properties of these soils correlated with the metals (both micronutrients and heavy metals). The available micronutrients (all of them) are close correlated with the pH and carbonates in soils. Moreover, heavy metals like Pb and Ni are related to available Mn and Zn. Keywords: pH, carbonates, heavy metals, abandoned soils. References: Lindsay,W.L., andW.A. Norvell. 1978. "Development of a DTPA Soil Test for Zinc, Iron

  9. Assessment of groundwater and soil quality for agricultural purposes in Kopruoren basin, Kutahya, Turkey

    NASA Astrophysics Data System (ADS)

    Arslan, Sebnem

    2017-07-01

    This research evaluated the irrigation water and agricultural soil quality in the Kopruoren Basin by using hierarchical cluster analysis. Physico-chemical properties and major ion chemistry of 19 groundwater samples were used to determine the irrigation water quality indices. The results revealed out that the groundwaters are in general suitable for irrigation and have low sodium hazard, although they are very hard in nature due to the dominant presence of Ca+2, Mg+2 and HCO3- ions. Water samples contain arsenic in concentrations below the recommended guidelines for irrigation (59.7 ± 14.7 μg/l), however, arsenic concentrations in 89% of the 9 soil samples exceed the maximum allowable concentrations set for agricultural soils (81 ± 24.3 mg/kg). Nickel element, albeit not present in high concentrations in water samples, is enriched in all of the agricultural soil samples (390 ± 118.2 mg/kg). Hierarchical cluster analysis studies conducted to identify the sources of chemical constituents in water and soil samples elicited that the chemistry of the soils in the study area are highly impacted by the soil parent material and both geogenic and anthropogenic pollution sources are responsible for the metal contents of the soil samples. On the other hand, water chemistry in the area is affected by water-rock interactions, anthropogenic and agricultural pollution.

  10. A soil sampling intercomparison exercise for the ALMERA network.

    PubMed

    Belli, Maria; de Zorzi, Paolo; Sansone, Umberto; Shakhashiro, Abduhlghani; Gondin da Fonseca, Adelaide; Trinkl, Alexander; Benesch, Thomas

    2009-11-01

    Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a "reference site", aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.

  11. Soil management: The key to soil quality and sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Basch, Gottlieb; Barão, Lúcia; Soares, Miguel

    2017-04-01

    Today, after the International Year of Soils in 2015 and the proclamation by the International Union of Soil Sciences of the International Decade of Soils 2015-2020, much attention is paid to soil quality. Often used interchangeably, both terms, soil quality and soil health, refer to dynamic soil properties such as soil organic matter or pH, while soil quality also includes inherent soil properties such as texture or mineral composition. However, it is the dynamic or manageable properties that adequate soil management can influence and thus contribute to a well-functioning soil environment capable to deliver the soil-mediated provisioning, regulating and supporting ecosystem services and soil functions. This contribution intends to highlight the key principles of sustainable soil management and provide evidence that they are compliant with a productive, resource efficient and ecologically friendly agriculture. Paradoxically, and despite benefitting from good soil quality, agriculture itself when based on conventional, especially intensive tillage-based soil management practices contributes decisively to soil degradation and to several of the soil threats as identified by the Soil Thematic Strategy, being soil erosion and soil organic matter decline the most notorious ones. To mitigate soil degradation, the European Union's Common Agricultural Policy has introduced conservation measures, mainly through cross-compliance measures supposed to guarantee minimum soil cover, to limit soil erosion and to maintain the levels of soil organic matter. However, it remains unclear to what extent EU member states apply these 'Good Agricultural and Environmental Condition' (GAEC) measures to their utilized agricultural areas. Effective and cost-efficient soil management systems able to conserve or to restore favourable soil conditions, to minimize soil erosion and to invert soil organic matter and soil biodiversity decline and improve soil structure are those capable to mimic as

  12. GEMAS: Geochemical distribution of iodine in European agricultural soil

    NASA Astrophysics Data System (ADS)

    Birke, Manfred; Reimann, Clemens; Ladenberger, Anna; Négrel, Philippe; Rauch, Uwe; Demetriades, Alecos; Korte, Frank; Dinelli, Enrico

    2017-04-01

    Iodine concentrations are reported for the < 2 mm fraction of soil samples from agricultural land (Ap, 0-20 cm, N=2213) in 33 European countries, covering 5.6 million km2 at a sample density of 1 sample per 2500 km2. The analyses were carried out by ED-XRFS (energy dispersive X-ray fluorescence spetrometry). The European median I concentration is 2.70 mg/kg in agricultural soil (including eastern Ukraine), with a range of < 0.5 to 317 mg I/kg. Only 2.5 % of the Ap samples returned results below detection for I. A comparison of the map of the measured I concentrations with that of the clr-transformed data provides additional information about sources and processes influencing the I distribution in agricultural soils at the European scale. The spatial distribution patterns of I in the Ap samples are mainly governed by climate, soil formation processes, and geology (parent material, in some cases mineralisation). The distribution of anomalous I concentrations is likely a reflection of I input from atmospheric and marine sources, as well as the accumulation of I as a result of sorption on organic material. Across Europe, high I areas correlate well with soil with elevated TOC values. This is particularly evident for the western coastal areas of Ireland, UK, Norway, Galicia and France, where the organic matter content in the soil is generally high. The continuous supply of I from sea spray represents a potential source for high and elevated I concentrations. In the coastal zones of SE Spain, SE Ukraine and SW Croatia the I concentration in Ap samples is usually high. Along the eastern Adriatic coast as well as in South-East Ukraine and in the Crimea the elevated and anomalous I concentrations correspond well with the distribution of terra rossa soils developed on karst and organic-rich soils (black soil). In SE Spain the I enriched soils are most likely related to the occurrence of evaporites. The comparison of I background values (medians) based on the parent materials

  13. Antibiotic resistance of microorganisms in agricultural soils in Russia

    NASA Astrophysics Data System (ADS)

    Danilova, Natasha; Galitskaya, Polina; Selivanovskaya, Svetlana

    2017-04-01

    Antibiotics are medicines widely used to treat and prevent bacterial infections not only in human medicine but also in veterinary. Besides, in animal husbandry antibiotics are often used in for stimulation of animal's growth. Many antibiotics used for veterinary purposes are weakly absorbed in the animal's gut. So up to 90% of the administered antibiotics are excreted with manure and urine. Therefore use of manure as an organic fertilizer leads to formation and spreading of antibiotic resistance among soil microbes. Another reason of such spreading is the horizontal transfer of genes encoding antibiotic resistance from manure to soil microflora. The level of antibiotic resistance genes pollution of soils has not been properly studied yet. The aim of this study was to estimate the contamination of agricultural soils by antibiotic resistant genes. 30 samples of agricultural soils were selected around of Kazan city (Tatarstan Republic) with 1.3 Mio citizens. Since tetracycline is reported to be the most wide spread veterinary antibiotic in Russia, we estimated the level of soil contamination by tet(X) gene encoding tetracycline decomposition in microbial cell. Real time PCR method with specific primers was used as a method of investigation. Particle size type distribution of 31% of soil samples was estimated to be sandy clay, and 69% of soil samples - to silty clay. Content of dissoluble organic carbon ranged from 0,02 mg g -1 (sample 20) to 0,46 mg g -1 (sample 16). Respiration activity and microbial biomass of soils were estimated to be 0,80-5,28 CO2 C mg g -1 h-1 and 263,51-935,77 µg kg - 1 respectively. The values presented are typical for soils of Tatarstan Republic. In terms of the antibiotic resistant gene content, 27 of 30 samples investigated contained tet(X) gene, while 52% of the samples were highly contaminated, 34% of samples were middle contaminated and 14% of samples - weakly contaminated.

  14. Determination of insoluble soap in agricultural soil and sewage sludge samples by liquid chromatography with ultraviolet detection.

    PubMed

    Cantarero, Samuel; Zafra-Gómez, Alberto; Ballesteros, Oscar; Navalón, Alberto; Vílchez, José L; Crovetto, Guillermo; Verge, Coral; de Ferrer, Juan A

    2010-11-01

    We have developed a new analytical procedure for determining insoluble Ca and Mg fatty acid salts (soaps) in agricultural soil and sewage sludge samples. The number of analytical methodologies that focus in the determination of insoluble soap salts in different environmental compartments is very limited. In this work, we propose a methodology that involves a sample clean-up step with petroleum ether to remove soluble salts and a conversion of Ca and Mg insoluble salts into soluble potassium salts using tripotassium ethylenediaminetetraacetate salt and potassium carbonate, followed by the extraction of analytes from the samples using microwave-assisted extraction with methanol. An improved esterification procedure using 2,4-dibromoacetophenone before the liquid chromatography with ultraviolet detection analysis also has been developed. The absence of matrix effect was demonstrated with two fatty acid Ca salts that are not commercial and are never detected in natural samples (C₁₃:₀ and C₁₇:₀). Therefore, it was possible to evaluate the matrix effect because both standards have similar environmental behavior (adsorption and precipitation) to commercial soaps (C₁₀:₀) to C₁₈:₀). We also studied the effect of the different variables on the clean-up, the conversion of Ca soap, and the extraction and derivatization procedures. The quantification limits found ranged from 0.4 to 0.8 mg/kg. The proposed method was satisfactorily applied for the development of a study on soap behavior in agricultural soil and sewage sludge samples. © 2010 SETAC.

  15. Soil dioxins levels at agriculture sites and natural preserve areas of Taiwan.

    PubMed

    Jou, Jin-juh; Lin, Kae-Long; Chung, Jen-Chir; Liaw, Shu-Liang

    2007-08-17

    In this study, agriculture soil in Taiwan has been sampled and analyzed to determine the background level of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/DF) in the agricultural and nature preserve areas. Another objective is to investigate relationship between soil characteristics and air deposition in Taiwan. The results indicate that in nature preserve areas the topsoil shows an extraordinary profile of PCDD/DF compared to that in the air deposition. The PCDD/DF levels of the low-contaminated agricultural soils are compatible with those of the nature preserves soils. However, in the highly-contaminated agricultural soils, there is an abrupt jump in their concentrations, 10-100 times higher. The overall I-TEQ values of the background topsoils range from 0.101 to 15.2 ng I-TEQ/kg. Near industrial/urban areas in Taiwan the PCDD/DF are slightly higher compared to those in the low concentration group. Typically, the PCDD/DF background values found in this survey fall in the 90% confidence interval and can thus, be deemed the background levels in Taiwan. Ninety-five percent of these data are below the European and American soil standard of 10 ng I-TEQ/kg d.w. The PCDD/DF profile with one neighborhood soil sample was shown no significant difference.

  16. Interactive effects of agricultural management and topography on soil carbon sequestration

    NASA Astrophysics Data System (ADS)

    Ladoni, M.; Kravchenko, S.; Munoz, J.; Erickson, M.

    2012-12-01

    Proper agricultural management scenarios such as no-tillage, cover cropping, agroforestry, have demonstrated potential to increase the amount of carbon sequestered in soil and to mitigate atmospheric carbon levels. The knowledge about positive effects of cover cropping comes mostly from small uniform experimental plots, but whether these positive effects will exists in large scale fields with diverse topography and what would be the magnitude of these effects on a field scale remains to be seen. Our objective is to compare performance of different agricultural managements including those with cover crops in their influences on SOC across diverse topographical landscape in large agricultural fields. The three studied agricultural practices are Conventionally tilled and fertilized management without cover crops (T1), Low-input management with reduced chemical inputs (T3) and Organic (T4) management, the latter two have rye and red clover cover crops as part of their rotations. Within each field 1- 4 transects with three topographical positions of "depression", "slope" and "summit" were identified. The first soil sampling was done in spring 2010 and the second set of soil samples were collected from topographical positions during growing season of 2011. Samples were analyzed for total SOC and also particulate organic carbon (POC) content to show the changes in active pools of SOC. The results showed that topography has a significant influence in performance of cover crops. Agricultural managements with cover crops increased the POC in soil and the magnitude of this increase was different across space. Cover crops built the highest POC in depressions followed by summit and then slope. The conventional agricultural management increased POC in depression but decreased it on slopes. Low-input agricultural management when coupled with cover cropping has a potential to produce the highest increase in active pools of SOC across topographically diverse fields. The ratio of

  17. Microbial Biomarkers for Native and Agricultural Soil Inputs to Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    Fulton, J. M.; Herckes, P.; Fraser, M. P.; Collins, J.; Van Mooy, B. A.

    2017-12-01

    Intense dust storms (haboobs) erode desert soils and cause dramatic short-term increases in particulate matter (PM) concentration in the atmosphere. Background atmospheric PM levels in the southwestern United States also commonly exceed the National Ambient Air Quality Standards, so episodic haboobs and normal weather patterns both contribute to aeolian transport. We analyzed fine (PM2.5) and coarse (PM>2.5) dust fractions sampled in Tempe, Arizona for molecular biomarkers indicative of dust sourced from either native or agricultural soils. We focused on pigments and intact polar lipids (IPLs) that were also in soil crusts collected in the region. The PM samples were taken during two weeks (23 July to 5 August 2014) that included two haboobs during the first week and mostly calm weather with minor rainfall during the second week. We detected scytonemin, a diagnostic pigment biomarker for cyanobacteria, in all PM>2.5 samples, but its concentration was highest in haboob dust. Similarly, scytonemin was only abundant in PM2.5 samples taken during haboobs. Scytonemin is an important component of native biological soil crusts, protecting the crust community from UV radiation, and is ca. two orders of magnitude less abundant in disturbed agricultural soils. In biological soil crusts, scytonemin is associated with extracellular polysaccharides that are produced by cyanobacteria and bind soil into cohesive crusts. The association between scytonemin and haboobs suggests that native soil erosion is facilitated by high energy, episodic events that overcome crust cohesion. IPLs were abundant in agricultural soil crusts and included phosphatidylethanolamine from soil bacteria and a glucosylceramide from fungi. These compounds had similar concentration in haboob and background dust, suggesting agricultural or otherwise disturbed soils contribute more to ambient dust. In this study, we employed a new high resolution mass spectrometric method that produces molecular formulas and

  18. Pesticides in soils and ground water in selected irrigated agricultural areas near Havre, Ronan, and Huntley, Montana

    USGS Publications Warehouse

    Clark, D.W.

    1990-01-01

    Three areas in Montana representing a range of agricultural practices and applied pesticides, were studied to document whether agricultural pesticides are being transported into the soil and shallow groundwater in irrigated areas. Analytical scans for triazine herbicides, organic-acid herbicides, and carbamate insecticides were performed on soil and shallow groundwater samples. The results indicate pesticide residue in both types of samples. The concentrations of pesticides in the groundwater were less than Federal health-advisory limits. At the Havre Agricultural Experiment Station, eight wells were installed at two sites. All four soil samples and two of four water samples collected after application of pesticides contained detectable concentrations of atrazine or dicamba. In an area where seed potatoes are grown near Ronan, eight wells were installed at two sites. Pesticides were not detected after initial application of pesticides and irrigation water. The site was resampled after irrigation water was reapplied, and aldicarb metabolities were detected in four of five soil samples and one of five water samples. At the Huntley Agricultural Experiment Station, five wells were installed in a no-tillage corn field where atrazine was applied in 1987. Soil and water samples were collected in June and July 1988; pesticides were not detected in any samples. Results indicate residue of two pesticides in soil samples and three soluble pesticides in groundwater samples. Therefore, irrigated agricultural areas in Montana might be susceptible to transport of soluble pesticides through permeable soil to the shallow groundwater system. (USGS)

  19. Substantial dust loss of bioavailable phosphorus from agricultural soils

    NASA Astrophysics Data System (ADS)

    Katra, Itzhak; Gross, Avner; Swet, Nitzan; Tanner, Smadar; Krasnov, Helena; Angert, Alon

    2016-04-01

    Phosphorus (P) is an essential element in terrestrial ecosystems. Knowledge on the role of dust in the biogeochemical cycling of phosphorus is very limited with no quantitative information on aeolian (by wind) P fluxes from soils. The aim of this study is to focus on P cycling via dust emissions under common land-use practices in an arid environment by integration of sample analyses and aeolian experiments. The experiments indicate significant P fluxes by PM10 dust due to agricultural land use. Even in a single wind-dust event at moderate velocity (7.0 m s-1), P flux in conventional agricultural fields can reach 1.83 kg km-2, that accumulates to a considerable amount per year at a regional scale. The results highlight a negative yearly balance in P content (up to hundreds kg km-2) in all agricultural soils, and thus more P nutrition is required to maintain efficient yield production. In grazing areas where no P nutrition is applied, the soil degradation process can lead to desertification. Emission of P from soil dust sources has significant implications for soil nutrient resources and management strategies in agricultural regions as well as for loading to the atmosphere and global biogeochemical cycles.

  20. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    NASA Astrophysics Data System (ADS)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    soil sample and quantified spectrophotometrically using a Nanodrop ND-1000. Analysis of variance (ANOVA) was carried out in order to evaluate the significant differences in SMCs activity between all soil matrices. To associate the SMCs responses to the tracers of distinct agricultural farming systems, data were further explored under Principal Component Analysis (PCA). Biomarkers responses were combined into a stress index (IBR), described by Beliaeff & Burgeot (2002). Results/Discussion: All SMCs parameters displayed significant differences between agricultural soils and reference soils, except for metabolic quotient and RNA to DNA ratio (p<0.05), revealing that SMCs are suitable bioindicators of agricultural soil quality in volcanic soils. No significant differences were found for the soil basal respiration and acid phosphatase among the farming systems, suggesting that soils amendments (a cross farming practice) are a stressing factor disrupting local SMCs activities. The PCA analysis revealed that lithium is the priority metal affecting the SMCs responses in conventional farming systems. The IBR values indicated that soils ecosystem health between farming systems are ranked as: organic (4.96) > traditional (12.94) > conventional (17.28) (the higher the value, the worse the soil health status). Conclusion: Results support the soil microbial toolbox as suitable bioindicators of metal pollution in agricultural volcanic soils, highlighting the importance of integrated biomarker-based strategies for the development of the "Trace Metal Footprint" in Andosols.

  1. Antibiotic resistance of microorganisms in agricultural soils in Russia

    NASA Astrophysics Data System (ADS)

    Danilova, N. V.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Antibiotics are medicines that are widely used in livestock production not only for the prevention and treatment of infectious diseases, but also for accelerating the growth of animals. The application of manure for fertilizing agricultural soils leads to the entry into the soil ecosystem not only of the antibiotics themselves, but also the resistance genes to them. In this study, 30 samples of arable soils were tested for the presence of the tet(X) gene, which encodes bacterial resistance to antibiotics of the tetracycline group. Using real-time PCR, it was found that 27 out of 30 soil samples contained tet(X). 52% of these samples were heavily contaminated, 34% had a medium level of contamination and 14% were slightly contaminated by the resistance gene tet(X).

  2. Nickel, Cobalt, Chromium and Copper in agricultural and grazing land soils of Europe

    NASA Astrophysics Data System (ADS)

    Albanese, Stefano; Sadeghi, Martiya; De Vivo, Benedetto; Lima, Annamaria; Cicchella, Domenico; Dinelli, Enrico

    2014-05-01

    In the framework of the GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soils) project, concentrations of Ni, Co, Cu and Cr were determined for the whole available dataset (2218 samples of agricultural soil and 2127 samples of grazing land soil) covering a total area of 5.6 million sq km all over Europe. The distribution pattern of Ni in the European soils (both agricultural and grazing land soils) shows the highest concentrations in correspondence with the Mediterranean area (especially in Greece, the Balcan Peninsula and NW Italy) with average values generally ranging between 40 mg/kg and 140 mg/kg and anomalous areas characterized by peaks higher than 2400 mg/kg. Concentrations between 10 mg/kg and 40 mg/kg characterize Continental Europe north of Alps and, partly, the Scandinavian countries. Lower concentrations (< 10 mg/kg) occurs near the Trans-European Suture Zone, one of the main tectonic borders in Europe, and they are limited on the south by the maximum extent limit of the last glaciation. Cobalt and Cr show distribution patterns similar to Ni in both agricultural and grazing land soils. The maximum concentration peaks of Cobalt and Cr rise up to respectively 126 mg/kg and 696 mg/kg in agricultural soils and up to 255 mg/kg and 577 mg/kg in grazing land soils. Copper distribution in the soils collected across Europe, although has a general correspondence with the patterns of Ni, Co, Cr, shows some peculiarities. Specifically, Cu is characterized by high concentration values (up to 395 mg/kg in agricultural soils and 373 mg/kg in Grazing land soils) also in correspondence with the Roman Comagmatic Province and the south western coast of France characterized by a wide spread of vineyards.

  3. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  4. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia.

    PubMed

    Ho, Yu Bin; Zakaria, Mohamad Pauzi; Latif, Puziah Abdul; Saari, Nazamid

    2014-08-01

    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  6. 4,4'-DDE and Endosulfan Levels in Agricultural Soils of the Çukurova Region, Mediterranean Turkey.

    PubMed

    Akça, Muhittin Onur; Hisatomi, Shihoko; Takemura, Manami; Harada, Naoki; Nonaka, Masanori; Sakakibara, Futa; Takagi, Kazuhiro; Turgay, Oğuz Can

    2016-03-01

    Mediterranean Turkey has long been at the forefront of Turkish agriculture and the use of organochlorinated pesticides (OCPs) in this area rose considerably between the 1940s and 1980s. This study aimed to determine OCP residue levels in agricultural soils collected from the Mersin and Adana Districts, Çukurova Basin in Mediterranean Turkey. Most soil samples were contaminated with one, or both, of two OCP metabolites; 4,4'-dichlorodiphenyldichloroethylene (4,4'-DDE) and endosulfan sulfate. 4,4'-DDE occurred in 27 of the 29 samples and ranged from 6 to 1090 µg kg(-1)-dry soil (ds)(-1), while six samples contained endosulfan sulfate ranging between 82 and 1226 µg kg(-1)-ds(-1). Generally, horticultural and corn-planted soils contained only 4,4'-DDE, whereas greenhouse cultivation appeared to accumulate both residues. This study indicated that 4,4'-DDE occurred above acceptable levels of risk in agricultural soils of Mersin District and further studies on the qualitative and quantitative assessment of OCPs in other agricultural regions with intensive pesticide use are necessary to fully understand the impact of OCPs on agricultural soil in Turkey.

  7. Characterization of mineral phases of agricultural soil samples of Colombian coffee using Mössbauer spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Rodríguez, Humberto Bustos; Lozano, Dagoberto Oyola; Martínez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera; Alcázar, German Antonio Pérez

    2012-03-01

    Soil chemical analysis, X-ray diffraction (XRD) and Mössbauer spectrometry (MS) of 57Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibagué and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe + 3 type sites and the other two to Fe + 2 type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.

  8. Effects of Surfactants on Cryptosporidium parvum Mobility in Agricultural Soils from Illinois and Utah

    NASA Astrophysics Data System (ADS)

    Darnault, C. J.; Koken, E.; Jacobson, A. R.; Powelson, D.

    2011-12-01

    The occurence of the parasitic protozoan Cryptosporidium parvum in rural and agricultural watersheds due to agricultural activities and wildlife is inevitable. Understanding the behavior of C. parvum oocysts in the environment is critical for the protection of public health and the environment. To better understand the mechanisms by which the pathogen moves through soils and contaminates water resources, we study their mobility under conditions representative of real-world scenarios, where both C. parvum and chemicals that affect their fate are present in soils. Surfactants occur widely in soils due to agricultural practices such as wastewater irrigation and the application of pesticides or soil wetting agents. They affect water tension and, consequently, soil infiltration processes and the air-water interfaces in soil pores where C. parvum may be retained. We investigate the effects of surfactants on the mobility of C. parvum oocysts in agricultural soils from Illinois and Utah under unsaturated flow conditions. As it is critical to examine C. parvum in natural settings, we also developed a quantification method using RT-PCR for monitoring C. parvum oocysts in environmental soil and water samples. We optimized physico-chemical parameters to disrupt C. parvum oocysts and extract their DNA, and developed isolation methods to separate C. parvum oocysts from colloids in natural soil samples. The results of this research will lead to the development of an accurate and sensitive molecular method for the monitoring of C. parvum oocysts in environmental soil and water samples, and will further our understanding of the mechanisms controlling the behavior of C. parvum oocysts in soils, in particular the role of vadose zone processes, sorption to soil and surfactants.

  9. Antibiotics in the agricultural soils from the Yangtze River Delta, China.

    PubMed

    Sun, Jianteng; Zeng, Qingtao; Tsang, Daniel C W; Zhu, L Z; Li, X D

    2017-12-01

    This study focused on the occurrence and spatial distribution of 13 common antibiotics in the agricultural soils of the Yangtze River Delta (YRD), China. Antibiotics were detected in all the 241 soil samples (i.e., 100% detection rate) with the total concentrations ranging from 4.55 to 2,010 ng/g dry weight. The concentrations of three antibiotic classes decreased in the order: quinolones (mean 48.8 ng/g) > tetracyclines (mean 34.9 ng/g) > sulfonamides (mean 2.35 ng/g). Ciprofloxacin was the prevalent compound with a mean concentration of 27.7 ng/g, followed by oxytetracycline (mean of 18.9 ng/g). A distinct spatial distribution was observed, where high concentrations of antibiotics were detected in the sites adjacent to the livestock and poultry farms. The potential sources of antibiotics in the agricultural soils were the application of manure and wastewater irrigation in this region. Risk assessment for single antibiotic compound indicated that tetracyclines and quinolones could pose a potential risk, in which doxycycline and ciprofloxacin had the most severe ecological effect in the agricultural soils. Antibiotic resistance genes (ARGs), such as tetA, sulI, and qnrS, were detected in 15 analyzed soil samples, and sulI showed significant correlations with quinolones, tetracyclines, copper, and zinc. Further studies on the distribution of other ARGs in agricultural soil at a region-scale are needed for the risk management of extensively used antibiotics and major ARGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Co-occurring anammox, denitrification, and codenitrification in agricultural soils.

    PubMed

    Long, Andrew; Heitman, Joshua; Tobias, Craig; Philips, Rebecca; Song, Bongkeun

    2013-01-01

    Anammox and denitrification mediated by bacteria are known to be the major microbial processes converting fixed N to N(2) gas in various ecosystems. Codenitrification and denitrification by fungi are additional pathways producing N(2) in soils. However, fungal codenitrification and denitrification have not been well investigated in agricultural soils. To evaluate bacterial and fungal processes contributing to N(2) production, molecular and (15)N isotope analyses were conducted with soil samples collected at six different agricultural fields in the United States. Denitrifying and anammox bacterial abundances were measured based on quantitative PCR (qPCR) of nitrous oxide reductase (nosZ) and hydrazine oxidase (hzo) genes, respectively, while the internal transcribed spacer (ITS) of Fusarium oxysporum was quantified to estimate the abundance of codenitrifying and denitrifying fungi. (15)N tracer incubation experiments with (15)NO(3)(-) or (15)NH(4)(+) addition were conducted to measure the N(2) production rates from anammox, denitrification, and codenitrification. Soil incubation experiments with antibiotic treatments were also used to differentiate between fungal and bacterial N(2) production rates in soil samples. Denitrifying bacteria were found to be the most abundant, followed by F. oxysporum based on the qPCR assays. The potential denitrification rates by bacteria and fungi ranged from 4.118 to 42.121 nmol N(2)-N g(-1) day(-1), while the combined potential rates of anammox and codenitrification ranged from 2.796 to 147.711 nmol N(2)-N g(-1) day(-1). Soil incubation experiments with antibiotics indicated that fungal codenitrification was the primary process contributing to N(2) production in the North Carolina soil. This study clearly demonstrates the importance of fungal processes in the agricultural N cycle.

  11. Taxonomical and functional microbial responses to agriculture management of Amazon forest soils

    NASA Astrophysics Data System (ADS)

    Kuramae, Eiko; Navarrete, Acácio; Mendes, Lucas; de Hollander, Mattias; van Veen, Johannes; Tsai, Siu

    2013-04-01

    Land-use change is one of the greatest threats to biodiversity worldwide, and one of the most devastating changes in the use of land, especially in the tropics, is the conversion of forest to crop lands. Southeast Amazon region is considered the largest agricultural frontier in the world, where native forests are converted into soybean crop fields, a fact that highlights the social and economic importance of this system to Brazil. This study firstly, focused on the impact of land-use changes and agriculture management of Amazon forest soils on the size and composition of the acidobacterial community. Taxon-specific quantitative real-time PCR (qPCR) and pyrosequencing of 16S rRNA gene were applied to study the acidobacterial community in bulk soil samples from croplands, adjacent native forests and rhizosphere of soybean. Based on qPCR measurements, Acidobacteria accounted for 23%, 18% and 14% of the total bacterial signal in forest soils, cropland soils and soybean rhizosphere samples, respectively. From the sequences of Bacteria domain, the phylum Acidobacteria represented 28%, 16% and 17% of the sequences from forest soils, cropland soils and soybean rhizosphere samples, respectively. Acidobacteria subgroups 2-8, 10, 11, 13, 17, 18, 22 and 25 were detected with subgroup 1 as dominant among them. Subgroups 4, 6 and 7 were significantly higher in cropland soils than in forest soils, which subgroups respond to decrease of soil Aluminium. Subgroups 6 and 7 respond to high content of soil Ca, Mg, Zn, P, Fe, Mn and B. The results showed differential response of the Acidobacteria subgroups to abiotic soil factors, and indicated acidobacterial subgroups as potential early-warning bio-indicators of agricultural soil management effects in the Amazon area. Secondly, using 454 pyrosequencing, we investigated the metabolic diversity of microbial communities colonizing the rhizosphere and the bulk soil associated to soybean. The rhizosphere presented an overrepresentation of

  12. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    NASA Astrophysics Data System (ADS)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  13. Effect of organic amendments on quality indexes in an italian agricultural soil

    NASA Astrophysics Data System (ADS)

    Scotti, R.; Rao, M. A.; D'Ascoli, R.; Scelza, R.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    Intensive agricultural practices can determine a decline in soil fertility which represents the main constraint to agricultural productivity. In particular, the progressive reduction in soil organic matter, without an adequate restoration, may threaten soil fertility and agriculture sustainability. Some soil management practices can improve soil quality by adding organic amendments as alternative to the sole use of mineral fertilizers for increasing plant quality and growth. A large number of soil properties can be used to define changes in soil quality. In particular, although more emphasis has been given in literature to physical and chemical properties, biological properties, strictly linked to soil fertility, can be valid even more sensitive indicators. Among these, soil enzyme activities and microbial biomass may provide an "early warning" of soil quality and health changes. The aim of this work was to study the effect of preventive sterilization treatment and organic fertilization on enzymatic activities (dehydrogenase, arylsulphatase, beta-glucosidase, phosphatase, urease) and microbial biomass C in an agricultural soil under crop rotation. The study was carried out on an agricultural soil sited in Campania region (South Italy). At the beginning of experiment sterilizing treatments to control soilborne pathogens and weeds were performed by solarization and calcium cyanamide addition to soil. Organic fertilization was carried out by adding compost from vegetable residues, ricin seed exhaust (Rigen) and straw, singly or in association. Three samplings were performed at three different stages of crop rotation: I) September 2005, immediately after the treatments; II) December 2005, after a lettuce cycle; III) January 2007, after peppers and lettuce cycles. The soil sampling followed a W scheme, with five sub-samples for each plot. Soils were sieved at 2 mm mesh and air dried to determine physical and chemical properties; in addition a suitable amount of soils

  14. Soil strength and macropore volume limit root elongation rates in many UK agricultural soils.

    PubMed

    Valentine, Tracy A; Hallett, Paul D; Binnie, Kirsty; Young, Mark W; Squire, Geoffrey R; Hawes, Cathy; Bengough, A Glyn

    2012-07-01

    Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator. Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices. Water release characteristics, dry bulk density and needle penetrometer resistance were measured on three cores from each field. Soil samples from the same locations were sieved, analysed for chemical characteristics, and packed to dry bulk density of 1.0 g cm(-3) to minimize physical constraints. Root elongation rates were determined for barley seedlings planted in both intact field and packed soil cores at a water content close to field capacity (-20 kPa matric potential). Root elongation in field soil was typically less than half of that in packed soils. Penetrometer resistance was typically between 1 and 3 MPa for field soils, indicating the soils were relatively hard, despite their moderately wet condition (compared with <0.2 MPa for packed soil). Root elongation was strongly linked to differences in physical rather than chemical properties. In field soil root elongation was related most closely to the volume of soil pores between 60 µm and 300 µm equivalent diameter, as estimated from water-release characteristics, accounting for 65.7 % of the variation in the elongation rates. Root elongation rate in the majority of field soils was slower than half of the unimpeded (packed) rate. Such major reductions in root elongation rates will decrease rooting volumes and limit crop growth in soils where nutrients and water are scarce.

  15. A multiyear study of soil moisture patterns across agricultural and forested landscapes

    NASA Astrophysics Data System (ADS)

    Georgakakos, C. B.; Hofmeister, K.; O'Connor, C.; Buchanan, B.; Walter, T.

    2017-12-01

    This work compares varying spatial and temporal soil moisture patterns in wet and dry years between forested and agricultural landscapes. This data set spans 6 years (2012-2017) of snow-free soil moisture measurements across multiple watersheds and land covers in New York State's Finger Lakes region. Due to the relatively long sampling period, we have captured fluctuations in soil moisture dynamics across wetter, dryer, and average precipitation years. We can therefore analyze response of land cover types to precipitation under varying climatic and hydrologic conditions. Across the study period, mean soil moisture in forest soils was significantly drier than in agricultural soils, and exhibited a smaller range of moisture conditions. In the drought year of 2016, soil moisture at all sites was significantly drier compared to the other years. When comparing the effects of land cover and year on soil moisture, we found that land cover had a more significant influence. Understanding the difference in landscape soil moisture dynamics between forested and agricultural land will help predict watershed responses to changing precipitation patterns in the future.

  16. Influence of management practices on microbial nitrogen cyclers in agricultural soils

    NASA Astrophysics Data System (ADS)

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; McMillan, Mary; Pereg, Lily

    2016-04-01

    Agricultural land management has great influences on soil properties, in particular on microbial communities, due to their sensitivity to the perturbations of the soils. This is even more relevant in Mediterranean agricultural areas under semi-arid conditions. The Mediterranean belt is suffering from an intense degradation of its soils due to the millennia of intense land use and due to unsustainable management practices. As a consequence this area is suffering from a depletion of N content. In this work we investigated the effect of several traditional agricultural management practices on specific functional groups related to the nitrogen cycle in the soil. A field experiment was performed with orchard orange trees (citrus sinesis) in Eastern Spain to assess the long-term effects of ploughing with inorganic fertilization (PI) and ecological practices (EP) (chipped pruned branches and weeds as well as manure from sheep and goats) on microbes that can undertake nitrogen fixation and denitrification. Nine samples of soil were taken from every treatment, near the drip irrigation point and in a zone without the influence of drip irrigation (between trees row), and total DNA extracted. DNA samples were stored at minus-20°C to be analysed by qPCR. Microbial populations involved in the N biochemical cycle were analysed by targeted amplification of key functional biomarker genes: the abundance of nifH (nitrogen fixation), nirS, nirK and nosZ (denitrification) detected by quantitative PCR (qPCR) has shown significant differences between treatments with higher abundance of all four genes in soils from ecological agricultural treatments. This may indicate that the ecological treatment created conditions that are more suitable for N cyclers in the soil and a better fertility and quality status of these soils.

  17. A soil sampling reference site: the challenge in defining reference material for sampling.

    PubMed

    de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Jacimovic, Radojko; Jeran, Zvonka; Sansone, Umberto; van der Perk, Marcel

    2008-11-01

    In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations.

  18. Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China.

    PubMed

    Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi

    2014-04-01

    Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.

  19. Slow reaction of soil structure to conservation agriculture practices in Veneto silty soils (North-Easter Italy)

    NASA Astrophysics Data System (ADS)

    Piccoli, Ilaria; Camarotto, Carlo; Lazzaro, Barbara; Furlan, Lorenzo; Morari, Francesco

    2017-04-01

    Soil structure plays a pivotal role in soil functioning and can inform of the degradation of the soil ecosystem. Intensive and repeated tillage operations have been known to negatively affect the soil structure characteristics while conservation agriculture (CA) practices were demonstrated to improve soil structure and related ecosystem services. The aim of this study is to evaluate the effect of conservation agriculture practices on total porosity, pore size distribution, pore architecture and morphology on silty soils of Veneto low-lying plain (North-Eastern Italy). Experimental design was established in 2010 on 4 farms in North-Eastern Italy to compare conventional intensive tillage system "IT" versus conservation agriculture "CA" (no-tillage, cover-crop and residue retention). 96 samples were collected in 2015 at four depths down to 50 cm depth, and investigated for porosity from micro to macro by coupling mercury intrusion porosimetry (MIP) (0.0074-100 µm) and x-ray computed microtomography (µCT) (>26 µm). Pore morphology and architecture were studied from 3D images analysis and MIP pore size curve. Ultramicroporosity class (0.1-5 μm) positively responded to CA after 5-yr of practices adoption while no significant effects were observed in the x-ray µCT domain (> 26 µm). Silty soils of Veneto plain showed a slow reaction to conservation agriculture because of the low soil organic carbon content and poor aggregate stability. Nevertheless the positive influence of CA on ultramicroporosity, which is strictly linked to soil organic carbon (SOC) stabilization, indicated that a virtuous cycle was initiated between SOC and porosity, hopefully leading to well-developed macropore systems and, in turn, enhanced soil functions and ecosystem services.

  20. The effect of short-range spatial variability on soil sampling uncertainty.

    PubMed

    Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko

    2008-11-01

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  1. Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping.

    NASA Astrophysics Data System (ADS)

    Hamalainen, Sampsa; Geng, Xiaoyuan; He, Juanxia

    2017-04-01

    Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping. Sampsa Hamalainen, Xiaoyuan Geng, and Juanxia, He. AAFC - Agriculture and Agr-Food Canada, Ottawa, Canada. The Latin Hypercube Sampling (LHS) approach to assist with Digital Soil Mapping has been developed for some time now, however the purpose of this work was to complement LHS with use of multiple spatial resolutions of covariate datasets and variability in the range of sampling points produced. This allowed for specific sets of LHS points to be produced to fulfil the needs of various partners from multiple projects working in the Ontario and Prince Edward Island provinces of Canada. Secondary soil and environmental attributes are critical inputs that are required in the development of sampling points by LHS. These include a required Digital Elevation Model (DEM) and subsequent covariate datasets produced as a result of a Digital Terrain Analysis performed on the DEM. These additional covariates often include but are not limited to Topographic Wetness Index (TWI), Length-Slope (LS) Factor, and Slope which are continuous data. The range of specific points created in LHS included 50 - 200 depending on the size of the watershed and more importantly the number of soil types found within. The spatial resolution of covariates included within the work ranged from 5 - 30 m. The iterations within the LHS sampling were run at an optimal level so the LHS model provided a good spatial representation of the environmental attributes within the watershed. Also, additional covariates were included in the Latin Hypercube Sampling approach which is categorical in nature such as external Surficial Geology data. Some initial results of the work include using a 1000 iteration variable within the LHS model. 1000 iterations was consistently a reasonable value used to produce sampling points that provided a good spatial representation of the environmental

  2. Measurement of the open porosity of agricultural soils with acoustic waves

    NASA Astrophysics Data System (ADS)

    Luong, Jeanne; Mercatoris, Benoit; Destain, Marie-France

    2015-04-01

    The space between agricultural soil aggregates is defined as structural porosity. It plays important roles in soil key functions that an agricultural soil performs in the global ecosystem. Porosity is one of the soil properties that affect plant growth along with soil texture, aggregate size, aeration and water holding capacity (Alaoui et al. 2011). Water supplies regulation of agricultural soil is related to the number of very small pores present in a soil due to the effect of capillarity. Change of porosity also affect the evaporation of the water on the surface (Le Maitre et al. 2014). Furthermore, soil is a habitat for soils organisms, and most living organisms, including plant roots and microorganisms require oxygen. These organisms breathe easier in a less compacted soil with a wide range of pores sizes. Soil compaction by agricultural engine degrades soil porosity. At the same time, fragmentation with tillage tools, creation of cracks due to wetting/drying and freezing/thawing cycles and effects of soil fauna can regenerate soil porosity. Soil compaction increases bulk density since soil grains are rearranged decreasing void space and bringing them into closer contact (Hamza & Anderson 2005). Drainage is reduced, erosion is facilitated and crop production decreases in a compacted soil. Determining soil porosity, giving insight on the soil compaction, with the aim to provide advices to farmers in their soil optimization towards crop production, is thus an important challenge. Acoustic wave velocity has been correlated to the porosity and the acoustic attenuation to the water content (Oelze et al. 2002). Recent studies have shown some correlations between the velocity of acoustic waves, the porosity and the stress state of soil samples (Lu et al. 2004; Lu 2005; Lu & Sabatier 2009), concluding that the ultrasonic waves are a promising tool for the rapid characterisation of unsaturated porous soils. Propagation wave velocity tends to decrease in a high porous

  3. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    NASA Astrophysics Data System (ADS)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  4. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi

    2013-04-01

    residual (difference between calculated SOC by models and real SOC, analyzed in laboratory) as soil quality indices. We consider higher soil quality when the residuals are closer to cero or inside confidence intervals of the models (95%). As expected, the application of the models indicates that in all the treatments and the control plots (shrub on marls and shrub on limestone), the residuals are out of the confidence intervals for the models, showing a disequilibrium among soil properties because these treatments have been submitted to a perturbation such as the agricultural use. However, it can be observed that the residuals in the last sampling in control plots and some of the treatments, the least aggressive with the soil, are lower and therefore the soil it seems to the soil properties is achieving to their equilibrium among them. These soils are: Shrub on limestone and shrub on marls, Chipped pruned branches and Oat mulch non-plough. These results are in agreement with García-Orenes et al. (2010), who showed that the addition of oat straw to soil can be considered an effective soil management, because it produced an important increase of the different fractions of organic carbon and microbial activity, that it will be translated into a rapid improvement of soil quality. The application of the herbicides studied produced a decrease in all the soil parameters; these practices are not recommendable for a sustainable agricultural system in semiarid Mediterranean agro-ecosystem. -García-Orenes, F., Guerrero, C., Roldán, A., Mataix-Solera, J., Cerdà, A. Campoy, M., Zornoza, R., Bárcenas, G., Caravaca, F., (2010). Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil & Tillage Research 109: 110-115. -Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., Mayoral, A.M., Morales, J. Mataix-Beneyto, J., 2007. Soil properties under natural forest in the Alicante Province of Spain. Geoderma

  5. Intensive agriculture reduces soil biodiversity across Europe.

    PubMed

    Tsiafouli, Maria A; Thébault, Elisa; Sgardelis, Stefanos P; de Ruiter, Peter C; van der Putten, Wim H; Birkhofer, Klaus; Hemerik, Lia; de Vries, Franciska T; Bardgett, Richard D; Brady, Mark Vincent; Bjornlund, Lisa; Jørgensen, Helene Bracht; Christensen, Sören; Hertefeldt, Tina D'; Hotes, Stefan; Gera Hol, W H; Frouz, Jan; Liiri, Mira; Mortimer, Simon R; Setälä, Heikki; Tzanopoulos, Joseph; Uteseny, Karoline; Pižl, Václav; Stary, Josef; Wolters, Volkmar; Hedlund, Katarina

    2015-02-01

    Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems. © 2014 John Wiley

  6. Soil Carbon Chronosequences From Post-Agricultural Land in Western New England.

    NASA Astrophysics Data System (ADS)

    Clark, J. D.; Johnson, A. H.; Richter, S.; Art, H. W.

    2007-12-01

    We used quantitatively excavated soil pits to sample chronosequences of post-agricultural northern hardwood forest soils in the Hopkins Memorial Forest, Williamstown, MA, to determine how much carbon was lost during the period of agricultural use, and the rates at which C accumulated after abandonment. We developed chronosequences (based on the time of abandonment) for the three main agricultural uses--cultivated cropland, pasture or hay, and woodlot. Active farms served as our theoretical zero time points and old-growth stands in the region served as the likely maximum. Our data show a significant direct relationship between time since abandonment and carbon amount for the organic horizons (Oe and Oa) of plots that were cultivated, hayed or pastured, but not for stands that were formerly woodlots. There was likewise a significant direct relationship between C content and time for the plowed horizons (0-10 cm) of cultivated ground, but not for the top 10 cm of mineral soils that were formerly in hay/pasture or woodlot. Our best estimates suggest that cultivation reduced the C content of plowed soils by 50% to a depth of 10 cm, and that complete recovery of the soil C pool requires about 120 years.

  7. Gemas: Geochemical mapping of the agricultural and grasing land soils of Europe

    NASA Astrophysics Data System (ADS)

    Reimann, Clemens; Fabian, Karl; Birke, Manfred; Demetriades, Alecos; Matschullat, Jörg; Gemas Project Team

    2017-04-01

    Geochemical Mapping of Agricultural and grazing land Soil (GEMAS) is a cooperative project between the Geochemistry Expert Group of EuroGeoSurveys and Eurometaux. During 2008 and until early 2009, a total of 2108 samples of agricultural (ploughed land, 0-20 cm, Ap-samples) and 2023 samples of grazing land (0-10 cm, Gr samples)) soil were collected at a density of 1 site/2500 km2 each from 33 European countries, covering an area of 5,600,000 km2. All samples were analysed for 52 chemical elements following an aqua regia extraction, 42 elements by XRF (total), and soil properties, like CEC, TOC, pH (CaCl2), following tight external quality control procedures. In addition, the Ap soil samples were analysed for 57 elements in a mobile metal ion (MMI®) extraction, Pb isotopes, magnetic susceptibility and total C, N and S. The results demonstrate that robust geochemical maps of Europe can be constructed based on low density sampling, the two independent sample materials, Ap and Gr, show very comparable distribution patterns across Europe. At the European scale, element distribution patterns are governed by natural processes, most often a combination of geology and climate. The geochemical maps reflect most of the known metal mining districts in Europe. In addition, a number of new anomalies emerge that may indicate mineral potential. The size of some anomalies is such that they can only be detected when mapping at the continental scale. For some elements completely new geological settings are detected. An anthropogenic impact at a much more local scale is discernible in the immediate vicinity of some major European cities (e.g., London, Paris) and some metal smelters. The impact of agriculture is visible for Cu (vineyard soils) and for some further elements only in the mobile metal ion (MMI) extraction. For several trace elements deficiency issues are a larger threat to plant, animal and finally human health at the European scale than toxicity. Taking the famous step

  8. Polyoxyethylene Tallow Amine, a Glyphosate Formulation Adjuvant: Soil Adsorption Characteristics, Degradation Profile, and Occurrence on Selected Soils from Agricultural Fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri.

    PubMed

    Tush, Daniel; Meyer, Michael T

    2016-06-07

    Polyoxyethylene tallow amine (POEA) is an inert ingredient added to formulations of glyphosate, the most widely applied agricultural herbicide. POEA has been shown to have toxic effects to some aquatic organisms making the potential transport of POEA from the application site into the environment an important concern. This study characterized the adsorption of POEA to soils and assessed its occurrence and homologue distribution in agricultural soils from six states. Adsorption experiments of POEA to selected soils showed that POEA adsorbed much stronger than glyphosate; calcium chloride increased the binding of POEA; and the binding of POEA was stronger in low pH conditions. POEA was detected on a soil sample from an agricultural field near Lawrence, Kansas, but with a loss of homologues that contain alkenes. POEA was also detected on soil samples collected between February and early March from corn and soybean fields from ten different sites in five other states (Iowa, Illinois, Indiana, Missouri, Mississippi). This is the first study to characterize the adsorption of POEA to soil, the potential widespread occurrence of POEA on agricultural soils, and the persistence of the POEA homologues on agricultural soils into the following growing season.

  9. Polyoxyethylene tallow amine, a glyphosate formulation adjuvant: Soil adsorption characteristics, degradation profile, and occurrence on selected soils from agricultural fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri

    USGS Publications Warehouse

    Tush, Daniel L.; Meyer, Michael T.

    2016-01-01

    Polyoxyethylene tallow amine (POEA) is an inert ingredient added to formulations of glyphosate, the most widely applied agricultural herbicide. POEA has been shown to have toxic effects to some aquatic organisms making the potential transport of POEA from the application site into the environment an important concern. This study characterized the adsorption of POEA to soils and assessed its occurrence and homologue distribution in agricultural soils from six states. Adsorption experiments of POEA to selected soils showed that POEA adsorbed much stronger than glyphosate; calcium chloride increased the binding of POEA; and the binding of POEA was stronger in low pH conditions. POEA was detected on a soil sample from an agricultural field near Lawrence, Kansas, but with a loss of homologues that contain alkenes. POEA was also detected on soil samples collected between February and early March from corn and soybean fields from ten different sites in five other states (Iowa, Illinois, Indiana, Missouri, Mississippi). This is the first study to characterize the adsorption of POEA to soil, the potential widespread occurrence of POEA on agricultural soils, and the persistence of the POEA homologues on agricultural soils into the following growing season.

  10. Soil Moisture Retrieval with Airborne PALS Instrument over Agricultural Areas in SMAPVEX16

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Jackson, Thomas J.; Cosh, Mike; Misra, Sidharth; Bindlish, Rajat; Powers, Jarrett; McNairn, Heather; Bullock, P.; Berg, A.; Magagi, A.; hide

    2017-01-01

    NASA's SMAP (Soil Moisture Active Passive) calibration and validation program revealed that the soil moisture products are experiencing difficulties in meeting the mission requirements in certain agricultural areas. Therefore, the mission organized airborne field experiments at two core validation sites to investigate these anomalies. The SMAP Validation Experiment 2016 included airborne observations with the PALS (Passive Active L-band Sensor) instrument and intensive ground sampling. The goal of the PALS measurements are to investigate the soil moisture retrieval algorithm formulation and parameterization under the varying (spatially and temporally) conditions of the agricultural domains and to obtain high resolution soil moisture maps within the SMAP pixels. In this paper the soil moisture retrieval using the PALS brightness temperature observations in SMAPVEX16 is presented.

  11. Subsurface soil carbon losses offset surface carbon accumulation in abandoned agricultural fields

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Knops, J. M. H.

    2017-12-01

    Soil carbon is widely understood to accumulate after agricultural abandonment. However, most of the studies have been focused on shallow depths (10 to 30 cm), and there is a lack of deeper soil carbon data. It was reported that in temperate grasslands, 58% of the soil organic carbon in the first meter was stored between 20 and 100 cm, and organic matter in deeper soil might also be susceptible to agricultural disturbance. We used repeated sampling in 2001 and 2014 to directly measure rates of soil carbon change in both surface and subsurface soil in 21 abandoned agricultural fields at Cedar Creek Ecosystem Science Reserve, MN. Congruent with many other studies, we found carbon accumulated 384.2 C g/m2 in surface soil (0 - 20 cm) over the 13 years. However, we also found carbon pool declined 688.1 C g/m2 in the subsurface soil (40-100 cm), which resulted in a net total loss of soil carbon. We investigated the ecosystem carbon pools and fluxes to explore the mechanisms of the observed soil carbon changes. We found root carbon was not significantly correlated with soil carbon in any of the depth. In situ soil incubation showed nitrogen mineralization rates in subsurface soil are lower than that of surface soil. However, the estimated nitrogen and carbon output through decomposition is higher than inputs from roots, therefore leading to carbon loss in subsurface soil. These results suggest that the decomposition of soil organic matter by microorganisms in subsurface soil is significant, and should be incorporated in ecosystem carbon budget models.

  12. Analysis of nitrification in agricultural soil and improvement of nitrogen circulation with autotrophic ammonia-oxidizing bacteria.

    PubMed

    Matsuno, Toshihide; Horii, Sachie; Sato, Takanobu; Matsumiya, Yoshiki; Kubo, Motoki

    2013-02-01

    Accumulations of inorganic nitrogen (NH₄⁺, NO₂⁻, and NO₃⁻) were analyzed to evaluate the nitrogen circulation activity in 76 agricultural soils. Accumulation of NH₄⁺ was observed, and the reaction of NH₄⁺→ NO₂⁻ appeared to be slower than that of NO₂⁻ → NO₃⁻ in agricultural soil. Two autotrophic and five heterotrophic ammonia-oxidizing bacteria (AOB) were isolated and identified from the soils, and the ammonia-oxidizing activities of the autotrophic AOB were 1.0 × 10³-1.0 × 10⁶ times higher than those of heterotrophic AOB. The relationship between AOB number, soil bacterial number, and ammonia-oxidizing activity was investigated with 30 agricultural soils. The ratio of autotrophic AOB number was 0.00032-0.26% of the total soil bacterial number. The soil samples rich in autotrophic AOB (>1.0 × 10⁴ cells/g soil) had a high nitrogen circulation activity, and additionally, the nitrogen circulation in the agricultural soil was improved by controlling the autotrophic AOBs.

  13. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development.

    PubMed

    Ouyang, Wei; Wu, Yuyang; Hao, Zengchao; Zhang, Qi; Bu, Qingwei; Gao, Xiang

    2018-02-01

    Soil erosion exhibits special characteristics in the process of agricultural development. Understanding the combined impacts of land use and soil property changes on soil erosion, especially in the area under long-term agricultural cultivations, is vital to watershed agricultural and soil management. This study investigated the temporal-spatial patterns of the soil erosion based on a modified version of Universal Soil Loss Equation (USLE) and conducted a soil erosion contribution analysis. The land use data were interpreted from Landsat series images, and soil properties were obtained from field sampling, laboratory tests and SPAW (Soil-Plant-Atmosphere-Water) model calculations. Over a long period of agricultural development, the average erosion modulus decreased from 187.7tkm -2 a -1 in 1979 to 158.4tkm -2 a -1 in 2014. The land use types were transformed mainly in the reclamation of paddy fields and the shrinking of wetlands on a large scale. Most of the soils were converted to loam from silty or clay loam and the saturated hydraulic conductivity (K s ) of most soil types decreased by 1.11% to 43.6%. The rapidly increasing area of 49.8km 2 of paddy fields together with the moderate decrease of 14.0km 2 of forests, as well as K s values explained 87.4% of the total variance in soil erosion. Although changes in soil physical and water characteristics indicated that soil erosion loads should have become higher, the upsurge in paddy fields played an important role in mitigating soil erosion in this study area. These results demonstrated that land use changes had more significant impacts than soil property changes on soil erosion. This study suggested that rational measures should be taken to extend paddy fields and control the dry land farming. These findings will benefit watershed agricultural targeting and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Vertical distribution of phosphorus in agricultural drainage ditch soils.

    PubMed

    Vaughan, Robert E; Needelman, Brian A; Kleinman, Peter J A; Allen, Arthur L

    2007-01-01

    Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Maryland Eastern Shore Research Farm in Princess Anne, Maryland. Twenty-one profiles were sampled from 10 agricultural ditches ranging in length from 225 to 550 m. Horizon samples were analyzed for total P; water-extractable P; Mehlich-3 P; acid ammonium oxalate-extractable P, Fe, and Al (P ox, Fe ox, Al ox); pH; and organic C (n = 126). Total P ranged from 27 to 4882 mg kg(-1), P ox from 4 to 4631 mg kg(-1), Mehlich-3 P from 2 to 401 mg kg(-1), and water-extractable P from 0 to 17 mg kg(-1). Soil-forming processes that result in differences between horizons had a strong relationship with various P fractions and P sorption capacity. Fibric organic horizons at the ditch soil surface had the greatest mean P ox, Fe ox, and Al ox concentrations of any horizon class. Gleyed A horizons had a mean Fe ox concentrations 2.6 times lower than dark A horizons and were significantly lower in total P and P ox. Variation in P due to organic matter accumulation and gleization provide critical insight into short- and long-term dynamics of P in ditch soils and should be accounted for when applying ditch management practices.

  15. [Impacts of landscape patterns on heavy metal contamination of agricultural top soils in the Pearl River Delta, South China].

    PubMed

    Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong

    2015-04-01

    Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal

  16. Fate of phosphorus in Everglades agricultural soils after fertilizer application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Alan L.; Hanlon, Edward A.; McCray, J. Mabry

    2012-07-01

    Land use changes, agricultural drainage and conventional cultivation of winter vegetables and sugarcane cropping in the Everglades Agricultural Area (EAA) may alter soil conditions and organic matter decomposition and ultimately influence the fate of phosphorus (P). Theses agricultural practices promote soil subsidence, reduce the soil depth to bedrock limestone and increase the potential for incorporation of limestone into the root zone of crops. The incorporation of limestone into surface soil has significantly increased soil pH which in turns causes greater fixation of P fertilizer into unavailable forms for plant growth. Additional P fertilization is thus required to satisfy crop nutrientmore » requirements in plant-available P form. It is important to determine how the mixing of bedrock limestone into soils influences the behavior of P fertilizers after their application. To accomplish this task, P fertilizers were applied to (1) typical cultivated soils and to (2) soils that have never been fertilized or extensively tilled. The changes in P concentrations over time were then compared between the two land uses, with differences being attributable to the impacts of cultivation practices. The P distribution in soil varied between land uses, with sugarcane having more P in inorganic pools while the uncultivated soil had more in organic pools. Water-soluble P concentrations in soil increased with increasing fertilizer application rates for all sampling times and both land uses. However, concentrations in uncultivated soil increased proportionally to P-fertilized soil due to organic P mineralization. At all sampling times, plant-available P concentrations remained higher for uncultivated than sugarcane soil. Lower P concentrations for sugarcane were related to adsorption by mineral components (e.g. limestone). Cultivated soils have higher calcium concentrations resulting from incorporation of bedrock limestone into soil by tillage, which increased pH and fostered

  17. Low occurrence of Pseudomonas aeruginosa in agricultural soils with and without organic amendment

    PubMed Central

    Deredjian, Amélie; Colinon, Céline; Hien, Edmond; Brothier, Elisabeth; Youenou, Benjamin; Cournoyer, Benoit; Dequiedt, Samuel; Hartmann, Alain; Jolivet, Claudy; Houot, Sabine; Ranjard, Lionel; Saby, Nicolas P. A.; Nazaret, Sylvie

    2014-01-01

    The occurrence of Pseudomonas aeruginosa was monitored at a broad spatial scale in French agricultural soils, from various soil types and under various land uses to evaluate the ability of soil to be a natural habitat for that species. To appreciate the impact of agricultural practices on the potential dispersion of P. aeruginosa, we further investigated the impact of organic amendment at experimental sites in France and Burkina Faso. A real-time quantitative PCR (qPCR) approach was used to analyze a set of 380 samples selected within the French RMQS (“Réseau de Mesures de la Qualité des Sols”) soil library. In parallel, a culture-dependent approach was tested on a subset of samples. The results showed that P. aeruginosa was very rarely detected suggesting a sporadic presence of this bacterium in soils from France and Burkina Faso, whatever the structural and physico-chemical characteristics or climate. When we analyzed the impact of organic amendment on the prevalence of P. aeruginosa, we found that even if it was detectable in various manures (at levels from 103 to 105 CFU or DNA targets (g drywt)−1 of sample), it was hardly ever detected in the corresponding soils, which raises questions about its survival. The only case reports were from a vineyard soil amended with a compost of mushroom manure in Burgundy, and a few samples from two fields amended with raw urban wastes in the sub-urban area of Ouagadougou, Burkina Faso. In these soils the levels of culturable cells were below 10 CFU (g drywt)−1. PMID:24809025

  18. Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: concentration, distribution, and risk assessment.

    PubMed

    Pan, Lili; Sun, Jianteng; Li, Zhiheng; Zhan, Yu; Xu, Shen; Zhu, Lizhong

    2018-01-01

    Organophosphorus pesticides (OPPs) are used worldwide and pose great risks to human health. However, information on their presence in agricultural soils at regional scale and the associated risks is limited. In this study, an extensive investigation on agricultural soils was conducted throughout the Yangtze River Delta (YRD) of China to reveal the status of OPP pollution. The total concentrations of the nine OPPs ranged from <3.0 to 521 ng g -1 dry weight, with a mean of 64.7 ng g -1 dry weight and a detection rate of 93 %. Dimethoate was found to be the primary compound, followed by methyl parathion and parathion. The highest concentrations of OPPs were found in Jiangsu province due to the intensive agricultural activities. The pollution of OPPs is also highly associated with the land use types. The lower concentrations of OPPs found in vegetable fields could be attributed to their easy photodegradation and hydrolysis in aerobic soils. There was no significant difference in microbial communities among the sample sites, indicating that OPPs in agricultural soils of the YRD region cause negligible effects on microbiota. The risks of OPPs in the soils to human health were further evaluated. The hazard indexes in all the soil samples were below 1, suggesting absence of non-cancer risks. This study provides valuable information for a better understanding of the pollution status of OPPs in agricultural soils and a scientific basis for soil quality assessments.

  19. Occurrence and diversity of tetracycline resistance genes in the agricultural soils of South Korea.

    PubMed

    Kim, Song Yeob; Kuppusamy, Saranya; Kim, Jang Hwan; Yoon, Young-Eun; Kim, Kwon-Rae; Lee, Yong Bok

    2016-11-01

    Reports on the occurrence and diversity of antibiotic-resistant bacteria and genes, which are considered to be emerging pollutants worldwide, have, to date, not been published on South Korean agricultural soils. This is the first study to investigate the persistence of tetracycline (oxytetracycline, tetracycline, and chlortetracycline)-resistant bacterial community and genes in natural and long-term fertilized (NPK, pig, and cattle manure composts) agricultural soils in South Korea. The results showed that oxytetracycline and chlortetracycline could be the dominant residues in animal manures; regular fertilization of manures, particularly pig manures, may be the prime cause for the spread and abundance of tetracycline resistance in South Korean agricultural soils. Both the country's natural and agricultural soils are reservoirs of antibiotic-resistant species. Of the 113 tetracycline-resistant isolates identified (19 typical bacterial genera and 36 distinct species), approximately 40 to 99 % belonged to Gram-positive bacteria and Bacillus constituted the predominant genera. Of the 24 tet genes targeted, tetG, tetH, tetK, tetY, tetO, tetS, tetW, and tetQ were detected in all soil samples, highlighting their predominance and robust adaptability in soils. Meanwhile, it is suggested that tetC, tetE, tetZ, tetM, tetT, and tetP(B) are the common residues in pig manures, and furthermore, the treatment of soils with pig manures may wield a different impact on the tet gene resistome in agricultural soils. This study thus highlights the necessity for regulating the usage of tetracyclines in South Korean animal farming. This must be followed by proper monitoring of the subsequent usage of animal manures especially that derived from pig farms located in agricultural soils.

  20. Phenylurea herbicide sorption to biochars and agricultural soil

    PubMed Central

    WANG, DAOYUAN; MUKOME, FUNGAI N. D.; YAN, DENGHUA; WANG, HAO; SCOW, KATE M.; PARIKH, SANJAI J.

    2016-01-01

    Biochar is increasingly been used as a soil amendment to improve water holding capacity, reduce nutrient leaching, increase soil pH and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron, linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93 -- 0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg−1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits. PMID:26065514

  1. Monitoring of Soil-Borne Pathogens in the Agricultural Soils of the Pestrechinsky District (Tatarstan, Russia)

    NASA Astrophysics Data System (ADS)

    Dzhabarova, K. O.; Kuryntseva, P. A.; Galitskaya, P. Y.; Selivanovskaya, S. Y.

    2018-01-01

    A recent agricultural trend is aimed to develop organic farming technologies. Organic farming means no mineral fertilizers, pesticides, antibiotics and other chemical substances not characteristic of natural conditions should be used in farm production. When choosing the regions, where this technology can be successfully realized, it is important to evaluate not only the physical and chemical qualities of soils, but also the degree of their infestation with phytopathogens. The Pestrechinsky District of the Republic of Tatarstan, where transfer to organic farming is being planned, was chosen as such a region. Agricultural lands were marked at the map of the administrative region, 100 sampling site were generated using GIS Technologies. It was found out that soil microbial community was characterized by a typical ratio and count of yeast fungi (3.4·105 - 1.6·106 CFU•g-1), mold fungi (1.0·101 - 1.7·105 CFU·g-1) and bacteria (1.6·106 - 3.1·107 CFU·g-1). In all the selected soil samples plant pathogenic fungi of the Fusarium genus were found (26 to 250 CFU·g-1), and as for another genus of plant pathogenic fungi, Alternaria, their count was rather low (0 to 9 CFU·g-1, herewith in 46 samples out of 100 they were absent.

  2. Pesticides in household dust and soil: exposure pathways for children of agricultural families.

    PubMed

    Simcox, N J; Fenske, R A; Wolz, S A; Lee, I C; Kalman, D A

    1995-12-01

    Child of agriculture families are likely to be exposed to agricultural chemicals, even if they are not involved in farm activities. This study was designed to determine whether such children are exposed to higher levels of pesticides than children whose parents are not involved in agriculture and whose homes are not close to farms. Household dust and soil samples were collected in children's play areas from 59 residences in eastern Washington State (26 farming, 22 farmworker, and 11 nonfarming families). The majority of the farm families lived within 200 feet of an operating apple or pear orchard, whereas all reference homes were located at least a quarter of a mile from an orchard. Four organophosphorous (OP) insecticides commonly used on tree fruit were targeted for analysis: azinphosmethyl, chlorpyrifos, parathion, and phosmet. Samples were extracted and analyzed by gas chromatography/mass selective detection. Pesticide concentrations in household dust were significantly higher than in soil for all groups. OP levels for farmer/farm-worker families ranged from nondetectable to 930 ng/g in soil (0.93 ppm) and from nondetectable to 17,000 ng/g in dust (17 ppm); all four OP compounds were found in 62% of household dust samples, and two-thirds of the farm homes contained at least one OP above 1000 ng/g. Residues were found less frequently in reference homes and all levels were below 1000 ng/g. Household dust concentrations for all four target compounds were significantly lower in reference homes when compared to farmer/farmworker homes (Mann Whitney, U test; p < 0.05). These results demonstrate that children of agricultural families have a higher potential for exposure to OP pesticides than children of nonfarm families in this region. Measurable residues of a toxicity, I compound registered exclusively for agricultural use, azcnphosmettyl were found in household dust samples from all study homes, suggesting that low level exposure to such chemicals occurs throughout

  3. Production and reduction of nitrous oxide in agricultural and forest soils.

    PubMed

    Yu, K; Chen, G; Struwe, S; Kjøller, A

    2000-06-01

    A soil-water slurry experiment was conducted to study the potentials of N2O production and reduction in denitrification of agricultural and beech forest soils in Denmark. The effects of nitrate and ammonium additions on denitrification were also investigated. The forest soil showed a higher denitrification potential than the agricultural soil. However, N2O reduction potential of the agricultural soil was higher than the beech forest soil, shown by the ratio of N2O/N2 approximately 0.11 and 3.65 in the agricultural and the beech forest soils, respectively. Both nitrate and ammonium additions stimulated the N2O production in the two soils, but reduced the N2O reduction rates in the agricultural soil slurries. In contrast to the effect on the agricultural soil, nitrate reduced the N2O reduction rate in the beech forest soil, while ammonium showed a stimulating effect on the N2O reduction activity. After one week incubation, all of the N2O produced was reduced to N2 in the agricultural soil when nitrate was still present. Nitrous oxide reduction in the beech forest soil occurred only when nitrate almost disappeared. The different nitrate inhibitory effect on the N2O reduction activity in the two soils was due to the difference in soil pH. Inhibition of nitrate on N2O reduction was significant under acidic condition. Consequently, soil could serve as a sink of atmospheric N2O under the conditions of anaerobic, pH near neutral and low nitrate content.

