Science.gov

Sample records for agricultural soils amended

  1. Cesium and strontium sorption behavior in amended agricultural soils

    NASA Astrophysics Data System (ADS)

    Mehmood, Khalid; Hofmann, Diana; Burauel, Peter; Vereecken, Harry; Berns, Anne E.

    2014-05-01

    Biogas digestates and biochar are emerging soil amendments. Biochar is a byproduct of pyrolysis process which is thermal decomposition of biomass to produce syngas and bio-oil. The use of biochar for soil amendment is being promoted for higher crop yields and carbon sequestration. Currently, the numbers of biogas plants in Germany are increasing to meet the new energy scenarios. The sustainability of biogas industry requires proper disposal options for digestate. Biogas digestates being rich in nutrients are beneficial to enhance agricultural productions. Contrary to the agronomical benefits of these organic amendments, their use can influence the mobility and bioavailability of soil contaminants due to nutrients competition and high organic matter content. So far, the impact of such amendments on highly problematic contaminants like radionuclides is not truly accounted for. In the present study, sorption-desorption behavior of cesium and strontium was investigated in three soils of different origin and texture. Two agricultural soils, a loamy sand and a silty soil, were amended with biochar and digestate in separate experiments, with field application rates of 25 Mg/ha and 34 Mg/ha, respectively. For comparison a third soil, a forest soil, was incubated without any amendment. The amendments were mixed into the top 20 cm of the field soils, resulting in final concentrations of 8-9 g biochar/Kg soil and 11-12 g digestate/Kg soil. The soils were incubated for about six months at room temperature. Sorption-desorption experiments were performed with CsCl and SrCl2 after pre-equilibrating the soils with CaCl2 solutions. The amendments with field application rates did not have a significant effect on the relevant soil parameters responsible for the sorption behavior of the two radionuclides. Comparatively, the soil type lead to distinctive differences in sorption-desorption dynamics of the two radionuclides. Cesium showed a higher affinity for silty soil followed by

  2. Aerosol emissions from biochar-amended agricultural soils

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Sharratt, B. S.; Li, J. J.; Olshvevski, S.; Meng, Z.; Zhang, J.

    2015-12-01

    Agricultural production is a major contributor to anthropogenic greenhouse gas emissions and associated global warming. In this regard, novel carbon sequestration strategies such as large-scale biochar application may provide sustainable pathways to increase the terrestrial storage of carbon in agricultural areas. Biochar has a long residence time in the soil and hence understanding the soil properties affected by biochar addition needs to be investigated to identify the tradeoffs and synergies of large-scale biochar application. Even though several studies have investigated the impacts of biochar application on a variety of soil properties, very few studies have investigated the impacts on soil erosion, in particular wind (aeolian) erosion and subsequent particulate emissions. Using a combination of wind tunnel studies and laboratory experiments, we investigated the dust emission potential of biochar-amended agricultural soils. We amended biochar (unsieved or sieved to appropriate particle size; application rates ranging from 1 - 5 % of the soil by weight) to three soil types (sand, sandy loam, and silt loam) and estimated the changes in threshold shear velocity for wind erosion and dust emission potential in comparison to control soils. Our experiments demonstrate that emissions of fine biochar particles may result from two mechanisms (a) very fine biochar particles (suspension size) that are entrained into the air stream when the wind velocity exceeds the threshold, and (b) production of fine biochar particles originating from the abrasion by quartz grains. The results indicate that biochar application significantly increased particulate emissions and more interestingly, the rate of increase was found to be higher in the intermediate range of biochar application. As fine biochar particles effectively adsorb/trap contaminants and pathogens from the soil, the preferential erosion of fine biochar particles by wind may lead to concentration of contaminants in the

  3. Mineralization of soil organic matter in biochar amended agricultural landscape

    NASA Astrophysics Data System (ADS)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  4. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils.

    PubMed

    Yu, Xiang-Yang; Mu, Chang-Li; Gu, Cheng; Liu, Cun; Liu, Xian-Jin

    2011-11-01

    Pyrolysis of vegetative biomass into biochar and application of the more stable form of carbon to soil have been shown to be effective in reducing the emission of greenhouse gases, improving soil fertility, and sequestering soil contaminants. However, there is still lack of information about the impact of biochar amendment in agricultural soils on the sorption and environmental fate of pesticides. In this study, we investigated the sorption and dissipation of a neonicotinoid insecticide acetamiprid in three typical Chinese agricultural soils, which were amended by a red gum wood (Eucalyptus spp.) derived biochar. Our results showed that the amendment of biochar (0.5% (w/w)) to the soils could significantly increase the sorption of acetamiprid, but the magnitudes of enhancement were varied. Contributions of 0.5% newly-added biochar to the overall sorption of acetamiprid were 52.3%, 27.4% and 11.6% for red soil, paddy soil and black soil, respectively. The dissipation of acetamiprid in soils amended with biochar was retarded compared to that in soils without biochar amendment. Similar to the sorption experiment, in soil with higher content of organic matter, the retardation of biochar on the dissipation of acetamiprid was lower than that with lower content of organic matter. The different effects of biochar in agricultural soils may attribute to the interaction of soil components with biochar, which would block the pore or compete for binding site of biochar. Aging effect of biochar application in agricultural soils and field experiments need to be further investigated. PMID:21862101

  5. Effect of Crotalaria juncea Amendment on Nematode Communities in Soil with Different Agricultural Histories

    PubMed Central

    Wang, K.-H.; McSorley, R.; Gallaher, R. N.

    2003-01-01

    Effect of sunn hemp (Crotalaria juncea) hay amendment on nematode community structure in the soil surrounding roots of yellow squash (Cucurbita pepo) infected with root-knot nematodes was examined in two greenhouse experiments. Soils were from field plots treated long-term (LT) with yard-waste compost or no yard-waste compost in LT experiment, and from a short-term (ST) agricultural site in ST experiment. Soils collected were either amended or not amended with C. juncea hay. Nematode communities were examined 2 months after squash was inoculated with Meloidogyne incognita. Amendment increased (P < 0.05) omnivorous nematodes in both experiments but increased only bacterivorous nematodes in ST experiment (P < 0.05), where the soil had relatively low organic matter (<2%). This effect of C. juncea amendment did not occur in LT experiment, in which bacterivores were already abundant. Fungivorous nematodes were not increased by C. juncea amendment in either experiment, but predatory nematodes were increased when present. Although most nematode faunal indices, including enrichment index, structure index, and channel index, were not affected by C. juncea amendment, structure index values were affected by previous soil organic matter content. Results illustrate the importance of considering soil history (organic matter, nutrient level, free-living nematode number) in anticipating changes following amendment with C. juncea hay. PMID:19262764

  6. Characterizing and modeling of extensive atrazine elution tailing for stable manure-amended agricultural soil.

    PubMed

    Akyol, Nihat Hakan

    2015-01-01

    Non-ideal sorption and extensive elution tailing behavior of atrazine was evaluated for an agricultural soil with and without stable manure amendment (10% by weight). A series of laboratory experiments showed that the sorption of atrazine was described by rate-limited, nonlinear reversible processes (Freundlich isotherm) for both non-amended and amended soil. Non-ideal transport of atrazine exhibited extensive low concentration elution tailing due to the most likely organic carbon fraction in the soil. This tailing behavior was more pronounced and extensive for soil with 10% stable-manure amendment. Two-site transport modeling analyses including non-linear sorption and rate-limited sorption-desorption provided a reasonably good match to the atrazine breakthrough curves but were unable to match the long-term concentration tailing, even for non-amended soil. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous-distribution function was used to successfully simulate atrazine transport early-time breakthrough and long-term concentration tailing for both non-amended and amended soil conditions. PMID:25303664

  7. Characterizing and modeling of extensive atrazine elution tailing for stable manure-amended agricultural soil.

    PubMed

    Akyol, Nihat Hakan

    2015-01-01

    Non-ideal sorption and extensive elution tailing behavior of atrazine was evaluated for an agricultural soil with and without stable manure amendment (10% by weight). A series of laboratory experiments showed that the sorption of atrazine was described by rate-limited, nonlinear reversible processes (Freundlich isotherm) for both non-amended and amended soil. Non-ideal transport of atrazine exhibited extensive low concentration elution tailing due to the most likely organic carbon fraction in the soil. This tailing behavior was more pronounced and extensive for soil with 10% stable-manure amendment. Two-site transport modeling analyses including non-linear sorption and rate-limited sorption-desorption provided a reasonably good match to the atrazine breakthrough curves but were unable to match the long-term concentration tailing, even for non-amended soil. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous-distribution function was used to successfully simulate atrazine transport early-time breakthrough and long-term concentration tailing for both non-amended and amended soil conditions.

  8. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils.

    PubMed

    Barrett, M; Khalil, M I; Jahangir, M M R; Lee, C; Cardenas, L M; Collins, G; Richards, K G; O'Flaherty, V

    2016-04-01

    The nitrite reductase (nirS and nirK) and nitrous oxide reductase-encoding (nosZ) genes of denitrifying populations present in an agricultural grassland soil were quantified using real-time polymerase chain reaction (PCR) assays. Samples from three separate pedological depths at the chosen site were investigated: horizon A (0-10 cm), horizon B (45-55 cm), and horizon C (120-130 cm). The effect of carbon addition (treatment 1, control; treatment 2, glucose-C; treatment 3, dissolved organic carbon (DOC)) on denitrifier gene abundance and N2O and N2 fluxes was determined. In general, denitrifier abundance correlated well with flux measurements; nirS was positively correlated with N2O, and nosZ was positively correlated with N2 (P < 0.03). Denitrifier gene copy concentrations per gram of soil (GCC) varied in response to carbon type amendment (P < 0.01). Denitrifier GCCs were high (ca. 10(7)) and the bac:nirK, bac:nirS, bac:nir (T) , and bac:nosZ ratios were low (ca. 10(-1)/10) in horizon A in all three respective treatments. Glucose-C amendment favored partial denitrification, resulting in higher nir abundance and higher N2O fluxes compared to the control. DOC amendment, by contrast, resulted in relatively higher nosZ abundance and N2 emissions, thus favoring complete denitrification. We also noted soil depth directly affected bacterial, archaeal, and denitrifier abundance, possibly due to changes in soil carbon availability with depth.

  9. Organoclays as soil amendments to increase the efficacy and reduce the environmental impact of the herbicide fluometuron in agricultural soils.

    PubMed

    Gámiz, Beatriz; Celis, Rafael; Hermosín, María C; Cornejo, Juan

    2010-07-14

    The use of pesticides in agriculture has become a source of pollution of soil and water in the last decades. Extensive pesticide transport losses due to leaching and runoff produce nonpoint source contamination of soils and water. One of the soil processes that reduce pesticide transport losses is adsorption by soil particles; therefore, enhancement of pesticide retention by soil can be used as a strategy to attenuate the environmental impact of pesticides. In this work, organoclays were prepared by treating Wyoming montmorillonite (SWy-2) and Arizona montmorillonite (SAz-1) with different organic cations and were assayed as soil amendments to enhance the retention and reduce the leaching losses of the herbicide fluometuron [N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl] urea] in soils. Two agricultural soils from Southern Spain were selected for being high-risk scenarios of ground and surface water contamination. First, a batch adsorption study was conducted to identify organoclays with high affinity for fluometuron. Among the different organoclays assayed, spermine-treated Wyoming montmorillonite (SW-SPERM) displayed high and reversible adsorption of fluometuron and was selected as an amendment for subsequent persistence, leaching, and herbicidal activity experiments of fluometuron with unamended and amended soils. Amendment of the soils with SW-SPERM at rates of 1%, 2%, and 5% greatly enhanced fluometuron retention by the soils and retarded fluometuron leaching through soil columns. Incubation experiments revealed that the persistence of the herbicide in the amended soils was similar to that in unamended soils and that most of the herbicide was ultimately available for degradation. Bioassays demonstrated that the reduced leaching losses of fluometuron in soils amended with SW-SPERM may result in increased herbicide efficacy if heavy rainfall events occur shortly after herbicide application.

  10. Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells.

    PubMed

    Vida, Carmen; Bonilla, Nuria; de Vicente, Antonio; Cazorla, Francisco M

    2016-01-01

    This study focused on the microbial profile present in an agricultural soil that becomes suppressive after the application of composted almond shells (AS) as organic amendments. For this purpose, we analyzed the functions and composition of the complex communities present in an experimental orchard of 40-year-old avocado trees, many of them historically amended with composted almond shells. The role of microbes in the suppression of Rosellinia necatrix, the causative agent of avocado white root rot, was determined after heat-treatment and complementation experiments with different types of soil. Bacterial and fungal profiles obtained from natural soil samples based on the 16S rRNA gene and ITS sequencing revealed slight differences among the amended (AS) and unamended (CT) soils. When the soil was under the influence of composted almond shells as organic amendments, an increase in Proteobacteria and Ascomycota groups was observed, as well as a reduction in Acidobacteria and Mortierellales. Complementary to these findings, functional analysis by GeoChip 4.6 confirmed these subtle differences, mainly present in the relative abundance of genes involved in the carbon cycle. Interestingly, a group of specific probes included in the "soil benefit" category was present only in AS-amended soils, corresponding to specific microorganisms previously described as potential biocontrol agents, such as Pseudomonas spp., Burkholderia spp., or Actinobacteria. Considering the results of both analyses, we determined that AS-amendments to the soil led to an increase in some orders of Gammaproteobacteria, Betaproteobacteria, and Dothideomycetes, as well as a reduction in the abundance of Xylariales fungi (where R. necatrix is allocated). The combination of microbial action and substrate properties of suppressiveness are discussed. PMID:26834725

  11. Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells

    PubMed Central

    Vida, Carmen; Bonilla, Nuria; de Vicente, Antonio; Cazorla, Francisco M.

    2016-01-01

    This study focused on the microbial profile present in an agricultural soil that becomes suppressive after the application of composted almond shells (AS) as organic amendments. For this purpose, we analyzed the functions and composition of the complex communities present in an experimental orchard of 40-year-old avocado trees, many of them historically amended with composted almond shells. The role of microbes in the suppression of Rosellinia necatrix, the causative agent of avocado white root rot, was determined after heat-treatment and complementation experiments with different types of soil. Bacterial and fungal profiles obtained from natural soil samples based on the 16S rRNA gene and ITS sequencing revealed slight differences among the amended (AS) and unamended (CT) soils. When the soil was under the influence of composted almond shells as organic amendments, an increase in Proteobacteria and Ascomycota groups was observed, as well as a reduction in Acidobacteria and Mortierellales. Complementary to these findings, functional analysis by GeoChip 4.6 confirmed these subtle differences, mainly present in the relative abundance of genes involved in the carbon cycle. Interestingly, a group of specific probes included in the “soil benefit” category was present only in AS-amended soils, corresponding to specific microorganisms previously described as potential biocontrol agents, such as Pseudomonas spp., Burkholderia spp., or Actinobacteria. Considering the results of both analyses, we determined that AS-amendments to the soil led to an increase in some orders of Gammaproteobacteria, Betaproteobacteria, and Dothideomycetes, as well as a reduction in the abundance of Xylariales fungi (where R. necatrix is allocated). The combination of microbial action and substrate properties of suppressiveness are discussed. PMID:26834725

  12. Fate of Escherichia coli O157: H7 in agricultural soils amended with different organic fertilizers.

    PubMed

    Yao, Zhiyuan; Yang, Li; Wang, Haizhen; Wu, Jianjun; Xu, Jianming

    2015-10-15

    Five organic fertilizers (vermicompost, pig manure, chicken manure, peat and oil residue) were applied to agricultural soils to study their effects on the survival of Escherichia coli O157:H7 (E. coli O157:H7). Results showed that E. coli O157:H7 survival changed greatly after organic fertilizers application, with shorter td values (survival time needed to reach the detection limit of 100 CFU g(-1)) (12.57±6.57 days) in soils amended with chicken manure and the longest (25.65±7.12 days) in soils amended with pig manure. Soil pH, EC and free Fe/Al (hydro) oxides were significant explanatory factors for E. coli O157:H7 survival in the original soils. Soil constituents (minerals and organic matter) and changes in their surface charges with pH increased the effect of soil pH on E. coli O157:H7 survival. However, electrical conductivity played a more important role in regulating E. coli O157:H7 survival in fertilizer-amended soils. This study highlighted the importance of choosing appropriate organic fertilizers in the preharvest environment to reduce food-borne bacterial contamination. PMID:25910457

  13. Fate of Escherichia coli O157: H7 in agricultural soils amended with different organic fertilizers.

    PubMed

    Yao, Zhiyuan; Yang, Li; Wang, Haizhen; Wu, Jianjun; Xu, Jianming

    2015-10-15

    Five organic fertilizers (vermicompost, pig manure, chicken manure, peat and oil residue) were applied to agricultural soils to study their effects on the survival of Escherichia coli O157:H7 (E. coli O157:H7). Results showed that E. coli O157:H7 survival changed greatly after organic fertilizers application, with shorter td values (survival time needed to reach the detection limit of 100 CFU g(-1)) (12.57±6.57 days) in soils amended with chicken manure and the longest (25.65±7.12 days) in soils amended with pig manure. Soil pH, EC and free Fe/Al (hydro) oxides were significant explanatory factors for E. coli O157:H7 survival in the original soils. Soil constituents (minerals and organic matter) and changes in their surface charges with pH increased the effect of soil pH on E. coli O157:H7 survival. However, electrical conductivity played a more important role in regulating E. coli O157:H7 survival in fertilizer-amended soils. This study highlighted the importance of choosing appropriate organic fertilizers in the preharvest environment to reduce food-borne bacterial contamination.

  14. Low occurrence of Pseudomonas aeruginosa in agricultural soils with and without organic amendment.

    PubMed

    Deredjian, Amélie; Colinon, Céline; Hien, Edmond; Brothier, Elisabeth; Youenou, Benjamin; Cournoyer, Benoit; Dequiedt, Samuel; Hartmann, Alain; Jolivet, Claudy; Houot, Sabine; Ranjard, Lionel; Saby, Nicolas P A; Nazaret, Sylvie

    2014-01-01

    The occurrence of Pseudomonas aeruginosa was monitored at a broad spatial scale in French agricultural soils, from various soil types and under various land uses to evaluate the ability of soil to be a natural habitat for that species. To appreciate the impact of agricultural practices on the potential dispersion of P. aeruginosa, we further investigated the impact of organic amendment at experimental sites in France and Burkina Faso. A real-time quantitative PCR (qPCR) approach was used to analyze a set of 380 samples selected within the French RMQS ("Réseau de Mesures de la Qualité des Sols") soil library. In parallel, a culture-dependent approach was tested on a subset of samples. The results showed that P. aeruginosa was very rarely detected suggesting a sporadic presence of this bacterium in soils from France and Burkina Faso, whatever the structural and physico-chemical characteristics or climate. When we analyzed the impact of organic amendment on the prevalence of P. aeruginosa, we found that even if it was detectable in various manures (at levels from 10(3) to 10(5) CFU or DNA targets (g drywt)(-1) of sample), it was hardly ever detected in the corresponding soils, which raises questions about its survival. The only case reports were from a vineyard soil amended with a compost of mushroom manure in Burgundy, and a few samples from two fields amended with raw urban wastes in the sub-urban area of Ouagadougou, Burkina Faso. In these soils the levels of culturable cells were below 10 CFU (g drywt)(-1).

  15. Low occurrence of Pseudomonas aeruginosa in agricultural soils with and without organic amendment

    PubMed Central

    Deredjian, Amélie; Colinon, Céline; Hien, Edmond; Brothier, Elisabeth; Youenou, Benjamin; Cournoyer, Benoit; Dequiedt, Samuel; Hartmann, Alain; Jolivet, Claudy; Houot, Sabine; Ranjard, Lionel; Saby, Nicolas P. A.; Nazaret, Sylvie

    2014-01-01

    The occurrence of Pseudomonas aeruginosa was monitored at a broad spatial scale in French agricultural soils, from various soil types and under various land uses to evaluate the ability of soil to be a natural habitat for that species. To appreciate the impact of agricultural practices on the potential dispersion of P. aeruginosa, we further investigated the impact of organic amendment at experimental sites in France and Burkina Faso. A real-time quantitative PCR (qPCR) approach was used to analyze a set of 380 samples selected within the French RMQS (“Réseau de Mesures de la Qualité des Sols”) soil library. In parallel, a culture-dependent approach was tested on a subset of samples. The results showed that P. aeruginosa was very rarely detected suggesting a sporadic presence of this bacterium in soils from France and Burkina Faso, whatever the structural and physico-chemical characteristics or climate. When we analyzed the impact of organic amendment on the prevalence of P. aeruginosa, we found that even if it was detectable in various manures (at levels from 103 to 105 CFU or DNA targets (g drywt)−1 of sample), it was hardly ever detected in the corresponding soils, which raises questions about its survival. The only case reports were from a vineyard soil amended with a compost of mushroom manure in Burgundy, and a few samples from two fields amended with raw urban wastes in the sub-urban area of Ouagadougou, Burkina Faso. In these soils the levels of culturable cells were below 10 CFU (g drywt)−1. PMID:24809025

  16. Organic amendments' dissolved organic carbon influences bioavailability of agricultural soil DOC

    NASA Astrophysics Data System (ADS)

    Straathof, Angela L.; Chincarini, Riccardo; Hoffland, Ellis; Comans, Rob N. J.

    2013-04-01

    Agricultural soils benefit from additions of organic amendments because they improve soil structure, are a source of plant nutrients, and increase concentrations of soil organic carbon (SOC). The latter fuels microbial processes important for plant growth, including nutrient mineralization and the suppression of plant diseases. However, these amendment additions range in quality and quantity of C and little is known about how their properties interact with native soil C and affect turnover. The dissolved pool of SOC (DOC) may be the most important C source for these processes as it is more biologically available and thus relatively easily turned over by the soil microbial biomass. Using a rapid-batch DOC fractionation procedure, we studied the composition of different organic amendments' DOC pools and measured how their additions change the quantity and turnover of soil DOC. Fractions isolated and quantified with this procedure include humic and fulvic acids, hydrophobic neutral and hydrophilic compounds. We hypothesized that these range from biologically recalcitrant to readily available, respectively. Amendments analysed included composts of different source materials and maturation stages collected from two different compost facilities in the Netherlands. Both total DOC concentrations and proportions of the aforementioned fractions ranged highly between composts. Composts cured for >10 days had a lower proportion of hydrophilic C compounds, suggesting that these are the most bioavailable and released as CO2 via microbial activity during maturation. To measure the effects of compost DOC on soil DOC, we extracted the former and added it to a sandy soil in an incubation experiment. The amendment increased soil total DOC, CO2 production from the soil, and the pools of humic and fulvic acids as a proportion of total DOC. Turnover of C from the incubated soil was measured by substrate-induced CO2 production (an indicator of microbial activity) from a 96-well

  17. Carbon dioxide emissions from agricultural soils amended with livestock-derived organic materials

    NASA Astrophysics Data System (ADS)

    Pezzolla, D.; Said-Pullicino, D.; Gigliotti, G.

    2009-04-01

    Carbon dioxide gas xchange between terrestrial ecosystems and the atmosphere, as well as the carbon sink strength of various arable land ecosystems, is of primary interest for global change research. Measures for increasing soil C inputs include the preferential use of livestock-derived organic materials (e.g. animal manure and slurries, digestate from biogas production plants and compost). The application of such materials to agricultural soils returns essential nutrients for plant growth and organic matter to maintain long-term fertility. Whether or not such practices ultimately result in sustained C sequestration at the ecosystem level will depend on their mineralization rates. This work presents preliminary results from a laboratory incubation trial to evaluate carbon dioxide fluxes from two agricultural soils (a calcareous silt loam and a silty clay loam) amended with agricultural doses of (i) pig slurry (PSL), (ii) the digestate from the anaerobic fermentation of pig slurries (AAS) and (ii) a compost from the aerobic stabilisation of the digestate (LDC). These subsequent steps of slurry stabilisation resulted in a decrease in the content of labile organic matter which was reflected in a reduction in maximum carbon dioxide emission rates from amended soils. Measurements have shown that peak emissions from soils occur immediately after application of these organic materials (within 5 days) and decrease in the order PSL > AAS > LDC. Moreover, mean cumulative emissions over the first 40 days showed that a higher percentage (about 44%) of the C added with PSL was mineralised respect to C added with AAS (39%) and LDC (25%). Although it was hypothesised that apart from the quantity and stability of the added organic materials, even soil characteristics could influence C mineralisation rates, no significant differences were observed between emission fluxes for similarly treated soils. Mean cumulative emission fluxes after 40 days from treatment were of 114, 103 and

  18. Barley seedling growth in soils amended with fly ash or agricultural lime followed by acidification

    SciTech Connect

    Renken, R.R.; McCallister, D.L.; Tarkalson, D.D.; Hergert, G.W.; Marx, D.B.

    2006-05-15

    Calcium-rich coal combustion fly ash can be used as an amendment to neutralize soil acidity because of its oxides and carbonate content, but its aluminum content could inhibit plant growth if soil pH values fall below optimal agronomic levels. This study measured root and shoot growth of an acid-sensitive barley (Hordeum vulgare L. 'Kearney') grown in the greenhouse on three naturally acid soils. The soils were either untreated or amended with various liming materials (dry fly ash, wet fly ash, and agricultural lime) at application rates of 0, .5, 1, and 1.5 times the recommended lime requirement, then treated with dilute acid solutions to simulate management-induced acidification. Plant growth indexes were measured at 30 days after planting. Root mass per plant and root length per plant were greater for the limed treatments than in the acidified check. Root growth in the limed treatments did not differ from root growth in the original nonacidified soils. Top mass per plant in all limed soils was either larger than or not different from that in the original nonacidified soils. Based on top mass per plant, no liming material or application rate was clearly superior. Both fly ash and agricultural lime reduced the impact of subsequent acidification on young barley plants. Detrimental effects of aluminum release on plant growth were not observed. Calcium-rich fly ash at agronomic rates is an acceptable acid-neutralizing material with no apparent negative effects.

  19. Effect of organic amendments on quality indexes in an italian agricultural soil

    NASA Astrophysics Data System (ADS)

    Scotti, R.; Rao, M. A.; D'Ascoli, R.; Scelza, R.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    Intensive agricultural practices can determine a decline in soil fertility which represents the main constraint to agricultural productivity. In particular, the progressive reduction in soil organic matter, without an adequate restoration, may threaten soil fertility and agriculture sustainability. Some soil management practices can improve soil quality by adding organic amendments as alternative to the sole use of mineral fertilizers for increasing plant quality and growth. A large number of soil properties can be used to define changes in soil quality. In particular, although more emphasis has been given in literature to physical and chemical properties, biological properties, strictly linked to soil fertility, can be valid even more sensitive indicators. Among these, soil enzyme activities and microbial biomass may provide an "early warning" of soil quality and health changes. The aim of this work was to study the effect of preventive sterilization treatment and organic fertilization on enzymatic activities (dehydrogenase, arylsulphatase, beta-glucosidase, phosphatase, urease) and microbial biomass C in an agricultural soil under crop rotation. The study was carried out on an agricultural soil sited in Campania region (South Italy). At the beginning of experiment sterilizing treatments to control soilborne pathogens and weeds were performed by solarization and calcium cyanamide addition to soil. Organic fertilization was carried out by adding compost from vegetable residues, ricin seed exhaust (Rigen) and straw, singly or in association. Three samplings were performed at three different stages of crop rotation: I) September 2005, immediately after the treatments; II) December 2005, after a lettuce cycle; III) January 2007, after peppers and lettuce cycles. The soil sampling followed a W scheme, with five sub-samples for each plot. Soils were sieved at 2 mm mesh and air dried to determine physical and chemical properties; in addition a suitable amount of soils

  20. Biochar soil amendments as a tool for climate change adaptation in PNW agriculture

    NASA Astrophysics Data System (ADS)

    Phillips, C. L.; Trippe, K. M.; Murphy, B. A.; Beovich, A. V.; Griffith, S. M.

    2015-12-01

    Loss of snow pack, changing hydrographs, and increased temperatures and irrigation demands as a result of climate change all threaten to create transformational drought for growers in the Pacific Northwest. One approach for adapting to drought is to improve moisture retention through soil management practices. Recent efforts at the FSCRU to develop on-farm power have produced a biochar from gasification of seed mill waste that may prove useful as a tool for drought adaption. Testing of this biochar revealed that it contains no toxic elements, making it suitable as a soil amendment, and additions of 20 tonnes ha-1 in dryland wheat system showed improved soil moisture and yield increases of 250%. Persistent but weaker impacts were observed in growing years 2 and 3 following the biochar amendments. Here we present results from a series of laboratory and field studies characterizing how grass seed screening biochar, which is produced from a regionally abundant feedstock, impacted soil hydraulic and thermal properties, soil chemistry, and plant growth. Because of the liming qualities of gasified biochar, the greatest growth benefits are likely to be realized in acidified soils, a growing problem in the PNW. Although the persistence of biochar impacts in soil is still unknown, our results indicate that gasified biochar, particularly when utilized as part of a system of on-farm power production, waste reduction, and nutrient recycling, can improve agricultural sustainability in the context of climate change.

  1. Compost Amendment Enhances Natural Revegetation of a Mediterranean Degraded Agricultural Soil.

    PubMed

    Baldantoni, Daniela; Bellino, Alessandro; Morra, Luigi; Alfani, Anna

    2015-10-01

    A vegetation analysis was carried out on a degraded agricultural soil of the Mediterranean area (Campania region, southern Italy) in order to study the effects of different fertilization practices (quality compost, mineral fertilizers, mixed fertilization, and no fertilization) on the whole spontaneous vegetation community. The study was performed for two consecutive years at three different scales (species level, community structure, and community properties), using three different units of abundance (number of individuals, biomass, and cover of each species). The observations were carried out in spring, after 5 and 6 years of soil treatments, on a total area of 4 m(2) for each soil treatment and in each year. The different fertilization practices did not determine changes in species composition; however, the relative abundance of dominant species increased in compost and mixed fertilized soils, particularly in the second year of observation. Although the dominance and diversity were unaffected by the different fertilization practices, the total biomass and total number of individuals increased in compost-amended soils. These results indicate the effectiveness of soil quality compost amendments to enhance natural revegetation, a key step in the recovery of degraded areas.

  2. Compost Amendment Enhances Natural Revegetation of a Mediterranean Degraded Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Baldantoni, Daniela; Bellino, Alessandro; Morra, Luigi; Alfani, Anna

    2015-10-01

    A vegetation analysis was carried out on a degraded agricultural soil of the Mediterranean area (Campania region, southern Italy) in order to study the effects of different fertilization practices (quality compost, mineral fertilizers, mixed fertilization, and no fertilization) on the whole spontaneous vegetation community. The study was performed for two consecutive years at three different scales (species level, community structure, and community properties), using three different units of abundance (number of individuals, biomass, and cover of each species). The observations were carried out in spring, after 5 and 6 years of soil treatments, on a total area of 4 m2 for each soil treatment and in each year. The different fertilization practices did not determine changes in species composition; however, the relative abundance of dominant species increased in compost and mixed fertilized soils, particularly in the second year of observation. Although the dominance and diversity were unaffected by the different fertilization practices, the total biomass and total number of individuals increased in compost-amended soils. These results indicate the effectiveness of soil quality compost amendments to enhance natural revegetation, a key step in the recovery of degraded areas.

  3. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality.

    PubMed

    Udeigwe, Theophilus K; Eze, Peter N; Teboh, Jasper M; Stietiya, Mohammed H

    2011-01-01

    Contaminants such as nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), arsenic (As), heavy metals, and infectious pathogens are often associated with agricultural systems. Various soil and water remediation techniques including the use of chemical amendments have been employed to reduce the risks associated with these contaminants. This paper reviews the use of chemical amendments for immobilizing principal agricultural contaminants, the chemistry of contaminant immobilization, and the environmental consequences associated with the use of these chemical products. The commonly used chemical amendments were grouped into aluminum-, calcium-, and iron-containing products. Other products of interest include phosphorus-containing compounds and silicate clays. Mechanisms of contaminant immobilization could include one or a combination of the following: surface precipitation, adsorption to mineral surfaces (ion exchange and formation of stable complexes), precipitation as salts, and co-precipitation. The reaction pH, redox potential, clay minerals, and organic matter are potential factors that could control contaminant-immobilization processes. Reviews of potential environmental implications revealed that undesirable substances such as trace elements, fluoride, sulfate, total dissolved solids, as well as radioactive materials associated with some industrial wastes used as amendment could be leached to ground water or lost through runoff to receiving water bodies. The acidity or alkalinity associated with some of the industrial-waste amendments could also constitute a substantial environmental hazard. Chemical amendments could introduce elements capable of inducing or affecting the activities of certain lithotrophic microbes that could influence vital geochemical processes such as mineral dissolution and formation, weathering, and organic matter mineralization.

  4. Soil-plant transfer of Cs-137 and Sr-90 in digestate amended agricultural soils- a lysimeter scale experiment

    NASA Astrophysics Data System (ADS)

    Mehmood, Khalid; Berns, Anne E.; Pütz, Thomas; Burauel, Peter; Vereecken, Harry; Zoriy, Myroslav; Flucht, Reinhold; Opitz, Thorsten; Hofmann, Diana

    2014-05-01

    Radiocesium and radiostrontium are among the most problematic soil contaminants following nuclear fallout due to their long half-lives and high fission yields. Their chemical resemblance to potassium, ammonium and calcium facilitates their plant uptake and thus enhances their chance to reach humans through the food-chain dramatically. The plant uptake of both radionuclides is affected by the type of soil, the amount of organic matter and the concentration of competitive ions. In the present lysimeter scale experiment, soil-plant transfer of Cs-137 and Sr-90 was investigated in an agricultural silty soil amended with digestate, a residue from a biogas plant. The liquid fraction of the digestate, liquor, was used to have higher nutrient competition. Digestate application was done in accordance with the field practice with an application rate of 34 Mg/ha and mixing it in top 5 cm soil, yielding a final concentration of 38 g digestate/Kg soil. The top 5 cm soil of the non-amended reference soil was also submitted to the same mixing procedure to account for the physical disturbance of the top soil layer. Six months after the amendment of the soil, the soil contamination was done with water-soluble chloride salts of both radionuclides, resulting in a contamination density of 66 MBq/m2 for Cs-137 and 18 MBq/m2 for Sr-90 in separate experiments. Our results show that digestate application led to a detectable difference in soil-plant transfer of the investigated radionuclides, effect was more pronounced for Cs-137. A clear difference was observed in plant uptake of different plants. Pest plants displayed higher uptake of both radionuclides compared to wheat. Furthermore, lower activity values were recorded in ears compared to stems for both radionuclides.

  5. Recycling soil nitrate nitrogen by amending agricultural lands with oily food waste.

    PubMed

    Rashid, M T; Voroney, R P

    2003-01-01

    With current agricultural practices the amounts of fertilizer N applied are frequently more than the amounts removed by the crop. Excessive N application may result in short-term accumulation of nitrate nitrogen (NO3-N) in soil, which can easily be leached from the root zone and into the ground water. A management practice suggested for conserving accumulated NO3-N is the application of oily food waste (FOG; fat + oil + greases) to agricultural soils. A two-year field study (1995-1996 and 1996-1997) was conducted at Elora Research Center (43 degrees 38' N, 80 degrees W; 346 m above mean sea level), University of Guelph, Ontario, Canada to determine the effect of FOG application in fall and spring on soil NO3-N contents and apparent N immobilization-mineralization of soil N in the 0- to 60-cm soil layer. The experiment was planned under a randomized complete block design with four replications. An unamended control and a reference treatment [winter wheat (Triticum aestivum L.) cover crop] were included in the experiment to compare the effects of fall and spring treatment of oily food waste on soil NO3-N contents and apparent N immobilization-mineralization. Oily food waste application at 10 Mg ha(-1) in the fall decreased soil NO3-N by immobilization and conserved 47 to 56 kg NO3-N ha(-1), which would otherwise be subject to leaching. Nitrogen immobilized due to FOG application in the fall was subsequently remineralized by the time of fertilizer N sidedress, whereas no net mineralization was observed in spring-amended plots at the same time.

  6. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems.

  7. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. PMID:25708406

  8. Modeling of 137Cs migration in soils using an 80-year soil archive: role of fertilizers and agricultural amendments.

    PubMed

    Monna, F; van Oort, F; Hubert, P; Dominik, J; Bolte, J; Loizeau, J-L; Labanowski, J; Lamri, J; Petit, C; Le Roux, G; Chateau, C

    2009-01-01

    An 80-year soil archive, the 42-plot experimental design at the INRA in Versailles (France), is used here to study long-term contamination by 137Cs atmospheric deposition and the fate of this radioisotope when associated with various agricultural practices: fallow land, KCl, NH4(NO3), superphosphate fertilizers, horse manure and lime amendments. The pertinence of a simple box model, where radiocaesium is supposed to move downward by convectional mechanisms, is checked using samples from control plots which had been neither amended, nor cultivated since 1928. This simple model presents the advantage of depending on only two parameters: alpha, a proportional factor allowing the historical atmospheric 137Cs fluxes to be reconstructed locally, and k, an annual loss coefficient from the plow horizon. Another pseudo-unknown is however necessary to run the model: the shape of historical 137Cs deposition, but this function can be easily computed by merging several curves previously established by other surveys. A loss of approximately 1.5% per year from the plow horizon, combined with appropriate fluxes, provides good concordance between simulated and measured values. In the 0-25cm horizon, the residence half time is found to be approximately 18yr (including both migration and radioactive decay). Migration rate constants are also calculated for some plots receiving continuous long-term agricultural treatments. Comparison with the control plots reveals significant influence of amendments on 137Cs mobility in these soils developed from a unique genoform. PMID:19013695

  9. Modeling of 137Cs migration in soils using an 80-year soil archive: role of fertilizers and agricultural amendments.

    PubMed

    Monna, F; van Oort, F; Hubert, P; Dominik, J; Bolte, J; Loizeau, J-L; Labanowski, J; Lamri, J; Petit, C; Le Roux, G; Chateau, C

    2009-01-01

    An 80-year soil archive, the 42-plot experimental design at the INRA in Versailles (France), is used here to study long-term contamination by 137Cs atmospheric deposition and the fate of this radioisotope when associated with various agricultural practices: fallow land, KCl, NH4(NO3), superphosphate fertilizers, horse manure and lime amendments. The pertinence of a simple box model, where radiocaesium is supposed to move downward by convectional mechanisms, is checked using samples from control plots which had been neither amended, nor cultivated since 1928. This simple model presents the advantage of depending on only two parameters: alpha, a proportional factor allowing the historical atmospheric 137Cs fluxes to be reconstructed locally, and k, an annual loss coefficient from the plow horizon. Another pseudo-unknown is however necessary to run the model: the shape of historical 137Cs deposition, but this function can be easily computed by merging several curves previously established by other surveys. A loss of approximately 1.5% per year from the plow horizon, combined with appropriate fluxes, provides good concordance between simulated and measured values. In the 0-25cm horizon, the residence half time is found to be approximately 18yr (including both migration and radioactive decay). Migration rate constants are also calculated for some plots receiving continuous long-term agricultural treatments. Comparison with the control plots reveals significant influence of amendments on 137Cs mobility in these soils developed from a unique genoform.

  10. Biodegradation kinetics of linear alkylbenzene sulfonate in sludge-amended agricultural soils.

    PubMed

    Ward, T E; Larson, R J

    1989-02-01

    The kinetics of ultimate biodegradation (mineralization to CO2) of linear alkylbenzene sulfonate (LAS) were studied in sludge-amended agricultural soils for a series of pure chain length LAS homologs containing 10 to 14 carbon atoms in the alkyl chain. Degradation rates were measured by following the production of 14CO2 from uniformly 14C-ring-labeled material. In general, degradation of LAS was rapid in soil over a broad concentration range (0.1 to 10 times the expected environmental concentration) and demonstrated little variation among different homologs. Half-lives for mineralization of the benzene ring ranged from 18 to 26 days and were not significantly different for any homolog over the range of alkyl chain lengths tested. Half-lives measured for LAS degradation in these studies were comparable to values reported in the literature and also to values obtained for naturally occurring materials (stearic acid, cellulose) typically present in soil environments. On the basis of the results of the present studies and those of other investigators, it is concluded that soil environments exposed to LAS in sewage sludges contain microbial communities which can actively metabolize this material. Rates of biodegradation of the benzene ring, the final step in the LAS biodegradation pathway prior to complete mineralization, are also sufficient to prevent LAS from accumulating in soil environments.

  11. Birch (Betula spp.) wood biochar is a potential soil amendment to reduce glyphosate leaching in agricultural soils.

    PubMed

    Hagner, Marleena; Hallman, Sanna; Jauhiainen, Lauri; Kemppainen, Riitta; Rämö, Sari; Tiilikkala, Kari; Setälä, Heikki

    2015-12-01

    Glyphosate (N-(phosphonomethyl) glycine), a commonly used herbicide in agriculture can leach to deeper soil layers and settle in surface- and ground waters. To mitigate the leaching of pesticides and nutrients, biochar has been suggested as a potential soil amendment due to its ability to sorb both organic and inorganic substances. However, the efficiency of biochar in retaining agro-chemicals in the soil is likely to vary with feedstock material and pyrolysis conditions. A greenhouse pot experiment, mimicking a crop rotation cycle of three plant genera, was established to study the effects of pyrolysis temperature on the ability of birch (Betula sp.) wood originated biochar to reduce the leaching of (i) glyphosate, (ii) its primary degradation product AMPA and (iii) phosphorus from the soil. The biochar types used were produced at three different temperatures: 300 °C (BC300), 375 °C (BC375) and 475 °C (BC475). Compared to the control treatment without biochar, the leaching of glyphosate was reduced by 81%, 74% and 58% in BC300, BC375 and BC475 treated soils, respectively. The respective values for AMPA were 46%, 39% and 23%. Biochar had no significant effect on the retention of water-soluble phosphorus in the soil. Our results corroborate earlier findings on pesticides, suggesting that biochar amendment to the soil is a promising way to reduce also the leaching of glyphosate. Importantly, the ability of biochar to adsorb agro-chemicals depends on the temperature at which feedstock is pyrolysed. PMID:26342266

  12. Birch (Betula spp.) wood biochar is a potential soil amendment to reduce glyphosate leaching in agricultural soils.

    PubMed

    Hagner, Marleena; Hallman, Sanna; Jauhiainen, Lauri; Kemppainen, Riitta; Rämö, Sari; Tiilikkala, Kari; Setälä, Heikki

    2015-12-01

    Glyphosate (N-(phosphonomethyl) glycine), a commonly used herbicide in agriculture can leach to deeper soil layers and settle in surface- and ground waters. To mitigate the leaching of pesticides and nutrients, biochar has been suggested as a potential soil amendment due to its ability to sorb both organic and inorganic substances. However, the efficiency of biochar in retaining agro-chemicals in the soil is likely to vary with feedstock material and pyrolysis conditions. A greenhouse pot experiment, mimicking a crop rotation cycle of three plant genera, was established to study the effects of pyrolysis temperature on the ability of birch (Betula sp.) wood originated biochar to reduce the leaching of (i) glyphosate, (ii) its primary degradation product AMPA and (iii) phosphorus from the soil. The biochar types used were produced at three different temperatures: 300 °C (BC300), 375 °C (BC375) and 475 °C (BC475). Compared to the control treatment without biochar, the leaching of glyphosate was reduced by 81%, 74% and 58% in BC300, BC375 and BC475 treated soils, respectively. The respective values for AMPA were 46%, 39% and 23%. Biochar had no significant effect on the retention of water-soluble phosphorus in the soil. Our results corroborate earlier findings on pesticides, suggesting that biochar amendment to the soil is a promising way to reduce also the leaching of glyphosate. Importantly, the ability of biochar to adsorb agro-chemicals depends on the temperature at which feedstock is pyrolysed.

  13. Environmental fate of the herbicide MCPA in agricultural soils amended with fresh and aged de-oiled two-phase olive mill waste.

    PubMed

    Peña, David; López-Piñeiro, Antonio; Albarrán, Ángel; Becerra, Daniel; Sánchez-Llerena, Javier

    2015-09-01

    Olive oil agrifood industry generates large amounts of waste whose recycling as organic amendment represents an alternative to their disposal. The impact of de-oiled two-phase olive mill waste (DW) on the fate of 4-chloro-2-methylphenoxyacetic acid (MCPA) in Mediterranean agricultural soils was evaluated. Furthermore, the effect of the transformation of organic matter from this waste under field conditions was assessed. Four Mediterranean agricultural soils were selected and amended in laboratory with fresh DW and field-aged DW (DW and ADW treatments, respectively). Adsorption capacity increased by factors between 1.18 and 3.59, for the DW-amended soils, and by factor of 4.93, for ADW-amended soil, with respect to unamended soils, when 5% amendment was applied. The DW amendment had inhibitory effect on dehydrogenase activity and slowed herbicide dissipation, whereas the opposite effect was observed in ADW treatments. In the field-amended soil, the amount of MCPA leached was significantly reduced from 56.9% for unamended soil to 15.9% at the 5% rate. However, leaching losses of MCPA increased in the laboratory-amended soils, because of their high water-soluble organic carbon values which could enhance MCPA mobility, especially in the acidic soils. Therefore, the application of DW as organic amendment in Mediterranean agricultural soils could be an important management strategy to reduce MCPA leaching, especially if the organic matter had been previously transformed by ageing processes.

  14. Typical agricultural diffuse herbicide sorption with agricultural waste-derived biochars amended soil of high organic matter content.

    PubMed

    Ouyang, Wei; Zhao, Xuchen; Tysklind, Mats; Hao, Fanghua

    2016-04-01

    Biochar application has been identified as the effective soil amendment and the materials to control the diffuse herbicide pollution. The atrazine was selected as the typical diffuse herbicide pollutant as the dominant proportion in applications. The biochar treated from four types of crops biomass were added to soil with high organic matter content. The basic sorption characteristics of biocahrs from corn cob (CC), corn stalk (CS), soybean straw (SS), rice straw (RS) and corn stalk paralyzed with 5% of ammonium dihydrogen phosphate (ACS) were analyzed, along with the comparison of the sorption difference of the raw soil and soil amended with biochars at four levels of ratio (0.5%, 1.0%, 3.0% and 5.0%). It was found that the linear distribution isotherm of raw soil was much effective due to the high organic matter background concentration. The addition of five types of biochars under two kinds of initial atrazine concentration (1 mg/L and 20 mg/L) demonstrated the sorption variances. Results showed the soil amended with RS and CS biochar had the biggest removal rate in four regular biochars and the removal rate of the ACS was the biggest. The sorption coefficient and the normalized sorption coefficient from Freundlich modeling presented the isothermal sorption characteristics of atrazine with soil of high organic matter content. The normalized sorption coefficient increased with the equilibrium concentration decreased in the biochar amended soil, which indicated the sorption performance will be better due to the low atrazine concentration in practice. Results showed that biochar amendment is the effective way to prevent leakage of diffuse herbicide loss.

  15. Typical agricultural diffuse herbicide sorption with agricultural waste-derived biochars amended soil of high organic matter content.

    PubMed

    Ouyang, Wei; Zhao, Xuchen; Tysklind, Mats; Hao, Fanghua

    2016-04-01

    Biochar application has been identified as the effective soil amendment and the materials to control the diffuse herbicide pollution. The atrazine was selected as the typical diffuse herbicide pollutant as the dominant proportion in applications. The biochar treated from four types of crops biomass were added to soil with high organic matter content. The basic sorption characteristics of biocahrs from corn cob (CC), corn stalk (CS), soybean straw (SS), rice straw (RS) and corn stalk paralyzed with 5% of ammonium dihydrogen phosphate (ACS) were analyzed, along with the comparison of the sorption difference of the raw soil and soil amended with biochars at four levels of ratio (0.5%, 1.0%, 3.0% and 5.0%). It was found that the linear distribution isotherm of raw soil was much effective due to the high organic matter background concentration. The addition of five types of biochars under two kinds of initial atrazine concentration (1 mg/L and 20 mg/L) demonstrated the sorption variances. Results showed the soil amended with RS and CS biochar had the biggest removal rate in four regular biochars and the removal rate of the ACS was the biggest. The sorption coefficient and the normalized sorption coefficient from Freundlich modeling presented the isothermal sorption characteristics of atrazine with soil of high organic matter content. The normalized sorption coefficient increased with the equilibrium concentration decreased in the biochar amended soil, which indicated the sorption performance will be better due to the low atrazine concentration in practice. Results showed that biochar amendment is the effective way to prevent leakage of diffuse herbicide loss. PMID:26852289

  16. Terra Pretas: Charcoal Amendments Influence on Relict Soils and Modern Agriculture

    ERIC Educational Resources Information Center

    Ricigliano, Kristin

    2011-01-01

    Most soils found in the Amazon region are characterized by highly weathered profiles that are incapable of longterm agricultural production. However, small patches of highly fertile relict soil referred to as Terra Pretas, are also found in the Amazon region, and have maintained their integrity for thousands of years. These soils were…

  17. Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars.

    PubMed

    Kloss, Stefanie; Zehetner, Franz; Buecker, Jannis; Oburger, Eva; Wenzel, Walter W; Enders, Akio; Lehmann, Johannes; Soja, Gerhard

    2015-03-01

    Various biochar (BC) types have been investigated as soil amendment; however, information on their effects on trace element (TE) biogeochemistry in the soil-water-plant system is still scarce. In the present study, we determined aqua-regia (AR) and water-extractable TEs of four BC types (woodchips (WC), wheat straw (WS), vineyard pruning (VP), pyrolyzed at 525 °C, of which VP was also pyrolyzed at 400 °C) and studied their effects on TE concentrations in leachates and mustard (Sinapis alba L.) tissue in a greenhouse pot experiment. We used an acidic, sandy agricultural soil and a BC application rate of 3% (w/w). Our results show that contents and extractability of TEs in the BCs and effectuated changes of TE biogeochemistry in the soil-water-plant system strongly varied among the different BC types. High AR-digestable Cu was found in VP and high B contents in WC. WS had the highest impact on TEs in leachates showing increased concentrations of As, Cd, Mo, and Se, whereas WC application resulted in enhanced leaching of B. All BC types increased Mo and decreased Cu concentrations in the plant tissue; however, they showed diverging effects on Cu in the leachates with decreased concentrations for WC and WS, but increased concentrations for both VPs. Our results demonstrate that BCs may release TEs into the soil-water-plant system. A BC-induced liming effect in acidic soils may lead to decreased plant uptake of cationic TEs, including Pb and Cd, but may enhance the mobility of anionic TEs like Mo and As. We also found that BCs with high salt contents (e.g., straw-based BCs) may lead to increased mobility of both anionic and cationic TEs in the short term. PMID:25315931

  18. Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars.

    PubMed

    Kloss, Stefanie; Zehetner, Franz; Buecker, Jannis; Oburger, Eva; Wenzel, Walter W; Enders, Akio; Lehmann, Johannes; Soja, Gerhard

    2015-03-01

    Various biochar (BC) types have been investigated as soil amendment; however, information on their effects on trace element (TE) biogeochemistry in the soil-water-plant system is still scarce. In the present study, we determined aqua-regia (AR) and water-extractable TEs of four BC types (woodchips (WC), wheat straw (WS), vineyard pruning (VP), pyrolyzed at 525 °C, of which VP was also pyrolyzed at 400 °C) and studied their effects on TE concentrations in leachates and mustard (Sinapis alba L.) tissue in a greenhouse pot experiment. We used an acidic, sandy agricultural soil and a BC application rate of 3% (w/w). Our results show that contents and extractability of TEs in the BCs and effectuated changes of TE biogeochemistry in the soil-water-plant system strongly varied among the different BC types. High AR-digestable Cu was found in VP and high B contents in WC. WS had the highest impact on TEs in leachates showing increased concentrations of As, Cd, Mo, and Se, whereas WC application resulted in enhanced leaching of B. All BC types increased Mo and decreased Cu concentrations in the plant tissue; however, they showed diverging effects on Cu in the leachates with decreased concentrations for WC and WS, but increased concentrations for both VPs. Our results demonstrate that BCs may release TEs into the soil-water-plant system. A BC-induced liming effect in acidic soils may lead to decreased plant uptake of cationic TEs, including Pb and Cd, but may enhance the mobility of anionic TEs like Mo and As. We also found that BCs with high salt contents (e.g., straw-based BCs) may lead to increased mobility of both anionic and cationic TEs in the short term.

  19. Characterization of a soil amendment derived from co-composting of agricultural wastes and biochar

    NASA Astrophysics Data System (ADS)

    Curaqueo, Gustavo; Ángel Sánchez-Monedero, Miguel; Meier, Sebastián; Medina, Jorge; Panichini, Marcelo; Borie, Fernando; Navia, Rodrigo

    2016-04-01

    P contents increased in BC10 treatment, while the K contents were similar in all treatments as well as C/N ratio (around 15). The organic matter content was BC10>BC5>BC0 and the dissolved organic C content was lower than 8.3 g kg‑1 for all piles confirming the maturity of compost. The germination test showed a non-toxic effect of all amendments in the species assayed obtaining a germination index between 55% and 80.7% indicating maturity of the amendments evaluated. Our results indicated that the combined use of agricultural wastes and biochar by mean of a co-composting process is a suitable option for generating good quality amendments for improving soil condition and optimizing nutrient cycling at farm scale. Financial support for this research was provided by the National Commission for Scientific and Technological Research through FONDECYT 11140508 Project

  20. Characterization of a soil amendment derived from co-composting of agricultural wastes and biochar

    NASA Astrophysics Data System (ADS)

    Curaqueo, Gustavo; Ángel Sánchez-Monedero, Miguel; Meier, Sebastián; Medina, Jorge; Panichini, Marcelo; Borie, Fernando; Navia, Rodrigo

    2016-04-01

    contents increased in BC10 treatment, while the K contents were similar in all treatments as well as C/N ratio (around 15). The organic matter content was BC10>BC5>BC0 and the dissolved organic C content was lower than 8.3 g kg-1 for all piles confirming the maturity of compost. The germination test showed a non-toxic effect of all amendments in the species assayed obtaining a germination index between 55% and 80.7% indicating maturity of the amendments evaluated. Our results indicated that the combined use of agricultural wastes and biochar by mean of a co-composting process is a suitable option for generating good quality amendments for improving soil condition and optimizing nutrient cycling at farm scale. Financial support for this research was provided by the National Commission for Scientific and Technological Research through FONDECYT 11140508 Project

  1. Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and As contaminated agricultural soil.

    PubMed

    Usman, Adel R A; Almaroai, Yaser A; Ahmad, Mahtab; Vithanage, Meththika; Ok, Yong Sik

    2013-11-15

    Chelating agents added to contaminated soils may increase solubility and phytoextraction efficiency of soil metals. However, they can create negative effects on soil biological quality. A 90-day incubation experiment was conducted to evaluate mixed effects of chelating agents and poultry manure on changes in available Cd, Pb and As, CO2-C efflux, microbial biomass C, dissolved organic C (DOC), and N mineralization in metal-polluted agricultural soil. Application of poultry manure resulted in a considerable increase in soil pH, DOC, CO2-C efflux, net N mineralization, net N nitrification, and microbial biomass C compared to those in unmanured soil. Availability of arsenic increased twice in manure amended soil due to changes in pH and DOC. However, adding poultry manure did not affect the concentrations of available Pb and Cd compared to those in control soil. Chelating agents increased CO2-C efflux, DOC, and metal availability but decreased microbial biomass C and net N mineralization. Maximum decrease in microbial biomass C, net N mineralization, and net N nitrification, was observed in EDTA applied soil possibly due to high metal availability to soil microorganisms. Overall results revealed that the application of synthetic chelators in combination with poultry manure enhances available As and demonstrates better environment for soil biota. PMID:23791533

  2. Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and As contaminated agricultural soil.

    PubMed

    Usman, Adel R A; Almaroai, Yaser A; Ahmad, Mahtab; Vithanage, Meththika; Ok, Yong Sik

    2013-11-15

    Chelating agents added to contaminated soils may increase solubility and phytoextraction efficiency of soil metals. However, they can create negative effects on soil biological quality. A 90-day incubation experiment was conducted to evaluate mixed effects of chelating agents and poultry manure on changes in available Cd, Pb and As, CO2-C efflux, microbial biomass C, dissolved organic C (DOC), and N mineralization in metal-polluted agricultural soil. Application of poultry manure resulted in a considerable increase in soil pH, DOC, CO2-C efflux, net N mineralization, net N nitrification, and microbial biomass C compared to those in unmanured soil. Availability of arsenic increased twice in manure amended soil due to changes in pH and DOC. However, adding poultry manure did not affect the concentrations of available Pb and Cd compared to those in control soil. Chelating agents increased CO2-C efflux, DOC, and metal availability but decreased microbial biomass C and net N mineralization. Maximum decrease in microbial biomass C, net N mineralization, and net N nitrification, was observed in EDTA applied soil possibly due to high metal availability to soil microorganisms. Overall results revealed that the application of synthetic chelators in combination with poultry manure enhances available As and demonstrates better environment for soil biota.

  3. Volatile organic compound emissions from straw-amended agricultural soils and their relations to bacterial communities: A laboratory study.

    PubMed

    Zhao, Juan; Wang, Zhe; Wu, Ting; Wang, Xinming; Dai, Wanhong; Zhang, Yujie; Wang, Ran; Zhang, Yonggan; Shi, Chengfei

    2016-07-01

    A laboratory study was conducted to investigate volatile organic compound (VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone, 2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition (5924ng C/(kg·hr)) was significantly higher than that under the flooded condition (2211ng C/(kg·hr)). One "peak emission window" appeared at days 0-44 or 4-44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis (DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils. PMID:27372141

  4. Changes in soil chemistry following wood and grass biochar amendments to an acidic agricultural production soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility of biochars produced by biomass gasification for remediation of acidic production soils and plant growth in general is not as well known compared to effects from biochars resulting from pyrolysis. Recent characterization of biochar produced from gasification of Kentucky bluegrass (Poa pr...

  5. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure

    USGS Publications Warehouse

    Kinney, C.A.; Furlong, E.T.; Kolpin, D.W.; Burkhardt, M.R.; Zaugg, S.D.; Werner, S.L.; Bossio, J.P.; Benotti, M.J.

    2008-01-01

    Analysis of earthworms offers potential for assessing the transfer of organic anthropogenic waste indicators (AWIs) derived from land-applied biosolid or manure to biota. Earthworms and soil samples were collected from three Midwest agricultural fields to measure the presence and potential for transfer of 77 AWIs from land-applied biosolids and livestock manure to earthworms. The sites consisted of a soybean field with no amendments of human or livestock waste (Site 1), a soybean field amended with biosolids from a municipal wastewater treatment plant (Site 2), and a cornfield amended with swine manure (Site 3). The biosolid applied to Site 2 contained a diverse composition of 28 AWIs, reflecting the presence of human-use compounds. The swine manure contained 12 AWIs, and was dominated by biogenic sterols. Soil and earthworm samples were collected in the spring (about 30 days after soil amendment) and fall (140-155 days after soil amendment) at all field sites. Soils from Site 1 contained 21 AWIs and soil from Sites 2 and 3 contained 19 AWIs. The AWI profiles at Sites 2 and 3 generally reflected the relative composition of AWIs present in waste material applied. There were 20 AWIs detected in earthworms from Site 1 (three compounds exceeding concentrations of 1000 ??g/kg), 25 AWIs in earthworms from Site 2 (seven compounds exceeding concentrations of 1000 ??g/kg), and 21 AWIs in earthworms from Site 3 (five compounds exceeding concentrations of 1000 ??g/kg). A number of compounds thatwere present in the earthworm tissue were at concentrations less than reporting levels in the corresponding soil samples. The AWIs detected in earthworm tissue from the three field sites included pharmaceuticals, synthetic fragrances, detergent metabolites, polycyclic aromatic hydrocarbons (PAHs), biogenic sterols, disinfectants, and pesticides, reflecting a wide range of physicochemical properties. For those contaminants detected in earthworm tissue and soil, bioaccumulation factors

  6. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure.

    PubMed

    Kinney, Chad A; Furlong, Edward T; Kolpin, Dana W; Burkhardt, Mark R; Zaugg, Steven D; Werner, Stephen L; Bossio, Joseph P; Benotti, Mark J

    2008-03-15

    Analysis of earthworms offers potential for assessing the transfer of organic anthropogenic waste indicators (AWIs) derived from land-applied biosolid or manure to biota. Earthworms and soil samples were collected from three Midwest agricultural fields to measure the presence and potential for transfer of 77 AWIs from land-applied biosolids and livestock manure to earthworms. The sites consisted of a soybean field with no amendments of human or livestock waste (Site 1), a soybean field amended with biosolids from a municipal wastewater treatment plant (Site 2), and a cornfield amended with swine manure (Site 3). The biosolid applied to Site 2 contained a diverse composition of 28 AWls, reflecting the presence of human-use compounds. The swine manure contained 12 AWls, and was dominated by biogenic sterols. Soil and earthworm samples were collected in the spring (about30 days after soil amendment) and fall (140-155 days after soil amendment) at all field sites. Soils from Site 1 contained 21 AWIs and soil from Sites 2 and 3 contained 19 AWls. The AWI profiles at Sites 2 and 3 generally reflected the relative composition of AWls present in waste material applied. There were 20 AWls detected in earthworms from Site 1 (three compounds exceeding concentrations of 1000 microg/kg), 25 AWls in earthworms from Site 2 (seven compounds exceeding concentrations of 1000 microg/ kg), and 21 AWls in earthworms from Site 3 (five compounds exceeding concentrations of 1000 microg/kg). A number of compounds thatwere present in the earthworm tissue were at concentrations less than reporting levels in the corresponding soil samples. The AWIs detected in earthworm tissue from the three field sites included pharmaceuticals, synthetic fragrances, detergent metabolites, polycyclic aromatic hydrocarbons (PAHs), biogenic sterols, disinfectants, and pesticides, reflecting a wide range of physicochemical properties. For those contaminants detected in earthworm tissue and soil, bioaccumulation

  7. Inorganic fertilizer and poultry-litter manure amendments alter the soil microbial communities in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of agricultural land management practices on soil prokaryotic diversity are not well described. We investigated three land usage systems (row cropped, ungrazed pasture, and cattle-grazed pasture) and two fertilizer systems (inorganic fertilizer or IF and poultry-litter or PL) and compare...