  4. Comparing REE distribution in GEMAS agricultural soils and FOREGS topsoils-subsoils in Italy and Sweden

    NASA Astrophysics Data System (ADS)

    Petrosino, Paola; Sadeghi, Martiya; Andersson, Madelen; Albanese, Stefano; Dinelli, Enrico; Valera, Paolo; Ladenberger, Anna; Morris, George; Uhlbäck, Jo; Lima, Annamaria; De Vivo, Benedetto

    2014-05-01

    Scientific interest on Rare Earth Elements (REEs)-bearing media is increasing as a consequence of the rapidly growing demand of these important chemical resources, which are currently used in a large number of technical applications. In this study, Italian and Swedish REE data from the FOREGS database on topsoil and subsoils samples have been compared to the distribution of REEs in the GEMAS samples of agricultural soil (Ap), pertaining to regularly ploughed land to a depth of 20 cm. Principal Component Analysis (PCA) was carried out to identify patterns within both data sets. Investigation of the spatial distribution of REEs in FOREGS topsoil-subsoil and GEMAS Ap media for both countries revealed the prominent role of the geogenic component in the general REE geochemical pattern of the three solid media. Despite a similar REE content in the underlying parent material or bedrocks (alkaline igneous rocks, both intrusive and effusive in Italy, alkaline granites and pegmatites in Sweden), several distinct differences emerged between the two countries driven by climate, topography, age of the rock units and sediments, presence of mineralisations, type of soils and presence of glacial deposits. GEMAS agricultural soils form both countries show higher REEs contents than the corresponding subsoils and topsoils, which could be ascribed to the analytical method specifically set for REEs and the last generation ICP-MS instrument used by SGS Lab to analyze REEs in Ap soils. The REE content in Italian topsoil and subsoil is similar and there is a good agreement between the topsoils and Ap soils, which were collected from similar depth. Swedish subsoil is on the contrary more enriched in REEs with respect to topsoil, and Ap soils even display REE contents higher than subsoils. This anomalous REE concentrations in agricultural soil may originate from the fact that most of the arable land in Sweden has been located on glacial and postglacial deposits, rich in clay which has

  5. Determination and evaluation of cadmium, copper, nickel, and zinc in agricultural soils of western Macedonia, Greece.

    PubMed

    Papadopoulos, A; Prochaska, C; Papadopoulos, F; Gantidis, N; Metaxa, E

    2007-10-01

    The objective of this study was to determine the levels of major phytotoxic metals--including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)--in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.

  6. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils.

    PubMed

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Arsenic in agricultural soils across China: Distribution pattern, accumulation trend, influencing factors, and risk assessment.

    PubMed

    Zhou, Yuting; Niu, Lili; Liu, Kai; Yin, Shanshan; Liu, Weiping

    2018-03-01

    Arsenic (As) in the environment is of concern due to its strong toxicity and high risks to the ecosystems and humans. In this study, soil samples across China collected in 2011 and 2016 were used to determine the concentrations of arsenic in arable soils. The median concentration of arsenic in surface soils was 9.7mg/kg. The inventory of arsenic in the Chinese agricultural surface soils was estimated to be 3.7×10 6 tons. In general, arsenic contamination was found higher in South and Northeast China than in other regions, with means of 18.7 and 15.8mg/kg, respectively. Vertically, arsenic concentrations were higher in top layer (0-15cm) soils (median of 9.8mg/kg) and decreased with soil depth (medians of 8.9mg/kg at 15-30cm and 8.0mg/kg at 30-45cm). By comparing with published data, an increasing accumulation trend over the past decades was found and this enhancement was positively related with the long-term application of fertilizers in agricultural practice, especially phosphate fertilizers. Soil pH was found to affect the movement of arsenic in soil, and high-pH conditions enhanced the pool of arsenic. The ecological risk assessment revealed that arsenic in Chinese agricultural soil posed a low risk to the ecosystem. Regarding human health, the mean hazard indices (HIs) of arsenic were below 1, suggesting an absence of non-carcinogenic risks. In addition, the cancer risks of arsenic in all soil samples were within the acceptable range (below 1×10 -4 ), indicating low to very low risks to the exposed population. Findings from this study are valuable to provide effective management options for risk avoidance and to control the persistent accumulation of arsenic in the agriculture sector across the world. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Rapid mineralisation of the herbicide isoproturon in soil from a previously treated Danish agricultural field.

    PubMed

    Sørensen, Sebastian R; Aamand, Jens

    2003-10-01

    Mineralisation of the phenylurea herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) and two of its known metabolites, 3-(4-isopropylphenyl)-1-methylurea (monodesmethyl-isoproturon) and 4-isopropylaniline, was studied in Danish agricultural soils with or without previous exposure to isoproturon. A potential for rapid mineralisation of isoproturon and the two metabolites was present in soils sampled from three plots within an agricultural field previously treated regularly with the herbicide, with 34-45%, 51-58% and 33-36% of the added [phenyl-U-14C]isoproturon, [phenyl-U-14C]monodesmethyl-isoproturon and [phenyl-U-14C]4-isopropylaniline metabolised to [14C]carbon dioxide within 30 days at 20 degrees C. In contrast, such extensive mineralisation of these three compounds was not observed within this period in soils sampled from two other agricultural fields without previous treatment with isoproturon. The mineralisation patterns indicated growth-linked metabolism of the three compounds in the previously exposed soils, and doubling times for [14C]carbon dioxide production ranged from 1.6 to 3.2, 1.0 to 2.1 and 1.3 to 1.7 days for isoproturon, monodesmethyl-isoproturon and 4-isopropylaniline, respectively. The ability to mineralise [phenyl-U-14C]isoproturon to [14C]carbon dioxide was successfully sub-cultured to a fresh mineral medium which provided isoproturon as sole source of carbon and nitrogen. One of the soils sampled from an agricultural field not previously treated with isoproturon showed accelerated mineralisation of [phenyl-U-14C]4-isopropylaniline toward the end of the experiment, with a doubling time for [14C]carbon dioxide production of 7.4days. This study indicates that the occurrence of rapid mineralisation of the phenyl ring of isoproturon to carbon dioxide is related to previous exposure to the herbicide, which suggests that microbial adaptation upon repeated isoproturon use may occur within agricultural fields.

  9. The effect of soil biodiversity on soil quality after agricultural reclamation at the eastern coast of China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohan; Yang, Jianghua; Pu, Lijie; Chen, Xinjian

    2017-04-01

    Large area of tidal flats in Chinese coast has been reclaimed to support agriculture and urban development because of rapid population and economic growth. Knowledge of soil development mechanisms is essential for efficient management of land resources in coastal zone. So far, most studies have focused on consequences of soil physico-chemical properties on soil quality evolution after tideland reclamation for cultivation; yet a large part of soil bioprocess drives many soil processes. The effect of organism composition on the performance of soil development remains unclear. The purpose of our work was to reveal the organism composition change and its influence on soil quality impotent. In this study, we choose seven reclamation districts along a chronosequence in eastern coast of China, which were respectively reclaimed in 1956, 1971, 1980, 1997, 2009, 2013 and unenclosed tidal flat. The latest districts reclaimed in 2013 were left to succession fallow which were covered with halophytic vegetation and the rest districts were agriculturally managed. Soil samples at 0-20 cm were collected in each district. Soil physical, chemical and biological properties and wheat yields were measured. The result showed after the transformation from tidal flat to cropland, longer tillage time (>5 year) lead to higher soil clay and silt, SOC contents and lower bulk density, while soil clay and C contents declined within the first 5 years after reclamation. Agricultural reclamation significantly improved SOC contents of 0-20 cm depth form 0.11±0.05% to 0.77±0.10%. It needs about 35 years to achieve stable yield level after reclamation. Meanwhile, the soil community composition changed strongly over time. More significant relationships were found among soil physicochemical properties and bacteria community. And the variation trend of soil community richness (chao1) is similar to soil C contents, dropped at first 5 years and then significantly increased. Our results indicate that the

  10. Electrical Imaging of Infiltration in Agricultural Soils on Long Island, New York

    NASA Astrophysics Data System (ADS)

    Lampousis, A.; Kenyon, P. M.; Sanwald, K.; Steiner, N.

    2007-12-01

    High resolution electrical resistivity imaging of vadose zone infiltration experiments was conducted on agricultural soils by the City College and Graduate Center of CUNY, in cooperation with Cornell University's Agricultural Stewardship Program and Long Island Horticultural Research and Extension Center (LIHREC) in Riverhead, New York. Measurements were made in active vineyards with a commercial resistivity imaging system, using a half- meter electrode spacing. Soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silty loam (BgA). The Riverhead and Haven soils are the most common types found on eastern Long Island. The Bridgehampton is considered the most fertile. Soil samples and measurements of soil compaction were collected at the same time as the geophysical measurements. In addition, remote sensing data were obtained for the three sites and processed to produce normalized difference vegetation index (NDVI) data to evaluate potential correlations between vegetation vigor, soil texture and water migration patterns. Applications of this study include continuous water content monitoring in high value cash crops (precision agriculture). Changes in electrical resistivity during infiltration are clearly visible at all three locations. Preliminary analysis of the results shows correlations of baseline resistivity with particle size distributions and correlations between changes in resistivity during infiltration and soil compaction data. Time-lapse electrical images of the three sites will also be compared with published properties for these soils, including particle size distribution, saturated hydraulic conductivity, available water capacity, and surface texture.

  11. Landscape scale assessment of soil and water salinization processes in agricultural coastal area.

    NASA Astrophysics Data System (ADS)

    Elen Bless, Aplena; Follain, Stéphane; Coiln, François; Crabit, Armand

    2017-04-01

    Soil salinization is among main land degradation process around the globe. It reduces soil quality, disturbs soil function, and has harmful impacts on plant growth that would threaten agricultural sustainability, particularly in coastal areas where mostly susceptible on land degradation because of pressure from anthropogenic activities and at the same time need to preserve soil quality for supporting food production. In this presentation, we present a landscape scale analysis aiming to assess salinization process affecting wine production. This study was carried out at Serignan estuary delta in South of France (Languadoc Roussillon Region, 43˚ 28'N and 3˚ 31'E). It is a sedimentary basin near coastline of Mediterranean Sea. Field survey was design to characterize both space and time variability of soil and water salinity through water electrical conductivity (ECw) and soil 1/5 electrical conductivity (EC1/5). For water measurements, Orb River and groundwater salinity (piezometers) were determined and for soil 1737 samples were randomly collected from different soil depths (20, 50, 80, and 120 cm) between year 2012 and 2016 and measured. In order to connect with agricultural practices observations and interviews with farmers were conducted. We found that some areas combining specific criteria presents higher electrical conductivity: positions with lower elevation (a.s.l), Cambisols (Calcaric) / Fluvisols soil type (WRB) and dominated clay textures. These observations combined with geochemical determination and spatial analysis confirm our first hypothesis of sea salt intrusion as the main driven factor of soil salinity in this region. In this context, identification of salinization process, fine determination of pedological specificities and fine understanding of agricultural practices allowed us to proposed adaptation strategies to restore soil production function. Please fill in your abstract text. Key Words: Salinity, Coastal Agriculture, Landscape, Soil, Water

  12. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration.

    PubMed

    Novara, Agata; Gristina, Luciano; Sala, Giovanna; Galati, Antonino; Crescimanno, Maria; Cerdà, Artemi; Badalamenti, Emilio; La Mantia, Tommaso

    2017-01-15

    Abandonment of agricultural land leads to several consequences for ecosystem functions. Agricultural abandonment may be a significant and low cost strategy for carbon sequestration and mitigation of anthropogenic CO 2 emissions due to the vegetation recovery and increase in soil organic matter. The aim of this study was to: (i) estimate the influence of different Soil Regions (areas characterized by a typical climate and parent material association) and Bioclimates (zones with homogeneous climatic regions and thermotype indices) on soil organic carbon (SOC) dynamics after agricultural land abandonment; and (ii) to analyse the efficiency of the agri-environment policy (agri-environment measures) suggested by the European Commission in relation to potential SOC stock ability in the Sicilian Region (Italy). In order to quantify the effects of agricultural abandonment on SOC, a dataset with original data that was sampled in Sicily and existing data from the literature were analysed according to the IPCC (Intergovernmental Panel on Climate Change) methodology. Results showed that abandonment of cropland soils increased SOC stock by 9.03MgCha -1 on average, ranging from 5.4MgCha -1 to 26.7MgCha -1 in relation to the Soil Region and Bioclimate. The estimation of SOC change after agricultural use permitted calculation of the payments for ecosystem service (PES) of C sequestration after agricultural land abandonment in relation to environmental benefits, increasing in this way the efficiency of PES. Considering the 14,337ha of abandoned lands in Sicily, the CO 2 emission as a whole was reduced by 887,745Mg CO 2 . Therefore, it could be concluded that abandoned agricultural fields represents a valid opportunity to mitigate agriculture sector emissions in Sicily. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    NASA Astrophysics Data System (ADS)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  14. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    PubMed Central

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  15. Habitat and Biodiversity: One out of five essential soil functions for agricultural soils

    NASA Astrophysics Data System (ADS)

    Trinsoutrot Gattin, Isabelle; Creamer, Rachel; van Leeuwen, Jeroen; Vrebos, Dirk; Gatti, Fabio; Bampa, Francesca; Schulte, Rogier; Rutgers, Michiel

    2017-04-01

    Current agricultural challenges require developing new agricultural systems that can optimize the ecological functioning of soils in order to limit the use of chemical inputs (i.e. disease suppression) and maintain a high organic matter content. This implies our ability to evaluate the effects of management practices on immediate performance objectives (i.e. fertility linked to nutrient cycling) but also in longer-term objective (i.e. C cycling and storage) in a variety of agro-climatic conditions. These issues demand the development of systemic approaches for understanding the determinants of soil functioning. In ecology, it is generally accepted that there are many positive relationships between soil biodiversity indicators and the functioning of ecosystems. Indeed, soil organisms and their interactions are essential drivers of ecosystem processes and impact the response, resilience and adaptability of ecosystems to environmental pressures. Thus, maintaining soil biodiversity is a condition for the sustainability of cropping systems. In this new context, the European project Landmark considers soil functions as a key to the improvement of agricultural land management towards sustainable development goals, amongst the five functions is soil biodiversity and habitat provisioning. We propose to present how we manage within this project to deal with this challenging objective at three spatial scales : field, landscape (regional) and European (policy). We aim to define a link between the physical, chemical and biological soil properties and "habitat & biodiversity" soil function in order to identify key indicators which modulate biodiversity. This will allow us to quantify and assess this soil function, in order to provide insight in win wins and tradeoffs in soil functions to enhance management practices which optimise the biodiversity in European agricultural systems.

  16. Comparing Soil Carbon of Short Rotation Poplar Plantations with Agricultural Crops and Woodlots in North Central United States

    Treesearch

    Mark D. Coleman; J.G. Isebrands; David N. Tolsted; Virginia R. Tolbert

    2004-01-01

    We collected soil samples from 27 study sites across North Central United States to compare the soil carbon of short rotation poplar plantations to adjacent agricultural crops and woodlots. Soil organic carbon (SOC) ranged from 20 to more than 160 Mg/ha across the sampled sites. Lowest SOC levels were found in uplands and highest levels in riparian soils. We attributed...

  17. Isotope Tracing of Long-Term Cadmium Fluxes in an Agricultural Soil.

    PubMed

    Salmanzadeh, Mahdiyeh; Hartland, Adam; Stirling, Claudine H; Balks, Megan R; Schipper, Louis A; Joshi, Chaitanya; George, Ejin

    2017-07-05

    Globally widespread phosphate fertilizer applications have resulted in long-term increases in the concentration of cadmium (Cd) in soils. The accumulation of this biotoxic, and bioaccumulative metal presents problems for the management of soil-plant-animal systems, because the magnitude and direction of removal fluxes (e.g., crop uptake, leaching) have been difficult to estimate. Here, Cd isotopic compositions (δ 114/110 Cd) of archived fertilizer and soil samples from a 66 year-long agricultural field trial in Winchmore, New Zealand, were used to constrain the Cd soil mass balance between 1959 and 2015 AD, informing future soil Cd accumulation trajectories. The isotopic partitioning of soil Cd sources in this system was aided by a change in phosphate source rocks in 1998 AD, and a corresponding shift in fertilizer isotope composition. The dominant influence of mixing between isotopically distinct Cd end-members was confirmed by a Bayesian modeling approach. Furthermore, isotope mass balance modeling revealed that Cd removal processes most likely increased in magnitude substantially between 2000 and 2015 AD, implying an increase in Cd bioaccumulation and/or leaching over that interval. Natural-abundance stable isotopes are introduced here as a powerful tool for tracing the fate of Cd in agricultural soils, and potentially the wider environment.

  18. Carbon Structural Investigations of Concentric Layers Within Macro-aggregates From Forest and Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Dria, K. J.; Gamblin, D. E.; Smucker, A. J.; Park, E.; Filley, T. R.

    2004-12-01

    Much of the current research on the potential of agricultural and forest soils to act as sinks for greenhouse gases focuses on the capacity of the systems to form long-term stabilized fractions of soil organic matter (SOM). One proposed mechanism is that carbon is sequestered within soil aggregate interiors during the aggregation process. Repeated wetting-drying cycles change internal pore geometries and associated microhabitats and create more stable macro-aggregates. Research by Smucker and coworkers (EGU Abstracts, 2004) suggest that the exterior portions of aggregates contain greater concentrations of C and N than their interiors, establishing gradients of \\ä13C values across these aggregates. We present the results of a study to test if there exists molecular evidence of such gradients. Soil samples from forest, conventional tillage (CT) and no tillage (NT) agriculture ecosystems in Hoytville and Wooster LTER sites were gently sieved into various size fractions. Soil macro-aggregates (6.3-9.5mm) were peeled, by mechanical erosion chambers, into concentric layers and separated into exterior, transitional and interior regions. Alkaline CuO oxidation was used to determine the composition of lignin, suberin, and cutin biopolymers to determine changes in source and degradative states of SOM. Preliminary results indicate that both soils show similar relative yields of lignin and hydroxyl fatty acids with a greater abundance of lignin than cutin and suberin acids. Greater abundances (per 100mg organic carbon) of CuO products were observed in the native forest than in either agricultural system. The lignin in the NT agricultural soil was least oxidized, followed by the forest soils, then the CT agricultural soils. For both soils, slight trends in biopolymer concentrations were observed between the exterior, transitional and interior regions of the aggregates from the forest and CT or NT ecosystems.

  19. DNA Damage in Vicia faba by Exposure to Agricultural Soils from Tlaxcala, Mexico.

    PubMed

    Juárez-Santacruz, L; García-Nieto, E; García-Gallegos, E; Romo-Gómez, C; Ortiz-Ortiz, E; Costilla-Salazar, R; Luna-Zendejas, H S

    2015-12-01

    The aim of this research was to quantify some POPs, such as p,p' DDT, p,p' DDE, and PCBs in agricultural soils of Tlaxcala, Mexico and evaluate their capacity for eliciting DNA damage, using Vicia faba as bioindicator. The values of ΣDDTs and ΣPCBs ranged from 8-24 to 118-26,983 µg/kg, respectively. The samples T1 (HQ = 9.3) and T2 (HQ = 53.9) showed concentrations of ΣPCBs higher than Canadian guidelines (SQGE = 500 µg/kg). The genotoxicity testing produced percentages of DNA fragmentation higher than negative control and statistically significant (p < 0.05), both in agricultural soils and organic extracts. The soils T2, T3, N4, and N5 showed a DICA from 2.6 to 3.1 times, statistically higher (p < 0.05) than negative control. In general, the agricultural soils have greater genotoxic capacity than the organic extracts, suggesting a potential risk to biota that depends upon this ecosystem.

  20. Microbial biodiversity in arable soils is affected by agricultural practices

    NASA Astrophysics Data System (ADS)

    Wolińska, Agnieszka; Górniak, Dorota; Zielenkiewicz, Urszula; Goryluk-Salmonowicz, Agata; Kuźniar, Agnieszka; Stępniewska, Zofia; Błaszczyk, Mieczysław

    2017-04-01

    The aim of the study was to examine the differences in microbial community structure as a result of agricultural practices. Sixteen samples of cultivated and the same number of non-cultivated soils were selected. Gel bands were identified using the GelCompar software to create the presence-absence matrix, where each band represented a bacterial operational taxonomic unit. The data were used for principal-component analysis and additionally, the Shannon- Weaver index of general diversity, Simpson index of dominance and Simpson index of diversity were calculated. Denaturing gradient gel electrophoresis profiles clearly indicated differentiation of tested samples into two clusters: cultivated and non-cultivated soils. Greater numbers of dominant operational taxonomic units (65) in non-cultivated soils were noted compared to cultivated soils (47 operational taxonomic units). This implies that there was a reduction of dominant bacterial operational taxonomic units by nearly 30% in cultivated soils. Simpson dominance index expressing the number of species weighted by their abundance amounted to 1.22 in cultivated soils, whereas a 3-fold higher value (3.38) was observed in non-cultivated soils. Land-use practices seemed to be a important factors affected on biodiversity, because more than soil type determined the clustering into groups.

  1. Soil biota and agriculture production in conventional and organic farming

    NASA Astrophysics Data System (ADS)

    Schrama, Maarten; de Haan, Joj; Carvalho, Sabrina; Kroonen, Mark; Verstegen, Harry; Van der Putten, Wim

    2015-04-01

    Sustainable food production for a growing world population requires a healthy soil that can buffer environmental extremes and minimize its losses. There are currently two views on how to achieve this: by intensifying conventional agriculture or by developing organically based agriculture. It has been established that yields of conventional agriculture can be 20% higher than of organic agriculture. However, high yields of intensified conventional agriculture trade off with loss of soil biodiversity, leaching of nutrients, and other unwanted ecosystem dis-services. One of the key explanations for the loss of nutrients and GHG from intensive agriculture is that it results in high dynamics of nutrient losses, and policy has aimed at reducing temporal variation. However, little is known about how different agricultural practices affect spatial variation, and it is unknown how soil fauna acts this. In this study we compare the spatial and temporal variation of physical, chemical and biological parameters in a long term (13-year) field experiment with two conventional farming systems (low and medium organic matter input) and one organic farming system (high organic matter input) and we evaluate the impact on ecosystem services that these farming systems provide. Soil chemical (N availability, N mineralization, pH) and soil biological parameters (nematode abundance, bacterial and fungal biomass) show considerably higher spatial variation under conventional farming than under organic farming. Higher variation in soil chemical and biological parameters coincides with the presence of 'leaky' spots (high nitrate leaching) in conventional farming systems, which shift unpredictably over the course of one season. Although variation in soil physical factors (soil organic matter, soil aggregation, soil moisture) was similar between treatments, but averages were higher under organic farming, indicating more buffered conditions for nutrient cycling. All these changes coincide with

  2. Soil Management Effects on Gas Fluxes from an Organic Soil Agricultural System

    NASA Astrophysics Data System (ADS)

    Jennewein, S. P.; Bhadha, J. H.; Lang, T. A.; Singh, M.; Daroub, S. H.; McCray, M.

    2015-12-01

    The role of soil management on gas flux isn't well understood for Histosols of the Everglades Agricultural Area (EAA) of southern Florida. The region is responsible for roughly half of sugarcane (Saccharum spp. hybrids) production in the USA along with supplying winter vegetable crops to the eastern USA. Future productivity in the EAA is jeopardized by soil subsidence resulting from oxidation of organic matter. Establishing the role of tillage, water-table depth, nitrogen fertilizer, and soil depth on gas flux will help determine how effective various managements are on conserving soil. Ongoing lysimeter and field studies examined effects of management practices (water-table, tillage, and nitrogen fertilizer), and soil depth on, gas emission and microbial biomass. The trials were set in Belle Glade, FL, on Lauderhill muck (Lithic Haplosaprists). Results to be presented include soil microbial biomass and soil gas (CO2, CH4, and N2O) flux. This study provides insight into management effectiveness and agriculture sustainability on shallow muck soils of the EAA and will help farmers mitigate problems associated with soil subsidence and seasonally high water-tables.

  3. Modeling the Dynamics of Soil Structure and Water in Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Weller, U.; Lang, B.; Rabot, E.; Stössel, B.; Urbanski, L.; Vogel, H. J.; Wiesmeier, M.; Wollschlaeger, U.

    2017-12-01

    The impact of agricultural management on soil functions is manifold and severe. It has both positive and adverse influence. Our goal is to develop model tools quantifying the agricultural impact on soil functions based on a mechanistic understanding of soil processes to support farmers and decision makers. The modeling approach is based on defining relevant soil components, i.e. soil matrix, macropores, organisms, roots and organic matter. They interact and form the soil's macroscopic properties and functions including water and gas dynamics, and biochemical cycles. Based on existing literature information we derive functional interaction processes and combine them in a network of dynamic soil components. In agricultural soils, a major issue is linked to changes in soil structure and their influence on water dynamics. Compaction processes are well studied in literature, but for the resilience due to root growth and activity of soil organisms the information is scarcer. We implement structural dynamics into soil water and gas simulations using a lumped model that is both coarse enough to allow extensive model runs while still preserving some important, yet rarely modeled phenomenons like preferential flow, hysteretic and dynamic behavior. For simulating water dynamics, at each depth, the model assumes water at different binding energies depending on soil structure, i.e. the pore size distribution. Non-equilibrium is postulated, meaning that free water may occur even if the soil is not fully saturated. All energy levels are interconnected allowing water to move, both within a spatial node, and between neighboring nodes (adding gravity). Structure dynamics alters the capacity of this water compartments, and the conductance of its connections. Connections are switched on and off depending on whether their sources contain water or their targets have free capacity. This leads to piecewise linear system behavior that allows fast calculation for extended time steps. Based

  4. Average variograms to guide soil sampling

    NASA Astrophysics Data System (ADS)

    Kerry, R.; Oliver, M. A.

    2004-10-01

    To manage land in a site-specific way for agriculture requires detailed maps of the variation in the soil properties of interest. To predict accurately for mapping, the interval at which the soil is sampled should relate to the scale of spatial variation. A variogram can be used to guide sampling in two ways. A sampling interval of less than half the range of spatial dependence can be used, or the variogram can be used with the kriging equations to determine an optimal sampling interval to achieve a given tolerable error. A variogram might not be available for the site, but if the variograms of several soil properties were available on a similar parent material and or particular topographic positions an average variogram could be calculated from these. Averages of the variogram ranges and standardized average variograms from four different parent materials in southern England were used to suggest suitable sampling intervals for future surveys in similar pedological settings based on half the variogram range. The standardized average variograms were also used to determine optimal sampling intervals using the kriging equations. Similar sampling intervals were suggested by each method and the maps of predictions based on data at different grid spacings were evaluated for the different parent materials. Variograms of loss on ignition (LOI) taken from the literature for other sites in southern England with similar parent materials had ranges close to the average for a given parent material showing the possible wider application of such averages to guide sampling.

  5. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China.

    PubMed

    Cai, Limei; Xu, Zhencheng; Ren, Mingzhong; Guo, Qingwei; Hu, Xibang; Hu, Guocheng; Wan, Hongfu; Peng, Pingan

    2012-04-01

    One hundred and four surface samples and 40 profiles samples in agricultural soils collected from Huizhou in south-east China were monitored for total contents of 8 heavy metals, and analyzed by multivariate statistical techniques and enrichment factor (EF), in order to investigate their origins. The results indicate that the concentrations of Cu, Zn, Ni, Cr, Pb, Cd, As and Hg in soils are 16.74, 57.21, 14.89, 27.61, 44.66, 0.10, 10.19 and 0.22 mg/kg, respectively. Compared to the soil background contents in Guangdong Province, the mean concentrations of Hg, Cd, Zn, Pb and As in soil of Huizhou are higher, especially Hg and Cd, which are 2.82 and 1.79 times the background values, respectively. Cr, Ni, Cu, partially, Zn and Pb mainly originate from a natural source. Cd, As, partially, Zn mainly come from agricultural practices. However, Hg, partially, Pb originate mainly from industry and traffic sources. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Mediterranean Agricultural Soil Conservation under global Change: The MASCC project.

    NASA Astrophysics Data System (ADS)

    Raclot, Damien; Ciampalini, Rossano

    2017-04-01

    The MASCC project (2016-2019, http://mascc-project.org) aims to address mitigation and adaptation strategies to global change by assessing current and future development of Mediterranean agricultural soil vulnerability to erosion in relation to projected land use, agricultural practices and climate change. It targets to i) assess the similarities/dissimilarities in dominant factors affecting the current Mediterranean agricultural soil vulnerability by exploring a wide range of Mediterranean contexts; ii) improve the ability to evaluate the impact of extreme events on both the current and projected agricultural soil vulnerability and the sediment delivery at catchment outlet; iii) evaluate the vulnerability and resilience of agricultural production to a combination of potential changes in a wide range of Mediterranean contexts, iv) and provide guidelines on sustainable agricultural conservation strategies adapted to each specific agro-ecosystem and taking into consideration both on- and off-site erosion effects and socio-economics issues. To achieve these objectives, the MASCC project consortium gather researchers from six Mediterranean countries (France, Morocco, Tunisia, Italy, Spain and Portugal) which monitor mid- to long-term environmental catchments and benefit from mutual knowledge created from previous projects and network. The major assets for MASCC are: i) the availability of an unrivalled database on catchment soil erosion and innovative agricultural practices comprising a wide range of Mediterranean contexts, ii) the capacity to better evaluate the impact of extreme events on soil erosion, iii) the expert knowledge of the LANDSOIL model, a catchment-scale integrated approach of the soil-landscape system that enables to simulate both the sediment fluxes at the catchment outlet and the intra-catchment soil evolving properties and iv) the multi-disciplinarity of the involved researchers with an international reputation in the fields of soil science

  7. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  8. Inherent agricultural constraints in Allegheny Plateau soils

    USDA-ARS?s Scientific Manuscript database

    World population increases demand increased agricultural production. This can be accomplished through improved cultivars and production techniques or increased use of previously marginal agricultural regions. In the Allegheny Plateau (AP) region of the Appalachian Mountains, acid soils with toxic ...

  9. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China.

    PubMed

    Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo

    2013-06-01

    The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Funk, R.; Busse, J.; Iturri, A.; Kirchen, S.; Leue, M.; Möhler, O.; Schwartz, T.; Schnaiter, M.; Sierau, B.; Toprak, E.; Ullrich, R.; Ulrich, A.; Hoose, C.; Leisner, T.

    2016-11-01

    Soil dust particles emitted from agricultural areas contain considerable mass fractions of organic material. Also, soil dust particles may act as carriers for potentially ice-active biological particles. In this work, we present ice nucleation experiments conducted in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. The results are expressed as ice nucleation active surface site (INAS) densities and presented for the immersion freezing and the deposition nucleation mode. For immersion freezing occurring at 254 K, samples from Argentina, China, and Germany show ice nucleation efficiencies which are by a factor of 10 higher than desert dusts. On average, the difference in ice nucleation efficiencies between agricultural and desert dusts becomes significantly smaller at temperatures below 247 K. In the deposition mode the soil dusts showed higher ice nucleation activity than Arizona Test Dust over a temperature range between 232 and 248 K and humidities RHice up to 125%. INAS densities varied between 109 and 1011 m-2 for these thermodynamic conditions. For one soil dust sample (Argentinian Soil), the effect of treatments with heat was investigated. Heat treatments (383 K) did not affect the ice nucleation efficiency observed at 249 K. This finding presumably excludes proteinaceous ice-nucleating entities as the only source of the increased ice nucleation efficiency.

  11. Effects of different agricultural managements in soil microbial community structure in a semi-arid Mediterranean region.

    NASA Astrophysics Data System (ADS)

    García-Orenes, Fuensanta; Morugan, Alicia; Mataix-Solera, Jorge; Scow, Kate

    2013-04-01

    Agriculture has been practiced in semi-arid Mediterranean regions for 10.000 years and in many cases these practices have been unsuitable causing land degradation for millennium and an important loss of soil quality. The land management can provide solutions to find the best agricultural practices in order to maintain the soil quality and get a sustainable agriculture model. Microbiological properties are the most sensitive and rapid indicators of soil perturbations and land use managements. The study of microbial community and diversity has an important interest as indicators of changes in soil quality. The main objective of this work was to asses the effect of different agricultural management practices in soil microbial community (evaluated as abundance of phospholipid fatty acids, PLFA). Four different treatments were selected, based on the most commonly practices applied by farmers in the study area, "El Teularet Experimental Station", located at the Enguera Range in the southern part of the Valencia province (eastern Spain). These treatments were: a) ploughing, b) herbicides c) mulch, using the types applied by organic farmers to develop a sustainable agriculture, such as oat straw and d) control that was established as plot where the treatment was abandonment after farming. An adjacent area with the same type of soil, but with natural vegetation was used as a standard or reference high quality soil. Soil samples were taken to evaluate the changes in microbial soil structure, analysing the abundance of PLFA. The results showed a major content of total PLFA in soils treated with oats straw, being these results similar to the content of PLFA in the soil with natural vegetation, also these soils were similar in the distribution of abundance of different PLFA studied. However, the herbicide and tillage treatments showed great differences regarding the soil used as reference (soil under natural vegetation).

  12. Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization

    PubMed Central

    Meneghine, Aylan K.; Nielsen, Shaun; Thomas, Torsten; Carareto Alves, Lucia Maria

    2017-01-01

    Microbial communities drive biogeochemical cycles in agricultural areas by decomposing organic materials and converting essential nutrients. Organic amendments improve soil quality by increasing the load of essential nutrients and enhancing the productivity. Additionally, fresh water used for irrigation can affect soil quality of agricultural soils, mainly due to the presence of microbial contaminants and pathogens. In this study, we investigated how microbial communities in irrigation water might contribute to the microbial diversity and function of soil. Whole-metagenomic sequencing approaches were used to investigate the taxonomic and the functional profiles of microbial communities present in fresh water used for irrigation, and in soil from a vegetable crop, which received fertilization with organic compost made from animal carcasses. The taxonomic analysis revealed that the most abundant genera were Polynucleobacter (~8% relative abundance) and Bacillus (~10%) in fresh water and soil from the vegetable crop, respectively. Low abundance (0.38%) of cyanobacterial groups were identified. Based on functional gene prediction, denitrification appears to be an important process in the soil community analysed here. Conversely, genes for nitrogen fixation were abundant in freshwater, indicating that the N-fixation plays a crucial role in this particular ecosystem. Moreover, pathogenicity islands, antibiotic resistance and potential virulence related genes were identified in both samples, but no toxigenic genes were detected. This study provides a better understanding of the community structure of an area under strong agricultural activity with regular irrigation and fertilization with an organic compost made from animal carcasses. Additionally, the use of a metagenomic approach to investigate fresh water quality proved to be a relevant method to evaluate its use in an agricultural ecosystem. PMID:29267397

  13. Metal speciation in agricultural soils adjacent to the Irankuh Pb-Zn mining area, central Iran

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ahmad Reza; Roshani Rodsari, Parisa; Cohen, David R.; Emami, Adel; Dehghanzadeh Bafghi, Ali Akbar; Khodaian Ghegeni, Ziba

    2015-01-01

    Mining activities are a significant potential source of metal contamination of soils in surrounding areas, with particular concern for metals dispersed into agricultural area in forms that are bioavailable and which may affect human health. Soils in agricultural land adjacent to Pb-Zn mining operations in the southern part of the Irankuh Mountains contain elevated concentrations for a range of metals associated with the mineralization (including Pb, Zn and As). Total and partial geochemical extraction data from a suite of 137 soil samples is used to establish mineralogical controls on ore-related trace elements and help differentiate spatial patterns that can be related to the effects of mining on the agricultural land soils from general geological and environmental controls. Whereas the patterns for Pb, Zn and As are spatially related to the mining operations they display little correlation with the distribution of secondary Fe + Mn oxyhydroxides or carbonates, suggesting dispersion as dust and in forms with limited bioavailability.

  14. Ecosystem services driven by the diversity of soil biota - understanding and management in agriculture - The Biodiversa SoilMan-Project

    NASA Astrophysics Data System (ADS)

    Potthoff, Martin; Pérès, Guénola; Taylor, Astrid; Schrader, Stefan; Landa, Blanca; Nicolai, Annegret; Sandor, Mignon; Öptik, Maarja; Gema, Guzmán; Bergmann, Holger; Cluzeau, Daniel; Banse, Martin; Bengtsson, Jan; Guernion, Muriel; Zaller, Johann; Roslin, Tomas; Scheu, Stefan; Gómez Calero, José Alfonso

    2017-04-01

    Soil biota diversity is ensuring primary production in terrestrial ecosystems and agricultural productivity. Water and nutrient cycling, soil formation and aggregation, decomposition and carbon sequestration as well as control of pest organisms are important functions in soil that are driven by biota and biota interactions. In agricultural systems these functions support and regulate ecosystem services directed to agricultural production and agricultural sustainability. A main goal of future cropping systems will be to maintain or raise agricultural productivity while keeping production sustainable in spite of increasing food demands and ongoing soil degradation caused by inappropriate soil management practices. Farm based tools that farmers use to engineer soils for plant production depend as soil management factors on decisions by farmers, which are triggered by regional traditions, knowledge and also by agriculture policies as a governance impact. However, biological impacts on soil fertility and soil health are often neglected or overseen when planning and shaping soil management in annual cropping systems or perennial systems like vineyards. In order to get progress in conservation farming and in agricultural sustainability not only knowledge creation is in need, but also a clash of perspectives has to be overcome within the societies (generals public, farmers associations, NGOs) The talk will present the conception of the recently startet SoilMan-project and summaries selected results from current and recent European research projects.

  15. Agriculture’s Soil Conservation Programs Miss Full Potential in the Fight against Soil Erosion.

    DTIC Science & Technology

    1983-11-28

    Soil Loss Equation ( USLE ) and Wind Erosion Equation can be used with a reasonable degree of accuracy. It is the intention of ASCS to expand VC/SL to...HD-R37 495 AGRICULTURE’S SOIL CONSERVATION PROGRAMS MISS FULL i/i POTENTIAL IN THE FIGHT.(U) GENERAL ACCOUNTING OFFICE WASHINGTON DC RESOURCES...GENERAL Report To The Congress OF THE UNITED STATES Agriculture’s Soil Conservation Programs Miss Full Potential In The Fight Against Soil Erosion

  16. Gamma-spectrometric measurement of radioactivity in agricultural soils of the Lombardia region, northern Italy.

    PubMed

    Guidotti, Laura; Carini, Franca; Rossi, Riccardo; Gatti, Marina; Cenci, Roberto M; Beone, Gian Maria

    2015-04-01

    This work is part of a wider monitoring project of the agricultural soils in Lombardia, which aims to build a database of topsoil properties and the potentially toxic elements, organic pollutants and gamma emitting radionuclides that the topsoils contain. A total of 156 agricultural soils were sampled according to the LUCAS (Land Use/Cover Area frame statistical Survey) standard procedure. The aim was to provide a baseline to document the conditions present at the time of sampling. The results of the project concerning soil radioactivity are presented here. The aim was to assess the content of (238)U, (232)Th, (137)Cs and (40)K by measuring soil samples by gamma spectrometry. (238)U, (232)Th and (40)K activities range 24-231, 20-70, and 242-1434 Bq kg(-1) respectively. The geographic distribution of (238)U reflects the geophysical framework of the Lombardia region: the soils with high content of uranium are distributed for the most part in the South Alpine belt, where the presence of magmatic rocks is widespread. These soils show an higher activity of (238)U than of (232)Th. The (238)U activities become lower than (232)Th when soils are located in the plain, originating from basic sedimentary rocks. (137)Cs activity ranges 0.4-86.8 kBq m(-2). The lowest activity of (137)Cs is in the plain, whereas the highest is in the North on soils kept as lawn or pasture. The (137)Cs activity of some samples suggests the presence of accumulation processes that lead to (137)Cs enriched soils. This is the first survey of gamma emitting radionuclides in Lombardia that is based on the LUCAS standard sampling. The results from this monitoring campaign are important for the human radiation exposure and provide the zero point, which will be useful for assessing future effects due to external factors such as human activities. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Can biosolids reduce wind erosion of agricultural soils?

    USDA-ARS?s Scientific Manuscript database

    The application of biosolids to agricultural land has the potential to improve soil health and crop production. In addition, organic material contained in biosolids may enhance biological activity, retention of soil water, and soil aggregation. Thus, there is a likelihood that biosolids applied to s...

  18. Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China.

    PubMed

    Li, Junhui; Lu, Ying; Yin, Wei; Gan, Haihua; Zhang, Chao; Deng, Xianglian; Lian, Jin

    2009-06-01

    The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.

  19. Soil respiration in different agricultural and natural ecosystems in an arid region.

    PubMed

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  20. Changes in soil oribatid communities associated with conversion from conventional to organic agriculture.

    PubMed

    Khalil, Mohamed A; Al-Assiuty, Abdel-Naieem I M; van Straalen, Nico M; Al-Assiuty, Basma A

    2016-02-01

    We investigated the effects of switching from conventional management to organic management on the abundance and community composition of soil-living oribatid mites in clover fields in an experimental agricultural station at Al-Fayoum, Egypt. The site had two adjacent fields with identical vegetation cover but different management. Fifteen random soil samples were collected monthly from each of three plots per field, from October to March. We characterized the soils with respect to various physicochemical variables as well as fungal community composition, and estimated mite densities through core sampling. Organic fields had a significantly more abundant oribatid community than did conventional fields. Also the abundance of soil fungi was greater in the organically managed field. Organic management promoted common oribatid mite species with a wide ecological amplitude that already had a high abundance where such common species are more responsive to changes in agricultural management. However, some species of mite responded indifferent or negative to the switch from conventional to organic management. Overall, the differences between the two ecological systems were mainly quantitative. Species diversities of both mite and fungal communities did not differ much between the two management systems. Diversity (H0) and equitability (E) of soil oribatid communities were higher in conventional plots than in the organic plots during the first 2 months but indistinguishable thereafter. Our study confirmed that organic management stimulates soilorganic matter build-up, with positive effects on both fungal and oribatid mite abundance and possible long-term effects on soil function.

  1. Metal Distribution in Urban Agricultural Soils in the Inland Empire, California

    NASA Astrophysics Data System (ADS)

    Marin, C. C. E.

    2015-12-01

    Urban environments exhibit unique biogeochemistry due to the presence of a myriad of anthropogenic sources of contaminants. One potential route through which humans have been exposed to metal contaminants is the ingestion of food produced on urban soils. The Inland Empire is a metropolitan located in semi-arid region of Southern California with greater than 4 million residents, where the growing population is demonstrating an increase in citizen participation in contributing to expanding local food systems. In response to the demand for locally grown produce, the Inland Empire is undergoing rapid land use change, where large tracts of land on the periphery of cities, including Riverside, are being converted or set aside for urban agriculture, though the quality of the soil for food production is unknown. At the same time, smaller gardens and farms are growing in number within the more densely populated areas. Assessing the quality of urban soil currently used for food production in this region can aid in projecting how land use change will affect the quality of crops produced as urban agriculture continues to expand in arid regions. Soil samples were taken from a variety of land use types, including areas currently producing crops and areas set aside for future large scale food production. Samples were collected at the surface (0-2 cm) and below till depth (20-22 cm). These soils were analyzed for total carbon including organic and inorganic carbon fractions, total nitrogen, bulk metal and trace metal concentrations (including As, Mn, Cr, Pb, Cd, Zn, and Cu). To approximate the mobility of the trace elements under various conditions, extraction tests were also performed, including EPA Pb bioavailability analysis. Finally, we utilize statistical tools and spatial analysis to illustrate the relationship between previous land use, current land use, and soil quality for urban crop production.

  2. Soil Respiration in Different Agricultural and Natural Ecosystems in an Arid Region

    PubMed Central

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M.

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%–386% higher and agricultural ecosystems exhibited lower CO2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions. PMID:23082234

  3. Investigation of Soil Erosion and Phosphorus Transport within an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Klik, A.; Jester, W.; Muhar, A.; Peinsitt, A.; Rampazzo, N.; Mentler, A.; Staudinger, B.; Eder, M.

    2003-04-01

    In a 40 ha agricultural used watershed in Austria, surface runoff, soil erosion and nutrient losses are measured spatially distributed with 12 small erosion plots. Crops during growing season 2002 are canola, corn, sunflower, winter wheat, winter barley, rye, sugar beets, and pasture. Canopy height and canopy cover are observed in 14-day intervals. Four times per year soil water content, shear stress and random roughness of the surface are measured in a 25 x 25 m grid (140 points). The same raster is sampled for soil texture analyses and content of different phosphorus fractions in the 0-10 cm soil depth. Spatially distributed data are used for geostatistical analysis. Along three transects hydrologic conditions of the hillslope position (top, middle, foot) are investigated by measuring soil water content and soil matrix potential. After erosive events erosion features (rills, deposition, ...) are mapped using GPS. All measured data will be used as input parameters for the Limburg Soil Erosion Model (LISEM).

  4. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  5. Qualitative relation between heavy metal concentration in soil and agricultural products: a Chinese peri-urban case study

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ryunosuke; Ferreira, Carla Sofia; Dinis Ferreira, Antonio

    2017-04-01

    A peri-urban area refers to a transition or interaction zone, where urban and rural activities are juxtaposed, and landscape features are subject to rapid modifications, mainly due to human activities. It is reported that peri-urban areas which might include valuable protected areas (e.g. forested hills, preserved woodlands, prime agricultural lands, etc.) can provide essential life support services for urban residents. A peri-urban area is not only a zone experiencing the immediate impacts of land demands from urban growth and pollution, but it is also a wider market-related zone of influence, recognized for the supply of agricultural and natural resource products. It is reported that China's environmental crisis is one of the most pressing challenges to emerge from the country's rapid industrialization; therefore a field study was carried out to investigate the qualitative relation of soil property with vegetable agricultural products in the Chinese peri-urban area located in Luoyang city (34°37'N and 112°27'E). Soil, water and plant (e.g. squash, Cucurbita maxima) samples were taken over the study site, and heavy metal concentrations were analyzed. All the soil samples showed Cd concentrations exceeded the permissible level established by Chinese guidelines for soil quality (0.3 mg/kg). The contents of Zn, Pb and Cu also surpassed the Chinese guideline levels (Zn = 250 mg/kg, Pb = 50 mg/kg and Cu = 100 mg/kg) in several soil samples. Although the sampled plants contained some degree of all the heavy metals, only the Al concentration was high in the Cucurbita maxima samples (317 mg/kg), which is a specie of cultivated squash. Considering the world market and the global trade of agricultural products, it can be said that the food risk associated with farm products containing Al is not local but global. It is concluded that an environmental contamination of the peri-urban areas may lead to the threat to food security.

  6. Status of phthalate esters contamination in agricultural soils across China and associated health risks.

    PubMed

    Niu, Lili; Xu, Yang; Xu, Chao; Yun, Lingxiang; Liu, Weiping

    2014-12-01

    The extensive utilization of phthalate-containing products has lead to ubiquitous contamination of phthalate esters (PAEs) in various matrices. However, comprehensive knowledge of their pollution in Chinese farmland and associated risks is still limited. In this study, 15 PAEs were determined in soils from agricultural fields throughout the Mainland China. The concentrations of Σ15PAEs were in the range of 75.0-6369 μg kg(-1). Three provinces (i.e., Fujian, Guangdong and Xinjiang, China) showed the highest loadings of PAEs. Bis(2-Ethylhexyl) phthalate (DEHP) was found as the most abundant component and contributed 71.5% to the ∑15PAEs. The major source of PAEs in arable soils was associated with the application of agricultural plastic films, followed by the activities for soil fertility. Furthermore, the non-cancer and carcinogenic risks of target PAEs were estimated. The hazard indexes (HIs) of PAEs in all samples were below 1 and the carcinogenic risk levels were all within 10(-4). Results from this study will provide valuable information for Chinese agricultural soil management and risk avoidance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Research and application of method of oxygen isotope of inorganic phosphate in Beijing agricultural soils.

    PubMed

    Tian, Liyan; Guo, Qingjun; Zhu, Yongguan; He, Huijun; Lang, Yunchao; Hu, Jian; Zhang, Han; Wei, Rongfei; Han, Xiaokun; Peters, Marc; Yang, Junxing

    2016-12-01

    Phosphorus (P) in agricultural ecosystems is an essential and limited element for plants and microorganisms. However, environmental problems caused by P accumulation as well as by P loss have become more and more serious. Oxygen isotopes of phosphate can trace the sources, migration, and transformation of P in agricultural soils. In order to use the isotopes of phosphate oxygen, appropriate extraction and purification methods for inorganic phosphate from soils are necessary. Here, we combined two different methods to analyze the oxygen isotopic composition of inorganic phosphate (δ 18 O P ) from chemical fertilizers and different fractions (Milli-Q water, 0.5 mol L -1 NaHCO 3 (pH = 8.5), 0.1 mol L -1 NaOH and 1 mol L -1 HCl) of agricultural soils from the Beijing area. The δ 18 O P results of the water extracts and NaHCO 3 extracts in most samples were close to the calculated equilibrium value. These phenomena can be explained by rapid P cycling in soils and the influence of chemical fertilizers. The δ 18 O P value of the water extracts and NaHCO 3 extracts in some soil samples below the equilibrium value may be caused by the hydrolysis of organic P fractions mediated by extracellular enzymes. The δ 18 O P values of the NaOH extracts were above the calculated equilibrium value reflecting the balance state between microbial uptake of phosphate and the release of intracellular phosphate back to the soil. The HCl extracts with the lowest δ 18 O P values and highest phosphate concentrations indicated that the HCl fraction was affected by microbial activity. Hence, these δ 18 O p values likely reflected the oxygen isotopic values of the parent materials. The results suggested that phosphate oxygen isotope analyses could be an effective tool in order to trace phosphate sources, transformation processes, and its utilization by microorganisms in agricultural soils.

  8. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  9. Isolation of antimicrobial producing Actinobacteria from soil samples.

    PubMed

    Elbendary, Afaf Ahmed; Hessain, Ashgan Mohamed; El-Hariri, Mahmoud Darderi; Seida, Ahmed Adel; Moussa, Ihab Mohamed; Mubarak, Ayman Salem; Kabli, Saleh A; Hemeg, Hassan A; El Jakee, Jakeen Kamal

    2018-01-01

    Emergence of multidrug resistant bacteria has made the search for novel bioactive compounds from natural and unexplored habitats a necessity. Actinobacteria have important bioactive substances. The present study investigated antimicrobial activity of Actinobacteria isolated from soil samples of Egypt. One hundred samples were collected from agricultural farming soil of different governorates. Twelve isolates have produced activity against the tested microorganisms ( S. aureus , Bacillus cereus , E. coli , K. pneumoniae , P. aeruginosa , S. Typhi, C. albicans , A. niger and A. flavus ). By VITEK 2 system version: 07.01 the 12 isolates were identified as Kocuria kristinae , Kocuria rosea , Streptomyces griseus , Streptomyces flaveolus and Actinobacteria . Using ethyl acetate extraction method the isolates culture's supernatants were tested by diffusion method against indicator microorganisms. These results indicate that Actinobacteria isolated from Egypt farms could be sources of antimicrobial bioactive substances.

  10. Long-term fate of nitrate fertilizer in agricultural soils.

    PubMed

    Sebilo, Mathieu; Mayer, Bernhard; Nicolardot, Bernard; Pinay, Gilles; Mariotti, André

    2013-11-05

    Increasing diffuse nitrate loading of surface waters and groundwater has emerged as a major problem in many agricultural areas of the world, resulting in contamination of drinking water resources in aquifers as well as eutrophication of freshwaters and coastal marine ecosystems. Although empirical correlations between application rates of N fertilizers to agricultural soils and nitrate contamination of adjacent hydrological systems have been demonstrated, the transit times of fertilizer N in the pedosphere-hydrosphere system are poorly understood. We investigated the fate of isotopically labeled nitrogen fertilizers in a three-decade-long in situ tracer experiment that quantified not only fertilizer N uptake by plants and retention in soils, but also determined to which extent and over which time periods fertilizer N stored in soil organic matter is rereleased for either uptake in crops or export into the hydrosphere. We found that 61-65% of the applied fertilizers N were taken up by plants, whereas 12-15% of the labeled fertilizer N were still residing in the soil organic matter more than a quarter century after tracer application. Between 8-12% of the applied fertilizer had leaked toward the hydrosphere during the 30-y observation period. We predict that additional exports of (15)N-labeled nitrate from the tracer application in 1982 toward the hydrosphere will continue for at least another five decades. Therefore, attempts to reduce agricultural nitrate contamination of aquatic systems must consider the long-term legacy of past applications of synthetic fertilizers in agricultural systems and the nitrogen retention capacity of agricultural soils.

  11. Long-term fate of nitrate fertilizer in agricultural soils

    PubMed Central

    Sebilo, Mathieu; Mayer, Bernhard; Nicolardot, Bernard; Pinay, Gilles; Mariotti, André

    2013-01-01

    Increasing diffuse nitrate loading of surface waters and groundwater has emerged as a major problem in many agricultural areas of the world, resulting in contamination of drinking water resources in aquifers as well as eutrophication of freshwaters and coastal marine ecosystems. Although empirical correlations between application rates of N fertilizers to agricultural soils and nitrate contamination of adjacent hydrological systems have been demonstrated, the transit times of fertilizer N in the pedosphere–hydrosphere system are poorly understood. We investigated the fate of isotopically labeled nitrogen fertilizers in a three–decade-long in situ tracer experiment that quantified not only fertilizer N uptake by plants and retention in soils, but also determined to which extent and over which time periods fertilizer N stored in soil organic matter is rereleased for either uptake in crops or export into the hydrosphere. We found that 61–65% of the applied fertilizers N were taken up by plants, whereas 12–15% of the labeled fertilizer N were still residing in the soil organic matter more than a quarter century after tracer application. Between 8–12% of the applied fertilizer had leaked toward the hydrosphere during the 30-y observation period. We predict that additional exports of 15N-labeled nitrate from the tracer application in 1982 toward the hydrosphere will continue for at least another five decades. Therefore, attempts to reduce agricultural nitrate contamination of aquatic systems must consider the long-term legacy of past applications of synthetic fertilizers in agricultural systems and the nitrogen retention capacity of agricultural soils. PMID:24145428

  12. Formative pre-Hispanic agricultural soils in northwest Argentina

    NASA Astrophysics Data System (ADS)

    Sampietro Vattuone, María Marta; Roldán, Jimena; Neder, Liliana; Maldonado, Mario Gabriel; Vattuone, Marta Amelia

    2011-01-01

    Our study area is from an early agricultural archaeological site named "El Tolar" (1st to 9th century AD), located in Tafí Valley (Tucumán, northwest Argentina). The objective was to identify geochemical signatures generated by the sustained agrarian use of soils. Chemical and pedological studies were made in different archaeological contexts. Physical and chemical features, such as bulk density, pH, organic and inorganic phosphorus, and available copper, manganese and iron, were taken into account. The results suggested that a buried paleosol identified was contemporary with the occupation of the site. It also showed characteristics clearly related to pre-Hispanic agrarian production. The concentrations of organic phosphorus and iron in agricultural soils probably reflect the use of fertilizers. The application of geoscience techniques allowed us to obtain important information on their behaviour and socio-economic development. This paper constitutes the first pedogeochemical approach to the study of Argentinean pre-Hispanic agricultural soils.

  13. The Value of SMAP Soil Moisture Observations For Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Bolten, J. D.; Crow, W.; Reynolds, C. A.

    2017-12-01

    Knowledge of the amount of soil moisture (SM) in the root zone (RZ) is critical source of information for crop analysts and agricultural agencies as it controls crop development and crop condition changes and can largely impact end-of-season yield. Foreign Agricultural Services (FAS), a subdivision of U.S. Department of Agriculture (USDA) that is in charge with providing information on current and expected global crop supply and demand estimates, has been relying on RZSM estimates generated by the modified two-layer Palmer model, which has been enhanced to allow the assimilation of satellite-based soil moisture data. Generally the accuracy of model-based soil moisture estimates is dependent on the precision of the forcing data that drives the model and more specifically, the accuracy of the precipitation data. Data assimilation gives the opportunity to correct for such precipitation-related inaccuracies and enhance the quality of the model estimates. Here we demonstrate the value of ingesting passive-based soil moisture observations derived from the Soil Moisture Active Passive (SMAP) mission. In terms of agriculture, general understanding is that the change in soil moisture conditions precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop conditions. Therefore, we assess the accuracy of the SMAP enhanced Palmer model by examining the lag rank cross-correlation coefficient between the model generated soil moisture observations and the Normalized Difference Vegetation Index (NDVI).

  14. Uranium in agricultural soils and drinking water wells on the Swiss Plateau.

    PubMed

    Bigalke, Moritz; Schwab, Lorenz; Rehmus, Agnes; Tondo, Patrick; Flisch, Markus

    2018-02-01

    Mineral phosphorus fertilizers are regularly applied to agricultural sites, but their uranium (U) content is potentially hazardous to humans and the environment. Fertilizer-derived U can accumulate in the soil, but might also leach to ground-, spring and surface waters. We sampled 19 mineral fertilizers from the canton of Bern and soils of three arable and one forest reference sites at each of four locations with elevated U concentrations (7-28 μg L -1 ) in nearby drinking water wells. The total U concentrations of the fertilizers were measured. The soils were analysed at three depth intervals down to 1 m for general soil parameters, total Cd, P, U and NaHCO 3 -extractable U concentrations, and 234/238 U activity ratios (AR). The U concentrations and AR values of the drinking water samples were also measured. A theoretical assessment showed that fertilizer-derived U may cause high U concentrations in leaching waters (up to approx. 25 μg L -1 ), but normally contributes only a small amount (approx. 0-3 μg L -1 ). The arable soils investigated showed no significant U accumulation compared to the forest sites. The close positive correlation of AR with NaHCO 3 -extractable U (R = 0.7, p < 0.001) indicates that application of fertilizer can increase the extractable U pool. The lack of depth gradients in the soil U concentrations (1.5-2.7 mg kg -1 ) and AR (0.90-1.06) ratios are inconsistent with the accumulation of U in the surface soil, and might indicate some leaching of fertilizer-derived U. The AR values in the water samples were close to 1, possibly suggesting an influence of fertilizer-derived U. However, based on findings from the literature and considering the heterogeneity of the catchment area, the agricultural practices, and the comparatively long distance to the groundwater, we conclude that fertilizer-derived U makes only a minor contribution to the elevated U concentrations in the water samples. Copyright © 2017 Elsevier Ltd. All rights

  15. Drivers for spatial variability in agricultural soil organic carbon stocks in Germany

    NASA Astrophysics Data System (ADS)

    Vos, Cora; Don, Axel; Hobley, Eleanor; Prietz, Roland; Heidkamp, Arne; Freibauer, Annette

    2017-04-01

    Soil organic carbon is one of the largest components of the global carbon cycle. It has recently gained importance in global efforts to mitigate climate change through carbon sequestration. In order to find locations suitable for carbon sequestration, and estimate the sequestration potential, however, it is necessary to understand the factors influencing the high spatial variability of soil organic carbon stocks. Due to numerous interacting factors that influence its dynamics, soil organic carbon stocks are difficult to predict. In the course of the German Agricultural Soil Inventory over 2500 agricultural sites were sampled and their soil organic carbon stocks determined. Data relating to more than 200 potential drivers of SOC stocks were compiled from laboratory measurements, farmer questionnaires and climate stations. The aims of this study were to 1) give an overview of soil organic carbon stocks in Germany's agricultural soils, 2) to quantify and explain the influence of explanatory variables on soil organic carbon stocks. Two different machine learning algorithms were used to identify the most important variables and multiple regression models were used to explore the influence of those variables. Models for predicting carbon stocks in different depth increments between 0-100 cm were developed, explaining up to 62% (validation, 98% calibration) of total variance. Land-use, land-use history, clay content and electrical conductivity were main predictors in the topsoil, while bedrock material, relief and electrical conductivity governed the variability of subsoil carbon stocks. We found 32% of all soils to be deeply anthropogenically transformed. The influence of climate related variables was surprisingly small (≤5% of explained variance), while site variables explained a large share of soil carbon variability (46-100% of explained variance), in particular in the subsoil. Thus, the understanding of SOC dynamics at regional scale requires a thorough description

  16. [Characteristics of Phthalic Acid Esters in Agricultural Soils and Products in Areas of Zhongshan City, South China].

    PubMed

    Li, Bin; Wu, Shan; Liang, Jin-ming; Liang, Wen-li; Chen, Gui-xian; Li, Yong-jun; Yang, Guo-yi

    2015-06-01

    In order to investigate and assess the pollution level of phthalic acid esters (PAEs) in farm soils and products from typical agricultural fields in areas of Zhongshan City, Guangdong Province, South China, 65 topsoil and 37 agricultural product samples were collected and contents of 6 PAEs compounds that classified by the U. S. Environmental Protection Agency (EPA) as priority pollutants were determined by the GC-FID. The results indicated that total contents of the PAEs (∑ PAEs) in soils ranged from 0. 14 to 1. 14 mg x kg(-1), and the mean value was 0.43 mg x kg(-1), with the detected ratio of 100%. Various concentrations of PAEs differed in three land-use types were ordered by vegetable soil > orchard soil > paddy soil. Comparing with six U.S. EPA priority pollutants of PAEs, the contents of Di-n-butyl phthalate (DBP) and Dimethyl phthalate ( DMP) in soils exceeded the control limits of PAEs in the American soil by 93.85% and 27.69% respectively, but the rest four PAEs compounds were lower than the control limits. Generally, the pollution level of soils contaminated by PAEs in agricultural fields of Zhongshan City was relatively low. The contents of 3 PAEs in agricultural products ranged from 0.15 to 3.15 mg x kg(-1) with the average of 1.12 mg x kg(-1), which was lower than the suggested standards in USA and Europe and with low health risk. Meanwhile, ∑ PAEs concentrations in vegetables were higher than those both in rice and fruits. DBP and DEHP were the main components of PAEs both in agricultural soils and products, with higher percentage contents and detected ratio. ∑ PAEs and DBP contents in various agricultural products-soils had a significantly positive correlation, with Pearson coefficients (r) in vegetables-vegetable soils were 0.81 (P = 0.000), 0.75 (P = 0.000), and corresponding r among rice-paddy soil and fruits-fruit soils were 0.74 (P = 0.036), 0.65 (P = 0.041) and 0.66 (P = 0.029), 0.78 (P = 0.045), respectively. Although there existed a

  17. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    NASA Astrophysics Data System (ADS)

    Sjøgaard, Kamilla S.; Treusch, Alexander H.; Valdemarsen, Thomas B.

    2017-09-01

    Permanent flooding of low-lying coastal areas is a growing threat due to climate change and related sea-level rise. An increasingly common solution to protect coastal areas lying below sea level is intentional flooding by "managed coastal realignment". However, the biogeochemical implications of flooding agricultural soils with seawater are still not well understood. We conducted a 1-year mesocosm experiment to investigate microbial carbon degradation processes in soils flooded with seawater. Agricultural soils were sampled on the northern coast of the island Fyn (Denmark) at Gyldensteen Strand, an area that was subsequently flooded in a coastal realignment project. We found rapid carbon degradation to TCO2 1 day after experimental flooding and onwards and microbial sulfate reduction established quickly as an important mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe-S compounds with Fe acting as a natural buffer, preventing toxic effects of free sulfide in soils flooded with seawater. Organic carbon degradation decreased significantly after 6 months, indicating that most of the soil organic carbon was refractory towards microbial degradation under the anoxic conditions created in the soil after flooding. During the experiment only 6-7 % of the initial soil organic carbon pools were degraded. On this basis we suggest that most of the organic carbon present in coastal soils exposed to flooding through sea-level rise or managed coastal realignment will be permanently preserved.

  18. Tracking agricultural soil nitric oxide emission variations with novel isotopic measurements

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Chai, J.; Guo, F.; Overby, S.; Dell, C. J.; Karsten, H.; Hastings, M. G.

    2016-12-01

    Agricultural production systems impact the reactive nitrogen cycle via atmospheric nitrogen emissions including nitric oxide, denoted as total nitrogen oxides (NOx). NOx serve as precursors to ozone and nitrate aerosols, influencing air quality, radiative forcing, and ecosystem health. With recent declines in fuel combustion sources, soil emissions are an increasing contributor to NOx budgets. However, spatially heterogeneous, episodic soil NOx pulses are challenging to constrain and remain highly uncertain. Using a novel hourly resolution soil flux chamber-based NOx collection method, we investigate fertilizer management and climatic controls on cropland soil NOx flux and nitrogen isotopic composition (δ15N-NOx) natural abundance variations with field-based and laboratory measurements. No-till, rain-fed corn plots were sampled daily (triplicate isotope samples per treatment per day) following broadcast and shallow-disk injected dairy manure applications as part of a sustainable dairy cropping study in State College, PA (Penn State University; USDA-ARS). Injected manure plots exhibited median fluxes two times higher with larger spatial variations than that for broadcast manure. Soil emission δ15N-NOx signatures of -45 to -20 ‰ were correlated with flux magnitudes across both treatments. Median δ15N-NOx signatures for injected manure were lower with larger spatial variations (-32 ± 9 ‰) than that for broadcast manure (-24 ± 1.5 ‰). These differences are likely linked with higher NH4+ availability for nitrification with injected manure in contrast with higher NH3 volatilization and higher soil δ15N-NH4+ for broadcast manure. Although NOx fluxes were suppressed 1-2 days after heavy rainfall (>35 % water-filled pore space), δ15N-NOx remained consistent. Controlled laboratory incubation studies will also be presented quantifying links with inorganic substrate and fertilizer δ15N. Our observations suggest that agricultural soil δ15N-NOx signatures are

  19. Spatial distributions and seasonal variations of organochlorine pesticides in water and soil samples in Bolu, Turkey.