  8. Genetically biodiverse potato cultivars grown on a suitable agricultural soil under compost amendment or mineral fertilization: yield, quality, genetic and epigenetic variations, soil properties.

    PubMed

    Cicatelli, Angela; Baldantoni, Daniela; Iovieno, Paola; Carotenuto, Maurizio; Alfani, Anna; De Feis, Italia; Castiglione, Stefano

    2014-09-15

    The use of compost for soil amendment is a promising agricultural practice environmentally and economically viable. In the framework of a wide research project designed to evaluate the effects of soil amendment with municipal solid waste compost in comparison with traditional mineral fertilization practices, 54 different cultivars (Cvs) of potatoes were AFLP (amplified fragment length polymorphism) molecularly fingerprinted. The seven most genetically biodiverse potato Cvs were used to establish an experimental field in southern Italy. The field area was divided into two portions fertilized with compost (20 Mg ha(-1)) or with ammonium sulphate (200 kg ha(-1)). No significant differences in productivity, organoleptic characteristics and element concentrations were observed between the potato tubers obtained with both kinds of soil fertilization, while the tubers grown on compost amended soil showed, on average, higher K concentrations with respect to those grown on mineral fertilised soil. cDNA-AFLP (complementary DNA-AFLP) and MSAP (methylation sensitive amplified polymorphism) analyses were carried out on both leaves and tubers of one selected Cv to estimate if any transcriptome alterations or epigenetic modifications were induced by the two kinds of fertilization, however no variations were detected. Chemical and biological soil qualities (i.e., microbial respiration, FDA hydrolysis, alkaline and acid phosphatase) were assessed on soil samples at the start of the experiment and at the end of potato crop cycle. No significant differences in soil pH and limited ones, in the available fraction of some trace elements, were observed; while conductivity was much higher for the compost amended portion of the experimental field. Microbial respiration, FDA hydrolysis and acid phosphatase activities were significantly increased by compost amendment, in comparison with mineral fertilization. Finally, a sensory panel of potato Cvs detected no significant differences among

  9. Genetically biodiverse potato cultivars grown on a suitable agricultural soil under compost amendment or mineral fertilization: yield, quality, genetic and epigenetic variations, soil properties.

    PubMed

    Cicatelli, Angela; Baldantoni, Daniela; Iovieno, Paola; Carotenuto, Maurizio; Alfani, Anna; De Feis, Italia; Castiglione, Stefano

    2014-09-15

    The use of compost for soil amendment is a promising agricultural practice environmentally and economically viable. In the framework of a wide research project designed to evaluate the effects of soil amendment with municipal solid waste compost in comparison with traditional mineral fertilization practices, 54 different cultivars (Cvs) of potatoes were AFLP (amplified fragment length polymorphism) molecularly fingerprinted. The seven most genetically biodiverse potato Cvs were used to establish an experimental field in southern Italy. The field area was divided into two portions fertilized with compost (20 Mg ha(-1)) or with ammonium sulphate (200 kg ha(-1)). No significant differences in productivity, organoleptic characteristics and element concentrations were observed between the potato tubers obtained with both kinds of soil fertilization, while the tubers grown on compost amended soil showed, on average, higher K concentrations with respect to those grown on mineral fertilised soil. cDNA-AFLP (complementary DNA-AFLP) and MSAP (methylation sensitive amplified polymorphism) analyses were carried out on both leaves and tubers of one selected Cv to estimate if any transcriptome alterations or epigenetic modifications were induced by the two kinds of fertilization, however no variations were detected. Chemical and biological soil qualities (i.e., microbial respiration, FDA hydrolysis, alkaline and acid phosphatase) were assessed on soil samples at the start of the experiment and at the end of potato crop cycle. No significant differences in soil pH and limited ones, in the available fraction of some trace elements, were observed; while conductivity was much higher for the compost amended portion of the experimental field. Microbial respiration, FDA hydrolysis and acid phosphatase activities were significantly increased by compost amendment, in comparison with mineral fertilization. Finally, a sensory panel of potato Cvs detected no significant differences among

  10. Nutrient uptake by agricultural crops from biochar-amended soils: results from two field experiments in Austria

    NASA Astrophysics Data System (ADS)

    Karer, Jasmin; Zehetner, Franz; Kloss, Stefanie; Wimmer, Bernhard; Soja, Gerhard

    2013-04-01

    The use of biochar as soil amendment is considered as a promising agricultural soil management technique, combining carbon sequestration and soil fertility improvements. These expectations are largely founded on positive experiences with biochar applications to impoverished or degraded tropical soils. The validity of these results for soils in temperate climates needs confirmation from field experiments with typical soils representative for intensive agricultural production areas. Frequently biochar is mixed with other organic additives like compost. As these two materials interact with each other and each one may vary considerably in its basic characteristics, it is difficult to attribute the effects of the combined additive to one of its components and to a specific physico-chemical parameter. Therefore investigations of the amendment efficacy require the study of the pure components to characterize their specific behavior in soil. This is especially important for adsorption behavior of biochar for macro- and micronutrients because in soil there are multiple nutrient sinks that compete with plant roots for vital elements. Therefore this contribution presents results from a field amendment study with pure biochar that had the objective to characterize the macro- and microelement uptake of crops from different soils in two typical Austrian areas of agricultural production. At two locations in North and South-East Austria, two identical field experiments on different soils (Chernozem and Cambisol) were installed in 2011 with varying biochar additions (0, 30 and 90 t/ha) and two nitrogen levels. The biochar was a product from slow pyrolysis of wood (SC Romchar SRL). During the installation of the experiments, the biochar fraction of <2 mm was mixed with surface soil to a depth of 15 cm in plots of 33 m2 each (n=4). Barley (at the Chernozem soil) and maize (at the Cambisol) were cultivated according to standard agricultural practices. The highest crop yields at both

  11. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils.

    PubMed

    Zhao, Yuanyuan; Wendling, Laura A; Wang, Changhui; Pei, Yuansheng

    2015-08-01

    Fe/Al drinking water treatment residuals (WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate. Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils (p<0.001). Up to 30% of the previously adsorbed glyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction (NaHCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction (HCl-glyphosate) and concomitantly reduced that of the NaHCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution pH on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils.

  12. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge.

    PubMed

    Kidd, P S; Domínguez-Rodríguez, M J; Díez, J; Monterroso, C

    2007-01-01

    Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.

  13. Saline irrigation and Zn amendment effect on Cd phytoavailability to Swiss chard (Beta vulgaris L.) grown on a long-term amended agricultural soil: a human risk assessment.

    PubMed

    Valdez-González, J C; López-Chuken, U J; Guzmán-Mar, J L; Flores-Banda, F; Hernández-Ramírez, A; Hinojosa-Reyes, L

    2014-05-01

    Crops, particularly in the Northeast region of Mexico, have to cope with increasing soil salinization due to irrigation. Chloride (Cl(-)) concentration has been strongly related to enhance cadmium (Cd) uptake by plants due to increased solubility in the soil solution. The effect of irrigation with slightly saline water from a local well was evaluated in this work on the accumulation and translocation of Cd in Swiss chard (Beta vulgaris L.) grown in soil historically amended with stabilized sewage sludge under a regime of phosphorus and zinc fertilization. A factorial pot experiment was conducted with two phosphate fertilizer levels (PF, 0 and 80 kg ha(-1) dry soil, respectively), two Zn levels (0 and 7 kg ha(-1) dry soil), and two sources of water for irrigation deionized water (DW) and slightly saline well water (WW) from an agricultural site. Additionally, a human risk assessment for Cd ingestion from plants was assessed. Results showed that Cl(-) salinity in the WW effectively mobilized soil Cd and increased its phytoavailability. A higher level of Cd was found in roots (46.41 mg kg(-1)) compared to shoots (10.75 mg kg(-1)). Although the total content of Cd in the edible parts of the Swiss chard irrigated with WW exceeded permissible recommended consumption limit, bioavailable cadmium in the aboveground parts of the plant in relation to the total cadmium content was in the range from 8 to 32 %. Therefore, human health risks might be overestimated when the total concentration is taken into account.

  14. Does biochar with organic amendments affect denitrification in an agricultural soil?

    NASA Astrophysics Data System (ADS)

    Maier, Regine; Soja, Gerhard; Friesl Hanl, Wolfgang; Dunst, Gerald; Kitzler, Barbara

    2016-04-01

    In this laboratory experiment we investigated the influence of biochar (BC) application on dinitrogen (N2) and nitrous oxide (N2O) emissions from an agricultural soil in Austria. We produced BC at 550°C from fiber sludge and husk, partly enriched with ammonium sulfate and mixed with garden green compost at a 50/50 ratio (w/w). The gleyic Cambisol originates from an experimental site in Kaindorf, Austria. For the incubation experiment we established three different treatments in 2014: K (control plots); T1 (1 % BC-compost mixture) and T2 (0.5 % BC-compost mixture enriched with 175 kg N ha-1). We used the helium gas flow soil core technique to quantify N2 and N2O fluxes simultaneously. Therefore, we incubated soil cores at ambient air temperature (20 and 24°C) at 20 and 50% water filled pore space (WFPS). Results show that before BC addition N2 and N2O fluxes were similar at all treatments. Measurements of pure nitrogen-enriched BC show very high gaseous losses in form of N2 and N2O. Raising temperature promotes N2 production at all treatments. Application of N-enriched BC led to significantly higher N2 fluxes compared to K. N2O fluxes increased significantly at fertilized BC plots (T2) compared to K and T1 at both water contents. Raising WFPS supports higher N2 production at all treatments but lowers N2 fluxes at BC plots.

  15. Influence of biochar amendments on the sorption-desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil.

    PubMed

    Cabrera, A; Cox, L; Spokas, K; Hermosín, M C; Cornejo, J; Koskinen, W C

    2014-02-01

    The many advantageous properties of biochar have led to the recent interest in the use of this carbonaceous material as a soil amendment. However, there are limited studies dealing with the effect of biochar on the behavior of pesticides applied to crops. The objective of this work was to determine the effect of various biochars on the sorption-desorption of the herbicides aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropyl-4-pyrimidinacarboxylic acid) and bentazone (3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide) and the fungicide pyraclostrobin (methyl 2-[1-(4-chlorophenyl) pyrazol-3-yloxymethil]-N-methoxycarbanilate) to a silt loam soil. Aminocyclopyrachlor and bentazone were almost completely sorbed by the soils amended with the biochars produced from wood pellets. However, lower sorption of the herbicides was observed in the soils amended with the biochar made from macadamia nut shells as compared to the unamended soil, which was attributed to the competition between dissolved organic carbon (DOC) from the biochar and the herbicides for sorption sites. Our results showed that pyraclostrobin is highly sorbed to soil, and the addition of biochars to soil did not further increase its sorption. Thus, addition of biochars to increase the retention of low mobility pesticides in soil appears to not be necessary. On the other hand, biochars with high surface areas and low DOC contents can increase the sorption of highly mobile pesticides in soil.

  16. Influence of biochar amendments on the sorption-desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil.

    PubMed

    Cabrera, A; Cox, L; Spokas, K; Hermosín, M C; Cornejo, J; Koskinen, W C

    2014-02-01

    The many advantageous properties of biochar have led to the recent interest in the use of this carbonaceous material as a soil amendment. However, there are limited studies dealing with the effect of biochar on the behavior of pesticides applied to crops. The objective of this work was to determine the effect of various biochars on the sorption-desorption of the herbicides aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropyl-4-pyrimidinacarboxylic acid) and bentazone (3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide) and the fungicide pyraclostrobin (methyl 2-[1-(4-chlorophenyl) pyrazol-3-yloxymethil]-N-methoxycarbanilate) to a silt loam soil. Aminocyclopyrachlor and bentazone were almost completely sorbed by the soils amended with the biochars produced from wood pellets. However, lower sorption of the herbicides was observed in the soils amended with the biochar made from macadamia nut shells as compared to the unamended soil, which was attributed to the competition between dissolved organic carbon (DOC) from the biochar and the herbicides for sorption sites. Our results showed that pyraclostrobin is highly sorbed to soil, and the addition of biochars to soil did not further increase its sorption. Thus, addition of biochars to increase the retention of low mobility pesticides in soil appears to not be necessary. On the other hand, biochars with high surface areas and low DOC contents can increase the sorption of highly mobile pesticides in soil. PMID:24144943

  17. Nitrogen and carbon pools in an agricultural soil amended with natural and NH4-enriched K-Chabazite zeolitite

    NASA Astrophysics Data System (ADS)

    Ferretti, Giacomo; Faccini, Barbara; Vittori Antisari, Livia; Di Giuseppe, Dario; Massimo, Coltorti

    2015-04-01

    Nitrogen and Carbon pools in a reclaimed agricultural soil amended with 5 to 15 Kg m-2 of natural and NH4-enriched (K-Chabazite) zeolitites have been investigated. Zeolitites were enriched by means of static exchange with a swine slurry in a prototype (ZeoLIFE Project, www.zeolife.it). The experimental field is located in the Po Delta plain near Codigoro (Ferrara, Italy), it extends over an area of about 6 ha and it was divided in six parcels. The field has been heavily fertilized with chemical fertilizers and livestock sewage since 1960. Nowadays the area is part of the Nitrate Vulnerable Zones (Nitrate Directive 91/676/CEE) and a maximum annual input of 170 Kg-N ha-1 must be respected. With respect to the control parcels, at the end of the agronomic year, sorghum yield was 4% and 14% higher in the parcels treated with natural zeolitite and in that treated with NH4-enriched zeolitite, respectively. This notwithstanding the N fertilizers reduction from 30% in the former to 50% in the latter. Beside the yield improvement, N and C pools are affected by the use of zeolitite and relevant changes have been noticed. i) δ15N ratios in both soil (total and fixed N-NH4 inside the clay interlayer and zeolite exchange sites) and different organs of the sorghum crops show that the N-NH4 stocked in the enriched zeolitite has been transferred to the crops and preferentially stocked in the leaves with respect to the N-NH4 provided by chemical fertilizer. ii) The active role of fixed N-NH4 pool in mineral nutrition of the crops and its replacement can be due to inorganic N fertilizers (Urea and Diammonium Phosphate). This pool in fact decreased during the crops growth, suggesting that it represented an important contribution to the active N pool in the soil. iii) Due to the high N content in this agricultural field, no significant total N decrease was observed during the growing season, which is also responsible for the low C/N ratio in the soil. After the N input from NH4

  18. Clinoptilolite zeolite influence on nitrogen in a manure-amended sandy agricultural soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4-...

  19. Influence of biochar amendments on the sorption-desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The many advantageous properties of biochar have led to the recent interest in the use of this carbonaceous material as a soil amendment. However, there are limited studies dealing with the effect of biochar on the behavior of pesticides applied to crops. The objective of this work was to study the ...

  20. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field.

    PubMed

    Cretoiu, Mariana Silvia; Korthals, Gerard W; Visser, Johnny H M; van Elsas, Jan Dirk

    2013-09-01

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and the Oxalobacteraceae were affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for the Oxalobacteraceae were specifically related to significant upshifts in the abundances of the species Duganella violaceinigra and Massilia plicata. These effects of chitin persisted over the time of the experiment.

  1. Effects of organic amendments on natural organic matter in bulk soils from an italian agricultural area as assessed by Fast Field Cycling NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Scotti, Riccardo; Conte, Pellegrino; Alonzo, Giuseppe; Rao, Maria A.

    2010-05-01

    Losses of soil organic carbon often occur in soil because of intensive agricultural practices. This is due both to removal of organic carbon following harvest production and to insufficient inputs of organic amendments. Natural organic matter (NOM) can be a very appropriate material for enhancing organic carbon content in very stressed agricultural soils. In general, NOM plays an important role in environmental matrices due, for example, to its capacity in retaining water, in interacting with organic and inorganic pollutants, and in enhancing nutrient availability to plants. For this reason, the understanding of the mechanisms with which NOM interacts with other chemicals in the environment is of paramount importance. Structural and conformational NOM characteristics can be analysed by high field (HF) nuclear magnetic resonance (NMR) spectroscopy either in the solid or in the liquid state. In both cases, information on the chemical nature of NOM can be achieved. Moreover, relaxometry studies can be also conducted to provide information on the molecular dynamics of natural organic matter. However, HF-NMR relaxometry limitations are related to the strength of the magnetic fields which limits the range of relaxation rates that can be investigated. In fact, high magnetic fields (e.g. ≥108 Hz) reduce the possibilities to observe molecular dynamics at very low frequencies such as those between 106 and 103 Hz. To this aim, nuclear magnetic resonance relaxometry at low fields and in the fast field cycling (FFC) setup is the most powerful way to retrieve information on the dynamics at low frequencies. Here, FFC-NMR relaxometry studies on soils subjected to different organic amendements are presented. Two farms, in an important agricultural area of Campania Region, Italy, were selected in order to study the effect of different organic amendments on bulk soils. Namely, a compost from municipal solid wastes and wood-wastes (scraps of poplars pruning) were applied in

  2. Persistence of a Salmonella enterica Serovar Typhimurium DT12 Clone in a Piggery and in Agricultural Soil Amended with Salmonella-Contaminated Slurry

    PubMed Central

    Baloda, Suraj B.; Christensen, Lise; Trajcevska, Silvija

    2001-01-01

    Prevalence of Salmonella enterica on a Danish pig farm presenting recurrent infections was investigated. A comparison of the pulsed-field gel electrophoresis patterns of fecal isolates from piggeries, waste slurry, and agricultural soil amended with Salmonella-contaminated animal waste (slurry) and subclinical isolates from the same farm (collected in 1996 and later) showed identical patterns, indicating long-term persistence of the Salmonella enterica serovar Typhimurium DT12 clone in the herd environment. Furthermore, when Salmonella-contaminated slurry was disposed of on the agricultural soil (a common waste disposal practice), the pathogen was isolated up to 14 days after the spread, indicating potentially high risks of transmission of the pathogen in the environment, animals, and humans. PMID:11375208

  3. Modeling biogeochemistry in agricultural soils

    SciTech Connect

    Li, C.; Frolking, S.; Harriss, R.

    1994-09-01

    An existing model of C and N dynamics in soils was supplemented with a plant growth submodel and cropping practice routines (fertilization, irrigation, tillage, crop rotation, and manure amendments) to study the biogeochemistry of soil carbon in arable lands. The new model was validated against field results for short-term (1-9 years) decomposition experiments, the seasonal pattern of soil CO{sub 2} respiration, and long-term (100 years) soil carbon storage dynamics. A series of sensitivity runs investigated the impact of varying agricultural practices on soil organic carbon (SOC) sequestration. The tests were simulated for corn (maize) plots over a range of soil and climate conditions typical of the United States. The largest carbon sequestration occurred with manure additions; the results were very sensitive to soil texture (more clay led to greater sequestration). Increased N fertilization generally enhanced carbon sequestration, but the results were sensitive to soil texture, initial soil carbon content, and annual precipitation. Reduced tillage also generally (but not always) increased SOC content, through the results were very sensitive to soil texture, initial SOC content, and annual precipitation. A series of long-term simulations investigated the SOC equilibrium for various agricultural practices, soil and climate conditions, and crop rotations. Equilibrium SOC content increased with decreasing temperatures, increasing clay content, enhanced N fertilization, manure amendments, and crops with higher residue yield. Time to equilibrium appears to be one hundred to several hundred years. In all cases, equilibration time was longer for increasing SOC content than for decreasing SOC content. Efforts to enhance carbon sequestration in agricultural soils would do well to focus on those specific areas and agricultural practices with the greatest potential for increasing soil carbon content. 64 refs., 13 figs., 5 tabs.

  4. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.

    PubMed

    Gao, Jianmin; Xie, Yingxin; Jin, Haiyang; Liu, Yuan; Bai, Xueying; Ma, Dongyun; Zhu, Yunji; Wang, Chenyang; Guo, Tiancai

    2016-01-01

    The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat), individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV) under 80% WFPS (the water filled pore space) in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0), 200 kg N ha-1 (N200), 250 kg N ha-1 (N250), maize residue plus N200 (MN200), maize residue plus N250 (MN250), wheat residue plus N200 (WN200) and wheat residue plus N250 (WN250). Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O emissions

  5. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain

    PubMed Central

    Jin, Haiyang; Liu, Yuan; Bai, Xueying; Ma, Dongyun; Zhu, Yunji; Wang, Chenyang; Guo, Tiancai

    2016-01-01

    The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat), individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV) under 80% WFPS (the water filled pore space) in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0), 200 kg N ha-1 (N200), 250 kg N ha-1 (N250), maize residue plus N200 (MN200), maize residue plus N250 (MN250), wheat residue plus N200 (WN200) and wheat residue plus N250 (WN250). Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O emissions

  6. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.

    PubMed

    Gao, Jianmin; Xie, Yingxin; Jin, Haiyang; Liu, Yuan; Bai, Xueying; Ma, Dongyun; Zhu, Yunji; Wang, Chenyang; Guo, Tiancai

    2016-01-01

    The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat), individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV) under 80% WFPS (the water filled pore space) in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0), 200 kg N ha-1 (N200), 250 kg N ha-1 (N250), maize residue plus N200 (MN200), maize residue plus N250 (MN250), wheat residue plus N200 (WN200) and wheat residue plus N250 (WN250). Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O emissions

  7. Fate of classical faecal bacterial markers and ampicillin-resistant bacteria in agricultural soils under Mediterranean climate after urban sludge amendment.

    PubMed

    Gondim-Porto, Clarissa; Platero, Leticia; Nadal, Ignacio; Navarro-García, Federico

    2016-09-15

    The use of sewage sludge or biosolids as agricultural amendments may pose environmental and human health risks related to pathogen or antibiotic-resistant microorganism transmission from soils to vegetables or to water through runoff. Since the survival of those microorganisms in amended soils has been poorly studied under Mediterranean climatic conditions, we followed the variation of soil fecal bacterial markers and ampicillin-resistant bacteria for two years with samplings every four months in a split block design with three replica in a crop soil where two different types of biosolids (aerobically or anaerobically digested) at three doses (low, 40; intermediate, 80; and high, 160Mg·ha(-1)) were applied. Low amounts of biosolids produced similar decay rates of coliform populations than in control soil (-0.19 and -0.27log10CFUs·g(-1)drysoilmonth(-1) versus -0.22) while in the case of intermediate and high doses were close to zero and their populations remained 24months later in the range of 4-5log10CFUs·g(-1)ds. Enterococci populations decayed at different rates when using aerobic than anaerobic biosolids although high doses had higher rates than control (-0.09 and -0.13log10CFUs·g(-1)dsmonth(-1) for aerobic and anaerobic, respectively, vs -0.07). At the end of the experiment, counts in high aerobic and low and intermediate anaerobic plots were 1 log10 higher than in control (4.21, 4.03, 4.2 and 3.11log10CFUs·g(-1) ds, respectively). Biosolid application increased the number of Clostridium spores in all plots at least 1 log10 with respect to control with a different dynamic of decay for low and intermediate doses of aerobic and anaerobic sludge. Ampicillin-resistant bacteria increased in amended soils 4months after amendment and remained at least 1 log10 higher 24months later, especially in aerobic and low and intermediate anaerobic plots due to small rates of decay (in the range of -0.001 to -0.008log10CFUs·g(-1)dsmonth(-1) vs -0.016 for control). Aerobic

  8. Characterization of humic substances isolated from clay- and silt-sized fractions of a corn residue-amended agricultural soil

    SciTech Connect

    Clapp, C.E.; Hayes, M.H.B.

    1999-12-01

    In a small-plot field study on a Waukegan silt loam soil, annual applications of 20 g N m{sup {minus}2} were made each May for 8 years before planting corn (Zea mays L.). Subplots were fertilized with 0.8 g {sup 15}N m{sup {minus}2}. Soil treatment in the fall either incorporated the chopped corn stover after grain harvest, using a rototiller, or the stover was removed from the plots. Soil samples taken in the fall were ultrasonicated, separated into clay- and silt-sized fractions, and extracted exhaustively with 0.1 mol L{sup {minus}1} sodium pyrophosphate (Na{sub 4}P{sub 2}O{sub 7}) + 0.1 mol L{sup {minus}1} NaOH (pH 12.6). Humic (HA) and fulvic (FA) acids were isolated using the International Humic Substances Society (IHSS) procedures. A variety of analytical methods were employed. The most useful information was obtained from amino acid (AA) and neutral sugar (NS) analyses, and from cross polarization magic angle spinning (CPMAS) {sup 13}C-NMR and {delta}{sup 13}C data. Overall, the corn residue amendments did not have a large effect on the composition of the humic substances (HS) from the different sized separates, but there were differences in the relative abundance of some AA and NS in the HAs and FAs. The NMR and {delta}{sup 13}C data provided evidence of some compositional differences and extent of humification between the HS from the clay- and silt-sized separates. The conclusion reached is, therefore, that the silt-sized particles were microaggregates of clay-sized particles, and the HS in these microaggregates were partially protected from bioalteration. These HS bore greater resemblance to the plants of origin than did those associated with the clays. The composition of the HAs and that of the FAs were similar to that of the Mollisol soil standard of the IHSS, but they were different from humic samples from other non-Mollisol soil types.

  9. Assessment of the use potential of edible sea urchins (Paracentrotus lividus) processing waste within the agricultural system: influence on soil chemical and biological properties and bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth in an amended acidic soil.

    PubMed

    Garau, Giovanni; Castaldi, Paola; Deiana, Salvatore; Campus, Paolo; Mazza, Antonio; Deiana, Pietrino; Pais, Antonio

    2012-10-30

    assessed in a pot experiment. Plant growth was unaffected (wheat) or stimulated (bean) by the amendment addition in the 0.5-3.0% range while the higher amendment rate (i.e. 5.0%) was detrimental for both plant species indicating a phytotoxic effect which could be due to different factors such as an excess of calcium in soil, a suppression of Mg uptake or the higher EC values detected at the highest amendment rate. It is concluded that ground P. lividus endoskeletons have potential as a soil amendment to ameliorate chemical and biological properties of acidic Mediterranean soils. This seems particularly relevant, especially at the lower amendment rates, since for the first time, a sustainable management system is proposed for P. lividus processing waste, which foresees economic value in the sea urchin by-product through its re-use within the agricultural production system. PMID:22659645

  10. Assessment of the use potential of edible sea urchins (Paracentrotus lividus) processing waste within the agricultural system: influence on soil chemical and biological properties and bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth in an amended acidic soil.

    PubMed

    Garau, Giovanni; Castaldi, Paola; Deiana, Salvatore; Campus, Paolo; Mazza, Antonio; Deiana, Pietrino; Pais, Antonio

    2012-10-30

    assessed in a pot experiment. Plant growth was unaffected (wheat) or stimulated (bean) by the amendment addition in the 0.5-3.0% range while the higher amendment rate (i.e. 5.0%) was detrimental for both plant species indicating a phytotoxic effect which could be due to different factors such as an excess of calcium in soil, a suppression of Mg uptake or the higher EC values detected at the highest amendment rate. It is concluded that ground P. lividus endoskeletons have potential as a soil amendment to ameliorate chemical and biological properties of acidic Mediterranean soils. This seems particularly relevant, especially at the lower amendment rates, since for the first time, a sustainable management system is proposed for P. lividus processing waste, which foresees economic value in the sea urchin by-product through its re-use within the agricultural production system.

  11. Impact of FGD gypsum soil amendment applications on soil and environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper will discuss the utilization of FGD gypsum in agriculture for improving soil quality and other environmental benefits. Gypsum (CaSO4 .2H2O) has been used as an agricultural soil amendment for over 250 years. It is a soluble source of calcium and sulfur- for crops and has been shown to i...

  12. A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil.

    PubMed

    Cretoiu, Mariana Silvia; Berini, Francesca; Kielak, Anna Maria; Marinelli, Flavia; van Elsas, Jan Dirk

    2015-10-01

    Here, we report on the construction of a metagenomic library from a chitin-amended disease-suppressive agricultural soil and its screening for genes that encode novel chitinolytic enzymes. The library, constructed in fosmids in an Escherichia coli host, comprised 145,000 clones containing inserts of sizes of 21 to 40 kb, yielding a total of approximately 5.8 GB of cloned soil DNA. Using genetic screenings by repeated PCR cycles aimed to detect gene sequences of the bacterial chitinase A-class (hereby named chi A genes), we identified and characterized five fosmids carrying candidate genes for chitinolytic enzymes. The analysis thus allowed access to the genomic (fosmid-borne) context of these genes. Using the chiA-targeted PCR, which is based on degenerate primers, the five fosmids all produced amplicons, of which the sequences were related to predicted chitinolytic enzyme-encoding genes of four different host organisms, including Stenotrophomonas maltophilia. Sequencing and de novo annotation of the fosmid inserts confirmed that each one of these carried one or more open reading frames that were predicted to encode enzymes active on chitin, including one for a chitin deacetylase. Moreover, the genetic contexts in which the putative chitinolytic enzyme-encoding genes were located were unique per fosmid. Specifically, inserts from organisms related to Burkholderia sp., Acidobacterium sp., Aeromonas veronii, and the chloroflexi Nitrolancetus hollandicus and/or Ktedonobacter racemifer were obtained. Remarkably, the S. maltophilia chiA-like gene was found to occur in two different genetic contexts (related to N. hollandicus/K. racemifer), indicating the historical occurrence of genetic reshufflings in this part of the soil microbiota. One fosmid containing the insert composed of DNA from the N. hollandicus-like organism (denoted 53D1) was selected for further work. Using subcloning procedures, its putative gene for a chitinolytic enzyme was successfully brought to

  13. Application of mesotrione at different doses in an amended soil: Dissipation and effect on the soil microbial biomass and activity.

    PubMed

    Pose-Juan, Eva; Sánchez-Martín, María Jesús; Herrero-Hernández, Eliseo; Rodríguez-Cruz, María Sonia

    2015-12-01

    The aim of this work was to estimate the dissipation of mesotrione applied at three doses (2, 10 and 50 mg kg(-1) dw) in an unamended agricultural soil, and this same soil amended with two organic residues (green compost (C) and sewage sludge (SS)). The effects of herbicide and organic residue on the abundance and activity of soil microbial communities were also assessed by determining soil microbial parameters such as biomass, dehydrogenase activity (DHA), and respiration. Lower dissipation rates were observed for a higher herbicide dose. The highest half-life (DT50) values were observed in the SS-amended soil for the three herbicide doses applied. Biomass values increased in the amended soils compared to the unamended one in all the cases studied, and increased over the incubation period in the SS-amended soil. DHA mean values significantly decreased in the SS-amended soil, and increased in the C-amended soil compared to the unamended ones, under all conditions. At time 0 days, respiration values were significantly higher in SS-amended soils (untreated and treated with mesotrione) than in the unamended and C-amended soils. The effect of mesotrione on soil biomass, DHA and respiration was different depending on incubation time and soil amendment and herbicide dose applied. The results support the need to consider the possible non-target effects of pesticides and organic amendments simultaneously applied on soil microbial communities to prevent negative impacts on soil quality. PMID:26188530

  14. SOIL ORGANIC AMENDMENT AS AFFECTING HERBICIDE FATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of organic amendments or organic wastes to soils have been shown to affect the fate of soil applied herbicides, although it is an issue very seldom considered when making the decision of fertilizing soil or disposing organic wastes. The addition of organic wastes to soils is viewed as v...

  15. Char-amended farm soils – effects on soil chemistry and wheat growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On-farm gasification of agricultural residues, the non-food byproducts from crop harvests, could provide a means to generate value-added income from the production of fuel or electrical generation. Char produced during the process also has potential value as a soil amendment to adjust acid soil pH (...

  16. Organic amendments increase soil solution phosphate concentrations in an acid soil: A controlled environment study

    SciTech Connect

    Schefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, R.

    2008-04-15

    Soil acidification affects at least 4 million hectares of agricultural land in Victoria, Australia. Low soil pH can inhibit plant growth through increased soluble aluminum (Al) concentrations and decreased available phosphorus (P). The addition of organic amendments may increase P availability through competition for P binding sites, solubilization of poorly soluble P pools, and increased solution pH. The effect of two organic amendments (lignite and compost) on P solubility in an acid soil was determined through controlled environment (incubation) studies. Three days after the addition of lignite and compost, both treatments increased orthophosphate and total P measured in soil solution, with the compost treatments having the greatest positive effect. Increased incubation time (26 days) increased soil solution P concentrations in both untreated and amended soils, with the greatest effect seen in total P concentrations. The measured differences in solution P concentrations between the lignite- and compost-amended treatments were likely caused by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment with lignite or compost also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. Based on the results presented, it is proposed that the measured increase in soil solution P with amendment addition was likely caused by both chemical and biological processes, including biotic and abiotic P solubilization reactions, and the formation of soluble organic-metal complexes.

  17. Soil Erosion and Agricultural Sustainability

    NASA Astrophysics Data System (ADS)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  18. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment.

    PubMed

    Solliec, Morgan; Roy-Lachapelle, Audrey; Gasser, Marc-Olivier; Coté, Caroline; Généreux, Mylène; Sauvé, Sébastien

    2016-02-01

    The fate of antimicrobial active compound residues in the environment, and especially antibiotics used in swine husbandry are of particular interest for their potential toxicity and contribution to antibiotic resistance. The presence of relatively high concentrations of bioactive compounds has been reported in agricultural areas but few information is available on their degradation products. Veterinary antibiotics reach terrestrial environments through many routes, including application of swine manure to soils. The objectives of this project were first, to develop an analytical method able to quantify and identify veterinary antibiotics and their degradation products in manure, soil and water samples; and second, to study the distribution of these target compounds in soils and drainage waters. A brief evaluation of their potential toxicity in the environment was also made. In order to achieve these objectives, liquid chromatography coupled to high-resolution mass spectrometry was used for its ability to quantify contaminants with sensitivity and selectivity, and its capacity to identify degradation products. Samples of manure, soil and water came from a long-term experimental site where swine manure containing veterinary antibiotics has been applied for many years. In this study, tetracycline antibiotics were found at several hundred μg L(-1) in the swine manure slurry used for fertilization, several hundred of ng L(-1) in drainage waters and several ng g(-1) in soils, while degradation products were sometimes found at concentrations higher than the parent compounds.

  19. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  20. Soil biochar amendments: type and dose effects

    NASA Astrophysics Data System (ADS)

    Ojeda, G.; Domene, X.; Mattana, S.; Sousa, J. P.; Ortiz, O.; Andres, P.; Alcañiz, J. M.

    2012-04-01

    Biochar is an organic material produced via the pyrolysis of C-based biomass, which is increasingly being recognized by scientists and policy makers for its potential role in carbon sequestration, reducing greenhouse gas emissions, waste mitigation, and as a soil amendment. Recent studies indicated that biochar improves soil fertility through its positive influence on physical-chemical properties, since not only improves water retention, aggregation and permeability, but its high charge density can also hold large amounts of nutrients, increasing crop production. However, it was observed that combustion temperature could affects the degree of aromaticity and the size of aromatic sheets, which in turns determine short-term mineralization rates. To reconcile the different decompasibility observations of biochar, it has sugested that physical protection and interactions with soil minerals play a significant part in biochar stability. In this context, it has initiated one pilot studies which aims to assess the effects of biochar application on physical and chemical properties of agricultural soil under Mediterranean conditions, such as changes in aggregate formation, intra-aggregate carbon sequestration and chemistry of soil water. In the present study, different clases of biochar produced from fast, slow and gasification pyrolisis of vegetal (pine, poplar) and dried sludge biomass, were applied at 1% of biochar-C to mesocosmos of an agricultural soil. Preliminary, it must be pointed out that slow and gasification pyrolisis changes the proportion of particles < 2 mm in diameter, from 10% (original materials) to almost 100%. In contrast, slow pyrolisis not modifies significantly biochar granulometry. As a consequence, bulk density of poplar and pine splinters decreases after fast pyrolisis. Regarding to organic carbon contents of biochar, all biochars obtained from plant biomass presented percentagens of total organic carbon (TOC) between 70 - 90%, while biochar

  1. Metal and nanoparticle occurrence in biosolid-amended soils.

    PubMed

    Yang, Yu; Wang, Yifei; Westerhoff, Paul; Hristovski, Kiril; Jin, Virginia L; Johnson, Mari-Vaughn V; Arnold, Jeffrey G

    2014-07-01

    Metals can accumulate in soils amended with biosolids in which metals have been concentrated during wastewater treatment. The goal of this study is to inspect agricultural sites with long-term biosolid application for a suite of regulated and unregulated metals, including some potentially present as commonly used engineered nanomaterials (ENMs). Sampling occurred in fields at a municipal and a privately operated biosolid recycling facilities in Texas. Depth profiles of various metals were developed for control soils without biosolid amendment and soils with different rates of biosolid application (6.6 to 74 dry tons per hectare per year) over 5 to 25 years. Regulated metals of known toxicity, including chromium, copper, cadmium, lead, and zinc, had higher concentrations in the upper layer of biosolid-amended soils (top 0-30 cm or 0-15 cm) than in control soils. The depth profiles of unregulated metals (antimony, hafnium, molybdenum, niobium, gold, silver, tantalum, tin, tungsten, and zirconium) indicate higher concentrations in the 0-30 cm soil increment than in the 70-100 cm soil increment, indicating low vertical mobility after entering the soils. Titanium-containing particles between 50 nm and 250 nm in diameter were identified in soil by transmission electron microscopy (TEM) coupled with energy dispersive x-ray spectroscopy (EDX) analysis. In conjunction with other studies, this research shows the potential for nanomaterials used in society that enter the sewer system to be removed at municipal biological wastewater treatment plants and accumulate in agricultural fields. The metal concentrations observed herein could be used as representative exposure levels for eco-toxicological studies in these soils. PMID:24742554

  2. Predicting bioavailability of metals from sludge-amended soils.

    PubMed

    Golui, Debasis; Datta, S P; Rattan, R K; Dwivedi, B S; Meena, M C

    2014-12-01

    We attempted to develop a protocol for fixing the maximum permissible limit of sludge in agricultural lands based on transfer of metals from sludge-amended soils to human food chain. For this purpose, spinach was grown as a test crop on acid and alkaline soils with graded doses of sludge (0, 1.12, 2.24, 4.48, 8.96, 17.9, 35.8, 71.6, 142 and 285 g kg(-1) of soil) in a pot experiment. Biomass yield of spinach was increased due to sludge application in both acid and alkaline soils. Among the chemical extractants, EDTA extracted the highest amount of metals from sludge-amended soil followed by diethylenetriaminepentaacetic acid (DTPA) and CaCl2. Elevated levels of Zn, Cu, Fe, Mn, Ni, Cd and Pb in spinach were observed due to sludge application over control. Application of sludge was more effective in increasing metal content in spinach grown on acid soil than alkaline soil. Solubility-free ion activity model as a function of pH, organic carbon and extractable metal was far more effective in predicting metal uptake by spinach grown on sludge-amended soils as compared to that of chemical extractants. Risk in terms of hazard quotient (HQ) for intake of metals through consumption of spinach by humans grown on sludge-treated soils was computed for different metals separately. In a 90-day pot experiment, safe rates of sludge application were worked out as 4.48 and 71.6 g kg(-1) for acid and alkaline soils, respectively.

  3. Modeling nitric oxide emissions from biosolid amended soils

    NASA Astrophysics Data System (ADS)

    Roelle, Paul A.; Aneja, Viney P.; Mathur, Rohit; Vukovich, Jeff; Peirce, Jeffrey

    Utilizing a state-of-the-art mobile laboratory in conjunction with a dynamic flow-through chamber system, nitric oxide concentrations [NO] were measured and NO fluxes were calculated during the summer, winter and spring of 1999/2000. The field site where these measurements were conducted was an agricultural soil amended with biosolids from a municipal wastewater treatment facility. These NO flux values were then used to assess the impact of including biosolid amended soils as a land-use class in an air quality model. The average NO flux from this biosolid amended soil was found to be exponentially dependent on soil temperature [NO Flux ( ng N m-2 s-1)=1.07 exp(0.14 T soil) ; R2=0.81—NO Flux=71.3 ng N m -2 s-1 at 30°C]. Comparing this relationship to results of the widely applied biogenic emissions inventory system (BEIS2) model revealed that for this field site, if the BEIS2 model was used, the NO emissions would have been underestimated by a factor of 26. Using this newly developed NO flux algorithm, combined with North Carolina Division of Water Quality statistics on how many biosolid amended acres are permitted per county, county-based NO inventories from these biosolid amended soils were calculated. Results from this study indicate that county-level biogenic NO emissions can increase by as much as 18% when biosolid amended soils are included as a land-use class. The multiscale air quality simulation platform (MAQSIP) was then used to determine differences in ozone (O 3) and odd-reactive nitrogen compounds (NO y) between models run with and without the biosolid amended acreages included in the inventory. Results showed that during the daytime, when atmospheric mixing heights are typically at their greatest, any increase in O 3 or NO y concentrations predicted by the model were small (<3%). In some locations during late evening/early morning hours, ozone was found to be consumed by as much as 11%.

  4. Fly ash-amended compost as a manure for agricultural crops

    SciTech Connect

    Menon, M.P.; Sajwan, K.S.; Ghuman, G.S.; James, J.; Chandra, K. )

    1993-11-01

    Homemade organic compost prepared from lawn grass clippings was amended with fine fly ash collected from a coal-fired power plant (SRS 484.D. Savannah River Site, Aiken, SC) to investigate its usefulness as a manure in enhancing nutrient uptake and increasing dry matter yield in selected agricultural crops. Three treatments were compared: five crops (mustard, collard, string beans, bell pepper, and eggplant) were each grown on three kinds of soil: soil alone, soil amended with composted grass clippings, and soil amended with the mixed compost of grass clippings and 20% fly ash. The fly ash-amended compost was found to be effective in enhancing the dry matter yield of collard greens and mustard greens by 378% and 348%, respectively, but string beans, bell pepper, and eggplant did not show any significant increase in dry matter yield. Analysis of the above-ground biomass of these last three plants showed they assimilated high levels of boron, which is phytotoxic; and this may be the reason for their poor growth. Soils treated with fly ash-amended compost often gave higher concentrations than the control for K, Ca, Mg, S, Zn, and B in the Brassica crops. 18 refs., 2 figs., 5 tabs.

  5. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    PubMed

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization.

  6. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    PubMed

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization. PMID:23422041

  7. Immobilization of pentachlorophenol in soil using carbonaceous material amendments.

    PubMed

    Wen, Bei; Li, Rui-Juan; Zhang, Shuzhen; Shan, Xiao-Quan; Fang, Jing; Xiao, Ke; Khan, Shahamat U

    2009-03-01

    In this study, three pentachlorophenol (PCP) laboratory-spiked and one field-contaminated soil were amended with 2.0% char, humic acid (HA) and peat, respectively. The amended soils were aged for either 7 or 250 days. After amendment, CaCl(2) extractability of PCP was significantly decreased. Desorption kinetics indicated that the proposed amendment could lead to a strong binding and slow desorption of PCP in soils. Amendment with char reduced the bioaccumulation factor (BAF) of PCP most significantly for earthworms (Eisenia fetida) in all soils studied. The results of both physicochemical and biological tests suggested that amendment reduced PCP bioavailability quickly and enduringly, implying that carbonaceous material amendment, especially char amendment, was a potentially attractive in situ remediation method for sequestration of PCP in contaminated soil. PMID:19028411

  8. Practical survey on antibiotic-resistant bacterial communities in livestock manure and manure-amended soil.

    PubMed

    Yang, Qingxiang; Wang, Ruifei; Ren, Siwei; Szoboszlay, Marton; Moe, Luke A

    2016-01-01

    Through livestock manure fertilization, antibiotics, antibiotic-resistant bacteria and genes are transferred to agricultural soils, resulting in a high prevalence of antibiotic-resistant bacteria in the soil. It is not clear, however, whether a correlation exists between resistant bacterial populations in manure and manure-amended soil. In this work, we demonstrate that the prevalence of cephalexin-, amoxicillin-, kanamycin- and gentamicin-resistant bacteria as well as bacteria simultaneously resistant to all four antibiotics was much higher in manure-amended soils than in manure-free soil. 454-pyrosequencing indicated that the ARB and multiple antibiotic-resistant bacteria (MARB) in swine or chicken manure and manure-amended soil were mainly distributed among Sphingobacterium, Myroides, Enterococcus, Comamonas and unclassified Flavobacteriaceae. The genus Sphingobacterium was highly prevalent among ARB from swine manure and manure-amended soil, and was also the most dominant genus among MARB from chicken manure and manure-amended soil. Other dominant genera among ARB or MARB populations in manure samples, including Myroides, Enterococcus and Comamonas, could not be detected or were detected at very low relative abundance in manure-amended soil. The present study suggests the possibility of transfer of ARBs from livestock manures to soils and persistence of ARB in these environments. PMID:26513264

  9. Reversible and irreversible sorption of agrochemicals in biochar amended soils: synergistic effects of heavy metals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil amendment of biochar products from thermochemical waste-to-energy conversion (slow/fast pyrolysis and gasification) of biomass has received considerable interests for both contaminated and agricultural sites. Recalcitrant nature of biochar manifests in their decade-long effectiveness in soil a...

  10. Effects of sewage sludge amendments on pesticide sorption and leaching through undisturbed Mediterranean soils.

    PubMed

    Imache, Ahde El; Dousset, Sylvie; Satrallah, Ahmed; Dahchour, Abdelmalek

    2012-01-01

    The Gharb region in Morocco is an important agricultural zone where soils receive pesticide treatments and organic amendments to increase yields. The groundwater aquifer in the Gharb region is relatively shallow and thus vulnerable. The objective of this work was to study the influence of organic amendments on diuron, cyhalofop-butyl and procymidone leaching through undisturbed soil columns. Two soils were sampled from the Gharb region, a Dehs (sandy soil) and a R'mel (loamy clay soil). Following elution (124.5 mm), the amount of pesticide residues in the leachates of the sandy soil (0.06-0.21 %) was lower than in those of the loamy clay soil (0.20-0.36 %), which was probably due to preferential flow through the loamy clay soil. The amount of procymidone leached through the amended soil columns was greater than the control for the sandy soil only. The organic amendments did not significantly influence diuron and cyhalofop-butyl leaching in either of the soils. The application of organic amendments affected the amounts of dissolved organic matter (DOM) eluted and thus pesticide leaching as a function of soil-type. Nevertheless, in some case, the formation of pesticide-DOM complexes appeared to promote pesticide leaching, thus increasing groundwater contamination risks. PMID:22375587

  11. Effects of sewage sludge amendments on pesticide sorption and leaching through undisturbed Mediterranean soils.

    PubMed

    Imache, Ahde El; Dousset, Sylvie; Satrallah, Ahmed; Dahchour, Abdelmalek

    2012-01-01

    The Gharb region in Morocco is an important agricultural zone where soils receive pesticide treatments and organic amendments to increase yields. The groundwater aquifer in the Gharb region is relatively shallow and thus vulnerable. The objective of this work was to study the influence of organic amendments on diuron, cyhalofop-butyl and procymidone leaching through undisturbed soil columns. Two soils were sampled from the Gharb region, a Dehs (sandy soil) and a R'mel (loamy clay soil). Following elution (124.5 mm), the amount of pesticide residues in the leachates of the sandy soil (0.06-0.21 %) was lower than in those of the loamy clay soil (0.20-0.36 %), which was probably due to preferential flow through the loamy clay soil. The amount of procymidone leached through the amended soil columns was greater than the control for the sandy soil only. The organic amendments did not significantly influence diuron and cyhalofop-butyl leaching in either of the soils. The application of organic amendments affected the amounts of dissolved organic matter (DOM) eluted and thus pesticide leaching as a function of soil-type. Nevertheless, in some case, the formation of pesticide-DOM complexes appeared to promote pesticide leaching, thus increasing groundwater contamination risks.

  12. Co phytoavailability for tomato in amended calcareous soils.

    PubMed

    Perez-Espinosa, A; Moral, R; Moreno-Caselles, J; Cortés, A; Perez-Murcia, M D; Gómez, I

    2005-04-01

    A plot study was conducted to assess changes in Co phytoavailability for a tomato cultivar grown on an agricultural soil (a Calcic Petrocalcid) amended with sewage sludge, under controlled conditions in South-eastern Spain. The experiment consisted of three main treatment blocks: (A) without organic fertilisation, (B) with addition of 60 tha(-1) and (C) 120 tha(-1) of sewage sludge. For each block (A, B, and C), four levels of Co (0, 50, 100 and 200 mgkg(-1)) were added, as CoCl2. Diethylenetriaminepentaacetic acid, DTPA (0.005 M plus triethanolamine), ammonium acetate (1 N at pH 7), and water extractable fractions of the soils were analysed for all the plots. The time dependent Co accumulation in different parts (roots, stems, leaves, and fruits) of the tomato plants was studied. Soil Co seemed to be mainly in non-available forms, according to the low concentrations found in the water and ammonium acetate extracts, compared to DTPA. The gradient of Co accumulation in tomato plants was root > leaf > stem + branches > fruit, with a concentration in the edible parts ranging between 4 and 25 mg kg(-1). The organic amendment enhanced the plant extraction of Co, this effect being more significant with time. Plant extraction efficiency decreased with increasing Co concentration in the soils. Co in fruit showed the best correlation with all the Co extraction pools in the soil. PMID:15588767

  13. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  14. Effects of Biochar amendments on soil chemistry

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Zimmerman, A. R.

    2009-12-01

    Humans have been transforming soil composition, both accidentally and purposefully, for centuries. For example, terra preta soils found in Amazonia that are greatly enriched in organic carbon and phosphorus and have enhanced fertility relative to the surrounding depleted oxisols, seem to have been deliberately created by native pre-Colombian Indians through the addition of combusted biomass, or biochar. Biochar amendment has gained attention recently as a way to enhance soil carbon sequestration while increasing soil fertility. It may also have adsorptive properties that are useful for pollution control. Our research examines the chemical and morphological properties of biochar with the goals of understanding the origin of terra preta, as well as how biochar can best be put to use as a soil amendment. Biochar was produced from a range of parent biomass types (hardwoods, softwoods and grasses) and under a range of combustion conditions (250 to 650 oC, under air and N2). Surface areas, determined by gas sorptometry, ranged from 3 to 394 m2g-1 (for N2) and from 129 to 345 m2g-1 (for CO2) and were found to generally increase with increasing pyrolysis temperature. The pH of the biochars ranged from 1.8 to 4.5, from 6.2 to 8.7, and from 6.2 to 9.2 for the 250, 400, and 650 oC biochars, respectively, and did not vary consistently with parent biomass types. Cation exchange capacity (CEC), determined using K+ exchange, ranged between 5 to 60 cmolc kg-1, higher than most soils, and generally increased with charring temperature. Anion exchange capacity (AEC) was low or undetectable. Lastly, the isoelectric point of the chars, determined using a zeta potential analyzer, ranged from a pH of 1.3 to 1.5, indicating that the biochar surfaces will be predominantly negatively charged in soil solutions. These data are complimentary and show that, when added to soil, biochar, particularly those produced at higher temperatures, would function as a cation exchanger system. The acid

  15. Effect of soil organic amendments on the behavior of bentazone and tricyclazole.

    PubMed

    García-Jaramillo, M; Cox, L; Cornejo, J; Hermosín, M C

    2014-01-01

    The effect of soil amendment with different organic residues from olive oil production on the sorption and leaching of two pesticides used in rice crops (bentazone and tricyclazole) was compared in order to understand their behavior and to improve soil properties by recycling an abundant agricultural residue in Andalucía (S. Spain). A residue from olive oil production (AJ), the organic compost derived from this organic waste (CA) and a biochar (BA) made from CA were used. A soil devoted to rice cultivation, IFAPA (I), was amended at 2% (w/w) of each amendment individually (I+AJ, I+CA and I+BA). In order to evaluate the effect of dissolved organic matter (DOM) from these amendments on bentazone and tricyclazole behavior, the DOM from the amendments was extracted, quantified and characterized by fluorescence spectroscopy and FT-IR. The affinity of DOM for soil surfaces was evaluated with (I) soil and two other soils of different physicochemical properties, ARCO (A) and GUAD (G). These studies revealed differences in DOM quantity, quality and affinity for the used soils among amendments which can explain the different sorption behavior observed for tricyclazole in the amended soils. Leaching assays under saturated/unsaturated conditions revealed a slight delay of bentazone in I+CA and I+BA soils when compared to I+AJ, that can be related to the higher DOM content and much lower specific surface area of AJ. In contrast, tricyclazole was not detected in any of the leachates during the leaching assay. Extraction of tricyclazole residues from soil columns showed that the fungicide did not move below 5cm in the higher sorptive systems (I+CA, I+BA). The sorption of DOM from amendments on soil during the transport process can decrease the mobility of the fungicide by changing the physicochemical properties of the soil surface whose behavior may be dominated by the adsorbed DOM.

  16. Distribution of Cd, Ni, Cr and Pb in sewage sludge amended soils

    NASA Astrophysics Data System (ADS)

    Sanfeliu, Teófilo

    2010-05-01

    Restoration of degraded soils with organic wastes could be a feasible practice to minimise erosion in the Mediterranean area. Today the use of sewage sludge to improve the nutrient contents of a soil is a common practice. Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of sewage sludge is subject to strict controls within the European Community in relation to total permissible metal concentrations, soil properties and intended use. This study is aimed at ascertaining the chemical partitioning of Cd, Ni, Cr and Pb in agricultural soils repeatedly amended with sludge. Five surface soils (0-15 cm) that were polluted as a result of agricultural activities were used in this experiment. The sewage sludge amended soils were selected for diversity of physicochemical properties, especially pH and carbonate content. The soils are classified as non-calcareous and calcareous soils. The distribution of chemical forms of Cd, Ni, Cr and Pb in five sewage sludge amended soils was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible and residual forms. With regard to the mineralogical composition of the soil clay fraction, the mineralogical association found was: illite, kaolinite and chlorite. This paper provides quantitative evidence regarding the form of the association of metals and indirectly of their bioavailability. It can help to explain the process by which metals are eliminated from sewage sludge and also indicate the impact of the use of sludge on agricultural soils, as amendments. Data obtained showed different metal distribution trend among the fractions in sludge-amended soils. Comparison of distribution pattern of metals in sludge-applied soils shows that there is possible redistribution of metals among the different phases. Detailed knowledge of the soil at the application site, especially pH, CEC, buffering capacity

  17. Fuzzy indicator approach: development of impact factor of soil amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil amendments have been shown to be useful for improving soil condition, but it is often difficult to make management decisions as to their usefulness. Utilization of Fuzzy Set Theory is a promising method for decision support associated with utilization of soil amendments. In this article a tool ...

  18. Soil amendments yield persisting changes in the microbial communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial communities are sensitive to carbon amendments and largely control the decomposition and accumulation of soil organic matter. In this study, we evaluated whether the type of carbon amendment applied to wheat-cropped or fallow soil imparted lasting effects on the microbial community w...

  19. Soil microbial properties after 5 years of consecutive amendment with composted tannery sludge.

    PubMed

    Araujo, Ademir Sérgio Ferreira; Miranda, Ana Roberta Lima; Oliveira, Mara Lucia Jacinto; Santos, Vilma Maria; Nunes, Luís Alfredo Pinheiro Leal; Melo, Wanderley José

    2015-01-01

    Composting has been recognised an alternative method to tannery sludge recycling and afterwards to be used in agriculture. As the tannery sludge contains salts and chromium, the application of composted tannery sludge (CTS) should be performed carefully to minimise negative effects on soil microbial properties. Therefore, this study evaluated the effects of 5-year repeated CTS amendment on soil microbial biomass (SMB) and enzyme activities in a tropical soil. CTS was applied during 5 years at 0, 2.5, 5, 10 and 20 Mg ha(-1), and at the fifth year, the microbial biomass C (MBC) and N (MBN), basal and substrate-induced respiration (SIR), metabolic quotient (qCO₂) and dehydrogenase (DHA) and fluorescein diacetate (FDA) hydrolysis were determined in the soil samples. Soil MBC and MBN showed the highest values with the amendment of 5 Mg ha(-1) CTS. Soil respiration increased with the increase in CTS rates, while SIR showed the highest values with the amendment of 0, 2.5 and 5 Mg ha(-1) CTS. DHA activity showed the highest values with the amendment up to 2.5 Mg ha(-1), while FDA hydrolysis increased up to the rate of 5 Mg ha(-1) CTS. The results show that after 5 years of permanent amendment of CTS, soils amended with 2.5 Mg ha(-1) have SMB and enzymatic activities similar to those in unamended soil.

  20. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    NASA Astrophysics Data System (ADS)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    The limited availability of animal manure and the high cost of good quality compost lead to difficult soil quality management under organic agriculture. Therefore, it is important to find out alternative organic soil amendments and more flexible strategies that are able to sustain crop productivity and maintain and enhance soil quality. A three years study was carried out in the experimental fields of the Mediterranean Agronomic Institute of Bari located in Valenzano, Italy. The main objective of this research is to investigate the effects of different fertility management strategies on soil quality in order to estimate the role of innovative matrices for their use in organic farming. The experiment consists of seven treatments applied to a common crop rotation. The treatments include alternative organic amendments (1- olive mill wastewater OMW, 2- residues of mushroom cultivation MUS, 3- coffee chaff COF), common soil amendments (4- compost COM, 5- faba bean intercropping LEG, 6- cow manure - MAN) and as a reference treatment (7- mineral fertilizer COV). The soil quality was assessed before and after the application of the treatments, through biological (microbial biomass carbon and nitrogen, soil respiration and metabolic quotient), biochemical (soil enzymatic activities: β-glucosidase, alkaline phospatase, urease, fluorescein diacetate (FDA) hydrolysis), and chemical (pH, soil organic carbon, soil organic matter, total nitrogen, available phosphorous, exchangeable potassium, dissolved organic carbon and total dissolved nitrogen) indicators. Based on the results obtained after the second year, all treatments were able to improve various soil chemical parameters as compared to mineral fertilizer. The incorporation of COF and OMW seemed to be more effective in improving soil total N and exchangeable K, while MAN significantly increased available P. All the amendments enhance dissolved organic C, soil respiration, microbial biomass and metabolic quotient as

  1. Potential for Carbon Sequestration using Organic Amendments on Rangeland Soils

    NASA Astrophysics Data System (ADS)

    Ryals, R.; Silver, W. L.

    2009-12-01

    Managed rangelands represent a geographically large land-use footprint and thus have considerable potential to sequester carbon (C) in soil through changes in management practices. Organic amendments are frequently added to agricultural and rangeland soils in an effort to improve fertility and yield, yet little is known about their impact on greenhouse gas dynamics and soil biogeochemical dynamics, especially in rangeland soils. This research aims to explore the effects of organic amendments on soil chemical and physical properties, plant inputs, and soil C and N dynamics in managed rangeland ecosystems. Our research uses field manipulations at two Mediterranean grassland ecosystems replicated within and across bioclimatic zones: the Sierra Foothills Research and Extension Center (SFREC) in Browns Valley, CA and the Nicasio Native Grass Ranch in Nicasio, CA. Both sites are dominated by annual grasses and are moderately grazed by cattle. Three replicate blocks at each site contain 60m x 25m treatment plots (organic amendments and control) with 5m buffer strips. Organic amendments were applied at a level of 14 MgC/ha (equivalent to a 1.27cm surface dressing) at the beginning of the wet season (December 2008). During the wet season (October through June), carbon dioxide (CO2) flux was measured weekly using a LI-8100, while fluxes of methane (CH4) and nitrous oxide (N2O) were measured biweekly using static flux chambers. During the dry season (June through September), fluxes were measured biweekly and monthly, respectively. Soil organic C (SOC) and nitrogen (N) were measured prior to treatment and seven months following treatment at 0-10, 10-30, 30-50, and 50-100 cm depths. Soil moisture and temperature were measured continuously. Changes in oxidative and hydrolytic extracellular enzyme activities are also being explored. After the first year of management, both sites responded similarly to treatments in both trend and magnitude. For example, at SFREC, total soil

  2. Evaluation-of soil enzyme activities as soil quality indicators in sludge-amended soils.

    PubMed

    Dindar, Efsun; Şağban, Fatma Olcay Topaç; Başkaya, Hüseyin Savaş

    2015-07-01

    Soil enzymatic activities are commonly used as biomarkers of soil quality. Several organic and inorganic compounds found in municipal wastewater sludges can possibly be used as fertilizers. Monitoring and evaluating the quality of sludge amended soils with enzyme activities accepted as a beneficial practice with respect to sustainable soil management. In the present study, variation of some enzyme activities (Alkaline phosphatase, dehydrogenase, urease and beta-glucosidase activities) in soils amended with municipal wastewater sludge at different application rates (50, 100 and 200 t ha(-1) dry sludge) was evaluated. Air dried sludge samples were applied to soil pots and sludge-soil mixtures were incubated during a period of three months at 28 degrees C. The results of the study showed that municipal wastewater sludge amendment apparently increased urease, dehydrogenase, alkaline phosphatase and P-glucosidase activities in soil by 48-70%, 14-47%, 33-66% and 9-14%, respectively. The maximum activity was generally observed in sludge amended soil with dose of 200 t ha(-1). Urease activity appeared to be a better indicator of soil enhancement with wastewater sludge, as its activity was more strongly increased by sludge amendment. Accordingly, urease activity is suggested to be soil quality indicator best suited for measuring existing conditions and potential changes in sludge-amended soil.

  3. Biochar and Mill Ash Use as Soil Amendments to Grow Sugarcane in Sandy Soils of South Florida

    NASA Astrophysics Data System (ADS)

    Alvarez-Campos, O.; Lang, T. A.; Bhadha, J. H.; McCray, M.; Gao, B.; Glaz, B.; Daroub, S. H.