    PubMed

    Karadeniz, Hatice; Yenisoy-Karakaş, Serpil

    2015-03-01

    In this study, a total of 75 water samples (38 groundwater and 37 surface water samples) and 54 surface soil samples were collected from the five districts of Bolu, which is located in the Western Black Sea Region of Turkey in the summer season of 2009. In the autumn season, 17 water samples (surface water and groundwater samples) and 17 soil samples were collected within the city center to observe the seasonal changes of organochlorine pesticides (OCPs). Groundwater and surface water samples were extracted using solid phase extraction. Soil samples were extracted ultrasonically. Sixteen OCP compounds in the standard solution were detected by a gas chromatography-electron capture detector (GC-ECD). Therefore, the method validation was performed for those 16 OCP compounds. However, 13 OCP compounds could be observed in the samples. The concentrations of most OCPs were higher in samples collected in the summer than those in the autumn. The most frequently observed pesticides were endosulfan sulfate and 4,4'-dichlorodiphenyltrichloroethane (DDT) in groundwater samples, α-HCH in surface water samples, and endosulfan sulfate in soil samples. The average concentration of endosulfan sulfate was the highest in water and soil samples. Compared to the literature values, the average concentrations in this study were lower values. Spatial distribution of OCPs was evaluated with the aid of contour maps for the five districts of Bolu. Generally, agricultural processes affected the water and soil quality in the region. However, non-agricultural areas were also affected by pesticides. The concentrations of pesticides were below the legal limits of European directives for each pesticide.

  20. Soil Carbon Chronosequnces from Post-Agricultural Land in Western New England

    NASA Astrophysics Data System (ADS)

    Clark, J. D.; Johnson, A. H.; Richter, S. L.; Art, H. W.

    2008-12-01

    Using quantitative soil pits, we sampled chronosequences of post-agricultural northern hardwood forest soils in the Hopkins Memorial Forest (Williamstown, MA) to determine the amount of carbon lost during the period of agricultural use, as well as the rates at which C accumulates after abandonment. Chronosequences based on the time of abandonment were developed for the three main agricultural uses: cultivated cropland, pasture or hay, and woodlot. Active farms served as our theoretical zero time points and old growth stands in the region served as our likely maximum for C-accumulation. We then tested this chronosequence model throughout the three main physiographic provinces of the Berkshire-Taconic landscape: carbonate lowlands, Taconic uplands, and Berkshire highlands. Our data show a significant direct relationship between time since abandonment and carbon amount for the organic horizons (Oe and Oa) of cultivated as well as pastured or hayed plots but not for stands formerly used as woodlots. Likewise there was a significant relationship between C content and time for plowed horizons (0-20 cm) of cultivated ground, but not for the top 20 cm of mineral soils that were formerly pasture, hay, or woodlot. Our best estimate suggests that cultivation reduced the C-content of plowed soils by 50% to a depth of 20 cm, and that complete recovery of the C-pool requires approximately 120 years. Management practices of post-settlement New England farms differ significantly from those used by modern farms. These methodological differences complicate efforts to quantify the recovery of carbon in the western New England landscape.

  1. Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils

    PubMed Central

    Van Trump, J. Ian; Wrighton, Kelly C.; Thrash, J. Cameron; Weber, Karrie A.; Andersen, Gary L.; Coates, John D.

    2011-01-01

    ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g−1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. PMID:21750120

  2. Sorption and leaching of benzalkonium chlorides in agricultural soils.

    PubMed

    Khan, Adnan Hossain; Macfie, Sheila M; Ray, Madhumita B

    2017-07-01

    The adsorption and leaching characteristics of two commonly used benzalkonium chlorides (BACs), benzyl dimethyl dodecyl ammonium chloride (BDDA) and benzyl dimethyl tetradecyl ammonium chloride (BDTA) using three agricultural soils with varied proportions of silt, sand, clay, and organic matter were determined. BACs are cationic surfactants used in large quantities for sanitary and personal care products and are abundant in environmental samples. Adsorption isotherm data (aqueous concentration in the range of 25-150 mg L -1 ) fitted the Langmuir model better than the Freundlich model. BDTA with a longer alkyl chain adsorbed more to soil compared to BDDA, and the soil with the highest percentage of clay adsorbed the most. Column tests conducted using soils amended with lime stabilised biosolids and artificial rain water at a flow rate of 0.2 mL min -1 indicate very low leaching of BACs. Less than 1% of the available BDDA leached through sandy loam soil column with a depth of 9 cm. Therefore, the possibility of BACs to become bioavailable through leaching is very low at environmentally relevant concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. GEMAS: CNS concentrations and C/N ratios in European agricultural soil.

    PubMed

    Matschullat, Jörg; Reimann, Clemens; Birke, Manfred; Dos Santos Carvalho, Debora

    2018-06-15

    A reliable overview of measured concentrations of TC, TN and TS, TOC/TN ratios, and their regional distribution patterns in agricultural soil at the continental scale and based on measured data has been missing - despite much previous work on local and the European scales. Detection and mapping of natural (ambient) background element concentrations and variability in Europe was the focus of this work. While total C and S data had been presented in the GEMAS atlas already, this work delivers more precise (lower limit of determination) and fully quantitative data, and for the first time high-quality TN data. Samples were collected from the uppermost 20cm of ploughed soil (A p horizon) at 2108 sites with an even sampling density of one site per 2500km 2 for one individual land-use class (agricultural) across Europe (33 countries). Laboratory-independent quality control from sampling to analysis guaranteed very good data reliability and accuracy. Total carbon concentrations ranged from 0.37 to 46.3wt% (median: 2.20wt%) and TOC from 0.40 to 46.0wt% (median: 1.80wt%). Total nitrogen ranged from 0.018 to 2.64wt% (median: 0.169wt%) and TS from 0.008 to 9.74wt% (median: 0.034wt%), all with large variations in most countries. The TOC/TN ratios ranged from 1.8 to 252 (median: 10.1), with the largest variation in Spain and the smallest in some eastern European countries. Distinct and repetitive patterns emerge at the European scale, reflecting mostly geogenic and longer-term climatic influence responsible for the spatial distribution of TC, TN and TS. Different processes become visible at the continental scale when examining TC, TN and TS concentrations in agricultural soil Europe-wide. This facilitates large-scale land-use management and allows specific areas (subregional to local) to be identified that may require more detailed research. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A simple model of carbon in the soil profile for agricultural soils in Northwestern Europe

    NASA Astrophysics Data System (ADS)

    Taghizadeh-Toosi, Arezoo; Hutchings, Nicholas J.; Vejlin, Jonas; Christensen, Bent T.; Olesen, Jørgen E.

    2014-05-01

    World soil carbon (C) stocks are second to those in the ocean, and represent three times as much C as currently present in the atmosphere. The amount of C in soil may play a significant role in carbon exchanges between the atmosphere and the terrestrial environment. The C-TOOL model is a three-pool linked soil organic carbon (SOC) model in well-drained mineral soils under agricultural land management to allow generalized parameterization for estimating effects of management measures at medium to long time scales for the entire soil profile (0-100 cm). C-TOOL has been developed to enable simulations of SOC turnover in soil using temperature dependent first order kinetics for describing decomposition. Compared with many other SOC models, C-TOOL applies a less complicated structure, which facilitates easier calibration, and it requires only few inputs (i.e., average monthly air temperature, soil clay content,soil carbon-to-nitrogen ratio, and C inputs to the soil from plants and other sources). C-TOOL was parameterized using SOC and radiocarbon data from selected long-term field treatments in United Kingdom, Sweden and Denmark. However, less data were available for evaluation of subsoil C (25-100 cm) from the long-term experiments applied. In Denmark a national 7×7 km grid net was established in 1986 for soil C monitoring down to 100 cm depth. The results of SOC showed a significant decline from 1997 to 2009 in the 0-50 cm soil layer. This was mainly attributed to changes in the 25-50 cm layer, where a decline in SOC was found for all soil texture types. Across the period 1986 to 2009 there was clear tendency for increasing SOC on the sandy soils and reductions on the loamy soils. This effect is linked to land use, since grasslands and dairy farms are more abundant in the western parts of Denmark, where most of the sandy soils are located. The results and the data from soil monitoring have been used to validate the C-TOOL modelling approach used for accounting of

  5. Soil Macronutrient Sensing for Precision Agriculture

    USDA-ARS?s Scientific Manuscript database

    Accurate measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient agricultural production, including site-specific crop management (SSCM), where fertilizer nutrient application rates are adjusted spatially based on local requirements. Rapid, non-destru...

  6. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability.

    PubMed

    Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A

    2016-06-01

    Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Agricultural management impact on physical and chemical functions of European peat soils.

    NASA Astrophysics Data System (ADS)

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph

    2017-04-01

    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which

  8. Agriculture intensifies soil moisture decline in Northern China

    DOE PAGES

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; ...

    2015-07-09

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistentmore » with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.« less

  9. Agriculture intensifies soil moisture decline in Northern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistentmore » with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.« less

  10. Agriculture intensifies soil moisture decline in Northern China

    PubMed Central

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; Miralles, Diego G.; Teuling, Adriaan J.; Zhang, Tonglin; An, Pingli; Dong, Zhiqiang; Zhang, Jingting; He, Di; Wang, Liwei; Pan, Xuebiao; Bai, Wei; Niyogi, Dev

    2015-01-01

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p < 0.01), with a trend of −0.011 to −0.015 m3 m−3 per decade. Observed discharge declines for the three large river basins are consistent with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system. PMID:26158774

  11. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Hoskinson; R C. Rope; L G. Blackwood

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and amore » predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash

  12. Soil respiration and carbon loss relationship with temperature and land use conversion in freeze-thaw agricultural area.

    PubMed

    Ouyang, Wei; Lai, Xuehui; Li, Xia; Liu, Heying; Lin, Chunye; Hao, Fanghua

    2015-11-15

    Soil respiration (Rs) was hypothesized to have a special response pattern to soil temperature and land use conversion in the freeze-thaw area. The Rs differences of eight types of land use conversions during agricultural development were observed and the impacts of Rs on soil organic carbon (SOC) loss were assessed. The land use conversions during last three decades were categorized into eight types, and the 141 SOC sampling sites were grouped by conversion type. The typical soil sampling sites were subsequently selected for monitoring of soil temperature and Rs of each land use conversion types. The Rs correlations with temperature at difference depths and different conversion types were identified with statistical analysis. The empirical mean error model and the biophysical theoretical model with Arrhenius equation about the Rs sensitivity to temperature were both analyzed and shared the similar patterns. The temperature dependence of soil respiration (Q10) analysis further demonstrated that the averaged value of eight types of land use in this freeze-thaw agricultural area ranged from 1.15 to 1.73, which was lower than the other cold areas. The temperature dependence analysis demonstrated that the Rs in the top layer of natural land covers was more sensitive to temperature and experienced a large vertical difference. The natural land covers exhibited smaller Rs and the farmlands had the bigger value due to tillage practices. The positive relationships between SOC loss and Rs were identified, which demonstrated that Rs was the key chain for SOC loss during land use conversion. The spatial-vertical distributions of SOC concentration with the 1.5-km grid sampling showed that the more SOC loss in the farmland, which was coincided with the higher Rs in farmlands. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze

  13. Efficient mapping of agricultural soils using a novel electromagnetic measurement system

    NASA Astrophysics Data System (ADS)

    Trinks, Immo; Pregesbauer, Michael

    2016-04-01

    "Despite all our accomplishments, we owe our existence to a six-inch layer of topsoil and the fact that it rains." - Paul Harvey. Despite the fact, that a farmers most precious good is the soil that he or she cultivates, in most cases actually very little is known about the soils that are being farmed. Agricultural soils are under constant threat through erosion, depletion, pollution and other degrading processes, in particular when considering intensive industrial scale farming. The capability of soils to retain water and soil moisture is of vital importance for their agricultural potential. Detailed knowledge of the physical properties of soils, their types and texture, water content and the depth of the agricultural layer would be of great importance for resource-efficient tillage with sub-area dependent variable depth, and the targeted intelligent application of fertilizers or irrigation. Precision farming, which has seen increasing popularity in the USA as well as Australia, is still in its infancy in Europe. Traditional near-surface geophysical prospection systems for agricultural soil mapping have either been based on earth resistance measurements using electrode-disks that require soil contact, with inherent issues, or electromagnetic induction (EMI) measurements conducted with EMI devices mounted in non-metallic sledges towed several metres behind survey vehicles across the fields. Every farmer passes over the fields several times during each growing season, working the soil and treating the crops. Therefore a novel user-friendly measurement system, the "Topsoil Mapper" (TSM) has been developed, which enables the farmer to simultaneously acquire soil conductivity information and derived soil parameters while anyway passing over the fields using different agricultural implements. The measurement principle of the TSM is electromagnetic induction using a multi-coil array to acquire conductivity information along a vertical profile down to approximately 1.1 m

  14. Optimum soil frost depth to alleviate climate change effects in cold region agriculture

    NASA Astrophysics Data System (ADS)

    Yanai, Yosuke; Iwata, Yukiyoshi; Hirota, Tomoyoshi

    2017-03-01

    On-farm soil frost control has been used for the management of volunteer potatoes (Solanum tuberosum L.), a serious weed problem caused by climate change, in northern Japan. Deep soil frost penetration is necessary for the effective eradication of unharvested small potato tubers; however, this process can delay soil thaw and increase soil wetting in spring, thereby delaying agricultural activity initiation and increasing nitrous oxide emissions from soil. Conversely, shallow soil frost development helps over-wintering of unharvested potato tubers and nitrate leaching from surface soil owing to the periodic infiltration of snowmelt water. In this study, we synthesised on-farm snow cover manipulation experiments to determine the optimum soil frost depth that can eradicate unharvested potato tubers without affecting agricultural activity initiation while minimising N pollution from agricultural soil. The optimum soil frost depth was estimated to be 0.28-0.33 m on the basis of the annual maximum soil frost depth. Soil frost control is a promising practice to alleviate climate change effects on agriculture in cold regions, which was initiated by local farmers and further promoted by national and local research institutes.

  15. Optimum soil frost depth to alleviate climate change effects in cold region agriculture.

    PubMed

    Yanai, Yosuke; Iwata, Yukiyoshi; Hirota, Tomoyoshi

    2017-03-21

    On-farm soil frost control has been used for the management of volunteer potatoes (Solanum tuberosum L.), a serious weed problem caused by climate change, in northern Japan. Deep soil frost penetration is necessary for the effective eradication of unharvested small potato tubers; however, this process can delay soil thaw and increase soil wetting in spring, thereby delaying agricultural activity initiation and increasing nitrous oxide emissions from soil. Conversely, shallow soil frost development helps over-wintering of unharvested potato tubers and nitrate leaching from surface soil owing to the periodic infiltration of snowmelt water. In this study, we synthesised on-farm snow cover manipulation experiments to determine the optimum soil frost depth that can eradicate unharvested potato tubers without affecting agricultural activity initiation while minimising N pollution from agricultural soil. The optimum soil frost depth was estimated to be 0.28-0.33 m on the basis of the annual maximum soil frost depth. Soil frost control is a promising practice to alleviate climate change effects on agriculture in cold regions, which was initiated by local farmers and further promoted by national and local research institutes.

  16. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil.

    PubMed

    Adhikari, Dinesh; Jiang, Tianyi; Kawagoe, Taiki; Kai, Takamitsu; Kubota, Kenzo; Araki, Kiwako S; Kubo, Motoki

    2017-12-04

    Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil's ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper) in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples ( R ² = 0.25), and this relationship became significantly stronger at near-neutral pH (6.0-7.3; R ² = 0.67). No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0) or alkaline (pH > 7.3) pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH ( R ² = 0.72 and 0.73, respectively), as well as for Ca at alkaline pH ( R ² = 0.64). Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  17. Spatial and seasonal variations of pesticide contamination in agricultural soils and crops sample from an intensive horticulture area of Hohhot, North-West China.

    PubMed

    Zhang, Fujin; He, Jiang; Yao, Yiping; Hou, Dekun; Jiang, Cai; Zhang, Xinxin; Di, Caixia; Otgonbayar, Khureldavaa

    2013-08-01

    The spatial variability and temporal trend in concentrations of the organochlorine pesticides (OCPs), hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT), in soils and agricultural corps were investigated on an intensive horticulture area in Hohhot, North-West China, from 2008 to 2011. The most frequently found and abundant pesticides were the metabolites of DDT (p,p'-DDE, p,p'-DDT, o,p'-DDT and p,p'-DDD). Total DDT concentrations ranged from ND (not detectable) to 507.41 ng/g and were higher than the concentration of total HCHs measured for the range of 4.84-281.44 ng/g. There were significantly positive correlations between the ∑DDT and ∑HCH concentrations (r (2)>0.74) in soils, but no significant correlation was found between the concentrations of OCPs in soils and clay content while a relatively strong correlation was found between total OCP concentrations and total organic carbon (TOC). β-HCH was the main isomer of HCHs, and was detected in all samples; the maximum proportion of β-HCH compared to ∑HCHs (mean value 54%) was found, suggesting its persistence. The α/γ-HCH ratio was between 0.89 and 5.39, which signified the combined influence of technical HCHs and lindane. Low p,p'-DDE/p,p'-DDT in N1, N3 and N9 were found, reflecting the fresh input of DDTs, while the relatively high o,p'-DDT/p,p'-DDT ratios indicated the agricultural application of dicofol. Ratios of DDT/(DDE+DDD) in soils do not indicate recent inputs of DDT into Hohhot farmland soil environment. Seasonal variations of OCPs featured higher concentrations in autumn and lower concentrations in spring. This was likely associated with their temperature-driven re-volatilization and application of dicofol in late spring.

  18. Use of (137)Cs technique for soil erosion study in the agricultural region of Casablanca in Morocco.

    PubMed

    Nouira, A; Sayouty, E H; Benmansour, M

    2003-01-01

    Accelerated erosion and soil degradation currently cause serious problems to the Oued El Maleh basin (Morocco). Furthermore, there is still only limited information on rates of soil loss for optimising strategies for soil conservation. In the present study we have used the (137)Cs technique to assess the soil erosion rates on an agricultural land in Oued el Maleh basin near Casablanca (Morocco). A small representative agricultural field was selected to investigate the soil degradation required by soil managers in this region. The transect approach was applied for sampling to identify the spatial redistribution of (137)Cs. The spatial variability of (137)Cs inventory has provided evidence of the importance of tillage process and the human effects on the redistribution of (137)Cs. The mean (137)Cs inventory was found about 842 Bq m(-2), this value corresponds to an erosion rate of 82 tha(-1) yr(-1) by applying simplified mass balance model in a preliminary estimation. When data on site characteristics were available, the refined mass balance model was applied to highlight the contribution of tillage effect in soil redistribution. The erosion rate was estimated about 50 tha(-1) yr(-1). The aspects related to the sampling procedures and the models for calculation of erosion rates are discussed.

  19. Lead in Urban Soils: A Real or Perceived Concern for Urban Agriculture?

    PubMed

    Brown, Sally L; Chaney, Rufus L; Hettiarachchi, Ganga M

    2016-01-01

    Urban agriculture is growing in cities across the United States. It has the potential to provide multiple benefits, including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. In this paper, direct (soil ingestion via outdoor and indoor exposure) and indirect (consumption of food grown in Pb-contaminated soils) exposure pathways are reviewed. It is highly unlikely that urban agriculture will increase incidences of elevated blood Pb for children in urban areas. This is due to the high likelihood that agriculture will improve soils in urban areas, resulting in reduced bioavailability of soil Pb and reduced fugitive dust. Plant uptake of Pb is also typically very low. The exceptions are low-growing leafy crops where soil-splash particle contamination is more likely and expanded hypocotyl root vegetables (e.g., carrot). However, even with higher bioaccumulation factors, it is not clear that the Pb in root vegetables or any other crops will be absorbed after eating. Studies have shown limited absorption of Pb when ingested with food. Best management practices to assure minimal potential for exposure are also common practices in urban gardens. These include the use of residuals-based composts and soil amendments and attention to keeping soil out of homes. This review suggests that benefits associated with urban agriculture far outweigh any risks posed by elevated soil Pb. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Cultural Patterns of Soil Understanding in Organic Agriculture

    NASA Astrophysics Data System (ADS)

    Patzel, Nikola

    2017-04-01

    Different branches of modern agriculture rely on different cultural patterns of soil understanding; and they are supported by different schools of thought in soil science with their specific values and perspectives. For example, the European branch of organic agriculture, as it developed mainly in the 20th Century, is rooted in specific cultural concepts and was supported by associated minorities, or rather marginalised tendencies, within the soil science community. Some cases: It is about the transformations of living or organic matter, linked with debates on "microbes" and "life particles", "tissues" and macromolecules in the humus-sphere. It is about the "industrialised economical-technical paradigm" versus an "organic" or "ecological paradigm" - whatever both may be. It is about the relevance respectively of the "duties" of control by power, or by relatedness and "intercourse" in agricultural human-nature interaction. It is about the male and female qualities of effective God-images - both in their "religious" as well as their "secular" representations in individuals' and society's relation with nature and when dealing with soil. In today's conceptual and strategic debates and power struggles over how to sustainably feed from the land, we see patterns similar to those from the 19th and 20th Centuries in action. But the threats they pose are not yet sufficiently realised; the opportunities they offer are not yet sufficiently fulfilled. In this presentation, using the example of cultural patterns inside organic agriculture in Europe, some cultural problems and tasks will be highlighted, to which geosciences are of course confronted, being part of human society.

  1. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    PubMed

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  2. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    NASA Astrophysics Data System (ADS)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters

  3. Assessment of priority pesticides, degradation products, and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river basin.

    PubMed

    Hildebrandt, Alain; Lacorte, Sílvia; Barceló, Damià

    2007-02-01

    Gas chromatography-mass spectrometry (GC/MS) was employed for the determination of 30 widely used pesticides including various transformation products and alkylphenols in water and agricultural soils with the aim of assessing the impact of these compounds in agricultural soils and the underlying aquifer. The extraction, clean-up, and analytical procedures were optimized for both water and soil samples to provide a highly robust method capable of determining target analytes at the ppb-ppt level with high precision. For water samples, different solid-phase extraction cartridges and conditions were optimized; similarly, pressurized liquid extraction conditions were tested to provide interference-free extracts and high sensitivity. Instrumental LODs of 3-4 pg were obtained. The multi-residue extraction procedures were applied to the analysis of groundwaters and agricultural soils from the Ebro river basin (NE Spain). Most ubiquitous herbicides detected were triazines but some acetanilides and organophosphorus pesticides were also found; the pesticide additive tributylphosphate was found in all water samples. Levels varied between 0.57 and 5.37 microg/L in groundwater, whereas nonylphenol was the sole compound detected in soil. Alkylphenols are used as adjuvants in pesticide formulations and are present in sludges employed as soil fertilizers. Occurrence was found to be similar to other environmental studies.

  4. Distribution of selenium in soils of agricultural fields, western San Joaquin Valley, California

    USGS Publications Warehouse

    Fujii, Roger; Deverel, S.J.; Hatfield, D.B.

    1988-01-01

    Soils from three agricultural fields in the Panoche Creek alluvial fan area in the western San Joaquin Valley, California, were analyzed for soluble, adsorbed, and total concentrations of selenium (Se) to assess the distribution and forms of Se in relation to the leaching of Se from soils. This assessment is needed to evaluate the importance of soil Se in affecting ground water concentrations. Soil samples were collected from three fields with drainage systems of different ages (6, 15, 1.5 yr) and different Se concentrations in drain water (58, 430, 3700 µg L−1, respectively). Concentrations of soluble Se and salinity were highest in soils from the field drained for 1.5 yr and lowest in the field drained for 6 yr. Of the total concentration of soil Se from all three fields, the proportion of adsorbed and soluble Se ranged from 1 to 11% and 2 > 0.68) in saturation extracts of soils sampled from below the water table. In contrast, most soluble salts and Se apparently have been leached from the unsaturated soils in the fields drained for 6 and 15 yr. For the leached soils, dissolution and precipitation of evaporite minerals containing Se may no longer control concentrations of soluble Se.

  5. Assessing NIR & MIR Spectral Analysis as a Method for Soil C Estimation Across a Network of Sampling Sites

    NASA Astrophysics Data System (ADS)

    Spencer, S.; Ogle, S.; Borch, T.; Rock, B.

    2008-12-01

    Monitoring soil C stocks is critical to assess the impact of future climate and land use change on carbon sinks and sources in agricultural lands. A benchmark network for soil carbon monitoring of stock changes is being designed for US agricultural lands with 3000-5000 sites anticipated and re-sampling on a 5- to10-year basis. Approximately 1000 sites would be sampled per year producing around 15,000 soil samples to be processed for total, organic, and inorganic carbon, as well as bulk density and nitrogen. Laboratory processing of soil samples is cost and time intensive, therefore we are testing the efficacy of using near-infrared (NIR) and mid-infrared (MIR) spectral methods for estimating soil carbon. As part of an initial implementation of national soil carbon monitoring, we collected over 1800 soil samples from 45 cropland sites in the mid-continental region of the U.S. Samples were processed using standard laboratory methods to determine the variables above. Carbon and nitrogen were determined by dry combustion and inorganic carbon was estimated with an acid-pressure test. 600 samples are being scanned using a bench- top NIR reflectance spectrometer (30 g of 2 mm oven-dried soil and 30 g of 8 mm air-dried soil) and 500 samples using a MIR Fourier-Transform Infrared Spectrometer (FTIR) with a DRIFT reflectance accessory (0.2 g oven-dried ground soil). Lab-measured carbon will be compared to spectrally-estimated carbon contents using Partial Least Squares (PLS) multivariate statistical approach. PLS attempts to develop a soil C predictive model that can then be used to estimate C in soil samples not lab-processed. The spectral analysis of soil samples either whole or partially processed can potentially save both funding resources and time to process samples. This is particularly relevant for the implementation of a national monitoring network for soil carbon. This poster will discuss our methods, initial results and potential for using NIR and MIR spectral

  6. Regional Scale Simulations of Nitrate Leaching through Agricultural Soils of California

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, E.; Walkinshaw, M.; O'Geen, A. T.; Harter, T.

    2016-12-01

    Nitrate is recognized as one of California's most widespread groundwater contaminants. As opposed to point sources, which are relative easily identifiable sources of contamination, non-point sources of nitrate are diffuse and linked with widespread use of fertilizers in agricultural soils. California's agricultural regions have an incredible diversity of soils that encompass a huge range of properties. This complicates studies dealing with nitrate risk assessment, since important biological and physicochemical processes appear at the first meters of the vadose zone. The objective of this study is to evaluate all agricultural soils in California according to their potentiality for nitrate leaching based on numerical simulations using the Richards equation. We conducted simulations for 6000 unique soil profiles (over 22000 soil horizons) taking into account the effect of climate, crop type, irrigation and fertilization management scenarios. The final goal of this study is to evaluate simple management methods in terms of reduced nitrate leaching. We estimated drainage rates of water under the root zone and nitrate concentrations in the drain water at the regional scale. We present maps for all agricultural soils in California which can be used for risk assessment studies. Finally, our results indicate that adoption of simple irrigation and fertilization methods may significantly reduce nitrate leaching in vulnerable regions.

  7. A soil water based index as a suitable agricultural drought indicator

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.

    2015-03-01

    Currently, the availability of soil water databases is increasing worldwide. The presence of a growing number of long-term soil moisture networks around the world and the impressive progress of remote sensing in recent years has allowed the scientific community and, in the very next future, a diverse group of users to obtain precise and frequent soil water measurements. Therefore, it is reasonable to consider soil water observations as a potential approach for monitoring agricultural drought. In the present work, a new approach to define the soil water deficit index (SWDI) is analyzed to use a soil water series for drought monitoring. In addition, simple and accurate methods using a soil moisture series solely to obtain soil water parameters (field capacity and wilting point) needed for calculating the index are evaluated. The application of the SWDI in an agricultural area of Spain presented good results at both daily and weekly time scales when compared to two climatic water deficit indicators (average correlation coefficient, R, 0.6) and to agricultural production. The long-term minimum, the growing season minimum and the 5th percentile of the soil moisture series are good estimators (coefficient of determination, R2, 0.81) for the wilting point. The minimum of the maximum value of the growing season is the best estimator (R2, 0.91) for field capacity. The use of these types of tools for drought monitoring can aid the better management of agricultural lands and water resources, mainly under the current scenario of climate uncertainty.

  8. Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution.

    PubMed

    Clostre, Florence; Lesueur-Jannoyer, Magalie; Achard, Raphaël; Letourmy, Philippe; Cabidoche, Yves-Marie; Cattan, Philippe

    2014-02-01

    When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0-30- and 30-60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0-30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (<40 cm), deeper tillage led to a homogenization and a dilution of the pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level.

  9. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    PubMed

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  10. Assessment of Cr, Ni and Pb Pollution in Rural Agricultural Soils of Tonalite-Trondjhemite Series in Central India.

    PubMed

    Shukla, Kriti; Kumar, Bijendra; Agrawal, Rahul; Priyanka, Kumari; Venkatesh, Madavi; Anshumali

    2017-06-01

    Chromium (Cr), nickel (Ni) and lead (Pb) contamination was investigated in wheat cultivated rain-fed and irrigated rural agricultural soils (n = 31) of Tonalite-Trondjhemite Series in Central India. The soil sampling was carried out by using stratified random sampling method. The mean concentrations of Cr, Ni and Pb were 54.8, 38.1 and 68.9 mg/kg, respectively. The average values of enrichment factor (EF), geoaccumulation index (I geo ) and contamination factor (CF) followed the order as: Pb > Ni > Cr. Distribution patterns of soil parent material and weathering processes govern mineral enrichments, irrespective of rainfed or irrigated agricultural practices. Principal component analysis (PCA) showed strong loading of Cr and Ni (PC1) and Pb and clay (PC3). The strong loading on Cr and Ni indicates soils are originating from basic and volcanic rocks in the study area. The strong loading of Pb and clay indicates Pb is strongly adsorbed on clay minerals and Fe-oxides. The cancer risk (CR) index showed negligible carcinogenic risk to the residing population. However, hazard index (HI) values for children exceed the safe limit (HI > 1) for Cr and Pb. Spatial distribution of pollution load index suggest highest pollution in the northeastern part of the district. The study revealed that geogenically enriched soils of the area are suitable for agricultural activities under present conditions.

  11. The geochemical transformation of soils by agriculture and its dependence on soil erosion: An application of the geochemical mass balance approach.

    PubMed

    Yoo, Kyungsoo; Fisher, Beth; Ji, Junling; Aufdenkampe, Anthony; Klaminder, Jonatan

    2015-07-15

    Agricultural activities alter elemental budgets of soils and thus their long-term geochemical development and suitability for food production. This study examined the utility of a geochemical mass balance approach that has been frequently used for understanding geochemical aspect of soil formation, but has not previously been applied to agricultural settings. Protected forest served as a reference to quantify the cumulative fluxes of Ca, P, K, and Pb at a nearby tilled crop land. This comparison was made at two sites with contrasting erosional environments: relatively flat Coastal Plain in Delaware vs. hilly Piedmont in Pennsylvania. Mass balance calculations suggested that liming not only replenished the Ca lost prior to agricultural practice but also added substantial surplus at both sites. At the relatively slowly eroding Coastal Plain site, the agricultural soil exhibited enrichment of P and less depletion of K, while both elements were depleted in the forest soil. At the rapidly eroding Piedmont site, erosion inhibited P enrichment. In similar, agricultural Pb contamination appeared to have resulted in Pb enrichment in the relatively slowly eroding Coastal Plain agricultural soil, while not in the rapidly eroding Piedmont soils. We conclude that agricultural practices transform soils into a new geochemical state where current levels of Ca, P, and Pb exceed those provided by the local soil minerals, but such impacts are significantly offset by soil erosion. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Phosphorus in agricultural soils: drivers of its distribution at the global scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringeval, Bruno; Augusto, Laurent; Monod, Herve

    Phosphorus (P) availability in soils limits crop yields in many regions of the world, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global datasets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analyzed both the labile inorganic P (P ILAB), a proxy of the pool involved in plant nutrition and themore » total soil P (P TOT). We found that the soil biogeochemical background (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between P TOT vs P ILAB. Indeed, 97% of the P TOT spatial variability could be explained by BIOG, while BIOG and FARM explained 41% and 58% of P ILAB spatial variability, respectively. Other drivers such as climate, soil erosion, atmospheric P deposition and soil buffering capacity made only very small contribution. Lastly, our study is a promising approach to investigate the potential effect of P as a limiting factor for agricultural ecosystems and for global food production. Additionally, we quantified the anthropogenic perturbation of P cycle and demonstrated how the different drivers are combined to explain the global distribution of agricultural soil P.« less

  13. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Major pollutants in soils of abandoned agricultural land contaminated by e-waste activities in Hong Kong.

    PubMed

    Lopez, Brenda Natalia; Man, Yu Bon; Zhao, Yin Ge; Zheng, Jin Shu; Leung, Anna Oi Wah; Yao, Jun; Wong, Ming Hung

    2011-07-01

    Polycyclic aromatic hydrocarbon (PAH), polychlorinated biphenyl (PCB), polybrominated diphenyl ether (PBDE) compounds and five heavy metals (cadmium, copper, chromium, lead, and zinc) were determined in soil samples collected from six sites of abandoned agricultural land affected by electronic-waste: e-waste dismantling workshop [EW (DW)], e-waste open burning site [EW (OBS)], e-waste storage [EW (S)], and agricultural (A) in the New Territories, Hong Kong. Persistent organic pollutants (POPs) and heavy metals were detected in all soil samples. EW (DW) contained the highest concentrations of PAHs, Cr, Cu, and Zn, whereas EW (OBS) had the highest concentrations of PCBs, PBDEs, Cd, and Pb. PAH at EW (DW) and EW (OBS) and PCB concentrations at EW (OBS) exceeded the target values of the New Dutch list, whereas Cd, Cu, Cr, Pb, and Zn levels exceeded the Chinese legislation for the protection of agricultural production and safeguarding of human health, by 3-11 times at EW (OBS) and 5-8 times at EW (DW). Lead at EW (OBS) and EW (DW) and Cr at EW (DW) greatly exceeded the Canadian Soil Quality Guidelines by 46 and 20 times and 27 times, respectively. Concentrations of POPs and heavy metals at EW (DW) and EW (OBS) were significantly higher than at EW (S) and A. It was concluded that e-waste activities led to increases of toxic chemicals at these abandoned agricultural land, which would hinder the redevelopment of the land.

  15. Agricultural legacies in forest environments: tree communities, soil properties, and light availability.

    PubMed

    Flinn, Kathryn M; Marks, P L

    2007-03-01

    Temperate deciduous forests across much of Europe and eastern North America reflect legacies of past land use, particularly in the diversity and composition of plant communities. Intense disturbances, such as clearing forests for agriculture, may cause persistent environmental changes that continue to shape vegetation patterns as landscapes recover. We assessed the long-term consequences of agriculture for environmental conditions in central New York forests, including tree community structure and composition, soil physical and chemical properties, and light availability. To isolate the effects of agriculture, we compared 20 adjacent pairs of forests that were never cleared for agriculture (primary forests) and forests that established 85-100 years ago on plowed fields (secondary forests). Tree communities in primary and secondary forests had similar stem density, though secondary forests had 14% greater basal area. Species composition differed dramatically between the two forest types, with primary forests dominated by Acer saccharum and Fagus grandifolia and secondary forests by Acer rubrum and Pinus strobus. Primary and secondary forests showed no consistent differences in soil physical properties or in the principal gradient of soil fertility associated with soil pH. Within stands, however, soil water content and pH were more variable in primary forests. Secondary forest soils had 15% less organic matter, 16% less total carbon, and 29% less extractable phosphorus in the top 10 cm than adjacent primary stands, though the ranges of the forest types mostly overlapped. Understory light availability in primary and secondary forests was similar. These results suggest that, within 100 years, post-agricultural stands have recovered conditions comparable to less disturbed forests in many attributes, including tree size and number, soil physical properties, soil chemical properties associated with pH, and understory light availability. The principal legacies of

  16. Modelling carbon dioxide emissions from agricultural soils in Canada.

    PubMed

    Yadav, Dhananjay; Wang, Junye

    2017-11-01

    Agricultural soils are a leading source of atmospheric greenhouse gas (GHG) emissions and are major contributors to global climate change. Carbon dioxide (CO 2 ) makes up 20% of the total GHG emitted from agricultural soil. Therefore, an evaluation of CO 2 emissions from agricultural soil is necessary in order to make mitigation strategies for environmental efficiency and economic planning possible. However, quantification of CO 2 emissions through experimental methods is constrained due to the large time and labour requirements for analysis. Therefore, a modelling approach is needed to achieve this objective. In this paper, the DeNitrification-DeComposition (DNDC), a process-based model, was modified to predict CO 2 emissions for Canada from regional conditions. The modified DNDC model was applied at three experimental sites in the province of Saskatchewan. The results indicate that the simulations of the modified DNDC model are in good agreement with observations. The agricultural management of fertilization and irrigation were evaluated using scenario analysis. The simulated total annual CO 2 flux changed on average by ±13% and ±1% following a ±50% variance of the total amount of N applied by fertilising and the total amount of water through irrigation applications, respectively. Therefore, careful management of irrigation and applications of fertiliser can help to reduce CO 2 emissions from the agricultural sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    NASA Astrophysics Data System (ADS)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  18. The influence of facility agriculture production on phthalate esters distribution in black soils of northeast China.

    PubMed

    Zhang, Ying; Wang, Pengjie; Wang, Lei; Sun, Guoqiang; Zhao, Jiaying; Zhang, Hui; Du, Na

    2015-02-15

    The current study investigates the existence of 15 phthalate esters (PAEs) in surface soils (27 samples) collected from 9 different facility agriculture sites in the black soil region of northeast China, during the process of agricultural production (comprising only three seasons spring, summer and autumn). Concentrations of the 15 PAEs detected significantly varied from spring to autumn and their values ranged from 1.37 to 4.90 mg/kg-dw, with a median value of 2.83 mg/kg-dw. The highest concentration of the 15 PAEs (4.90 mg/kg-dw) was determined in summer when mulching film was used in the greenhouses. Probably an increase in environmental temperature was a major reason for PAE transfer from the mulching film into the soil and coupled with the increased usage of chemical fertilizers in greenhouses. Results showed that of the 15 PAEs, di(2-ethylhexyl) phthalate(DEHP), di-n-butyl phthalate (DBP), diethyl phthalate (DEP) and dimethyl phthalate (DMP) were in abundance with the mean value of 1.12 ± 0.22, 0.46 ± 0.05, 0.36 ± 0.04, and 0.17 ± 0.01 mg/kg-dw, respectively; and their average contributions in spring, summer, and autumn ranged between 64.08 and 90.51% among the 15 PAEs. The results of Principal Component Analysis (PCA) indicated the concentration of these four main PAEs significantly differed among the facility agricultures investigated, during the process of agricultural production. In comparison with foreign and domestic results of previous researches, it is proved that the black soils of facility agriculture in northeast China show higher pollution situation comparing with non-facility agriculture soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The impact of peasant and industrialized agricultural systems on high productive loess soils in Central Europe

    NASA Astrophysics Data System (ADS)

    Schneider, Christian; Heinrich, Jürgen

    2017-04-01

    The study analyzes the impact of a peasant and an industrialized agricultural land use system on soil degradation in two loess landscapes. The comparative method aims to test the hypothesis that different agricultural systems cause distinct differences in soil properties that can be documented by geo-chemical soil analysis. The two loess landscapes under investigation show great similarities in natural geo-ecological properties. Nevertheless, the land use system makes a significant difference in both research areas. The Polish Proszowice Plateau is characterized by traditional small-scale peasant agriculture. Small plots and fragmented ownership make it difficult to conjointly manage soil erosion. However, the Middle Saxonian Loess Region in Germany represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in the large-scale, high-input farming system. To identify representative small catchments for soil sampling relief heterogeneity analyses and a cluster analysis were performed to bridge scales between the landscape and the sub-catchment level. Geo-physical and geo-chemical laboratory techniques were used to analyze major soil properties. A total number of 346 sites were sampled and analyzed for geo-ecological, geomorphological, and pedological features. The results show distinct differences in soil properties between the two loess landscapes strongly influenced by agricultural use. However, despite big differences in agricultural management great similarities can also be found especially for mean soil organic carbon contents and plant nutrient values. At the same time, the greater variability of the soil mosaic is depicted by a higher variance of almost all soil properties common to traditional land use systems. Topsoils on arable land at the Proszowice Plateau also show a wider C/N ratio. Therefore, the soils there are less prone to degradation through mineralization of humic substances. The wider ratio is

  20. Proximal Soil Sensing - A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    PubMed

    Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens

    2016-01-01

    Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Our findings suggest that PSS contributes to the spatial modelling of

  1. Landscape patterns and soil organic carbon stocks in agricultural bocage landscapes

    NASA Astrophysics Data System (ADS)

    Viaud, Valérie; Lacoste, Marine; Michot, Didier; Walter, Christian

    2014-05-01

    Soil organic carbon (SOC) has a crucial impact on global carbon storage at world scale. SOC spatial variability is controlled by the landscape patterns resulting from the continuous interactions between the physical environment and the society. Natural and anthropogenic processes occurring and interplaying at the landscape scale, such as soil redistribution in the lateral and vertical dimensions by tillage and water erosion processes or spatial differentiation of land-use and land-management practices, strongly affect SOC dynamics. Inventories of SOC stocks, reflecting their spatial distribution, are thus key elements to develop relevant management strategies to improving carbon sequestration and mitigating climate change and soil degradation. This study aims to quantify SOC stocks and their spatial distribution in a 1,000-ha agricultural bocage landscape with dairy production as dominant farming system (Zone Atelier Armorique, LTER Europe, NW France). The site is characterized by high heterogeneity on short distance due to a high diversity of soils with varying waterlogging, soil parent material, topography, land-use and hedgerow density. SOC content and stocks were measured up to 105-cm depth in 200 sampling locations selected using conditioned Latin hypercube sampling. Additive sampling was designed to specifically explore SOC distribution near to hedges: 112 points were sampled at fixed distance on 14 transects perpendicular from hedges. We illustrate the heterogeneity of spatial and vertical distribution of SOC stocks at landscape scale, and quantify SOC stocks in the various landscape components. Using multivariate statistics, we discuss the variability and co-variability of existing spatial organization of cropping systems, environmental factors, and SOM stocks, over landscape. Ultimately, our results may contribute to improving regional or national digital soil mapping approaches, by considering the distribution of SOC stocks within each modeling unit and

  2. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success.

    PubMed

    Verbruggen, Erik; van der Heijden, Marcel G A; Rillig, Matthias C; Kiers, E Toby

    2013-03-01

    Soil biota provide a number of key ecological services to natural and agricultural ecosystems. Increasingly, inoculation of soils with beneficial soil biota is being considered as a tool to enhance plant productivity and sustainability of agricultural ecosystems. However, one important bottleneck is the establishment of viable microbial populations that can persist over multiple seasons. Here, we explore the factors responsible for establishment of the beneficial soil fungi, arbuscular mycorrhizal fungi (AMF), which can enhance the yield of a wide range of agricultural crops. We evaluate field application potential and discuss ecological and evolutionary factors responsible for application success. We identify three factors that determine inoculation success and AM fungal persistence in soils: species compatibility (can the introduced species thrive under the imposed circumstances?); field carrying capacity (the habitat niche available to AMF); and priority effects (the influence of timing and competition on the establishment of alternative stable communities). We explore how these factors can be employed for establishment and persistence of AMF. We address the importance of inoculum choice, plant choice, management practices and timing of inoculation for the successful manipulation of the resulting AMF community.

  3. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    PubMed

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and soil sampling stations, the exposure to ∑PAH16 was >ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Identification of vulnerable sites in salts affected agricultural soils from South-Eastern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    Soil salinization is one of the main problems in many soils under intensive agricultural practices, especially in arid and semiarid zones. Two important reasons for the occurrence of salinization are i) the use of low quality irrigation water and ii) climatic conditions reducing soil quality. The results of salinization can be quite serious. It limits the growing of crops, constrains agricultural productivity, and in severe cases, leads to the abandonment of agricultural soils. There are mainly two kinds of soil salinity: naturally occurring dry-land salinity and human-induced salinity caused by the low quality of irrigation water, excessive water and fertilizer applications. In both cases the development of plants and soil organisms is limited. Natural occurrence of salts in soils is very difficult to handle and requires higher investments than the reduction of human-induced salinity. For these reasons, identification of vulnerable sites is essential for sustainable agricultural management, especially in these semiarid and arid environments. The main aim of this study was to examine spatial and vertical distribution pattern of salts in a semi-arid study site in South-Eastern Spain in order to identify vulnerable sites. In order to achieve this objective, surface soil samples were collected in January and July 2009 at 48 sites located in a representative lemon production area close to City of Murcia, covering a surface area of 44 km2. The area was divided using a square grid of 1000 m and the samples were taken from these squares. The ionic concentrations were used as the input data for distribution maps. The software used for the spatial analysis was Arcview 3.1. An interpolation method called the Inverse Distanced Weighted (IDW) method was adopted for the interpolation of the data. The results indicated that the concentrations of most anions are higher in summer. The difference was particularly large for chloride, most likely because of its high mobility and

  5. Organic matter composition of soil macropore surfaces under different agricultural management practices

    NASA Astrophysics Data System (ADS)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  6. Soils of Agricultural Terraces with Retaining Walls in the Mountains of Dagestan

    NASA Astrophysics Data System (ADS)

    Borisov, A. V.; Korobov, D. S.; Idrisov, I. A.; Kalinin, P. I.

    2018-01-01

    Soil-archeological studies of agricultural terraces with retaining walls in the area of construction of the Gotsatlinskaya Hydroelectric Power Station in Khunzakh district of the Republic of Dagestan have been performed. The morphogenetic and chemical properties of the anthropogenic soils (Anthrosols) in different parts of the terrace complex are analyzed. It is argued that slope terracing in the mountains ensures the development of thicker soil profiles with pronounced genetic horizons. The soils of agricultural terraces store important information of the paleoenvironmental history and land use. A characteristic feature of the Anthrosols of agricultural terraces is a relatively even distribution of gravelly material of up to 5 cm in diameter in the plow layer. The soils of terraces are characterized by the high variability in their properties within the entire terrace complex and within the particular terraces.

  7. Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Creamer, Courtney; Baisden, W. Troy; Farrell, Mark; Fallon, Stewart

    2017-01-01

    Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays, and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil. After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha-1 and were linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing productivity - twice the rate of decline predicted from simple steady-state models or static three-pool decay rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to 21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization with important implications for how SOM dynamics are represented in models.

  8. Nitrogen loss from windblown agricultural soils in the Columbia Plateau

    USDA-ARS?s Scientific Manuscript database

    Wind erosion of agricultural soils can degrade both air quality and soil productivity in the Columbia Plateau of the Pacific Northwest United States. Soils in the region contain fine particles that, when suspended, are highly susceptible to long range transport in the atmosphere. Nitrogen (N) associ...

  9. Precision agriculture and soil and water management in cranberry production

    USDA-ARS?s Scientific Manuscript database

    Recent research on soil and water management of cranberry farms is presented in a special issue in Canadian Journal of Soil Science. The special issue (“Precision Agriculture and Soil Water Management in Cranberry Production”) consists of ten articles that include field, laboratory, and modeling stu...

  10. Watershed Sediment Losses to Lakes Accelerating Despite Agricultural Soil Conservation Efforts

    PubMed Central

    Heathcote, Adam J.; Filstrup, Christopher T.; Downing, John A.

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha−1. Sediment deposition from erosion increased >6-fold, from 149 g m−2 yr−1 in 1850 to 986 g m−2 yr−1 by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm−1 at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation. PMID:23326454

  11. Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts.

    PubMed

    Heathcote, Adam J; Filstrup, Christopher T; Downing, John A

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha(-1). Sediment deposition from erosion increased >6-fold, from 149 g m(-2) yr(-1) in 1850 to 986 g m(-2) yr(-1) by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm(-1) at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation.

  12. Estimation of Anthropogenic Uranium Concentration in Japanese Agricultural Soils from Phosphatic Fertilizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagami, K.; Uchida, S.; Takeda, H.

    2006-07-01

    In this study, estimation of excess amount of uranium in Japanese agricultural soils due to phosphatic fertilizer application were carried out, by measuring concentrations of total U and Th in 82 soils collected throughout Japan by inductively coupled plasma mass spectrometry (ICP-MS). Since Japanese non-agricultural fields have an average U/Th ratio of 0.23, thus, using U/Th ratios in non-agricultural areas, we thought that it is possible to calculate amounts of excess U due to the application of fertilizers. It was estimated that about 50% of total U in paddy field soils (range: 4-78%) and about 48% of total U inmore » upland field soils (range: 4-74%) were originated from the phosphatic fertilizers. (authors)« less

  13. [Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban].

    PubMed

    Fan, Hui-hui; Li, Ru-zhong; Pei, Ting-ting; Zhang, Rui-gang

    2016-01-15

    To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban, Chaohu Lake basin, 132 surface soil samples were collected from the catchment area. The spatial distribution of total phosphorus (TP) and bio-available phosphorus (Bio-P), and the spatial variability of soil available phosphorus (Olsen-P) and easy desorption phosphorus (CaCl2-P) were analyzed using the Kriging technology of AreGIS after speciation analysis of soil phosphorus. Moreover, the enrichment level of soil phosphorus was studied, and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus. The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged. The enrichment rates of soil phosphorus forms were arranged as follows: Ca-P (15.01) > OP (4.16) > TP (3. 42) > IP (2.94) > Ex-P (2.76) > Fe/Al-P (2.43) > Olsen-P (2.34). The critical value of Olsen-P leaching was 18.388 mg x kg(-1), and the leaching samples with values higher than the threshold value accounted for 16.6% of total samples. Generally, the high-risk areas mainly occurred in the upstream of the left tributary, the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.

  14. Agricultural use of soil, consequences in soil organic matter and hydraulic conductivity compared with natural vegetation in central Spain

    NASA Astrophysics Data System (ADS)

    Vega, Verónica; Carral, Pilar; Alvarez, Ana Maria; Marques, Maria Jose

    2014-05-01

    When ecosystems are under pressure due to high temperatures and water scarcity, the use of land for agriculture can be a handicap for soil and water conservation. The interactions between plants and soils are site-specific. This study provides information about the influence of the preence vs. The absence of vegetation on soil in a semi-arid area of the sout-east of Madrid (Spain, in the Tagus River basin. In this area soil materials are developed over a calcareous-evaporitic lithology. Soils can be classified as Calcisols, having horizons of accumulation with powdered limestone and irregular nodules of calcium carbonate. They can be defined as Haplic Cambisols and Leptic Calcisols (WRB 2006-FAO). The area is mainly used for rainfed agriculture, olive groves, vineyards and cereals. There are some patches of bushes (Quercus sp.) and grasses (Stipa tenacissima L.) although only found on the top of the hills. This study analyses the differences found in soils having three different covers: Quercus coccifera, Stipa tenacissima and lack of vegetation. This last condition was found in the areas between cultivated olive trees. Soil organic matter, porosity and hydraulic conductivity are key properties of soil to understand its ability to adapt to climate or land use changes. In order to measure the influence of different soil covers, four replicates of soil were sampled in each condition at two soil depth, (0-10 cm and 10-20 cm). Hydraulic conductivity was measured in each soil condition and replicate using a Mini-disk® infiltrometer. There were no differences between the two depths sampled. Similarly, there were no changes in electric conductivity (average 0.1±0.03 dS m-1); pH (8.7±0.2) or calcium carbonate content (43±20 %). Nevertheless, significant differences (p>0.001) were found in soil organic matter. The maximum was found in soils under Quercus (4.7±0.5 %), followed by Stipa (2.2±1.1 %). The soil without vegetation in the areas between olive trees had only 0

  15. Agricultural soil greenhouse gas emissions: a review of national inventory methods.

    PubMed

    Lokupitiya, Erandathie; Paustian, Keith

    2006-01-01

    Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit national greenhouse gas (GHG) inventories, together with information on methods used in estimating their emissions. Currently agricultural activities contribute a significant portion (approximately 20%) of global anthropogenic GHG emissions, and agricultural soils have been identified as one of the main GHG source categories within the agricultural sector. However, compared to many other GHG sources, inventory methods for soils are relatively more complex and have been implemented only to varying degrees among member countries. This review summarizes and evaluates the methods used by Annex 1 countries in estimating CO2 and N2O emissions in agricultural soils. While most countries utilize the Intergovernmental Panel on Climate Change (IPCC) default methodology, several Annex 1 countries are developing more advanced methods that are tailored for specific country circumstances. Based on the latest national inventory reporting, about 56% of the Annex 1 countries use IPCC Tier 1 methods, about 26% use Tier 2 methods, and about 18% do not estimate or report N2O emissions from agricultural soils. More than 65% of the countries do not report CO2 emissions from the cultivation of mineral soils, organic soils, or liming, and only a handful of countries have used country-specific, Tier 3 methods. Tier 3 methods usually involve process-based models and detailed, geographically specific activity data. Such methods can provide more robust, accurate estimates of emissions and removals but require greater diligence in documentation, transparency, and uncertainty assessment to ensure comparability between countries. Availability of detailed, spatially explicit activity data is a major constraint to implementing higher tiered methods in many countries.

  16. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  17. Agricultural machineries wheeling and soil qualities mapping in climatic changes conditions

    NASA Astrophysics Data System (ADS)

    Bergonzoli, S.; Servadio, P.

    2012-04-01

    As argued in the Fourth Assessment Report of the UN International Panel on Climate Change (IPCC) published in 2007 the global climate is changing and will continue to change in the near future. Due to the changing in time distribution and intensity of rainfall, the available time to carry out soil tillage operations, seedbed preparation and fertilizers distribution is becoming shorter. These issues are worsened by soil compaction that is one of the major problems facing modern agriculture. Soil compaction impedes infiltration of rainfall, so the increasing scale of mechanization might well be responsible for greater runoff, soil loss by water erosion and water-logging. Overuse of machinery, intensive cropping, short crop rotations, intensive grazing and inappropriate soil management leads to compaction. The objective of this research was to study the compacting effect of two wheeled tractors fitted with different type of tires during fertilizing operations with soil water content over field capacity. Field tests were carried out in a farm near Rome (41°52'502'' Latitude (N); 12°12'866" Longitude (E)) in March 2010 on a clay soil (Vertic Cambisol) during wheat fertilizing. One tractor was fitted with very narrow and high aspect ratio tires with mounted broadcaster coded (WTN), the other tractor was equipped with extra large and low aspect ratio tires with trailed broadcaster for a total of four axles coded (WTEL). Immediately after fertilising operations, such effects have been quantified through spatial variation of some soil parameters: soil water content, soil penetration resistance (CI) and soil shear strength (SS). Soil samplings have been carried out on the tracks left by the tractors and on soil not interested by the passage (control). To monitor all tractors passes across the field and to compute the total area covered by tractors tires a DGPS receiver was placed into the tractors; to map soil parameters studied, both on tracks left by the tractors passes

  18. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture.

    PubMed

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R

    2014-08-01

    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications . Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  19. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture

    PubMed Central

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications. Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  20. Biological and biochemical soil quality indicators for agricultural management

    NASA Astrophysics Data System (ADS)

    Bongiorno, Giulia

    2017-04-01

    Soil quality is defined as the capacity of a soil to perform multiple functions. Agricultural soils can, in principle, sustain a wide range of functions. However, negative pressure exerted by natural and anthropogenic soil threats such as soil erosion, soil organic matter losses and soil compaction have the potential to permanently damage soil quality. Soil chemical, physical and biological parameters can be used as indicators of soil quality. The specific objective of this study is to assess the suitability of novel soil parameters as soil quality indicators. We focus on biological/biochemical parameters, due to the unique role of soil biota in soil functions and to their high sensitivity to disturbances. The novel indicators are assessed in ten European long-term field experiments (LTEs) with different agricultural land use (arable and permanent crops), management regimes and pedo-climatic characteristics. The contrasts in agricultural management are represented by conventional/reduced tillage, organic/mineral fertilization and organic matter addition/no organic matter addition. We measured two different pools of labile organic carbon (dissolved organic carbon (DOC), and permanganate oxidizable carbon (POXC)), and determined DOC quality through its fractionation in hydrophobic and hydrophilic compounds. In addition, total nematode abundance has been assessed with qPCR. These parameters will be related to soil functions which have been measured with a minimum data set of indicators for soil quality (including TOC, macronutrients, and soil respiration). As a preliminary analysis, the Sensitivity Index (SI) for a given LTE was calculated for DOC and POXC according to Bolinder et al., 1999 as the ratio of the soil attribute under modified practices (e.g. reduced tillage) compared to the conventional practices (e.g. conventional tillage). The overall effect of the sustainable management on the indicators has been derived by calculating an average SI for those LTEs

  1. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  2. CO2 emissions from organic soils under agricultural use

    NASA Astrophysics Data System (ADS)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2015-04-01

    The organic soils of peatlands represent a major global sink for terrestrial carbon. Agricultural use of organic soils requires drainage, changing conditions in these soils from anoxic to oxic. As a consequence, the organic carbon that had been accumulated often over millennia is rapidly mineralized, so that these soils then are no longer a sink but become a source of CO2. The aim of our study is to analyse the amount and origin of CO2 emitted from organic soils under three land-use types (forest, arable cropland and grassland). Our study area is located in the Bernese Lakeland (CH). The peatlands of this region were drained in the 1870ies, and the site as well as the surrounding area are now managed by a state prison. Since decades our study site is under the same land-use. In Oktober 2013 we took 4 replicate soil cores of all land-uses with respect to a certain distance from a major drainage ditch. Each core was analysed for its bulk density and carbon content. 9 soil samples from a depth of 20-30 cm were analysed for their F14C and δ13C values and later divided into 18 subsamples. Half of them were mixed with 0.2-0.4 g of labelled corn stalk enriched in δ13C (δ13C=2000) in order to mimic plant residue inputs in the field. The moisture content of these samples was equilibrated at a pF-value of 2 before incubating the samples in a Respicond VII analyser for several weeks at 20° C. By trapping the respired CO2 in NaOH and precipitating it as BaCO3 we were able to analyse its F14C and δ13C value. This enabled us to determine to what extent the CO2 originated from old peat, young plant residues or the added maize stalk. Generally the cropland samples showed the highest respiration rates, lowest F14C values and highest carbon stocks. The organic soils under the forest were degraded the most and showed low respiration rates. Analyzing the F14C values of the CO2 revealed that peat contributes most to the respiration and its degradation is fastest in the cropland

  3. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale.

    PubMed

    Figuerola, Eva L M; Guerrero, Leandro D; Türkowsky, Dominique; Wall, Luis G; Erijman, Leonardo

    2015-03-01

    The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on β-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower β-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of β-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Spatial variability of total carbon and soil organic carbon in agricultural soils in Baranja region, Croatia

    NASA Astrophysics Data System (ADS)

    Bogunović, Igor; Trevisani, Sebastiano; Pereira, Paulo; Šeput, Miranda

    2017-04-01

    Climate change is expected to have an important influence on the crop production in agricultural regions. Soil carbon represents an important soil property that contributes to mitigate the negative influence of climate change on intensive cropped areas. Based on 5063 soil samples sampled from soil top layer (0-30 cm) we studied the spatial distribution of total carbon (TC) and soil organic carbon (SOC) content in various soil types (Anthrosols, Cambisols, Chernozems, Fluvisols, Gleysols, Luvisols) in Baranja region, Croatia. TC concentrations ranged from 2.10 to 66.15 mg/kg (with a mean of 16.31 mg/kg). SOC concentrations ranged from 1.86 to 58.00 mg/kg (with a mean of 13.35 mg/kg). TC and SOC showed moderate heterogeneity with coefficient of variation (CV) of 51.3% and 33.8%, respectively. Average concentrations of soil TC vary in function of soil types in the following decreasing order: Anthrosols (20.9 mg/kg) > Gleysols (19.3 mg/kg) > Fluvisols (15.6 mg/kg) > Chernozems (14.2 mg/kg) > Luvisols (12.6 mg/kg) > Cambisols (11.1 mg/kg), while SOC concentrations follow next order: Gleysols (15.4 mg/kg) > Fluvisols (13.2 mg/kg) = Anthrosols (13.2 mg/kg) > Chernozems (12.6 mg/kg) > Luvisols (11.4 mg/kg) > Cambisols (10.5 mg/kg). Performed geostatistical analysis of TC and SOC; both the experimental variograms as well as the interpolated maps reveal quite different spatial patterns of the two studied soil properties. The analysis of the spatial variability and of the spatial patterns of the produced maps show that SOC is likely influenced by antrophic processes. Spatial variability of SOC indicates soil health deterioration on an important significant portion of the studied area; this suggests the need for future adoption of environmentally friendly soil management in the Baranja region. Regional maps of TC and SOC provide quantitative information for regional planning and environmental monitoring and protection purposes.

  5. Proximal Soil Sensing – A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    PubMed Central

    Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens

    2016-01-01

    Background Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Methodology/Principal Findings Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Conclusions/Significance Our

  6. Predicting soil properties for sustainable agriculture using vis-NIR spectroscopy: a case study in northern Greece

    NASA Astrophysics Data System (ADS)

    Tsakiridis, Nikolaos L.; Tziolas, Nikolaos; Dimitrakos, Agathoklis; Galanis, Georgios; Ntonou, Eleftheria; Tsirika, Anastasia; Terzopoulou, Evangelia; Kalopesa, Eleni; Zalidis, George C.

    2017-09-01

    Soil Spectral Libraries facilitate agricultural production taking into account the principles of a low-input sustainable agriculture and provide more valuable knowledge to environmental policy makers, enabling improved decision making and effective management of natural resources in the region. In this paper, a comparison in the predictive performance of two state of the art algorithms, one linear (Partial Least Squares Regression) and one non-linear (Cubist), employed in soil spectroscopy is conducted. The comparison was carried out in a regional Soil Spectral Library developed in the Eastern Macedonia and Thrace region of Northern Greece, comprised of roughly 450 Entisol soil samples from soil horizons A (0-30 cm) and B (30-60 cm). The soil spectra were acquired in the visible - Near Infrared Red region (vis- NIR, 350nm-2500nm) using a standard protocol in the laboratory. Three soil properties, which are essential for agriculture, were analyzed and taken into account for the comparison. These were the Organic Matter, the Clay content and the concentration of nitrate-N. Additionally, three different spectral pre-processing techniques were utilized, namely the continuum removal, the absorbance transformation, and the first derivative. Following the removal of outliers using the Mahalanobis distance in the first 5 principal components of the spectra (accounting for 99.8% of the variance), a five-fold cross-validation experiment was considered for all 12 datasets. Statistical comparisons were conducted on the results, which indicate that the Cubist algorithm outperforms PLSR, while the most informative transformation is the first derivative.

  7. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  8. Transport of agricultural contaminants through karst soil

    USDA-ARS?s Scientific Manuscript database

    Karst landscapes are common in many agricultural regions in the US. Well-developed karst landscapes are characterized by shallow soils, sinkholes, sinking streams, underground conduits, and springs. In these landscapes surface runoff is minimal and most recharge enters the subsurface relatively quic...

  9. Identification of pesticide transformation products in agricultural soils using liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    PubMed

    Padilla-Sánchez, Juan A; Michael Thurman, E; Plaza-Bolaños, Patricia; Ferrer, Imma

    2012-05-15

    A study of pesticide transformation products (TPs) was carried out in soils of agricultural areas working under integrated pest management programs (IPMs). Bupirimate and cyromazine were the pesticides detected in soils after an initial pre-screening. The aim of this work was the identification of relevant TPs of these two pesticides. Soil samples were extracted by pressurized liquid extraction (PLE), using a mixture of ethyl acetate/methanol (3:1, v/v), and analyzed by ultra-high-pressure liquid chromatography coupled to hybrid quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS). For confirmation purposes, tandem mass spectrometry (MS(2) ) experiments were carried out using QTOF-MS, obtaining specific fragment structures of the pesticides and their degradates. Retention times and exact masses of the protonated molecules were used for the identification of the pesticides bupirimate (m/z 317.1642) and cyromazine (m/z 167.1040) and their respective TPs, namely ethirimol (m/z 210.1601) and melamine (m/z 127.0727). A novel strategy using pseudo-MS(3) experiments was developed to confirm the structure of bupirimate TP (ethirimol). This strategy consists of generating the particular TP in the ion source, via collision-induced fragmentation, and then performing MS/MS to the fragment ion formed in-source. Ethirimol and melamine were identified as degradation products of bupirimate and cyromazine, respectively. The study was applied to the analysis of 15 agricultural soil samples finding bupirimate and ethirimol in seven samples, cyromazine in one sample and melamine in four samples. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Strategies for soil-based precision agriculture in cotton

    NASA Astrophysics Data System (ADS)

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff

    2016-05-01

    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  11. Combined Flux Chamber and Genomics Approach Links Nitrous Acid Emissions to Ammonia Oxidizing Bacteria and Archaea in Urban and Agricultural Soil.

    PubMed

    Scharko, Nicole K; Schütte, Ursel M E; Berke, Andrew E; Banina, Lauren; Peel, Hannah R; Donaldson, Melissa A; Hemmerich, Chris; White, Jeffrey R; Raff, Jonathan D

    2015-12-01

    Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.

  12. Mechanistic modeling of reactive soil nitrogen emissions across agricultural management practices

    NASA Astrophysics Data System (ADS)

    Rasool, Q. Z.; Miller, D. J.; Bash, J. O.; Venterea, R. T.; Cooter, E. J.; Hastings, M. G.; Cohan, D. S.

    2017-12-01

    The global reactive nitrogen (N) budget has increased by a factor of 2-3 from pre-industrial levels. This increase is especially pronounced in highly N fertilized agricultural regions in summer. The reactive N emissions from soil to atmosphere can be in reduced (NH3) or oxidized (NO, HONO, N2O) forms, depending on complex biogeochemical transformations of soil N reservoirs. Air quality models like CMAQ typically neglect soil emissions of HONO and N2O. Previously, soil NO emissions estimated by models like CMAQ remained parametric and inconsistent with soil NH3 emissions. Thus, there is a need to more mechanistically and consistently represent the soil N processes that lead to reactive N emissions to the atmosphere. Our updated approach estimates soil NO, HONO and N2O emissions by incorporating detailed agricultural fertilizer inputs from EPIC, and CMAQ-modeled N deposition, into the soil N pool. EPIC addresses the nitrification, denitrification and volatilization rates along with soil N pools for agricultural soils. Suitable updates to account for factors like nitrite (NO2-) accumulation not addressed in EPIC, will also be made. The NO and N2O emissions from nitrification and denitrification are computed mechanistically using the N sub-model of DAYCENT. These mechanistic definitions use soil water content, temperature, NH4+ and NO3- concentrations, gas diffusivity and labile C availability as dependent parameters at various soil layers. Soil HONO emissions found to be most probable under high NO2- availability will be based on observed ratios of HONO to NO emissions under different soil moistures, pH and soil types. The updated scheme will utilize field-specific soil properties and N inputs across differing manure management practices such as tillage. Comparison of the modeled soil NO emission rates from the new mechanistic and existing schemes against field measurements will be discussed. Our updated framework will help to predict the diurnal and daily variability

  13. Measurement of N2O and CH4 soil fluxes from garden, agricultural and natural soils using both closed and open chamber systems coupled with high-precision CRDS analyzer

    NASA Astrophysics Data System (ADS)

    He, Yonggang; Jacobson, Gloria; Alexander, Chris; Fleck, Derek; Hoffnagel, John; Del Campo, Bernardo; Rella, Chris

    2013-04-01

    will present the results of testing done with the analyzer attached to both closed and open chamber systems to quantify fluxes of N2O and CH4 from active soil samples. The soil samples were collected by the University of Iowa from soil test sites used for studying the application of biochar as a soil amendment. Results will compare the two chamber methodologies and results from several soil sample types, garden, agricultural and natural. Preliminary results from laboratory measurements of soil core samples taken from a garden soil sample using the closed-system chamber method show N2O emission to be on the order of 5.67 x 10-2 μg/cm3*hr, which is in good agreement with the open-system chamber method tested on the same soil sample, which yielded fluxes of 6.01 x 10-2 μg/cm3*hr . Additional work presented will verify these initial results and will be compared to literature such as Hutchinsion and Livingston 1993 assessment of the bias of different chamber flux methodologies.

  14. Single application of Sewage Sludge to an Alluvial Agricultural Soil - impacts on Soil Quality

    NASA Astrophysics Data System (ADS)

    Suhadolc, M.; Graham, D. B.; Hagn, A.; Doerfler, U.; Schloter, M.; Schroll, R.; Munch, J. C.; Lobnik, F.

    2009-04-01

    Limited information exists on the effects of sewage sludge on soil quality with regard to their ability to maintain soil functions. We studied effects of sewage sludge amendment on soil chemical properties, microbial community structure and microbial degradation of the herbicide glyphosate. Three months soil column leaching experiment has been conducted using alluvial soils (Eutric Fluvisol) with no prior history of sludge application. The soil was loamy with pH 7,4 and organic matter content of 3,5%. Soil material in the upper 2 cm of columns was mixed with dehydrated sewage sludge which was applied in amounts corresponding to the standards governing the use of sewage sludge for agricultural land. Sludge did increase some nutrients (total N, NH4+, available P and K, organic carbon) and some heavy metals contents (Zn, Cu, Pb) in soil. However, upper limits for heavy metals in agricultural soils were not exceeded. Results of heavy metal availability in soil determined by sequential extraction will be also presented. Restriction fragment length polymorphism (RFLP) analyses of 16s/18s rDNA, using universal fungal and bacterial primers, revealed clear shifts in bacterial and fungal community structure in the upper 2 cm of soils after amendment. Fungal fingerprints showed greater short term effects of sewage sludge, whereas sewage sludge seems to have prolonged effects on soil bacteria. Furthermore, sewage sludge amendment significantly increased glyphosate degradation from 21.6±1% to 33.6±1% over a 2 months period. The most probable reasons for shifts in microbial community structure and increased degradation of glyphosate are beneficial alterations to the physical-chemical characteristics of the soil. Negative effects of potentially toxic substances present in the sewage sludge on soil microbial community functioning were not observed with the methods used in our study.

  15. The Living Soil: Exploring Soil Science and Sustainable Agriculture with Your Guide, The Earthworm. Unit I.

    ERIC Educational Resources Information Center

    Weber, Eldon C.; And Others

    This instructional packet introduces students to soil biology, ecology, and specific farming practices that promote sustainable agriculture. It helps students to discover the role of earthworms in improving the environment of all other soil-inhabiting organisms and in making the soil more fertile. The activities (classroom as well as outdoor)…

  16. Evaluation of Thematic Mapper data for mapping forest, agricultural and soil resources

    NASA Technical Reports Server (NTRS)

    Degloria, S.; Benson, A.; Dummer, K.; Fakhoury, E.

    1985-01-01

    Color composite TM film products which include TM5, TM4, and a visible band (TM1, TM2, or TM3) are superior to composites which exclude TM4 for discriminating most forest and agricultural cover types and estimating area proportions for inventory and sampling purposes. Clustering a subset of TM data results in a spectral class map which groups diverse forest cover types into spectrally and ecologically similar areas suitable for use as a stratification base in traditional forest inventory practices. Analysis of simulated Thematic Mapper data indicate that the location and number of TM spectral bands are suitable for detecting differences in major soil properties and characterizing soil spectral curve form and magnitude.

  17. Effects of soil properties on the transfer of cadmium from soil to wheat in the Yangtze River delta region, China--a typical industry-agriculture transition area.

    PubMed

    Wang, Cheng; Ji, Junfeng; Yang, Zhongfang; Chen, Lingxiao; Browne, Patrick; Yu, Ruilian

    2012-08-01

    In order to identify the effects of soil properties on the transfer of Cd from soil to wheat under actual field conditions, 126 pairs of topsoil and wheat samples were collected from the Yangtze River delta region, China. Relevant parameters (Cd, Ca, Mg, Fe, Mn, Zn, N, P, K, S, pH, total organic carbon, and speciation of soil Cd) in soil and wheat tissues were analyzed, and the results were treated by statistical methods. Soil samples (19.8%) and 14.3% of the wheat grain samples exceeded the relevant maximum permissible Cd concentrations in China for agricultural soil and wheat grain, respectively. The major speciations of Cd in soil were exchangeable, bound to carbonates and fulvic and humic acid fraction, and they were readily affected by soil pH, total Ca, Mg, S and P, DTPA-Fe, Ex-Ca, and Ex-Mg. Cadmium showed a strong correlation with Fe, S, and P present in the grain and the soil, whereas there was no significant correlation in the straw or root. Generally, soil pH, Ca, Mg, Mn, P, and slowly available K restricted Cd transfer from soil to wheat, whereas soil S, N, Zn, DTPA-Fe, and total organic carbon enhance Cd uptake by wheat.

  18. An efficient recovery method for enteric viral particles from agricultural soils.

    PubMed

    Brassard, Julie; Gagné, Marie-Josée

    2018-06-24

    Enteric viruses have been recognized as the leading cause of non-bacterial gastroenteritis and hepatitis outbreaks around the world. Understanding their prevalence and persistence in the environment is important for the effective control of these infections. The aim of this study was to develop an efficient recovery procedure for viral infectious particles from agricultural soils. Samples (25 g) of soil (black earth soil, loamy soil, and sandy soil) were spiked with murine norovirus (MNV) and feline calicivirus (FCV), mixed with five different buffers and viral genetic material was extracted by 3 commercial kits. The combination consisted by the modified Eagle's medium buffer followed by Dynabeads nucleic acid extraction kit, when the detection is conducted by molecular biology, has been identified as being the most effective procedure to preserve the viral particle infectivity and also to remove PCR inhibitors.The recovery percentages of infectious MNV for the 3 types of soils were 54.3%, 54.4%, and 56.9%. In contrast, the titres of the FCV varied depending on the type of soil, and the recovery percentages were 47.8% in the black soil, 15.6% in the loamy soil, and 17.7% in the sandy soil. Also, the results presented in this study highlight the importance of using an internal process control such as artificial inoculation with MNV at known concentrations during detection by molecular methods, in order to avoid the occurrence of false negative reactions. Copyright © 2018. Published by Elsevier B.V.

  19. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation.

    PubMed

    Guo, Meixia; Gong, Zongqiang; Allinson, Graeme; Tai, Peidong; Miao, Renhui; Li, Xiaojun; Jia, Chunyun; Zhuang, Jie

    2016-02-01

    The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Soil quality and soil degradation in agricultural loess soils in Central Europe - impacts of traditional small-scale and modernized large-scale agriculture

    NASA Astrophysics Data System (ADS)

    Schneider, Christian

    2017-04-01

    The study analyzes the impact of different farming systems on soil quality and soil degradation in European loess landscapes. The analyses are based on geo-chemical soil properties, landscape metrics and geomorphological indicators. The German Middle Saxonian Loess Region represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in large-scale high-input farming systems. The Polish Proszowice Plateau is still characterized by a traditional small-scale peasant agriculture. The research areas were analyzed on different scale levels combining GIS, field, and laboratory methods. A digital terrain classification was used to identify representative catchment basins for detailed pedological studies which were focused on soil properties that responded to soil management within several years, like pH-value, total carbon (TC), total nitrogen (TN), inorganic carbon (IC), soil organic carbon (TOC=TC-IC), hot-water extractable carbon (HWC), hot-water extractable nitrogen (HWN), total phosphorus, plant-available phosphorus (P), plant-available potassium (K) and the potential cation exchange capacity (CEC). The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.

  1. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  2. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, J.W. Jr.

    1991-07-23

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  3. Soil, land use time, and sustainable intensification of agriculture in the Brazilian Cerrado region.

    PubMed

    Trabaquini, Kleber; Galvão, Lênio Soares; Formaggio, Antonio Roberto; de Aragão, Luiz Eduardo Oliveira E Cruz

    2017-02-01

    The Brazilian Cerrado area is in rapid decline because of the expansion of modern agriculture. In this study, we used extensive field data and a 30-year chronosequence of Landsat images (1980-2010) to assess the effects of time since conversion of Cerrado into agriculture upon soil chemical attributes and soybean/corn yield in the Alto do Rio Verde watershed. We determined the rates of vegetation conversion into agriculture, the agricultural land use time since conversion, and the temporal changes in topsoil (0-20 cm soil depth) and subsurface (20-40 cm) chemical attributes of the soils. In addition, we investigated possible associations between fertilization/over-fertilization and land use history detected from the satellites. The results showed that 61.8% of the native vegetation in the Alto do Rio Verde watershed was already converted into agriculture with 31% of soils being used in agriculture for more than 30 years. While other fertilizers in cultivated soils (e.g., Ca +2 , Mg +2 , and P) have been compensated over time by soil management practices to keep crop yield high, large reductions in C org (38%) and N tot (29%) were observed in old cultivated areas. Furthermore, soybean and cornfields having more than 10 years of farming presented higher values of P and Mg +2 than the ideal levels necessary for plant development. Therefore, increased risks of over-fertilization of the soils and environmental contamination with these macronutrients were associated with soybean and cornfields having more than 10 years of farming, especially those with more than 30 years of agricultural land use.

  4. Adsorption and degradation of five selected antibiotics in agricultural soil.

    PubMed

    Pan, Min; Chu, L M

    2016-03-01

    Large quantities of antibiotics are being added to agricultural fields worldwide through the application of wastewater, manures and biosolids, resulting in antibiotic contamination and elevated environmental risks in terrestrial environments. Most studies on the environmental fate of antibiotics focus on aquatic environments or wastewater treatment plants. Little is known about the behavior of antibiotics at environmentally relevant concentrations in agricultural soil. In this study we evaluated the adsorption and degradation of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) in sterilized and non-sterilized agricultural soils under aerobic and anaerobic conditions. Adsorption was highest for tetracycline (Kd, 1093 L/kg), while that for sulfamethazine was negligible (Kd, 1.365 L/kg). All five antibiotics were susceptible to microbial degradation under aerobic conditions, with half-lives ranging from 2.9 to 43.3 d in non-sterilized soil and 40.8 to 86.6 d in sterilized soil. Degradation occurred at a higher rate under aerobic conditions but was relatively persistent under anaerobic conditions. For all the antibiotics, a higher initial concentration was found to slow down degradation and prolong persistence in soil. The degradation behavior of the antibiotics varied in relation to their physicochemical properties as well as the microbial activities and aeration of the recipient soil. The poor adsorption and relative persistence of sulfamethazine under both aerobic and anaerobic conditions suggest that it may pose a higher risk to groundwater quality. An equation was proposed to predict the fate of antibiotics in soil under different field conditions, and assess their risks to the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Utilization of night-soil, sewage, and sewage sludge in agriculture

    PubMed Central

    Petrik, Milivoj

    1954-01-01

    The author reviews the agricultural use of night-soil, sewage, and sewage sludge from two points of view: the purely agricultural and the sanitary. Knowledge of the chemistry and bacteriology of human faecal matter is still rather scant, and much further work has to be done to find practical ways of digesting night-soil in a short time into an end-product of high fertilizing value and free of pathogens, parasites, and weeds. More is known about sewage and sewage sludge, but expert opinion is not unanimous as to the manner or the value of their use in agriculture. The author reviews a number of studies and experiments made in many countries of the world on the content, digestion, composting, agricultural value, and epidemiological importance of sewage and sewage sludge, but draws from these the conclusion that the chemistry, biology, and bacteriology of the various methods of treatment and use of waste matter need further investigation. He also considers that standards of quality might be set up for sludge and effluents used in agriculture and for water conservation. PMID:13160760

  6. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    PubMed Central

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-01-01

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing. PMID:27196922

  7. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    PubMed

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-05-17

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing.

  8. How agricultural management shapes soil microbial communities: patterns emerging from genetic and genomic studies

    NASA Astrophysics Data System (ADS)

    Daly, Amanda; Grandy, A. Stuart

    2016-04-01

    Agriculture is a predominant land use and thus a large influence on global carbon (C) and nitrogen (N) balances, climate, and human health. If we are to produce food, fiber, and fuel sustainably we must maximize agricultural yield while minimizing negative environmental consequences, goals towards which we have made great strides through agronomic advances. However, most agronomic strategies have been designed with a view of soil as a black box, largely ignoring the way management is mediated by soil biota. Because soil microbes play a central role in many of the processes that deliver nutrients to crops and support their health and productivity, agricultural management strategies targeted to exploit or support microbial activity should deliver additional benefits. To do this we must determine how microbial community structure and function are shaped by agricultural practices, but until recently our characterizations of soil microbial communities in agricultural soils have been largely limited to broad taxonomic classes due to methodological constraints. With advances in high-throughput genetic and genomic sequencing techniques, better taxonomic resolution now enables us to determine how agricultural management affects specific microbes and, in turn, nutrient cycling outcomes. Here we unite findings from published research that includes genetic or genomic data about microbial community structure (e.g. 454, Illumina, clone libraries, qPCR) in soils under agricultural management regimes that differ in type and extent of tillage, cropping selections and rotations, inclusion of cover crops, organic amendments, and/or synthetic fertilizer application. We delineate patterns linking agricultural management to microbial diversity, biomass, C- and N-content, and abundance of microbial taxa; furthermore, where available, we compare patterns in microbial communities to patterns in soil extracellular enzyme activities, catabolic profiles, inorganic nitrogen pools, and nitrogen

  9. Combined Analyses of Bacterial, Fungal and Nematode Communities in Andosolic Agricultural Soils in Japan

    PubMed Central

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols. PMID:22223474

  10. Combined analyses of bacterial, fungal and nematode communities in andosolic agricultural soils in Japan.

    PubMed

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols.

  11. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils.

    PubMed

    Six, L; Smolders, E

    2014-07-01

    The gradual increase of soil cadmium concentrations in European soils during the 20th century has prompted environmental legislation to limit soil cadmium (Cd) accumulation. Mass balances (input-output) reflecting the period 1980-1995 predicted larger Cd inputs via phosphate (P) fertilizers and atmospheric deposition than outputs via crop uptake and leaching. This study updates the Cd mass balance for the agricultural top soils of EU-27+Norway (EU-27+1). Over the past 15 years, the use of P fertilizers in the EU-27+1 has decreased by 40%. The current mean atmospheric deposition of Cd in EU is 0.35 g Cd ha(-1) yr(-1), this is strikingly smaller than values used in the previous EU mass balances (~3 g Cd ha(-1) yr(-1)). Leaching of Cd was estimated with most recent data of soil solution Cd concentrations in 151 soils, which cover the range of European soil properties. No significant time trends were found in the data of net applications of Cd via manure, compost, sludge and lime, all being small sources of Cd at a large scale. Modelling of the future long-term changes in soil Cd concentrations in agricultural top soils under cereal or potato culture predicts soil Cd concentrations to decrease by 15% over the next 100 years in an average scenario, with decreasing trends in some scenarios being more prevalent than increasing trends in other scenarios. These Cd balances have reverted from the general positive balances estimated 10 or more years ago. Uncertainty analysis suggests that leaching is the most uncertain relative to other fluxes. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Latitudinal Distribution of Ammonia-Oxidizing Bacteria and Archaea in the Agricultural Soils of Eastern China

    PubMed Central

    Huang, Liuqin; Deng, Ye; Wang, Shang; Zhou, Yu; Liu, Li

    2014-01-01

    The response of soil ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities to individual environmental variables (e.g., pH, temperature, and carbon- and nitrogen-related soil nutrients) has been extensively studied, but how these environmental conditions collectively shape AOB and AOA distributions in unmanaged agricultural soils across a large latitudinal gradient remains poorly known. In this study, the AOB and AOA community structure and diversity in 26 agricultural soils collected from eastern China were investigated by using quantitative PCR and bar-coded 454 pyrosequencing of the amoA gene that encodes the alpha subunit of ammonia monooxygenase. The sampling locations span over a 17° latitude gradient and cover a range of climatic conditions. The Nitrosospira and Nitrososphaera were the dominant clusters of AOB and AOA, respectively; but the subcluster-level composition of Nitrosospira-related AOB and Nitrososphaera-related AOA varied across the latitudinal gradient. Variance partitioning analysis showed that geography and climatic conditions (e.g., mean annual temperature and precipitation), as well as carbon-/nitrogen-related soil nutrients, contributed more to the AOB and AOA community variations (∼50% in total) than soil pH (∼10% in total). These results are important in furthering our understanding of environmental conditions influencing AOB and AOA community structure across a range of environmental gradients. PMID:25002421

  13. Agriculture on Mars: Soils for Plant Growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  14. Soil microbial community response to land use change in an agricultural landscape of western Kenya.

    PubMed

    Bossio, D A; Girvan, M S; Verchot, L; Bullimore, J; Borelli, T; Albrecht, A; Scow, K M; Ball, A S; Pretty, J N; Osborn, A M

    2005-01-01

    Tropical agroecosystems are subject to degradation processes such as losses in soil carbon, nutrient depletion, and reduced water holding capacity that occur rapidly resulting in a reduction in soil fertility that can be difficult to reverse. In this research, a polyphasic methodology has been used to investigate changes in microbial community structure and function in a series of tropical soils in western Kenya. These soils have different land usage with both wooded and agricultural soils at Kakamega and Ochinga, whereas at Ochinga, Leuro, Teso, and Ugunja a replicated field experiment compared traditional continuous maize cropping against an improved N-fixing fallow system. For all sites, principal component analysis of 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) profiles revealed that soil type was the key determinant of total bacterial community structure, with secondary variation found between wooded and agricultural soils. Similarly, phospholipid fatty acid (PLFA) analysis also separated wooded from agricultural soils, primarily on the basis of higher abundance of monounsaturated fatty acids, anteiso- and iso-branched fatty acids, and methyl-branched fatty acids in the wooded soils. At Kakamega and Ochinga wooded soils had between five 5 and 10-fold higher levels of soil carbon and microbial biomass carbon than agricultural soils from the same location, whereas total enzyme activities were also lower in the agricultural sites. Soils with woody vegetation had a lower percentage of phosphatase activity and higher cellulase and chitinase activities than the agricultural soils. BIOLOG analysis showed woodland soils to have the greatest substrate diversity. Throughout the study the two functional indicators (enzyme activity and BIOLOG), however, showed lower specificity with respect to soil type and land usage than did the compositional indicators (DGGE and PLFA). In the field experiment comparing two types of maize cropping, both the maize yields

  15. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    PubMed

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  16. Assessment of Natural Radioactivity Levels and Radiation Hazards in Agricultural and Virgin Soil in the State of Kedah, North of Malaysia.

    PubMed

    Alzubaidi, Ghazwa; Hamid, Fauziah B S; Abdul Rahman, I

    2016-01-01

    The activity concentrations of naturally occurring radionuclides 226 Ra, 232 Th, and 40 K were determined in 30 agricultural and virgin soil samples randomly collected from Kedah, north of Malaysia, at a fertile soil depth of 0-30 cm. Gamma-ray spectrometry was applied using high-purity germanium (HPGe) gamma-ray detector and a PC-based MCA. The mean radioactivity concentrations of 226 Ra, 232 Th, and 40 K were found to be 102.08 ± 3.96, 133.96 ± 2.92, and 325.87 ± 9.83 Bq kg -1 , respectively, in agricultural soils and 65.24 ± 2.00, 83.39 ± 2.27, and 136.98 ± 9.76 Bq kg -1 , respectively, in virgin soils. The radioactivity concentrations in agricultural soils are higher than those in virgin soils and compared with those reported in other countries. The mean values of radium equivalent activity (Ra eq ), absorbed dose rates D (nGy h -1 ), annual effective dose equivalent, and external hazard index ( H ex ) are 458.785 Bq kg -1 , 141.62 nGy h -1 , and 0.169 mSv y -1 , respectively, in agricultural soils and 214.293 Bq kg -1 , 87.47 nGy h -1 , and 0.106 mSv y -1 , respectively, in virgin soils, with average H ex of 0.525. Results were discussed and compared with those reported in similar studies and with internationally recommended values.

  17. Implementation monitoring temperature, humidity and mositure soil based on wireless sensor network for e-agriculture technology

    NASA Astrophysics Data System (ADS)

    Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.

    2016-04-01

    Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.

  18. Soil-Atmosphere Greenhouse Gas Fluxes on the Margins of the Congo Forest: Effects of Forest Conversion towards Smallholder Agricultural Lands and Agricultural Intensification

    NASA Astrophysics Data System (ADS)

    kwatcho Kengdo, S.; Sonwa, D. J.; Njine-Bememba, C. B.; Djatsa, L. D.; Rufino, M. C.; Verchot, L. V.; Tejedor, J.; Dannenmann, M.

    2016-12-01

    The forests of the Congo Basin are subject to deforestation and land use change, which may severely influence the soil-atmosphere exchange of greenhouse gases (GHG). However, due to absence of analytical capacities in Central Africa, there is a lack of knowledge on fluxes of CO2, CH4 and N2O at the soil-atmosphere interface for natural and managed ecosystems, which introduces large uncertainties into regional and national GHG reporting. The objectives of this study were to quantify GHG emissions from typical land use on the margins of the Congo forests, to analyze seasonal variability and environmental controls of soil-atmosphere GHG fluxes across a land use gradient and explore options of sustainable intensification of maize cultivation. In Cameroon, we quantified fluxes of CO2, CH4, and N2O at the soil - atmosphere interface in secondary forests, cocoa agroforests, unfertilized mixed crop fields, and three different types of maize cultivation: unfertilized control, maize intercropped with N fixing beans, maize applied with mineral nitrogen fertilizer. We used manual static chamber techniques with approximately weekly temporal resolution over a full year and analyzed gas samples using a gas chromatograph. Soil temperature and moisture data were permanently recorded at main sites and soil sampling provided information on soil mineral N content. We found highest CO2 and N2O emissions, net CH4 uptake and soil mineral N concentrations in the secondary forest with lower values observed in cocoa agroforest and in particular in extensive mixed crop. Soil moisture changes were the dominant driver of seasonal changes of GHG fluxes at all study sites. Intercropping with N fixing beans did not alter soil N2O emissions from maize fields. In contrast, application of mineral N increased soil N2O emissions by more than a factor of five. Our work highlights the importance of soil moisture as the driver of GHG fluxes and in particular for N2O indicates a strong decrease in soil

  19. Soil CO2 emissions in terms of irrigation management in an agricultural soil

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, José A.; María de la Rosa, José; Faz, Ángel; Domingo, Rafael; Pérez-Pastor, Alejandro; Ángeles Muñoz, María

    2014-05-01

    Irrigation water restrictions in the Mediterranean area are reaching worrying proportions and represent a serious threat to traditional crops and encourage the movement of people who choose to work in other activities. This situation has created a growing interest in water conservation, particularly among practitioners of irrigated agriculture, the main recipient of water resources (>80%). For these and other reasons, the scientific and technical irrigation scheduling of water use to maintain and even improve harvest yield and quality has been and will remain a major challenge for irrigated agriculture. Apart from environmental and economic benefits by water savings, deficit irrigation may contribute to reduce soil CO2 emissions and enhance C sequestration in soils. The reduction of soil moisture levels decreases microbial activity, with the resulting slowing down of organic matter mineralization. Besides, the application of water by irrigation may increment the precipitation rate of carbonates, favoring the storage of C, but depending on the source of calcium or bicarbonate, the net reaction can be either storage or release of C. Thus, the objective of this study was to assess if deficit irrigation, besides contributing to water savings, can reduce soil CO2 emissions and favor the accumulation of C in soils in stable forms. The experiment was carried out along 2012 in a commercial orchard from southeast Spain cultivated with nectarine trees (Prunus persica cv. 'Viowhite'). The irrigation system was drip localized. Three irrigation treatments were assayed: a control (CT), irrigated to satisfy the total hydric needs of the crop; a first deficit irrigation (DI1), irrigated as CT except for postharvest period (16 June - 28 October) were 50% of CT was applied; and a second deficit irrigation (DI2), irrigated as DI1, except for two periods in which irrigation was suppressed (16 June-6 July and 21 July-17 August). Each treatment was setup in triplicate, randomly

  20. Use of Magnetic Parameters to Asses Soil Erosion Rates on Agricultural Site

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Kapicka, A.; Dlouha, S.; Jaksik, O.; Grison, H.; Kodesova, R.

    2014-12-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and laboratory analyses were carried out in order to test the applicability of magnetic methods in assessing soil erosion. Haplic Chernozem, the original dominant soil unit in the area, is nowadays progressively transformed into different soil units along with intense soil erosion. As a result, an extremely diversified soil cover structure has developed due to the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper. We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). A soil profile unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples collected with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a

  1. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability

    Treesearch

    A.M. Weitza; E. Linderb; S. Frolkingc; P.M. Crillc; M. Keller

    2001-01-01

    We studied soil moisture dynamics and nitrous oxide (N2O) ¯uxes from agricultural soils in the humid tropics of Costa Rica. Using a splitplot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter...

  2. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    PubMed

    Kirk, Emilie R; van Kessel, Chris; Horwath, William R; Linquist, Bruce A

    2015-01-01

    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined). Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.

  3. Approximating Phosphorus Leaching from Agricultural Organic Soils by Soil Testing.

    PubMed

    Zheng, Z M; Zhang, T Q; Kessel, C; Tan, C S; O'Halloran, I P; Wang, Y T; Speranzini, D; Van Eerd, L L

    2015-11-01

    Phosphorus applied to soils in excess of crop requirement could create situations favorable to P enrichment in subsurface flow that contributes to eutrophication of surface water. This pathway of P loss can be more severe in muck (i.e., organic) soils where agricultural production is intensive. This study evaluated the suitability of various environmental and agronomic soil P tests initially designed for mineral soils to predict dissolved reactive P (DRP) in subsurface flow from organic soils. Intact soil columns were collected from 44 muck soils in Ontario to provide a wide range of soil test P levels. A lysimeter leaching study was conducted by evenly adding water in an amount equivalent to 5 mm of rainfall. The leachate DRP concentration was linearly related to soil water-extractable P and CaCl-extractable P with values of 0.90 and 0.93, respectively, and to Bray-1 P and FeO-impregnated filter paper extractable P in a split-line model with a change point. Mehlich-3 P and Olsen P, a method recommended for agronomic P calibration in Ontario, were not related to leachate DRP concentration. All P sorption index (PSI) based degree of P saturation (DPS) values were closely related to leachate DRP in split-line models, with the DPS indices expressed as Bray-1 P/PSI and FeO-P/PSI having the highest correlation with leachate DRP concentration. Because it is desirable from practical and economic standpoints that the environmental risk assessment shares the same soil test with agronomic P calibration, the two PSI-based DPS indices as presented can be considered as environmental risk indicators of DRP subsurface loss from organic soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Terra Pretas: Charcoal Amendments Influence on Relict Soils and Modern Agriculture

    ERIC Educational Resources Information Center

    Ricigliano, Kristin

    2011-01-01

    Most soils found in the Amazon region are characterized by highly weathered profiles that are incapable of longterm agricultural production. However, small patches of highly fertile relict soil referred to as Terra Pretas, are also found in the Amazon region, and have maintained their integrity for thousands of years. These soils were…

  5. Expanding soil health assessment methods for agricultural systems of the southern great plains

    USDA-ARS?s Scientific Manuscript database

    In agricultural systems, soil health (also referred as soil quality) is critical for sustainable production and ecosystem services. Soil health analyses dependent upon singular parameters fail to account for the host of interactions occurring within the soil ecosystem. Soil health is in flux with m...

  6. [The concentration and distribution of 137Cs in soils of forest and agricultural ecosystems of Tula Region].

    PubMed

    Lipatov, D N; Shcheglov, A I; Tsvetnova, O B

    2007-01-01

    The paper deals with a comparative study of 137Cs contamination in forest, old arable and cultivated soils of Tula Region. Initial interception of Chernobyl derived 137Cs is higher in forest ecosystems: oak-forest > birch-forest > pine-forest > agricultural ecosystems. Vertical migration of 137Cs in deeper layers of soils was intensive in agricultural ecosystems: cultivated soils > old arable soils > birch-forest soils > oak-forest soils > pine-forest soils. In study have been evaluated spatial variability of 137Cs in soil and asymmetrical distribution, that is a skew to the right. Spatial heterogeneity of 137Cs in agricultural soils is much lower than in forest soils. For cultivated soil are determined the rate of resuspension, which equal to 6.1 x 10(-4) day(-1). For forest soils are described the 137Cs concentration in litter of different ecosystems. The role of main accumulation and barrier of 137Cs retain higher layers of soils (horizon A1(A1E) in forest, horizon Ap in agricultural ecosystems) in long-term forecast after Chernobyl accident.

  7. Distribution of selenium in soils of agricultural fields, western San Joaquin Valley, California

    USGS Publications Warehouse

    Fujii, Roger; Deverel, S.J.; Hatfield, D.B.

    1987-01-01

    Soils from three agricultural fields in the western San Joaquin Valley were analyzed for soluble, adsorbed, and total concentrations of selenium (Se) to assess the distribution and forms of Se, and the relation of the distribution and forms of Se to the leaching of Se from soils. Soil samples were collected in three fields with drainage systems of different ages (6, 15, 1.5 yr) and different Se concentrations in drain water (58, 430, 3700 micrograms/L respectively). Preliminary methods to determine total Se and estimate adsorbed Se were developed. Of the three fields, concentrations of soluble Se and salinity were highest in soils from the field drained for 1.5 yr and lowest in the field drained for 6 yr. The field drained for 1.5 yr also had the highest concentration of total Se in soil; a median of 1.2 microgram/gm. Of the total concentration of Se in soil from all three fields, the proportion of adsorbed Se and soluble Se ranged from 1 to 11% and < 1 to 63%, respectively. Most of the variance in soluble Se is explained by salinity ( r sq > 0.68) in saturation extracts of soils sampled from below the water table, reflecting evaporative concentration of Se and salinity. In contrast, most soluble salts and Se apparently have been leached from the unsaturated soils in the fields drained for 6 and 15 yr; therefore, the correlation was lower between Se and salinity in saturation extracts of those soils (r sq < 0.33). Among soils from all three fields, the ratio of Se to salinity in saturation extracts increased with increasing salinity. (Author 's abstract)

  8. Application of soil quality indices to assess the status of agricultural soils irrigated with treated wastewaters

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, A.; Arcenegui, V.; García-Orenes, F.; Mataix-Solera, J.; Mataix-Beneyto, J.

    2012-12-01

    The supply of water is limited in some parts of the Mediterranean region, such as southeastern Spain. The use of treated wastewater for the irrigation of agricultural soils is an alternative to using better-quality water, especially in semi-arid regions. On the other hand, this practice can modify some soil properties, change their relationships, the equilibrium reached and influence soil quality. In this work two soil quality indices were used to evaluate the effects of irrigation with treated wastewater in soils. The indices were developed studying different soil properties in undisturbed soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. This study was carried out in three areas of Alicante Province (SE Spain) irrigated with wastewater, including four study sites. The results showed slight changes in some soil properties as a consequence of irrigation with wastewater, the obtained levels not being dangerous for agricultural soils, and in some cases they could be considered as positive from an agronomical point of view. In one of the study sites, and as a consequence of the low quality wastewater used, a relevant increase in soil organic matter content was observed, as well as modifications in most of the soil properties. The application of soil quality indices indicated that all the soils of study sites are in a state of disequilibrium regarding the relationships between properties independent of the type of water used. However, there were no relevant differences in the soil quality indices between soils irrigated with wastewater with respect to their control sites for all except one of the sites, which corresponds to the site where low quality wastewater was used.

  9. Quantifying agricultural drought impacts using soil moisture model and drought indices in South Korea

    NASA Astrophysics Data System (ADS)

    Nam, W. H.; Bang, N.; Hong, E. M.; Pachepsky, Y. A.; Han, K. H.; Cho, H.; Ok, J.; Hong, S. Y.

    2017-12-01

    Agricultural drought is defined as a combination of abnormal deficiency of precipitation, increased crop evapotranspiration demands from high-temperature anomalies, and soil moisture deficits during the crop growth period. Soil moisture variability and their spatio-temporal trends is a key component of the hydrological balance, which determines the crop production and drought stresses in the context of agriculture. In 2017, South Korea has identified the extreme drought event, the worst in one hundred years according to the South Korean government. The objective of this study is to quantify agricultural drought impacts using observed and simulated soil moisture, and various drought indices. A soil water balance model is used to simulate the soil water content in the crop root zone under rain-fed (no irrigation) conditions. The model used includes physical process using estimated effective rainfall, infiltration, redistribution in soil water zone, and plant water uptake in the form of actual crop evapotranspiration. Three widely used drought indices, including the Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the Self-Calibrated Palmer Drought Severity Index (SC-PDSI) are compared with the observed and simulated soil moisture in the context of agricultural drought impacts. These results demonstrated that the soil moisture model could be an effective tool to provide improved spatial and temporal drought monitoring for drought policy.

  10. Evaluation of soil contamination in intensive agricultural areas by pesticides and organic pollutants: south-eastern Spain as a case study.

    PubMed

    Plaza-Bolaños, Patricia; Padilla-Sánchez, Juan Antonio; Garrido-Frenich, Antonia; Romero-González, Roberto; Martínez-Vidal, José Luis

    2012-04-01

    A comprehensive survey of the occurrence and fate of pesticides and organic contaminants in soils from an intensive agricultural area devoted to horticultural production in plastic-based greenhouses has been performed to determine if the operation under integrated pest management practices has contributed to reduce the levels of these compounds. Almería province (south-eastern Spain) was selected for the case study. 38 agricultural soil samples (each sample corresponds to an independent private greenhouse) of areas working under integrated pest management (IPM) programs have been analyzed in order to evaluate their contamination fate. Sampling was designed to cover an area of about 400 km(2). Pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phenolic compounds and di-(2-ethylhexyl)phthalate (DEHP) were monitored. The obtained results were compared to other studies reported in Spain and Europe. Among relevant persistent pesticides, DDTs and endosulfans were mainly found and the results indicated historical application, although recent application of endosulfan was rarely detected. PAHs were also found but to a lesser extent and derived from pyrogenic sources. DEHP levels were considerably higher in comparison to the other monitored analytes. The evaluation revealed that despite the use of IPM programs, pesticide and organic contaminants are still being detected in this type of agricultural soil, although at relatively low concentration levels. In general, the contamination rate was similar or lower in comparison to other agricultural areas from nearby regions or countries. However, further monitoring studies should be carried out to establish the possible reduction in contamination by the selected compounds.

  11. Estimation of PCB content in agricultural soils associated with long-term fertilization with organic waste.

    PubMed

    Antolín-Rodríguez, Juan M; Sánchez-Báscones, Mercedes; Martín-Ramos, Pablo; Bravo-Sánchez, Carmen T; Martín-Gil, Jesús

    2016-06-01

    Polychlorinated biphenyl (PCB) pollution related to the use of organic waste as fertilizers in agricultural soils is a cause of major concern. In the study presented herein, PCB concentration was studied through a field trial conducted in two agricultural soils in the province of Palencia (Spain) over a 4-year period, assessing the impact of irrigation and of different types of organic waste materials. The amounts of organic waste added to the soil were calculated according to the nitrogen needs of the crop, and the concentration of PCBs was determined before and after the application of the organic waste. The resulting persistence of the total PCB content in the agricultural soils, compared with the PCB concentration in the original soils, ranged from 27% to 90%, with the lowest value corresponding to irrigated soils treated with municipal solid waste compost (MSWC) and the highest value to non-irrigated soils treated with composted sewage sludge (CSS). An estimate of the PCB content in agricultural soils after the application of organic waste materials until year 2050 was obtained, resulting in a value below 5 ng·g(-1), considered a background value for soils in sites far away from potential pollution sources.

  12. Organic matter and soil structure in the Everglades Agricultural Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Alan L.; Hanlon, Edward A.

    This publication pertains to management of organic soils (Histosols) in the Everglades Agricultural Area (EAA). These former wetland soils are a major resource for efficient agricultural production and are important globally for their high organic matter content. Recognition of global warming has led to considerable interest in soils as a repository for carbon. Soils rich in organic matter essentially sequester or retain carbon in the profile and can contribute directly to keeping that sequestered carbon from entering the atmosphere. Identification and utilization of management practices that minimize the loss of carbon from organic soils to the atmosphere can minimize effectsmore » on global warming and increase the longevity of subsiding Histosols for agricultural use. Understanding and predicting how these muck soils will respond to current and changing land uses will help to manage soil carbon. The objectives of this document are to: a. Discuss organic soil oxidation relative to storing or releasing carbon and nitrogen b. Evaluate effects of cultivation (compare structure for sugarcane vs. uncultivated soil) Based upon the findings from the land-use comparison (sugarcane or uncultivated), organic carbon was higher with cultivation in the lower depths. There is considerable potential for minimum tillage and residue management to further enhance carbon sequestration in the sugarcane system. Carbon sequestration is improved and soil subsidence is slowed with sugarcane production, and both of these are positive outcomes. Taking action to increase or maintain carbon sequestration appears to be appropriate but may introduce some risk to farming operations. Additional management methods are needed to reduce this risk. For both the longevity of these organic soils and from a global perspective, slowing subsidence through BMP implementation makes sense. Since these BMPs also have considerable societal benefit, it remains to be seen if society will help to offset a

  13. Speciation and bioavailability of some heavy metals in agricultural soils used for cultivating various vegetables in Bedugul, Bali

    NASA Astrophysics Data System (ADS)

    Siaka, I. Made; Utama, I. Made Supartha; Manuaba, I. B. Putra; Adnyana, I. Made; Sahara, Emmy

    2016-03-01

    This paper discusses the speciation and bioavailability of some heavy metals in agricultural soils used to cultivate various vegetables in Bedugul, Bali. Vegetables grown on contaminated soils where agrochemicals were applied uncontrolled could contain a number of heavy metals. This could occur in the vegetables produced from agricultural soils of Bedugul as the farmers applied agrochemicals excessively. In considering the metals transport to the vegetables, a speciation and bioavailability methods were necessary to be studied. Wet digestion and sequential extraction techniques were employed to the sample prior to the metals measurement by AAS. The results showed that the average concentrations of Pb, Cu, Cd, Cr, and Zn in the soils were 38.531, 132.126, 7.689, 15.952, and 147.275 mg/kg, respectively. The highest concentrations of Pb and Zn were found in the soil for cultivating lettuce, Cd and Cr in the soil for tomato, and Cu in the soil for potatoes. It was found that the speciation of Pb, Cu, Cd, and Cr were predominantly bound to Fe-Mn oxides fraction, while Zn was mostly associated with the EFLE (easily, freely, leachable, and exchangeable) fractions. The highest bioavailability among the metals in the studied soils was Cr, while the lowest was Cu.

  14. Interdependence of soil and agricultural practice in a two - year phytoremediation in situ experiment

    NASA Astrophysics Data System (ADS)

    Nwaichi, Eucharia; Onyeike, Eugene; Frac, Magdalena; Iwo, Godknows

    2016-04-01

    A two - year plant - based soil clean - up was carried out at a crude oil spill agricultural site in a Niger Delta community in Nigeria to access further clean - up potentials of Cymbopogon citratus. Applied diagnostic ratios identified mixed petrogenic and pyrogenic sources as the main contributors of PAHs. Up to 90.8% sequestration was obtained for carcinogenic PAHs especially Benz (a) pyrene in a 2 - phase manner. A community level approach for assessing patterns of sole carbon source utilization by mixed microbial samples was employed to differentiate spatial and temporal changes in the soil microbial communities. In relation to pollution, soil conditioning notably decreased the lag times and showed mixed effects for colour development rates, maximum absorbance and the overall community pattern. For rate and utilization of different carbon substrates in BIOLOG wells, after day 3, in comparison to control soil communities, contamination with hydrocarbons and associated types increased amines and amides consumption. Consumption of carbohydrates in all polluted and unamended regimes decreased markedlyin comparison to those cultivated with C. citratus. We found a direct relationship between cellulose breakdown, measurable with B-glucosidase activity, organic matter content and CO2 realease within all soils in the present study. Organic amendment rendered most studied contaminants unavailable for uptake in preference to inorganic fertilizer in both study years. Generally, phytoremediation improved significantly the microbial community activity and thus would promote ecosystem restoration in relation to most patronised techniques. Supplementation with required nutrients, in a long - term design would present many ecological benefits. Keywords: Agricultural soils; Recovery; Hydrocarbon pollution; Ecology; Management practice.

  15. Can conservation agriculture reduce the impact of soil erosion in northern Tunisia ?

    NASA Astrophysics Data System (ADS)

    Bahri, Haithem; Annabi, Mohamed; Chibani, Roukaya; Cheick M'Hamed, Hatem; Hermessi, Taoufik

    2016-04-01

    Mediterranean countries are prone to soil erosion, therefore Tunisia, with Mediterranean climate, is threatened by water erosion phenomena. In fact, 3 million ha of land is threatened by erosion, and 50% is seriously affected. Soils under conservation agriculture (CA) have high water infiltration capacities reducing significantly surface runoff and thus soil erosion. This improves the quality of surface water, reduces pollution from soil erosion, and enhances groundwater resources. CA is characterized by three interlinked principles, namely continuous minimum mechanical soil disturbance, permanent organic soil cover and diversification of crop species grown in sequence or associations. Soil aggregate stability was used as an indicator of soil susceptibility to water erosion. Since 1999, In Tunisia CA has been introduced in rainfed cereal areas in order to move towards more sustainable agricultural systems. CA areas increased from 52 ha in 1999 to 15000 ha in 2015. The objective of this paper is to study the effect of CA on soil erosion in northern Tunisia. Soil samples were collected at 10 cm of depth from 6 farmers' fields in northern Tunisia. Conventional tillage (CT), CA during less than 5 years (CA<5 years) and CA during more than 5 years (CA>5 years) have been practiced in each farmers field experiment of wheat crop. Soil aggregate stability was evaluated according to the method described by Le Bissonnais (1996), results were expressed as a mean weight diameter (MWD); higher values of MWD indicate higher aggregate stability. Total organic carbon (TOC) was determined using the wet oxidation method of Walkley-Black. A significant increase in SOC content was observed in CA>5years (1.64 %) compared to CT (0.97 %). This result highlights the importance of CA to improve soil fertility. For aggregate stability, a net increase was observed in CA compared to CT. After 5 years of CA the MWD was increased by 16% (MWD=1.8 mm for CT and MWD=2.1 mm for CA<5years). No

  16. Distribution of lithium in agricultural and grazing land soils at European continental scale (GEMAS project)

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Reimann, Clemens; Ladenberger, Anna; Birke, Manfred

    2017-04-01

    The environmental chemistry of Li has received attention because Li has been shown to have numerous and important implications for human health and agriculture and the stable isotope composition of lithium is a powerful geochemical tool that provides quantitative information about Earth processes such as sediment recycling, global chemical weathering and its role in the carbon cycle, hydrothermal alteration, and groundwater evolution. However, the role of bedrock sources, weathering and climate changes in the repartition of Li at the continental scale has been scarcely investigated. Agricultural soil (Ap-horizon, 0-20 cm) and grazing land soil (Gr-horizon, 0-10 cm) samples were collected from a large part of Europe (33 countries, 5.6 million km2) as a part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil mapping project. GEMAS soil data have been used to provide a general view of element mobility and source rocks at the continental scale, either by reference to average crustal abundances or to normalized patterns of element mobility during weathering processes. The survey area includes a diverse group of soil parent materials with varying geological history, a wide range of climate zones and landscapes. The concentrations of Li in European soil were determined by ICP-MS after a hot aqua regia extraction, and their spatial distribution patterns generated by means of a GIS software. Due to the partial nature of the aqua regia extraction, the mean concentration of Li in the European agricultural soil (ca 11.4 mg/kg in Ap and Gr soils) is about four times lower than in the Earth's upper continental crust (UCC = 41 mg/kg). The combined plot histogram - density trace one- dimensional scattergram - boxplot of the aqua regia data displays the univariate data distribution of Li. The one-dimensional scattergram and boxplot highlight the existence of many outliers at the lower end of the Li distribution and very few at the upper end. Though the

  17. Root Induced Heterogeneity In Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Gomes, C.; Gabai, R.; Weisbrod, N.; Furman, A.

    2012-12-01

    In this study we investigate the role of plant induced heterogeneity on water dynamics in agricultural soils. We conducted three experiments in two sites (one still ongoing) in which a trench was excavated in the root zone of an orchard and the subsurface, to a depth of over 1 m, was instrumented in high resolution with water content, water potential and temperature sensors. High temporal resolution monitoring of soil state was carried for over a year, period that included natural (Mediterranean) climate boundary forcing. In addition, sprinkler, flood, and spray irrigation boundary conditions were forced for short time periods to explore the infiltration process under these conditions. One site was an Avocado orchard planted in red sandy soil while the other, still on-going, is in a grape vineyards irrigated by tap and treated wastewater, planted over alluvial clayey soil. In the vineyard, we are comparing soil irrigated with fresh water to soil irrigated with treated waste water for more than 10 years. Our preliminary results indicate several interesting phenomena. First, the role of plant roots is clearly seen as the major roots act as a conduit for water (and solute), providing a fast bypass of the upper soil. Further, we identified different regions of the subsurface that apparently were of the same texture, but in practice presented very different hydraulic properties. Second, the role of these roots depends on the boundary conditions. That is, the root bypass acts differently when soil is flooded than when flow is strictly unsaturated. As expected, simulation of the experimental results show good fit only if the domain heterogeneity of soil properties was incorporated. Results for the clayey soils were not available at time of abstract submission.

  18. Determination of bioavailable macro- and microelements from agricultural soil using different extractants

    NASA Astrophysics Data System (ADS)

    Milićević, Tijana; Relić, Dubravka; Popović, Aleksandar

    2015-04-01

    Translocation of elements from soil to plant has a major impact on the growing plants and on their quality in any agricultural field. In this study, soil samples were collected from agricultural area Radmilovac, Serbia during grapevine season in 2013. Bioavailable elements from soil to plant (grapevine) were isolated by five different extractants: 0.11 mol L-1 CH3COOH, 0.05 mol L-1 Na-EDTA, 0.01 mol L-1 CaCl2, 1 mol L-1 NH4NO3 and distilled water during 2 and 16 h. Concentrations of 22 bioavailable macroelements: Al, Ca, Fe, K, Mg, Mn, Na, P, S, Si and microelements: B, Be, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, V, Zn were determined by ICP-OES. The best extractant for Al, B, Be, Mg, Mo, Si and Zn was CH3COOH, Na-EDTA for Ca, Cd, Co, Cu, Fe, K, Mn, Ni, P, Pb, V, and distilled water for Na and S. Acetic acid has been proven to be an aggressive extractant and it can be used for isolation of higher concentrations of plant bioavailable elements from soil, rather than distilled water, CaCl2 and NH4NO3. The acidity of CH3COOH enhances the extraction of bioavailable fraction of microelements from various substrates and destruction of carbonates as well. However, it can be concluded that there is no unique extractant for isolation of the most bioavailable fraction for all elements from the soil. It can be noticed that the most common concentrations of macroelements, K and Mn, are in correlation with concentrations of microelements, Cd, Co, Ni and Zn. This indicates that the most of their concentrations in soils are followed by microelements, whose concentrations are much lower than concentrations of macroelements. However, as these correlations are the most common, it can be concluded that the pairs of macro- and microelements (e.g. Mn-Cd, Mn-Co, Ni-Cd, Ni-Co, Ni-Mn, Zn-Cd, Zn-Co, Zn-Mn, Zn-Ni) have the same source in soil and can be isolated by the same extractant. It is interesting to note that the concentrations of Ca and Mg extracted from soil using CH3COOH are in correlation

  19. Contribution of anthropogenic phosphorus to agricultural soil fertility and food production

    NASA Astrophysics Data System (ADS)

    Ringeval, B.; Nowak, B.; Nesme, T.; Delmas, M.; Pellerin, S.

    2014-07-01

    Agricultural intensification over the last few decades has been accompanied by the extensive use of anthropogenic phosphorus (P) derived from mined phosphate rock. Given the increasing scarcity of P resources, accurate estimates of the reliance of agriculture on anthropogenic P are required. Here we propose a modeling approach for assessing the contribution of anthropogenic P to agricultural soil fertility and food production. We performed computations at country level, and France was chosen as a typical western European country with intensive agriculture. Four soil P pools were identified based on their bioavailability (labile versus stable) and origin (anthropogenic versus natural). Pool evolution between 1948 and 2009 was estimated by combining international databases and a simple biogeochemical model. An optimization procedure demonstrated the necessity of representing a stable P pool capable of replenishing the labile pool within 14 to 33 years in order to match country-scale observations. Mean simulated P pool sizes for 2009 (0-35 cm soil horizon) were 146, 616, 31, and 156 kgP/ha for natural stable, anthropogenic stable, natural labile, and anthropogenic labile pools, respectively. We found that, on average, 82% (min-max: 68-91%) of soil P (sum of labile and above defined stable) in that year was anthropogenic. The temporal evolution of this contribution is directly related to the integral of chemical fertilizer use over time, starting from 1948. The contribution of anthropogenic P to food production was similar at 84% (min-max: 72-91%), which is greater than budget-based estimates ( 50-60%) commonly reported in the literature. By focusing on soil fertility and food production, this study provides a quantitative estimation of human perturbations of the P cycle in agroecosystems.

  20. Contamination of Phthalate Esters (PAEs) in Typical Wastewater-Irrigated Agricultural Soils in Hebei, North China.

    PubMed

    Zhang, Yuan; Liang, Qiong; Gao, Rutai; Hou, Haobo; Tan, Wenbing; He, Xiaosong; Zhang, Hui; Yu, Minda; Ma, Lina; Xi, Beidou; Wang, Xiaowei

    2015-01-01

    The Wangyang River (WYR) basin is a typical wastewater irrigation area in Hebei Province, North China. This study investigated the concentration and distribution of six priority phthalate esters (PAEs) in the agricultural soils in this area. Thirty-nine soil samples (0-20 cm) were collected along the WYR to assess the PAE residues in soils. Results showed that PAEs are ubiquitous environmental contaminants in the topsoil obtained from the irrigation area. The concentrations of Σ6PAEs range from 0.191 μg g-1 dw to 0.457 μg g-1 dw with an average value of 0.294 μg g-1 dw. Di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) are the dominant PAE species in the agricultural soils. Among the DEHP concentrations, the highest DEHP concentration was found at the sites close to the villages; this result suggested that dense anthropogenic activities and random garbage disposal in the rural area are possible sources of PAEs. The PAE concentrations were weakly and positively correlated with soil organic carbon and soil enzyme activities; thus, these factors can affect the distribution of PAEs. This study further showed that only dimethyl phthalate (DMP) concentrations exceeded the recommended allowable concentrations; no remediation measures are necessary to control the PAEs in the WYR area. However, the PAEs in the topsoil may pose a potential risk to the ecosystem and human health in this area. Therefore, the exacerbating PAE pollution should be addressed.

  1. Assessment of Natural Radioactivity Levels and Radiation Hazards in Agricultural and Virgin Soil in the State of Kedah, North of Malaysia

    PubMed Central

    2016-01-01

    The activity concentrations of naturally occurring radionuclides 226Ra, 232Th, and 40K were determined in 30 agricultural and virgin soil samples randomly collected from Kedah, north of Malaysia, at a fertile soil depth of 0–30 cm. Gamma-ray spectrometry was applied using high-purity germanium (HPGe) gamma-ray detector and a PC-based MCA. The mean radioactivity concentrations of 226Ra, 232Th, and 40K were found to be 102.08 ± 3.96, 133.96 ± 2.92, and 325.87 ± 9.83 Bq kg−1, respectively, in agricultural soils and 65.24 ± 2.00, 83.39 ± 2.27, and 136.98 ± 9.76 Bq kg−1, respectively, in virgin soils. The radioactivity concentrations in agricultural soils are higher than those in virgin soils and compared with those reported in other countries. The mean values of radium equivalent activity (Raeq), absorbed dose rates D (nGy h−1), annual effective dose equivalent, and external hazard index (H ex) are 458.785 Bq kg−1, 141.62 nGy h−1, and 0.169 mSv y−1, respectively, in agricultural soils and 214.293 Bq kg−1, 87.47 nGy h−1, and 0.106 mSv y−1, respectively, in virgin soils, with average H ex of 0.525. Results were discussed and compared with those reported in similar studies and with internationally recommended values. PMID:27965987

  2. Estimating Annual Soil Carbon Loss in Agricultural Peatland Soils Using a Nitrogen Budget Approach

    PubMed Central

    Kirk, Emilie R.; van Kessel, Chris; Horwath, William R.; Linquist, Bruce A.

    2015-01-01

    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 – 4 % combined). Shallow groundwater contributed 24 – 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 – 81 % of plant N uptake (129 – 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 – 70 %, estimated net C loss ranged from 1149 – 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices. PMID:25822494

  3. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    NASA Astrophysics Data System (ADS)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  4. Risk indicator for agricultural inputs of trace elements to Canadian soils.

    PubMed

    Sheppard, S C; Grant, C A; Sheppard, M I; de Jong, R; Long, J

    2009-01-01

    Trace elements (TEs) are universally present in environmental media, including soil, but agriculture uses some materials that have increased TE concentrations. Some TEs (e.g., Cu, Se, and Zn) are added to animal feeds to ensure animal health. Similarly, TEs are present in micronutrient fertilizers. In the case of phosphate fertilizers, some TEs (e.g., Cd) may be inadvertently elevated because of the source rock used in the manufacturing. The key question for agriculture is "After decades of use, could these TE additions result in the deterioration of soil quality?" An early warning would allow the development of best management practices to slow or reverse this trend. This paper discusses a model that estimates future TE concentrations for the 2780 land area polygons composing essentially all of the agricultural land in Canada. The development of the model is discussed, as are various metrics to express the risk related to TE accumulation. The elements As, Cd, Cu, Pb, Se, and Zn are considered, with inputs from the atmosphere, fertilizers, manures, and municipal biosolids. In many cases, steady-state concentrations could be toxic, but steady state is far in the future. In 100 yr, the soil concentrations (Century soil concentrations) are estimated to be up to threefold higher than present background, an impact even if not a problematic impact. The geographic distribution reflects agricultural intensity. Contributions from micronutrient fertilizers are perhaps the most uncertain due to the limited data available on their use.

  5. Procedures for sampling radium-contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischhauer, H.L.

    Two procedures for sampling the surface layer (0 to 15 centimeters) of radium-contaminated soil are recommended for use in remedial action projects. Both procedures adhere to the philosophy that soil samples should have constant geometry and constant volume in order to ensure uniformity. In the first procedure, a ''cookie cutter'' fashioned from pipe or steel plate, is driven to the desired depth by means of a slide hammer, and the sample extracted as a core or plug. The second procedure requires use of a template to outline the sampling area, from which the sample is obtained using a trowel ormore » spoon. Sampling to the desired depth must then be performed incrementally. Selection of one procedure over the other is governed primarily by soil conditions, the cookie cutter being effective in nongravelly soils, and the template procedure appropriate for use in both gravelly and nongravelly soils. In any event, a minimum sample volume of 1000 cubic centimeters is recommended. The step-by-step procedures are accompanied by a description of the minimum requirements for sample documentation. Transport of the soil samples from the field is then addressed in a discussion of the federal regulations for shipping radioactive materials. Interpretation of those regulations, particularly in light of their application to remedial action soil-sampling programs, is provided in the form of guidance and suggested procedures. Due to the complex nature of the regulations, however, there is no guarantee that our interpretations of them are complete or entirely accurate. Preparation of soil samples for radium-226 analysis by means of gamma-ray spectroscopy is described.« less

  6. Comparison of soil microbial respiration and carbon turnover under perennial and annual biofuel crops in two agricultural soils

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Marin-Spiotta, E.; Sanford, G. R.; Jackson, R. D.; Heckman, K. A.

    2015-12-01

    Bioenergy crops have the potential to provide a low carbon-intensive alternative to fossil fuels. More than a century of agricultural research has shown that conventional cropping systems can reduce soil organic matter (SOM) reservoirs, which cause long-term soil nutrient loss and C release to the atmosphere. In the face of climate change and other human disruptions to biogeochemical cycles, identifying biofuel crops that can maintain or enhance soil resources is desirable for the sustainable production of bioenergy. The objective of our study was to compare the effects of four biofuel crop treatments on SOM dynamics in two agricultural soils: Mollisols at Arlington Agricultural Research Station in Wisconsin and Alfisols at Kellogg Biological Station in Michigan, USA. We used fresh soils collected in 2013 and archived soils from 2008 to measure the effects of five years of crop management. Using a one-year long laboratory soil incubation coupled with a regression model and radiocarbon measurements, we separated soils into three SOM pools and their corresponding C turnover times. We found that the active pool, or biologically available C, was more sensitive to management and is an earlier indicator of changes to soil C dynamics than bulk soil C measurements. There was no effect of treatment on the active pool size at either site; however, the percent C in the active pool decreased, regardless of crop type, in surface soils with high clay content. At depth, the response of the slow pool differed between annual and perennial cropping systems. The distribution of C among SOM fractions varied between the two soil types, with greater C content associated with the active fraction in the coarser textured-soil and greater C content associated with the slow-cycling fraction in the soils with high clay content. These results suggest that the effects of bioenergy crops on soil resources will vary geographically, with implications for the carbon-cost of biocrop production.

  7. Soil organic matter composition from correlated thermal analysis and nuclear magnetic resonance data in Australian national inventory of agricultural soils

    NASA Astrophysics Data System (ADS)

    Moore, T. S.; Sanderman, J.; Baldock, J.; Plante, A. F.

    2016-12-01

    National-scale inventories typically include soil organic carbon (SOC) content, but not chemical composition or biogeochemical stability. Australia's Soil Carbon Research Programme (SCaRP) represents a national inventory of SOC content and composition in agricultural systems. The program used physical fractionation followed by 13C nuclear magnetic resonance (NMR) spectroscopy. While these techniques are highly effective, they are typically too expensive and time consuming for use in large-scale SOC monitoring. We seek to understand if analytical thermal analysis is a viable alternative. Coupled differential scanning calorimetry (DSC) and evolved gas analysis (CO2- and H2O-EGA) yields valuable data on SOC composition and stability via ramped combustion. The technique requires little training to use, and does not require fractionation or other sample pre-treatment. We analyzed 300 agricultural samples collected by SCaRP, divided into four fractions: whole soil, coarse particulates (POM), untreated mineral associated (HUM), and hydrofluoric acid (HF)-treated HUM. All samples were analyzed by DSC-EGA, but only the POM and HF-HUM fractions were analyzed by NMR. Multivariate statistical analyses were used to explore natural clustering in SOC composition and stability based on DSC-EGA data. A partial least-squares regression (PLSR) model was used to explore correlations among the NMR and DSC-EGA data. Correlations demonstrated regions of combustion attributable to specific functional groups, which may relate to SOC stability. We are increasingly challenged with developing an efficient technique to assess SOC composition and stability at large spatial and temporal scales. Correlations between NMR and DSC-EGA may demonstrate the viability of using thermal analysis in lieu of more demanding methods in future large-scale surveys, and may provide data that goes beyond chemical composition to better approach quantification of biogeochemical stability.

  8. Trace elements assessment in agricultural and desert soils of Aswan area, south Egypt: Geochemical characteristics and environmental impacts

    NASA Astrophysics Data System (ADS)

    Darwish, Mohamed Abdallah Gad; Pöllmann, Hebert

    2015-12-01

    Determination of chemical elements, Al, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, P, Pb, Sc, Sr, Ti, Y, and Zn have been performed in agricultural and desert soils and alfalfa (Medicago sativa) at Aswan area. Consequently, the pollution indices, univariate and multivariate statistical methods have been applied, in order to assess the geochemical characteristics of these elements and their impact on soil environmental quality and plant, and to reach for their potential input sources. The investigation revealed that the mean and range values of all element concentrations in agricultural soil are higher than those in desert soil. Furthermore, the agricultural soil displayed various degrees of enrichment and pollution of Cd, Zn, Mo, Co, P, Ti, Pb. The geochemical pattern of integrated pollution indices gave a clear image of extreme and strong pollution in the agricultural soil stations, their poor quality with high risk to human health and considered as a tocsin for an alert. In contrast, the desert soil is the good environmental quality and safe for plant, animal and human health. Alfalfa is tolerant plant and considered as a biomarker for P and Mo in polluted agricultural soil. Four geochemical associations of analyzing elements in agricultural soil and three ones in desert soil have been generated, and their enhancements were essentially caused by various anthropogenic activities and geogenic sources. The investigation also revealed that the broad extended desert soil is fruitful and promising as cultivable lands for agricultural processes in the futures.

  9. Identification of Soil Properties and Organophosphate Residues From Agricultural Land in Wanasari Sub-District, Brebes, Indonesia

    NASA Astrophysics Data System (ADS)

    Joko, Tri; Anggoro, Sutrisno; Sunoko, Henna Rya; Rachmawati, Savitri

    2018-02-01

    Organophosphates have been used to eradicate pests and prevent losses from harvest failures caused by pest attack. It is undeniable that the organophosphate persist in soil. This study aims to identify the organophosphate residue and soil properties include pH, soil texture, and permeability. The soil samples were taken from cropland in 10 villages, Wanasari sub-district, Brebes, Indonesia. Organophosphate residue determined by gas chromatography using Flame Photometric Detector. Soil texture was determined by soil texture triangle from NRCS USDA, and the permeability value was determined by falling head method. The mean value of chlorpyrifos, profenofos, diazinon were 0.0078; 0.0388; 0.2271 mg/l respectively. The soil texture varies from clay, silt clay, loam, silt loam, and silt clay loam with permeability value at 10-7 with the soil pH value between 6.4 - 8.1. The results showed that organophosphate residues found in the soil and its potential affect the soil fertility decline. We recommend to conduct routine soil quality analysis to prevent soil damage in the agricultural environment.

  10. Agricultural soil moisture experiment, Colby, Kansas 1978: Measured and predicted hydrological properties of the soil

    NASA Technical Reports Server (NTRS)

    Arya, L. M. (Principal Investigator)

    1980-01-01

    Predictive procedures for developing soil hydrologic properties (i.e., relationships of soil water pressure and hydraulic conductivity to soil water content) are presented. Three models of the soil water pressure-water content relationship and one model of the hydraulic conductivity-water content relationship are discussed. Input requirements for the models are indicated, and computational procedures are outlined. Computed hydrologic properties for Keith silt loam, a soil typer near Colby, Kansas, on which the 1978 Agricultural Soil Moisture Experiment was conducted, are presented. A comparison of computed results with experimental data in the dry range shows that analytical models utilizing a few basic hydrophysical parameters can produce satisfactory data for large-scale applications.

  11. Persistence and Viability of Lecanicillium lecanii in Chinese Agricultural Soil

    PubMed Central

    Peng, De-Liang; Zhou, Jie; Zhang, Xiao-Lin; Zhang, Zhao-Rong; Zhao, Jin-Jin; Wu, Yu-Huan

    2015-01-01

    The entomopathogenic fungus L. lecanii has been developed as biopesticides and used widely for biological control of several insects in agricultural practice. Due to the lack of isolation/count methods for L. lecanii in soil, the persistence of this fungus in soil appears to have attracted no attention. A selective medium and count method for L. lecanii in soil based on cetyl trimethyl ammonium bromide (CTAB) was developed, and then the persistence and viability of this fungus in soil were investigated under field conditions between 2012 and 2014. The results showed that the rate of recovery for L. lecanii in soil on the selective CTAB medium was satisfactory. The minimum CFUs for L. lecanii on the selective medium (0.5 g/L CTAB) was about 102 conidia/g soil. The L. lecanii density in soil declined quickly in the first month after inoculation with fungal conidia, kept stable for 6 to 10 months, and then decreased gradually until undetectable. L. lecanii could persist for at least 14 months in the agricultural soil of northern China. The colony growth, conidia yield and germination rate on plates, as well as the median lethal concentration or times (LC50 or LT50) to aphids, mycelium growth in aphids and sporulation on aphids of L. lecanii did not change significantly during the persistence in soil. In general, the count method developed here was a very useful tool for monitoring the dynamics of natural or introduced L. lecanii populations in soil, and the data on the persistence of L. lecanii in soil reported here were helpful for biological control and environmental risk assessment. PMID:26375030

  12. Natural radioactivity levels of geothermal waters and their influence on soil and agricultural activities.

    PubMed

    Murat Saç, Müslim; Aydemir, Sercan; Içhedef, Mutlu; Kumru, Mehmet N; Bolca, Mustafa; Ozen, Fulsen

    2014-01-01

    All over the world geothermal sources are used for different purposes. The contents of these waters are important to understand positive/negative effects on human life. In this study, natural radioactivity concentrations of geothermal waters were investigated to evaluate the effect on soils and agricultural activities. Geothermal water samples were collected from the Seferihisar Geothermal Region, and the radon and radium concentrations of these waters were analysed using a collector chamber method. Also soil samples, which are irrigated with geothermal waters, were collected from the surroundings of geothermal areas, and natural radioactivity concentrations of collected samples (U, Th and K) were determined using an NaI(Tl) detector system. The activity concentrations of radon and radium were found to be 0.6-6.0 and 0.1-1.0 Bq l(-1), respectively. Generally, the obtained results are not higher compared with the geothermal waters of the world. The activity concentrations in soils were found to be in the range of 3.3-120.3 Bq kg(-1) for (226)Ra (eU), 0.3-108.5 Bq kg(-1) for (232)Th (eTh), 116.0-850.0 Bq kg(-1) for (40)K (% K).