    2015-12-01

    The use of agricultural and urban organic residues as amendments provides an option to improve sugarcane production in sandy soils located northwest of the Everglades Agricultural Area, while reducing waste. This study was conducted to determine the effect of mill ash and three biochars on sugarcane yield and sandy soil properties. Mill ash and biochars produced from hardwood yard waste (HY), barn shavings with horse manure (HM), and rice hulls (RH) were incorporated at 1% and 2% (by weight) to sandy soils in a lysimeter experiment. A control without amendment and an often-used commercial practice of mill ash applied at 6% (AS6) were also included. Results showed that RH2 and AS6 produced greater biomass and sucrose yield compared with the control. According to critical nutrient level analysis, RH and AS amendments also resulted in the highest silicon content, which had a positive correlation with increasing sugarcane yield. In addition, RH2 and AS6 increased total phosphorus, Mehlich-3 phosphorus, and cation exchange capacity (CEC) compared with the control. While CEC remained constant with AS2 and AS6 applications, CEC significantly increased over time with RH2. Moreover, higher amendment applications increased soil organic matter compared with the control and did not decrease over time, which suggests a positive influence for long term carbon sustainability and nutrient cycling in sandy soils. Overall, RH2 and AS6 have the most potential to be used as amendments in sandy soils of South Florida due to their positive effects on soil properties, which improved sugarcane yield. However, no negative consequences were found with the application of any other amendment in terms of sugarcane growth and soil quality. Future research should focus on the use of RH and AS amendments on long-term field-scale studies, and the economic feasibility of a single year application on plant and ratoon cane yields.

  4. Framework…protocols for evaluation … hazards & controls…application...soil amendments of animal origin on land…grow produce…consumed raw

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of manure or soil amendments of animal origin (untreated soil amendments; UTSAs) to agricultural land has been a long-standing practice to maintain or improve soil quality through addition of organic matter, nitrogen, and phosphorus. Much smaller quantities of these types of UTSAs are ap...

  5. Sulfamethazine uptake by plants from manure-amended soil.

    PubMed

    Dolliver, Holly; Kumar, Kuldip; Gupta, Satish

    2007-01-01

    Animal manure is applied to agricultural land as a means to provide crop nutrients. However, animal manure often contains antibiotics as a result of extensive therapeutic and subtherapeutic use in livestock production. The objective of this study was to evaluate plant uptake of a sulfonamide-class antibiotic, sulfamethazine, in corn (Zea mays L.), lettuce (Lactuca sativa L.), and potato (Solanum tuberosum L.) grown in a manure-amended soil. The treatments were 0, 50, and 100 microg sulfamethazine mL(-1) manure applied at a rate of 56 000 L ha(-1). Results from the 45-d greenhouse experiment showed that sulfamethazine was taken up by all three crops, with concentrations in plant tissue ranging from 0.1 to 1.2 mg kg(-1) dry weight. Sulfamethazine concentrations in plant tissue increased with corresponding increase of sulfamethazine in manure. Highest plant tissue concentrations were found in corn and lettuce, followed by potato. Total accumulation of sulfamethazine in plant tissue after 45 d of growth was less than 0.1% of the amount applied to soil in manure. These results raise potential human health concerns of consuming low levels of antibiotics from produce grown on manure-amended soils.

  6. Impact of coal combustion product amendments on soil quality. 1: Mobilization of soil organic nitrogen

    SciTech Connect

    Stuczynski, T.I. |; McCarty, G.W.; Wright, R.J.

    1998-12-01

    There is growing interest in the use of coal combustion products (fly ash and bed ash) at agronomic rates, based on the liming requirements of agricultural soils, and at higher rates in technologies for reclamation of degraded lands. There is concern, however, that excessive or other improper use may have a negative impact on soil quality and the environment. To determine the influence of potentially excessive rates of coal combustion products on the fate of soil quality and the environment. To determine the influence of potentially excessive rates coal combustion products on the fate of soil organic N and impacts on soil quality, the authors studied the effects of fly ash and bed ash applied at rates of 0, 20, 40, and 80 g kg{sup {minus}1} soil on the content of organic N in soils incubated for 10, 25, or 60 days. Studies comparing the influence of these products on the organic N content of the soil showed that although applications of fly ash had little influence on the fate of this N, application of bed ash caused substantial decreases in the total N content of water-extracted soil through the mobilization of organic N. Measurements of the changes in acid hydrolyzable N components of organic matter in soils treated with high rates of bed ash showed that within the first 10 days of incubation, losses of N in the forms of amino sugars, amino acids, and hydrolyzable NH{sub 4}{sup +} could account largely for losses of total N in bed ash-amended soils. Decreases in the amino acid content of soil organic matter accounted for most of these losses, and such decreases were directly related to increases in soil pH caused by the bed ash amendment.

  7. Evaluation of antibiotic mobility in soil associated with swine-slurry soil amendment under cropping conditions.

    PubMed

    Domínguez, C; Flores, C; Caixach, J; Mita, L; Piña, B; Comas, J; Bayona, J M

    2014-11-01

    Interest in identifying pools of antibacterial-resistance genes has grown over the last decade, with veterinary antibiotics (VAs) receiving particular attention. In this paper, a mesoscale study aimed at evaluating the vertical transport of common VAs-namely, fluoroquinolones, tetracyclines, sulfonamides, and lincosamides in agricultural soil subjected to drip irrigation-was performed under greenhouse conditions. Accordingly, leachates of cropped and uncropped soil, amended with swine-slurry leading to 19-38 μg kg(-1) (dry mass) antibiotics in the soil, were analyzed over the course of the productive cycle of a lettuce (42 days) with three sampling campaigns (N = 24). High lincomycin (LCM) concentrations (30-39 μg L(-1)) were detected in the leachates collected from the swine-slurry-amended soil. The highest LCM mass recovered in the leachates (30.1 ± 1.63 %) was obtained from cropped experimental units. In addition, the LCM leaching constant and its leaching potential as obtained from the first-order model were higher in the leachates from the cropped experimental units. Lower concentrations of sulfadimethoxine were also detected in leachates and in soil. Enrofloxacin and oxytetracycline occurred only in soil, which is consistent with high soil interaction.

  8. Leachate water quality of soils amended with different swine manure-based amendments.

    PubMed

    Ro, K S; Novak, J M; Johnson, M G; Szogi, A A; Libra, J A; Spokas, K A; Bae, S

    2016-01-01

    In the face of the rising level of manure production from concentrated animal feeding operations (CAFOs), management options are being sought that can provide nutrient recycling for plant growth and improved soil conditions with minimal environmental impacts. Alternatives to direct manure application are composting and thermochemical conversion which can destroy pathogens and improve handling and storage. The effect of four forms of swine manure-based soil amendments (raw, compost, hydrochar, and pyrochar) on soil fertility and leachate water quality characteristics of a sandy soil were investigated in soil incubation experiments. All four amendments significantly increased soil carbon, cation exchange capacity and available nutrient contents of the soil. However, hydrochar amended soil leached lower amounts of N, P, and K compared to the other amendments including the control. On the other hand, pyrochar amended soil leached higher concentrations of P and K. Subsequent tests on the hydrochar for K and N adsorption isotherms and surface analysis via XPS suggested that these nutrients were not sorbed directly to the hydrochar surface. Although it is still not clear how these nutrients were retained in the soil amended with hydrochar, it suggests a great potential for hydrochar as an alternative manure management option as the hydrochar can be soil applied while minimizing potential environmental issues from the leaching of high nutrient concentrations to water bodies.

  9. Soil quality, crop productivity and soil organic matter (SOM) priming in biochar and wood ash amended soils

    NASA Astrophysics Data System (ADS)

    Reed, Eleanor Swain; Chadwick, David; Hill, Paul; Jones, Davey

    2016-04-01

    The application of energy production by-products as soil amendments to agricultural land is rapidly growing in popularity, however the increasing body of literature on primarily biochar but also wood ash have yielded contrary evidence of the range of these soil amendments function sensitivity in soil. This study aims to assess the efficacy of two by-products; biochar and wood ash to provide nutrients to grassland as well as the potential to improve overall soil quality. The study of soil amendments at field scale are scarce, and the agronomic benefits of biochar and wood ash in temperate soils remain unclear. We used replicated field plots with three soil treatments (biochar, wood ash and control) to measure the soil and crop properties over twelve months, including PLFA analysis to quantify the total soil microbial biomass and community structure. After a soil residency of one year, there were no significant differences in soil EC, total N, dissolved organic N (DON), dissolved organic C (DOC), NO3-N and NH4-N concentrations, between biochar amended, wood ash amended and un-amended soil. In contrast, the application of biochar had a significant effect on soil moisture, pH, PO4-P concentrations, soil organic carbon (SOC) and total organic carbon (TOC), whilst the wood ash amendment resulted in an increase in soil pH only. There were no significant treatment effects on the growth performance or nutrient uptake of the grass. In a parallel laboratory incubation study, the effects of biochar and wood ash on soil C priming was explored, in which soil with 14C-labelled native SOC was amended with either biochar or wood ash at the same rate as the field trial. The rates of 14CO2 (primed C) production was measured with a liquid scintillation counter over a 50 day period. The 14CO2 that evolved during decomposition likely originated from conversions in the (microbial) biomass. The results indicated that biochar application did not prime for the loss of native SOC (i.e. there

  10. ADSORPTION OF CADMIUM ON BIOSOLIDS-AMENDED SOILS

    EPA Science Inventory

    A considerable controversy exists over the biosolid phase (organic or inorganic) responsible for the reduction in phytoavailable Cd in soils amended with biosolids as compared to soils amended with inorganic salts. To test the importance of these two phases, 2 biosolids, 15 bioso...

  11. Organic and inorganic amendments affect soil concentration and accumulation of cadmium and lead in wheat in calcareous alkaline soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation with untreated effluent in periurban agriculture could result in accumulation and bioconcentrations of cadmium (Cd) and lead (Pb). Different amendments were used to investigate their effect on availability, concentration, and uptake of metals by wheat in texturally different soils. Crop w...

  12. The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production.

    PubMed

    Zhao, Yunchen; Yan, Zhibin; Qin, Jiahai; Ma, Zhijun; Zhang, Youfu; Zhang, Li

    2016-04-01

    Intensive corn seed production in Northwest of China produced large amounts of furfural residues, which represents higher treatment cost and environmental issue. The broad calcareous soils in the Northwest of China exhibit low organic matter content and high pH, which led to lower fertility and lower productivity. Recycling furfural residues as soil organic and nutrient amendment might be a promising agricultural practice to calcareous soils. A 3-year field study was conducted to evaluate the effects of furfural as a soil amendment on corn seed production on calcareous soil with compared to biogas residues. Soil physical-chemical properties, soil enzyme activities, and soil heavy metal concentrations were assessed in the last year after the last application. Corn yield was determined in each year. Furfural residue amendments significantly decreased soil pH and soil bulk density. Furfural residues combined with commercial fertilizers resulted in the greater cumulative on soil organic matter, total phosphorus, available phosphorus, available potassium, and cation exchange capacity than that of biogas residue. Simultaneously, urease, invertase, catalase, and alkaline phosphatase increased even at the higher furfural application rates. Maize seed yield increased even with lower furfural residue application rates. Furfural residues resulted in lower Zn concentration and higher Cd concentration than that of biogas residues. Amendment of furfural residues led to higher soil electrical conductivity (EC) than that of biogas residues. The addition of furfural residues to maize seed production may be considered to be a good strategy for recycling the waste, converting it into a potential resource as organic amendment in arid and semi-arid calcareous soils, and may help to reduce the use of mineral chemical fertilizers in these soils. However, the impact of its application on soil health needs to be established in long-term basis.

  13. The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production.

    PubMed

    Zhao, Yunchen; Yan, Zhibin; Qin, Jiahai; Ma, Zhijun; Zhang, Youfu; Zhang, Li

    2016-04-01

    Intensive corn seed production in Northwest of China produced large amounts of furfural residues, which represents higher treatment cost and environmental issue. The broad calcareous soils in the Northwest of China exhibit low organic matter content and high pH, which led to lower fertility and lower productivity. Recycling furfural residues as soil organic and nutrient amendment might be a promising agricultural practice to calcareous soils. A 3-year field study was conducted to evaluate the effects of furfural as a soil amendment on corn seed production on calcareous soil with compared to biogas residues. Soil physical-chemical properties, soil enzyme activities, and soil heavy metal concentrations were assessed in the last year after the last application. Corn yield was determined in each year. Furfural residue amendments significantly decreased soil pH and soil bulk density. Furfural residues combined with commercial fertilizers resulted in the greater cumulative on soil organic matter, total phosphorus, available phosphorus, available potassium, and cation exchange capacity than that of biogas residue. Simultaneously, urease, invertase, catalase, and alkaline phosphatase increased even at the higher furfural application rates. Maize seed yield increased even with lower furfural residue application rates. Furfural residues resulted in lower Zn concentration and higher Cd concentration than that of biogas residues. Amendment of furfural residues led to higher soil electrical conductivity (EC) than that of biogas residues. The addition of furfural residues to maize seed production may be considered to be a good strategy for recycling the waste, converting it into a potential resource as organic amendment in arid and semi-arid calcareous soils, and may help to reduce the use of mineral chemical fertilizers in these soils. However, the impact of its application on soil health needs to be established in long-term basis. PMID:26606935

  14. Biological and biochemical soil indicators: monitoring tools of different agricultural managements

    NASA Astrophysics Data System (ADS)

    Scotti, Riccardo; Sultana, Salma; Scelza, Rosalia; Marzaioli, Rossana; D'Ascoli, Rosaria; Rao, Maria A.

    2010-05-01

    The intensive agricultural managements, increased in the last twenty years, have resulted in a decrease in fertility of soils, representing a serious threat to agricultural productivity due to both the increase in production cost, mainly for intensive use of mineral fertilizers, and the loss of the quality of crops themselves. Organic matter content is closely related to the soil fertility and its progressive reduction in cultivates soils, without a satisfactory recovery, could make agriculture untenable, resulting in a high detrimental effect on environment. But an appropriate soil management practices can improve soil quality by utilizing organic amendments as alternative to mineral fertilizers to increase soil quality and plant growth. In this context, demand of suitable indicators, whose are able to assess the impact of different agricultural managements on soil quality, has increased. It has shown that soil biological and biochemical properties are able to respond to small changes in soil conditions, thus providing information on subtle alterations in soil quality. Aim of this study was to evaluate the use of soil biological and biochemical properties as fertility indicators in agricultural soils under different agricultural managements, sited in Campania Region (Southern Italy). After a preliminary monitoring phase of soil fertility on different farms sited in five agricultural areas of Campania Region, we have selected two farms in two different study areas to assess the effect on soil quality of different organic amendments. In particular, a compost from municipal solid waste and wood from scraps of poplars pruning were supplied in different doses and ratios. Soil samplings after one month from the amendment addition and then every 4 months until a year were carried out. All collected soil samples were characterized by main physical, chemical, biochemical and biological properties. In general, the use of different organic amendments showed a positive effect

  15. Inherent agricultural constraints in Allegheny Plateau soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    World population increases demand increased agricultural production. This can be accomplished through improved cultivars and production techniques or increased use of previously marginal agricultural regions. In the Allegheny Plateau (AP) region of the Appalachian Mountains, acid soils with toxic ...

  16. N-C isotopic investigation of a zeolite-amended agricultural field

    NASA Astrophysics Data System (ADS)

    Ferretti, Giacomo; Natali, Claudio; Faccini, Barbara; Di Giuseppe, Dario; Bianchini, Gianluca; Coltorti, Massimo

    2016-04-01

    In this study, a C and N isotopic investigation in the soil-plant system of the ZeoLIFE project experimental field have been carried out. Since many years, natural and NH4-enriched zeolites have been used as soil amendant in agricultural context in order to reduce N losses, increase NUE (Nitrogen Use Efficiency) and crop yield. Nevertheless up to now there are no studies that, using the stable isotopes approach, highlighted the interaction between zeolites and plants in agricultural systems. The main aims of this study is to verify if natural zeolites amendment can enhance chemical fertilization efficiency and if N transfer from NH4-enriched zeolites to plants really occurs. Plants grown following traditional cultivation methods (with no zeolite addition) and plants grown on soils amended with natural and NH4-enriched zeolites (the latter obtained after mixing with pig-slurry with a very high 15N) were compared for two cultivation cycles (maize and wheat). As widely known, plants grown under conventional farming systems (use of chemical fertilizers as urea) and plants grown under organic farming can be discriminated by the isotopic signatures of plant tissues. For both years the main results of the study reveals that plants grown on plots amended with natural zeolites generally have their nitrogen isotopic signature more similar to that of the chemical fertilizers employed during the cultivation with respect to the plants cultivated in the non-amended plot. This suggests an enhanced N uptake by the plant from this specific N source with respect to the non-amended plot. On the other hand, plants grown on NH4-enriched zeolites registered a higher 15N, approaching the pig-slurry isotopic signature, confirming that this material can constitute an N pool for plants at least for two cultivation cycles. The distinct agricultural practices seem to be reflected in the plant physiology as recorded by the carbon discrimination factor (13C) which generally increases

  17. Phenylurea herbicide sorption to biochars and agricultural soil

    PubMed Central

    WANG, DAOYUAN; MUKOME, FUNGAI N. D.; YAN, DENGHUA; WANG, HAO; SCOW, KATE M.; PARIKH, SANJAI J.

    2016-01-01

    Biochar is increasingly been used as a soil amendment to improve water holding capacity, reduce nutrient leaching, increase soil pH and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron, linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93 -- 0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg−1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits. PMID:26065514

  18. Phenylurea herbicide sorption to biochars and agricultural soil.

    PubMed

    Wang, Daoyuan; Mukome, Fungai N D; Yan, Denghua; Wang, Hao; Scow, Kate M; Parikh, Sanjai J

    2015-01-01

    Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R(2) = 0.93-0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg(-1) and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits. PMID:26065514

  19. Biochar has no effect on soil respiration across Chinese agricultural soils.

    PubMed

    Liu, Xiaoyu; Zheng, Jufeng; Zhang, Dengxiao; Cheng, Kun; Zhou, Huimin; Zhang, Afeng; Li, Lianqing; Joseph, Stephen; Smith, Pete; Crowley, David; Kuzyakov, Yakov; Pan, Genxing

    2016-06-01

    Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils. PMID:26950640

  20. Biochar has no effect on soil respiration across Chinese agricultural soils.

    PubMed

    Liu, Xiaoyu; Zheng, Jufeng; Zhang, Dengxiao; Cheng, Kun; Zhou, Huimin; Zhang, Afeng; Li, Lianqing; Joseph, Stephen; Smith, Pete; Crowley, David; Kuzyakov, Yakov; Pan, Genxing

    2016-06-01

    Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils.

  1. Single application of Sewage Sludge to an Alluvial Agricultural Soil - impacts on Soil Quality

    NASA Astrophysics Data System (ADS)

    Suhadolc, M.; Graham, D. B.; Hagn, A.; Doerfler, U.; Schloter, M.; Schroll, R.; Munch, J. C.; Lobnik, F.

    2009-04-01

    Limited information exists on the effects of sewage sludge on soil quality with regard to their ability to maintain soil functions. We studied effects of sewage sludge amendment on soil chemical properties, microbial community structure and microbial degradation of the herbicide glyphosate. Three months soil column leaching experiment has been conducted using alluvial soils (Eutric Fluvisol) with no prior history of sludge application. The soil was loamy with pH 7,4 and organic matter content of 3,5%. Soil material in the upper 2 cm of columns was mixed with dehydrated sewage sludge which was applied in amounts corresponding to the standards governing the use of sewage sludge for agricultural land. Sludge did increase some nutrients (total N, NH4+, available P and K, organic carbon) and some heavy metals contents (Zn, Cu, Pb) in soil. However, upper limits for heavy metals in agricultural soils were not exceeded. Results of heavy metal availability in soil determined by sequential extraction will be also presented. Restriction fragment length polymorphism (RFLP) analyses of 16s/18s rDNA, using universal fungal and bacterial primers, revealed clear shifts in bacterial and fungal community structure in the upper 2 cm of soils after amendment. Fungal fingerprints showed greater short term effects of sewage sludge, whereas sewage sludge seems to have prolonged effects on soil bacteria. Furthermore, sewage sludge amendment significantly increased glyphosate degradation from 21.6±1% to 33.6±1% over a 2 months period. The most probable reasons for shifts in microbial community structure and increased degradation of glyphosate are beneficial alterations to the physical-chemical characteristics of the soil. Negative effects of potentially toxic substances present in the sewage sludge on soil microbial community functioning were not observed with the methods used in our study.

  2. Reduced mobility of fomesafen through enhanced adsorption in biochar-amended soil.

    PubMed

    Khorram, Mahdi Safaei; Wang, Yun; Jin, Xiangxiang; Fang, Hua; Yu, Yunlong

    2015-06-01

    The residual soil material resulting from biomass thermochemical transformation during carbon separation, known as biochar, has been introduced as a soil amendment because of its numerous environmental benefits, including uses for contaminated land management. Adsorption and leaching of fomesafen in soils amended with 3 different rates of rice hull biochar (0.5%, 1%, and 2% w/w) under laboratory conditions were investigated, and studies were performed following a batch equilibration adsorption-desorption procedure and a column experiment for leaching. Adsorption-desorption data fit with the Freundlich equation well. The adsorption coefficient of fomesafen sharply increased from 0.59 to 0.99 to 8.02 to 22.23 when the amount of biochar amendment in the soil increased from 0% to 2% (w/w). In addition, a strong correlation was found between the amount of adsorbed fomesafen and the rate of amended biochar (r > 0.992, p < 0.01). Furthermore, biochar amendments reduced the desorption percentage of fomesafen in the soils. The outcomes of the leaching experiment also illustrated that the lowest fomesafen concentration in the leachate (21.4%) occurred in the soil amended with 2% (w/w) biochar. Moreover, the adsorption coefficients (K(f)(ads)) of the soil were positively correlated with the total amount of adsorbed fomesafen in the corresponding soil columns (r = 0.990, p < 0.01) and negatively correlated with the leachate percentage (r = 0.987, p < 0.05). The results of the present study suggest that biochar amendments in agricultural soils likely alter the fate of herbicides by decreasing their transport through enhanced adsorption.

  3. The fate of nitrogen in a moderately alkaline and calcareous soil amended with biosolids and urea.

    PubMed

    Mendoza, Christina; Assadian, Naomi W; Lindemann, William

    2006-06-01

    The determination of nitrogen (N) based loading rates for land application of biosolids is challenging and site specific. Over loading may contribute to environmental, agricultural, or human health problems. The objective of this study was to monitor N mineralization and losses in a moderately alkaline and calcareous desert soil amended with either anaerobically digested (AN) or lime-stabilized (LS) biosolids, and irrigated with and without urea enriched water. For Experiment 1, N inputs, leaching and residuals in soil were evaluated in an open soil column system. For Experiment 2, ammonia (NH(3)) emissions were evaluated in a closed soil column system. In Experiment 1, AN and LS biosolids increased soil ON (organic N) by three and two fold, respectively. Respective net N mineralization of ON from biosolids alone was 90% and 62% without urea, and 71% and 77%, respectively with added urea. Nitrogen leaching losses and residuals in amended soil did not account for all N inputs into the soil/biosolids system. In Experiment 2, NH(3) emissions were not significantly different among treated soils with or without added urea, except LS amended soil receiving urea. Ammonia losses did not account for unaccounted N in Experiment 1. We concluded that deep placement and rapid mineralization of AN biosolids promoted anaerobic soil conditions and denitrification, in addition to the high denitrification potential of desert soil. LS biosolids showed greater potential than AN biosolids for safe and beneficial land application to desert soils regardless of biosolids placement and the inclusion of N rich irrigation water.

  4. Sewage sludge applied to agricultural soil: Ecotoxicological effects on representative soil organisms.

    PubMed

    Carbonell, G; Pro, J; Gómez, N; Babín, M M; Fernández, C; Alonso, E; Tarazona, J V

    2009-05-01

    Application of sewage sludge to agricultural lands is a current practice in EU. European legislation permits its use when concentrations of metals in soil do not increase above the maximum permissible limits. In order to assess the fate and the effects on representative soil organisms of sewage sludge amendments on agricultural lands, a soil microcosm (multi-species soil system-MS3) experiment was performed. The MS3 columns were filled with spiked soil at three different doses: 30, 60 and 120tha(-1) fresh wt. Seed plants (Triticum aestivum, Vicia sativa and Brassica rapa) and earthworms (Eisenia fetida) were introduced into the systems. After a 21-d exposure period, a statistically significant increase for Cd, Cu, Zn and Hg concentrations was found for the soils treated with the highest application rate. Dose-related increase was observed for nickel concentrations in leachates. Plants and earthworm metal body burden offer much more information than metal concentrations and help to understand the potential for metal accumulation. Bioaccumulation factor (BAF(plant-soil)) presented a different behavior among species and large differences for BAF(earthworm-soil), from control or sewage-amended soil, for Cd and Hg were found. B. rapa seed germination was reduced. Statistically significant decrease in fresh biomass was observed for T. aestivum and V. sativa at the highest application rate, whereas B. rapa biomass decreased at any application rate. Enzymatic activities (dehydrogenase and phosphatase) as well as respiration rate on soil microorganisms were enlarged.

  5. Alum amendment effects on phosphorus release and distribution in poultry litter-amended sandy soils

    USGS Publications Warehouse

    Staats, K.E.; Arai, Y.; Sparks, D.L.

    2004-01-01

    Increased poultry production has contributed to excess nutrient problems in Atlantic Coastal Plain soils due to land application of poultry litter (PL). Aluminum sulfate [alum, Al2(SO4)3?? 14H2O] amendment of PL effectively reduces soluble phosphorus (P) in the PL; however, the effects of these litters when added to acidic, sandy soils are not well understood. The objective of this study was to investigate the efficacy of alum-amended poultry litter in reducing P release from three Delaware Coastal Plain soils: Evesboro loamy sand (Ev; excessively drained, mesic, coated Typic Quartzipsamments), Rumford loamy sand (Ru; well drained, coarse-loamy, siliceous, subactive, thermic Typic Hapludults), and Pocomoke sandy loam (Pm; very poorly drained, coarse-loamy, siliceous, active, thermic Typic Umbraquults). Long-term (25 d) and short-term (24 h) desorption studies were conducted, in addition to chemical extractions and kinetic modeling, to observe the changes that alum-amended versus unamended PL caused in the soils. The Ev, Ru, and Pm soils were incubated with 9 Mg ha-1 of alum-amended or unamended PL. Long-term desorption (25 d) of the incubated material resulted in approximately 13.5% (Ev), 12.7% (Ru), and 13.3% (Pm) reductions in cumulative P desorbed when comparing soil treated with unamended and alum-amended PL. In addition, the P release from the soil treated with alum-amended litter was not significantly different from the control (soil alone). Short-term desorption (24 h) showed 7.3% (Ev), 15.4% (Ru), and 20% (Pm) reductions. The overall implication from this study is that the use of alum as a PL amendment is useful in coarse-textured soils of the Coastal Plain. With increased application of alum-amended PL, more significant decreases may be possible with little or no effect on soil quality.

  6. Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils

    NASA Astrophysics Data System (ADS)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2016-04-01

    Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.

  7. Biochar Soil Amendment Effects on Arsenic Availability to Mountain Brome ().

    PubMed

    Strawn, Daniel G; Rigby, April C; Baker, Leslie L; Coleman, Mark D; Koch, Iris

    2015-07-01

    Biochar is a renewable energy byproduct that shows promise for remediating contaminated mine sites. A common contaminant at mine sites is arsenic (As). In this study, the effects of biochar amendments to a mine-contaminated soil on As concentrations in mountain brome ( Nees ex Steud.) were investigated. In the biochar-amended soil, mountain brome had greater root biomass and decreased root and shoot As concentrations. X-ray absorption near-edge structure spectroscopy results showed that arsenate [As(V)] is the predominant species in both the nonamended and biochar-amended soils. Soil extraction tests that measure phosphate and arsenate availability to plants failed to accurately predict plant tissue As concentrations, suggesting the arsenate bioavailability behavior in the soils is distinct from phosphate. Results from this study indicate that biochar will be a beneficial amendment to As-contaminated mine sites for remediation. PMID:26437113

  8. Soil degradation and amendment effects on soil properties, microbial communities, and plant growth

    NASA Astrophysics Data System (ADS)

    Gebhardt, M.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2015-12-01

    Human activities that disrupt soil properties are fundamentally changing ecosystems. Soil degradation, caused by anthropogenic disturbance can decrease microbial abundance and activity, leading to changes in nutrient availability, soil organic matter, and plant establishment. The addition of amendments to disturbed soils have the potential ameliorate these negative consequences. We studied the effects of soil degradation, via an autoclave heat shock method, and the addition of amendments (biochar and woodchips) on microbial activity, soil carbon and nitrogen availability, microbial biomass carbon and nitrogen content, and plant growth of ten plant species native to the semi-arid southwestern US. Relative to non-degraded soils, microbial activity, measured via extracellular enzyme assays, was significantly lower for all seven substrates assayed. These soils also had significantly lower amounts of carbon assimilated into microbial biomass but no change in microbial biomass nitrogen. Soil degradation had no effect on plant biomass. Amendments caused changes in microbial activity: biochar-amended soils had significant increases in potential activity with five of the seven substrates measured; woodchip amended soils had significant increases with two. Soil carbon increased with both amendments but this was not reflected in a significant change in microbial biomass carbon. Biochar-amended soils had increases in soil nitrogen availability but neither amendment caused changes in microbial biomass nitrogen. Biochar amendments had no significant effect on above- or belowground plant biomass while woodchips significantly decreased aboveground plant biomass. Results show that soil degradation decreases microbial activity and changes nutrient dynamics, but these are not reflected in changes in plant growth. Amendments provide nutrient sources and change soil pore space, which cause microbial activities to fluctuate and may, in the case of woodchips, increase plant drought

  9. Effect of biochar amendments on microbial transport through soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incorporation of biochar into soils had been shown to improve soil fertility, enhance soil sequestration of carbon and decrease the mobility of agrochemicals and heavy metals. Our series of column experiments have shown that in addition to these benefits, biochar amendments can limit bacterial t...

  10. Is current biochar soil study addressing global soil constraints for sustainable agriculture?

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Zhang, Dengxiao; Yan, Ming; Niu, Yaru; Liu, Xiaoyu; van Zwieten, Lukas; Chen, De; Bian, Rongjun; Cheng, Kun; Li, Lianqing; Joseph, Stephen; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Crowley, David; Filley, Timothy

    2016-04-01

    Global soil degradation has been increasingly threatened sustainability of world agriculture. Use of biochar from bio-wastes has been proposed as a global option for its great potential in tackling soil degradation and mitigating climate change in agriculture. For last 10 years, there have been greatly increasing interests in application of charred biomass, more recently termed biochar, as a soil amendment for addressing soil constraints for sustainable agriculture. Biochar soil studies could deliver reliable information for appropriate application of biochar to soils where for sustainable agriculture has been challenged. Here we review the literature of 798 publications reporting biochar soil studies by August, 2015 to address potential gaps in understanding of biochar's role in agriculture. We have found some substantial biases and gaps inherent in the current biochar studies. 1) The majority of published studies were from developed regions where the soils are less constrained and were much more frequent in laboratory and glasshouse pot experiments than field studies under realistic agriculture. 2) The published biochar soil studies have used more often small kiln or lab prepared biochar than commercial scale biochars, more often wood and municipal waste derived biochars than crop straw biochars. Overall, the lack of long-term well designed field studies using biochar produced in commercial processes may have limited our current understanding of biochar's potential to enhance global crop production and climate change mitigation. We have also recommended a global alliance between longer-term research experiments and biochar production facilities to foster the uptake of this important technology at a global scale. Keywords: biochar, soil study, literature review, research gap, global perspective, quantitative assessment, sustainable agriculture

  11. Bioaccumulation of nutrient elements from fly ash-amended soil in Jatropha curcas L.: a biofuel crop.

    PubMed

    Chaudhary, Doongar R; Ghosh, Arup

    2013-08-01

    Fly ash (FA) from coal-burning industries may be a potential inorganic soil amendment; the insight of its nutrient release and supply to soil may enhance their agricultural use. The study was conducted to assess the ability of fly ash (a coal fired thermal plant waste) to reduce soil fertility depletion and to study bioaccumulation of mineral nutrients in Jatropha curcas grown on soils amended with fly ash. Fly ash was amended to field soil at six rates (0, 5, 10, 20, 40, and 70 % w/w) on which J. curcas was grown. After 8 months of growth, the height of jatropha plants was significantly increased at 5 and 10 % FA-amended soil, whereas, biomass significantly increased at 5, 10, and 20 % FA-amended soil compared to control soil (0 % FA). Leaf nutrients uptake, followed by stems and roots uptake were highly affected by fly ash amendment to soil. Most of nutrients accumulation were increased up to 20 % fly ash and decreased thereafter. The results of available nutrient analysis of soil revealed that availability of nitrogen, potassium, sulfur, copper, iron, mangnese, and zinc declined significantly at higher levels of fly ash amendments, whereas, availability of phosphorus increased at these levels. However, pH, organic carbon, and available boron were not influenced significantly by fly ash amendment to soil. Microbial biomass C, N, and ratio of microbial-C to organic C were significantly reduced at 20 % fly ash and higher amounts. This study revealed that J. curcas plants could gainfully utilize the nutrients available in fly ash by subsequently amending soil.

  12. Bioaccumulation of nutrient elements from fly ash-amended soil in Jatropha curcas L.: a biofuel crop.

    PubMed

    Chaudhary, Doongar R; Ghosh, Arup

    2013-08-01

    Fly ash (FA) from coal-burning industries may be a potential inorganic soil amendment; the insight of its nutrient release and supply to soil may enhance their agricultural use. The study was conducted to assess the ability of fly ash (a coal fired thermal plant waste) to reduce soil fertility depletion and to study bioaccumulation of mineral nutrients in Jatropha curcas grown on soils amended with fly ash. Fly ash was amended to field soil at six rates (0, 5, 10, 20, 40, and 70 % w/w) on which J. curcas was grown. After 8 months of growth, the height of jatropha plants was significantly increased at 5 and 10 % FA-amended soil, whereas, biomass significantly increased at 5, 10, and 20 % FA-amended soil compared to control soil (0 % FA). Leaf nutrients uptake, followed by stems and roots uptake were highly affected by fly ash amendment to soil. Most of nutrients accumulation were increased up to 20 % fly ash and decreased thereafter. The results of available nutrient analysis of soil revealed that availability of nitrogen, potassium, sulfur, copper, iron, mangnese, and zinc declined significantly at higher levels of fly ash amendments, whereas, availability of phosphorus increased at these levels. However, pH, organic carbon, and available boron were not influenced significantly by fly ash amendment to soil. Microbial biomass C, N, and ratio of microbial-C to organic C were significantly reduced at 20 % fly ash and higher amounts. This study revealed that J. curcas plants could gainfully utilize the nutrients available in fly ash by subsequently amending soil. PMID:23318887

  13. Bacterial Mobilization of Nutrients From Biochar-Amended Soils.

    PubMed

    Schmalenberger, A; Fox, A

    2016-01-01

    Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur. PMID:26917243

  14. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates.

    PubMed

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000-250 μm; 250-53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000-250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  15. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    NASA Astrophysics Data System (ADS)

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-10-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm 2000-250 μm 250-53 μm and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000-250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture.

  16. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    PubMed Central

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  17. Linear spectral unmixing to monitor crop growth in typical organic and inorganic amended arid soil

    NASA Astrophysics Data System (ADS)

    El Battay, A.; Mahmoudi, H.

    2016-06-01

    The soils of the GCC countries are dominantly sandy which is typical of arid regions such as the Arabian Peninsula. Such soils are low in nutrients and have a poor water holding capacity associated with a high infiltration rate. Soil amendments may rehabilitate these soils by restoring essential soil properties and hence enable site revegetation and revitalization for crop production, especially in a region where food security is a priority. In this study, two inorganic amendments; AustraHort and Zeoplant pellet, and one organic locally produced compost were tested as soil amendments at the experimental field of the International Center for Biosaline Agriculture in Dubai, UAE. The main objective is to assess the remote sensing ability to monitor crop growth, for instance Okra (Abelmoschus esculentus), having these amendments, as background with the soil. Three biomass spectral vegetation indices were used namely; NDVI, TDVI and SAVI. Pure spectral signatures of the soil and the three amendments were collected, using a field spectroradiometer, in addition to the spectral signatures of Okra in two growing stages (vegetative and flowering) in the field with a mixed F.O.V of the plant and amended soil during March and May 2015. The spectral signatures were all collected using the FieldSpec® HandHeld 2 (HH2) in the spectral range 325 nm - 1075 nm over 12 plots. A set of 4 plots were assigned for each of the three amendments as follow: three replicates of a 1.5 by 1.5 meter plot with 3kg/m2 of each amendment and 54 plants, one plot as control and all plots were given irrigation treatments at 100% based on ETc. Spectra collected over the plots were inversed in the range of 400-900 nm via a Linear Mixture Model using pure soil and amendments spectral signatures as reference. Field pictures were used to determine the vegetation fraction (in term of area of the F.O.V). Hence, the Okra spectral signatures were isolated for all plots with the three types of amendments. The

  18. The impact of soil amendments on greenhouse gas emissions: a comprehensive life cycle assessment approach

    NASA Astrophysics Data System (ADS)

    DeLonge, M. S.; Ryals, R.; Silver, W. L.

    2011-12-01

    Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with

  19. Populations of Pratylenchus penetrans Relative to Decomposing Nitrogenous Soil Amendments

    PubMed Central

    Walker, J. T.

    1971-01-01

    Populations of Pratylenchus penetrans decreased in soil following addition of 70 and 700 ppm N in the form of nitrate, nitrite, organic nitrogen, or ammonium compounds. Nitrate was less effective than other nitrogen carriers. Population reduction is principally attributed to ammonification during decomposition. This hypothesis is supported by chromatographic analyses of soil atmospheres, survival of nematodes in pure CO₂ and N₂, inverse relationship of CO₂, content in amended soils to nematode populations, and direct relationship of NH₃-N content of amended soils to nematode populations. PMID:19322339

  20. Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes.

    PubMed

    Rojas, Raquel; Morillo, José; Usero, José; Delgado-Moreno, Laura; Gan, Jay

    2013-08-01

    This study evaluated the ability of three unmodified organic residues (composted sewage sludge, RO1; chicken manure, RO2; and a residue from olive oil production called 'orujillo', RO3) and a soil to sorb six pesticides (atrazine, lindane, alachlor, chlorpyrifos, chlorfenvinphos and endosulfan sulfate) and thereby explored the potential environmental value of these organic residues for mitigating pesticide pollution in agricultural production and removing contaminants from wastewater. Pesticide determination was carried out using gas chromatography coupled with mass spectrometry. Adsorption data were analyzed by the Langmuir and Freundlich adsorption approaches. Experimental results showed that the Freundlich isotherm model best described the adsorption process and that Kf values increased with an increase in organic matter (OM) content of the amended soil. The order of adsorption of pesticides on soils was: chlorpyrifos≥endosulfan sulfate>chlorfenvinphos≥lindane>alachlor≥atrazine. The sorption was greater for the most hydrophobic compounds and lower for the most polar ones, as corroborated by a negative correlation between Kf values and solubility. Sorption increased with an increase in organic matter. Sorption capacity was positively correlated with the organic carbon (OC) content. The organic amendment showing the maximum sorption capacity was RO3 in all cases, except for chlorfenvinphos, in which it was RO2. The order of adsorption capacity of the amendments depended on the pesticide and the organic dosage. In the case of the 10% amendment the order was RO3>RO2>RO1>soil, except for chlorfenvinphos, in which it was RO2>RO3>RO1>soil, and atrazine, where RO2 and RO3 amendments had the same effect on the soil sorption capacity (RO2≥RO3>RO1>soil).

  1. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    PubMed

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability.

  2. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    PubMed

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability. PMID:26322966

  3. Phosphorus leaching from soils amended with thermally gasified piggery waste ash.

    PubMed

    Kuligowski, Ksawery; Poulsen, Tjalfe Gorm

    2009-09-01

    In regions with intensive livestock farming, thermal treatment for local energy extraction from the manure and export of the P rich ash as a fertilizer has gained interest. One of the main risks associated with P fertilizers is eutrophication of water bodies. In this study P and K mobility in ash from anaerobically digested, thermally gasified (GA) and incinerated (IA) piggery waste has been tested using water loads ranging from 0.1 to 200 ml g(-1). Leaching of P from soil columns amended with GA was investigated for one P application rate (205 kg P ha(-1) corresponding to 91 mg P kg(-1) soil dry matter) as a function of precipitation rate (9.5 and 2.5 mm h(-1)), soil type (Jyndevad agricultural soil and sand), amount of time elapsed between ash amendment and onset of precipitation (0 and 5 weeks) and compared to leaching from soils amended with a commercial fertilizer (Na(2)HPO(4)). Water soluble P in GA and IA constituted 0.04% and 0.8% of total ash P. Ash amended soil released much less P (0.35% of total P applied in sand) than Na(2)HPO(4) (97% and 12% of total P applied in Jyndevad and sand, respectively). PMID:19427189

  4. Intensive agriculture reduces soil biodiversity across Europe.

    PubMed

    Tsiafouli, Maria A; Thébault, Elisa; Sgardelis, Stefanos P; de Ruiter, Peter C; van der Putten, Wim H; Birkhofer, Klaus; Hemerik, Lia; de Vries, Franciska T; Bardgett, Richard D; Brady, Mark Vincent; Bjornlund, Lisa; Jørgensen, Helene Bracht; Christensen, Sören; Hertefeldt, Tina D'; Hotes, Stefan; Gera Hol, W H; Frouz, Jan; Liiri, Mira; Mortimer, Simon R; Setälä, Heikki; Tzanopoulos, Joseph; Uteseny, Karoline; Pižl, Václav; Stary, Josef; Wolters, Volkmar; Hedlund, Katarina

    2015-02-01

    Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.

  5. Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer.

    PubMed

    Sall, Saïdou Nourou; Ndour, Ndèye Yacine Badiane; Diédhiou-Sall, Siré; Dick, Richard; Chotte, Jean-Luc

    2015-09-15

    Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions.

  6. Knowledge needs, available practices, and future challenges in agricultural soils

    NASA Astrophysics Data System (ADS)

    Key, Georgina; Whitfield, Mike G.; Cooper, Julia; De Vries, Franciska T.; Collison, Martin; Dedousis, Thanasis; Heathcote, Richard; Roth, Brendan; Mohammed, Shamal; Molyneux, Andrew; Van der Putten, Wim H.; Dicks, Lynn V.; Sutherland, William J.; Bardgett, Richard D.

    2016-10-01

    The goal of this study is to clarify research needs and identify effective practices for enhancing soil health. This was done by a synopsis of soil literature that specifically tests practices designed to maintain or enhance elements of soil health. Using an expert panel of soil scientists and practitioners, we then assessed the evidence in the soil synopsis to highlight practices beneficial to soil health, practices considered detrimental, and practices that need further investigation. A partial Spearman's correlation was used to analyse the panel's responses. We found that increased certainty in scientific evidence led to practices being considered to be more effective due to them being empirically justified. This suggests that for practices to be considered effective and put into practice, a substantial body of research is needed to support the effectiveness of the practice. This is further supported by the high proportion of practices (33 %), such as changing the timing of ploughing or amending the soil with crops grown as green manures, that experts felt had unknown effectiveness, usually due to insufficiently robust evidence. Only 7 of the 27 reviewed practices were considered to be beneficial, or likely to be beneficial in enhancing soil health. These included the use of (1) integrated nutrient management (organic and inorganic amendments); (2) cover crops; (3) crop rotations; (4) intercropping between crop rows or underneath the main crop; (5) formulated chemical compounds (such as nitrification inhibitors); (6) control of traffic and traffic timing; and (7) reducing grazing intensity. Our assessment, which uses the Delphi technique, is increasingly used to improve decision-making in conservation and agricultural policy, identified practices that can be put into practice to benefit soil health. Moreover, it has enabled us to identify practices that need further research and a need for increased communication between researchers, policy-makers, and

  7. Short-term effects of organic amendment on soil quality properties in a semi-arid Mediterranean area.

    NASA Astrophysics Data System (ADS)

    Luján, Duna; Morugán-Coronado, Alicia; Garcia-Orenes, Fuensanta; Moral, Raúl; Moltó-Sánchez, Jorge

    2014-05-01

    Soil degradation is one of the most important environmental problems in the Mediterranean area intensified by the semiarid conditions, including low and irregular precipitation and frequent drought period. These soils are also submitted to unsustainable agricultural management with clearing of natural vegetation and loss of organic matter content; under these conditions the risk of soil fertility and quality loss is very high. The aim of this research is to assess the effects of the addition of one organic amendment (compost) on different soil microbial properties and on other properties related with soil quality. This kind of agricultural management is increasingly being used in organic agriculture. The study of evolution of different soil quality properties has a remarkable importance as long as these have a key role as soil quality indicators. Two different treatments have been applied in the study area, "El Clot de Galvany", located at Elche in the south-east of Spain: high amendment dose (A) with 420kgN/ha per year and low amendment dose (B) with 210kgN/ha per year, and one control (C) that was established without organic amendment, near to the a and b plots. Two plots per treatment were established for this field study. Soil samples were collected on 31th October of 2013, taking three samples per plot that were analyzed to evaluate the effects of the amendment on soil properties: soil organic carbon (SOC), water holding capacity(WHC), electrical conductivity (EC), pH, available phosphorus (P), Kjeldhal nitrogen (N), carbonates, basal soil respiration (BSR), aggregate stability (AS) and soil microbial biomass carbon (Cmic). The results showed a clear increase on organic matter content of soils treated with compost, and as a consequence there has been an increase of microbial biomass and soil respiration in these soils. Also the rest of the properties studied were improved after the addition of organic amendment. The application of this type of amendment can be

  8. The application of soil amendments benefits to the reduction of phosphorus depletion and the growth of cabbage and corn.

    PubMed

    Liu, Wei; Ji, Hongli; Kerr, Philip; Wu, Yonghong; Fang, Yanming

    2015-11-01

    The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas. PMID:26092358

  9. The application of soil amendments benefits to the reduction of phosphorus depletion and the growth of cabbage and corn.

    PubMed

    Liu, Wei; Ji, Hongli; Kerr, Philip; Wu, Yonghong; Fang, Yanming

    2015-11-01

    The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas.

  10. Comparison of several maturity indicators for estimating phytotoxicity in compost-amended soil.

    PubMed

    Aslam, Danielle N; Horwath, William; VanderGheynst, Jean S

    2008-11-01

    Compost can provide a rich organic nutrient source and soil conditioner for agricultural and horticultural applications. Ideal compost amendment rates, however, vary based on starting material and compost maturity or their interaction, and there is little consensus on appropriate methods to gauge maturity. In this study, electrical conductivity, carbon-to-nitrogen ratio, and carbon mineralization measurements were made on compost-amended soils and compared to phytotoxicity measured as cress (Lepidium sativum) germination. Cress germination in soil and compost mixtures incubated for 8-10 days significantly decreased with increasing electrical conductivity and carbon mineralization rate of the mixture and with carbon mineralization rate and mineralizable carbon associated with the compost. Cress germination was not related to carbon-to-nitrogen ratio or pH of soil and compost mixtures. The electrical conductivity of the soil and compost mixtures significantly decreased with decreasing mineralizable carbon suggesting that compounds contributing to electrical conductivity were present in the compost and decomposed upon soil amendment. The results of this study indicate that measurements of mineralizable carbon and mineralization rate of composts in soil, and electrical conductivity and mineralization rate of soil and compost mixtures, can be used as indicators of compost maturity.

  11. A spatial multicriteria decision making tool to define the best agricultural areas for sewage sludge amendment.

    PubMed

    Passuello, Ana; Cadiach, Oda; Perez, Yolanda; Schuhmacher, Marta

    2012-01-01

    Sewage sludge amendment on agricultural soils has recently become a practice of heightened interest, as a consequence of sewage sludge production increase. This practice has benefits to soil and crops, however it may also lead to environmental contamination, depending on the characteristics of the fields. In order to define the suitability of the different agricultural fields to receive sewage sludge, a spatial tool is proposed. This tool, elaborated in GIS platform, aggregates different criteria regarding human exposure and environmental contamination. The spatial tool was applied to a case study in the region of Catalonia (NE of Spain). Within the case study, each step of the tool development is detailed. The results show that the studied region has different suitability degrees, being the appropriate areas sufficient for receiving the total amount of sewage sludge produced. The sensitivity analysis showed that "groundwater contamination", "distance to urban areas", "metals concentration in soil" and "crop type" are the most important criteria of the evaluation. The developed tool successfully tackled the problem, providing a comprehensive procedure to evaluate agricultural land suitability to receive sewage sludge as an organic fertilizer. Also, the tool implementation gives insights to decision makers, guiding them to more confident decisions, based on an extensive group of criteria.

  12. Soil solution chemistry of sewage-sludge incinerator ash and phosphate fertilizer amended soil

    SciTech Connect

    Bierman, P.M.; Rosen, C.J.; Bloom, P.R.; Nater, E.A.

    1995-03-01

    The chemical composition of the soil provides useful information on the feasibility of amending agricultural land with municipal and industrial waste, because the soil solution is the medium for most soil chemical reactions, the mobile phase in soils, and the medium for mineral adsorption by plant roots. The soil solutions studies in this research were from plots in a 4-yr field experiment conducted to evaluate the effects of the trace metals and P in sewage-sludge incinerator ash. Treatments compared ash with equivalent P rates from triple-superphosphate fertilizer and a control receiving no P application. Ash and phosphate fertilizer were applied annually at rates of 35, 70, and 140 kg citrate-soluble P ha{sup -1}. Cumulative ash applications during 4 yr amounted to 3.6, 7.2, and 14.4 Mg ash ha{sup -1}. Soil solutions were obtained by centrifugation-immiscible liquid displacement using a fluorocarbon displacing agent. Following chemical analysis, a chemical speciation model was used to determine possible solubility-controlling minerals for trace metals and P, and correlations between solution composition and plant uptake were analyzed. 37 refs., 5 tabs.

  13. Cadmium sorption and mobility in sludge-amended soil

    SciTech Connect

    Cline, G.R.; O'Connor, G.A.

    1984-09-01

    Cadmium sorption was examined in three soils that were unamended, freshly amended, or preconditioned with gamma-irradiated sewage sludge. Metal sorption in the same soils treated with a CaCl/sub 2/-extract of the sludge was also studied. Cadmium sorption was greatest in the unamended soils, less in soils preconditioned with sludge, and least in the freshly amended soils and sludge-extract-treated soils. The authors attempted to explain the treatment effects on the basis of reduced free metal ion activity, but the explanations were not adequate. Despite the reduction in metal retention effected by various treatments, cadmium mobility was very limited. Short- or long-term leaching studies showed cadmium movement to be limited to 1 or 2 m below the zone of sludge (/sup 109/Cd) incorporation. Cadmium mobility is expected to be very limited in calcareous soils, regardless of sludge treatments. 24 references, 1 figure, 5 tables.

  14. Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar.

    PubMed

    Sopeña, Fatima; Semple, Kirk; Sohi, Saran; Bending, Gary

    2012-06-01

    There is considerable current interest in using biochar (BC) as a soil amendment to sequester carbon to mitigate climate change. However, the implications of adding BC to agricultural soil for the environmental fate of pesticides remain unclear. In particular, the effect of biochars on desorption behavior of compounds is poorly understood. This study examined the influence of BC on pesticide chemical and biological accessibility using the herbicide isoproturon (IPU). Soils amended with 1% and 2% BC showed enhanced sorption, slower desorption, and reduced biodegradation of IPU. Addition of 0.1% BC had no effect on sorption, desorption or biodegradation of IPU. However, the mineralization of (14)C-IPU was reduced by all BC concentrations, reducing by 13.6%, 40.1% and 49.8% at BC concentrations of 0.1%, 1% and 2% respectively. Further, the ratio of the toxic metabolite 4-isopropyl-aniline to intact IPU was substantially reduced by higher BC concentrations. Hydroxypropyl-β-cyclodextrin (HPCD) extractions were used to estimate the IPU bioaccessibility in the BC-amended soil. Significant correlations were found between HPCD-extracted (14)C-IPU and the IPU desorbed (%) (r(2)=0.8518, p<0.01), and also the (14)C-IPU mineralized (%) (r(2)=0.733; p<0.01) for all BC-amended soils. This study clearly demonstrates how desorption in the presence of BC is intimately related to pesticide biodegradation by the indigenous soil microbiota. BC application to agricultural soils can affect the persistence of pesticides as well as the fate of their degradation products. This has important implications for the effectiveness of pesticides as well as the sequestration of contaminants in soils. PMID:22464863

  15. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite).

    PubMed

    Chaturvedi, Pranav Kumar; Seth, Chandra Shekhar; Misra, Virendra

    2006-08-01

    Release of heavy metals onto the soil as a result of agricultural and industrial activities may pose a serious threat to the environment. This study investigated the kinetics of sorption of heavy metals on the non-humus soil amended with (1:3) humus soil and 1% hydroxyapatite used for in situ immobilization and leachability of heavy metals from these soils. For this, a batch equilibrium experiment was performed to evaluate metal sorption in the presence of 0.05 M KNO(3) background electrolyte solutions. The Langmuir isotherms applied for sorption studies showed that the amount of metal sorbed on the amended soil decreased in the order of Pb(2+)>Zn(2+)>Cd(2+). The data suggested the possibility of immobilization of Pb due to sorption process and immobilization of Zn and Cd by other processes like co-precipitation and ion exchange. The sorption kinetics data showed the pseudo-second-order reaction kinetics rather than pseudo-first-order kinetics. Leachability study was performed at various pHs (ranging from 3 to 10). Leachability rate was slowest for the Pb(2+) followed by Zn(2+) and Cd(2+). Out of the metal adsorbed on the soil only 6.1-21.6% of Pb, 7.3-39% of Zn and 9.3-44.3% of Cd leached out from the amended soil.

  16. Biochar soil amendment for environmental and agronomic benefits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Char(coal), and a broader term black carbon (that includes soot) has long been recognized as a normal environmental (including soil) constituent resulting from fire and industrial activities. Biochar soil amendment has received global interests as a tool for carbon sequestration in conjunction with...

  17. Kinetics of di-(2-ethylhexyl)phthalate mineralization in sludge-amended soil

    SciTech Connect

    Madsen, P.L.; Thyme, J.B.; Henriksen, K.; Moeldrup, P.; Roslev, P. . Environmental Engineering Lab.)

    1999-08-01

    Sewage sludge is frequently used as a soil fertilizer although it may contain elevated concentrations of priority pollutants including di-(2-ethylhexyl)phthalate (DEHP). In the present study, the kinetics of microbial [[sup 14]C]DEHP mineralization was studied in laboratory microcosms with sewage sludge and agricultural soil. A biphasic model with two independent kinetic expressions was used to fit the mineralization data. The initial mineralization activity was described well by first-order kinetics, whereas mineralization in long-term incubations was described better by fractional power kinetics. The mineralization activity was much lower in the late phase presumably due to a decline in the bioavailability of DEHP caused by diffusion-limited desorption. The initial DEHP mineralization rate in sludge-amended soil varied between 3.7 and 20.3 ng of DEHP (g dw)[sup [minus]1]d[sup [minus]1] depending on incubation conditions. Aerobic DEHP mineralization was 4--5 times faster than anaerobic mineralization, DEHP mineralization in sludge-amended soil was much more temperature sensitive than was DEHP mineralization in soil without sludge. Indigenous microorganisms in the sewage sludge appeared to dominate DEHP degradation in sludge-amended soil. It was estimated that > 41% of the DEHP in sludge-amended soil will have escaped mineralization after 1 year. In the absence of oxygen, > 68% of the DEHP will not be mineralized within 1 year. Collectively, the data suggest that a significant fraction of the DEHP in sludge-amended soils may escape mineralization under in situ conditions.

  18. Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils.

    PubMed

    Zhang, Mingkui; Pu, Jincheng

    2011-01-01

    Four minerals, agricultural limestone (AL), rock phosphate (RP), palygorskite (PG), and calcium magnesium phosphate (CMP), were evaluated by means of chemical fractions of heavy metals in soils and concentrations of heavy metals in leachates from columns to determine their ability to stabilize heavy metals in polluted urban soils. Two urban soils (calcareous soil and acidic soil) polluted with cadmium, copper, zinc and lead were selected and amended in the laboratory with the mineral materials) for 12 months. Results indicated that application of the mineral materials reduced exchangeable metals in the sequence of Pb, Cd > Cu > Zn. The reduction of exchangeable fraction of heavy metals in the soils amended with different mineral materials followed the sequence of CMP, PG > AL > RP. Reductions of heavy metals leached were based on comparison with cumulative totals of heavy metals eluted through 12 pore volumes from an untreated soil. The reductions of the metals eluted from the calcareous soil amended with the RP, AL, PG and CMP were 1.98%, 38.89%, 64.81% and 75.93% for Cd, 8.51%, 40.42%, 60.64% and 55.32% for Cu, 1.76%, 52.94%, 70.00% and 74.12% for Pb, and 28.42%, 52.74%, 64.38% and 49.66% for Zn. Those from the acidic soil amended with the CMP, PG, AL, and RP were 25.65%, 68.06%, 78.01% and 79.06% for Cd, 26.56%, 49.64%, 43.40% and 34.68% for Cu, 44.44%, 33.32%, 61.11% and 69.44% for Pb, and 18.46%, 43.77%, 41.98% and 40.68% for Zn. The CMP and PG treatments were superior to the AL and RP for stabilizing heavy metals in the polluted urban soils.

  19. Modeling fungicides mobility in undisturbed vineyard soil cores unamended and amended with spent mushroom substrates.

    PubMed

    Marín-Benito, Jesús María; Rodríguez-Cruz, María Sonia; Sánchez-Martín, María Jesús; Mamy, Laure

    2015-09-01

    The performance of the pesticide fate model PRZM to predict the fate of two fungicides, penconazole and metalaxyl, and the major metabolite of metalaxyl (CGA-62826), in amended and unamended vineyard soils was tested from undisturbed soils columns experiments. Three different treatments were tested in two soils: control soil (unamended), and soil amended with fresh or composted spent mushroom substrates, which correspond to common agricultural practices in Spain. Leaching experiments were performed under non-saturated flow conditions. The model was parameterized with laboratory and literature data, and using pedotransfer functions. It was first calibrated for water flow against chloride breakthrough curves. The key parameter was the hydrodynamic dispersion coefficient (DISP). No leaching of penconazole, the most hydrophobic fungicide, was observed. It remained in the top 0-8 cm of the column. In any case, simulations were highly correlated to the experimental results. On the contrary, metalaxyl and its metabolite were consistently found in the leachates. A calibration step of the Kd of metalaxyl and CGA-62826 and of DISP for CGA-62826 was necessary to obtain good prediction of the leaching of both compounds. PRZM generally simulated acceptable metalaxyl vertical distribution in the soil profiles although results were overestimated for its metabolite. Nevertheless, PRZM can be reasonably used to assess the leaching (through breakthrough curves) and vertical distribution of fungicides in amended soils, knowing their DISP values.

  20. Modeling fungicides mobility in undisturbed vineyard soil cores unamended and amended with spent mushroom substrates.

    PubMed

    Marín-Benito, Jesús María; Rodríguez-Cruz, María Sonia; Sánchez-Martín, María Jesús; Mamy, Laure

    2015-09-01

    The performance of the pesticide fate model PRZM to predict the fate of two fungicides, penconazole and metalaxyl, and the major metabolite of metalaxyl (CGA-62826), in amended and unamended vineyard soils was tested from undisturbed soils columns experiments. Three different treatments were tested in two soils: control soil (unamended), and soil amended with fresh or composted spent mushroom substrates, which correspond to common agricultural practices in Spain. Leaching experiments were performed under non-saturated flow conditions. The model was parameterized with laboratory and literature data, and using pedotransfer functions. It was first calibrated for water flow against chloride breakthrough curves. The key parameter was the hydrodynamic dispersion coefficient (DISP). No leaching of penconazole, the most hydrophobic fungicide, was observed. It remained in the top 0-8 cm of the column. In any case, simulations were highly correlated to the experimental results. On the contrary, metalaxyl and its metabolite were consistently found in the leachates. A calibration step of the Kd of metalaxyl and CGA-62826 and of DISP for CGA-62826 was necessary to obtain good prediction of the leaching of both compounds. PRZM generally simulated acceptable metalaxyl vertical distribution in the soil profiles although results were overestimated for its metabolite. Nevertheless, PRZM can be reasonably used to assess the leaching (through breakthrough curves) and vertical distribution of fungicides in amended soils, knowing their DISP values. PMID:25985099

  1. Heavy metal concentrations in earthworms from soil amended with sewage sludge

    USGS Publications Warehouse

    Beyer, W.N.; Chaney, R.L.; Mulhern, B.M.

    1982-01-01

    Metal concentrations in soil may be elevated considerably when metal-laden sewage sludge is spread on land. Metals in earthworms (Lumbricidae) from agricultural fields amended with sewage sludge and from experimental plots were examined to determine if earthworms are important in transferring metals in soil to wildlife. Earthworms from four sites amended with sludge contained significantly (P . < 0.05) more Cd (12 times), Cu (2.4 times), Zn (2.0 times), and Pb (1.2 times) than did earthworms from control sites, but the concentrations detected varied greatly and depended on the particular sludge application. Generally, Cd and Zn were concentrated by earthworms relative to soil, and Cu, Pb, and Ni were not concentrated. Concentrations of Cd, Zn, Cu, and Pb in earthworms were correlated (P < 0.05) with those in soil. The ratio of the concentration of metals in earthworms to the concentration of metals in soil tended to be lower in contaminated soil than in clean soil. Concentrations of Cd as high as 100 ppm (dry wt) were detected in earthworms from soil containing only 2 ppm Cd. These concentrations are considered hazardous to wildlife that eat worms. Liming soil decreased Cd concentrations in earthworms slightly (P < 0.05) but had no discernible effect on concentrations of the other metals studied. High Zn concentrations in soil substantially reduced Cd concentrations in earthworms.