  13. Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks.

    PubMed

    Sun, J T; Pan, L L; Zhan, Yu; Tsang, Daniel C W; Zhu, L Z; Li, X D

    2017-04-01

    Atrazine is one of the most widely applied and persistent herbicides in the world. In view of limited information on the regional contamination of atrazine in soils in China, this study investigated the spatial distribution and environmental impacts of atrazine in agricultural soils collected from the Yangtze River Delta (YRD) as an illustrative analysis of rapidly developing regions in the country. The results showed that the concentrations of atrazine in the YRD agricultural soils ranged from <1.0 to 113 ng/g dry weight, with a mean of 5.7 ng/g, and a detection rate of 57.7 % in soils. Pesticide factory might be a major source for the elevated levels of atrazine in Zhejiang Province. The contamination of atrazine was closely associated with land use types. The concentrations and detection rates of atrazine were higher in corn fields and mulberry fields than in rice paddy fields. There was no significant difference in compositions of soil microbial phospholipids fatty acids among the areas with different atrazine levels. Positive relationship (R = 0.417, p < 0.05, n = 30) was observed between atrazine and total microbial biomass. However, other factors, such as soil type and land management practice, might have stronger influences on soil microbial communities. Human health risks via exposure to atrazine in soils were estimated according to the methods recommended by the US EPA. Atrazine by itself in all the soil samples imposed very low carcinogenic risks (<10 -6 ) and minimal non-cancer risks (hazard index <1) to adults and children.

  14. Oxidation of humic substances supports denitrification reactions in agricultural soils.

    NASA Astrophysics Data System (ADS)

    van Trump, J. I.; Coates, J. D.

    2007-12-01

    Humic substances (HS) are a ubiquitous, recalcitrant, and diverse class of compounds arising from degradation and condensation of plant and microbial biopolymers. Many bacteria oxidize hydroquinones within humic substances to their quinone analogs, providing electrons for respiratory processes such as nitrate reduction. Microbial hydroquinone oxidation contributes to the redox state of HS and supports denitrification, which may be of import to agricultural soils where nitrate retention is critical and HS are prevalent. Most probable number counts were performed on soils collected from a Nebraska farm, with the model humic hydroquinone 2,6- anthrahydroquinone disulfonate (AHDS) serving as an electron donor and nitrate as the electron acceptor. Results indicated that AHDS oxidizing, nitrate reducing bacteria were present in soils from bluegrass fields (104 cells/g) and aspen groves (106 cells/g), as well as in plots of corn (106 cells/g), and soybean treated (106 cells/g) and un-treated (105 cells/g) with pig slurry. These results demonstrate that microorganisms participating in the proposed metabolism are prevalent within agricultural soils. Upflow glass columns were constructed, containing a support matrix of glass beads amended with 10% w/w soil from the corn plot previously mentioned. All columns were subjected to a continual flow of phosphate-buffered water amended with sodium nitrate. Above the point source for nitrate injection, phosphate-buffered water containing electron donor treatments were continually injected. The impacts of electron donor treatments (no donor, oxidized HS, reduced HS, and acetate) on denitrification and other geochemical parameters were observed. Column studies were able to resolve effects of electron donor treatment both spatially as a function of distance from the injection point source, and temporally, as a function of time of donor treatment. Four sample ports in each column were routinely analyzed for concentrations of nitrate

  15. Use of airborne hyperspectral imagery to map soil parameters in tilled agricultural fields

    USGS Publications Warehouse

    Hively, W. Dean; McCarty, Gregory W.; Reeves, James B.; Lang, Megan W.; Oesterling, Robert A.; Delwiche, Stephen R.

    2011-01-01

    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400–2450 nm, ~10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n = 315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R2 > 0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3 × 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

  16. Agriculture, forestry, range, and soils, chapter 2, part C

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility of using microwave systems in agriculture, forestry, range, and soil moisture measurements was studied. Theory and preliminary results show the feasibility of measuring moisture status in the soil. For vegetational resources, crop identification for inventory and for yield and production estimates is most feasible. Apart from moisture- and water-related phenomena, microwave systems are also used to record structural and spatial data related to crops and forests.

  17. Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields

    NASA Astrophysics Data System (ADS)

    Xu, Yiming; Smith, Scot E.; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P.

    2017-01-01

    Soil prediction models based on spectral indices from some multispectral images are too coarse to characterize spatial pattern of soil properties in small and heterogeneous agricultural lands. Image pan-sharpening has seldom been utilized in Digital Soil Mapping research before. This research aimed to analyze the effects of pan-sharpened (PAN) remote sensing spectral indices on soil prediction models in smallholder farm settings. This research fused the panchromatic band and multispectral (MS) bands of WorldView-2, GeoEye-1, and Landsat 8 images in a village in Southern India by Brovey, Gram-Schmidt and Intensity-Hue-Saturation methods. Random Forest was utilized to develop soil total nitrogen (TN) and soil exchangeable potassium (Kex) prediction models by incorporating multiple spectral indices from the PAN and MS images. Overall, our results showed that PAN remote sensing spectral indices have similar spectral characteristics with soil TN and Kex as MS remote sensing spectral indices. There is no soil prediction model incorporating the specific type of pan-sharpened spectral indices always had the strongest prediction capability of soil TN and Kex. The incorporation of pan-sharpened remote sensing spectral data not only increased the spatial resolution of the soil prediction maps, but also enhanced the prediction accuracy of soil prediction models. Small farms with limited footprint, fragmented ownership and diverse crop cycle should benefit greatly from the pan-sharpened high spatial resolution imagery for soil property mapping. Our results show that multiple high and medium resolution images can be used to map soil properties suggesting the possibility of an improvement in the maps' update frequency. Additionally, the results should benefit the large agricultural community through the reduction of routine soil sampling cost and improved prediction accuracy.

  18. Assessing of distribution, mobility and bioavailability of exogenous Pb in agricultural soils using isotopic labeling method coupled with BCR approach.

    PubMed

    Huang, Zhi-Yong; Xie, Hong; Cao, Ying-Lan; Cai, Chao; Zhang, Zhi

    2014-02-15

    The contamination of Pb in agricultural soils is one of the most important ecological problems, which potentially results in serious health risk on human health through food chain. Hence, the fate of exogenous Pb contaminated in agricultural soils is needed to be deeply explored. By spiking soils with the stable enriched isotopes of (206)Pb, the contamination of exogenous Pb(2+) ions in three agricultural soils sampled from the estuary areas of Jiulong River, China was simulated in the present study, and the distribution, mobility and bioavailability of exogenous Pb in the soils were investigated using the isotopic labeling method coupled with a four-stage BCR (European Community Bureau of Reference) sequential extraction procedure. Results showed that about 60-85% of exogenous Pb was found to distribute in reducible fractions, while the exogenous Pb in acid-extractable fractions was less than 1.0%. After planting, the amounts of exogenous Pb presenting in acid-extractable, reducible and oxidizable fractions in rhizospheric soils decreased by 60-66%, in which partial exogenous Pb was assimilated by plants while most of the metal might transfer downward due to daily watering and applying fertilizer. The results show that the isotopic labeling technique coupled with sequential extraction procedures enables us to explore the distribution, mobility and bioavailability of exogenous Pb contaminated in soils, which may be useful for the further soil remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Biochar has no effect on soil respiration across Chinese agricultural soils.

    PubMed

    Liu, Xiaoyu; Zheng, Jufeng; Zhang, Dengxiao; Cheng, Kun; Zhou, Huimin; Zhang, Afeng; Li, Lianqing; Joseph, Stephen; Smith, Pete; Crowley, David; Kuzyakov, Yakov; Pan, Genxing

    2016-06-01

    Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils. Copyright © 2016. Published by Elsevier B.V.

  20. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa.

    PubMed

    Mungai, Teresiah Muciku; Owino, Anita Awino; Makokha, Victorine Anyango; Gao, Yan; Yan, Xue; Wang, Jun

    2016-09-01

    The concentration distribution and toxicological assessment of eight heavy metals including lead (Pb), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), mercury (Hg), arsenic (As), and zinc (Zn) in agricultural soils from Kenya, Eastern Africa, were investigated in this study. The results showed mean concentrations of eight heavy metals of Zn, Pb, Cr, Cu, As, Ni, Hg, and Cd in agricultural soils as 247.39, 26.87, 59.69, 88.59, 8.93, 12.56, 8.06, and 0.42 mg kg(-1), respectively. These mean values of eight heavy metals were close to the toxicity threshold limit of USEPA standard values of agricultural soils, indicating potential toxicological risk to the food chain. Pollution index values revealed that eight heavy metals severely decreased in the order Hg > Cd > As > Cu > Pb > Zn > Ni > Cr and the mean value of the overall pollution index of Hg and Cd was 20.31, indicating severe agriculture ecological risk. Potential pollution sources of eight heavy metals in agricultural soils were mainly from anthropogenic activities and natural dissolution. The intensification of human agricultural activities, the growing industrialization, and the rapid urbanization largely influenced the concentration levels of heavy metals in Kenya, Eastern Africa. Moreover, the lack of agricultural normalization management and poor enforcement of environmental laws and regulations further intensified the widespread pollution of agricultural soils in Kenya.

  1. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils.

    PubMed

    Sharaff, Murali; Kamat, Shalmali; Archana, G

    2017-04-01

    Agricultural sites irrigated for long term with water polluted by industrial effluents containing heavy metals might adversely affect the soil microbial communities and crop yield. Hence it is important to study rhizobacterial communities and their metal tolerance in such affected agricultural fields to restore soil fertility and ecosystem. Present work deals with the study of rhizobacterial communities from plants grown in copper (Cu) contaminated agricultural fields along the industrial zone of Gujarat, India and are compared with communities from a Cu mine site. Microbial communities from rhizosphere soil samples varied in the magnitude of their Cu tolerance index indicating differences in long term pollution effects. Culture dependent denaturing gradient gel electrophoresis (CD-DGGE) of bacterial communities revealed the diverse composition at the sampling sites and a reduced total diversity due to Cu toxicity. Analysis of 16S rRNA gene diversity of Cu tolerant rhizobacteria revealed the predominance of Enterobacter spp. and Pseudomonas spp. under Cu stress conditions. Cu tolerant bacterial isolates that were able to promote growth of mung bean plants in vitro under Cu stress were obtained from these samples. Cu tolerant rhizobacterium P36 identified as Enterobacter sp. exhibited multiple plant growth promoting traits and significantly alleviated Cu toxicity to mung bean plants by reducing the accumulation of Cu in plant roots and promoted the plant growth in CuSO 4 amended soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. How conservation agriculture can mitigate greenhouse gas emissions and enhance soil carbon storage in croplands

    USDA-ARS?s Scientific Manuscript database

    Conservation agriculture can mitigate greenhouse gas (GHG) emissions from agriculture by enhancing soil carbon sequestration, improving soil quality, N-use efficiency and water use efficiencies, and reducing fuel consumption. Management practices that increase carbon inputs and while reducing carbo...

  3. Selenium speciation and extractability in Dutch agricultural soils.

    PubMed

    Supriatin, Supriatin; Weng, Liping; Comans, Rob N J

    2015-11-01

    The study aimed to understand selenium (Se) speciation and extractability in Dutch agricultural soils. Top soil samples were taken from 42 grassland fields and 41 arable land fields in the Netherlands. Total Se contents measured in aqua regia were between 0.12 and 1.97 mg kg(-1) (on average 0.58 mg kg(-1)). Organic Se after NaOCl oxidation-extraction accounted for on average 82% of total Se, whereas inorganic selenite (selenate was not measurable) measured in ammonium oxalate extraction using HPLC-ICP-MS accounted for on average 5% of total Se. The predominance of organic Se in the soils is supported by the positive correlations between total Se (aqua regia) and total soil organic matter content, and Se and organic C content in all the other extractions performed in this study. The amount of Se extracted followed the order of aqua regia > 1 M NaOCl (pH8) > 0.1 M NaOH>ammonium oxalate (pH3) > hot water>0.43 M HNO3 > 0.01 M CaCl2. None of these extractions selectively extracts only inorganic Se, and relative to other extractions 0.43 M HNO3 extraction contains the lowest fraction of organic Se, followed by ammonium oxalate extraction. In the 0.1M NaOH extraction, the hydrophobic neutral (HON) fraction of soil organic matter is richer in Se than in the hydrophilic (Hy) and humic acid (HA) fractions. The organic matter extracted in 0.01 M CaCl2 and hot water is in general richer in Se compared to the organic matter extracted in 0.1M NaOH, and other extractions (HNO3, ammonium oxalate, NaOCl, and aqua regia). Although the extractability of Se follows to a large extent the extractability of soil organic carbon, there is several time variations in the Se to organic C ratios, reflecting the changes in composition of organic matter extracted. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  5. Comparison of organochlorine pesticides occurrence, origin, and character in agricultural and industrial soils in Beijing.

    PubMed

    Shi, Yajuan; Lu, Yonglong; Wang, Tieyu; Wang, Guang; Luo, Wei

    2009-10-01

    The origin and occurrence of organochlorine pesticides [OCPs; hexachlorocyclohexanes (HCHs) and 1,1,1-trichloro-2,2- bis(p-chlorophenyl) ethane (DDTs)] in the surface and profile of soils from former OCPs production areas were compared with those of agricultural plots in Beijing, China in order to identify their characteristics, assess the eco-toxicological risk, and provide management suggestions. The comparison indicated heavier contamination caused by the production, storage, and waste disposal than the application of OCPs. Concentrations of HCHs and DDTs in topsoils varied by several orders of magnitude among different land-use groups. The concentrations (ng/g dry soil, geometric means) of HCHs (1958.2) and DDTs (3998.2) in the topsoils of former OCPs production factories were significantly higher than those in agricultural soils. The residue of DDTs and HCHs accumulated only on the surface of agricultural soil, but at depths ranging from 0 to 400 cm for the OCPs plant and warehouse. beta-HCH and p,p'-DDE dominated in the agricultural soils, whereas beta-HCH, gamma-HCH, p,p'-DDT, and p,p'-DDE were dominant in the industrial soils. The risk of examined OCPs in soils on human health was assessed in light of the Dutch and Canadian soil quality criteria, and the results indicated a high risk in the OCPs production factory area and the agricultural lands with large application. The results point to the need for urgent actions to evaluate long-term toxicity and preassessment for OCPs-related land-use management.

  6. How can soil organic carbon stocks in agriculture be maintained or increased?

    NASA Astrophysics Data System (ADS)

    Don, Axel; Leifeld, Jens

    2015-04-01

    CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.

  7. Detection of residual organochlorine and organophosphorus pesticides in agricultural soil in Rio Verde region of San Luis Potosi, Mexico.

    PubMed

    Velasco, Antonio; Hernández, Sergio; Ramírez, Martha; Ortíz, Irmene

    2014-01-01

    Organochlorine pesticides were intensively used in Mexico from 1950 until their ban and restriction in 1991. However, the presence of these compounds is commonly reported in many regions of the country. The aim of the present study was to identify and quantify residual organochlorine and organophosphorus pesticides in agricultural soil in Rio Verde region, San Luis Potosi state, which has been identified as possibly polluted by pesticides. Composed samples from 24 zones covering an area of approximately 5,440 ha were analyzed. The most frequently found pesticides were p,p'-DDT followed by ,p,p'-DDE, heptachlor, endosulfan and γ-HCH whose frequency rates were 100, 91, 83 and 54%, respectively. The concentration of p,p'-DDT in the crops grown in these soils was in the following order: chili > maize > tomato > alfalfa. The results obtained in this study show that p,p'-DDT values are lower or similar to those found in other agricultural regions of Mexico. Methyl and ethyl parathion were the most frequent organophosphate pesticide detected in 100% and 62.5% of the samples with average concentrations of 25.20 and 47.48 μg kg(-1), respectively. More research is needed to establish the background levels of pesticides in agricultural soils and their potential ecological and human health effects in this region.

  8. Tools based on multivariate statistical analysis for classification of soil and groundwater in Apulian agricultural sites.

    PubMed

    Ielpo, Pierina; Leardi, Riccardo; Pappagallo, Giuseppe; Uricchio, Vito Felice

    2017-06-01

    In this paper, the results obtained from multivariate statistical techniques such as PCA (Principal component analysis) and LDA (Linear discriminant analysis) applied to a wide soil data set are presented. The results have been compared with those obtained on a groundwater data set, whose samples were collected together with soil ones, within the project "Improvement of the Regional Agro-meteorological Monitoring Network (2004-2007)". LDA, applied to soil data, has allowed to distinguish the geographical origin of the sample from either one of the two macroaeras: Bari and Foggia provinces vs Brindisi, Lecce e Taranto provinces, with a percentage of correct prediction in cross validation of 87%. In the case of the groundwater data set, the best classification was obtained when the samples were grouped into three macroareas: Foggia province, Bari province and Brindisi, Lecce and Taranto provinces, by reaching a percentage of correct predictions in cross validation of 84%. The obtained information can be very useful in supporting soil and water resource management, such as the reduction of water consumption and the reduction of energy and chemical (nutrients and pesticides) inputs in agriculture.

  9. Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management

    PubMed Central

    Bhat, Nisar A.; Riar, Amritbir; Ramesh, Aketi; Iqbal, Sanjeeda; Sharma, Mahaveer P.; Sharma, Sanjay K.; Bhullar, Gurbir S.

    2017-01-01

    Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid) environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max) -wheat (Triticum aestivum) crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings clearly indicate

  10. Plant-Soil Feedback: Bridging Natural and Agricultural Sciences.

    PubMed

    Mariotte, Pierre; Mehrabi, Zia; Bezemer, T Martijn; De Deyn, Gerlinde B; Kulmatiski, Andrew; Drigo, Barbara; Veen, G F Ciska; van der Heijden, Marcel G A; Kardol, Paul

    2018-02-01

    In agricultural and natural systems researchers have demonstrated large effects of plant-soil feedback (PSF) on plant growth. However, the concepts and approaches used in these two types of systems have developed, for the most part, independently. Here, we present a conceptual framework that integrates knowledge and approaches from these two contrasting systems. We use this integrated framework to demonstrate (i) how knowledge from complex natural systems can be used to increase agricultural resource-use efficiency and productivity and (ii) how research in agricultural systems can be used to test hypotheses and approaches developed in natural systems. Using this framework, we discuss avenues for new research toward an ecologically sustainable and climate-smart future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Speciation of Cu and Zn in drainage water from agricultural soils.

    PubMed

    Aldrich, Annette P; Kistler, David; Sigg, Laura

    2002-11-15

    Inputs of copper and zinc from agricultural soils into the aquatic system were investigated in this study, because of their heavy agricultural usage as feed additives and components of fertilizers and fungicides. As the mobility and bioavailability of these metals are affected by their speciation, the lipophilic, colloidal and organic fractions were determined in drainage water from a loamy and a humic soil treated with fungicides or manure. This study therefore investigates the impact of agricultural activity on a natural environment and furthers our understanding of the mobility of metals in agricultural soils and aquatic pollution in rural areas. Marked increases in the total dissolved metal concentrations were observed in the drainage water during rain events with up to 0.3 microM Cu and 0.26 microM Zn depending on the intensity of the rainfall and soil type. The mobile metal fractions were of a small molecular size (<10 kD) and mainly hydrophilic. Lipophilic complexes originating from a dithiocarbamate (DTC) fungicide could not be observed in the drainage water; however, small amounts of lipophilic metal complexes may be of natural origin. Cu was organically complexed to > 99.9% by abundant organic ligands (log K 10.5-11.0). About 50% of dissolved Zn were electrochemically labile, and the other 50% were complexed by strong organic ligands (log K 8.2-8.6). Therefore very little free metal species were found suggesting a low bioavailability of these metals in the drainage water even at elevated metal concentrations.

  12. Mapping Soil Organic Carbon Resources Across Agricultural Land Uses in Highland Lesotho Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Knight, J.; Adam, E.

    2015-12-01

    Mapping spatial patterns of soil organic carbon (SOC) using high resolution satellite imagery is especially important in inaccessible or upland areas that have limited field measurements, where land use and land cover (LULC) are changing rapidly, or where the land surface is sensitive to overgrazing and high rates of soil erosion and thus sediment, nutrient and carbon export. Here we outline the methods and results of mapping soil organic carbon in highland areas (~2400 m) of eastern Lesotho, southern Africa, across different land uses. Bedrock summit areas with very thin soils are dominated by xeric alpine grassland; terrace agriculture with strip fields and thicker soils is found within river valleys. Multispectral Worldview 2 imagery was used to map LULC across the region. An overall accuracy of 88% and kappa value of 0.83 were achieved using a support vector machine model. Soils were examined in the field from different LULC areas for properties such as soil depth, maturity and structure. In situ soils in the field were also evaluated using a portable analytical spectral device (ASD) in order to ground truth spectral signatures from Worldview. Soil samples were examined in the lab for chemical properties including organic carbon. Regression modeling was used in order to establish a relationship between soil characteristics and soil spectral reflectance. We were thus able to map SOC across this diverse landscape. Results show that there are notable differences in SOC between upland and agricultural areas which reflect both soil thickness and maturity, and land use practices such as manuring of fields by cattle. Soil erosion and thus carbon (nutrient) export is significant issue in this region, which this project will now be examining.

  13. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities.

    PubMed

    Álvarez-Ayuso, E; Otones, V; Murciego, A; García-Sánchez, A; Regina, I Santa

    2012-11-15

    An agricultural area impacted by the former exploitation of an arsenical lead-antimony deposit was studied in order to assess the current and eventual environmental and health impacts. Samples of soils and cultivated (wheat) and spontaneously growing plants were collected at different distances from the mine pits and analyzed for the toxic element content and distribution. The soil total concentrations of Sb, As and Pb found in the uppermost soil layer (14.1-324, 246-758 and 757-10,660 mg kg(-1), respectively) greatly surpass their maximum tolerable levels in agricultural soils. Wheat grain Pb concentrations (0.068-1.36 mg kg(-1)) exceed the prescribed health standard, whereas Sb (<0.05-0.103 mg kg(-1)) and As (<0.05-0.126 mg kg(-1)) concentrations are below the permissible limits fixed for cereals. Of the spontaneously growing plants, Dactylis glomerata L. shows a relatively high root Pb accumulation and a very low Pb translocation, suggesting its feasibility to be used in Pb phytostabilization strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Can conservation trump impacts of climate change and extremes on soil erosion in agricultural landscapes

    USDA-ARS?s Scientific Manuscript database

    Preservation of top soil is critical for the long term sustainability of agricultural productivity, food security, and biodiversity. However, today’s growing population and increasing demand for food and fiber is stressing the agricultural soil and water resources. Climate change imposes additional ...

  15. Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil.

    PubMed

    Servin, Alia D; De la Torre-Roche, Roberto; Castillo-Michel, Hiram; Pagano, Luca; Hawthorne, Joseph; Musante, Craig; Pignatello, Joseph; Uchimiya, Minori; White, Jason C

    2017-01-01

    Biochar is seeing increased usage as an amendment in agricultural soils but the significance of nanoscale interactions between this additive and engineered nanoparticles (ENP) remains unknown. Corn, lettuce, soybean and zucchini were grown for 28 d in two different soils (agricultural, residential) amended with 0-2000 mg engineered nanoparticle (ENP) CeO 2  kg -1 and biochar (350 °C or 600 °C) at application rates of 0-5% (w/w). At harvest, plants were analyzed for biomass, Ce content, chlorophyll and lipid peroxidation. Biomass from the four species grown in residential soil varied with species and biochar type. However, biomass in the agricultural soil amended with biochar 600 °C was largely unaffected. Biochar co-exposure had minimal impact on Ce accumulation, with reduced or increased Ce content occurring at the highest (5%) biochar level. Soil-specific and biochar-specific effects on Ce accumulation were observed in the four species. For example, zucchini grown in agricultural soil with 2000 mg CeO 2  kg -1 and 350 °C biochar (0.5-5%) accumulated greater Ce than the control. However, for the 600 °C biochar, the opposite effect was evident, with decreased Ce content as biochar increased. A principal component analysis showed that biochar type accounted for 56-99% of the variance in chlorophyll and lipid peroxidation across the plants. SEM and μ-XRF showed Ce association with specific biochar and soil components, while μ-XANES analysis confirmed that after 28 d in soil, the Ce remained largely as CeO 2 . The current study demonstrates that biochar synthesis conditions significantly impact interactions with ENP, with subsequent effects on particle fate and effects. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Analysis of the sensitivity of soils to the leaching of agricultural pesticides in Ohio

    USGS Publications Warehouse

    Schalk, C.W.

    1998-01-01

    Pesticides have not been found frequently in the ground waters of Ohio even though large amounts of agricultural pesticides are applied to fields in Ohio every year. State regulators, including representatives from Ohio Environmental Protection Agency and Departments of Agriculture, Health, and Natural Resources, are striving to limit the presence of pesticides in ground water at a minimum. A proposed pesticide management plan for the State aims at protecting Ohio's ground water by assessing pesticide-leaching potential using geographic information system (GIS) technology and invoking a monitoring plan that targets aquifers deemed most likely to be vulnerable to pesticide leaching. The U.S. Geological Survey, in cooperation with Ohio Department of Agriculture, assessed the sensitivity of mapped soil units in Ohio to pesticide leaching. A soils data base (STATSGO) compiled by U.S. Department of Agriculture was used iteratively to estimate soil units as being of high to low sensitivity on the basis of soil permeability, clay content, and organic-matter content. Although this analysis did not target aquifers directly, the results can be used as a first estimate of areas most likely to be subject to pesticide contamination from normal agricultural practices. High-sensitivity soil units were found in lakefront areas and former lakefront beach ridges, buried valleys in several river basins, and parts of central and south- central Ohio. Medium-high-sensitivity soil units were found in other river basins, along Lake Erie in north-central Ohio, and in many of the upland areas of the Muskingum River Basin. Low-sensitivity map units dominated the northwestern quadrant of Ohio.

  17. Towards a model-based inventory of soil organic carbon in agricultural soils for the Swiss greenhouse gas reporting

    NASA Astrophysics Data System (ADS)

    Staudt, K.; Leifeld, J.; Bretscher, D.; Fuhrer, J.

    2012-04-01

    The Swiss inventory submission under the United Nations Framework Convention on Climate Change (UNFCCC) reports on changes in soil organic carbon stocks under different land-uses and land-use changes. The approach currently employed for cropland and grassland soils combines Tier 1 and Tier 2 methods and is considered overly simplistic. As the UNFCC encourages countries to develop Tier 3 methods for national greenhouse gas reporting, we aim to build up a model-based inventory of soil organic carbon in agricultural soils in Switzerland. We conducted a literature research on currently employed higher-tier methods using process-based models in four countries: Denmark, Sweden, Finland and the USA. The applied models stem from two major groups differing in complexity - those belonging to the group of general ecosystem models that include a plant-growth submodel, e.g. Century, and those that simulate soil organic matter turnover but not plant-growth, e.g. ICBM. For the latter group, carbon inputs to the soil from plant residues and roots have to be determined separately. We will present some aspects of the development of a model-based inventory of soil organic carbon in agricultural soils in Switzerland. Criteria for model evaluation are, among others, modeled land-use classes and land-use changes, spatial and temporal resolution, and coverage of relevant processes. For model parameterization and model evaluation at the field scale, data from several long-term agricultural experiments and monitoring sites in Switzerland is available. A subsequent regional application of a model requires the preparation of regional input data for the whole country - among others spatio-temporal meteorological data, agricultural and soil data. Following the evaluation of possible models and of available data, preference for application in the Swiss inventory will be given to simpler model structures, i.e. models without a plant-growth module. Thus, we compared different allometric relations

  18. Contamination of Phthalate Esters (PAEs) in Typical Wastewater-Irrigated Agricultural Soils in Hebei, North China

    PubMed Central

    Zhang, Yuan; Liang, Qiong; Gao, Rutai; Hou, Haobo; Tan, Wenbing; He, Xiaosong; Zhang, Hui; Yu, Minda; Ma, Lina; Xi, Beidou; Wang, Xiaowei

    2015-01-01

    The Wangyang River (WYR) basin is a typical wastewater irrigation area in Hebei Province, North China. This study investigated the concentration and distribution of six priority phthalate esters (PAEs) in the agricultural soils in this area. Thirty-nine soil samples (0–20 cm) were collected along the WYR to assess the PAE residues in soils. Results showed that PAEs are ubiquitous environmental contaminants in the topsoil obtained from the irrigation area. The concentrations of Σ6PAEs range from 0.191 μg g−1 dw to 0.457 μg g−1 dw with an average value of 0.294 μg g−1 dw. Di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) are the dominant PAE species in the agricultural soils. Among the DEHP concentrations, the highest DEHP concentration was found at the sites close to the villages; this result suggested that dense anthropogenic activities and random garbage disposal in the rural area are possible sources of PAEs. The PAE concentrations were weakly and positively correlated with soil organic carbon and soil enzyme activities; thus, these factors can affect the distribution of PAEs. This study further showed that only dimethyl phthalate (DMP) concentrations exceeded the recommended allowable concentrations; no remediation measures are necessary to control the PAEs in the WYR area. However, the PAEs in the topsoil may pose a potential risk to the ecosystem and human health in this area. Therefore, the exacerbating PAE pollution should be addressed. PMID:26360905

  19. Effects of agricultural intensification in the tropics on soil carbon losses and soil fertility

    NASA Astrophysics Data System (ADS)

    Guillaume, Thomas; Buttler, Alexandre; Kuzyakov, Yakov

    2016-04-01

    Tropical forest conversion to agricultural land leads to strong decrease of soil organic carbon (SOC). Nonetheless, the impacts of SOC losses on soil fertility remain unclear. We quantified SOC losses in forest, oil palm plantations, extensive rubber plantations and rubber monocultures on Sumatra Island (Indonesia). Furthermore, we assessed the response of biological (basal respiration, microbial biomass, acid phosphatase) and chemical fertility indicators (light fraction of OM, DOC, total N, available P) to SOC losses. We used a new approach based on (non-)linear regressions between SOC losses and the indicators, normalized to natural ecosystem values, to assess the sensitivity or resistance of fertility indicators to SOC losses. Carbon contents in the Ah horizon under oil palm and intensive rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber (41%). The negative impact of land-use changes on all measured indicators increased in the following sequence: extensive rubber < rubber < oil palm. Basal respiration, microbial biomass and nutrients were comparatively resistant to SOC losses, whereas the light fraction of OM was lost faster than the SOC. The resistance of the microbial activity to SOC losses is an indication that microbial-mediated soil functions sustain SOC losses. However, responses of basal respiration and microbial biomass to SOC losses were non-linear. Below 2.7% C content, the relationship was reversed. The basal respiration decreased faster than the SOC, resulting in a stronger drop of microbial activity under oil palm compared to rubber, despite small difference in C content. We conclude that the new approach allows a quantitative assessment of the sensitivity and threshold of various soil functions to land-use changes and consequently, can be used to assess their resistance to agricultural intensification. Therefore, this method is appropriate to evaluate the environmental impacts

  20. Soil conservation in the 21st century: why we need smart agricultural intensification

    NASA Astrophysics Data System (ADS)

    Govers, Gerard; Merckx, Roel; van Wesemael, Bas; Van Oost, Kristof

    2017-03-01

    Soil erosion severely threatens the soil resource and the sustainability of agriculture. After decades of research, this problem still persists, despite the fact that adequate technical solutions now exist for most situations. This begs the question as to why soil conservation is not more rapidly and more generally implemented. Studies show that the implementation of soil conservation measures depends on a multitude of factors but it is also clear that rapid change in agricultural systems only happens when a clear economic incentive is present for the farmer. Conservation measures are often more or less cost-neutral, which explains why they are often less generally adopted than expected. This needs to be accounted for when developing a strategy on how we may achieve effective soil conservation in the Global South, where agriculture will fundamentally change in the next century. In this paper we argue that smart intensification is a necessary component of such a strategy. Smart intensification will not only allow for soil conservation to be made more economical, but will also allow for significant gains to be made in terms of soil organic carbon storage, water efficiency and biodiversity, while at the same time lowering the overall erosion risk. While smart intensification as such will not lead to adequate soil conservation, it will facilitate it and, at the same time, allow for the farmers of the Global South to be offered a more viable future.

  1. Enhanced agricultural drought monitoring using a soil water anomaly-based drought index in south-west India

    NASA Astrophysics Data System (ADS)

    Hochstöger, Simon; Pfeil, Isabella; Amarnath, Giriraj; Pani, Peejush; Enenkel, Markus; Wagner, Wolfgang

    2017-04-01

    In India, agriculture accounts for roughly 17% of the GDP and employs around 50% of the total workforce. Especially in the western part of India, most of the agricultural fields are non-irrigated. Hence, agriculture is highly dependent on the monsoon in these areas. However, the absence of rainfall during the monsoon season increases the occurrence of drought periods, which is the main environmental factor affecting agricultural productivity. Rainfall is often not accessible to plants due to runoff or increased rates of evapotranspiration. Therefore, knowledge of the soil moisture state in the root zone of the soil is of great interest in the field of agricultural drought monitoring and operational decision-support. By introducing soil moisture, retrieved via active or passive microwave remote sensors, the gap between rainfall and the subsequent response of vegetation can be closed. Agricultural droughts are strongly influenced by a lack of water availability in the root zone of the soil, making anomalies of the Advanced Scatterometer (ASCAT) soil water index (SWI), representing the water content in lower soil layers, a suitable measure to estimate the water deficit in the soil. These anomalies describe the difference of the actual soil moisture value to the long-term average calculated for the same period. The objective of the study is to investigate the usability of soil moisture anomalies for developing an indicator that is based on critical thresholds, which finally results in a classification with different drought severity levels. In order to evaluate the performance of the drought index, it is compared to the Integrated Drought Severity Index (IDSI), which is developed at the International Water Management Institute in Colombo, Sri Lanka and to rainfall data from the Indian Meteorological Department (IMD). Overall, first analyses show a high potential of using SWI anomalies for agricultural drought monitoring. Most of the drought events detected by negative

  2. Leaching of PAHs from agricultural soils treated with oil shale combustion ash: an experimental study.

    PubMed

    Jefimova, Jekaterina; Adamson, Jasper; Reinik, Janek; Irha, Natalya

    2016-10-01

    The present study focuses on the fate of polycyclic aromatic hydrocarbons (PAHs) in soils amended with oil shale ash (OSA). Leachability studies to assess the release of PAHs to the environment are essential before the application of OSA in agriculture. A quantitative estimation of the leaching of PAHs from two types of soil and two types of OSA was undertaken in this study. Two leaching approaches were chosen: (1) a traditional one step leaching scheme and (2) a leaching scheme with pretreatment, i.e.., incubation of the material in wet conditions imitating the field conditions, followed by a traditional leaching procedure keeping the total amount of water constant. The total amount of PAHs leached from soil/OSA mixtures was in the range of 15 to 48 μg/kg. The amount of total PAHs leached was higher for the incubation method, compared to the traditional leaching method, particularly for Podzolic Gleysols soil. This suggests that for the incubation method, the content of organic matter and clay minerals of the soil influence the fate of PAHs more strongly compared to the traditional leaching scheme. The amount of PAHs leached from OSA samples is higher than from soil/OSA mixtures, which suggests soils to inhibit the release of PAHs. Calculated amount of PAHs from experimental soil and OSA leaching experiments differed considerably from real values. Thus, it is not possible to estimate the amount of PAHs leached from soil/OSA mixtures based on the knowledge of the amount of PAHs leached from soil and OSA samples separately.

  3. Quantification Of Erosion Rates Of Agriculturally Used Soils By Artificial

    NASA Astrophysics Data System (ADS)

    Jha, Abhinand

    2010-05-01

    for 137Cs and 53 days for 7Be), delivery rates, delivery histories, and land use (Fig. 2). An Physical processes, such as water and wind, are the dominant factors moving 137Cs, 7Be tagged soil particles within and between landscape compartments. PIC Figure 2: Generalized sketch illustrating the distributions of 137Cs and 7Be in tilled and undisturbed soils 2 Erosion study at Young Moraine regions of Germany Recently, a study had been performed to evaluate erosion rates in a typical pattern of landscapes in the Young Moraine regions of North-East Germany [5]. The 137Cs concentrations were measured at selected sampling points of various study sites. Among the areas selected for sampling was Basedow, which is a cultivated area, situated north of Berlin. During a master thesis study at university of Bremen in the academic year 2008-2009 [6] a second sampling campaign was performed at the same study site and 137Cs and 7Be concentrations were measured. Two mathematical models (a proportional model and a mass balance model) were applied to estimate erosion or deposition rates giving a distinction between uncultivated or essentially undisturbed soils and cultivated or soils under permanent pasture (Fig.3A). An improved depositional model was developed during this study. The simulation results from this model are presented in Fig.4. Due to the half-life (53.2 days) of 7Be, a mass balance model was developed and used to calculate erosion rates from 7Be (Fig.3B). PIC Figure 3: A: Erosion rates for 137Cs calculated by mass balance model. B: Erosion rates calculated with mass balance model using the 7Be data at Basedow (2008). The results verify that there is long term erosion as a result of wind, water and agricultural practices. The annual erosion rates at Basedow calculated using a mass balance and a proportional model were in the range between 30-50 t ha-1yr-1. These values were comparable to the erosion rates calculated in the previous study [5] by the models mentioned above

  4. Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends

    PubMed Central

    Wiesmeier, Martin; Poeplau, Christopher; Sierra, Carlos A.; Maier, Harald; Frühauf, Cathleen; Hübner, Rico; Kühnel, Anna; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2016-01-01

    Climate change and stagnating crop yields may cause a decline of SOC stocks in agricultural soils leading to considerable CO2 emissions and reduced agricultural productivity. Regional model-based SOC projections are needed to evaluate these potential risks. In this study, we simulated the future SOC development in cropland and grassland soils of Bavaria in the 21st century. Soils from 51 study sites representing the most important soil classes of Central Europe were fractionated and derived SOC pools were used to initialize the RothC soil carbon model. For each site, long-term C inputs were determined using the C allocation method. Model runs were performed for three different C input scenarios as a realistic range of projected yield development. Our modelling approach revealed substantial SOC decreases of 11–16% under an expected mean temperature increase of 3.3 °C assuming unchanged C inputs. For the scenario of 20% reduced C inputs, agricultural SOC stocks are projected to decline by 19–24%. Remarkably, even the optimistic scenario of 20% increased C inputs led to SOC decreases of 3–8%. Projected SOC changes largely differed among investigated soil classes. Our results indicated that C inputs have to increase by 29% to maintain present SOC stocks in agricultural soils. PMID:27585648

  5. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  6. Soil carbon and soil respiration in conservation agriculture with vegetables in Siem Reap, Cambodia

    USDA-ARS?s Scientific Manuscript database

    A balance between food production and environmental protection is required to sustainably feed a growing population. The resource saving concept of conservation agriculture aims to achieve this balance through implementing simultaneously three conservation practices; no-till, continuous soil cover, ...

  7. Digital spatial soil and land information for agriculture development

    NASA Astrophysics Data System (ADS)

    Sharma, R. K.; Laghathe, Pankaj; Meena, Ranglal; Barman, Alok Kumar; Das, Satyendra Nath

    2006-12-01

    Natural resource management calls for study of natural system prevailing in the country. In India floods and droughts visit regularly, causing extensive damages of natural wealth including agriculture that are crucial for sustenance of economic growth. The Indian Sub-continent drained by many major rivers and their tributaries where watershed, the hydrological unit forms a natural system that allows management and development of land resources following natural harmony. Acquisition of various kinds and levels of soil and land characteristics using both conventional and remote sensing techniques and subsequent development of digital spatial data base are essential to evolve strategy for planning watershed development programmes, their monitoring and impact evaluation. The multi-temporal capability of remote sensing sensors helps to update the existing data base which are of dynamic in nature. The paper outlines the concept of spatial data base development, generation using remote sensing techniques, designing of data structure, standardization and integration with watershed layers and various non spatial attribute data for various applications covering watershed development planning, alternate land use planning, soil and water conservation, diversified agriculture practices, generation of soil health card, soil and land reclamation, etc. The soil and land characteristics are vital to derive various interpretative groupings or master table that helps to generate the desired level of information of various clients using the GIS platform. The digital spatial data base on soils and watersheds generated by All India Soil and Land Use Survey will act as a sub-server of the main GIS based Web Server being hoisted by the planning commission for application of spatial data for planning purposes under G2G domain. It will facilitate e-governance for natural resource management using modern technology.

  8. Phthalate esters (PAEs): emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China.

    PubMed

    Zeng, Feng; Cui, Kunyan; Xie, Zhiyong; Wu, Lina; Liu, Min; Sun, Guoquan; Lin, Yujun; Luo, Danling; Zeng, Zunxiang

    2008-11-01

    This study reports the first data on the concentrations and distribution of phthalate esters (PAEs) in the agricultural soils from the peri-urban areas of Guangzhou city. Sigma(16)PAEs concentrations ranged from 0.195 to 33.6 microg g(-1)-dry weight (dw). Elevated levels of PAEs were recorded in the vegetable fields located next to the urban districts, and a decreasing trend exists following the distance away from the urban center. Diisobutyl phthalate (DiBP), Di-n-butyl phthalate (DnBP), and Di(2-ethylhexyl) phthalate (DEHP) dominated the PAEs in the agricultural soils. Significant relationship (correlation coefficient R(2)=0.85, p<0.01, n=40) was present between the accumulation of PAEs and total organic carbons in agricultural soils. In addition, both pH and texture of soils are found to be important factors affecting the level of PAEs. This study shows that the agricultural soils in the peri-urban area of Guangzhou city were moderately polluted by PAEs.

  9. Effect of Humic Acids and pesticides on Agricultural Soil Structure and Stability and Its Implication on Soil Quality

    NASA Astrophysics Data System (ADS)

    Gaonkar, O. D.; Nambi, I. M.; G, S. K.

    2016-12-01

    The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid, organophosphate pesticides and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids and pesticides. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment lead to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding the soil aggregation and the

  10. About soil cover heterogeneity of agricultural research stations' experimental fields

    NASA Astrophysics Data System (ADS)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  11. Assessment of metals pollution on agricultural soil surrounding a lead-zinc mining area in the Karst region of Guangxi, China.

    PubMed

    Zhang, Chaolan; Li, Zhongyi; Yang, Weiwei; Pan, Liping; Gu, Minghua; Lee, DoKyoung

    2013-06-01

    Soil samples were collected on farmland in a lead-zinc mining area in the Karst region of Guangxi, China. The contamination of the soil by eight metals (Cd, Hg, As, Cu, Pb, Cr, Zn, Ni) was determined. Among all these metals, Cd is the most serious pollutant in this area. Zn, Hg as well asPb can also be measured at high levels, which may affect the crop production. All other metals contributed marginally to the overall soil contamination. Besides the evaluation of single metals, the Nemerow synthetic index indicated that the soil is not suitable for agricultural use.

  12. Soil Incubation Study to Assess the Impacts of Manure Application and Climate Change on Greenhouse Gas Emissions from Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Schiavone, K.; Barbieri, L.; Adair, C.

    2015-12-01

    Agricultural fields in Vermont's Lake Champlain Basin have problems with the loss of nutrients due to runoff which creates eutrophic conditions in the lakes, ponds and rivers. In efforts to retain nitrogen and other nutrients in the soil farmers have started to inject manure rather than spraying it. Our understanding of the effects this might have on the volatilization of nitrogen into nitrous oxide is limited. Already, agriculture produces 69% of the total nitrous oxide emissions in the US. Understanding that climate change will affect the future of agriculture in Vermont, we set up a soil core incubation test to monitor the emissions of CO₂ and N₂O using a Photoacoustic Gas Sensor (PAS). Four 10 cm soil cores were taken from nine different fertilizer management plots in a No Till corn field; Three Injected plots, three Broadcast plots, and three Plow plots. Frozen soil cores were extracted in early April, and remained frozen before beginning the incubation experiment to most closely emulate three potential spring environmental conditions. The headspace was monitored over one week to get emission rates. This study shows that environmental and fertilizer treatments together do not have a direct correlation to the amount of CO₂ and N₂O emissions from agricultural soil. However, production of CO₂ was 26% more in warmer environmental conditions than in variable(freeze/thaw) environmental conditions. The injected fertilizer produced the most emissions, both CO₂ and N₂O. The total N₂O emissions from Injected soil cores were 2.2x more than from traditional broadcast manure cores. We believe this is likely due to the addition of rich organic matter under anaerobic soil conditions. Although, injected fertilizer is a better application method for reducing nutrient runoff, the global warming potential of N₂O is 298 times that of CO₂. With climate change imminent, assessing the harmful effects and benefits of injected fertilizer is a crucial next step in

  13. Planning spatial sampling of the soil from an uncertain reconnaissance variogram

    NASA Astrophysics Data System (ADS)

    Lark, R. Murray; Hamilton, Elliott M.; Kaninga, Belinda; Maseka, Kakoma K.; Mutondo, Moola; Sakala, Godfrey M.; Watts, Michael J.

    2017-12-01

    An estimated variogram of a soil property can be used to support a rational choice of sampling intensity for geostatistical mapping. However, it is known that estimated variograms are subject to uncertainty. In this paper we address two practical questions. First, how can we make a robust decision on sampling intensity, given the uncertainty in the variogram? Second, what are the costs incurred in terms of oversampling because of uncertainty in the variogram model used to plan sampling? To achieve this we show how samples of the posterior distribution of variogram parameters, from a computational Bayesian analysis, can be used to characterize the effects of variogram parameter uncertainty on sampling decisions. We show how one can select a sample intensity so that a target value of the kriging variance is not exceeded with some specified probability. This will lead to oversampling, relative to the sampling intensity that would be specified if there were no uncertainty in the variogram parameters. One can estimate the magnitude of this oversampling by treating the tolerable grid spacing for the final sample as a random variable, given the target kriging variance and the posterior sample values. We illustrate these concepts with some data on total uranium content in a relatively sparse sample of soil from agricultural land near mine tailings in the Copperbelt Province of Zambia.

  14. Relating results from earthworm toxicity tests to agricultural soil

    USGS Publications Warehouse

    Beyer, W.N.; Greig-Smith, P.W.

    1992-01-01

    The artificial soil tests of the European Economic Community and of the Organization for Economic Cooperation produce data relating earthworm mortality to pesticide concentrations in soil under laboratory conditions. To apply these results to agricultural soils it is necessary to relate these concentrations to amounts of pesticide applied per area. This paper reviews the relevant published literature and suggests a simple relation for regulatory use. Hazards to earthworms from pesticides are suggested to be greatest soon after application, when the pesticides may be concentrated in a soil layer a few millimeters thick. For estimating exposure of earthworms, however, a thicker soil layer should be considered, to account for their movement through soil. During favorable weather conditions, earthworms belonging to species appropriate to the artificial soil test have been reported to confine their activity to a layer about 5 cm. If a 5-cm layer is accepted as relevant for regulatory purposes, then an application of 1 kg/ha would be equivalent to 1-67 ppm (dry) in the artificial soil test.

  15. Agricultural management explains historic changes in regional soil carbon stocks

    PubMed Central

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark

    2010-01-01

    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. PMID:20679194

  16. Radiation hazard indices of soil and water samples in Northern Malaysian Peninsula.

    PubMed

    Almayahi, B A; Tajuddin, A A; Jaafar, M S

    2012-11-01

    The radioactivity quantity and quality were determined in soil and water samples in Northern Malaysian Peninsula (NMP) using HPGe spectroscopy and GR-135 spectrometer. The (226)Ra, (232)Th and (40)K concentrations in soil samples are 57±2, 68±4 and 427±17 Bq kg(-1), respectively, whereas in water samples were found to be 2.86±0.79, 3.78±1.73 and 152±12 Bq l(-1), respectively. These concentrations are within those reported from literature in other countries in the world. The radiological hazard indices of the samples were also calculated. The mean values obtained from soil samples are 186 Bq kg(-1), 88 nGy h(-1), 108 μSv y(-1), 0.50 and 0.65 for Radium Equivalent Activity (Ra(eq)), Absorbed Dose Rates (D(R)), Annual Effective Dose Rates (ED), External Hazard Index (H(ex)) and Internal Hazard Index (H(in)) respectively, whereas, for water samples were found to be 20, 10, 13, 0.05 and 0.06, respectively. All the health hazard indices are well below their recommended limits, except in two soil sampling sites which were found to be (*)025 (1.1 H(ex)) and (*)026 (1.1 H(ex), 1.6 H(in)). The calculated and the measured gamma dose rates had a good correlation coefficient, R=0.88. Moreover, the average value radon is 20 (in the range of 7-64) Bq m(-3), a positive correlation (R=0.81) was observed between the (222)Rn and (226)Ra concentrations in samples measured by the SNC continuous radon monitor (model 1029, Sun Nuclear Corporation) and HPGe detector, respectively. Some soils in this study with H(in) and H(ex)<1 are suitable for use in agriculture and as building materials. Also, in this study H(in) and H(ex)<1 for water samples, therefore, water after processing and filtration is safe and suitable for use in household and industrial purposes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Directional reflectance factors for monitoring spatial changes in soil surface structure and soil organic matter erosion in agricultural systems

    NASA Astrophysics Data System (ADS)

    Croft, H.; Anderson, K.

    2012-04-01

    Soils can experience rapid structural degradation in response to land cover changes, resulting in reduced soil productivity, increased erodibility and a loss of soil organic matter (SOM). The breakdown of soil aggregates through slaking and raindrop impact is linked to organic matter turnover, with subsequently eroded material often displaying proportionally more SOM. A reduction in aggregate stability is reflected in a decline in soil surface roughness (SSR), indicating that a soil structural change can be used to highlight soil vulnerability to SOM loss through mineralisation or erosion. Accurate, spatially-continuous measurements of SSR are therefore needed at a variety of spatial and temporal scales to understand the spatial nature of SOM erosion and deposition. Remotely-sensed data can provide a cost-effective means of monitoring changes in soil surface condition over broad spatial extents. Previous work has demonstrated the ability of directional reflectance factors to monitor soil crusting within a controlled laboratory experiment, due to changes in the levels of self-shadowing effects by soil aggregates. However, further research is needed to test this approach in situ, where other soil variables may affect measured reflectance factors and to investigate the use of directional reflectance factors for monitoring soil erosion processes. This experiment assesses the potential of using directional reflectance factors to monitor changes in SSR, aggregate stability and soil organic carbon (SOC) content for two agricultural conditions. Five soil plots representing tilled and seedbed soils were subjected to different durations of natural rainfall, producing a range of different levels of SSR. Directional reflectance factors were measured concomitantly with sampling for soil structural and biochemical tests at each soil plot. Soil samples were taken to measure aggregate stability (wet sieving), SOC (loss on ignition) and soil moisture (gravimetric method). SSM

  18. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  19. A new procedure of determination of alcohol sulfates and alcohol ethoxysulfates in agricultural soils.

    PubMed

    Fernández-Ramos, C; Ballesteros, O; Zafra-Gómez, A; Blanc, R; Navalón, A; Crovetto, G; Cantarero, S; Oliver-Rodríguez, B; Vílchez, J L

    2013-09-01

    The number of analytical methodologies that focus in the determination of alcohol sulfates (AS) and alcohol ethoxysulfates (AES) in terrestrial environment is very limited. In the present work, a new methodology to improve the extraction and determination of AS and AES in agricultural soil samples has been developed. Prior to instrumental analysis, an extraction procedure using pressurized liquid extraction with methanol (PLE) was carried out in order to obtain the highest recoveries and improve sensitivity. The most influential variables affecting the PLE procedure were optimized. Then, the separation and quantification of analytes were performed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The limits of detection (LOD) ranged from 0.03 to 0.08μgg(-1) for AS homologues and in the case of AES ethoxymers from 0.03 to 0.09μgg(-1) for AES-C12Ex and from 0.03 to 0.08μgg(-1) for AES-C14Ex. Matrix-matched calibration was used. Trueness was evaluated by using a spike recovery assay with spiked blank samples, and the recoveries ranged from 98.3% to 101.0% for AS and from 99.9% to 100.1% for AES. The method was satisfactorily applied in a field study designed to evaluate the environmental behavior of these compounds in agricultural soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Contamination, source, and input route of polycyclic aromatic hydrocarbons in historic wastewater-irrigated agricultural soils.

    PubMed

    Wang, Ning; Li, Hong-Bo; Long, Jin-Lin; Cai, Chao; Dai, Jiu-Lan; Zhang, Juan; Wang, Ren-Qing

    2012-12-01

    Contamination by polycyclic aromatic hydrocarbons (PAHs) of historic wastewater-irrigated agricultural topsoil (0-5 cm) and the contribution of groundwater irrigation and atmospheric deposition to soil PAHs were studied in a typical agricultural region, i.e. Hunpu region, Liaoning, China. Concentrations of total PAHs ranged from 0.43 to 2.64 mg kg⁻¹ in topsoil, being lower than those found in other wastewater-irrigated areas. The levels of PAHs in soil declined as the distance from a water source increased. Concentrations of individual PAHs were generally higher in upland than in paddy topsoils. The calculated nemerow composite index showed that agricultural soil in the region was "polluted" by PAHs. A human health risk assessment based on the total toxic equivalent concentration showed that the presence of elevated concentrations of PAHs in the soil might pose a great threat to the health of local residents. Ratios of pairs of PAHs and principal component analysis (PCA) showed that pyrogenesis, such as coal combustion, was the main source of PAHs, while petroleum, to some extent, also had a strong influence on PAHs contamination in upland soil. The distribution patterns of individual PAHs and composition of PAHs differed between irrigation groundwater and topsoil, but were similar between atmospheric deposition and topsoil. There were significant linear correlations (r = 0.90; p < 0.01) between atmospheric deposition rates and average concentrations of the 16 individual PAHs in soils, while no significant relationships were observed between irrigation groundwater and topsoil in levels of PAHs. These suggested that PAHs in agricultural soils were mainly introduced from atmospheric deposition, rather than from groundwater irrigation after the phasing out of wastewater irrigation in the region since 2002. This study provides a reference to ensure agricultural product safety, pollution control, and proper soil management.

  1. Future soil moisture and temperature extremes imply expanding suitability for rainfed agriculture in temperate drylands

    USGS Publications Warehouse

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.; Yackulic, Charles B.; Duniway, Michael C.; Hall, Sonia A.; Jia, Gensuo; Jamiyansharav, Khishigbayar; Munson, Seth M.; Wilson, Scott D.; Tietjen, Britta

    2017-01-01

    The distribution of rainfed agriculture is expected to respond to climate change and human population growth. However, conditions that support rainfed agriculture are driven by interactions among climate, including climate extremes, and soil moisture availability that have not been well defined. In the temperate regions that support much of the world’s agriculture, these interactions are complicated by seasonal temperature fluctuations that can decouple climate and soil moisture. Here, we show that suitability to support rainfed agriculture can be effectively represented by the interactive effects of just two variables: suitability increases where warm conditions occur with wet soil, and suitability decreases with extreme high temperatures. 21st century projections based on ecohydrological modeling of downscaled climate forecasts imply geographic shifts and overall increases in the area suitable for rainfed agriculture in temperate regions, especially at high latitudes, and pronounced, albeit less widespread, declines in suitable areas in low latitude drylands, especially in Europe. These results quantify the integrative direct and indirect impact of rising temperatures on rainfed agriculture.

  2. Occurrence of nitro- and oxy-PAHs in agricultural soils in eastern China and excess lifetime cancer risks from human exposure through soil ingestion.

    PubMed

    Sun, Zhe; Zhu, Ying; Zhuo, Shaojie; Liu, Weiping; Zeng, Eddy Y; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2017-11-01

    The quality of agricultural soil is vital to human health, however soil contamination is a severe problem in China. Polycyclic aromatic hydrocarbons (PAHs) have been found to be among the major soil contaminants in China. PAH derivatives could be more toxic but their measurements in soils are extremely limited. This study reports levels, spatial distributions and compositions of 11 nitrated (nPAHs) and 4 oxygenated PAHs (oPAHs) in agricultural soils covering 26 provinces in eastern China to fill the data gap. The excess lifetime cancer risk (ELCR) from the exposure to them in addition to 21 parent PAHs (pPAHs) via soil ingestion has been estimated. The mean concentration of ∑nPAHs and ∑oPAHs in agricultural soils is 50±45μg/kg and 9±8μg/kg respectively. Both ∑nPAHs and ∑oPAHs follow a similar spatial distribution pattern with elevated concentrations found in Liaoning, Shanxi, Henan and Guizhou. However if taking account of pPAHs, the high ELCR by soil ingestion is estimated for Shanxi, Zhejiang, Liaoning, Jiangsu and Hubei. The maximum ELCR is estimated at ca.10 -5 by both deterministic and probabilistic studies with moderate toxic equivalent factors (TEFs). If maximum TEFs available are applied, there is a 0.2% probability that the ELCR will exceed 10 -4 in the areas covered. There is a great chance to underestimate the ELCR via soil ingestion for some regions if only the 16 priority PAHs in agricultural soils are considered. The early life exposure and burden are considered extremely important to ELCR. Emission sources are qualitatively predicted and for areas with higher ELCR such as Shanxi and Liaoning, new loadings of PAHs and derivatives are identified. This is the first large scale study on nPAHs and oPAHs contamination levels in agricultural soils in China. The risk assessment based on this underpins the policy making and is valuable for both scientists and policy makers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparative Assessment of Soil Contamination by Lead and Heavy Metals in Riparian and Agricultural Areas (Southern Québec, Canada)

    PubMed Central

    Saint-Laurent, Diane; Hähni, Marlies; St-Laurent, Julien; Baril, Francis

    2010-01-01

    Soils contaminated with hydrocarbons (C10–C50), PAHS, lead and other heavy metals were recently found in the banks of two major rivers in southern Québec. Alluvial soils are contaminated over a distance of 100 kilometers. Eight sampling sites, including some located in agriculture areas (farm woodlots) have been selected to compare air pollution (aerosol fallout and rainout) and river pollution values. The concentrations detected in soil profiles for As, Cd and Pb vary between 3.01 to 37.88 mg kg−1 (As), 0.11 to 0.81 mg kg−1 (Cd) 12.32 to 149.13 mg kg−1 (Pb). These metallic elements are considered highly toxic and can harm wildlife and human health at high levels. The maximum concentration of Pb (149.13 mg kg−1) in soils of the riparian zone is twelve times higher than the average Pb concentration found in a natural state evaluated at 15.3 mg kg−1 (SD 17.5). Pb concentrations in soils of agricultural areas (woodland control sites) range between 12 and 22 mg kg−1, and given that these values are recorded in surrounding cultivated land, the issue of the quality of agricultural products (crops and forage) to feed livestock or destined for human consumption must be further addressed in detail. PMID:20948950

  4. Comparative assessment of soil contamination by lead and heavy metals in riparian and agricultural areas (southern Québec, Canada).

    PubMed

    Saint-Laurent, Diane; Hähni, Marlies; St-Laurent, Julien; Baril, Francis

    2010-08-01

    Soils contaminated with hydrocarbons (C(10)-C(50)), PAHS, lead and other heavy metals were recently found in the banks of two major rivers in southern Québec. Alluvial soils are contaminated over a distance of 100 kilometers. Eight sampling sites, including some located in agriculture areas (farm woodlots) have been selected to compare air pollution (aerosol fallout and rainout) and river pollution values. The concentrations detected in soil profiles for As, Cd and Pb vary between 3.01 to 37.88 mg kg(-1) (As), 0.11 to 0.81 mg kg(-1) (Cd) 12.32 to 149.13 mg kg(-1) (Pb). These metallic elements are considered highly toxic and can harm wildlife and human health at high levels. The maximum concentration of Pb (149.13 mg kg(-1)) in soils of the riparian zone is twelve times higher than the average Pb concentration found in a natural state evaluated at 15.3 mg kg(-1) (SD 17.5). Pb concentrations in soils of agricultural areas (woodland control sites) range between 12 and 22 mg kg(-1), and given that these values are recorded in surrounding cultivated land, the issue of the quality of agricultural products (crops and forage) to feed livestock or destined for human consumption must be further addressed in detail.

  5. Spatial and Temporal Variation of Archaeal, Bacterial and Fungal Communities in Agricultural Soils

    PubMed Central

    Pereira e Silva, Michele C.; Dias, Armando Cavalcante Franco; van Elsas, Jan Dirk; Salles, Joana Falcão

    2012-01-01

    Background Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities. PMID:23284712

  6. Effects of nano-SiO2 on the adsorption of chiral metalaxyl to agricultural soils.

    PubMed

    Huang, Junxing; Liang, Chuanzhou; Zhang, Xu

    2017-06-01

    The application of nanotechnology in agriculture, pesticide delivery and other related fields increases the occurrence of engineered nanoparticles (ENPs) in soil. Since ENPs have larger surface areas and normally a high adsorption capacity for organic pollutants, they are thought to influence the transport of pesticides in soils and thereafter influence the uptake and transformation of pesticides. The adsorption pattern of racemic-metalaxyl on agricultural soils including kinetics and isotherms changed in the presence of nano-SiO 2 . The adsorption of racemic-metalaxyl on agricultural soil was not enantioselective, in either the presence or the absence of SiO 2 . The adsorption of racemic-metalaxyl on SiO 2 decreased to some extent in soil-SiO 2 mixture, and the absolute decrease was dependent on soil properties. The decreased adsorption of metalaxyl on SiO 2 in soil-SiO 2 mixture arose from the competitive adsorption of soil-dissolved organic matter and the different dispersion and aggregation behaviors of SiO 2 in the presence of soil. Interactions between SiO 2 and soil particles also contributed to the decreased adsorption of metalaxyl on SiO 2 , and the interactions were analyzed by extended Derjaguin-Landau-Verwey-Overbeek theory. The results showed that the presence of nano-particles in soils could decrease the mobility of pesticides in soils and that this effect varied with different soil compositions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of different management practices on fungal biodiversity in agricultural soils

    NASA Astrophysics Data System (ADS)

    Borriello, R.; Lumini, E.; Bonfante, P.; Bianciotto, V.

    2009-04-01

    Symbiotic associations between arbuscular mycorrhizal fungi (AMF) and plant roots are widespread in natural environments and provide a range of benefits to the host plant. These include improved nutrition, enhanced resistance to soil-borne pests, diseases, and drought, as well as tolerance to heavy metals. In addition, the presence of a well developed AMF hyphal network improve the soil structure. As obligate mutualistic symbionts these fungi colonize the roots of many agricultural crops and it is often claimed that agricultural practices (use of fertilizers and biocides, tillage, dominance of monocultures and the growing of non-mycorrhizal crops) are detrimental to AMF. As a result, agro ecosystems impoverished in AMF may not get the fully expected range of benefits from these fungi. Using molecular markers on DNA extracted directly from soil and roots we studied the effects of different management practices (tillage and nitrogen fertilization) on the AMF populations colonizing an experimental agro ecosystem in Central Italy. Fungi in roots and soil were identified by cloning and sequencing a region of ~550bp of the 18S rDNA and ~600bp of the 28S rDNA. In symbiosis with the maize roots we detected only members of Glomeraceae group A that showed decrement in number under nitrogen fertilization. Instead in soil were mainly present members of two AMF groups, respectively Gigasporaceae and Glomeraceae group A. In addition only the low input management practices preserve also members of Diversisporaceae and Glomeraceae group B. From our study we can conclude that agricultural practices can directly or indirectly influence AMF biodiversity. The result of this study highlight the importance and significant effects of the long term nitrogen fertilization and tillage practices on specific groups of fungi playing a key role in arable soils. The research was founded by Biodiversity Project (IPP-CNR) and by SOILSINK (FISR-MIUR)

  8. Evaluation and characterization of anti-estrogenic and anti-androgenic activities in soil samples along the Second Songhua River, China.

    PubMed

    Li, Jian; Wang, Yafei; Kong, Dongdong; Wang, Jinsheng; Teng, Yanguo; Li, Na

    2015-11-01

    In the present study, re-combined estrogen receptor (ER) and androgen receptor (AR) gene yeast assays combined with a novel approach based on Monte Carlo simulation were used for evaluation and characterization of soil samples collected from Jilin along the Second Songhua River to assess their antagonist/agonist properties for ER and AR. The results showed that estrogenic activity only occurred in the soil samples collected in the agriculture area, but most soil samples showed anti-estrogenic activities, and the bioassay-derived 4-hydroxytamoxifen equivalents ranged from N.D. to 23.51 μg/g. Hydrophilic substance fractions were determined as potential contributors associated with anti-estrogenic activity in these soil samples. Moreover, none of the soil samples exhibited AR agonistic potency, whereas 54% of the soil samples exhibited AR antagonistic potency. The flutamide equivalents varied between N.D. and 178.05 μg/g. Based on Monte Carlo simulation-related mass balance analysis, the AR antagonistic activities were significantly correlated with the media polar and polar fractions. All of these results support that this novel calculation method can be adopted effectively to quantify and characterize the ER/AR agonists and antagonists of the soil samples, and these data could help provide useful information for future management and remediation efforts.

  9. Unintended consequences of carbon enhancement in agricultural soils: The N2O problem

    USDA-ARS?s Scientific Manuscript database

    The potential of agricultural soils to accumulate C as a means of removing greenhouse gases (GHGs) from the atmosphere is complicated by the inherent coupling of the C and N cycles in soil. Practices that increase soil C content can have the unintended consequence of stimulating N mineralization, ni...

  10. [Agricultural soil contamination from As and Cd and its responses to landscape heterogeneity at multiple scales in Guangzhou, China].