  2. Chloropicrin Emission Reduction by Soil Amendment with Biochar

    PubMed Central

    Wang, Qiuxia; Yan, Dongdong; Liu, Pengfei; Mao, Liangang; Wang, Dong; Fang, Wensheng; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2015-01-01

    Biochar has sorption capacity, and can be used to enhance the sequestration of volatile organic contaminants such as pesticides in soil. Chloropicrin (CP) is an important soil fumigant for the production of many fruit and vegetable crops, but its emissions must be minimized to reduce exposure risks and air pollution. The objective of this study was to determine the capacity of biochar to adsorb CP and the effect of biochar amendments to soil on CP emission, concentration in the soil gas phase, degradation in soil and CP bioactivity for controlling soil borne pests. CP emission and concentration in the soil air phase were measured from packed soil columns after fumigant injection at 20-cm depth and application of selected doses of biocharto the surface 5 cm soil. Laboratory incubation and fumigation experiments were conducted to determine the capacity of biochar to adsorb CP, the effects on CP degradation and, separately, CP’s bioactivity on soil borne pests in soil amended with biochar. Biochar amendment at 2% to 5% (w/w) greatly reduced total CP emission losses by 85.7% - 97.7% compared to fumigation without biochar. CP concentrations in the soil gas-phase, especially in the top 5 cm of soil, were reduced within 48 h following application. The half-life of CP decreased from 13.6 h to 6.4 h as the biochar rate increased from 0% to 5%. CP and its metabolite (dichloronitromethane) both degraded more rapidly in pure biochar than in soil. The biochar used in the present study had a maximum adsorption capacity for CP of less than 5 mg g-1. There were no negative effects on pathogen and nematode control when the biochar used in this study was less than 1% (on a weight basis) in soil. Biochar amendment to soil reduced the emissions of CP. CP concentrations in the top 5 cm of soil gas-phase were reduced. CP degradation was accelerated with the addition of biochar. The biochar used in the present study had a low adsorption capacity for CP. There were no negative effects

  3. Chloropicrin Emission Reduction by Soil Amendment with Biochar.

    PubMed

    Wang, Qiuxia; Yan, Dongdong; Liu, Pengfei; Mao, Liangang; Wang, Dong; Fang, Wensheng; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2015-01-01

    Biochar has sorption capacity, and can be used to enhance the sequestration of volatile organic contaminants such as pesticides in soil. Chloropicrin (CP) is an important soil fumigant for the production of many fruit and vegetable crops, but its emissions must be minimized to reduce exposure risks and air pollution. The objective of this study was to determine the capacity of biochar to adsorb CP and the effect of biochar amendments to soil on CP emission, concentration in the soil gas phase, degradation in soil and CP bioactivity for controlling soil borne pests. CP emission and concentration in the soil air phase were measured from packed soil columns after fumigant injection at 20-cm depth and application of selected doses of biocharto the surface 5 cm soil. Laboratory incubation and fumigation experiments were conducted to determine the capacity of biochar to adsorb CP, the effects on CP degradation and, separately, CP's bioactivity on soil borne pests in soil amended with biochar. Biochar amendment at 2% to 5% (w/w) greatly reduced total CP emission losses by 85.7% - 97.7% compared to fumigation without biochar. CP concentrations in the soil gas-phase, especially in the top 5 cm of soil, were reduced within 48 h following application. The half-life of CP decreased from 13.6 h to 6.4 h as the biochar rate increased from 0% to 5%. CP and its metabolite (dichloronitromethane) both degraded more rapidly in pure biochar than in soil. The biochar used in the present study had a maximum adsorption capacity for CP of less than 5 mg g(-1). There were no negative effects on pathogen and nematode control when the biochar used in this study was less than 1% (on a weight basis) in soil. Biochar amendment to soil reduced the emissions of CP. CP concentrations in the top 5 cm of soil gas-phase were reduced. CP degradation was accelerated with the addition of biochar. The biochar used in the present study had a low adsorption capacity for CP. There were no negative effects

  4. Chloropicrin Emission Reduction by Soil Amendment with Biochar.

    PubMed

    Wang, Qiuxia; Yan, Dongdong; Liu, Pengfei; Mao, Liangang; Wang, Dong; Fang, Wensheng; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2015-01-01

    Biochar has sorption capacity, and can be used to enhance the sequestration of volatile organic contaminants such as pesticides in soil. Chloropicrin (CP) is an important soil fumigant for the production of many fruit and vegetable crops, but its emissions must be minimized to reduce exposure risks and air pollution. The objective of this study was to determine the capacity of biochar to adsorb CP and the effect of biochar amendments to soil on CP emission, concentration in the soil gas phase, degradation in soil and CP bioactivity for controlling soil borne pests. CP emission and concentration in the soil air phase were measured from packed soil columns after fumigant injection at 20-cm depth and application of selected doses of biocharto the surface 5 cm soil. Laboratory incubation and fumigation experiments were conducted to determine the capacity of biochar to adsorb CP, the effects on CP degradation and, separately, CP's bioactivity on soil borne pests in soil amended with biochar. Biochar amendment at 2% to 5% (w/w) greatly reduced total CP emission losses by 85.7% - 97.7% compared to fumigation without biochar. CP concentrations in the soil gas-phase, especially in the top 5 cm of soil, were reduced within 48 h following application. The half-life of CP decreased from 13.6 h to 6.4 h as the biochar rate increased from 0% to 5%. CP and its metabolite (dichloronitromethane) both degraded more rapidly in pure biochar than in soil. The biochar used in the present study had a maximum adsorption capacity for CP of less than 5 mg g(-1). There were no negative effects on pathogen and nematode control when the biochar used in this study was less than 1% (on a weight basis) in soil. Biochar amendment to soil reduced the emissions of CP. CP concentrations in the top 5 cm of soil gas-phase were reduced. CP degradation was accelerated with the addition of biochar. The biochar used in the present study had a low adsorption capacity for CP. There were no negative effects

  5. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates.

    PubMed

    Hale, Sarah E; Jensen, John; Jakob, Lena; Oleszczuk, Patryk; Hartnik, Thomas; Henriksen, Thomas; Okkenhaug, Gudny; Martinsen, Vegard; Cornelissen, Gerard

    2013-08-01

    The aim of the present study was to evaluate the secondary ecotoxicological effects of soil amendment materials that can be added to contaminated soils in order to sequester harmful pollutants. To this end, a nonpolluted agricultural soil was amended with 0.5, 2, and 5% of the following four amendments: powder activated carbon (PAC), granular activated carbon, corn stover biochar, and ferric oxyhydroxide powder, which have previously been proven to sequester pollutants in soil. The resulting immediate effects (i.e., without aging the mixtures before carrying out tests) on the springtail Folsomia candida, the earthworm species Aporectodea caliginosa and Eisenia fetida, the marine bacteria Vibrio fischeri, a suite of ten prokaryotic species, and a eukaryote (the yeast species Pichia anomalia) were investigated. Reproduction of F. candida was significantly increased compared to the unamended soil when 2% biochar was added to it. None of the treatments caused a negative effect on reproduction. All amendments had a deleterious effect on the growth of A. caliginosa when compared to the unamended soil, except the 0.5% amendment of biochar. In avoidance tests, E. fetida preferred biochar compared to all other amendments including the unamended soil. All amendments reduced the inhibition of luminescence to V. fischeri, i.e., were beneficial for the bacteria, with PAC showing the greatest improvement. The effects of the amendments on the suite of prokaryotic species and the eukaryote were variable, but overall the 2% biochar dose provided the most frequent positive effect on growth. It is concluded that the four soil amendments had variable but never strongly deleterious effects on the bacteria and invertebrates studied here during the respective recommended experimental test periods. PMID:23802136

  6. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates.

    PubMed

    Hale, Sarah E; Jensen, John; Jakob, Lena; Oleszczuk, Patryk; Hartnik, Thomas; Henriksen, Thomas; Okkenhaug, Gudny; Martinsen, Vegard; Cornelissen, Gerard

    2013-08-01

    The aim of the present study was to evaluate the secondary ecotoxicological effects of soil amendment materials that can be added to contaminated soils in order to sequester harmful pollutants. To this end, a nonpolluted agricultural soil was amended with 0.5, 2, and 5% of the following four amendments: powder activated carbon (PAC), granular activated carbon, corn stover biochar, and ferric oxyhydroxide powder, which have previously been proven to sequester pollutants in soil. The resulting immediate effects (i.e., without aging the mixtures before carrying out tests) on the springtail Folsomia candida, the earthworm species Aporectodea caliginosa and Eisenia fetida, the marine bacteria Vibrio fischeri, a suite of ten prokaryotic species, and a eukaryote (the yeast species Pichia anomalia) were investigated. Reproduction of F. candida was significantly increased compared to the unamended soil when 2% biochar was added to it. None of the treatments caused a negative effect on reproduction. All amendments had a deleterious effect on the growth of A. caliginosa when compared to the unamended soil, except the 0.5% amendment of biochar. In avoidance tests, E. fetida preferred biochar compared to all other amendments including the unamended soil. All amendments reduced the inhibition of luminescence to V. fischeri, i.e., were beneficial for the bacteria, with PAC showing the greatest improvement. The effects of the amendments on the suite of prokaryotic species and the eukaryote were variable, but overall the 2% biochar dose provided the most frequent positive effect on growth. It is concluded that the four soil amendments had variable but never strongly deleterious effects on the bacteria and invertebrates studied here during the respective recommended experimental test periods.

  7. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  8. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  9. Determination of the potential for release of mercury from combustion product amended soils: Part 1 - Simulations of beneficial use

    SciTech Connect

    Mae Sexauer Gustin; Jody Ericksen; George C. Fernandez

    2008-05-15

    This paper describes a project that assessed the potential for mercury (Hg) release to air and water from soil amended with combustion products to simulate beneficial use. Combustion products (ash) derived from wood, sewage sludge, subbituminous coal, and a subbituminous coal-petroleum coke mixture were added to soil as agricultural supplements, soil stabilizers, and to develop low permeability surfaces. Hg release was measured from the latter when intact and after it was broken up and mixed into the soil. Air-substrate Hg exchange was measured for all materials six times over 24 hr, providing data that reflected winter, spring, summer, and fall meteorological conditions. Dry deposition of atmospheric Hg and emission of Hg to the atmosphere were both found to be important fluxes. Measured differences in seasonal and diel (24 hr) fluxes demonstrated that to establish an annual estimate of air-substrate flux from these materials data on both of these time steps should be collected. Air-substrate exchange was highly correlated with soil and air temperature, as well as incident light. Hg releases to the atmosphere from coal and wood combustion product-amended soils to simulate an agricultural application were similar to that measured for the unamended soil, whereas releases to the air for the sludge-amended materials were higher. Hg released to soil solutions during the Synthetic Precipitation Leaching Procedure for ashamended materials was higher than that released from soil alone. On the basis of estimates of annual releases of Hg to the air from the materials used, emissions from coal and wood ash-amended soil to simulate an agricultural application could simply be re-emission of Hg deposited by wet processes from the atmosphere; however, releases from sludge-amended materials and those generated to simulate soil stabilization and disturbed low-permeability pads include Hg indigenous to the material. 37 refs., 5 figs., 4 tabs.

  10. Assessment of EDTA heap leaching of an agricultural soil highly contaminated with heavy metals.

    PubMed

    Hu, Pengjie; Yang, Bingfan; Dong, Changxun; Chen, Like; Cao, Xueying; Zhao, Jie; Wu, Longhua; Luo, Yongming; Christie, Peter

    2014-12-01

    The efficiency of heavy metal removal from soil by EDTA leaching was assessed in a column leaching experiment at the laboratory scale and field heap leaching at the pilot scale using a sandy loam sierozem agricultural soil contaminated with Cd, Cu, Pb, and Zn. Soil amendment and aging were conducted to recover leaching soils. The percentages of Cd, Cu, Pb, and Zn removed by column leaching were 90%, 88%, 90%, and 67%, respectively, when 3.9 bed volumes of 50mM EDTA were used. At the pilot scale, on-site metal removal efficiencies using the selected leaching procedure were 80%, 69%, 73% and 62% for Cd, Cu, Pb and Zn, respectively. EDTA leaching decreased soil CEC, total P, total K and available K concentrations but increased organic matter and total Kjeldahl N concentrations. The subsequent amendment and soil aging further reduced the DTPA-extractable heavy metals in the leached soils. Growth of the first crop of pak choi in the leached soil was inhibited but the second crop grew well after the soil was aged for one year and the concentrations of Cd and Pb in the edible parts were below the Chinese statutory limits. The results demonstrate the potential feasibility of the field leaching technique using EDTA combined with subsequent amendment and soil aging for the remediation of heavy metal-contaminated agricultural soils.

  11. Assessment of EDTA heap leaching of an agricultural soil highly contaminated with heavy metals.

    PubMed

    Hu, Pengjie; Yang, Bingfan; Dong, Changxun; Chen, Like; Cao, Xueying; Zhao, Jie; Wu, Longhua; Luo, Yongming; Christie, Peter

    2014-12-01

    The efficiency of heavy metal removal from soil by EDTA leaching was assessed in a column leaching experiment at the laboratory scale and field heap leaching at the pilot scale using a sandy loam sierozem agricultural soil contaminated with Cd, Cu, Pb, and Zn. Soil amendment and aging were conducted to recover leaching soils. The percentages of Cd, Cu, Pb, and Zn removed by column leaching were 90%, 88%, 90%, and 67%, respectively, when 3.9 bed volumes of 50mM EDTA were used. At the pilot scale, on-site metal removal efficiencies using the selected leaching procedure were 80%, 69%, 73% and 62% for Cd, Cu, Pb and Zn, respectively. EDTA leaching decreased soil CEC, total P, total K and available K concentrations but increased organic matter and total Kjeldahl N concentrations. The subsequent amendment and soil aging further reduced the DTPA-extractable heavy metals in the leached soils. Growth of the first crop of pak choi in the leached soil was inhibited but the second crop grew well after the soil was aged for one year and the concentrations of Cd and Pb in the edible parts were below the Chinese statutory limits. The results demonstrate the potential feasibility of the field leaching technique using EDTA combined with subsequent amendment and soil aging for the remediation of heavy metal-contaminated agricultural soils. PMID:25277965

  12. Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays.

    PubMed

    Visioli, Giovanna; Conti, Federica D; Menta, Cristina; Bandiera, Marianna; Malcevschi, Alessio; Jones, Davey L; Vamerali, Teofilo

    2016-03-01

    Soil amendment with biochar has been proposed as effective in improving agricultural land fertility and carbon sequestration, although the characterisation and certification of biochar quality are still crucial for widespread acceptance for agronomic purposes. We describe here the effects of four biochars (conifer and poplar wood, grape marc, wheat straw) at increasing application rates (0.5, 1, 2, 5, 10, 20, 50% w/w) on both germination and root elongation of Cucumis sativus L., Lepidium sativum L. and Sorghum saccharatum Moench. The tested biochars varied in chemical properties, depending on the type and quality of the initial feedstock batch, polycyclic aromatic hydrocarbons (PAHs) being high in conifer and wheat straw, Cd in poplar and Cu in grape marc. We demonstrate that electrical conductivity and Cu negatively affected both germination and root elongation at ≥5% rate biochar, together with Zn at ≥10% and elevated pH at ≥20%. In all species, germination was less sensitive than root elongation, strongly decreasing at very high rates of chars from grape marc (>10%) and wheat straw (>50%), whereas root length was already affected at 0.5% of conifer and poplar in cucumber and sorghum, with marked impairment in all chars at >5%. As a general interpretation, we propose here logarithmic model for robust root phytotoxicity in sorghum, based on biochar Zn content, which explains 66% of variability over the whole dosage range tested. We conclude that metal contamination is a crucial quality parameter for biochar safety, and that root elongation represents a stable test for assessing phytotoxicity at recommended in-field amendment rates (<1-2%).

  13. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology.

    PubMed

    Gómez, Isidoro; Rodríguez-Morgado, Bruno; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2014-05-30

    We performed a laboratory study on the effect of oxyfluorfen at a rate of 4lha(-1) on biological properties of a soil amended with four organic wastes (two biostimulants/biofertilizers, obtained from rice bran, RB1 and RB2; municipal solid waste, MSW; and sheep manure, SM). Soil was mixed with SM at a rate of 1%, MSW at a rate of 0.52%, RB1 at a rate of 0.39% and RB2 at a rate of 0.30%, in order to apply the same amount of organic matter to the soil. The enzymatic activities and microbial community in the soil were determined during the incubation times. The application of RB1 and RB2 to soil without oxyfluorfen increased the enzymatic activities and biodiversity, peaking at day 10 of the incubation period. This stimulation was higher in the soil amended with RB2 than in that amended with RB1. In SM and CF-amended soils, the stimulation of enzymatic activities and soil biodiversity increased during the experiment. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the higher fat content in the biostimulants/biofertilizers are responsible for the lower inhibition of these soil biological properties.

  14. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology.

    PubMed

    Gómez, Isidoro; Rodríguez-Morgado, Bruno; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2014-05-30

    We performed a laboratory study on the effect of oxyfluorfen at a rate of 4lha(-1) on biological properties of a soil amended with four organic wastes (two biostimulants/biofertilizers, obtained from rice bran, RB1 and RB2; municipal solid waste, MSW; and sheep manure, SM). Soil was mixed with SM at a rate of 1%, MSW at a rate of 0.52%, RB1 at a rate of 0.39% and RB2 at a rate of 0.30%, in order to apply the same amount of organic matter to the soil. The enzymatic activities and microbial community in the soil were determined during the incubation times. The application of RB1 and RB2 to soil without oxyfluorfen increased the enzymatic activities and biodiversity, peaking at day 10 of the incubation period. This stimulation was higher in the soil amended with RB2 than in that amended with RB1. In SM and CF-amended soils, the stimulation of enzymatic activities and soil biodiversity increased during the experiment. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the higher fat content in the biostimulants/biofertilizers are responsible for the lower inhibition of these soil biological properties. PMID:24742665

  15. Nitrous oxide production from soils amended with biogas residues and cattle slurry.

    PubMed

    Abubaker, J; Odlare, M; Pell, M

    2013-07-01

    The amount of residues generated from biogas production has increased dramatically due to the worldwide interest in renewable energy. A common way to handle the residues is to use them as fertilizers in crop production. Application of biogas residues to agricultural soils may be accompanied with environmental risks, such as increased NO emission. In 24-d laboratory experiments, NO dynamics and total production were studied in arable soils (sandy, clay, and organic) amended with one of two types of anaerobically digested biogas residues (BR-A and BR-B) generated from urban and agricultural waste and nondigested cattle slurry (CS) applied at rates corresponding to 70 kg NH-N ha. Total NO-N losses from the sandy soil were higher after amendment with BR-B (0.32 g NO-N m) than BR-A or CS (0.02 and 0.18 g NO-N m, respectively). In the clay soil, NO-N losses were very low for CS (0.02 g NO-N m) but higher for BR-A and BR-B (0.25 and 0.15 g NO-N m, respectively). In the organic soil, CS gave higher total NO-N losses (0.31 g NO-N m) than BR-A or BR-B (0.09 and 0.08 g NO-N m, respectively). Emission peaks differed considerably between soils, occurring on Day 1 in the organic soil and on Days 11 to 15 in the sand, whereas in the clay the peak varied markedly (Days 1, 6, and 13) depending on residue type. In all treatments, NH concentration decreased with time, and NO concentration increased. Potential ammonium oxidation and potential denitrification activity increased significantly in the amended sandy soil but not in the organic soil and only in the clay amended with CS. The results showed that fertilization with BR can increase NO emissions and that the size is dependent on the total N and organic C content of the slurry and on soil type. In conclusion, the two types of BR and the CS are not interchangeable regarding their effects on NO production in different soils, and, hence, matching fertilizer type to soil type could reduce NO emissions. For instance, it could be

  16. The feasibility of planting on stabilized sludge-amended soil

    SciTech Connect

    Chu, C.W.; Poon, C.S.

    1999-05-01

    The feasibility of growing plants on stabilized anaerobically-digested sludge from a local secondary sewage treatment plant (STP) and stabilized chemically-modified sludge from a pilot chemically-assisted primary treatment plant were studied. Apropyron elongatum (tall wheat grass) was used in this research study. A sandy soil obtained locally was amended by the addition of the lime/pulverized fuel ash (PFA) stabilized sewage sludge at the rates of 0, 25, 50, 100, and 200 g/kg. The total shoot yield of the grass harvested from the amended soil was significantly higher than that of the natural soil. The optimum application rates that achieved the highest yield for digested sludge and chemically-modified sludge-amended soils were 50 g/kg and 25 g/kg, respectively. Applying the stabilized digested sludge to the soil reduced Zn, Cr, and P but increased Cu, Cd, N, and K concentrations in the root tissues of the grass. The Ni, Cr, B, and K concentrations in the shoot were increased with the addition of stabilized digested sludge amended soil. For the chemically-modified sludge samples, the concentrations of the metal conaminants as well as the nutrient levels of the crops (both in the shoot and root tissues) grown in the stabilized amended soil were increased as compared to the control. However, all the trace metal concentrations in the crop were below stipulated toxicity levels. The experimental results indicate that it is feasible to plant on a mixture of natural soil and stabilized sewage sludge provided the dosage applied is carefully controlled.

  17. Fenhexamid adsorption behavior on soil amended with wine lees.

    PubMed

    Pinna, Maria Vittoria; Budroni, Marilena; Farris, Giovanni Antonio; Pusino, Alba

    2008-11-26

    The adsorption of fenhexamid (FEN) [N-(2,3-dichloro-4-hydroxyphenyl)-1-methylcyclohexanecarboxamide] on vineyard soil amended with wine lees (WL) produced by vinery was studied. The adsorption extent depends on WL fraction. The addition of the centrifuged solid lees (SWL) increases the FEN adsorption on soil. Most likely, the organic insoluble fraction formed mainly by dead fermentation yeasts is responsible for the observed increase. The adsorption measured on some deactivated yeasts of wine fermentation shows that Saccharomyces cerevisiae are the most active in FEN retention. On the other hand, the soil amendment with whole WL decreases considerably the fungicide adsorption. This opposite effect may be the result of FEN hydrophobic bonds with the dissolved organic matter of lees that keeps fungicide in solution. This hypothesis is substantiated by the increased FEN solubility in the supernatant of centrifuged wine lees (LWL). The results of soil column mobility confirm that the elution with LWL increases the mobility of FEN in soil.

  18. Optimization of typical diffuse herbicide pollution control by soil amendment configurations under four levels of rainfall intensities.

    PubMed

    Ouyang, Wei; Huang, Weijia; Wei, Peng; Hao, Fanghua; Yu, Yongyong

    2016-06-15

    Herbicides are a main source of agricultural diffuse pollution due to their wide application in tillage practices. The aim of this study is to optimize the control efficiency of the herbicide atrazine with the aid of modified soil amendments. The soil amendments were composed of a combination of biochar and gravel. The biochar was created from corn straw with a catalytic pyrolysis of ammonium dihydrogen phosphate. The leaching experiments under four rainfall conditions were measured for the following designs: raw soil, soil amended with gravel, biochar individually and together with gravel. The control efficiency of each design was also identified. With the designed equipment, the atrazine content in the contaminant load layer, gravel substrate layer, biochar amendment layer and soil layer was measured under four types of rainfall intensities (1.25 mm/h, 2.50 mm/h, 5.00 mm/h and 10.00 mm/h). Furthermore, the vertical distribution of atrazine in the soil sections was also monitored. The results showed that the herbicide leaching load increased under the highest rainfall intensity in all designs. The soil with the combination of gravel and biochar provided the highest control efficiency of 87.85% on atrazine when the additional proportion of biochar was 3.0%. The performance assessment under the four kinds of rainfall intensity conditions provided the guideline for the soil amendment configuration. The combination of gravel and biochar is recommended as an efficient method for controlling diffuse herbicide pollution.

  19. Effect of land management on soil microbial properties in agricultural terraces of Eastern Spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; Cerdà, Artemi; Garcia-Orenes, Fuensanta

    2014-05-01

    Soil quality is important for the sustainable development of terrestrial ecosystems. Agricultural land management is one of most important anthropogenic activities that greatly alters soil characteristics, including physical, chemical, and microbiological properties. The unsuitable land management can lead to a soil fertility loss and to a reduction in the abundance and diversity of soil microorganisms. However, ecological practices and some organic amendments can promote the activities of soil microbial communities, and increase its biodiversity. The microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. In this study, a field experiment was performed at clay-loam agricultural soil with an orchard of orange trees in Alcoleja (eastern Spain) to assess the long-term effects of inorganic fertilizers (F), intensive ploughing (P) and sustainable agriculture (S) on the soil microbial biomass carbon (Cmic), enzyme activities (Urease, ß-glucosidase and phosphatase), basal soil repiration (BSR) and the relationship between them, and soil fertility in agro-ecosystems of Spain. Nine soil samples were taken from each agricultural management plot. In all the samples were determined the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic carbon, nitrogen, available phosphorus, aggregate stability, cation exchange capacity, phosphorous, pH, texture, carbonates, active limestone and as enzimatic activities: Urease, ß-glucosidase and phosphatase. The results showed a substantial level of differentiation in the microbial properties, in terms of management practices, which was highly associated with soil organic matter content. The most marked variation in the different parameters studied appears to be related to sustainable agriculture terrace. The management

  20. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    NASA Astrophysics Data System (ADS)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    soil sample and quantified spectrophotometrically using a Nanodrop ND-1000. Analysis of variance (ANOVA) was carried out in order to evaluate the significant differences in SMCs activity between all soil matrices. To associate the SMCs responses to the tracers of distinct agricultural farming systems, data were further explored under Principal Component Analysis (PCA). Biomarkers responses were combined into a stress index (IBR), described by Beliaeff & Burgeot (2002). Results/Discussion: All SMCs parameters displayed significant differences between agricultural soils and reference soils, except for metabolic quotient and RNA to DNA ratio (p<0.05), revealing that SMCs are suitable bioindicators of agricultural soil quality in volcanic soils. No significant differences were found for the soil basal respiration and acid phosphatase among the farming systems, suggesting that soils amendments (a cross farming practice) are a stressing factor disrupting local SMCs activities. The PCA analysis revealed that lithium is the priority metal affecting the SMCs responses in conventional farming systems. The IBR values indicated that soils ecosystem health between farming systems are ranked as: organic (4.96) > traditional (12.94) > conventional (17.28) (the higher the value, the worse the soil health status). Conclusion: Results support the soil microbial toolbox as suitable bioindicators of metal pollution in agricultural volcanic soils, highlighting the importance of integrated biomarker-based strategies for the development of the "Trace Metal Footprint" in Andosols.

  1. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?

    PubMed

    Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety.

  2. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?

    PubMed

    Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. PMID:26974588

  3. Efficacy of 1,3-Dichloropropene in Soil Amended with Compost and Unamended Soil

    PubMed Central

    Riegel, C.; Nelson, S. D.; Dickson, D. W.; Allen, L. H.; Peterson, L. G.

    2001-01-01

    1,3-Dichloropropene (1,3-D) is a likely alternative soil fumigant for methyl bromide. The objective was to determine root-knot nematode, Meloidogyne incognita, survival in microplots after exposure to 1,3-D for various periods of time in soil that have previously been amended with compost. The treatments were 1,3-D applied broadcast at 112 liters/ha and untreated controls in both compost-amended and unamended soil. Soil samples were collected from each microplot at 6, 24, 48, 72, and 96 hours after fumigation at three depths (0-15, 15-30, and 30-45 cm). One week after fumigation, six tomato seedlings were transplanted into each microplot and root galling was recorded 6 weeks later. Plants grown in fumigated compost-amended soil had more galls than plants from fumigated unamended soil at P ≤ 0.1. Gall indices from roots in fumigated soil amended with compost were not different from nonfumigated controls. Based on soil bioassays, the number of galls decreased with increasing time after fumigation in both compost-amended and unamended soil at 0-to-15 and 15-to-30 cm depths, but not at 30 to 45 cm deep. Higher soil water content due to the elevated levels of organic matter in the soil at these depths may have interfered with 1,3-D movement, thus reducing its efficacy. PMID:19265889

  4. The magnetic susceptibility of European agricultural soils

    NASA Astrophysics Data System (ADS)

    Fabian, K.; Reimann, C.

    2012-04-01

    The GEMAS (Geochemical mapping of agricultural soils) project, a cooperation project between EuroGeoSurveys and Eurometaux, aims at providing soil quality data for Europe. Samples of arable soil were taken during 2008 at an average density of 1 site/2500 km2 covering the member states of the European Union (except Malta and Romania) and several neighbouring countries (e.g., Norway, Serbia, Ukraine). While the primary aim of the GEMAS project is to produce REACH (Registration, Evaluation and Authorisation of CHemicals - EC, 2006) consistent soil geochemistry data at the continental scale, the data set is also optimally apt to provide the first continental scale overview of magnetic properties in European soils. Soil samples from the upper 20 cm were taken as composites from 5 sites spread over a ca. 100 m2 area in a large agricultural field (Ap-sample). The samples were air dried and sieved to pass a 2 mm nylon screen. Weight normalized magnetic susceptibility of these dried samples was measured using a Sapphire Instruments SI2B susceptibility meter with dynamic background removal. The here presented maps of magnetic susceptibility in relation to geochemical composition and geological structures for the first time allow to outline the large scale influence of tectonics and climate on magnetic mineral concentration in European soils. The data set also provides the background variability for regional studies aiming to relate magnetic susceptibility of soils to local contamination sources.

  5. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter

    USGS Publications Warehouse

    Rutherford, D.W.; Bednar, A.J.; Garbarino, J.R.; Needham, R.; Staver, K.W.; Wershaw, R. L.

    2003-01-01

    Poultry litter often contains arsenic as a result of organo-arsenical feed additives. When the poultry litter is applied to agricultural fields, the arsenic is released to the environment and may result in increased arsenic in surface and groundwater and increased uptake by plants. The release of arsenic from poultry litter, litter-amended soils, and soils without litter amendment was examined by extraction with water and strong acids (HCI and HN03). The extracts were analyzed for As, C, P, Cu, Zn, and Fe. Copper, zinc, and iron are also poultry feed additives. Soils with a known history of litter application and controlled application rate of arsenic-containing poultry litter were obtained from the University of Maryland Agricultural Experiment Station. Soils from fields with long-term application of poultry litter were obtained from a tilled field on the Delmarva Peninsula (MD) and an untilled Oklahoma pasture. Samples from an adjacent forest or nearby pasture that had no history of litter application were used as controls. Depth profiles were sampled for the Oklahoma pasture soils. Analysis of the poultry litter showed that 75% of the arsenic was readily soluble in water. Extraction of soils shows that weakly bound arsenic mobilized by water correlates positively with C, P, Cu, and Zn in amended fields and appears to come primarily from the litter. Strongly bound arsenic correlates positively with Fe in amended fields and suggests sorption or coprecipitation of As and Fe in the soil column.

  6. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  7. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  8. Multiple storm event impacts on epikarst storage and transport of organic soil amendments in South-Central Kentucky.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The groundwater in agricultural karst areas is susceptible to contamination from organic soil amendments and pesticides. During major storm events of winter and spring 2011, dye traces were initiated using sulphorhodamine-B, fluorescein and eosine in a known groundwater recharge area where manure wa...