    PubMed

    Xu, Hui Qiu; Huang, Yin Hua; Wu, Zhi Feng; Cheng, Jiong; Li, Cheng

    2016-10-01

    Based on 641 agricultural top soil samples (0-20 cm) and land use map in 2005 of Guangzhou, we used single-factor pollution indices and Pearson/Spearman correlation and partial redundancy analyses and quantified the soil contamination with As and Cd and their relationships with landscape heterogeneity at three grid scales of 2 km×2 km, 5 km×5 km, and 10 km×10 km as well as the determinant landscape heterogeneity factors at a certain grid scale. 5.3% and 7.2% of soil samples were contaminated with As and Cd, respectively. At the three scales, the agricultural soil As and Cd contamination were generally significantly correlated with parent materials' composition, river/road density and landscape patterns of several land use types, indicating the parent materials, sewage irrigation and human activities (e.g., industrial and traffic activities, and the additions of pesticides and fertilizers) were possibly the main input pathways of trace metals. Three subsets of landscape heterogeneity variables (i.e., parent materials, distance-density variables, and landscape patterns) could explain 12.7%-42.9% of the variation of soil contamination with As and Cd, of which the explanatory power increased with the grid scale and the determinant factors varied with scales. Parent materials had higher contribution to the variations of soil contamination at the 2 and 10 km grid scales, while the contributions of landscape patterns and distance-density variables generally increased with the grid scale. Adjusting the distribution of cropland and optimizing the landscape pattern of land use types are important ways to reduce soil contamination at local scales, which urban planners and decision makers should pay more attention to.

  11. Soil moisture controlled runoff mechanisms in a small agricultural catchment in Austria.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Szeles, Borbala; Silasari, Rasmiaditya; Hogan, Patrick; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang; Bloeschl, Guenter

    2017-04-01

    Understanding runoff generation mechanisms is pivotal for improved estimation of floods in small catchments. However, this requires in situ measurements with a high spatial and temporal resolution of different land surface parameters, which are rarely available distributed over the catchment scale and for a long period. The Hydrological Open Air Laboratory (HOAL) is a hydrological observatory which comprises a complex agricultural catchment, covering 66 ha. Due to the agricultural land use and low permeability of the soil part of the catchment was tile drained in the 1940s. The HOAL is equipped with an extensive soil moisture network measuring at 31 locations, 4 rain gauges and 12 stream gauges. By measuring with so many sensors in a complex catchment, the collected data enables the investigation of multiple runoff mechanisms which can be observed simultaneously in different parts of the catchment. The aim of this study is to identify and characterize different runoff mechanisms and the control soil moisture dynamics exert on them. As a first step 72 rainfall events were identified within the period 2014-2015. By analyzing event discharge response, measured at the different stream gauges, and root zone soil moisture, four different runoff mechanisms are identified. The four mechanisms exhibit contrasting soil moisture-discharge relationships. In the presented study we characterize the runoff response types by curve-fitting the discharge response to the soil moisture state. The analysis provides insights in the main runoff processes occurring in agricultural catchments. The results of this study a can be of assistance in other catchments to identify catchment hydrologic response.

  12. Presence of organoarsenicals used in cotton production in agricultural water and soil of the Southern United States

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2002-01-01

    Arsenicals have been used extensively in agriculture in the United States as insecticides and herbicides. Mono- and disodium methylarsonate and dimethylarsinic acid are organoarsenicals used to control weeds in cotton fields and as defoliation agents applied prior to cotton harvesting. Because the toxicity of most organoarsenicals is less than that of inorganic arsenic species, the introduction of these compounds into the environment might seem benign. However, biotic and abiotic degradation reactions can produce more problematic inorganic forms of arsenic, such as arsenite [As(III)] and arsenate [As(V)]. This study investigates the occurrences of these compounds in samples of soil and associated surface and groundwaters. Preliminary results show that surface water samples from cotton-producing areas have elevated concentrations of methylarsenic species (>10 ??g of As/L) compared to background areas (<1 ??g of As/L). Species transformations also occur between surface waters and adjacent soils and groundwaters, which also contain elevated arsenic. The data indicate that point sources of arsenic related to agriculture might be responsible for increased arsenic concentrations in local irrigation wells, although the elevated concentrations did not exceed the new (2002) arsenic maximum contaminant level of 10 ??g/L in any of the wells sampled thus far.

  13. Validation of Soil Water Content Estimation Method on Agricultural Regions in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Kim, M.

    2016-12-01

    The continuous water stress caused by decrease of soil water has a direct influence to the crop growth in a upland crop area. The agricultural drought is occured if water requirement is not supplied timely in crop growh process. It is more important to understand the soil characteristics for high accuracy soil moisture estimation because of the soil water contents largely depends on soil properties. The RDA(Rural Development Administration) has provided real-time soil moisture observations corrected for 71 points in the South Korea. In this study, we developed a soil water content estimation method that considered soil hydraulic parameters for the observation points of soil water content in agricultural regions operated by the RDA. SWAP(Soil-Water-Atmosphere-Plant) model was used in the estimation of soil water contents. The soil hydraulic parameters that is the input data of the SWAP model were estimated using the ROSETTA model developed by the U.S. Department of Agriculture(USDA). Meteorological data observed from AWS(Automatic Weather Station) were used including daily maximum temperature(°), daily minimum temperature(°), relative humidity(%), solar radiation, wind speed and precipitation data. We choosed 56 stations there are no missing of meteorological data and have soil physical properties. For the verification of soil water content estimation method, we used Haenam KoFlux observation data that are observed long-term soil water contents over 2009-2015(2014 missing) years. In the case of 2015, there are good reproducibility between observation of soil water contents and results of SWAP model simulation with R2=0.72, RMSE=0.026 and TCC=0.849. In the case of precipitation event, the simulation results were slightly overestimated more than observation. However there are good reproducibility in the case of soil water reduction due to continuous non-precipitation periods. We have simulated the soil water contents of the 56 stations that being operated in the RDA

  14. Evaluating abiotic influences on soil salinity of inland managed wetlands and agricultural croplands in a semi-arid environment

    USGS Publications Warehouse

    Fowler, D.; King, Sammy L.; Weindorf, David C.

    2014-01-01

    Agriculture and moist-soil management are important management techniques used on wildlife refuges to provide adequate energy for migrant waterbirds. In semi-arid systems, the accumulation of soluble salts throughout the soil profile can limit total production of wetland plants and agronomic crops and thus jeopardize meeting waterbird energy needs. This study evaluates the effect of distinct hydrologic regimes associated with moist-soil management and agricultural production on salt accumulation in a semi-arid floodplain. We hypothesized that the frequency of flooding and quantity of floodwater in a moist-soil management hydroperiod results in a less saline soil profile compared to profiles under traditional agricultural management. Findings showed that agricultural croplands differed (p-value < 0.001, df = 9) in quantities of total soluble salts (TSS) compared to moist-soil impoundments and contained greater concentrations (TSS range = 1,160-1,750 (mg kg-1)) at depth greater than 55 cm below the surface of the profile, while moist-soil impoundments contained lower concentrations (TSS range = 307-531 (mg kg-1)) at the same depths. Increased salts in agricultural may be attributed to the lack of leaching afforded by smaller summer irrigations while larger periodic flooding events in winter and summer flood irrigations in moist-soil impoundments may serve as leaching events.

  15. Processing Protocol for Soil Samples Potentially ...

    EPA Pesticide Factsheets

    Method Operating Procedures This protocol describes the processing steps for 45 g and 9 g soil samples potentially contaminated with Bacillus anthracis spores. The protocol is designed to separate and concentrate the spores from bulk soil down to a pellet that can be used for further analysis. Soil extraction solution and mechanical shaking are used to disrupt soil particle aggregates and to aid in the separation of spores from soil particles. Soil samples are washed twice with soil extraction solution to maximize recovery. Differential centrifugation is used to separate spores from the majority of the soil material. The 45 g protocol has been demonstrated by two laboratories using both loamy and sandy soil types. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol would be robust enough to use at multiple laboratories while achieving comparable recoveries. The 45 g protocol has demonstrated a matrix limit of detection at 14 spores/gram of soil for loamy and sandy soils.

  16. Agricultural implications of providing soil-based constraints on urban expansion: Land use forecasts to 2050.

    PubMed

    Smidt, Samuel J; Tayyebi, Amin; Kendall, Anthony D; Pijanowski, Bryan C; Hyndman, David W

    2018-07-01

    Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning. Copyright © 2018. Published by Elsevier Ltd.

  17. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    PubMed

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment.

    PubMed

    Tan, Xiangping; Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km(2)) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  19. Short-term temporal and spatial variability of soil hydrophobicity in an abandoned agriculture field in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Burguet, Maria; Cerdà, Artemi

    2013-04-01

    Soil water repellency (SWR) is a natural property of soils. Among other factors, SWR depends on soil moisture, mineralogy, texture, pH, organic matter, aggregate stability, fungal and microbiological activity and plant cover. It has implications on plant growth, superficial and subsurface hydrology and soil erosion. It is well known that SWR is temporarily, increasing when soils are dry and decreasing when moist. In agriculture, soil micro-topography is very heterogeneous with implications on surface water distribution and wettability. Normally, SWR studies are focused on large interval time (e.g, monthly or seasonally). The objective of this work is the study of SWR in a temporal scale and its variability in an abandoned agriculture field in Lithuania. An experimental plot with 21 m2 (07x03 m) was designed in a flat area. Inside this plot SWR was measured in the field, placing three droplets of water on the soil surface and counting the time that takes to infiltrate. A total of 105 sampling points were measured per sampling period. Soil water repellency was measured after a period of 14 days without rainfall and in the seven consequent weeks (one measurement per week between 28th May and 07th of July 2012). The results showed that in this small plot, SWR was observed in the first (May 28), third and fourth measurements (08th of June and 16th). It was observed an increasing of the percentage of hydrophobic points (Water Drop Penetration Test ≥5 seconds) between the first and the fourth measurement, decreasing thereafter. Significant differences of SWR were observed among all periods (F=78.32, p<0.0001). The coefficient of variation (CV%) changed strikingly, 361.10 % (8th of May), 151.78 % (01st of June), 83.77% (08th of June), 125.87% (16th of June), 0.45 (22nd of June), 121%(31st of June) and 67.13% (7th of July). The correlation between the mean SWR and the CV% is 0.75, p<0.05. The changes were attributed to different soil moisture conditions. The differences

  20. Helminth eggs as parasitic indicators of fecal contamination in agricultural irrigation water, biosolids, soils and pastures.

    PubMed

    Campos, María Claudia; Beltrán, Milena; Fuentes, Nancy; Moreno, Gerardo

    2018-03-15

    A very common practice in agriculture is the disposal of wastewater and biosolids from water treatment systems due to their high nutrient content, which substantially improves crop yields. However, the presence of pathogens of fecal origin creates a sanitary risk to farmers and consumers. To determine the presence and concentration of helminth eggs in irrigation waters, biosolids, agricultural soils, and pastures. Water, biosolids, soil, and pasture samples were collected and analyzed for helminth egg detection, total eggs and viable eggs counts. The behavior of helminth eggs was evaluated in irrigation waters and dairy cattle grassland, where biosolids had been used as an organic amendment. Concentrations between 0.1-3 total helminth eggs/L, and 0.1-1 viable helminth eggs/L were found in water. In biosolids and soil, we found 3-22 total helminth eggs/4 g of dry weight, and 2-12 viable helminth eggs/4 g of dry weight, and in grass, we found <2-9 total helminth eggs/g of fresh weight, and <1-3 viable helminth eggs/g of fresh weight. The presence of helminth eggs in each matrix varied from days to months, which may represent a sanitary risk to farmers as well as to consumers. The presence of helminth eggs in the assessed matrixes confirms the sanitary risk of such practices. Therefore, it is important to control and incorporate regulations related to the use of wastewater and biosolids in agriculture.

  1. Lead in urban soils - A real or perceived concern for urban agriculture

    USDA-ARS?s Scientific Manuscript database

    Urban agriculture is growing in cities across the U.S. and it has the potential to provide multiple benefits including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. A review ...

  2. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: Linking SPME and Tenax extraction with bioassays.

    PubMed

    Guo, Meixia; Gong, Zongqiang; Li, Xiaojun; Allinson, Graeme; Rookes, James; Cahill, David

    2017-06-01

    The aims of this study were to evaluate the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in industrial and agricultural soils using chemical methods and a bioassay, and to study the relationships between the methods. This was conducted by comparing the quantities of PAHs extracted from two manufactured gas plant (MGP) soils and an agricultural soil with low level contamination by solid-phase micro-extraction (SPME) and Tenax-TA extraction with the quantities taken up by the earthworm (Eisenia fetida). In addition, a biodegradation experiment was conducted on one MGP soil (MGP-A) to clarify the relationship between PAH removal by biodegradation and the variation in PAH concentrations in soil pore water. Results demonstrated that the earthworm bioassay could not be used to examine PAH bioavailability in the tested MGP soils; which was the case even in the diluted MGP-A soils after biodegradation. However, the bioassay was successfully applied to the agricultural soil. These results suggest that earthworms can only be used for bioassays in soils with low toxicity. In general, rapidly desorbing concentrations extracted by Tenax-TA could predict PAH concentrations accumulated in earthworms (R 2 =0.66), while SPME underestimated earthworm concentrations by a factor of 2.5. Both SPME and Tenax extraction can provide a useful tool to predict PAH bioavailability for earthworms, but Tenax-TA extraction was proven to be a more sensitive and precise method than SPME for the prediction of earthworm exposure in the agricultural soil. Copyright © 2017. Published by Elsevier Inc.

  3. Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem.

    PubMed

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; Zornoza, Raul; Cerdà, Artemi; Scow, Kate

    2013-01-01

    Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage.

  4. Searsville Sediment Experiment: What is the ideal agricultural soil?

    NASA Astrophysics Data System (ADS)

    Leal, J.; Lo, D.; Patel, N.; Gu, S.

    2014-12-01

    The purpose of this experiment is to decide whether or not the sediment located within Searsville Dam at the Jasper Ridge Biological Preserve is well suited for agricultural soil. By utilizing various combinations of sediment, farm soil, compost, and horse manure to grow basil plants, we underwent an exploratory study in order to better understand what type of materials and nutrients plants can best thrive within. Our general experiment protocol includes watering the crops with irrigation every day while young, and then limiting that water exposure to only Mondays, Wednesdays, and Fridays as they become more established. The basil is growing in pots filled with the different amounts of material, and are arranged randomly to prevent certain plants from getting more sunlight than others. The whole experiment plot is covered with a thin white fabric and secured with bricks and wood to keep out pests in the garden. In order to observe trends in the basil development, plant height and leaf number is recorded once every week. During the third week of the study we performed soil texture tests, and within the fourth week we calculated pH data. We discovered that the sediment our project focuses upon is 10-18% clay and 50% sand which categorizes it as loam, and the Stanford farm soil that serves as our control group contains 20-26% clay and 30% sand so it is a silt loam material. The pH tests also showed an average of 7.45 for sediment, 7.3 for farm soil, 7.85 for compost, and 7.65 for horse manure. By looking at all of the data recorded over the five-week time period, we have so far noticed that the 50% sediment and 50% horse manure combination consistently has the best height increase as well as leaf size and content. The 50% sediment and 50% compost mixture has also performed well in those terms, and is therefore a possibility for the best agricultural soil. However, future lab work conducted by Stanford students to examine the nutrient content of the basil tissue, along

  5. Transformations in soil organic matter and aggregate stability after conversion of Mediterranean forest to agriculture

    NASA Astrophysics Data System (ADS)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Carral, Pilar; Knicker, Heike; González Pérez, José Antonio; González Vila, Francisco Javier

    2013-04-01

    Conversion of forest ecosystems into croplands often leads to severe decrease of the soil organic matter (SOM) levels with the concomitant deterioration of soil structure. The present research focuses on the effects of cultivation on the stability of soil macroaggregates, as well as on the total quantity and quality of SOM. Three representative soils from central Spain (i.e., Petric Calcisol, Cutanic Luvisol and Calcic Vertisol) were sampled. Each site had natural vegetation (NV) dominated either by characteristic Mediterranean forest (dehesa) or cereal crops (CC) under conventional tillage. For each site, three spatial replicates of the NV and CC were sampled. Soil aggregate stability was measured by the wet sieving method. The structural stability index was then calculated as the mass of aggregated soil (>250 μm) remaining after wet sieving, as a percent of total aggregate weight. The analytical characterization of the SOM was carried out after chemical fractionation for quantifying the different organic pools: free organic matter (FOM), humic acids (HA), fulvic acids (FA) and humin (H). Furthermore, whole soil samples pretreated with 10 % HF solution were analyzed by CP-MAS 13C NMR and the purified HA fraction was characterized by elementary analysis, visible and infrared spectroscopies and Py-GC/MS. A marked reduction in the proportion of stable aggregates when the natural ecosystem was converted to agriculture was observed. Values of the structural stability index (%) changed over from 96.2 to 38.1, 95.1 to 83.7 and 98.5 to 60.6 for the Calcisol, Luvisol and Vertisol respectively. Comparatively higher contents of SOM were found in the soils under NV (11.69 to 0.93, 3.29 to 2.72 and 9.51 to 0.79 g C100 g-1soil) even though a quantitative rearrangement of the SOM pools was noticed. In all sites, the relative contribution of the labile C (FOM) to the total SOM content decreased when the forest soils were converted into croplands, whereas the proportion of both

  6. Crop residue stabilization and application to agricultural and degraded soils: A review.

    PubMed

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Hun, Eunjin; Crow, Wade T.; Holmes, Thomas; Bolten, John

    2014-01-01

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputoutput structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross-correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moistureNDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities andor complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.

  8. Rapid screening of flonicamid residues in environmental and agricultural samples by a sensitive enzyme immunoassay.

    PubMed

    Liu, Zhenjiang; Zhang, Zhen; Zhu, Gangbing; Sun, Jianfan; Zou, Bin; Li, Ming; Wang, Jiagao

    2016-05-01

    A fast and sensitive polyclonal antibody-based enzyme-linked immunosorbent assay (ELISA) was developed for the analysis of flonicamid in environmental and agricultural samples. Two haptens of flonicamid differing in spacer arm length were synthesized and conjugated to proteins to be used as immunogens for the production of polyclonal antibodies. To obtain most sensitive combination of antibody/coating antigen, two antibodies were separately screened by homologous and heterologous assays. After optimization, the flonicamid ELISA showed that the 50% inhibitory concentration (IC50 value) was 3.86mgL(-1), and the limit of detection (IC20 value) was 0.032mgL(-1). There was no cross-reactivity to similar tested compounds. The recoveries obtained after the addition of standard flonicamid to the samples, including water, soil, carrot, apple and tomato, ranged from 79.3% to 116.4%. Moreover, the results of the ELISA for the spiked samples were largely consistent with the gas chromatography (R(2)=0.9891). The data showed that the proposed ELISA is an alternative tool for rapid, sensitive and accurate monitoring of flonicamid in environmental and agricultural samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach.

    PubMed

    Hu, Wenyou; Wang, Huifeng; Dong, Lurui; Huang, Biao; Borggaard, Ole K; Bruun Hansen, Hans Christian; He, Yue; Holm, Peter E

    2018-06-01

    Intensive human activities, in particular agricultural and industrial production have led to heavy metal accumulation in the peri-urban agricultural soils of China threatening soil environmental quality and agricultural product security. A combination of spatial analysis (SA), Pb isotope ratio analysis (IRA), input fluxes analysis (IFA), and positive matrix factorization (PMF) model was successfully used to assess the status and sources of heavy metals in typical peri-urban agricultural soils from a rapidly developing region of China. Mean concentrations of Cd, As, Hg, Pb, Cu, Zn and Cr in surface soils (0-20 cm) were 0.31, 11.2, 0.08, 35.6, 44.8, 119.0 and 97.0 mg kg -1 , respectively, exceeding the local background levels except for Hg. Spatial distribution of heavy metals revealed that agricultural activities have significant influence on heavy metal accumulation in the surface soils. Isotope ratio analysis suggested that fertilization along with atmospheric deposition were the major sources of heavy metal accumulation in the soils. Based on the PMF model, the relative contribution rates of the heavy metals due to fertilizer application, atmospheric deposition, industrial emission, and soil parent materials were 30.8%, 33.0%, 25.4% and 10.8%, respectively, demonstrating that anthropogenic activities had significantly higher contribution than natural sources. This study provides a reliable and robust approach for heavy metals source apportionment in this particular peri-urban area with a clear potential for future application in other regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Broad Distribution of Diverse Anaerobic Ammonium-Oxidizing Bacteria in Chinese Agricultural Soils

    PubMed Central

    Shen, Li-dong; Liu, Shuai; Lou, Li-ping; Liu, Wei-ping; Xu, Xiang-yang; Zheng, Ping

    2013-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria have been detected in many marine and freshwater ecosystems. However, little is known about the distribution, diversity, and abundance of anammox bacteria in terrestrial ecosystems. In this study, anammox bacteria were found to be present in various agricultural soils collected from 32 different locations in China. Phylogenetic analysis of the 16S rRNA genes showed “Candidatus Brocadia,” “Candidatus Kuenenia,” “Candidatus Anammoxoglobus,” and “Candidatus Jettenia” in the collected soils, with “Candidatus Brocadia” being the dominant genus. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.38 × 104 ± 0.42 × 104 to 3.69 × 106 ± 0.25 × 106 copies per gram of dry weight. Different levels of diversity, composition, and abundance of the anammox bacterial communities were observed, and redundancy analysis indicated that the soil organic content and the distribution of anammox communities were correlated in the soils examined. Furthermore, Pearson correlation analysis showed that the diversity of the anammox bacteria was positively correlated with the soil ammonium content and the organic content, while the anammox bacterial abundance was positively correlated with the soil ammonium content. These results demonstrate the broad distribution of diverse anammox bacteria and its correlation with the soil environmental conditions within an extensive range of Chinese agricultural soils. PMID:23747706

  11. Mapping of soil erosion and redistribution on two agricultural areas in Czech Republic by using of magnetic parameters.

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Stejskalova, Sarka; Grison, Hana; Petrovsky, Eduard; Jaksik, Ondrej; Kodesova, Radka

    2015-04-01

    Soil erosion is one of the major concerns in sustainability of agricultural systems in different areas. Therefore there is a need to develop suitable innovative indirect methods of soil survey. One of this methods is based on well established differentiation in magnetic signature with depth in soil profile. Magnetic method can be applied in the field as well as in the laboratory on collected soil samples. The aim of this study is to evaluate suitability of magnetic method to assess soil degradation and construct maps of cumulative soil loss due to erosion at two morphologically diverse areas with different soil types. Dominant soil unit in the first locality (Brumovice) is chernozem, which is gradually degraded on slopes to regosols. In the second site (Vidim), the dominant soil unit is luvisol, gradualy transformed to regosol due to erosion. Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points in Brumovice and 65 in Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in top soil horizons. Strong correlation was found between the volume magnetic susceptibility (field measurement) and mass- specific magnetic susceptibility measured in the laboratory (Kapicka et al 2013). Values of magnetic susceptibility are spatially distributed depending on terrain position. Higher values were measured at the flat parts (where the original topsoil horizon remained). The lowest values magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Positive correlation between the organic carbon content and volume magnetic susceptibility (R2= 0.89) was found for chernozem area. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing of the

  12. Soil Gas Sampling

    EPA Pesticide Factsheets

    Field Branches Quality System and Technical Procedures: This document describes general and specific procedures, methods and considerations to be used and observed when collecting soil gas samples for field screening or laboratory analysis.

  13. Organic contamination and remediation in the agricultural soils of China: A critical review.

    PubMed

    Sun, Jianteng; Pan, Lili; Tsang, Daniel C W; Zhan, Yu; Zhu, Lizhong; Li, Xiangdong

    2018-02-15

    Soil pollution is a global problem in both developed and developing countries. Countries with rapidly developing economies such as China are faced with significant soil pollution problems due to accelerated industrialization and urbanization over the last decades. This paper provides an overview of published scientific data on soil pollution across China with particular focus on organic contamination in agricultural soils. Based on the related peer-reviewed papers published since 2000 (n=203), we evaluated the priority organic contaminants across China, revealed their spatial and temporal distributions at the national scale, identified their possible sources and fates in soil, assessed their potential environmental risks, and presented the challenges in current remediation technologies regarding the combined organic pollution of agricultural soils. The primary pollutants in Northeast China were polycyclic aromatic hydrocarbons (PAHs) due to intensive fossil fuel combustion. The concentrations of organochlorine pesticides (OCPs) and phthalic acid esters (PAEs) were higher in North and Central China owing to concentrated agricultural activities. The levels of polychlorinated biphenyls (PCBs) were higher in East and South China primarily because of past industrial operations and improper electronic waste processing. The co-existence of organic contaminants was severe in the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei Region, which are the most populated and industrialized regions in China. Integrated biological-chemical remediation technologies, such as surfactant-enhanced bioremediation, have potential uses in the remediation of soil contaminated by multiple contaminants. This critical review highlighted several future research directions including combined pollution, interfacial interactions, food safety, bioavailability, ecological effects, and integrated remediation methods for combined organic pollution in soil. Copyright © 2017 Elsevier B

  14. Occurrence of emerging contaminants in agricultural soils, sewage sludge and waters in Valencia (E Spain)

    NASA Astrophysics Data System (ADS)

    Boluda, Rafael; Marimon, Lupe; Atzeni, Stefania; Mormeneo, Salvador; Iranzo, María; Zueco, Jesús; Gamón, Miguel; Sancenón, José; Romera, David; Gil, Carlos; Amparo Soriano, Maria; Granell, Clara; Roca, Núria; Bech, Jaume

    2013-04-01

    In recent years, studies into the presence and distribution of emerging contaminants (ECs), like pharmaceutical products, some pesticides and mycotoxins in the natural environment, are receiving considerable attention. Thus, the presence of these compounds in waters, soils and wastes in different locations including agricultural systems has been stressed; very few studies into this matter are available in Spain. The main source of ECs in the environment is wastewater spillage from wastewater treatment plants (WTP), where these compounds arrive from the sewer system network. The objective of this study was to determine the levels of 35 ECs constituted by nine pharmaceutical products, 23 fungicides and three mycotoxins in soils, sewages sludge and waters adjacent to WTP from an agriculture area of Valencia (E Spain) influenced by intense urban and industrial activity. Seven samples from sludge, 13 soil samples and eight samples of waters from the area of influence of WTP were collected. The ECs extraction were performed using 5 g of fresh sample and a mixture of acetonitrile with 1% formic acid and water at the 3:1 ratio by shaking for 45 min and then centrifuging at 4,000 rpm for 5 min. The extract was filtered and determination was done by HPLC system connected to a 3200-Qtrap de triple quadrupole mass spectrometer with an electrospray ion source. The results showed that soil-ECs concentrations were 10 times lower that in sewage sludge. The smaller number of detections and detected compounds should also be stressed. As in previous cases, fungicides azole (tebuconazole and tricyclazole), along with boscalid, were the most detected compounds with concentrations of between 100 and 400 µg kg-1 dw. In second place, propiconazole and azoxystrobin stood out, followed by carbendazim, dimetomorph, pyraclostrobin and propamocarb. The following drugs and mycotoxins were detected to have a higher to lower concentration (1-40 µg kg-1): telmisartan, irbesartan, venlafaxine

  15. Ecological risk assessment of agricultural soils for the definition of soil screening values: A comparison between substance-based and matrix-based approaches.

    PubMed

    Pivato, Alberto; Lavagnolo, Maria Cristina; Manachini, Barbara; Vanin, Stefano; Raga, Roberto; Beggio, Giovanni

    2017-04-01

    The Italian legislation on contaminated soils does not include the Ecological Risk Assessment (ERA) and this deficiency has important consequences for the sustainable management of agricultural soils. The present research compares the results of two ERA procedures applied to agriculture (i) one based on the "substance-based" approach and (ii) a second based on the "matrix-based" approach. In the former the soil screening values (SVs) for individual substances were derived according to institutional foreign guidelines. In the latter, the SVs characterizing the whole-matrix were derived originally by the authors by means of experimental activity. The results indicate that the "matrix-based" approach can be efficiently implemented in the Italian legislation for the ERA of agricultural soils. This method, if compared to the institutionalized "substance based" approach is (i) comparable in economic terms and in testing time, (ii) is site specific and assesses the real effect of the investigated soil on a battery of bioassays, (iii) accounts for phenomena that may radically modify the exposure of the organisms to the totality of contaminants and (iv) can be considered sufficiently conservative.

  16. Recent developments in biochar as an effective tool for agricultural soil management: a review.

    PubMed

    Laghari, Mahmood; Naidu, Ravi; Xiao, Bo; Hu, Zhiquan; Mirjat, Muhammad Saffar; Hu, Mian; Kandhro, Muhammad Nawaz; Chen, Zhihua; Guo, Dabin; Jogi, Qamardudin; Abudi, Zaidun Naji; Fazal, Saima

    2016-12-01

    In recent years biochar has been demonstrated to be a useful amendment to sequester carbon and reduce greenhouse gas emission from the soil to the atmosphere. Hence it can help to mitigate global environment change. Some studies have shown that biochar addition to agricultural soils increases crop production. The mechanisms involved are: increased soil aeration and water-holding capacity, enhanced microbial activity and plant nutrient status in soil, and alteration of some important soil chemical properties. This review provides an in-depth consideration of the production, characterization and agricultural use of different biochars. Biochar is a complex organic material and its characteristics vary with production conditions and the feedstock used. The agronomic benefits of biochar solely depend upon the use of particular types of biochar with proper field application rate under appropriate soil types and conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Microbial adaption to a pesticide in agricultural soils: Accelerated degradation of 14C-atrazine in field soils from Brazil and Belgium

    NASA Astrophysics Data System (ADS)

    Jablonowski, Nicolai David; Martinazzo, Rosane; Hamacher, Georg; Accinelli, Cesare; Köppchen, Stephan; Langen, Ulrike; Linden, Andreas; Krause, Martina; Burauel, Peter

    2010-05-01

    An increasing demand for food, feed and bioenergy, and simultaneously a decline of arable land will require an intensive agricultural production including the use of pesticides. With an increasing use of pesticides the occurrence of an accelerated degradation potential has to be assessed. Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] is one of the most widely used herbicides in the world. Even though its use was banned in several countries it is still widely used throughout America and the Asia-Pacific region. Atrazine is the most widely used herbicide in maize plantations in Brazil and the US. The use of atrazine in Belgium and all EU member states was banned in September 2004, with the permission to consume existing stocks until October 2005. Atrazine and its residues are still regularly detected in soil, ground and surface waters even years after its prohibition. Its persistence in soil and in association with organic particles might become crucial in terms of erosion due to climate and environmental changes. Due to its potential microbiological accessibility, the microbial mineralization of atrazine competes with chemical/physical interaction such as sorption and binding processes of the chemical molecule in the soil matrix. Binding or intrusion of the chemical on soil components results in a decrease of its accessibility for soil microbes, which does not necessarily exclude the molecule from environmental interactions. In the present study the accelerated atrazine degradation in agriculturally used soils was examined. Soil samples were collected from a Rhodic Ferralsol, Campinas do Sul, South Brazil, and Geric Ferralsol, Correntina, Northeastern Brazil. The sampling site of the Rhodic Ferralsol soil has been under crop rotation (soybean/wheat/maize/oat) since 1990. The Geric Ferralsol site has alternately been cultivated with maize and soybean since 2000. Both areas have been treated biennially with atrazine at recommended doses of 1.5 - 3

  18. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production

    ERIC Educational Resources Information Center

    Poffenbarger, Hanna

    2010-01-01

    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops…

  19. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

    PubMed

    Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G

    2015-07-01

    Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The

  20. Rapid analysis of 2,4-D in soil samples by modified Soxhlet apparatus using HPLC with UV detection.

    PubMed

    Kashyap, Sanjay M; Pandya, Girish H; Kondawar, Vivek K; Gabhane, Sanjay S

    2005-02-01

    The 2,4-dichlorophenoxy acetic acid (2,4-D) is used as a systemic herbicide to control broadleaf weeds in wheat, corn, range land/pasture land, sorghum, and barley. In this study, a fast and efficient method is developed by selection of modified extraction apparatus and high-performance liquid chromatography (HPLC)-UV conditions for the determination of 2,4-D in soil samples. The method is applied to the study of soil samples collected from the agricultural field. The herbicide is extracted from soil samples by acetonitrile in a modified Soxhlet apparatus. The advantages of the apparatus are that it uses small volume of organic solvent, reduced time of extraction, and better recovery of the analyte. The extract is filtered using a very fine microfiber paper. The total extract is concentrated in a rotatory evaporator, dried under ultrahigh pure N2, and finally reconstituted in 1 mL of acetonitrile. HPLC-UV at 228 nm is used for analysis. The herbicide is identified and quantitated using the HPLC system. The method is validated by the analysis of spiked soil samples. Recoveries obtained varied from 85% to 100% for spiked soil samples. The limit of quantitation (LOQ) and the limit of detection (LOD) are 0.010 and 0.005 parts per million (ppm), respectively, for spiked soil samples. The LOQ and LOD are 0.006 and 0.003 ppm for unspiked soil samples. The measured concentrations of 2,4-D in spiked soil samples are between 0.010 and 0.020 ppm with an average of 0.016 +/- 0.003 ppm. For unspiked soil samples it is between 0.006 ppm and 0.012 ppm with an average of 0.009 +/- 0.002 ppm. The measured concentrations of 2,4-D in soil samples are generally low and do not exceed the regulatory agencies guidelines.

  1. Is the soil quality monitoring an effective tool in consumers' protection of agricultural crops from cadmium soil contamination?-a case of the Silesia region (Poland).

    PubMed

    Piekut, Agata; Baranowska, Renata; Marchwińska-Wyrwał, Ewa; Ćwieląg-Drabek, Małgorzata; Hajok, Ilona; Dziubanek, Grzegorz; Grochowska-Niedworok, Elżbieta

    2017-12-16

    The monitoring of soil quality should be a control tool used to reduce the adverse health effects arising from exposure to toxic chemicals in soil through cultivated crop absorption. The aim of the study was to evaluate the effectiveness of the monitoring and control system of soil quality in Poland, in terms of consumer safety, for agricultural plants cultivated in areas with known serious cadmium contamination, such as Silesia Province. To achieve the objective, the contents of cadmium in soils and vegetables in the Silesia administrative area were examined. The obtained results were compared with the results of soil contamination from the quality monitoring of arable soil in Poland. The studies show a significant exceedance of the permissible values of cadmium in soil samples and the vegetables cultivated on that soil. The threat to consumer health is a valid concern, although this threat was not indicated by the results of the national monitoring of soil quality. The results indicated an unequal distribution of risk to consumers resulting from contaminated soil. Moreover, the monitoring systems should be designed at the local or regional scale to guarantee the safety of consumers of edible plants cultivated in the areas contaminated with cadmium.

  2. Carbon dioxide emissions from agricultural soils amended with livestock-derived organic materials

    NASA Astrophysics Data System (ADS)

    Pezzolla, D.; Said-Pullicino, D.; Gigliotti, G.

    2009-04-01

    Carbon dioxide gas xchange between terrestrial ecosystems and the atmosphere, as well as the carbon sink strength of various arable land ecosystems, is of primary interest for global change research. Measures for increasing soil C inputs include the preferential use of livestock-derived organic materials (e.g. animal manure and slurries, digestate from biogas production plants and compost). The application of such materials to agricultural soils returns essential nutrients for plant growth and organic matter to maintain long-term fertility. Whether or not such practices ultimately result in sustained C sequestration at the ecosystem level will depend on their mineralization rates. This work presents preliminary results from a laboratory incubation trial to evaluate carbon dioxide fluxes from two agricultural soils (a calcareous silt loam and a silty clay loam) amended with agricultural doses of (i) pig slurry (PSL), (ii) the digestate from the anaerobic fermentation of pig slurries (AAS) and (ii) a compost from the aerobic stabilisation of the digestate (LDC). These subsequent steps of slurry stabilisation resulted in a decrease in the content of labile organic matter which was reflected in a reduction in maximum carbon dioxide emission rates from amended soils. Measurements have shown that peak emissions from soils occur immediately after application of these organic materials (within 5 days) and decrease in the order PSL > AAS > LDC. Moreover, mean cumulative emissions over the first 40 days showed that a higher percentage (about 44%) of the C added with PSL was mineralised respect to C added with AAS (39%) and LDC (25%). Although it was hypothesised that apart from the quantity and stability of the added organic materials, even soil characteristics could influence C mineralisation rates, no significant differences were observed between emission fluxes for similarly treated soils. Mean cumulative emission fluxes after 40 days from treatment were of 114, 103 and

  3. Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site.

    PubMed

    Ma, Ting Ting; Christie, Peter; Luo, Yong Ming; Teng, Ying

    2013-08-01

    The accumulation of phthalic acid esters (PAEs) in soil and plants in agricultural land near an electronic waste recycling site in east China has become a great threat to the neighboring environmental quality and human health. Soil and plant samples collected from land under different utilization, including fallow plots, vegetable plots, plots with alfalfa (Medicago sativa L.) as green manure, fallow plots under long-term flooding and fallow plots under alternating wet and dry periods, together with plant samples from relative plots were analyzed for six PAE compounds nominated as prior pollutants by USEPA. In the determined samples, the concentrations of six target PAE pollutants ranged from 0.31-2.39 mg/kg in soil to 1.81-5.77 mg/kg in various plants (dry weight/DW), and their bioconcentration factors (BCFs) ranged from 5.8 to 17.9. Health risk assessments were conducted on target PAEs, known as typical environmental estrogen analogs, based on their accumulation in the edible parts of vegetables. Preliminary risk assessment to human health from soil and daily vegetable intake indicated that DEHP may present a high-exposure risk on all ages of the population in the area by soil ingestion or vegetable consumption. The potential damage that the target PAE compounds may pose to human health should be taken into account in further comprehensive risk assessments in e-waste recycling sites areas. Moreover, alfalfa removed substantial amounts of PAEs from the soil, and its use can be considered a good strategy for in situ remediation of PAEs.

  4. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California

    NASA Astrophysics Data System (ADS)

    Welle, Paul D.; Mauter, Meagan S.

    2017-09-01

    This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7-7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.

  5. New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

    2014-05-01

    Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size

  6. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy.

    PubMed

    Qin, Hai-Bo; Zhu, Jian-Ming; Lin, Zhi-Qing; Xu, Wen-Po; Tan, De-Can; Zheng, Li-Rong; Takahashi, Yoshio

    2017-06-01

    Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56-81% of the total Se) and lesser Se(IV) (19-44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69-73%) > upland soil (56-63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India.

    PubMed

    Kumar, Manoj; Ramanathan, A L; Rahman, Mohammad Mahmudur; Naidu, Ravi

    2016-12-15

    Concentrations of inorganic forms [arsenite, As(III) and arsenate, As(V) of arsenic (As) present in groundwater, agricultural soils and subsurface sediments located in the middle Gangetic plain of Bihar, India were determined. Approximately 73% of the groundwater samples (n=19) show As(III) as the dominant species while 27% reveals As(V) was the dominant species. The concentration of As(III) in agricultural soil samples varies from not detectable to 40μg/kg and As(V) was observed as the major species (ranging from 1050 to 6835μg/kg) while the total As concentration varied from 3528 to 14,690μg/kg. Total extracted concentration of As was higher in the subsurface sediments (range 9119-20,056μg/kg in Methrapur and 4788-19,681μg/kg in Harail Chapar) than the agricultural soil, indicating the subsurface sediment as a source of As. Results of X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) revealed the presence of hematite and goethite throughout the vertical section below while magnetite was observed only in the upper oxidized layer at Methrapur and Harail Chapar. Alteration of Fe-oxides and presence of fibrous goethite indicating presence of diagenetic sediment. Siderite plays a crucial role as sinks to the As in subsurface sediments. The study also concluded that decomposition of organic matter present in dark and grey sections promote the redox conditions and trigger mobilization of As into groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils.

    PubMed

    Fang, Hua; Han, Lingxi; Zhang, Houpu; Long, Zhengnan; Cai, Lin; Yu, Yunlong

    2018-05-29

    The dissemination of antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and antibiotic-resistant HPB (ARHPB) from animal feedlot to nearby environment poses a potentially high risk to environmental ecology and public health. Here, a metagenomic analysis was employed to explore the dissemination of ARGs, HPB, and ARHPB from a pig feedlot to surrounding stream and agricultural soils. In total, not detectable (ND)-1,628.4 μg/kg of antibiotic residues, 18 types of ARGs, 48 HPB species, and 216 ARB isolates were detected in all samples. Antibiotic residues from pig feedlot mainly migrated into stream sediments and greenhouse soil. The dominant ARGs and HPB species from pig feedlot spread into stream sediments (tetracycline resistance genes, Clostridium difficile, and Mycobacterium tuberculosis), stream water (multidrug resistance (MDR) genes, Shigella flexneri, and Bordetella pertussis), and greenhouse soil (MDR genes, Bacillus anthracis, and Brucella melitensis). It is concerning that 54.4% of 216 ARB isolates from all samples were potential ARHPB species, and genome sequencing and functional annotation of 4 MDR HPB isolates showed 9 ARG types. Our findings revealed the potential migration and dissemination of antibiotic residues, ARGs, HPB, and ARHPB from pig feedlot to surrounding stream and agricultural soils via pig sewage discharge and manure fertilization. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Soil Gas Sample Handling: Evaluation of Water Removal and Sample Ganging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Brad G.; Abrecht, David G.; Hayes, James C.

    2016-10-31

    Soil gas sampling is currently conducted in support of Nuclear Test Ban treaty verification. Soil gas samples are collected and analyzed for isotopes of interest. Some issues that can impact sampling and analysis of these samples are excess moisture and sample processing time. Here we discuss three potential improvements to the current sampling protocol; a desiccant for water removal, use of molecular sieve to remove CO 2 from the sample during collection, and a ganging manifold to allow composite analysis of multiple samples.

  10. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils.

    PubMed

    Jansa, Jan; Erb, Angela; Oberholzer, Hans-Rudolf; Smilauer, Petr; Egli, Simon

    2014-04-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi, forming mutualistic symbiosis with a majority of terrestrial plant species. They are abundant in nearly all soils, less diverse than soil prokaryotes and other intensively studied soil organisms and thus are promising candidates for universal indicators of land management legacies and soil quality degradation. However, insufficient data on how the composition of indigenous AMF varies along soil and landscape gradients have hampered the definition of baselines and effect thresholds to date. Here, indigenous AMF communities in 154 agricultural soils collected across Switzerland were profiled by quantitative real-time PCR with taxon-specific markers for six widespread AMF species. To identify the key determinants of AMF community composition, the profiles were related to soil properties, land management and site geography. Our results indicate a number of well-supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles. Site geography, especially the altitude and large geographical distance, strongly affected AMF communities. Unexpected was the apparent lack of a strong land management effect on the AMF communities as compared to the other predictors, which could be due to the rarity of highly intensive and unsustainable land management in Swiss agriculture. In spite of the extensive coverage of large geographical and soil gradients, we did not identify any taxon suitable as an indicator of land use among the six taxa we studied. © 2014 John Wiley & Sons Ltd.

  11. Environmental behavior of benalaxyl and furalaxyl enantiomers in agricultural soils.

    PubMed

    Qin, Fang; Gao, Yong X; Guo, Bao Y; Xu, Peng; Li, Jian Z; Wang, Hui L

    2014-01-01

    The enantioselective environmental behavior of the chiral fungicides benalaxy and furalaxyl in agricultural soils in China was studied. Although sorption onto soils was non-enantioselective, the leaching of benalaxy and furalaxyl was enantioselective in soil columns. The concentrations of the S-enantiomers of both fungicides in the leachates were higher than the R-enantiomers. This can be attributed to enantioselective degradation of the two fungicides in the soil column. Enantioselective degradation of the two fungicides was verified by soil dissipation experiments, and the R-enantiomers degraded faster than the S-enantiomers in partial soils. The half-life was 27.7-57.8 days for S-benalaxyl, 20.4-53.3 days for R-benalaxyl, 19.3-49.5 days for S-furalaxyl and 11.4-34.7 days for R-furalaxyl. The degradation process of the two fungicide enantiomers followed the first-order kinetics (R(2) > 0.96). Compared to furalaxyl, benalaxyl degraded more slowly and degradation was less enantioselective. These results are attributed to the influence of soil physicochemical properties, soil microorganisms, and environmental factors.

  12. Ecological Risk of Heavy Metals and a Metalloid in Agricultural Soils in Tarkwa, Ghana

    PubMed Central

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Akoto, Osei; Ikenaka, Yoshinori; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    Heavy metals and a metalloid in agricultural soils in 19 communities in Tarkwa were analyzed to assess the potential ecological risk. A total of 147 soil samples were collected in June, 2012 and analyzed for As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Mean concentrations (mg/kg dw) of heavy metals in the communities decreased in order of Zn (39) ˃ Cr (21) ˃ Pb (7.2) ˃ Cu (6.2) ˃ As (4.4) ˃ Ni (3.7) ˃ Co (1.8) ˃ Hg (0.32) ˃ Cd (0.050). Correlations among heavy metals and soil properties indicated that soil organic matter could have substantial influence on the total contents of these metals in soil. From the results, integrated pollution (Cdeg) in some communities such as, Wangarakrom (11), Badukrom (13) and T–Tamso (17) indicated high pollution with toxic metals, especially from As and Hg. Potential ecological risk (RI) indices indicated low (Mile 7) to high risks (Wangarakrom; Badukrom) of metals. Based on pollution coefficient (Cif), Cdeg, monomial ecological risk (Eir) and RI, the investigated soils fall within low to high contamination and risk of heavy metals to the ecological system especially plants, soil invertebrates and/or mammalian wildlife. This represented moderate potential ecological risk in the study area, and mining activities have played a significant role. PMID:26378563

  13. Entomopathogenic nematodes in agricultural areas in Brazil.

    PubMed

    de Brida, Andressa Lima; Rosa, Juliana Magrinelli Osório; Oliveira, Cláudio Marcelo Gonçalves de; Castro, Bárbara Monteiro de Castro E; Serrão, José Eduardo; Zanuncio, José Cola; Leite, Luis Garrigós; Wilcken, Silvia Renata Siciliano

    2017-04-06

    Entomopathogenic nematodes (EPNs) (Steinernematidae and Heterorhabditidae) can control pests due to the mutualistic association with bacteria that kill the host by septicemia and make the environment favorable for EPNs development and reproduction. The diversity of EPNs in Brazilian soils requires further study. The identification of EPNs, adapted to environmental and climatic conditions of cultivated areas is important for sustainable pest suppression in integrated management programs in agricultural areas of Brazil. The objective was to identify EPNs isolated from agricultural soils with annual, fruit and forest crops in Brazil. Soil samples were collected and stored in 250 ml glass vials. The nematodes were isolated from these samples with live bait traps ([Galleria mellonella L. (Lepidoptera: Pyralidae) larvae]. Infective juveniles were collected with White traps and identified by DNA barcoding procedures by sequencing the D2/D3 expansion of the 28S rDNA region by PCR. EPNs identified in agricultural areas in Brazil were Heterorhabditis amazonensis, Metarhabditis rainai, Oscheios tipulae and Steinernema rarum. These species should be considered pest biocontrol agents in Brazilian agricultural areas.

  14. Soil fungi for mycoremediation of arsenic pollution in agriculture soils.

    PubMed

    Singh, M; Srivastava, P K; Verma, P C; Kharwar, R N; Singh, N; Tripathi, R D

    2015-11-01

    Soil arsenic (As) contamination of food-chains and public health can be mitigated through fungal bioremediation. To enumerate culturable soil fungi, soils were collected from the As-contaminated paddy fields (3-35 mg kg(-1) ) of the middle Indo-Gangetic Plains. Total 54 fungal strains were obtained and identified at their molecular level. All strains were tested for As tolerance (from 100 to 10,000 mg l(-1) arsenate). Fifteen fungal strains, tolerant to 10,000 mg l(-1) arsenate, were studied for As removal in-vivo for 21 days by cultivating them individually in potato dextrose broth enriched with 10 mg l(-1) As. The bioaccumulation of As in fungal biomass ranged from 0·023 to 0·259 g kg(-1). The biovolatilized As ranged from 0·23 to 6·4 mg kg(-1). Higher As bioaccumulation and biovolatilization observed in the seven fungal strains, Aspergillus oryzae FNBR_L35; Fusarium sp. FNBR_B7, FNBR_LK5 and FNBR_B3; Aspergillus nidulans FNBR_LK1; Rhizomucor variabilis sp. FNBR_B9; and Emericella sp. FNBR_BA5. These fungal strains were also tested and found suitable for significant plant growth promotion in the calendula, withania and oat plants in a greenhouse based pot experiment. These fungal strains can be used for As remediation in As-contaminated agricultural soils. © 2015 The Society for Applied Microbiology.

  15. Measurement of DDT fluxes from a historically treated agricultural soil in Canada.

    PubMed

    Kurt-Karakus, Perihan Binnur; Bidleman, Terry F; Staebler, Ralf M; Jones, Kevin C

    2006-08-01

    Organocohlorine pesticide (OCP) residues in agricultural soils are of concern due to the uptake of these compounds by crops, accumulation in the foodchain, and reemission from soils to the atmosphere. Although it has been about three decades since DDT was banned for agricultural uses in Canada, residues persist in soils of some agricultural areas. Emission of DDT compounds to the atmosphere from a historically treated field in southern Ontario was determined in fall 2004 and spring 2005. The sigmaDDTs concentration in the high organic matter (71%) soil was 19 +/- 4 microg g(-1) dry weight. Concentration gradients in the air were measured at 5, 20, 72, and 200 cm above soil using glass fiber filter-polyurethane foam cartridges. Air concentrations of sigmaDDTs averaged 5.7 +/- 5.1 ng m(-3) at 5 cm and decreased to 1.3 +/- 0.8 ng m(-3) at 200 cm and were 60-300 times higher than levels measured at a background site 30 km away. Soil-air fugacity fractions, fs/(fs + fa), of p,p'-DDE, p,p'-DDD, and p,p'-DDT ranged from 0.42 to 0.91 using air concentrations measured above the soil and > or = 0.99 using background air concentrations, indicating that the soil was a net source to the background air. Fractionation of DDT compounds during volatilization was predicted using either liquid-phase vapor pressures (PL) or octanol-air partition coefficients (KOA). Relative emissions of p,p'-DDE and p,p'-DDT were better described by PL than KOA, whereas either PL or KOA successfully accounted for the fractionation of p,p'-DDT and o,p'-DDT. Soil-to-air fluxes were calculated from air concentration gradients and turbulent exchange coefficients determined from micrometeorological measurements. Average fluxes of sigmaDDTs were 90 +/- 24 ng m(-2) h(-1) in fall and 660 +/- 370 ng m(-2) h(-1) in spring. Higher soil temperatures in spring accounted for the higher fluxes. A volatilization half-life of approximately 200 y was estimated for sigmaDDT in the upper 5 cm of the soil column, assuming

  16. Soil erosion at agricultural land in Moravia loess region estimated by using magnetic properties

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Dlouha, Sarka; Petrovsky, Eduard; Jaksik, Ondrej; Grison, Hana; Kodesova, Radka

    2014-05-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and subsequent laboratory analyses have been carried out in order to test the applicability of magnetic methods for the estimation of soil erosion. Chernozem, the original dominant soil unit in the wider area, is nowadays progressively transformed into different soil units along with intensive soil erosion. As a result, an extremely diversified soil cover structure has resulted from the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. We found a strong correlation between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The soil profile that was unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples from layers along the whole profile with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of

  17. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3 —N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  18. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row

  19. Improving World Agricultural Supply and Demand Estimates by Integrating NASA Remote Sensing Soil Moisture Data into USDA World Agricultural Outlook Board Decision Making Environment

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; de Jeu, R. A.; Doraiswamy, P. C.; Kempler, S. J.; Shannon, H. D.

    2009-12-01

    A primary goal of the U.S. Department of Agriculture (USDA) is to expand markets for U.S. agricultural products and support global economic development. The USDA World Agricultural Outlook Board (WAOB) supports this goal by developing monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Because weather has a significant impact on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments, in a GIS-based, Global Agricultural Decision Support Environment (GLADSE). The main objective of this project, thus, is to improve WAOB's estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE. Soil moisture is a primary data gap at WAOB. Soil moisture data, generated by the Land Parameter Retrieval Model (LPRM, developed by NASA GSFC and Vrije Universiteit Amsterdam) and customized to WAOB's requirements, will be directly integrated into GLADSE, as well as indirectly by first being integrated into USDA Agricultural Research Service (ARS)'s Environmental Policy Integrated Climate (EPIC) crop model. The LPRM-enhanced EPIC will be validated using three major agricultural regions important to WAOB and then integrated into GLADSE. Project benchmarking will be based on retrospective analyses of WAOB's analog year comparisons. The latter are between a given year and historical years with similar weather patterns. WAOB is the focal point for economic intelligence within the USDA. Thus, improving WAOB's agricultural estimates by integrating NASA satellite observations and model outputs will visibly demonstrate the value of NASA resources and maximize the societal benefits of NASA investments.

  20. Effects of biochar and elevated soil temperature on soil microbial activity and abundance in an agricultural system

    NASA Astrophysics Data System (ADS)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2014-05-01

    As a consequence of Global Warming, rising surface temperatures will likely cause increased soil temperatures. Soil warming has already been shown to, at least temporarily, increase microbial activity and, therefore, the emissions of greenhouse gases like CO2 and N2O. This underlines the need for methods to stabilize soil organic matter and to prevent further boost of the greenhouse gas effect. Plant-derived biochar as a soil amendment could be a valuable tool to capture CO2 from the atmosphere and sequestrate it in soil on the long-term. During the process of pyrolysis, plant biomass is heated in an oxygen-low atmosphere producing the highly stable solid matter biochar. Biochar is generally stable against microbial degradation due to its chemical structure and it, therefore, persists in soil for long periods. Previous experiments indicated that biochar improves or changes several physical or chemical soil traits such as water holding capacity, cation exchange capacity or soil structure, but also biotic properties like microbial activity/abundance, greenhouse gas emissions and plant growth. Changes in the soil microbial abundance and community composition alter their metabolism, but likely also affect plant productivity. The interaction of biochar addition and soil temperature increase on soil microbial properties and plant growth was yet not investigated on the field scale. To investigate whether warming could change biochar effects in soil, we conducted a field experiment attached to a soil warming experiment on an agricultural experimental site near the University of Hohenheim, already running since July 2008. The biochar field experiment was set up as two-factorial randomized block design (n=4) with the factors biochar amendment (0, 30 t ha-1) and soil temperature (ambient, elevated=ambient +2.5° C) starting from August 2013. Each plot has a dimension of 1x1m and is equipped with combined soil temperature and moisture sensors. Slow pyrolysis biochar from the C

  1. A radiative transfer model for microwave emissions from bare agricultural soils

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Paris, J. F.

    1975-01-01

    A radiative transfer model for microwave emissions from bare, stratified agricultural soils was developed to assist in the analysis of data gathered in the joint soil moisture experiment. The predictions of the model were compared with preliminary X band (2.8 cm) microwave and ground based observations. Measured brightness temperatures at vertical and horizontal polarizations can be used to estimate the moisture content of the top centimeter of soil with + or - 1 percent accuracy. It is also shown that the Stokes parameters can be used to distinguish between moisture and surface roughness effects.

  2. Glyphosate and AMPA contents in sediments produced by wind erosion of agricultural soils in Argentina

    NASA Astrophysics Data System (ADS)

    Aparicio, Virginia; Aimar, Silvia; De Gerónimo, Eduardo; Buschiazzo, Daniel; Mendez, Mariano; Costa, José Luis

    2014-05-01

    Wind erosion of soils is an important event in arid and semiarid regions of Argentina. The magnitude of wind erosion occurring under different management practices is relatively well known in this region but less information is available on the quality of the eroded material. Considering that the intensification of agriculture may increase the concentrations of substances in the eroded material, producing potential negative effects on the environment, we analyzed the amount of glyphosate and AMPA in sediments produced by wind erosion of agricultural soils of Argentina. Wind eroded materials were collected by means of BSNE samplers in two loess sites of the semiarid region of Argentina: Chaco and La Pampa. Samples were collected from 1 ha square fields at 13.5, 50 and 150 cm height. Results showed that at higher heights the concentrations of glyphosate and AMPA were mostly higher. The glyphosate concentration was more variable and higher in Chaco (0.66 to 313 µg kg-1) than in La Pampa (4.17 to 114 µg kg-1). These results may be due to the higher use of herbicides in Chaco, where the predominant crops are soybeans and corn, produced under no-tillage. Under these conditions the use of glyphosate for weeds control is a common practice. Conversely, AMPA concentrations were higher in La Pampa (13.1 to 101.3 µg kg-1) than in Chaco (1.3 to 83 µg kg-1). These preliminary results show high concentrations of glyphosate and AMPA in wind eroded materials of agricultural soils of Argentina. More research is needed to confirm these high concentrations in other conditions in order to detect the temporal and spatial distribution patterns of the herbicide.

  3. A contemporary decennial global Landsat sample of changing agricultural field sizes

    NASA Astrophysics Data System (ADS)

    White, Emma; Roy, David

    2014-05-01

    Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by

  4. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area.

    PubMed

    Ouyang, Wei; Geng, Xiaojun; Huang, Wejia; Hao, Fanghua; Zhao, Jinbo

    2016-02-01

    The farmland tillage practices changed the soil chemical properties, which also impacted the soil respiration (R s ) process and the soil carbon conservation. Originally, the farmland in northeast China had high soil carbon content, which was decreased in the recent decades due to the tillage practices. To better understand the R s dynamics in different land use types and its relationship with soil carbon loss, soil samples at two layers (0-15 and 15-30 cm) were analyzed for organic carbon (OC), total nitrogen (TN), total phosphorus (TP), total carbon (TC), available nitrogen (AN), available phosphorus (AP), soil particle size distribution, as well as the R s rate. The R s rate of the paddy land was 0.22 (at 0-15 cm) and 3.01 (at 15-30 cm) times of the upland. The average concentrations of OC and clay content in cultivated areas were much lower than in non-cultivated areas. The partial least squares analysis suggested that the TC and TN were significantly related to the R s process in cultivated soils. The upland soil was further used to test soil CO2 emission response at different biochar addition levels during 70-days incubation. The measurement in the limited incubation period demonstrated that the addition of biochar improved the soil C content because it had high concentration of pyrogenic C, which was resistant to mineralization. The analysis showed that biochar addition can promote soil OC by mitigating carbon dioxide (CO2) emission. The biochar addition achieved the best performance for the soil carbon conservation in high-latitude agricultural area due to the originally high carbon content.

  5. Sampling depth confounds soil acidification outcomes

    USDA-ARS?s Scientific Manuscript database

    In the northern Great Plains (NGP) of North America, surface sampling depths of 0-15 or 0-20 cm are suggested for testing soil characteristics such as pH. However, acidification is often most pronounced near the soil surface. Thus, sampling deeper can potentially dilute (increase) pH measurements an...

  6. Ecosystem Services in Agricultural Landscapes: A Spatially Explicit Approach to Support Sustainable Soil Management

    PubMed Central

    Crossman, Neville D.; MacEwan, Richard J.; Wallace, D. Dugal; Bennett, Lauren T.

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km2 in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes. PMID:24616632

  7. Ecosystem services in agricultural landscapes: a spatially explicit approach to support sustainable soil management.

    PubMed

    Forouzangohar, Mohsen; Crossman, Neville D; MacEwan, Richard J; Wallace, D Dugal; Bennett, Lauren T

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km(2) in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.

  8. Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasma mass spectrometric determination.

    PubMed

    Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N

    2016-07-01

    The main objectives of this study were to determine the concentration of fourteen trace elements and to investigate their distribution as well as a contamination levels in selected agricultural soils. An ultrasonic assisted sequential extraction procedure derived from three-step BCR method was used for fractionation of trace elements. The total concentration of trace elements in soil samples was obtained by total digestion method in soil samples with aqua regia. The results of the extractable fractions revealed that most of the target trace elements can be transferred to the human being through the food chain, thus leading to serious human health. Enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), risk assessment code (RAC) and individual contamination factors (ICF) were used to assess the environmental impacts of trace metals in soil samples. The EF revealed that Cd was enriched by 3.1-7.2 (except in Soil 1). The Igeo results showed that the soils in the study area was moderately contaminated with Fe, and heavily to extremely polluted with Cd. The soil samples from the unplanted field was found to have highest contamination factor for Cd and lowest for Pb. Soil 3 showed a high risk for Tl and Cd with RAC values of greater than or equal to 50%. In addition, Fe, Ni, Cu, V, As, Mo (except Soil 2), Sb and Pb posed low environmental risk. The modified BCR sequential extraction method provided more information about mobility and environmental implication of studied trace elements in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed.

    PubMed

    Erdogan, Emrah H; Erpul, Günay; Bayramin, Ilhami

    2007-08-01

    The Universal Soil Loss Equation (USLE) is an erosion model to estimate average soil loss that would generally result from splash, sheet, and rill erosion from agricultural plots. Recently, use of USLE has been extended as a useful tool predicting soil losses and planning control practices in agricultural watersheds by the effective integration of the GIS-based procedures to estimate the factor values in a grid cell basis. This study was performed in the Kazan Watershed located in the central Anatolia, Turkey, to predict soil erosion risk by the USLE/GIS methodology for planning conservation measures in the site. Rain erosivity (R), soil erodibility (K), and cover management factor (C) values of the model were calculated from erosivity map, soil map, and land use map of Turkey, respectively. R values were site-specifically corrected using DEM and climatic data. The topographical and hydrological effects on the soil loss were characterized by LS factor evaluated by the flow accumulation tool using DEM and watershed delineation techniques. From resulting soil loss map of the watershed, the magnitude of the soil erosion was estimated in terms of the different soil units and land uses and the most erosion-prone areas where irreversible soil losses occurred were reasonably located in the Kazan watershed. This could be very useful for deciding restoration practices to control the soil erosion of the sites to be severely influenced.

  10. The Effects of More Extreme Rainfall Patterns on Infiltration and Nutrient Losses in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2015-12-01

    In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to

  11. Geochemical distribution of major and trace elements in agricultural soils of Castilla-La Mancha (central Spain): finding criteria for baselines and delimiting regional anomalies.

    PubMed

    Bravo, Sandra; García-Ordiales, Efrén; García-Navarro, Francisco Jesús; Amorós, José Ángel; Pérez-de-Los-Reyes, Caridad; Jiménez-Ballesta, Raimundo; Esbrí, José María; García-Noguero, Eva María; Higueras, Pablo

    2017-09-07

    Castilla-La Mancha (central Spain) is a region characterized by significant agricultural production aimed at high-quality food products such as wine and olive oil. The quality of agricultural products depends directly on the soil quality. Soil geochemistry, including dispersion maps and the recognition of baselines and anomalies of various origins, is the most important tool to assess soil quality. With this objective, 200 soil samples were taken from agricultural areas distributed among the different geological domains present in the region. Analysis of these samples included evaluation of edaphological parameters (reactivity, electrical conductivity, organic matter content) and the geochemistry of major and trace elements by X-ray fluorescence. The dataset obtained was statistically analyzed for major elements and, in the case of trace elements, was normalized with respect to Al and analyzed using the relative cumulative frequency (RCF) distribution method. Furthermore, the geographic distribution of analytical data was characterized and analyzed using the kriging technique, with a correspondence found between major and trace elements in the different geologic domains of the region as well as with the most important mining areas. The results show an influence of the clay fraction present in the soil, which acts as a repository for trace elements. On the basis of the results, of the possible elements related with clay that could be used for normalization, Al was selected as the most suitable, followed by Fe, Mn, and Ti. Reference values estimated using this methodology were lower than those estimated in previous studies.

  12. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, C.; Utami, S. R.; Marxen, A.; Mangelsdorf, K.; Bauersachs, T.; Schwark, L.

    2015-10-01

    Insufficient knowledge of the composition and variation of isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) in agricultural soils exists, despite of the potential effect of different management types (e.g. soil/water and redox conditions, cultivated plants) on GDGT distribution. Here, we determined the influence of different soil management types on the GDGT composition in paddy (flooded) and adjacent upland (non-flooded) soils, and if available also forest, bushland and marsh soils. To compare the local effects on GDGT distribution patterns, we collected comparable soil samples in various locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general upland soil had higher crenarchaeol contents than paddy soil, which on the contrary was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio was 3-27 times higher in paddy soil and indicates the enhanced presence of methanogenic archaea, which were additionally linked to the number of rice cultivation cycles per year (higher number of cycles was coupled with an increase in the ratio). The TEX86 values were 1.3 times higher in upland, bushland and forest soils than in paddy soils. In all soils brGDGT predominated over iGDGTs, with the relative abundance of brGDGTs increasing from subtropical to tropical soils. Higher BIT values in paddy soils compared to upland soils together with higher BIT values in soil from subtropical climates indicate effects on the amounts of brGDGT through differences in management as well as climatic zones. In acidic soil CBT values correlated well with soil pH. In neutral to alkaline soils, however, no apparent correlation but an offset between paddy and upland managed soils was detected, which may suggest that soil

  13. Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils.

    PubMed

    Xiang, Lei; Sun, Teng-Fei; Zheng, Mei-Jie; Li, Yan-Wen; Li, Hui; Wong, Ming-Hung; Cai, Quan-Ying; Mo, Ce-Hui

    2016-08-01

    Quaternary ammonium compounds (QACs) used as cationic surfactants are intensively released into environment to be pollutants receiving more and more concerns. Sorption of dodecyltrimethylammonium chloride (DTAC), one of commonly used alkyl QACs, to five types of agricultural soils at low concentrations (1-50mg/L) was investigated using batch experiments. DTAC sorption followed pseudo-second-order kinetics and reached reaction equilibrium within 120min. Both Freundlich model and Langmuir model fitted well with DTAC isotherm data with the latter better. DTAC sorption was spontaneous and favorable, presenting a physical sorption dominated by ion exchanges. Sorption distribution coefficient and sorption affinity demonstrated that soil clay contents acted as a predominant phase of DTAC sorption. DTAC could display a higher mobility and potential accumulation in crops in the soils with lower clay contents and lower pH values. Sorption of DTAC was heavily affected by ions in solution with anion promotion and cation inhibition. Copyright © 2016. Published by Elsevier B.V.

  14. Prehistoric Agriculture and Soil Fertility on Lava Flows in Northern Arizona, USA: Results from the San Francisco Volcanic Field REU

    NASA Astrophysics Data System (ADS)

    Broadman, E.; Anderson, K. C.

    2013-12-01

    The San Francisco Volcanic Field in northern Arizona is home to ~600 cinder cones, the youngest of which is Sunset Crater (erupted ~AD 1100). This study documents trends in available phosphate and nitrate content with time, testing whether lowered soil pH from the addition of Sunset cinders increased soil fertility and became a factor in Anasazi agricultural success. Soil fertility is examined both before and after Sunset's eruption in soils of different ages that have developed from eolian deposition on top of lava flows. An increase in phosphate and nitrate levels following acidification would suggest that the presence of Sunset cinders brought the soils to the optimal pH for mobilization of these nutrients. The combined effects of the cinder layer retaining nutrients and water, wetter climates, and increases in phosphate and nitrate (both limiting nutrients for plant growth), would have contributed to Anasazi agricultural success after Sunset's eruption. Samples for this study were taken from eolian-derived soils of different ages atop lava flows in the San Francisco Volcanic Field. OSL data from these soils on Strawberry and SP Craters' lava flows yielded age estimates of ~12.3 ka (Strawberry) and ~32.7 ka (SP), on which a soil chronosequence was based. Results from the chronosequence supported these OSL ages, indicating that soils on the SP flow are older than those on the Strawberry flow. Field descriptions, Harden Development Indices, particle size analysis, and nutrient content analysis were used for this aspect of the project. An experimental acid wash method will be used to simulate the addition of Sunset's acidic cinders, and will yield data for phosphate and nitrate content after Sunset erupted. Preliminary results indicate that phosphate and nitrate accumulate in upper, eolian-derived horizons (Av, Bw) and in more deeply buried carbonate horizons (Bk). Higher concentrations of phosphate and nitrate were found in older (SP) soils than younger

  15. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production.

    PubMed

    Kim, Kwon-Rae; Kim, Jeong-Gyu; Park, Jeong-Sik; Kim, Min-Suk; Owens, Gary; Youn, Gyu-Hoon; Lee, Jin-Su

    2012-07-15

    Production of food crops on metal contaminated agricultural soils is of concern because consumers are potentially exposed to hazardous metals via dietary intake of such crops or crop derived products. Therefore, the current study was conducted to develop management protocols for crop cultivation to allow safer food production. Metal uptake, as influenced by pH change-induced immobilizing agents (dolomite, steel slag, and agricultural lime) and sorption agents (zeolite and compost), was monitored in three common plants representative of leafy (Chinese cabbage), root (spring onion) and fruit (red pepper) vegetables, in a field experiment. The efficiency of the immobilizing agents was assessed by their ability to decrease the phytoavailability of metals (Cd, Pb, and Zn). The fruit vegetable (red pepper) showed the least accumulation of Cd (0.16-0.29 mgkg(-1) DW) and Pb (0.2-0.9 mgkg(-1) DW) in edible parts regardless of treatment, indicating selection of low metal accumulating crops was a reasonable strategy for safer food production. However, safer food production was more likely to be achievable by combining crop selection with immobilizing agent amendment of soils. Among the immobilizing agents, pH change-induced immobilizers were more effective than sorption agents, showing decreases in Cd and Pb concentrations in each plant well below standard limits. The efficiency of pH change-induced immobilizers was also comparable to reductions obtained by 'clean soil cover' where the total metal concentrations of the plow layer was reduced via capping the surface with uncontaminated soil, implying that pH change-induced immobilizers can be practically applied to metal contaminated agricultural soils for safer food production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Derivation of ecological criteria for copper in land-applied biosolids and biosolid-amended agricultural soils.

    PubMed

    Lu, Tao; Li, Jumei; Wang, Xiaoqing; Ma, Yibing; Smolders, Erik; Zhu, Nanwen

    2016-12-01

    The difference in availability between soil metals added via biosolids and soluble salts was not taken into account in deriving the current land-applied biosolids standards. In the present study, a biosolids availability factor (BAF) approach was adopted to investigate the ecological thresholds for copper (Cu) in land-applied biosolids and biosolid-amended agricultural soils. First, the soil property-specific values of HC5 add (the added hazardous concentration for 5% of species) for Cu 2+ salt amended were collected with due attention to data for organisms and soils relevant to China. Second, a BAF representing the difference in availability between soil Cu added via biosolids and soluble salts was estimated based on long-term biosolid-amended soils, including soils from China. Third, biosolids Cu HC5 input values (the input hazardous concentration for 5% of species of Cu from biosolids to soil) as a function of soil properties were derived using the BAF approach. The average potential availability of Cu in agricultural soils amended with biosolids accounted for 53% of that for the same soils spiked with same amount of soluble Cu salts and with a similar aging time. The cation exchange capacity was the main factor affecting the biosolids Cu HC5 input values, while soil pH and organic carbon only explained 24.2 and 1.5% of the variation, respectively. The biosolids Cu HC5 input values can be accurately predicted by regression models developed based on 2-3 soil properties with coefficients of determination (R 2 ) of 0.889 and 0.945. Compared with model predicted biosolids Cu HC5 input values, current standards (GB4284-84) are most likely to be less protective in acidic and neutral soil, but conservative in alkaline non-calcareous soil. Recommendations on ecological criteria for Cu in land-applied biosolids and biosolid-amended agriculture soils may be helpful to fill the gaps existing between science and regulations, and can be useful for Cu risk assessments in

  17. Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.

    PubMed

    Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat

    2007-05-25

    The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.

  18. Effects of different agricultural management on a stagnic Luvisol in Lower Saxony, Germany - Factors for sustainable soil protection

    NASA Astrophysics Data System (ADS)

    Lorenz, Marco; Brunotte, Joachim; Ortmeier, Berthold

    2017-04-01

    Regarding increasing pressures by global societal and climate change, for example, the assessment of the impact of land use and land management practices on land productivity, land degradation and the related decrease in sustainable food production and the provision of ecosystem services gains increasing interest. Regarding international research on land use and soil threats, main problems in agricultural land use on global scale are erosion by water and wind, soil organic matter loss, salinization, depletion of nutrients, chemical and physical deterioration, including e.g. soil compaction. When coming to soil sciences, basically soil functions are affected negatively by intensive food production and field traffic. Management based negative changes in soil functions and a suboptimal soil structure have multiple negative effects on physical, biological and chemical soil functions, like a poor water balance, air and water permeability, disturbed soil fauna, impeded root penetration etc. and in consequence on the achievable yields. The presentation deals with the multiple effects of different agricultural machinery and technologies and different agricultural soil tillage (e.g. no-till, conservation tillage, ploughing), on various soil properties of a stagnic Luvisol in Lower Saxony, Germany. These are e.g. bulk density, air capacity, saturated water permeability, changes in pore size distribution and water retention curve as well as crop yields. Furthermore results of a long term study of bulk density and total pore size on more then 20 farms in Lower Saxony since the year 1952 will be presented. Finally, key factors and first recommendations for sustainable agricultural soil protection will be derived from the results.

  19. Polybrominated diphenyl ethers in residential and agricultural soils from an electronic waste polluted region in South China: distribution, compositional profile, and sources.

    PubMed

    Zhang, Shaohui; Xu, Xijin; Wu, Yousheng; Ge, Jingjing; Li, Weiqiu; Huo, Xia

    2014-05-01

    A detailed investigation was conducted to understand the concentration, distribution, profile and possible source of polybrominated diphenyl ethers (PBDEs) in residential and agricultural soils from Guiyu, Shantou, China, one of the largest electronic waste (e-waste) recycling and dismantling areas in the world. Ten PBDEs were analyzed in 46 surface soil samples in terms of individual and total concentrations, together with soil organic matter concentrations. Much higher concentrations of the total PBDEs were predicted in the residential areas (more than 2000 ng g(-1)), exhibiting a clear urban source, while in the agricultural areas, concentrations were lower than 1500 ng g(-1). PBDE-209 was the most dominant congener among the study sites, indicating the prevalence of commercial deca-PBDE. However signature congeners from commercial octa-PBDE were also found. The total PBDE concentrations were significantly correlated with each individual PBDE. Principal component analysis indicated that PBDEs were mainly distributed in three groups according to the number of bromine atoms on the phenyl rings, and potential source. This study showed that the informal e-waste recycling has already introduced PBDEs into surrounding areas as pollutant which thus warrants an urgent investigation into the transport of PBDEs in the soil-plant system of agricultural areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Long-Term Persistence of Pesticides and TPs in Archived Agricultural Soil Samples and Comparison with Pesticide Application.

    PubMed

    Chiaia-Hernandez, Aurea C; Keller, Armin; Wächter, Daniel; Steinlin, Christine; Camenzuli, Louise; Hollender, Juliane; Krauss, Martin

    2017-09-19

    For polar and more degradable pesticides, not many data on long-term persistence in soil under field conditions and real application practices exist. To assess the persistence of pesticides in soil, a multiple-compound screening method (log K ow 1.7-5.5) was developed based on pressurized liquid extraction, QuEChERS and LC-HRMS. The method was applied to study 80 polar pesticides and >90 transformation products (TPs) in archived topsoil samples from the Swiss Soil Monitoring Network (NABO) from 1995 to 2008 with known pesticide application patterns. The results reveal large variations between crop type and field sites. For the majority of the sites 10-15 pesticides were identified with a detection rate of 45% at concentrations between 1 and 330 μg/kg dw in soil. Furthermore, TPs were detected in 47% of the cases where the "parent-compound" was applied. Overall, residues of about 80% of all applied pesticides could be detected with half of these found as TPs with a persistence of more than a decade.

  1. Ranking factors affecting emissions of GHG from incubated agricultural soils.

    PubMed

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-07-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO 3 - ) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L 16 design, comprising 16 experimental units. Within this L 16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N 2 O), methane (CH 4 ) and carbon dioxide (CO 2 ) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO 3 - addition were the main factors affecting N 2 O fluxes, whilst glucose, NO 3 - and soil temperature were the main factors affecting CO 2 and CH 4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time.

  2. Ranking factors affecting emissions of GHG from incubated agricultural soils

    PubMed Central

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-01-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3−) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3− addition were the main factors affecting N2O fluxes, whilst glucose, NO3− and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time. PMID:25177207

  3. Impacts of soil sealing on potential agriculture in Egypt using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Elsayed Said; Belal, Abdelaziz; Shalaby, Adel

    2015-10-01

    This paper highlights the impacts of soil sealing on the agricultural soils in Nile Delta using remote sensing and GIS. The current work focuses on two aims. The first aim is to evaluate soil productivity lost to urban sprawl, which is a significant cause of soil sealing in Nile Delta. The second aim is to evaluate the Land Use and Land Cover Changes (LU LC) from 2001 to 2013 in El-Gharbia governorate as a case study. Three temporal data sets of images from two different sensors: Landsat 7 Enhanced Thematic Mapper (ETM+) with 30 m resolution acquired in 2001 and Landsat 8 acquired in 2013 with 30 m resolution, and Egypt sat acquired in 2010 with 7.8 m resolution, consequently were used. Four different supervised classification techniques (Maximum Likelihood (ML), Minimum Distance, Neural Networks (NN); and Support Vector Machine (SVM) were applied to monitor the changes of LULC in the investigated area. The results showed that the agricultural soils of the investigated area are characterized by high soil productivity depending on its chemical and physical properties. During 2010-2013, soil sealing took place on 1397 ha from the study area which characterized by soil productivity classes ranging between I and II. It is expected that the urban sprawl will be increased to 12.4% by 2020 from the study area, which means that additional 3400 ha of productive soils will be lost from agriculture. However, population growth is the most significant factor effecting urban sprawl in Nile Delta.

  4. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology.

    PubMed

    Elsgaard, L; Petersen, S O; Debosz, K

    2001-08-01

    Linear alkylbenzene sulfonates (LAS) may occur in sewage sludge that is applied to agricultural soil, in which LAS can be inhibitory to biological activity. As a part of a broader risk assessment of LAS in the terrestrial environment, we tested the short-term effects of aqueous LAS on microbial parameters in a sandy agricultural soil that was incubated for up to 11 d. The assays included 10 microbial soil parameters; ethylene degradation; potential ammonium oxidation; potential dehydrogenase activity; beta-glucosidase activity; iron reduction; the populations of cellulolytic bacteria, fungi and actinomycetes; the basal soil respiration; and the phospholipid fatty acid (PLFA) content. Except for beta-glucosidase activity, basal respiration, and total PLFA content, all soil parameters were sensitive to LAS, with EC10 values in the range of less than 8 to 22 mg/kg dry weight. This probably reflected a similar mode of LAS toxicity, ascribed to cell membrane interactions, and showed that sensitivity to LAS was common for various soil microorganisms. The extracellular beta-glucosidase activity was rather insensitive to LAS (ECI10, 47 mg/kg dry wt), whereas the basal soil respiration was not inhibited even at 793 mg/kg dry weight. This was interpreted as a combined response of inhibited and stimulated compartments of the microbial community. The PLFA content, surprisingly, showed no decrease even at 488 mg/kg. In conclusion, LAS inhibited specific microbial activities, although this could not be deduced from the basal respiration or the total PLFA content. The lowest EC10 values for microbial soil parameters were slightly higher than the predicted no-effect concentrations recently derived for plants and soil fauna (approximately 5 mg/kg dry wt).

  5. The potential of UAS imagery for soil mapping at the agricultural plot scale

    NASA Astrophysics Data System (ADS)

    Gilliot, Jean-Marc; Michelin, Joël; Becu, Maxime; Cissé, Moustapha; Hadjar, Dalila; Vaudour, Emmanuelle

    2017-04-01

    Soil mapping is expensive and time consuming. Airborne and satellite remote sensing data have already been used to predict some soil properties but now Unmanned Aerial Systems (UAS) allow to do many images acquisitions in various field conditions in favour of developing methods for better prediction models construction. This study propose an operational method for spatial prediction of soil properties (organic carbon, clay) at the scale of the agricultural plot by using UAS imagery. An agricultural plot of 28 ha, located in the western region of Paris France, was studied from March to May 2016. An area of 3.6 ha was delimited within the plot and a total of 16 flights were completed. The UAS platforms used were the eBee fixed wing provided by Sensefly® flying at an altitude from 60m to 130m and the iris+ 3DR® Quadcopter (from 30m to 100m). Two multispectral visible near-infrared cameras were used: the AirInov® MultiSPEC 4C® and the Micasense® RedEdge®. 42 ground control points (GCP) were sampled within the 3.6 ha plot. A centimetric Trimble Geo 7x DGPS was used to determine precise GCP positions. On each GCP the soil horizons were described and the top soil were sampled for standard physico-chemical analysis. Ground spectral measurements with a Spectral Evolution® SR-3500 spectroradiometer were made synchronously with the drone flights. 22 additional GCP were placed around the 3.6 ha area in order to realize a precise georeferencing. The multispectral mosaics were calculated using the Agisoft Photoscan® software and all mapping processings were done with the ESRI ArcGIS® 10.3 software. The soil properties were estimated by partial least squares regression (PLSR) between the laboratory analyses and the multispectral information of the UAS images, with the PLS package of the R software. The objective was to establish a model that would achieve an acceptable prediction quality using minimum number of points. For this, we tested 5 models with a decreasing

  6. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.

    PubMed

    Baah-Acheamfour, Mark; Carlyle, Cameron N; Lim, Sang-Sun; Bork, Edward W; Chang, Scott X

    2016-11-15

    Western Canada's prairie region is extensively cultivated for agricultural production, which is a large source of greenhouse gas emissions. Agroforestry systems are common land uses across Canada, which integrate trees into the agricultural landscape and could play a substantial role in sequestering carbon and mitigating increases in atmospheric GHG concentrations. We measured soil CO2, CH4 and N2O fluxes and the global warming potential of microbe-mediated net greenhouse gas emissions (GWPm) in forest and herbland (areas without trees) soils of three agroforestry systems (hedgerow, shelterbelt and silvopasture) over two growing seasons (May through September in 2013 and 2014). We measured greenhouse gas fluxes and environmental conditions at 36 agroforestry sites (12 sites for each system) located along a south-north oriented soil/climate gradient of increasing moisture availability in central Alberta, Canada. The temperature sensitivity of soil CO2 emissions was greater in herbland (4.4) than in forest (3.1), but was not different among agroforestry systems. Over the two seasons, forest soils had 3.4% greater CO2 emission, 36% higher CH4 uptake, and 66% lower N2O emission than adjacent herbland soils. Combining the CO2 equivalents of soil CH4 and N2O fluxes with the CO2 emitted via heterotrophic (microbial) respiration, forest soils had a smaller GWPm than herbland soils (68 and 89kgCO2ha(-1), respectively). While emissions of total CO2 were silvopasture>hedgerow>shelterbelt, soils under silvopasture had 5% lower heterotrophic respiration, 15% greater CH4 uptake, and 44% lower N2O emission as compared with the other two agroforestry systems. Overall, the GWPm of greenhouse gas emissions was greater in hedgerow (88) and shelterbelt (85) than in the silvopasture system (76kgCO2ha(-1)). High GWPm in the hedgerow and shelterbelt systems reflects the greater contribution from the monoculture annual crops within these systems. Opportunities exist for reducing soil

  7. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater.

    PubMed

    Grossberger, Amnon; Hadar, Yitzhak; Borch, Thomas; Chefetz, Benny

    2014-02-01

    Pharmaceutical compounds (PCs) are introduced into agricultural soils via irrigation with treated wastewater (TWW). Our data show that carbamazepine, lamotrigine, caffeine, metoprolol, sulfamethoxazole and sildenafil are persistent in soils when introduced via TWW. However, other PCs, namely diclofenac, ibuprofen, bezafibrate, gemfibrozil and naproxen were not detected in soils when introduced via TWW. This is likely due to rapid degradation as confirmed in our microcosm studies where they exhibited half-lives (t1/2) between 0.2-9.5 days when soils were spiked at 50 ng/g soil and between 3 and 68 days when soils were spiked at 5000 ng/g soil. The degradation rate and extent of PCs observed in microcosm studies were similar in soils that had been previously irrigated with TWW or fresh water. This suggests that pre-exposure of the soils to PCs via irrigation with TWW does not enhance their biodegradation. This suggests that PCs are probably degraded in soils via co-metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. "Green technology": Bio-stimulation by an electric field for textile reactive dye contaminated agricultural soil.

    PubMed

    Annamalai, Sivasankar; Santhanam, Manikandan; Selvaraj, Subbulakshmi; Sundaram, Maruthamuthu; Pandian, Kannan; Pazos, Marta

    2018-05-15

    The aim of the study is to degrade pollutants as well as to increase the fertility of agricultural soil by starch enhancing electrokinetic (EKA) and electro-bio-stimulation (EBS) processes. Starch solution was used as an anolyte and voltage gradient was about 0.5V/cm. The influence of bacterial mediated process was evaluated in real contaminated farming soil followed by pilot scale experiment. The in-situ formation of β-cyclodextrin from starch in the treatments had also influence on the significant removal of the pollutants from the farming soil. The conductivity of the soil was effectively reduced from 15.5dS/m to 1.5dS/m which corroborates well with the agricultural norms. The bio-stimulation was confirmed by the increase of the phosphorus content in the treated soil. Finally, phytotoxicity assays demonstrated the viability of the developed technique for soil remediation because plant germination percentage was higher in the treated soil in comparison to untreated soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas.

    PubMed

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no-tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems may

  10. Structure, Composition and Metagenomic Profile of Soil Microbiomes Associated to Agricultural Land Use and Tillage Systems in Argentine Pampas

    PubMed Central

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P.

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no- tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems

  11. Assessment of heavy metals in agricultural soils and their source apportionment: a Turkish district survey.

    PubMed

    Dartan, Güler; Taşpınar, Fatih; Toröz, İsmail

    2015-03-01

    This study aimed at investigating the impact of industrialization on the quality of agricultural soils in the district of Bandırma, Turkey, in terms of soil heavy metal contamination. Many soil and phosphogypsum samples were analyzed, and enrichment factors (EFs) were calculated. The average concentration gradient of metals in the soil (mg/kg) was As < Se < Sb < Pb < Co < Cd < V < Cu < Ni < Zn < Cr < P < Mn < Na < K < Mg < Fe < Ca < Al. According to the Pearson cross-correlation results for the element pairs of Fe-Mg (0.635), Fe-Cu (0.863), Fe-Cd (0.545), Cu-Cd (0.630), Mn-Cr (0.698), Mn-Al (0.523), Cr-Mg (0.543), Al-P (0.508), Na-K (0.616), and C-Zn (0.703), the metal enrichments in the soil were found to be moderately high and significant. In the majority of soil samples, Ni, Cu, Co, Zn, Se, Pb, and Cr were moderately enriched whereas Sb and Cd were extremely highly enriched. A factor analysis (FA) was applied to the cross-correlations of the elements to identify their sources. Six significant factors were extracted with the help of FA, explaining 77.22 % of the total variance, and the elements loaded on these factors were interpreted. The evaluations of the factors showed that the study area has been exposed to heavy metal pollution from anthropogenic sources considering the high levels of Cr, Cd, Cu, P, V, Zn, Ni, Sb, and Pb in the soil and the higher EFs falling in the range of 2.54-372.87. Moreover, the soil concentrations of Mn, Mg, Co, Al, K, and Ca were also high, but they were of lithogenic in origin according to the FA.

  12. Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns.

    PubMed

    Cheraghi, Mehrdad; Lorestani, Bahareh; Merrikhpour, Hajar

    2012-01-01

    The use of phosphate fertilizers is essential in agriculture, because they supply farmland with nutrients for growing plants. However, heavy metals might be included as impurities in natural materials and minerals, so heavy metals can also be present in phosphate fertilizers or other chemical fertilizers. The aim of this work was to assess the heavy metal content and contamination status of agricultural soils in the Hamadan province of Iran used for the cultivation of different crops, including cucumber, potatoes, and sugar beet. Surface soil samples were collected and analyzed to determine the total concentration of specific elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), before the pollution index was calculated for each element. Soils used for the cultivation of the three types of crop were not contaminated with As, Cr, Cu, Pb, or Zn. However, the pollution indices for Cd were 1.1, 4.4, and 3.8 in cucumber, potato, and sugar beet fields, respectively, which indicated moderate, high, and high levels of contamination, respectively. Soils from potato and sugar beet fields were heavily contaminated with Cd, which may have resulted from long-term overuse of phosphate fertilizers.

  13. Effects of different agricultural systems on soil quality in Northern Limón province, Costa Rica.

    PubMed

    Cornwell, Emma

    2014-09-01

    Conversion of native rainforest ecosystems in Limón Province of Costa Rica to banana and pineapple monoculture has led to reductions in biodiversity and soil quality. Agroforestry management of cacao (Theobroma cacao) is an alternative system that may maintain the agricultural livelihood of the region while more closely mimicking native ecosystems. This study compared physical, biological and chemical soil quality indicators of a cacao plantation under organic agroforestry management with banana, pineapple, and pasture systems; a native forest nearby served as a control. For bulk density and earthworm analysis, 18 samples were collected between March and April 2012 from each ecosystem paired with 18 samples from the cacao. Cacao had a lower bulk density than banana and pineapple monocultures, but greater than the forest (p < 0.05). Cacao also hosted a greater number and mass of earthworms than banana and pineapple (p < 0.05), but similar to forest and pasture. For soil chemical characteristics, three composite samples were collected in March 2012 from each agroecosystem paired with three samples from the cacao plantation. Forest and pineapple ecosystems had the lowest pH, cation exchange capacity, and exchangeable nutrient cations, while cacao had the greatest (p < 0.05). Total nutrient levels of P and N were slightly greater in banana, pineapple and pasture than in cacao; probably related to addition of chemical fertilizer and manure from cattle grazing. Forest and cacao also had greater %C, than other ecosystems, which is directly related to soil organic matter content (p < 0.0001). Overall, cacao had more favorable physical, biological and chemical soil characteristics than banana and pineapple monocultures, while trends were less conclusive compared to the pastureland. While organic cacao was inferior to native forest in some soil characteristics such as bulk density and organic carbon, its soil quality did best mimic that of the native forest. This supports

  14. Short-term soil loss by eolian erosion in response to different rain-fed agricultural practices

    NASA Astrophysics Data System (ADS)

    Tanner, Smadar; Katra, Itzhak; Zaady, Eli

    2016-04-01

    Eolian (wind) erosion is a widespread process and a major form of soil degradation in arid and semi-arid regions. The present study examined changes in soil properties and eolian soil loss at a field scale in response to different soil treatments in two rain-fed agricultural practices. Field experiments with a boundary-layer wind tunnel and soil analysis were used to obtain the data. Two practices with different soil treatments (after harvest), mechanical tillage and stubble grazing intensities, were applied in the fallow phase of the rotation (dry season). The mechanical tillage and the stubble grazing had an immediate and direct effects on soil aggregation but not on the soil texture, and the contents of soil water, organic matter, and CaCO3. Higher erosion rates, that was measured as fluxes of total eolian sediment and particulate matter <10 μm (PM10), were recorded under mechanical tillage and grazing intensities compared with the undisturbed topsoil of the control plots. The erosion rates were higher in grazing plots than in tillage plots. The calculated soil fluxes in this study indicate potentially rapid soil degradation due to loss of fine particles by wind. The finding may have implications for long-term management of agricultural soils in semi-arid areas.

  15. Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil.

    PubMed

    Hernández, Marcela; Jia, Zhongjun; Conrad, Ralf; Seeger, Michael

    2011-12-01

    s-Triazine herbicides are widely used for weed control, and are persistent in soils. Nitrification is an essential process in the global nitrogen cycle in soil, and involves ammonia-oxidizing Bacteria (AOB) and ammonia-oxidizing Archaea (AOA). In this study, we evaluated the effect of the s-triazine herbicide simazine on the nitrification and on the structure of ammonia-oxidizing microbial communities in a fertilized agricultural soil. The effect of simazine on AOB and AOA were studied by PCR-amplification of amoA genes of nitrifying Bacteria and Archaea in soil microcosms and denaturing gradient gel electrophoresis (DGGE) analyses. Simazine [50 μg g(-1) dry weight soil (d.w.s)] completely inhibited the nitrification processes in the fertilized agricultural soil. The inhibition by simazine of ammonia oxidation observed was similar to the reduction of ammonia oxidation by the nitrification inhibitor acetylene. The application of simazine-affected AOB community DGGE patterns in the agricultural soil amended with ammonium, whereas no significant changes in the AOA community were observed. The DGGE analyses strongly suggest that simazine inhibited Nitrosobacteria and specifically Nitrosospira species. In conclusion, our results suggest that the s-triazine herbicide not only inhibits the target susceptible plants but also inhibits the ammonia oxidation and the AOB in fertilized soils. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. REPRESENTATIVE SAMPLING AND ANALYSIS OF HETEROGENEOUS SOILS

    EPA Science Inventory

    Standard sampling and analysis methods for hazardous substances in contaminated soils currently are available and routinely employed. Standard methods inherently assume a homogeneous soil matrix and contaminant distribution; therefore only small sample quantities typically are p...

  17. Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells

    PubMed Central

    Vida, Carmen; Bonilla, Nuria; de Vicente, Antonio; Cazorla, Francisco M.

    2016-01-01

    This study focused on the microbial profile present in an agricultural soil that becomes suppressive after the application of composted almond shells (AS) as organic amendments. For this purpose, we analyzed the functions and composition of the complex communities present in an experimental orchard of 40-year-old avocado trees, many of them historically amended with composted almond shells. The role of microbes in the suppression of Rosellinia necatrix, the causative agent of avocado white root rot, was determined after heat-treatment and complementation experiments with different types of soil. Bacterial and fungal profiles obtained from natural soil samples based on the 16S rRNA gene and ITS sequencing revealed slight differences among the amended (AS) and unamended (CT) soils. When the soil was under the influence of composted almond shells as organic amendments, an increase in Proteobacteria and Ascomycota groups was observed, as well as a reduction in Acidobacteria and Mortierellales. Complementary to these findings, functional analysis by GeoChip 4.6 confirmed these subtle differences, mainly present in the relative abundance of genes involved in the carbon cycle. Interestingly, a group of specific probes included in the “soil benefit” category was present only in AS-amended soils, corresponding to specific microorganisms previously described as potential biocontrol agents, such as Pseudomonas spp., Burkholderia spp., or Actinobacteria. Considering the results of both analyses, we determined that AS-amendments to the soil led to an increase in some orders of Gammaproteobacteria, Betaproteobacteria, and Dothideomycetes, as well as a reduction in the abundance of Xylariales fungi (where R. necatrix is allocated). The combination of microbial action and substrate properties of suppressiveness are discussed. PMID:26834725

  18. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil.

    PubMed

    Zhang, Fengli; Zhao, Xiaoxue; Li, Qingbo; Liu, Jia; Ding, Jizhe; Wu, Huiying; Zhao, Zongsheng; Ba, Yue; Cheng, Xuemin; Cui, Liuxin; Li, Hongping; Zhu, Jingyuan

    2018-04-01

    Soil contamination with heavy metals is a worldwide problem especially in China. The interrelation of soil bacterial community structure, antibiotic resistance genes, and heavy metal contamination in soil is still unclear. Here, seven agricultural areas (G1-G7) with heavy metal contamination were sampled with different distances (741 to 2556 m) to the factory. Denaturing gradient gel electrophoresis (DGGE) and Shannon index were used to analyze bacterial community diversity. Real-time fluorescence quantitative PCR was used to detect the relative abundance of ARGs sul1, sul2, tetA, tetM, tetW, one mobile genetic elements (MGE) inti1. Results showed that all samples were polluted by Cadmium (Cd), and some of them were polluted by lead (Pb), mercury (Hg), arsenic (As), copper (Cu), and zinc (Zn). DGGE showed that the most abundant bacterial species were found in G7 with the lightest heavy metal contamination. The results of the principal component analysis and clustering analysis both showed that G7 could not be classified with other samples. The relative abundance of sul1 was correlated with Cu, Zn concentration. Gene sul2 are positively related with total phosphorus, and tetM was associated with organic matter. Total gene abundances and relative abundance of inti1 both correlated with organic matter. Redundancy analysis showed that Zn and sul2 were significantly related with bacterial community structure. Together, our results indicate a complex linkage between soil heavy metal concentration, bacterial community composition, and some global disseminated ARG abundance.

  19. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    USDA-ARS?s Scientific Manuscript database

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  20. Infiltration Variability in Agricultural Soil Aggregates Caused by Air Slaking

    NASA Astrophysics Data System (ADS)

    Korenkova, L.; Urik, M.

    2018-04-01

    This article reports on variation in infiltration rates of soil aggregates as a result of phenomenon known as air slaking. Air slaking is caused by the compression and subsequent escape of air captured inside soil aggregates during water saturation. Although it has been generally assumed that it occurs mostly when dry aggregates are rapidly wetted, the measurements used for this paper have proved that it takes place even if the wetting is gradual, not just immediate. It is a phenomenon that contributes to an infiltration variability of soils. In measuring the course of water flow through the soil, several small aggregates of five agricultural soils were exposed to distilled water at zero tension in order to characterize their hydraulic properties. Infiltration curves obtained for these aggregates demonstrate the effect of entrapped air on the increase and decrease of infiltration rates. The measurements were performed under various moisture conditions of the A-horizon aggregates using a simple device.

  1. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  2. Performance evaluation soil samples utilizing encapsulation technology

    DOEpatents

    Dahlgran, J.R.

    1999-08-17

    Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

  3. Performance evaluation soil samples utilizing encapsulation technology

    DOEpatents

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  4. Utilizing of magnetic parameters for evaluation of soil erosion rates on two different agricultural sites

    NASA Astrophysics Data System (ADS)

    Kapicka, A.; Grison, H.; Petrovsky, E.; Jaksik, O.; Kodesova, R.

    2015-12-01

    Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points at Brumovice and 65 at Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in topsoil horizons. The lowest magnetic susceptibility was obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Soil profiles unaffected by erosion were investigated in detail. The vertical distribution of magnetic susceptibility along these "virgin" profiles was measured in laboratory on samples collected with 2-cm spacing. The differences between the distribution of susceptibility in the undisturbed soil profiles and the magnetic signal after uniform mixing of the soil material as a result of erosion and tillage are fundamental for the estimation of soil loss in the studied test fields. Maximum cumulative soil erosion depth in Brumovice and Vidim is around 100 cm and 50 cm respectively. The magnetic method is suitable for mapping at the chernozem localities and measurement of soil magnetic susceptibility is in this case useful and fast technique for quantitative estimation of soil loss caused by erosion. However, it is less suitable (due to lower magnetic differentiation with depth) in areas with luvisol as dominant soil unit. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.

  5. Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh

    NASA Astrophysics Data System (ADS)

    Payo, Andrés.; Lázár, Attila N.; Clarke, Derek; Nicholls, Robert J.; Bricheno, Lucy; Mashfiqus, Salehin; Haque, Anisul

    2017-05-01

    Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (˜20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh.

  6. Soil Sampling Operating Procedure

    EPA Pesticide Factsheets

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil samples for field screening or laboratory analysis.

  7. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations.

    PubMed

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2017-07-01

    Olive mill waste water (OMWW) is an acidic (pH 4-5), saline (EC ∼ 5-10 mS cm -1 ), blackish-red aqueous byproduct of the three phase olive oil production process, with a high chemical oxygen demand (COD) of up to 220,000 mg L -1 . OMWW is conventionally disposed of by uncontrolled dumping into the environment or by semi-controlled spreading on agricultural soils. It was hypothesized that spreading such liquids on agricultural soils could result in the release and mobilization of indigenous soil metals. The effect of OMWW spreading on leaching of metal cations (Na, K, Mg, Mn, Fe, Cu, Zn) was tested in four non-contaminated agricultural soils having different textures (sand, clay loam, clay, and loam) and chemical properties. While the OMWW contributed metals to the soil solution, it also mobilized indigenous soil metals as a function of soil clay content, cation exchange capacity (CEC), and soil pH-buffer capacity. Leaching of soil-originated metals from the sandy soil was substantially greater than from the loam and clay soils, while the clay loam was enriched with metals derived from the OMWW. These trends were attributed to cation exchange and organic-metal complex formation. The organic matter fraction of OMWW forms complexes with metal cations; these complexes may be mobile or precipitate, depending on the soil chemical and physical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. SOIL AND SEDIMENT SAMPLING METHODS | Science ...

    EPA Pesticide Factsheets

    The EPA Office of Solid Waste and Emergency Response's (OSWER) Office of Superfund Remediation and Technology Innovation (OSRTI) needs innovative methods and techniques to solve new and difficult sampling and analytical problems found at the numerous Superfund sites throughout the United States. Inadequate site characterization and a lack of knowledge of surface and subsurface contaminant distributions hinders EPA's ability to make the best decisions on remediation options and to conduct the most effective cleanup efforts. To assist OSWER, NERL conducts research to improve their capability to more accurately, precisely, and efficiently characterize Superfund, RCRA, LUST, oil spills, and brownfield sites and to improve their risk-based decision making capabilities, research is being conducted on improving soil and sediment sampling techniques and improving the sampling and handling of volatile organic compound (VOC) contaminated soils, among the many research programs and tasks being performed at ESD-LV.Under this task, improved sampling approaches and devices will be developed for characterizing the concentration of VOCs in soils. Current approaches and devices used today can lose up to 99% of the VOCs present in the sample due inherent weaknesses in the device and improper/inadequate collection techniques. This error generally causes decision makers to markedly underestimate the soil VOC concentrations and, therefore, to greatly underestimate the ecological

  9. The impact of land use on biological activity of agriculture soils. An State-of-the-Art

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; Cerdà, Artemi; García-Orenes, Fuensanta

    2014-05-01

    Biological activity is a crucial soil property affecting soil sustainability and crop production. The unsuitable land management can lead to a loss in soil fertility and a reduction in the abundance and diversity of soil microorganisms. This can be as a consequence of high erosion rates due to the mismanagement of farmers (Cerdà et al., 2009a). However ecological practices and some organic amendments can promote the activities of soil microbial communities, and increase its biodiversity (García-Orenes et al., 2010; 2013). The impact of land use in microbiological properties of agriculture soil are presented and discussed in this review. Biological activity is quantified by microbial soil communities and soil enzyme activities to interpret the effects of soil management practices (Morugán-Coronado et al., 2013). The aim of biological activity tests is to give a reliable description of the state of agricultural soils under the effect of different land uses. Numerous methods have been used to determine the impact of land uses on microbiological properties. The current used methods for detecting microbial diversity are based on molecular techniques centered on the 16S and 18S rRNA encoding sequences such as CLPP: community-level physiological profiles; T-RFLP: terminal restriction fragment length polymorphism; DGGE: denaturing gradient gel electrophoresis; OFRG: oligonucleotide fingerprinting of rRNA genes, ARISA: Automated Ribosomal intergenic spacer analysis, SSCP: single-strand conformation polymorphism. And techniques based on the cellular composition of the microbes such as PLFA: phospholipid fatty acid analysis. Other methods are based on the activity of microbes, for example, Cmic: microbial biomass carbon; SIR: substrate induced respiration; BSR: Basal soil respiration; qCO2 metabolic quotient; enzymatic activities (Urease, ß-glucosidase and phosphatase) (Deng, 2012). Agricultural land management can contribute to increased rates of erosion due to

  10. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil

    PubMed Central

    Banning, Natasha C.; Maccarone, Linda D.; Fisk, Louise M.; Murphy, Daniel V.

    2015-01-01

    Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0–10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10–90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils. PMID:26053257

  11. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil.

    PubMed

    Banning, Natasha C; Maccarone, Linda D; Fisk, Louise M; Murphy, Daniel V

    2015-06-08

    Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0-10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10-90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils.

  12. Soil health: an emergent set of soil properties that result from synergy among agricultural management practices

    USDA-ARS?s Scientific Manuscript database

    The responses of a selected soil microbial property to a single agricultural management practice are often inconsistent among field studies, possibly reflecting the site-specific nature of field studies. An equally compelling explanation is that in complex systems where outcomes are the result of n...

  13. Rhamnolipid surface thermodynamic properties and transport in agricultural soil.

    PubMed

    Renfro, Tyler Dillard; Xie, Weijie; Yang, Guang; Chen, Gang

    2014-03-01

    Rhamnolipid is a biosurfactant produced by several Pseudomonas species, which can wet hydrophobic soils by lowering the cohesive and/or adhesive surface tension. Because of its biodegradability, rhamnolipid applications bring minimal adverse impact on the soil and groundwater as compared with that of chemical wetting agents. Subsequently, rhamnolipid applications have more advantages when used to improve irrigation in the agricultural soil, especially under draught conditions. In the presence of rhamnolipid, water surface tension dropped linearly with the increase of rhamnolipid concentration until the rhamnolipid critical micelle concentration (CMC) of 30 mg/L was reached. Below the CMC, rhamnolipid had linear adsorption isotherms on the soil with a partition coefficient of 0.126 L/kg. Rhamnolipid transport breakthrough curves had a broad and diffuse infiltration front, indicating retention of rhamnolipid on the soil increased with time. Rhamnolipid transport was found to be well represented by the advection-dispersion equation based on a local equilibrium assumption. When applied at concentrations above the CMC, the formed rhamnolipid micelles prevented rhamnolipid adsorption (both equilibrium adsorption and kinetic adsorption) in the soil. It was discovered in this research that rhamnolipid surface thermodynamic properties played the key role in controlling rhamnolipid transport. The attractive forces between rhamnolipid molecules contributed to micelle formation and facilitated rhamnolipid transport. Published by Elsevier B.V.

  14. Quantitative evaluation of the CEEM soil sampling intercomparison.

    PubMed

    Wagner, G; Lischer, P; Theocharopoulos, S; Muntau, H; Desaules, A; Quevauviller, P

    2001-01-08

    The aim of the CEEM soil project was to compare and to test the soil sampling and sample preparation guidelines used in the member states of the European Union and Switzerland for investigations of background and large-scale contamination of soils, soil monitoring and environmental risk assessments. The results of the comparative evaluation of the sampling guidelines demonstrated that, in soil contamination studies carried out with different sampling strategies and methods, comparable results can hardly be expected. Therefore, a reference database (RDB) was established by the organisers, which acted as a basis for the quantitative comparison of the participants' results. The detected deviations were related to the methodological details of the individual strategies. The comparative evaluation concept consisted of three steps: The first step was a comparison of the participants' samples (which were both centrally and individually analysed) between each other, as well as with the reference data base (RDB) and some given soil quality standards on the level of concentrations present. The comparison was made using the example of the metals cadmium, copper, lead and zinc. As a second step, the absolute and relative deviations between the reference database and the participants' results (both centrally analysed under repeatability conditions) were calculated. The comparability of the samples with the RDB was categorised on four levels. Methods of exploratory statistical analysis were applied to estimate the differential method bias among the participants. The levels of error caused by sampling and sample preparation were compared with those caused by the analytical procedures. As a third step, the methodological profiles of the participants were compiled to concisely describe the different procedures used. They were related to the results to find out the main factors leading to their incomparability. The outcome of this evaluation process was a list of strategies and

  15. Soil physical property estimation from soil strength and apparent electrical conductivity sensor data

    USDA-ARS?s Scientific Manuscript database

    Quantification of soil physical properties through soil sampling and laboratory analyses is time-, cost-, and labor-consuming, making it difficult to obtain the spatially-dense data required for precision agriculture. Proximal soil sensing is an attractive alternative, but many currently available s...

  16. The use of biogas plant fermentation residue for the stabilisation of toxic metals in agricultural soils

    NASA Astrophysics Data System (ADS)

    Geršl, Milan; Šotnar, Martin; Mareček, Jan; Vítěz, Tomáš; Koutný, Tomáš; Kleinová, Jana

    2015-04-01

    Our department has been paying attention to different methods of soil decontamination, including the in situ stabilisation. Possible reagents to control the toxic metals mobility in soils include a fermentation residue (FR) from a biogas plant. Referred to as digestate, it is a product of anaerobic decomposition taking place in such facilities. The fermentation residue is applied to soils as a fertiliser. A new way of its use is the in situ stabilisation of toxic metals in soils. Testing the stabilisation of toxic metals made use of real soil samples sourced from five agriculturally used areas of the Czech Republic with 3 soil samples taken from sites contaminated with Cu, Pb and Zn and 2 samples collected at sites of natural occurrence of Cu, Pb and Zn ores. All the samples were analysed using the sequential extraction procedure (BCR) (determine the type of Cu, Pb and Zn bonds). Stabilisation of toxic metals was tested in five soil samples by adding reagents as follows: dolomite, slaked lime, goethite, compost and fermentation residue. A single reagent was added at three different concentrations. In the wet state with the added reagents, the samples were left for seven days, shaken twice per day. After seven days, metal extraction was carried out: samples of 10 g soil were shaken for 2 h in a solution of 0.1M NH4NO3 at a 1:2.5 (g.ml-1), centrifuged for 15 min at 5,000 rpm and then filtered through PTFE 0.45 μm mesh filters. The extracts were analysed by ICP-OES. Copper The best reduction of Cu concentration in the extract was obtained at each of the tested sites by adding dolomite (10 g soil + 0.3 g dolomite). The concentration of Cu in the leachate decreased to 2.1-18.4% compare with the leachate without addition. Similar results were also shown for the addition of fermentation residue (10 g soil + 1 g FR). The Cu concentration in the leachate decreased to 16.7-26.8% compared with the leachate without addition. Lead The best results were achieved by adding

  17. Agricultural practices that store organic carbon in soils: is it only a matter of inputs ?

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Cardinael, Rémi; Autret, Bénédicte; Chevallier, Tiphaine; Girardin, Cyril; Mary, Bruno

    2016-04-01

    Increasing the world soils carbon stocks by a factor of 4 per mil annually would compensate the annual net increase of CO2 concentration in the atmosphere. This statement is the core of an initiative launched by the French government at the recent COP21, followed by many countries and international bodies, which attracts political attention to the storage potential of C in soils. Compared to forest and pasture soils, agricultural soils have a higher C storage potential, because they are often characterized by low C contents, and increasing their C content is associated with benefits in terms of soil properties and ecosystem services. Here we quantified, under temperate conditions, the additional C storage related to the implementation of two set of practices that are recognized to be in the framework of agroecology: conservation tillage on the one hand and agroforestry on the other hand. These studies were based on long-term experiments, a 16-years comparison on cropping systems on luvisols in the Paris area and a 18-year-old silvoarable agroforestry trial, on fluvisols in southern France, the main crops being cereals in both cases. C stocks were measured on an equivalent soil mass basis. Both systems allowed for a net storage of C in soils, which are, for the equivalent of the 0-30 cm tilled layer, of 0.55 ± 0.16 t ha- 1 yr- 1 for conservation agriculture (i.e. no tillage with permanent soil coverage with an associated plant, fescue or alfalfa) and of 0.25 ± 0.03 t ha-1 yr-1 for the agroforestry system. These results are in line with estimates proposed in a recent French national assessment concerning the potential of agricultural practices to reduce greenhouse gas emissions. Compared to recent literature, they further show that practices that increase C inputs to soil through additional biomass production would be more effective to store C in soil (tree rows, cover crops in conservation agriculture) than practices, such as no-tillage, that are assumed to reduce

  18. Patterns of water infiltration and soil degradation over a 120-yr chronosequence from forest to agriculture in western Kenya

    NASA Astrophysics Data System (ADS)

    Nyberg, G.; Bargués Tobella, A.; Kinyangi, J.; Ilstedt, U.

    2011-07-01

    Soil degradation is commonly reported in the tropics where forest is converted to agriculture. Much of the native forest in the highlands of western Kenya has been converted to agricultural land in order to feed the growing population, and more land is being cleared. In tropical Africa, this land use change results in progressive soil degradation, as the period of cultivation increases. Sites that were converted to agriculture at different times can be evaluated as a chronosequence; this can aid in our understanding of the processes at work, particularly those in the soil. Both levels and variation of infiltration, soil carbon and other parameters are influenced by management within agricultural systems, but they have rarely been well documented in East Africa. We constructed a chronosequence for an area of western Kenya, using two native forest sites and six fields that had been converted to agriculture for varying lengths of time. We assessed changes in infiltrability (the steady-state infiltration rate), soil C and N, bulk density, δ13C, and the proportion of macro- and microaggregates in soil along a 119 yr chronosequence of conversion from natural forest to agriculture. Infiltration, soil C and N, decreased rapidly after conversion, while bulk density increased. Median infiltration rates fell to about 15 % of the initial values in the forest and C and N values dropped to around 60 %, whilst the bulk density increased by 50 %. Despite high spatial variability in infiltrability, these parameters correlated well with time since conversion and with each other. Our results indicate that landscape planners should include wooded elements in the landscape in sufficient quantity to ensure water infiltration at rates that prevent runoff and erosion. This should be the case for restoring degraded landscapes, as well as for the development of new agricultural areas.

  19. Mechanisms governing the leaching of soil metals as a result of disposal of olive mill wastewater on agricultural soils.

    PubMed

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2018-07-15

    Olive mill wastewater (OMWW) is an acidic, saline, and organic matter-rich aqueous byproduct of olive oil production that is usually disposed of by spreading on agricultural soils. This study tested whether spreading OMWW can release indigenous soil metals (Fe, Mn, Cu and Zn) through pH, redox, and DOM complexation-related mechanisms, using three agricultural soils having different textures and chemical properties, and controlled pH and redox conditions (pH5.6 or 8.4; ORP from -200 to +250mV). Comparison treatments included a solution having the same salt content and composition as OMWW but lacking OM, and deionized water (DW). In all three soils and under all pH and redox conditions, the model salt solution and DW treatments solubilized considerably fewer metal cations than did OMWW. Overall, the primary factor in metals release from the soils by OMWW was the DOM fraction. pH, redox and soil type played secondary but important roles in solubilization of the various metals. pH had a major impact on Mn leaching but no impact on Fe and Cu leaching. Conversely, redox did not affect Mn leaching, but lower redox conditions contributed to elevated release of both Fe and Cu. For the most part, released metals were sourced from water soluble, exchangeable, easily reducible, and moderately reducible soil metals pools. Fe, Mn and Cu released from the soils by OMWW featured mainly as metal-organic complexes, and OMWW generally caused Zn precipitation in the soils. Soils rich in clay and organic matter under reduced pH and low redox conditions released substantially more metal cations than did a sand-rich soil. Spreading OMWW may result in sequestration of essential micronutrients like Zn, and increased availability of other micronutrients such as Fe, Mn and Cu. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Dissolved organic C and N pools in soils amended with composted and thermally-dried sludge as affected by soil tillage systems and sampling depth

    NASA Astrophysics Data System (ADS)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro Angel; García López de Sa, Esther; Polo, Alfredo

    2013-04-01

    Soil tillage practices exert a significant influence on the dynamic of soluble organic C and N pools, affecting nutrient cycling in agricultural systems by enhancing its mineralization through microbial activities or stabilization in soil microaggregates, which contribute to mitigate greenhouse gases emissions. The objective of the present research was to determine the influence of three different soil management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) obtained from wastewater treatment processes on dissolved organic C (water-soluble organic C -WSOC-, carbohydrates, phenolic compounds) and soluble N (total-N, NH4+, NO3-) pools in a long-term field experiment (27 years) conducted on a sandy-loam soil at the experimental station "La Higueruela" (40° 03'N, 4° 24'W) under semi-arid conditions. Both organic amendments were applied at a rate of 30 tonnes per hectare prior to tillage practices. Unamended soils were used as control for each tillage system. Soil sampling was performed two months after tillage practices at the following depths for each treatment: 0-10 cm, 10-20 cm and 20-30 cm. Results obtained for unamended soils showed that no-tillage management increased total-N, NH4+ and NO3- contents at the 0-10 cm depth samples, meanwhile WSC and carbohydrates contents were larger at 20-30 cm depth samples in both moldboard and no-tillage plots. CS and TSS-amended soils presented a general increase in soluble C and N compounds, being significantly higher in TSS-amended soils, as TSS contains a great amount of labile organic C and N substrates due to the lack of stabilization treatment. TSS-amended soils under no-tillage and chisel plowing showed larger N, NH4+ and NO3- content at the 0-10 cm samples, meanwhile moldboard management exhibited larger NH4+ and NO3- content at 10-20 and 20-30 cm samples, possibly due to the incorporation of TSS at deeper depths (20-40 cm). CS

  1. Adsorption studies of the herbicide simazine in agricultural soils of the Aconcagua valley, central Chile.

    PubMed

    Flores, Cecilia; Morgante, Verónica; González, Myriam; Navia, Rodrigo; Seeger, Michael

    2009-03-01

    Simazine is a s-triazine herbicide that has been applied worldwide for agriculture. This herbicide is the second most commonly detected pesticide in surface and groundwater in the United States, Europe and Australia. In this study, simazine adsorption behaviour was studied in two agricultural soils of the Aconcagua valley, central Chile. The two studied soils were soil A (loam, 8.5% organic matter content) and soil B (clay-loam, 3.5% organic matter content). Three times higher simazine adsorption capacity was observed in soil A (68.03 mg kg(-1)) compared to soil B (22.03 mg kg(-1)). The simazine adsorption distribution coefficients (K(d)) were 9.32 L kg(-1) for soil A and 7.74 L kg(-1) for soil B. The simazine adsorption enthalpy in soil A was -21.0 kJ mol(-1) while in soil B the adsorption enthalpy value was -11.5 kJ mol(-1). These results indicate that simazine adsorption process in these soils is exothermic, governing H bonds the adsorption process of simazine in both the loam and clay-loam soils. These results and the potentiometric profiles of both soils, suggest that simazine adsorption in soil A is mainly governed by simazine-organic matter interactions and in soil B by simazine-clay interactions. The understanding of simazine sorption-desorption processes is essential to determine the pesticide fate and availability in soil for pest control, biodegradation, runoff and leaching.

  2. Effect of long-term farming strategies on soil microbiota and soil health

    NASA Astrophysics Data System (ADS)

    Sommermann, Loreen; Babin, Doreen; Sandmann, Martin; Smalla, Kornelia; Schellenberg, Ingo; Grosch, Rita; Geistlinger, Joerg

    2017-04-01

    Increasing food and energy demands have resulted in considerable intensification of farming practices, which brought about severe consequences for agricultural soils, e.g. loss of fertility, erosion and enrichment of soil-borne plant diseases. In order to maintain soil quality and health for the future, the development of more extensive and sustainable farming strategies is urgently needed. The soil microbiome is regarded as a key player in soil ecosystem functions, particularly the natural ability of soils to suppress plant pathogens (suppressiveness). Recent studies showed that soil microbial communities are influenced by agricultural management. To further analyze the effects of farming strategies on soil suppressiveness and plant performance, agricultural soils from three long-term field trials in Thyrow, Bernburg (both in Germany) and Therwil (Switzerland) were sampled and subjected to molecular profiling of soil bacteria and fungi using marker genes and high-throughput amplicon sequencing. Significant effects on bacterial as well as fungal community composition, including plant pathogenic and beneficial taxa, were observed among variants of tillage and crop rotation. The least effect on both communities had fertilization, with no significance between variants. Subsequently, the same soils were subjected to growth chamber pot experiments with lettuce as a model (Lactuca sativa). After a growth period of six weeks significant differences in lettuce shoot and soil microbial biomass were observed among soil samples of the different long-term trials. Furthermore, the lettuce rhizosphere exhibited diverse bacterial community compositions as observed by DGGE (denaturing gradient gel electrophoresis). Using group-specific PCR-DGGE fingerprints, bacterial responders to fertilization, soil management and crop rotation were identified among different taxonomic groups. Currently, bacterial and fungal amplicon sequencing of rhizosphere and bulk soil from these pot

  3. Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liming; Zhuang, Qianlai; He, Yujie

    Understanding the impacts of climate change and agricultural management practices on soil organic carbon (SOC) dynamics is critical for implementing optimal farming practices and maintaining agricultural productivity. This study examines the influence of climate and agricultural management on carbon sequestration potentials in Tai-Lake Paddy soils of China using the DeNitrification-DeComposition (DNDC) model, with a high-resolution soil database (1:50,000). Model simulations considered the effects of no tillage, increasing manure application, increasing/decreasing of N-fertilizer application and crop residues, water management, and climatic shifts in temperature and precipitation. We found that the carbon sequestration potential for the 2.32 Mha paddy soils of themore » Tai-Lake region varied from 4.71 to 44.31 Tg C during the period 2001-2019, with an annual average SOC changes ranged from 107 to 1005 kg C ha -1 yr -1. The sequestration potential significantly increased with increasing application of N-fertilizer, manure, conservation tillage, and crop residues. To increase soil C sequestration in this region, no-tillage and increasing of crop residue return to soils and manure application are recommended. Our analysis of climate impacts on SOC sequestration suggests that the rice paddies in this region will continue to be a carbon sink under future warming conditions. In addition, because the region’s annual precipitation (>1200 mm) is high, we also recommend reducing irrigation water use for these rice paddies to conserve freshwater in the Tai-Lake region.« less

  4. Burkholderia cordobensis sp. nov., from agricultural soils.

    PubMed

    Draghi, Walter O; Peeters, Charlotte; Cnockaert, Margo; Snauwaert, Cindy; Wall, Luis G; Zorreguieta, Angeles; Vandamme, Peter

    2014-06-01

    Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus Burkholderia, with Burkholderia zhejiangensis as most closely related formally named species; this relationship was confirmed through comparative gyrB sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus Burkholderia. Burkholderia sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100% similarity) and gyrB (99.1-99.7%) gene sequences. The results of DNA-DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name Burkholderia cordobensis sp. nov. is proposed, with strain MMP81(T) ( = LMG 27620(T) = CCUG 64368(T)) as the type strain. © 2014 IUMS.

  5. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities.

    PubMed

    La Scala, N; De Figueiredo, E B; Panosso, A R

    2012-08-01

    Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha(-1) year(-1). The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha(-1) year(-1)). The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies.

  6. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution

    NASA Astrophysics Data System (ADS)

    Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui

    2017-01-01

    Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26-8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18-20.68 mg kg-1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes.

  7. Evaluation of multi-walled carbon nanotubes as solid-phase extraction adsorbents of pesticides from agricultural, ornamental and forestal soils.

    PubMed

    Asensio-Ramos, M; Hernández-Borges, J; Borges-Miquel, T M; Rodríguez-Delgado, M A

    2009-08-11

    A new, simple and cost-effective method based on the use of multi-walled carbon nanotubes (MWCNTs) as solid-phase extraction stationary phases is proposed for the determination of a group of seven organophosphorus pesticides (i.e. ethoprophos, diazinon, chlorpyriphos-methyl, fenitrothion, malathion, chlorpyriphos and phosmet) and one thiadiazine (buprofezin) in different kinds of soil samples (forestal, ornamental and agricultural) using gas chromatography with nitrogen phosphorus detection. Soils were first ultrasound extracted with 10 mL 1:1 methanol/acetonitrile (v/v) and the evaporated extract redissolved in 20 mL water (pH 6.0) was passed through 100 mg of MWCNTs of 10-15 nm o.d., 2-6 nm i.d. and 0.1-10 microm length. Elution was carried out with 20 mL dichloromethane. The method was validated in terms of linearity, precision, recovery, accuracy and selectivity. Matrix-matched calibration was carried out for each type of soil since statistical differences between the calibration curves constructed in pure solvent and in the reconstituted soil extract were found for most of the pesticides under study. Recovery values of spiked samples ranged between 54 and 91% for the three types of soils (limits of detection (LODs) between 2.97 and 9.49 ngg(-1)), except for chlorpyrifos, chlorpyrifos-methyl and buprofezin which ranged between 12 and 54% (LODs between 3.14 and 72.4 ngg(-1)), which are the pesticides with the highest soil organic carbon sorption coefficient (K(OC)) values. Using a one-sample test (Student's t-test) with fortified samples at two concentration levels in each type of soil, no significant differences were observed between the real and the experimental values (accuracy percentages ranged between 87 and 117%). It is the first time that the adsorptive potential of MWCNTs for the extraction of organophosphorus pesticides from soils is investigated.

  8. Benchmarking a soil moisture data assimilation system for agricultural drought monitoring

    USDA-ARS?s Scientific Manuscript database

    Agricultural drought is defined as a shortage of moisture in the root zone of plants. Recently available satellite-based remote sensing data have accelerated development of drought early warning system by providing spatially continuous soil moisture information repeatedly at short-term interval. Non...

  9. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils.

    PubMed

    Xu, Jian; Wu, Laosheng; Chang, Andrew C

    2009-11-01

    Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in the environment, which have drawn popular concerns recently. Most studies on the environmental fate of PPCPs have focused on their behaviors during wastewater treatment processes, in aquatic environments, and in the sludge, however, little is known about their behavior in agricultural soils. In this study, adsorption and degradation of six selected PPCPs, including clofibric acid, ibuprofen, naproxen, triclosan, diclofenac and bisphenol A have been investigated in the laboratory using four US agricultural soils associated with reclaimed wastewater reuse. Adsorption test using a batch equilibrium method demonstrated that adsorption of all tested chemicals in soils could be well described with Freundlich equation, and their adsorption affinity on soil followed the order of triclosan>bisphenol A>clofibric acid>naproxen>diclofenac>ibuprofen. Retardation factor (R(F)) suggested that ibuprofen had potential to move downward with percolating water, while triclosan and bisphenol A were readily retarded in soils. Degradation of selected PPCPs in soils generally followed first-order exponential decay kinetics, with half-lives ranging from 0.81 to 20.44 d. Degradation of PPCPs in soils appeared to be influenced by the soil organic matter and clay contents. Sterilization generally decreased the degradation rates, indicating microbial activity played a significant role in the degradation in soils. The degradation rate constant decreased with increasing initial chemical concentrations in soil, implying that the microbial activity was inhibited with high chemical loading levels.

  10. Year-round shotgun metagenomes reveal stable microbial communities in agricultural soils and novel ammonia oxidizers responding to fertilization.

    PubMed

    Orellana, Luis H; Chee-Sanford, Joanne C; Sanford, Robert A; Löffler, Frank E; Konstantinidis, Konstantinos T

    2017-11-03

    The dynamics of individual microbial populations and their gene functions in agricultural soils, especially after major activities such as nitrogen (N) fertilization, remain elusive but are important for better understanding nutrient cycling. Here, we analyzed 20 short-read metagenomes collected at four time points across one year from two depths (0-5 and 20-30 cm) in two Midwestern agricultural sites representing contrasting soil textures (sandy versus silty-loam), with similar cropping histories. Although microbial community taxonomic and functional compositions differed between the two locations and depths, they were more stable within a depth/site throughout the year than communities in natural water-based ecosystems. For example, among the 69 population genomes assembled from the metagenomes, 75% showed less than 2-fold change in abundance between any two sampling points. Interestingly, six deep-branching Thaumarchaeota and three complete ammonia oxidizer (comammox) Nitrospira populations increased up to 5-fold in abundance upon the addition of N fertilizer. These results indicated that indigenous archaeal ammonia oxidizers may respond faster (more copiotrophic) to N fertilization than previously thought. None of 29 recovered putative denitrifier genomes encoded the complete denitrification pathway, suggesting that denitrification is carried out by a collection of different populations. Altogether, our study identified novel microbial populations and genes responding to seasonal and human-induced perturbations in agricultural soils that should facilitate future monitoring efforts and N-related studies. Importance Even though the impact of agricultural management on the microbial community structure has already been recognized, understanding of the dynamics of individual microbial populations and what functions each population encodes are limited. Yet, this information is important for better understanding nutrient cycling, with potentially important

  11. Effects of carbon-based nanoparticles (CNPs) on the fate of endocrine disrupting chemicals (EDCs) in different agricultural soils.

    NASA Astrophysics Data System (ADS)

    Stumpe, Britta; Wolski, Sabrina; Marschner, Bernd

    2013-04-01

    Nanotechnology is a major innovative scientific and economic growth area. To date there is a lack about possible adverse effects that may be associated with manufactured nanomaterial in terrestrial environments. Since it is known that on the one hand carbon-based nanoparticles (CNPs) and endocrine disrupting chemicals (EDCs) strongly interact in wastewater and that on the other hand CNPs and EDCs are released together via wastewater irrigation to agricultural soils, knowledge of CNP effects on the EDC fate in the soil environment is needed for further risk assessments. The overall goal of this project is to gain a better understanding of interaction of CNPs with EDCs within the soil system. Three different soil samples were applied with different CNPs, EDCs and CNP-EDC complexes and incubated over a period of 6 weeks. The EDC mineralization as well as their uptake by soil microorganisms was monitored to describe impacts of the nanomaterial on the EDC fate. As quality control for the biological soil activity soil respiration, enzyme activities and the soil microbial biomass were monitored in all incubated soil samples. Clearly, EDCs bound in CNP complexes showed a decrease in mineralization. While the free EDCs showed a total mineralization of 34 to 45 %, the nano complexed EDCs were only mineralized to 12 to 15 %. Since no effects of the nanomaterial on the biological soil activity were observed, we conclude that the reduced EDC mineralization is directly linked to their interaction with the CNPs. Since additionally the EDC adsorption to CNPs reduced the EDC uptake by soil microorganism, we assume that CNPs generally form more or less recalcitrant aggregates which likely protect the associated EDCs from degradation.

  12. Soil separator and sampler and method of sampling

    DOEpatents

    O'Brien, Barry H [Idaho Falls, ID; Ritter, Paul D [Idaho Falls, ID

    2010-02-16

    A soil sampler includes a fluidized bed for receiving a soil sample. The fluidized bed may be in communication with a vacuum for drawing air through the fluidized bed and suspending particulate matter of the soil sample in the air. In a method of sampling, the air may be drawn across a filter, separating the particulate matter. Optionally, a baffle or a cyclone may be included within the fluidized bed for disentrainment, or dedusting, so only the finest particulate matter, including asbestos, will be trapped on the filter. The filter may be removable, and may be tested to determine the content of asbestos and other hazardous particulate matter in the soil sample.

  13. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape

    PubMed Central

    Bowles, Timothy M.; Hollander, Allan D.; Steenwerth, Kerri; Jackson, Louise E.

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid. PMID:26121264

  14. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape.

    PubMed

    Bowles, Timothy M; Hollander, Allan D; Steenwerth, Kerri; Jackson, Louise E

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid.

  15. Agricultural Intensification Exacerbates Spillover Effects on Soil Biogeochemistry in Adjacent Forest Remnants

    PubMed Central

    Didham, Raphael K.; Barker, Gary M.; Bartlam, Scott; Deakin, Elizabeth L.; Denmead, Lisa H.; Fisk, Louise M.; Peters, Jennifer M. R.; Tylianakis, Jason M.; Wright, Hannah R.; Schipper, Louis A.

    2015-01-01

    Land-use intensification is a central element in proposed strategies to address global food security. One rationale for accepting the negative consequences of land-use intensification for farmland biodiversity is that it could ‘spare’ further expansion of agriculture into remaining natural habitats. However, in many regions of the world the only natural habitats that can be spared are fragments within landscapes dominated by agriculture. Therefore, land-sparing arguments hinge on land-use intensification having low spillover effects into adjacent protected areas, otherwise net conservation gains will diminish with increasing intensification. We test, for the first time, whether the degree of spillover from farmland into adjacent natural habitats scales in magnitude with increasing land-use intensity. We identified a continuous land-use intensity gradient across pastoral farming systems in New Zealand (based on 13 components of farmer input and soil biogeochemistry variables), and measured cumulative off-site spillover effects of fertilisers and livestock on soil biogeochemistry in 21 adjacent forest remnants. Ten of 11 measured soil properties differed significantly between remnants and intact-forest reference sites, for both fenced and unfenced remnants, at both edge and interior. For seven variables, the magnitude of effects scaled significantly with magnitude of surrounding land-use intensity, through complex interactions with fencing and edge effects. In particular, total C, total N, δ15N, total P and heavy-metal contaminants of phosphate fertilizers (Cd and U) increased significantly within remnants in response to increasing land-use intensity, and these effects were exacerbated in unfenced relative to fenced remnants. This suggests movement of livestock into surrounding natural habitats is a significant component of agricultural spillover, but pervasive changes in soil biogeochemistry still occur through nutrient spillover channels alone, even in fenced

  16. Heavy metals in soils of Hechuan County in the upper Yangtze (SW China): Comparative pollution assessment using multiple indices with high-spatial-resolution sampling.

    PubMed

    Ni, Maofei; Mao, Rong; Jia, Zhongmin; Dong, Ruozhu; Li, Siyue

    2018-02-01

    In order to assess heavy metals (HMs) in soils of the upper Yangtze Basin, a very high-spatial-resolution sampling (582 soil samples) was conducted from Hechuan County, an important agricultural practice area in the Southwest China. Multiple indices including geoaccumulation index (I geo ), enrichment factor (EF), sediment pollution index (SPI) and risk index (RI), as well as multivariate statistics were employed for pollution assessment and source identification of HMs in soils. Our results demonstrated that the averages of eight HMs decreased in the following order: Zn (82.8 ± 15.9) > Cr (71.6 ± 12.2) > Ni (32.1 ± 9.89) > Pb (27.6 ± 13.8) > Cu (25.9 ± 11.8) > As (5.48 ± 3.42) > Cd (0.30 ± 0.077) > Hg (0.082 ± 0.092). Averages of HMs except Cd were lower than threshold value of Environmental Quality Standard for Soils, while 43% of total samples had Cd concentration exceeding the national standard, 1% of samples for Hg and 5% samples for Ni, moreover, Cd and Hg averages were much higher than their background levels. I geo and EF indicated that their levels decreased as follows: Cd > Hg > Zn > Pb > Ni > Cu > Cr > As, with moderate enrichments of Cd and Hg. RI indicated that 61.7% of all samples showed moderate risk, while 6.5% of samples with greater than considerable risk due to human activities should be paid more attention. Multivariate analysis showed lithogenic source of Cu, Cr, Ni and Zn, while Cd and Hg were largely contributed by anthropogenic activities such as agricultural practices. Our study would be helpful for improving soil environmental quality in SW, China, as well as supplying modern approaches for other areas with soil HM pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  18. Mobility, bioavailability and speciation of potentially toxic metals in a sludges-polluted agricultural soil under remediation with poplar trees and native grasses

    NASA Astrophysics Data System (ADS)

    Adamo, Paola; Agrelli, Diana; Giandonato Caporale, Antonio; Fiorentino, Nunzio; Duri, Luigi; Fagnano, Massimo

    2017-04-01

    For the assessment of health and environmental risks deriving from the pollution of agricultural soils, it is critical the identification and the chemical characterization of the contaminants and of the polluted soil, because these characteristics influence the mobility and bioavailability of the contaminants and therefore their transfer from soil to other environmental compartments and to the food chain. In addition, these information are crucial to assess the effectiveness of remediation and management actions. Our study site is an agricultural area of 6 ha, currently under sequestration, located in the province of Naples (Campania Region), interested by past illegal dumping of industrial wastes, mainly tannery sludges. In the area, after an intense phase of soil characterization by geophysical and geochemical surveys, it is realizing an environmental remediation project with poplar trees and native grass species, also with the aim of analyzing the possible absorption and accumulation of contaminants in the vegetables. The soil sampling was carried out by taking punctual samples of soil according to a grid of 20 x 20 m, at three depths (0-20; 30-60; 70-90 cm). Furthermore, materials attributable to the buried sludges were sampled from pedological profiles opened in the field. All the samples were analyzed for the content of potentially toxic metals and of heavy hydrocarbons (C>12). On selected samples were determined the main chemical and physical characteristics, mobile and bioavailable fractions of the major metal contaminants and their distribution in the soil geochemical fractions, with water (solid/liquid partition coefficient), 1 M NH4NO3 and 0.05 M EDTA pH 7 extractions, and EU-BCR sequential fractionation. The data showed a significant, widespread and disorderly contamination by chromium, zinc and heavy hydrocarbons (up to values of: 4500 mg/kg for Cr, 1850 mg/kg for Zn 1250 mg/kg for hydrocarbons C>12). In certain sub-areas it has also been observed a

  19. Soil nitrogen balance assessment and its application for sustainable agriculture and environment.

    PubMed

    Roy, Rabindra Nath; Misra, Ram Vimal

    2005-12-01

    Soil nitrogen balance assessment (SNBA) serves as an effective tool for estimating the magnitude of nitrogen loss/gain of the agro-eco systems and to appraise their sustainability. SNBA brings forth awareness of soil fertility problems, besides providing information relating to the resultant release of nitrogen into the environment consequent to agricultural practices. Quantitative information relating to nitrogen escape into the environment through such exercises can be gainfully utilized for identification of causative factors, enhancing fertilizer use efficiency and formulating programmes aimed at plugging N leakages. An overview of nitrogen balance approaches and methodologies is presented. A deeper understanding and insight into the agro-eco systems provided by the SNBA exercises can lay the basis for the formulation of effective agronomic interventions and policies aimed at promoting sustainable agriculture and a benign environment.

  20. Soil nitrogen balance assessment and its application for sustainable agriculture and environment.

    PubMed

    Roy, Rabindra Nath; Misra, Ram Vimal

    2005-09-01

    Soil nitrogen balance assessment (SNBA) serves as an effective tool for estimating the magnitude of nitrogen loss/gain of the agro-eco systems and to appraise their sustainability. SNBA brings forth awareness of soil fertility problems, besides providing information relating to the resultant release of nitrogen into the environment consequent to agricultural practices. Quantitative information relating to nitrogen escape into the environment through such exercises can be gainfully utilized for identification of causative factors, enhancing fertilizer use efficiency and formulating programmes aimed at plugging N leakages. An overview of nitrogen balance approaches and methodologies is presented. A deeper understanding and insight into the agro-eco systems provided by the SNBA exercises can lay the basis for the formulation of effective agronomic interventions and policies aimed at promoting sustainable agriculture and a benign environment.

  1. Selected veterinary pharmaceuticals in agricultural water and soil from land application of animal manure.

    PubMed

    Song, Wenlu; Ding, Yunjie; Chiou, Cary T; Li, Hui

    2010-01-01

    Veterinary pharmaceuticals are commonly administered to animals for disease control, and added into feeds at subtherapeutic levels to improve feeding efficiency. As a result of these practices, a certain fraction of the pharmaceuticals are excreted into animal manures. Land application of these manures contaminates soils with the veterinary pharmaceuticals, which can subsequently lead to contamination of surface and groundwaters. Information on the occurrence and fate of pharmaceuticals in soil and water is needed to assess the potential for exposure of at-risk populations and the impacts on agricultural ecosystems. In this study, we investigated the occurrence and fate of four commonly used veterinary pharmaceuticals (amprolium, carbadox, monensin, and tylosin) in a farm in Michigan. Amprolium and monensin were frequently detected in nearby surface water, with concentrations ranging from several to hundreds of nanograms per liter, whereas tylosin or carbadox was rarely found. These pharmaceuticals were more frequently detected in surface runoff during nongrowing season (October to April) than during growing season (May to September). Pharmaceuticals resulting from postharvest manure application appeared to be more persistent than those from spring application. High concentrations of pharmaceuticals in soils were generally observed at the sites where the respective concentrations in surface water were also high. For monensin, the ratios of soil-sorbed to aqueous concentrations obtained from field samples were within the order of the distribution coefficients obtained from laboratory studies. These results suggest that soil is a reservoir for veterinary pharmaceuticals that can be disseminated to nearby surface water via desorption from soil, surface runoff, and soil erosion.

  2. Sorption-desorption and transport of trimethoprim and sulfonamide antibiotics in agricultural soil: effect of soil type, dissolved organic matter, and pH.

    PubMed

    Zhang, Ya-Lei; Lin, Shuang-Shuang; Dai, Chao-Meng; Shi, Lu; Zhou, Xue-Fei

    2014-05-01

    Use of animal manure is a main source of veterinary pharmaceuticals (VPs) in soil and groundwater through a series of migration processes. The sorption-desorption and transport of four commonly used VPs including trimethoprim (TMP), sulfapyridine, sulfameter, and sulfadimethoxine were investigated in three soil layers taken from an agricultural field in Chongming Island China and two types of aqueous solution (0.01 M CaCl2 solution and wastewater treatment plant effluent). Results from sorption-desorption experiments showed that the sorption behavior of selected VPs conformed to the Freundlich isotherm equation. TMP exhibited higher distribution coefficients (K d = 6.73-9.21) than other sulfonamides (K d = 0.03-0.47), indicating a much stronger adsorption capacity of TMP. The percentage of desorption for TMP in a range of 8-12 % is not so high to be considered significant. Low pH (soil organic matter (e.g., 0-20 cm soil sample) had a positive impact on sorption of VPs. Slightly lower distribution coefficients were obtained for VPs in wastewater treatment plant (WWTP) effluent, which suggested that dissolved organic matter might affect their sorption behavior. Column studies indicated that the transport of VPs in the soil column was mainly influenced by sorption capacity. The weakly adsorbed sulfonamides had a high recovery rate (63.6-98.0 %) in the leachate, while the recovery rate of TMP was only 4.2-10.4 %. The sulfonamides and TMP exhibited stronger retaining capacity in 20-80 cm and 0-20 cm soil samples, respectively. The transport of VPs was slightly higher in the columns leached by WWTP effluent than by CaCl2 solution (0.01 M) due to their sorption interactions.

  3. Chemistry of volcanic soils used for agriculture in Brava Island (Cape Verde)

    NASA Astrophysics Data System (ADS)

    Prudêncio, Maria Isabel; Marques, Rosa; Waerenborgh, João Carlos; José Vieira, Bruno; Dias, Maria Isabel; Rocha, Fernando

    2017-04-01

    Brava is a small volcanic island located on the south-western part of the Cape Verde archipelago. It is characterized by an irregular plateau between 300 and 976 m above sea level, which is bounded by steep coastal cliffs and cut by fluvial incision in a generally radial drainage pattern. The major volcano-stratigraphic units of the island are: Lower Unit, Middle Unit, Upper Unit, and Sediments. Although Brava is one of the islands with more frequent rainy periods in Cape Verde, the climate is essentially semi-arid, which associated with the rough topography leads to incipient soils. Detailed Fe speciation and chemical composition studies of Cape Verde soils have shown that oxidation is a major weathering mechanism, and high contents of trace elements may occur originated from imbalance of elements in the volcanic parent materials, which can be a threat to the environmental health. The soils mostly used for agriculture in Brava Island are those developed on phonolitic pyroclasts on the plateau and also on sediments. In this work the whole sample (< 2 mm) and the clay-sized fraction (< 2 µm) of these soils were analysed by Mössbauer spectroscopy and neutron activation analysis, aiming to characterize the iron speciation and to determine the concentration and distribution of 30 chemical elements in Brava soils. Mössbauer spectroscopy shows that Fe is more oxidyzed in topsoils developed on sediments (84-87%) than in soils developed on pyroclasts (71-79%). In the clay sized-fraction of all the studied soils only Fe(III) was detected. Iron oxides clearly distinguish the soils derived from the two types of parent materials, hematite being the only Fe oxide present in soils developed on sediments, while maghemite is more abundant in soils developed on pyroclasts. Iron and chromium are depleted in this fine fraction suggesting their occurrence as iron oxides and ferromagnesian minerals present in coarser particles. Among the chemical elements studied, antimony was found

  4. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering.

    PubMed

    Robson, T C; Braungardt, C B; Rieuwerts, J; Worsfold, P

    2014-01-01

    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite (<63 μm, 0.92 wt.% Cd) showed continuous, slow dissolution (0.6-1.2% y(-1)). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg(-1)) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg(-1)) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The American Land. Its History, Soil, Water, Wildlife, Agricultural Land Planning, and Land Problems of Today and Tomorrow.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Presented in this booklet is the commentary for "The American Land," a television series prepared by the Soil Conservation Service and the Graduate School, United States Department of Agriculture, in cooperation with WETA - TV, Washington, D.C. It explores the resource of land in America, its history, soil, water, wildlife, agricultural land…

  6. Strengths and weaknesses of temporal stability analysis for monitoring and estimating grid-mean soil moisture in a high-intensity irrigated agricultural landscape

    NASA Astrophysics Data System (ADS)

    Ran, Youhua; Li, Xin; Jin, Rui; Kang, Jian; Cosh, Michael H.

    2017-01-01

    Monitoring and estimating grid-mean soil moisture is very important for assessing many hydrological, biological, and biogeochemical processes and for validating remotely sensed surface soil moisture products. Temporal stability analysis (TSA) is a valuable tool for identifying a small number of representative sampling points to estimate the grid-mean soil moisture content. This analysis was evaluated and improved using high-quality surface soil moisture data that were acquired by a wireless sensor network in a high-intensity irrigated agricultural landscape in an arid region of northwestern China. The performance of the TSA was limited in areas where the representative error was dominated by random events, such as irrigation events. This shortcoming can be effectively mitigated by using a stratified TSA (STSA) method, proposed in this paper. In addition, the following methods were proposed for rapidly and efficiently identifying representative sampling points when using TSA. (1) Instantaneous measurements can be used to identify representative sampling points to some extent; however, the error resulting from this method is significant when validating remotely sensed soil moisture products. Thus, additional representative sampling points should be considered to reduce this error. (2) The calibration period can be determined from the time span of the full range of the grid-mean soil moisture content during the monitoring period. (3) The representative error is sensitive to the number of calibration sampling points, especially when only a few representative sampling points are used. Multiple sampling points are recommended to reduce data loss and improve the likelihood of representativeness at two scales.

  7. Degradation and metabolite formation of estrogen conjugates in an agricultural soil

    USDA-ARS?s Scientific Manuscript database

    Estrogen conjugates are precursors of free estrogens such as 17beta-estradiol (E2) and estrone (E1), which causes potent endocrine disrupting effects on aquatic organisms. In this study, microcosm laboratory experiments were conducted in an agricultural soil to investigate the aerobic degradation an...

  8. Recycling soil nitrate nitrogen by amending agricultural lands with oily food waste.

    PubMed

    Rashid, M T; Voroney, R P

    2003-01-01

    With current agricultural practices the amounts of fertilizer N applied are frequently more than the amounts removed by the crop. Excessive N application may result in short-term accumulation of nitrate nitrogen (NO3-N) in soil, which can easily be leached from the root zone and into the ground water. A management practice suggested for conserving accumulated NO3-N is the application of oily food waste (FOG; fat + oil + greases) to agricultural soils. A two-year field study (1995-1996 and 1996-1997) was conducted at Elora Research Center (43 degrees 38' N, 80 degrees W; 346 m above mean sea level), University of Guelph, Ontario, Canada to determine the effect of FOG application in fall and spring on soil NO3-N contents and apparent N immobilization-mineralization of soil N in the 0- to 60-cm soil layer. The experiment was planned under a randomized complete block design with four replications. An unamended control and a reference treatment [winter wheat (Triticum aestivum L.) cover crop] were included in the experiment to compare the effects of fall and spring treatment of oily food waste on soil NO3-N contents and apparent N immobilization-mineralization. Oily food waste application at 10 Mg ha(-1) in the fall decreased soil NO3-N by immobilization and conserved 47 to 56 kg NO3-N ha(-1), which would otherwise be subject to leaching. Nitrogen immobilized due to FOG application in the fall was subsequently remineralized by the time of fertilizer N sidedress, whereas no net mineralization was observed in spring-amended plots at the same time.

  9. Comparison of different models for predicting soil bulk density. Case study - Slovakian agricultural soils

    NASA Astrophysics Data System (ADS)

    Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn

    2017-10-01

    Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.

  10. Evaluation of soil quality indicators in paddy soils under different crop rotation systems

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh

    2013-04-01

    Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy

  11. Autotrophic growth of nitrifying community in an agricultural soil

    PubMed Central

    Xia, Weiwei; Zhang, Caixia; Zeng, Xiaowei; Feng, Youzhi; Weng, Jiahua; Lin, Xiangui; Zhu, Jianguo; Xiong, Zhengqin; Xu, Jian; Cai, Zucong; Jia, Zhongjun

    2011-01-01

    The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested. PMID:21326337

  12. [Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies].

    PubMed

    Zhu, Yong-Guan; Wang, Xiao-Hui; Yang, Xiao-Ru; Xu, Hui-Juan; Jia, Yan

    2014-02-01

    Nitrous oxide (N2O) is a powerful atmospheric greenhouse gas, which does not only have a strong influence on the global climate change but also depletes the ozone layer and induces the enhancement of ultraviolet radiation to ground surface, so numerous researches have been focused on global climate change and ecological environmental change. Soil is the foremost source of N2O emissions to the atmosphere, and approximately two-thirds of these emissions are generally attributed to microbiological processes including bacterial and fungal denitrification and nitrification processes, largely as a result of the application of nitrogenous fertilizers. Here the available knowledge concerning the research progress in N2O production in agricultural soils was reviewed, including denitrification, nitrification, nitrifier denitrification and dissimilatory nitrate reduction to ammonium, and the abiotic (including soil pH, organic and inorganic nitrogen, organic matter, soil humidity and temperature) and biotic factors that have direct and indirect effects on N2O fluxes from agricultural soils were also summarized. In addition, the strategies for mitigating N2O emissions and the future research direction were proposed. Therefore, these studies are expected to provide valuable and scientific evidence for the study on mitigation strategies for the emission of greenhouse gases, adjustment of nitrogen transformation processes and enhancement of nitrogen use efficiency.

  13. Phosphorus concentrations in sequentially fractionated soil samples as affected by digestion methods

    USDA-ARS?s Scientific Manuscript database

    Sequential fractionation has been used for several decades for improving our understanding on the effects of agricultural practices and management on the lability and bioavailability of phosphorus in soil, manure, and other soil amendments. Nevertheless, there have been no reports on how manipulatio...

  14. Nitrification in agricultural soils: impact, actors and mitigation.

    PubMed

    Beeckman, Fabian; Motte, Hans; Beeckman, Tom

    2018-04-01

    Nitrogen is one of the most important nutrients for plant growth and hence heavily applied in agricultural systems via fertilization. Nitrification, that is, the conversion of ammonium via nitrite to nitrate by soil microorganisms, however, leads to nitrate leaching and gaseous nitrous oxide production and as such to an up to 50% loss of nitrogen availability for the plant. Nitrate leaching also results in eutrophication of groundwater, drinking water and recreational waters, toxic algal blooms and biodiversity loss, while nitrous oxide is a greenhouse gas with a global warming potential 300× greater than carbon dioxide. Logically, inhibition of nitrification is an important strategy used in agriculture to reduce nitrogen losses, and contributes to a more environmental-friendly practice. However, recently identified and crucial players in nitrification, that is, ammonia-oxidizing archaea and comammox bacteria, seem to be under-investigated in this respect. In this review, we give an update on the different pathways in ammonia oxidation, the relevance for agriculture and the interaction with nitrification inhibitors. As such, we hope to pinpoint possible strategies to optimize the efficiency of nitrification inhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Some physicochemical properties of surface layer soils shelterbelts in agricultural landscape

    NASA Astrophysics Data System (ADS)

    Jaskulska, R.; Szajdak, L.

    2009-04-01

    Shelterbelts belong to very efficient biogeochemical barriers. They decrease the migration of chemical compounds between ecosystems. The investigations were carried out in the Chlapowski's Agroecological Park in Turew situated 40 km South-West of Poznań, Poland. This area is located on loamy soils, which contains 70% cultivated fields and 14% shelterbelts and small afforestations. The shelterbelts represent different ages and the content of plants as well as humus quantity in surface layer. The first one is 100-year-old shelterbelt, where predominant species is Crataegus monogyna Jacq., Quercus rober L., and Fraxinus excelsior (L.) and is characterized by a well-developed humus level. The other one is 14-year-old shelterbelt. It includes 13 species of trees and revealed a small amount of humus. The soil under both shelterbelts is mineral, grey-brown podzolic in surface layer compound from light loamy sands and weakly loamy sands. The soil samples were taken from surface layer (0-20 cm). pH 1N KCl, hydrolytic acidity, cation-exchange capacity, total proper area, total organic carbon and dissociation constants were determined in soils. The study showed that the soil under shelterbelts revealed acidic properties. It was observed that soils of 100-year-old shelterbelt characterizing lowest values pH = 4.2 revealed highest values of hydrolytic acidity equaled to 7.8 cmol(+)ṡkg-1. The physicochemical properties of investigated soils shoved specific surface areas (22.8 m2ṡg-1), cationic sorptive capacity (12.9 cmol(+)ṡkg-1). TOC (1.6%) 100-year-old shelterbelt was higher than in 14-year-old shelterbelt. The dissociation constants were determined by potentiometric titration. This investigation revealed that the pK value was the highest in the humus of 100-year-old shelterbelt (pKa = 3.1). However, soils of 14-year-old shelterbelt characterized by the lovest pK equaled to 2.8. The surface layer soils shelterbelts in agricultural landscape with good humus development

  16. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century.

    PubMed

    Glaser, Bruno

    2007-02-28

    Terra Preta soils of central Amazonia exhibit approximately three times more soil organic matter, nitrogen and phosphorus and 70 times more charcoal compared to adjacent infertile soils. The Terra Preta soils were generated by pre-Columbian native populations by chance or intentionally adding large amounts of charred residues (charcoal), organic wastes, excrements and bones. In this paper, it is argued that generating new Terra Preta sites ('Terra Preta nova') could be the basis for sustainable agriculture in the twenty-first century to produce food for billions of people, and could lead to attaining three Millennium Development Goals: (i) to combat desertification, (ii) to sequester atmospheric CO2 in the long term, and (iii) to maintain biodiversity hotspots such as tropical rainforests. Therefore, large-scale generation and utilization of Terra Preta soils would decrease the pressure on primary forests that are being extensively cleared for agricultural use with only limited fertility and sustainability and, hence, only providing a limited time for cropping. This would maintain biodiversity while mitigating both land degradation and climate change. However, it should not be overlooked that the infertility of most tropical soils (and associated low population density) is what could have prevented tropical forests undergoing large-scale clearance for agriculture. Increased fertility may increase the populations supported by shifting cultivation, thereby maintaining and increasing pressure on forests.

  17. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils.

    PubMed

    Köhl, Luise; Lukasiewicz, Catherine E; van der Heijden, Marcel G A

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are promoted as biofertilizers for sustainable agriculture. So far, most researchers have investigated the effects of AMF on plant growth under highly controlled conditions with sterilized soil, soil substrates or soils with low available P or low inoculum potential. However, it is still poorly documented whether inoculated AMF can successfully establish in field soils with native AMF communities and enhance plant growth. We inoculated grassland microcosms planted with a grass-clover mixture (Lolium multiflorum and Trifolium pratense) with the arbuscular mycorrhizal fungus Rhizoglomus irregulare. The microcosms were filled with eight different unsterilized field soils that varied greatly in soil type and chemical characteristics and indigenous AMF communities. We tested whether inoculation with AMF enhanced plant biomass and R. irregulare abundance using a species specific qPCR. Inoculation increased the abundance of R. irregulare in all soils, irrespective of soil P availability, the initial abundance of R. irregulare or the abundance of native AM fungal communities. AMF inoculation had no effect on the grass but significantly enhanced clover yield in five out of eight field soils. The results demonstrate that AMF inoculation can be successful, even when soil P availability is high and native AMF communities are abundant. © 2015 John Wiley & Sons Ltd.

  18. The impact of map and data resolution on the determination of the agricultural utilisation of organic soils in Germany.

    PubMed

    Roeder, Norbert; Osterburg, Bernhard

    2012-06-01

    Due to its nature, agricultural land use depends on local site characteristics such as production potential, costs and external effects. To assess the relevance of the modifying areal unit problem (MAUP), we investigated as to how a change in the data resolution regarding both soil and land use data influences the results obtained for different land use indicators. For the assessment we use the example of the greenhouse gas (GHG) emissions from agriculturally used organic soils (mainly fens and bogs). Although less than 5 % of the German agricultural area in use is located on organic soils, the drainage of these areas to enable their agricultural utilization causes roughly 37 % of the GHG emissions of the German agricultural sector. The abandonment of the cultivation and rewetting of organic soils would be an effective policy to reduce national GHG emissions. To assess the abatement costs, it is essential to know which commodities, and at what quantities, are actually produced on this land. Furthermore, in order to limit windfall profits, information on the differences of the profitability among farms are needed. However, high-resolution data regarding land use and soil characteristics are often not available, and their generation is costly or the access is strictly limited because of legal constraints. Therefore, in this paper, we analyse how indicators for land use on organic soils respond to changes in the spatial aggregation of the data. In Germany, organic soils are predominantly used for forage cropping. Marked differences between the various regions of Germany are apparent with respect to the dynamics and the intensity of land use. Data resolution mainly impairs the derived extent of agriculturally used peatland and the observed intensity gradient, while its impact on the average value for the investigated set of land-use indicators is generally minor.

  19. Contamination of soils with microbial pathogens originating from effluent water used for agricultural irrigation

    NASA Astrophysics Data System (ADS)

    Bernstein, N.

    2009-04-01

    The use of wastewater for agricultural irrigation is steadily increasing world-wide and due to shortages of fresh water is common today in most arid regions of the world. The use of treated wastewater for agricultural irrigation may result in soil exposure to pathogens, creating potential public health problems. A variety of human pathogens are present in raw sewage water. Although their concentrations decrease during the wastewater reclamation process, the secondary treated effluents most commonly used for irrigation today still contain bacterial human pathogens. A range of bacterial pathogens, introduced through contaminated irrigation water or manure, are capable of surviving for long periods in soil and water where they have the potential to contaminate crops in the field. Therefore, there is a risk of direct contamination of crops by human pathogens from the treated effluents used for irrigation, as well as a risk of indirect contamination of the crops from contaminated soil at the agricultural site. Contradictory to previous notion, recent studies have demonstrated that human pathogens can enter plants through their roots and translocate and survive in edible, aerial plant tissues. The practical implications of these new findings for food safety are still not clear, but no doubt reflect the pathogenic microorganisms' ability to survive and multiply in the irrigated soil, water, and the harvested edible crop.

  20. Phosphorus concentrations in sequentially fractionated soil samples as affected by digestion methods

    USDA-ARS?s Scientific Manuscript database

    Sequential fractionation has been used for several decades for improving our understanding on the effects of agricultural practices and management on the lability and bioavailability of P in soil, manure, and other soil amendments. Nevertheless, there have been no reports on how manipulation of diff...

  1. Soil sampling strategies: evaluation of different approaches.

    PubMed

    de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia

    2008-11-01

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2sigma, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies.

  2. Heavy metals in agricultural soils of the European Union with implications for food safety.

    PubMed

    Tóth, G; Hermann, T; Da Silva, M R; Montanarella, L

    2016-03-01

    Soil plays a central role in food safety as it determines the possible composition of food and feed at the root of the food chain. However, the quality of soil resources as defined by their potential impact on human health by propagation of harmful elements through the food chain has been poorly studied in Europe due to the lack of data of adequate detail and reliability. The European Union's first harmonized topsoil sampling and coherent analytical procedure produced trace element measurements from approximately 22,000 locations. This unique collection of information enables a reliable overview of the concentration of heavy metals, also referred to as metal(loid)s including As, Cd, Cr, Cu, Hg, Pb, Zn, Sb. Co, and Ni. In this article we propose that in some cases (e.g. Hg and Cd) the high concentrations of soil heavy metal attributed to human activity can be detected at a regional level. While the immense majority of European agricultural land can be considered adequately safe for food production, an estimated 6.24% or 137,000km(2) needs local assessment and eventual remediation action. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Improving the prediction of arsenic contents in agricultural soils by combining the reflectance spectroscopy of soils and rice plants

    NASA Astrophysics Data System (ADS)

    Shi, Tiezhu; Wang, Junjie; Chen, Yiyun; Wu, Guofeng

    2016-10-01

    Visible and near-infrared reflectance spectroscopy provides a beneficial tool for investigating soil heavy metal contamination. This study aimed to investigate mechanisms of soil arsenic prediction using laboratory based soil and leaf spectra, compare the prediction of arsenic content using soil spectra with that using rice plant spectra, and determine whether the combination of both could improve the prediction of soil arsenic content. A total of 100 samples were collected and the reflectance spectra of soils and rice plants were measured using a FieldSpec3 portable spectroradiometer (350-2500 nm). After eliminating spectral outliers, the reflectance spectra were divided into calibration (n = 62) and validation (n = 32) data sets using the Kennard-Stone algorithm. Genetic algorithm (GA) was used to select useful spectral variables for soil arsenic prediction. Thereafter, the GA-selected spectral variables of the soil and leaf spectra were individually and jointly employed to calibrate the partial least squares regression (PLSR) models using the calibration data set. The regression models were validated and compared using independent validation data set. Furthermore, the correlation coefficients of soil arsenic against soil organic matter, leaf arsenic and leaf chlorophyll were calculated, and the important wavelengths for PLSR modeling were extracted. Results showed that arsenic prediction using the leaf spectra (coefficient of determination in validation, Rv2 = 0.54; root mean square error in validation, RMSEv = 12.99 mg kg-1; and residual prediction deviation in validation, RPDv = 1.35) was slightly better than using the soil spectra (Rv2 = 0.42, RMSEv = 13.35 mg kg-1, and RPDv = 1.31). However, results also showed that the combinational use of soil and leaf spectra resulted in higher arsenic prediction (Rv2 = 0.63, RMSEv = 11.94 mg kg-1, RPDv = 1.47) compared with either soil or leaf spectra alone. Soil spectral bands near 480, 600, 670, 810, 1980, 2050 and

  4. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment.

    PubMed

    Yang, Qianqi; Li, Zhiyuan; Lu, Xiaoning; Duan, Qiannan; Huang, Lei; Bi, Jun

    2018-06-14

    Soil heavy metal pollution has been becoming serious and widespread in China. To date, there are few studies assessing the nationwide soil heavy metal pollution induced by industrial and agricultural activities in China. This review obtained heavy metal concentrations in soils of 402 industrial sites and 1041 agricultural sites in China throughout the document retrieval. Based on the database, this review assessed soil heavy metal concentration and estimated the ecological and health risks on a national scale. The results revealed that heavy metal pollution and associated risks posed by cadmium (Cd), lead (Pb) and arsenic (As) are more serious. Besides, heavy metal pollution and associated risks in industrial regions are severer than those in agricultural regions, meanwhile, those in southeast China are severer than those in northwest China. It is worth noting that children are more likely to be affected by heavy metal pollution than adults. Based on the assessment results, Cd, Pb and As are determined as the priority control heavy metals; mining areas are the priority control areas compared to other areas in industrial regions; food crop plantations are the priority control areas in agricultural regions; and children are determined as the priority protection population group. This paper provides a comprehensive ecological and health risk assessment on the heavy metals in soils in Chinese industrial and agricultural regions and thus provides insights for the policymakers regarding exposure reduction and management. Copyright © 2018. Published by Elsevier B.V.

  5. The impact of agricultural soil erosion on the global carbon cycle

    USGS Publications Warehouse

    Van Oost, Kristof; Quine, T.A.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; McCarty, G.W.; Heckrath, G.; Kosmas, C.; Giraldez, J.V.; Marques Da Silva, J.R.; Merckx, R.

    2007-01-01

    Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect range from a source of 1 petagram per year -1 to a sink of the same magnitude. By using caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent evidence for an erosion-induced sink of atmospheric carbon equivalent to approximately 26% of the carbon transported by erosion. Based on this relationship, we estimated a global carbon sink of 0.12 (range 0.06 to 0.27) petagrams of carbon per year-1 resulting from erosion in the world's agricultural landscapes. Our analysis directly challenges the view that agricultural erosion represents an important source or sink for atmospheric CO2.

  6. Impact of Distillery Spent Wash Irrigation on Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Jadhav, Ramanand N.; Sarode, Dhananjay B.; Narkhede, Sachin D.; Khatik, Vasimshaikh A.; Attarde, Sanjay B.

    2011-07-01

    The disposal of wastes from industrial sources is becoming a serious problem throughout the world. In India, a total of approximately 40 million m3 of distillery spent wash is generated annually from 295 distilleries. The distillery spent wash is acidic and high levels of biological oxygen demand and chemical oxygen demand and contains nutrient elements such as potassium (K), nitrogen (N), and phosphorous (P). It is used as a source of plant nutrients and organic matter for various agricultural crops. It is usually applied to arable land near the distilleries as irrigation water or as a soil amendment. However, indiscriminate disposal of it has resulted in adverse impact on soil environments. This paper aims to identify the impact of distillery spent wash application for irrigation and on soil environment. The distillery spent wash can be a good source of nutrients necessary for plant growth. Application of various concentrations of spent wash on plant species was studied. A plot having 20-30% concentration of spent wash observed good growth. At higher doses, spent wash application is found harmful to crop growth and soil fertility and its use at lower doses remarkably improves germination and growth of crops.

  7. Influence of Road Proximity on the Concentrations of Heavy Metals in Korean Urban Agricultural Soils and Crops.

    PubMed

    Kim, Hyuck Soo; Kim, Kwon-Rae; Kim, Won-Il; Owens, Gary; Kim, Kye-Hoon

    2017-02-01

    The urban agricultural (UA) environment near active roadways can be degraded by traffic-related particles (i.e., exhaust gases and road dust), which may contain heavy metals. The current study investigated changes in heavy-metal [cadmium (Cd), copper (Cu), chromium (Cr) nickel (Ni), lead (Pb) and zinc (Zn)] concentrations in soils located near highly trafficked roads in Korea and the subsequent uptake of these metals by Chinese cabbage. Heavy-metal plant concentrations were determined in both washed and unwashed plant leaves to determine whether foliar deposition played any role in plant metal uptake. Soil concentrations of Cd, Cu, Pb, and Zn were all lower than the Korean standard soil limits and showed no significant influence from road traffic. In contrast, both Ni and Cr concentrations in soils collected within 10 m of the road were 4 and 5 times greater, respectively, than those in soils collected 70 m from the road. Heavy-metal concentrations in unwashed Chinese cabbage leaf collected at 5 m from the road were consistently greater than those of washed leaf samples, thus indicating the deposition of traffic-related particles on the plant surface. With the exception of Cu, all heavy-metal concentration in washed plant samples collected at 5 m also showed greater accumulation compared with samples collected further away. This was mainly attributed to increased total soil heavy-metal concentrations and increased metal phytoavailability induced by decreases in soil pH near the road. However, overall heavy-metal soil concentrations were well lower than the allowable concentrations, and the levels observed in plants collected in this study were considered not to currently pose a significant risk to human health. However, some traffic-related heavy metals, in particular Cr and Ni, were being accumulated in the roadside UA environment, which may warrant some caution regarding the environment and/or health issues in the future.

  8. Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil.

    PubMed

    Wan, Rui; Wang, Zhao; Xie, Shuguang

    2014-02-15

    Autochthonous microbiota plays a crucial role in natural attenuation of s-triazine herbicides in agricultural soil. Soil microcosm study was carried out to investigate the shift in the structures of soil autochthonous microbial communities and the potential degraders associated with natural simazine attenuation. The relative abundance of soil autochthonous degraders and the structures of microbial communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. Phylogenetic composition of bacterial community was also characterized using clone library analysis. Soil autochthonous microbiota could almost completely clean up simazine (100 mg kg(-1)) in 10 days after herbicide application, indicating a strong self-remediation potential of agricultural soil. A significant increase in the proportion of s-triazine-degrading atzC gene was found in 6 days after simazine amendment. Simazine application could alter the community structures of total bacteria and ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA were more responsive to simazine application compared to AOB and bacteria. Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were the dominant bacterial groups either at the initial stage after simazine amendment or at the end stage of herbicide biodegradation, but Actinobacteria predominated at the middle stage of biodegradation. Microorganisms from several bacterial genera might be involved in simazine biodegradation. This work could add some new insights on the bioremediation of herbicides contaminated agricultural soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Contributions of root and shoot derived-C to soil organic matter throughout an agricultural soil profile assessed by compound-specific 13C analysis

    NASA Astrophysics Data System (ADS)

    Mendez-Millan, Mercedes; Dignac, Marie-France; Rumpel, Cornelia; Rasse, Daniel P.; Derenne, Sylvie

    2010-05-01

    The turnover of soil organic matter (SOM) is generally studied in the topsoil horizons, where the highest concentrations of organic carbon (OC) are found. Subsoils, although containing lower amounts of organic carbon compared to topsoils, greatly contribute to the total carbon stocks within a soil profile. An increase in SOM aliphaticity was observed during SOM degradation, and also down the soil profile, suggesting that the stable pool of SOM is enriched in aliphatic structures. These alkyl-C structures might mainly derive from cutins and suberins, two biomacromolecules, which contain biomarkers specific for shoot and root plant biomass. The aim of this study was to use cutin and suberin structural units to follow the incorporation of plant biomass originating from roots and shoots throughout an agricultural soil profile. We measured the 13C natural abundance of root and shoot biomarkers in samples taken from 15 to 105 cm depth in a C3/C4 chronosequence. After 9 years of maize (C4) cropping, the distribution of root biomarkers (diacids) significantly changed and their concentration increased compared to the wheat (CC3) soil. The largest increase was observed at 60-75 cm where diacids reached up to 134 ?g/gOC compared to 23 ?g/gOC in the wheat soil. Higher inputs from maize root biomass are also suggested by an average 13C enrichment of the root markers in the maize compared to the wheat soil.

  10. Abatement costs of soil conservation in China's Loess Plateau: balancing income with conservation in an agricultural system.

    PubMed

    Hou, Lingling; Hoag, Dana L K; Keske, Catherine M H

    2015-02-01

    This study proposes the use of marginal abatement cost curves to calculate environmental damages of agricultural systems in China's Loess Plateau. Total system costs and revenues, management characteristics and pollution attributes are imputed into a directional output distance function, which is then used to determine shadow prices and abatement cost curves for soil and nitrogen loss. Marginal abatement costs curves are an effective way to compare economic and conservation tradeoffs when field-specific data are scarce. The results show that sustainable agricultural practices can balance soil conservation and agricultural production; land need not be retired, as is current policy. Published by Elsevier Ltd.

  11. Using NMR-based metabolomics to monitor the biochemical composition of agricultural soils: a pilot study

    USDA-ARS?s Scientific Manuscript database

    NMR-based metabolomics plays a major role studying complex living systems. However, very few studies describe the application of this technique to the evaluation of soil metabolome. Here, we introduce a protocol for analyzing the biochemical compounds from agricultural soils where the microbial comm...

  12. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution

    PubMed Central

    Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui

    2017-01-01

    Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26–8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18–20.68 mg kg−1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes. PMID:28051171

  13. Morphological and Genetic Diversity of Rhizobia Nodulating Cowpea (Vigna unguiculata L.) from Agricultural Soils of Lower Eastern Kenya.

    PubMed

    Ondieki, Damaris K; Nyaboga, Evans N; Wagacha, John M; Mwaura, Francis B

    2017-01-01

    Limited nitrogen (N) content in the soil is a major challenge to sustainable and high crop production in many developing countries. The nitrogen fixing symbiosis of legumes with rhizobia plays an important role in supplying sufficient N for legumes and subsequent nonleguminous crops. To identify rhizobia strains which are suitable for bioinoculant production, characterization of rhizobia is a prerequisite. The objective of this study was to assess the morphological and genetic diversity of rhizobia that nodulates cowpea in agricultural soils of lower eastern Kenya. Twenty-eight rhizobia isolates were recovered from soil samples collected from farmers' fields in Machakos, Makueni, and Kitui counties in lower eastern Kenya and characterized based on morphological characteristics. Thirteen representative isolates were selected and characterized using BOX repetitive element PCR fingerprinting. Based on the dendrogram generated from morphological characteristics, the test isolates were distributed into two major clusters at a similarity of 75%. Phylogenetic tree, based on BOX repetitive element PCR, grouped the isolates into two clusters at 90% similarity level. The clustering of the isolates did not show a relationship to the origin of soil samples, although the isolates were genetically diverse. This study is a prerequisite to the selection of suitable cowpea rhizobia to develop bioinoculants for sustainable crop production in Kenya.

  14. The impact of selected soil organic matter fractions on the PAH accumulation in the agricultural soils from areas of different anthropopressure.

    PubMed

    Klimkowicz-Pawlas, Agnieszka; Smreczak, Bozena; Ukalska-Jaruga, Aleksandra

    2017-04-01

    The level of 16PAH accumulation was determined in 75 soil samples collected from two agricultural regions of Poland corresponding to the smallest Polish administrative unit at the LAU 2 level. Both regions are characterised by similar territory and soil cover but different history of pollution and different pressure of anthropogenic factors. Overall accumulation of Σ16PAHs in the upper soil layer was within a wide range with the median value of 291 and 1253 μg kg -1 for a non-contaminated and high anthropopressure region, respectively. Nearly 75 % of the total polycyclic aromatic hydrocarbon (PAH) pool was represented by high molecular four-to-six-ring compounds, deriving mainly from combustion sources. The total organic carbon (C org ) and black carbon (BC) contents were the main parameters associated with the PAH accumulation in soils, and the level of the regional anthropopressure was considered a significant factor. The strongest links of PAHs/BC (r = 0.70, p ≤ 0.05) were found in the region of high anthropopressure, characterized by a relatively high content of BC (up to 45.3 g kg -1 ), which tends to heavily adsorb hydrocarbons. In a region of low influence exerted by anthropopressure, the PAH/C org or PAH/BC relationships were not observed, which may suggest different diffuse sources of PAH origin and a dominant role of other organic matter fractions in retention of PAHs in soils.

  15. Integrating depth functions and hyper-scale terrain analysis for 3D soil organic carbon modeling in agricultural fields at regional scale

    NASA Astrophysics Data System (ADS)

    Ramirez-Lopez, L.; van Wesemael, B.; Stevens, A.; Doetterl, S.; Van Oost, K.; Behrens, T.; Schmidt, K.

    2012-04-01

    Soil Organic Carbon (SOC) represents a key component in the global C cycle and has an important influence on the global CO2 fluxes between terrestrial biosphere and atmosphere. In the context of agricultural landscapes, SOC inventories are important since soil management practices have a strong influence on CO2 fluxes and SOC stocks. However, there is lack of accurate and cost-effective methods for producing high spatial resolution of SOC information. In this respect, our work is focused on the development of a three dimensional modeling approach for SOC monitoring in agricultural fields. The study area comprises ~420 km2 and includes 4 of the 5 agro-geological regions of the Grand-Duchy of Luxembourg. The soil dataset consist of 172 profiles (1033 samples) which were not sampled specifically for this study. This dataset is a combination of profile samples collected in previous soil surveys and soil profiles sampled for other research purposes. The proposed strategy comprises two main steps. In the first step the SOC distribution within each profile (vertical distribution) is modeled. Depth functions for are fitted in order to summarize the information content in the profile. By using these functions the SOC can be interpolated at any depth within the profiles. The second step involves the use of contextual terrain (ConMap) features (Behrens et al., 2010). These features are based on the differences in elevation between a given point location in the landscape and its circular neighbourhoods at a given set of different radius. One of the main advantages of this approach is that it allows the integration of several spatial scales (eg. local and regional) for soil spatial analysis. In this work the ConMap features are derived from a digital elevation model of the area and are used as predictors for spatial modeling of the parameters of the depth functions fitted in the previous step. In this poster we present some preliminary results in which we analyze: i. The use of

  16. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-12-15

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus. Enchytraeids were exposed for 21d to a dilution series of the agricultural soil with Lufa 2.2 control soil under four climate situations: 20°C+50% WHC (standard conditions), 20°C+30% WHC, 25°C+50% WHC, and 25°C+30% WHC. Survival, reproduction and bioaccumulation of As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn were obtained as endpoints. Reproduction was more sensitive to both climate factors and metal(loid) pollution. High soil salinity (electrical conductivity~3dSm -1 ) and clay texture, even without the presence of high metal(loid) concentrations, affected enchytraeid performance especially at drier conditions (≥80% reduction in reproduction). The toxicity of the agricultural soil increased at drier conditions (10% reduction in EC10 and EC50 values for the effect on enchytraeid reproduction). Changes in enchytraeid performance were accompanied by changes in As, Fe, Mn, Pb and Zn bioaccumulation, with lower body concentrations at drier conditions probably due to greater competition with soluble salts in the case of Fe, Mn, Pb and Zn. This study shows that apart from high metal(loid) concentrations other soil properties (e.g. salinity and texture) may be partially responsible for the toxicity of metal(loid)-polluted soils to soil invertebrates, especially under changing climate conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evaluating the Utility of Remotely-Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Crow, Wade T.; Zhan, Xiwu; Jackson, Thomas J.; Reynolds,Curt

    2010-01-01

    Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.

  18. Monitoring of Nitrate and Pesticide Pollution in Mnasra, Morocco Soil and Groundwater.

    PubMed

    Marouane, Bouchra; Dahchour, Abdelmalek; Dousset, Sylvie; El Hajjaji, Souad

    2015-06-01

    This study evaluates the levels of nitrates and pesticides occurring in groundwater and agricultural soil in the Mnasra, Morocco area, a zone with intensive agricultural activity. A set of 108 water samples and 68 soil samples were collected from ten selected sites in the area during agricultural seasons, from May 2010 to September 2012. The results reveal that 89.7% of water samples exceeded the standard limit of nitrate concentrations for groundwater (50 mg/L). These results can be explained by the prevailing sandy nature of the soil in the area, the frequency of fertilizer usage, and the shallow level of the water table, which favors the leaching of nitrate from field to groundwater. In contrast, the selected pesticide molecules were not detected in the analysed soil and water samples; levels were below the quantification limit in all samples. This situation could be explained by the probable partial or total transformation of the molecules in soil.

  19. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale.

    PubMed

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-11-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A contemporary decennial global sample of changing agricultural field sizes

    NASA Astrophysics Data System (ADS)

    White, E.; Roy, D. P.

    2011-12-01

    In the last several hundred years agriculture has caused significant human induced Land Cover Land Use Change (LCLUC) with dramatic cropland expansion and a marked increase in agricultural productivity. The size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLUC. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, diffusion of disease pathogens and pests, and loss or degradation in buffers to nutrient, herbicide and pesticide flows. In this study, globally distributed locations with significant contemporary field size change were selected guided by a global map of agricultural yield and literature review and were selected to be representative of different driving forces of field size change (associated with technological innovation, socio-economic conditions, government policy, historic patterns of land cover land use, and environmental setting). Seasonal Landsat data acquired on a decadal basis (for 1980, 1990, 2000 and 2010) were used to extract field boundaries and the temporal changes in field size quantified and their causes discussed.

  1. Use of treated wastewater in agriculture: effects on soil environment

    NASA Astrophysics Data System (ADS)

    Levy, Guy J.; Lado, Marcos

    2014-05-01

    Disposal of treated sewage, both from industrial and domestic origin (herein referred to as treated wastewater [TWW]), is often considered as an environmental hazard. However, in areas afflicted by water scarcity, especially in semi-arid and arid regions, where the future of irrigated agriculture (which produces approximately one third of crop yield and half the return from global crop production) is threatened by existing or expected shortage of fresh water, the use of TWW offers a highly effective and sustainable strategy to exploit a water resource. However, application of TWW to the soil is not free of risks both to organisms (e.g., crops, microbiota) and to the soil. Potential risks may include reduction in biological activity (including crop yield) due to elevated salinity and specific ion toxicity, migration of pollutants towards surface- and ground-water, and deterioration of soil structure. In recent years, new evidence about the possible negative impact of long-term irrigation with TWW on soil structure and physical and chemo-physical properties has emerged, thus putting the sustainability of irrigation with TWW in question. In this presentation, some aspects of the effects of long-term irrigation with TWW on soil properties are shown.

  2. Greenhouse gas fluxes of drained organic and flooded mineral agricultural soils in the United States

    USDA-ARS?s Scientific Manuscript database

    Drained organic soils for agriculture represent less than 1% of the area used for crops in the United States (US). However, emission of carbon dioxide (CO2) from microbial oxidation of drained organic soils offsets almost half of the contributions that carbon sequestration of other cropping systems ...

  3. Occurrence and risk assessment of phthalate esters (PAEs) in agricultural soils of the Sanjiang Plain, northeast China.

    PubMed

    Wang, He; Liang, Hong; Gao, Da-Wen

    2017-08-01

    This study looks at the pollution status of six priority control phthalate esters (PAEs) under different cultivation of agricultural soils in the Sanjiang Plain, northeast China. Results show the total concentration of PAEs ranged from 162.9 to 946.9 μg kg -1 with an average value of 369.5 μg kg -1 . PAE concentrations in three types of cultivated soils exhibited decreasing order paddy field (532.1 ± 198.1 μg kg -1 ) > vegetable field (308.2 ± 87.5 μg kg -1 ) > bean field (268.2 ± 48.3 μg kg -1 ). Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) were the most abundant PAEs congeners. Compared with previous studies, agricultural soils in the Sanjiang Plain showed relatively low contamination levels. Anthropogenic activities such as cultivation practices and industrial emissions were associated with the distribution pattern of PAEs. Furthermore, human health risks of PAEs were estimated and the non-cancer risk shown negligible but carcinogenic risk of DEHP exceeded the threshold limits value. PAE contaminants originated from cultivation practices and intense anthropogenic activities result in placing the agricultural soils under a potential risk to human health and also to ecosystems in the Sanjiang Plain. Therefore, the contamination status of PAEs in agricultural soil and potential impacts on human health should attract considerable attention.

  4. Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment.

    PubMed

    Zhou, Yuting; Aamir, Muhammad; Liu, Kai; Yang, Fangxing; Liu, Weiping

    2018-05-03

    Given its wide distribution in the natural environment and global transport potential, mercury (Hg) is regarded as a ubiquitous pollutant. In this study, we carried out nation-wide sampling campaigns across China to investigate the distribution of Hg in agricultural soils. Concentrations of Hg in the soils collected in 2011 and 2016 ranged from 0.04 to 0.69 and 0.06-0.78 mg kg -1 , respectively. Based on the data from 2016, the reserve of Hg in the surface arable soils (0-20 cm) in China was 4.1 × 10 4 metric tons and Chinese cultivated soils accounted for 63.4-364 metric tons of Hg released to the global atmosphere. The soil Hg concentrations were significantly higher than the reference background level, highlighting the impacts of anthropogenic activities. The vertical distribution pattern showed a clear enrichment at the surface and a decrease with depth of the soils. Comparison of calculated geo-accumulation indexes among individual provinces showed that Northwest China had higher levels of Hg contamination than other regions of China, likely due to long-term energy related combustions in the area. Soil Hg level showed strong positive correlations with organic matter contents of soil, as well as the mean annual precipitation and temperature of the sampling locations. The non-carcinogenic human health risks of soil Hg were below the threshold level, but the general risk to the ecosystem was considerable. The increases in Hg accumulation from 2011 to 2016 at provincial level were found to relate to coal combustion, power generation and per capita GDP. This examination of energy consumption and socioeconomic drivers for China's soil Hg reserve increase is critical for direct Hg control by guiding policy-making and targets of technology development in era of rapid economic growth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Analysis of bioavailable Ge in agricultural and mining-affected-soils in Freiberg area (Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Heilmeier, Hermann

    2014-05-01

    Germanium (Ge) concentrations in different soil fraction were investigated using a sequential selective dissolution analysis and a rhizosphere-based single-step extraction method for the identification of Ge-bearing soil fractions and prediction of bioavailability of Ge in soil to plants. About 50 soil samples were collected from various soil depths (horizons A and B) and study sites with different types of land use (dry and moist grassland, arable land, mine dumps) in Freiberg area (Saxony, Germany). Ge has been extracted in six soil fractions: mobile fraction, organic matter and sulfides, Mn- and Fe-oxides (amorphous and crystalline), and kaolinite and phytoliths, and residual fraction. The rhizosphere-based method included a 7-day-long extraction sequence with various organic acids like citric acid, malic acid and acetic acid. For the residue the aforementioned sequential extraction has been applied. The Ge-content of the samples have been measured with ICP-MS using rhodium internal standard and two different soil standards. Total Ge concentrations were found to be in the range of 1.6 to 5.5 ppm with highest concentrations on the tailing site in the mining area of Altenberg. The mean Ge concentration in agriculturally used soils was 2.6 ± 0.67 ppm, whereas the maximum values reach 2.9 ± 0.64 ppm and 3.2 ± 0.67 ppm in Himmelsfürst and in a grassland by the Mulde river, respectively. With respect to the fractions, the vast majority of Ge is contained in the last three fractions, indicating that the bioavailable Ge is typically low in the samples. On the other hand at the soil horizons A at the aforementioned two sites characterised by high total Ge, together with that of Reiche Zeche mine dump have also the highest concentrations of Ge in the first three fractions, reaching levels of 1.74 and 0.98 ppm which account for approximately 40% of the total Ge content. Ge concentrations of soil samples extracted with 0.01 or 0.1 M citric acid and malic acid were

  6. Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical forests.

    PubMed

    McGuire, K L; D'Angelo, H; Brearley, F Q; Gedallovich, S M; Babar, N; Yang, N; Gillikin, C M; Gradoville, R; Bateman, C; Turner, B L; Mansor, P; Leff, J W; Fierer, N

    2015-05-01

    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.

  7. Precision agriculture in dry land: spatial variability of crop yield and roles of soil surveys, aerial photos, and digital elevation models

    NASA Astrophysics Data System (ADS)

    Nachabe, Mahmood; Ahuja, Laj; Shaffer, Mary Lou; Ascough, J.; Flynn, Brian; Cipra, J.

    1998-12-01

    In dryland, yield of crop varies substantially in space, often changing by an order of magnitude within few meters. Precision agriculture aims at exploiting this variability by changing agriculture management practices in space according to site specific conditions. Thus instead of managing a field (typical area 50 to 100 hectares) as a single unit using average conditions, the field is partitioned into small pieces of land known as management units. The size of management units can be in the order of 100 to 1,000 m2 to capture the patterns of variation of yield in the field. Agricultural practices like seeding rate, type of crop, and tillage and fertilizers are applied at the scale of the management unit to suit local agronomic conditions in unit. If successfully practiced, precision agriculture has the potential of increasing income and minimizing environmental impacts by reducing over application of crop production inputs. In the 90s, the implementation of precision agriculture was facilitated tremendously due to the wide availability and use of three technologies: (1) the Global Positioning System (GPS), (2) the Geographic Information System (GIS), and (3) remote sensing. The introduction of the GPS allowed the farmer to determine his coordinate location as equipments are moved in the field. Thus, any piece of equipment can be easily programmed to vary agricultural practices according to coordinate location over the field. The GIS allowed the storage and manipulation of large sets of data and the production of yield maps. Yield maps can be correlated with soil attributes from soil survey, and/or topographical attributes from a Digital Elevation Model (DEM). This helps predicting variation of potential yield over the landscape based on the spatial distribution of soil and topographical attributes. Soil attributes may include soil PH, Organic Matter, porosity, and hydraulic conductivity, whereas topographical attributes involve the estimations of elevation, slope

  8. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Treesearch

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  9. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia.

    PubMed

    Marrugo-Negrete, José; Pinedo-Hernández, José; Díez, Sergi

    2017-04-01

    The presence of metals in agricultural soils from anthropogenic activities such as mining and agricultural use of metals and metal-containing compounds is a potential threat for human health through the food chain. In this study, the concentration of heavy metals in 83 agricultural soils irrigated by the Sinú River, in northern Colombia, affected by mining areas upstream and inundated during seasonal floods events were determined to evaluate their sources and levels of pollution. The average concentrations of Cu, Ni, Pb, Cd, Hg and Zn were 1149, 661, 0.071, 0.040, 0.159 and 1365mg/kg respectively and exceeded the world normal averages, with the exception of Pb and Cd. Moreover, all values surpassed the background levels of soils in the same region. Soil pollution assessment was carried out using contamination factor (CF), enrichment factor (EF), geoaccumulation index (Igeo) and a risk assessment code (RAC). According to these indexes, the soils show a high degree of pollution of Ni and a moderate to high contamination of Zn and Cu; whereas, Pb, Cd and Hg present moderate pollution. However, based on the RAC index, a low environmental risk is found for all the analysed heavy metals. Multivariate statistical analyses, principal component and cluster analyses, suggest that soil contamination was mainly derived from agricultural practices, except for Hg, which was caused probably by atmospheric and river flow transport from upstream gold mining. Finally, high concentrations of Ni indicate a mixed pollution source from agricultural and ferronickel mining activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Estimating landscape-scale impacts of agricultural management on soil carbon using measurements and models

    NASA Astrophysics Data System (ADS)

    Schipanski, M.; Rosenzweig, S. T.; Robertson, A. D.; Sherrod, L. A.; Ghimire, R.; McMaster, G. S.

    2017-12-01

    Agriculture covers 40% of Earth's ice-free land area and has broad impacts on global biogeochemical cycles. While some agricultural management changes are small in scale or impact, others have the potential to shift biogeochemical cycles at landscape and larger scales if widely adopted. Understanding which management practices have the potential to contribute to climate change adaptation and mitigation while maintaining productivity requires scaling up estimates spatially and temporally. We used on-farm, long-term, and landscape scale datasets to estimate how crop rotations impact soil organic carbon (SOC) accumulation rates under current and future climate scenarios across the semi-arid Central and Southern Great Plains. We used a stratified, landscape-scale soil sampling approach across 96 farm fields to evaluate crop rotation intensity effects on SOC pools and pesticide inputs. Replacing traditional wheat-fallow rotations with more diverse, continuously cropped rotations increased SOC by 17% and 12% in 0-10 cm and 0-20 cm depths, respectively, and reduced herbicide use by 50%. Using USDA Cropland Data Layer, we estimated soil C accumulation and pesticide reduction potentials of shifting to more intensive rotations. We also used a 30-year cropping systems experiment to calibrate and validate the Daycent model to evaluate rotation intensify effects under future climate change scenarios. The model estimated greater SOC accumulation rates under continuously cropped rotations, but SOC stocks peaked and then declined for all cropping systems beyond 2050 under future climate scenarios. Perennial grasslands were the only system estimated to maintain SOC levels in the future. In the Southern High Plains, soil C declined despite increasing input intensity under current weather while modest gains were simulated under future climate for sorghum-based cropping systems. Our findings highlight the potential vulnerability of semi-arid regions to climate change, which will be

  11. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    PubMed

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  12. Sampling Soil for Characterization and Site Description

    NASA Technical Reports Server (NTRS)

    Levine, Elissa

    1999-01-01

    The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

  13. Current developments in soil water sensing for climate, environment, hydrology and agriculture

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the four dimensional spatio-temporal status and dynamics of soil water content is becoming indispensable to solutions of agricultural, environmental, climatological and engineering problems at all scales. In agronomy alone, science is severely limited by scant or inaccurate knowledge of...

  14. Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China.

    PubMed

    Zhao, Long; Hou, Hong; Shangguan, Yuxian; Cheng, Bin; Xu, Yafei; Zhao, Ruifen; Zhang, Yigong; Hua, Xiaozan; Huo, Xiaolan; Zhao, Xiufeng

    2014-10-01

    A comprehensive investigation of the levels, distribution patterns, and sources of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils of the coal production area surrounding Xinzhou, China, was conducted, and the potential human health risks associated with the levels observed were addressed. A total of 247 samples collected from agricultural soils from the area were analyzed for sixteen PAHs, including highly carcinogenic isomers. The PAH concentrations had a range of n.d. to 782ngg(-1), with a mean value of 202ngg(-1). The two-three ring PAHs were the dominant species, making up 60 percent of total PAHs. Compared with the pollution levels and carcinogenic potential risks reported in other studies, the soil PAH concentrations in the study area were in the low to intermediate range. A positive matrix factorization model indicates that coal/biomass combustion, coal and oil combustion, and coke ovens are the primary PAH sources, accounting for 33 percent, 26 percent, and 24 percent of total PAHs, respectively. The benzo[a]pyrene equivalent (BaPeq) concentrations had a range of n.d. to 476ngg(-1) for PAH7c, with a mean value of 34ngg(-1). The BaPeq concentrations of PAH7c accounted for more than 99 percent of the ∑PAH16, which suggests that seven PAHs were major carcinogenic contributors of ∑PAH16. According to the Canadian Soil Quality Guidelines, only six of the soil samples had concentrations above the safe BaPeq value of 600ngg(-1); the elevated concentrations observed at these sites can be attributed to coal combustion and industrial activities. Exposure to these soils through direct contact probably poses a significant risk to human health as a result of the carcinogenic effects of PAHs. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Chemical composition of windblown dust emitted from agricultural soils amended with biosolids

    NASA Astrophysics Data System (ADS)

    Pi, Huawei; Sharratt, Brenton; Schillinger, William F.; Bary, Andrew; Cogger, Craig

    2018-06-01

    Biosolids are frequently applied to agricultural lands in dry regions, but wind erosion of these lands might transport biosolids particulates offsite and impact environmental quality. Our objective was to measure concentrations of EPA-regulated metals as well as macronutrients and micronutrients in soil and windblown sediment from a biosolids field experiment. A wind tunnel was used to generate windblown sediment from experimental plots subject to traditional (disk) or conservation (undercutter) tillage and application of biosolids or synthetic fertilizer on two measurement dates during the summer fallow phase of a winter wheat-summer fallow (WW-SF) rotation at Lind, WA in 2015 and 2016. Application of biosolids or use of undercutter tillage resulted in higher concentrations of heavy metals in the soil. For example, zinc (Zn) concentration in soil was 14% higher for undercutter than disk tillage and 21% higher for biosolids than synthetic fertilizer on the first measurement date in 2015. Differences in metal concentrations between treatments, however, were not as evident in windblown sediment. Similar results were found for nutrient concentrations in soil, but concentrations in windblown sediment were at least 10% lower for biosolids than synthetic fertilizer and undercutter than disk tillage on at least one measurement date. Little difference was found in loss of heavy metals and nutrients in windblown sediment between biosolids and synthetic fertilizer treatments. Our results suggest similar loss of metals and other elements from agriculture land after application of biosolids and synthetic fertilizer. Biosolids, however, are beneficial for increasing C and N content in soil.

  16. Soil health in the Mediterranean region: Development and consolidation of a multifactor index to characterize the health of agricultural lands

    NASA Astrophysics Data System (ADS)

    Gil, Eshel; Guy, Levy; Oshri, Rinot; Michael, Borisover; Uri, Yermiyahu; Leah, Tsror; Hanan, Eizenberg; Tal, Svoray; Alex, Furman; Yael, Mishael; Yosef, Steinberger

    2017-04-01

    The link among between soil health, soil conservation, and food security, resilience, and function under a wide range of agricultural uses and different environmental systems, is at the heart of many ecofriendly research studies worldwide. We consider the health of soil as a function of its ability to provide ecosystem services, including agricultural production (provisional services); regulating natural cycles (regulation services) and as a habitat for plants (support services). Soil health is affected by a wide range of soil properties (biotic and abiotic) that maintain complex interactions among themselves. The decline in soil health includes degradation in its physical properties (e.g., deterioration of soil structure, compaction and sealing, water-repellency, soil erosion by water and wind), chemical properties (e.g., salinization, depletion of nutrients and organic matter content, accumulation of pollutants and reduction of the soils' ion exchange capacity) and biological properties (e.g., vulnerable populations of microflora, microfauna, and mesofauna, leading to a breach of ecological balance and biodiversity and, as a result, destruction of beneficial populations and pathogen outbreaks). Numerous studies show that agricultural practices have a major impact on soil functioning. Substituting longstanding tillage with no-till cropping and the amalgamation of cover crops in crop rotations were found to improve soil properties. Such changes contributed to the enhancement of the agronomical performance of the soil. On the other hand, these practices may result in lessened effectiveness of controlling perennial weeds. The evaluation of soil-health status in the Mediterranean region is very limited. Moreover, existing approaches for evaluation that have been used (such as the Cornell and Hany tests) do not give sufficient weight to important agronomic processes, such as soil erosion, salinization, sodification, spread of weeds in the fields (in particular, weeds

  17. Organic Components and Elemental Carbon in Soils and Ambient Particles near Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Fraser, M. P.; Jia, Y.; Clements, A.

    2008-12-01

    In the desert southwest, fugitive dust emissions contribute significantly to ambient aerosol concentrations. Wind erosion from the arid land is a primary contributor to ambient particulate matter (PM) concentrations but, in regions including Central Arizona, desert lands have been converted for agriculture use and thus agriculture processes constitute another contributor. As the metropolitan Phoenix region expands into these agricultural lands, urban sources and construction also contributes to the ambient PM load. In an effort to identify and access relative contribution of these and other major PM sources in the region, a series of ambient PM samples and soil samples were collected near Higley, AZ, a suburb of Phoenix which has seen rapid urbanization onto agricultural lands between January and May 2008. The soil samples collected were resuspended and samples of resuspended dust were collected to represent particles smaller than 2.5 microns and 10 microns in aerodynamic diameter (PM2.5 and PM10 respectively). The size segregated soil and ambient PM samples were analyzed for bulk mass, elemental and organic carbon content, and a number of specific compounds including ions, metals, alkanes, organic acids, polycyclic aromatic hydrocarbons, and saccharides. The saccharide contribution to soil organic carbon has been studied to elucidate key factors in the soil carbon balance and markers have been developed for tracing fungal metabolites, plant growth and budding and organic matter decay. Using organic markers, the contribution of various sources to PM10 and PM2.5 levels have been determined by positive matrix factorization (PMF) of the ambient aerosol marker concentrations quantified from PM samples. Subsequently, samples of local soil from native and agricultural fields and local roadways wers size- segregated and analyzed in an effort to create a source profile for the dust in the area. A chemical mass balance model has been used to compare with the PMF results

  18. Changes in Soil Carbon Following Afforestation

    DOE Data Explorer

    Paul, K. I. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Kingston ACT (Australia); Polglase, P. J. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Kingston ACT (Australia; Nyakuengama, J. G. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Kingston ACT (Australia); Khanna, P. K. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Kingston ACT (Australia)

    2003-01-01

    Quantifying changes in soil C may be an important consideration under large-scale afforestation or reforestation. We reviewed global data on changes in soil C following afforestation, available from 43 published or unpublished studies, encompassing 204 sites. Data were highly variable, with soil C either increasing or decreasing, particularly in young (<10-y) forest stands. Because studies varied in the number of years since forest establishment and the initial soil C content, we calculated change in soil C as a weighted average (i.e. sum of C change divided by sum of years since forest establishment) relative to the soil C content under previous agricultural systems at <10 cm, >10 cm and <30 cm sampling depths. On average, soil C in the <10 cm (or <30 cm) layers generally decreased by 3.46% y–1 (or 0.63% y–1) relative to the initial soil C content during the first five years of afforestation, followed by a decrease in the rate of decline and eventually recovery to C contents found in agricultural soils at about age 30. In plantations older than 30 years, C content was similar to that under the previous agricultural systems within the surface 10 cm of soil, yet at other sampling depths, soil C had increased by between 0.50 and 0.86% y–1. Amounts of C lost or gained by soil are generally small compared with accumulation of C in tree biomass.

  19. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China

    PubMed Central

    Yang, Pingguo; Yang, Miao; Mao, Renzhao; Shao, Hongbo

    2014-01-01

    The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and Cd, which indicates that Cu, Zn, and Cd are associated with and controlled by anthropic activities. The average value of heavy metal is lower than the second grade standard values of soil environmental quality standards in China. Single pollution index is lower than 1, and the Nemerow integrated pollution index is 0.305, which means that study area has not been polluted. The semivariograms of soil heavy metal single pollution index fitted spherical and exponential models. The variable ratio of single pollution index showed moderately spatial dependence. Heavy metal contents showed relative safety in the study area. PMID:24892058

  20. Soil Gas Sampling Operating Procedure

    EPA Pesticide Factsheets

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil gas samples for field screening or laboratory analysis.