  9. Tillage, crop rotation, and organic amendment effect on changes in soil organic matter.

    PubMed

    Rickman, R; Douglas, C; Albrecht, S; Berc, J

    2002-01-01

    Carbon sequestration in agricultural soils is controlled by the balance of added organic residues and microbial oxidation of both residues and native organic matter (OM) as moderated by management and tillage. The PC-based model CQESTR predicts decomposition of residues, organic amendments and soil OM, based on cropping practices. CQESTR uses RUSLE (Revised Universal Soil Loss Equation) crop rotation and management practice, crop production, and operation databases. These data are supplemented with residue nitrogen and soil OM, bulk density, and layer thickness. CQESTR was calibrated with soil carbon data from 70-year-long experiments at the Research Center at Pendleton, OR. The calibrated model provides estimates with a 95% confidence interval of 0.33% OM. Validation at 11 independent sites resulted in a matching of observed with calculated OM with a 95% confidence interval of 0.55% OM. A 12th site, with a history of severe erosion, provided a poor match.

  10. Field dissipation of four personal care products in biosolids-amended soils in North China.

    PubMed

    Chen, Feng; Ying, Guang-Guo; Ma, Yi-Bing; Chen, Zhi-Feng; Lai, Hua-Jie

    2014-11-01

    The present study investigated the dissipation behaviors of 4 typical personal care products (PCPs)-triclocarban (TCC), triclosan (TCS), tonalide (AHTN), and galaxolide (HHCB)- in soils amended with biosolids under field conditions in North China. The results showed that the 4 target compounds were detected in all biosolids-amended soils at levels of a few nanograms per gram to thousands of nanograms per gram (dry wt). The residual concentrations of the 4 PCPs were found in the following order: TCC > TCS > AHTN > HHCB. Significant dissipation of the 4 PCPs was observed in the biosolids-amended soils, with half-lives ranging from 26 d to 133 d. Furthermore, repeated biosolids applications and a higher biosolids application rate could lead to higher accumulation of the 4 PCPs in the agricultural soils. Based on the detected concentrations in the field trial and limited ecotoxicity data, high risks to soil organisms are expected for TCC, whereas low to medium risks are expected in most cases for AHTN, HHCB, and TCS.

  11. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks

    EPA Science Inventory

    Purpose: Biochars are a soil amendment produced from lignocellulosic and manure feedstocks. Not all biochars are viable soil amendments because of differences in their physical and chemical properties. Biochar could deliver more effective service as a soil amendment if its chemis...

  12. SPECTROSCOPIC SPECIATION AND QUANTIFICATION OF LEAD IN PHOSPHATE AMENDED SOILS

    EPA Science Inventory

    The immobilization of Pb in contaminated soils as pyromorphite [Pb5(PO4)3CI, OH, F] through the addition of various phosphate amendments has gained much attention in the remediation community. However, it is difficult to fully determine the specia...

  13. Effects of poultry manure, compost, and biochar amendments on soil nitrogen dynamics in maize production systems

    NASA Astrophysics Data System (ADS)

    Ryals, R.; Tang, J.; Hastings, M. G.; Dell, C. J.; Sims, T.

    2013-12-01

    Intensification of animal agriculture has profound impacts on the global and local biogeochemistry of nitrogen (N), resulting in consequences to environmental and human health. In the Chesapeake Bay watershed, intensive agriculture is the primary contributor to N pollution, with animal manure comprising more than half of N from agriculture. Management interventions may play an important role in mitigating reactive N pollution in the Bay watershed. The objective of our research was to test management strategies that maximize benefits of poultry manure as an agricultural resource while minimizing it as a source of reactive nitrogen to the atmosphere and ground and surface waters. We conducted field experiments in two agricultural regions of the Chesapeake Bay watershed (Georgetown, Delaware and State College, Pennsylvania) to explore the effects of poultry manure amendments on gaseous N losses and soil N transformations. Treatments were applied at rates needed to meet the plant N demand at each site and included unfertilized controls, fertilizer N (urea), and raw, composted, or and biocharred poultry manure. The fate of the N from all sources was followed throughout the growing season. Global greenhouse gases emitted from soil (nitrous oxide [N2O] and carbon dioxide [CO2]) and regional air pollutants (nitrogen oxides [NOx] and ammonia [NH3]) were measured. Gas measurements were coupled with data on treatment effects on temperature, moisture, and concentrations of nitrate (NO3¬-) and ammonium (NH4+) in surface soils (0-10 cm). Soil NO3- and NH4+ were also measured approximately monthly in the soil profile (0-10, 10-30, 30-50, 50-70, and 70-100 cm) as an index of leaching potential. Plant N uptake and grain production were also quantified to quantify crop N use efficiency and compare measured N losses for each N source. Our results suggest that the form of poultry manure amendments can affect the magnitude of reactive N losses to the environment.

  14. Soil biochar amendment in a nature restoration area: effects on plant productivity and community composition.

    PubMed

    van de Voorde, Tess F J; Bezemer, T Martijn; Van Groenigen, Jan Willem; Jeffery, Simon; Mommer, Liesje

    2014-07-01

    Biochar (pyrolyzed biomass) amendment to soils has been shown to have a multitude of positive effects, e.g., on crop yield, soil quality, nutrient cycling, and carbon sequestration. So far the majority of studies have focused on agricultural systems, typically with relatively low species diversity and annual cropping schemes. How biochar amendment affects plant communities in more complex and diverse ecosystems that can evolve over time is largely unknown. We investigated such effects in a field experiment at a Dutch nature restoration area. In April 2011, we set up an experiment using biochar produced from cuttings collected from a local natural grassland. The material was pyrolyzed at 400 degrees C or at 600 degrees C. After biochar or residue (non-pyrolyzed cuttings) application (10 Mg/ha), all plots, including control (0 Mg/ ha) plots, were sown with an 18-species grassland mixture. In August 2011, we determined characteristics of the developed plant community, as well as soil nutrient status. Biochar amendment did not alter total plant productivity, but it had a strong and significant effect on plant community composition. Legumes were three times as abundant and individual legume plants increased four times in biomass in plots that received biochar as compared to the control treatment. Biomass of the most abundant forb (Plantago lanceolata) was not affected by biochar addition. Available phosphorous, potassium, and pH were significantly higher in soils that received biochar than in Control soils. The rate of biological nitrogen fixation and seed germination were not altered by biochar amendment, but the total amount of biological N fixed per Trifolium pratense (red clover) plant was more than four times greater in biochar-amended soil. This study demonstrates that biochar amendment has a strong and rapid effect on plant communities and soil nutrients. Over time these changes may cascade up to other trophic groups, including above- and belowground organisms

  15. Soil biology and carbon in dryland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this paper is to explore potential management strategies in dryland agriculture that can promote soil health and crop productivity. Traditional crop production in the semiarid Great Plains consists of conventional tillage management of winter wheat (Triticum aestivum L.) - summer fallow....

  16. Transport of agricultural contaminants through karst soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Karst landscapes are common in many agricultural regions in the US. Well-developed karst landscapes are characterized by shallow soils, sinkholes, sinking streams, underground conduits, and springs. In these landscapes surface runoff is minimal and most recharge enters the subsurface relatively quic...

  17. Phosphate reactivity in long-term poultry litter-amended southern Delaware sandy soils

    USGS Publications Warehouse

    Arai, Y.; Livi, K.J.T.; Sparks, D.L.

    2005-01-01

    Eutrophication caused by dissolved P from poultry litter (PL)-amended agricultural soils has been a serious environmental concern in the Delaware-Maryland-Virginia Peninsula (Delmarva), USA. To evaluate state and federal nutrient management strategies for reducing the environmental impact of soluble P from long-term PL-amended Delaware (DE) soils, we investigated (i) inorganic P speciation; (ii) P adsorption capacity; and (iii) the extent of P desorption. Although the electron microprobe (EMP) analyses showed a strong correlation between P and Al/Fe, crystalline Al/Fe-P precipitates were not detected by x-ray diffraction (XRD). Instead, the inorganic P fractionation analyses showed high levels of oxalate extractable P, Al, and Fe fractions (615-858, 1215-1478, and 337-752 mg kg-1, respectively), which were susceptible to slow release during the long-term (30-d) P desorption experiments at a moderately acidic soil pHwater. The labile P in the short-term (24-h) desorption studies was significantly associated with oxalate and F extractable Fe and Al, respectively. This was evident in an 80% reduction maximum in total desorbable P from NH4 oxalate/F pretreated soils. In the adsorption experiments, P was strongly retained in soils at near targeted pH of lime (???6.0), but P adsorption gradually decreased with decreasing pH near the soil pHwater (???5.0). The overall findings suggest that P losses from the can be suppressed by an increase in the P retention capacity of soils via (i) an increase in the number of lime applications to maintain soil pHwater at near targeted pH values, and/or (ii) alum/iron sulfate amendments to provide additional Al- and Fe-based adsorbents. ?? Soil Science Society of America.

  18. Leaching of nitrogen and base cations from calcareous soil amended with organic residues.

    PubMed

    Zarabi, Mahboubeh; Jalali, Mohsen

    2012-01-01

    The potential for groundwater and surface water pollution by nutrients in organic residues, primarily nitrogen (N) and base cations (K+, Na+, Ca2+, Mg2+), is a consideration when applying such residues to land. In this study, we used a laboratory column leaching procedure to examine the leaching of N, K+, Na+, Ca2+ and Mg2+ in soils treated with two types of raw organic residues (poultry manure and potato residues) and one municipal waste compost, which are currently recycled on agricultural land in Iran. Each organic residue was thoroughly mixed with two different soils (sandy loam and clay) at the rate of 3%. Soil columns were leached at 4-d intervals for 92 d with distilled water, and effluents were analysed for pH, EC, nitrate (NO3(-)-N), ammonium (NH4(+)-N) K+, Na+, Ca2+ and Mg2+. The results indicated that the amounts of NO3(-)-N and NH4(+)-N leached from the poultry manure and potato residues could represent very important economic losses of N and pose an environmental threat under field conditions. The sandy loam soil amended with poultry manure lost the highest amount of NO3(-)-N (206.4 kg ha(-1)), and clay soil amended with poultry manure lost the highest amounts of NH4(+)-N (454.3 kg ha(-1)). The results showed that a treatment incorporating 3% of municipal waste compost could be used without negative effects to groundwater N concentration in clay soil. Significant amounts of K+, Na+, Ca2+, and Mg2+ were leached owing to the application of poultry manure, potato and municipal waste compost to soils. There was a positive relationship between K+, Na+, Ca2+, and Mg2+ with NO3(-)-N and NH4(+)-N leached in soils. Analysis of variance detected significant effects of amendment, soil type and time on the leaching NO3(-)-N, NH4(+)-N, K+, Na+, Ca2+ and Mg2+.

  19. Carbon dynamics in different soil types amended with pig slurry, pig manure and its biochar

    NASA Astrophysics Data System (ADS)

    Yanardag, Ibrahim H.; Zornoza, Raúl; Faz, Ángel; Büyükkiliç-Yanardaǧ, Asuman; Mermut, Ahmet R.

    2014-05-01

    Determining the structure and components of soil and soil organic matter is very important in terms of sustainable agriculture and forestry and greenhouse gases emissions. Organic management can increase labile C and N in the short-term, and total soil C and N in the long-term, but less is known about how management practices may affect soil organic C (SOC)quality and stability. Methods to improve the management of livestock slurries to reduce the environmental impact and carbon losses are gaining importance. There is a need to find the best wastes treatment which enhances soil fertility but also carbon sequestration, to mitigate the effects of global warming. The objective of this study was to assess the short-term changes in SOC pools, using raw pig slurry, the solid phase of pig slurry, and its biochar as amendment in different soil types (Regosol, Luvisol and Kastanozem). The three different amendments were applied at 5 g C kg-1 soil. An unamended soil for each type was used as control. Soils were incubated in triplicate for 60 days at 25ºC and at 55% of their water holding capacity. Samples were sampled to monitor the evolution of soil organic and inorganic carbon, recalcitrant carbon, soluble carbon, carbon mineralization, SOC thermal distribution (thermogravimetric analysis - differential scanning calorimetry - quadrupole mass spectrometry), and characterization of functional groups (Fourier transform infrared spectroscopy (FTIR)). Results showed that soils amended with raw pig slurry and the solid phase of the slurry showed higher values of soluble carbon, and higher carbon mineralization rates compared to biochar application, which showed values similar to controls. SOC increased at the end of incubation with biochar and the solid phase of the slurry applications in Kastanozem and Regosol. Thermogravimetric results showed an increased weight loss of the Regosol compared to Luvisol and Kastanozem, owing to the higher content of soil carbonates. Luvisol and

  20. Role of organic amendment application on greenhouse gas emission from soil.

    PubMed

    Thangarajan, Ramya; Bolan, Nanthi S; Tian, Guanglong; Naidu, Ravi; Kunhikrishnan, Anitha

    2013-11-01

    Globally, substantial quantities of organic amendments (OAs) such as plant residues (3.8×10(9) Mg/yr), biosolids (10×10(7) Mg/yr), and animal manures (7×10(9) Mg/yr) are produced. Recycling these OAs in agriculture possesses several advantages such as improving plant growth, yield, soil carbon content, and microbial biomass and activity. Nevertheless, OA applications hold some disadvantages such as nutrient eutrophication and greenhouse gas (GHG) emission. Agriculture sector plays a vital role in GHG emission (carbon dioxide- CO2, methane- CH4, and nitrous oxide- N2O). Though CH4 and N2O are emitted in less quantity than CO2, they are 21 and 310 times more powerful in global warming potential, respectively. Although there have been reviews on the role of mineral fertilizer application on GHG emission, there has been no comprehensive review on the effect of OA application on GHG emission in agricultural soils. The review starts with the quantification of various OAs used in agriculture that include manures, biosolids, and crop residues along with their role in improving soil health. Then, it discusses four major OA induced-GHG emission processes (i.e., priming effect, methanogenesis, nitrification, and denitrification) by highlighting the impact of OA application on GHG emission from soil. For example, globally 10×10(7) Mg biosolids are produced annually which can result in the potential emission of 530 Gg of CH4 and 60 Gg of N2O. The article then aims to highlight the soil, climatic, and OA factors affecting OA induced-GHG emission and the management practices to mitigate the emission. This review emphasizes the future research needs in relation to nitrogen and carbon dynamics in soil to broaden the use of OAs in agriculture to maintain soil health with minimum impact on GHG emission from agriculture.

  1. Rhizosphere Environment and Labile Phosphorus Release from Organic Waste-Amended Soils.

    NASA Astrophysics Data System (ADS)

    Dao, Thanh H.

    2015-04-01

    Crop residues and biofertilizers are primary sources of nutrients for organic crop production. However, soils treated with large amounts of nutrient-enriched manure have elevated phosphorus (P) levels in regions of intensive animal agriculture. Surpluses occurred in these amended soils, resulting in large pools of exchangeable inorganic P (Pi) and enzyme-labile organic P (Po) that averaging 30.9 and 68.2 mg kg-1, respectively. Organic acids produced during crop residue decomposition can promote the complexation of counter-ions and decouple and release unbound Pi from metal and alkali metal phosphates. Animal manure and cover crop residues also contain large amounts of soluble organic matter, and likely generate similar ligands. However, a high degree of heterogeneity in P spatial distribution in such amended fields, arising from variances in substrate physical forms ranging from slurries to dried solids, composition, and diverse application methods and equipment. Distinct clusters of Pi and Po were observed, where accumulation of the latter forms was associated with high soil microbial biomass C and reduced phosphomonoesterases' activity. Accurate estimates of plant requirements and lability of soil P pools, and real-time plant and soil P sensing systems are critical considerations to optimally manage manure-derived nutrients in crop production systems. An in situ X-ray fluorescence-based approach to sensing canopy and soil XRFS-P was developed to improve the yield-soil P relationship for optimal nutrient recommendations in addition to allowing in-the-field verification of foliar P status.

  2. Natural attenuation of toxic metal phytoavailability in 35-year-old sewage sludge-amended soil.

    PubMed

    Tai, Yiping; Li, Zhian; Mcbride, Murray B

    2016-04-01

    Toxic heavy metals persist in agricultural soils and ecosystem for many decades after their application as contaminants in sewage sludge and fertilizer products This study assessed the potential long-term risk of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in land-applied sewage sludge to food crop contamination. A sewage sludge-amended soil (SAS) aged in the field more than 35 years was used in a greenhouse pot experiment with leafy vegetables (lettuce and amaranth) having strong Cd and Zn accumulation tendencies. Soil media with variable levels of available Cd, Zn, and Cu (measured using 0.01 M CaCl2 extraction) were prepared by diluting SAS with several levels of uncontaminated control soil. Despite long-term aging in the field, the sludge site soil still retains large reserves of heavy metals, residual organic matter, phosphorus, and other nutrients, but its characteristics appear to have stabilized over time. Nevertheless, lettuce and amaranth harvested from the sludge-treated soil had undesirable contents of Cd and Zn. The high plant uptake efficiency for Cd and Zn raises a concern regarding the quality and safety of leafy vegetables in particular, when these crops are grown on soils that have been amended heavily with sewage sludge products at any time in their past.

  3. Organic waste amendments effect on zinc fraction of two soils

    SciTech Connect

    Shuman, L.M.

    1999-10-01

    Organic soil amendments can ameliorate metal toxicity to plants by redistributing metals to less available fractions. The objective of this study was to determine the effects of organic amendments on Zn distribution among soil fractions. Two soils were amended with five organic waste materials (some of which contained Zn) or commercial humic acid with and without 400 mg kg{sup {minus}1} Zn, incubated, and fractionated using a sequential extraction technique. Where no Zn was added most of the metals were in the residual fraction. Commercial compost, poultry litter, and industrial sewage sludge increased Zn in the exchangeable (EXC), organic (OM), and manganese oxide (MnOx) fractions due to Zn in the materials. Spent mushroom compost (SMC) redistributed Zn from the EXC fraction to the MnOx fraction for the coarse-textured soil. Where Zn was added, most of the metal was in the EXC and OM fractions. The SMC and humic acid lowered Zn in the EXC fraction and increased Zn in the other fractions. Effects of the organic materials on Zn in soil fractions were more evident for the sandy soil dominated by quartz in the clay than for the finer-textured soil dominated by kaolinite in the clay-size fraction. It was concluded that organic materials high in Zn can increase Zn in the EXC, OM, and MnOx fractions where the soil is not contaminated and others such as SMC and HA can lower the potential availability of Zn in contaminated soils by redistributing it from the EXC to less soluble fractions.

  4. Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields.

    PubMed

    Singh, Jay Shankar; Pandey, Vimal Chandra

    2013-03-01

    There are reports that the application of fly ash, compost and press mud or a combination thereof, improves plant growth, soil microbial communities etc. Also, fly ash in combination with farmyard manure or other organic amendments improves soil physico-chemical characteristics, rice yield and microbial processes in paddy fields. However, the knowledge about the impact of fly ash inputs alone or in combination with other organic amendments on soil methanotrophs number in paddy soils is almost lacking. We hypothesized that fly ash application at lower doses in paddy agriculture soil could be a potential amendment to elevate the paddy yields and methanotrophs number. Here we demonstrate the impact of fly ash and press mud inputs on number of methanotrophs, antioxidants, antioxidative enzymatic activities and paddy yields at agriculture farm. The impact of amendments was significant for methanotrophs number, heavy metal concentration, antioxidant contents, antioxidant enzymatic activities and paddy yields. A negative correlation was existed between higher doses of fly ash-treatments and methanotrophs number (R(2)=0.833). The content of antioxidants and enzymatic activities in leaves of higher doses fly ash-treated rice plants increased in response to stresses due to heavy metal toxicity, which was negatively correlated with rice grain yield (R(2)=0.944) and paddy straw yield (R(2)=0.934). A positive correlation was noted between heavy metals concentrations and different antioxidant and enzymatic activities across different fly ash treated plots.The data of this study indicate that heavy metal toxicity of fly ash may cause oxidative stress in the paddy crop and the antioxidants and related enzymes could play a defensive role against phytotoxic damages. We concluded that fly ash at lower doses with press mud seems to offer the potential amendments to improving soil methanotrophs population and paddy crop yields for the nutrient poor agriculture soils.

  5. The biogeochemical footprint of agricultural soil erosion

    NASA Astrophysics Data System (ADS)

    Govers, Gerard; Van Oost, Kristof; Wang, Zhengang

    2015-04-01

    Global biogeochemical cycles are a key component of the functioning of the Earth System: these cycles are all, to a varying extent, disturbed by human activities which not only has dramatic consequences for the global climate but also for the acidity of the world's oceans. It is only relatively recently that the role of lateral fluxes related to surface water movement and soil erosion and deposition (and the way those fluxes are modified by human action) is explicitly considered by the scientific community. In this paper we present an overview of our present-day understanding of the role of agricultural soil erosion in the global cycles of carbon, nitrogen, phosphorous and silica. We discuss the major processes through which erosion affects these global cycles and pay particular attention to the knowledge gaps that prevent us from accurately assessing the impact of soil erosion on global biogeochemical cycling at different temporal scales. Furthering our understanding (and better constraining our estimates) will require progress both in terms of model development and process understanding. Research needs can be most clearly identified with respect to soil organic carbon: (i) at present, large-scale soil erosion (and deposition) models are poorly constrained so that the amount of carbon mobilised by erosion (and its fate) cannot be accurately estimated and (ii) the fate of soil organic carbon buried by deposition or delivered to river network is poorly understood. Uncertainties for N, P and Si are larger than those for C as we have less information on the amount of these elements stored in agricultural soils and/or do not fully understand how these elements cycle through the soil/plant system. Agricultural soil erosion does not affect soil functioning through its effect on biogeochemical cycling. Erosion directly affects soil hydrological functioning and is likely to affect weathering processes and soil production. Addressing all these issues requires the

  6. Magnetic susceptibility variation of MSW compost-amended soils: in-situ method for monitoring heavy metal contamination.

    PubMed

    Yoshida, Mitsuo; Jedidi, Naceur; Hamdi, Helmi; Ayari, Fethia; Hassen, Abdennaceur; M'Hiri, Ali

    2003-04-01

    Magnetic susceptibility was measured for agricultural soils in Mornag area, Tunisia, where the soils were partly amended by manure or compost obtained from municipal solid waste stabilisation ('MSW compost'). Our study indicates that natural non-treated soils and manure-amended soils are always low in magnetic susceptibility, but MSW compost-amended soils show higher values of this parameter. Actually, the increase of magnetic susceptibility shows a direct correspondence with the increasing of the amount of MSW compost added to the soil. According to the magnetic mineralogical investigation carried out by isothermal remanent magnetisation acquisition technique, higher magnetic susceptibility values are depending on an increase in ferromagnetic components such as either magnetite (beta-Fe3O4) or maghemite (gamma-Fe2O3) particles. The growth in content of these ferromagnetic components corresponds to an increase of the concentration of heavy metals in soils, which means that magnetic susceptibility indirectly indicates the concentration of heavy metals in MSW compost-amended soils.

  7. The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea.

    PubMed

    Paramashivam, Dharini; Clough, Tim J; Carlton, Anna; Gough, Kelsi; Dickinson, Nicholas; Horswell, Jacqui; Sherlock, Robert R; Clucas, Lynne; Robinson, Brett H

    2016-02-01

    Lignite has been proposed as a soil amendment that reduces nitrate (NO3(-)) leaching from soil. Our objective was to determine the effect of lignite on nitrogen (N) fluxes from soil amended with biosolids or urea. The effect of lignite on plant yield and elemental composition was also determined. Batch sorption and column leaching experiments were followed by a lysimeter trial where a low fertility soil was amended with biosolids (400 kg N/ha equivalent) and urea (200 kg N/ha equivalent). Treatments were replicated three times, with and without lignite addition (20 t/ha equivalent). Lignite did not reduce NO3(-) leaching from soils amended with either biosolids or urea. While lignite decreased NO3(-) leaching from an unamended soil, the magnitude of this effect was not significant in an agricultural context. Furthermore, lignite increased cumulative N2O production from soils receiving urea by 90%. Lignite lessened the beneficial growth effects of adding biosolids or urea to soil. Further work could investigate whether coating urea granules with lignite may produce meaningful environmental benefits.

  8. The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea.

    PubMed

    Paramashivam, Dharini; Clough, Tim J; Carlton, Anna; Gough, Kelsi; Dickinson, Nicholas; Horswell, Jacqui; Sherlock, Robert R; Clucas, Lynne; Robinson, Brett H

    2016-02-01

    Lignite has been proposed as a soil amendment that reduces nitrate (NO3(-)) leaching from soil. Our objective was to determine the effect of lignite on nitrogen (N) fluxes from soil amended with biosolids or urea. The effect of lignite on plant yield and elemental composition was also determined. Batch sorption and column leaching experiments were followed by a lysimeter trial where a low fertility soil was amended with biosolids (400 kg N/ha equivalent) and urea (200 kg N/ha equivalent). Treatments were replicated three times, with and without lignite addition (20 t/ha equivalent). Lignite did not reduce NO3(-) leaching from soils amended with either biosolids or urea. While lignite decreased NO3(-) leaching from an unamended soil, the magnitude of this effect was not significant in an agricultural context. Furthermore, lignite increased cumulative N2O production from soils receiving urea by 90%. Lignite lessened the beneficial growth effects of adding biosolids or urea to soil. Further work could investigate whether coating urea granules with lignite may produce meaningful environmental benefits. PMID:26615483

  9. Effect of coal fly ash-amended organic compost as a manure for agricultural crops

    SciTech Connect

    Ghuman, G.S.; Menon, M.P.; James, J.; Chandra, K.; Sajwan, K. )

    1991-04-01

    Coal-fired electric power plants generate large quantities of fly ash as a byproduct. In continuation of previous studies on the utilization of fly ash as an amendment to organic compost for use as a manure for agricultural crops, the authors have now determined the effects of this manure on the yield and uptake of selected elements by several plants including collard green, corn, mustard green, bell pepper, egg plant, and climbing beans. An amended compost containing 30-40% fly ash with a compost:soil ratio of 1:3 was found to be most effective to enhance the yield and nutrient uptake of most of the plants. At 20% fly ash level, no increase in yield of any of the above crops was observed. The uptake of K, Mg, Mn, and P was increased in most plants. Boron which is known to be detrimental to the growth of plants above certain level was also found to be increased in plants nourished with the manure.

  10. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge.

    PubMed

    Jamali, Muhammad K; Kazi, Tasneem G; Arain, Muhammad B; Afridi, Hassan I; Jalbani, Nusrat; Kandhro, Ghulam A; Shah, Abdul Q; Baig, Jameel A

    2009-05-30

    The concentrations of heavy metals (HMs) in plants served to indicate the metal contamination status of the site, and also revealed the abilities of various plant species to take up and accumulate them from the soil dressed with sewage sludge. A study to comprehend the mobility and transport of HMs from soil and soil amended with untreated sewage sludge to different newly breaded varieties of wheat (Anmol, TJ-83, Abadgar and Mehran-89) in Pakistan. A pot-culture experiment was conducted to study the transfer of HMs to wheat grains, grown in soil (control) and soil amended with sewage sludge (test samples). The total and ethylenediaminetetraaceticacid (EDTA)-extractable HMs in agricultural soil and soil amended with domestic sewage sludge (SDWS) and wheat grains were analysed by flame atomic absorption spectrometer/electrothermal atomic absorption spectrometer, prior to microwave-assisted wet acid digestion method. The edible part of wheat plants (grains) from test samples presented high concentration of all HMs understudy (mgkg(-1)). Significant correlations were found between metals in exchangeable fractions of soil and SDWS, with total metals in control and test samples of wheat grains. The bio-concentration factors of all HMs were high in grains of two wheat varieties, TJ-83 and Mehran-89, as compared to other varieties, Anmol and Abadgar grown in the same agricultural plots.

  11. Biosolids-amended soils: Part II. Chemical lability as a measure of contaminant bioaccessability.

    PubMed

    Schwab, A P; Lewis, K; Banks, M K

    2006-10-01

    Biosolids recycling by amending agricultural soils has increased significantly over the last few decades. The presence of contaminants in small, bioavailable quantities has generated concerns about health threats resulting from accumulation of potential toxins in the food chain. In this study, land application of biosolids was evaluated for environmental risk. Chemical lability tests for metals were used for the test soils and included analyses for water soluble, exchangeable, and metals extractable by the physiologically based extraction test. Chemical extractions detected slight increases in labile metal concentrations for many of the treated soils, particularly those receiving long-term applications of 5 years or more. Significantly higher metal concentrations were observed in the soils that had been exposed to biosolids before the U.S. Environmental Protection Agency (Washington, D.C.) 503 Rule (U.S. EPA, 2004) was implemented. PMID:17120442

  12. Mobility of selected trace elements in Mediterranean red soil amended with phosphogypsum: experimental study.

    PubMed

    Kassir, Lina Nafeh; Darwish, Talal; Shaban, Amin; Ouaini, Naim

    2012-07-01

    Soil amendment by phosphogypsum (PG) application becomes of increasing importance in agriculture. This may lead, however, to soil, plant, and groundwater contamination with trace elements (TEs) inherently present in PG. Monitoring of selected TEs (Pb, Zn, Cu, and Cd) distribution and mobility in a Mediterranean red soil profile has been performed in soil parcels applied with PG over a 16-month period. Concentrations were measured in soil and plant samples collected from various depth intervals at different points in time. TEs sequential extraction was performed on soil and PG samples. Results showed soil profile enrichment peaked 5 months after PG application for Cd, and 12 months for Pb, Zn, and Cu. Rainwater, pH, total organic carbon, and cationic exchange capacity were the main controlling factors in TEs accumulation in soils. Cd was transferred to a soil depth of about 20 cm. Zn exhibited mobility towards deeper layers. Pb and Cu were accumulated in around 20-55-cm-deep layers. PG increased the solubility of the studied TEs; PG-applied soils contained TEs bound to exchangeable and acid-soluble fractions in higher percentages than reference soil. Pb, Zn, and Cu were sorbed into mineral soil phases, while Cd was mainly found in the exchangeable (bio-available) form. The order of TEs decreasing mobility was Zn > Cd > Pb > Cu. Roots and leaves of existed plants, Cichorium intybus L., accumulated high concentrations of Cd (1-2.4 mg/kg), exceeding recommended tolerable levels, and thus signifying potential health threats through contaminated crops. It was therefore recommended that PG should be applied in carefully established, monitored, and controlled quantities to agricultural soils.

  13. Environmental fate of the fungicide metalaxyl in soil amended with composted olive-mill waste and its biochar: An enantioselective study.

    PubMed

    Gámiz, Beatriz; Pignatello, Joseph J; Cox, Lucía; Hermosín, María C; Celis, Rafael

    2016-01-15

    A large number of pesticides are chiral and reach the environment as mixtures of optical isomers or enantiomers. Agricultural practices can affect differently the environmental fate of the individual enantiomers. We investigated how amending an agricultural soil with composted olive-mill waste (OMWc) or its biochar (BC) at 2% (w:w) affected the sorption, degradation, and leaching of each of the two enantiomers of the chiral fungicide metalaxyl. Sorption of metalaxyl enantiomers was higher on BC (Kd ≈ 145 L kg(-1)) than on OMWc (Kd ≈ 22 L kg(-1)) and was not enantioselective in either case, and followed the order BC-amended>OMWc-amended>unamended soil. Both enantiomers showed greater resistance to desorption from BC-amended soil compared to unamended and OMWc-amended soil. Dissipation studies revealed that the degradation of metalaxyl was more enantioselective (R>S) in unamended and OMWc-amended soil than in BC-amended soil. The leaching of both S- and R-metalaxyl from soil columns was almost completely suppressed after amending the soil with BC and metalaxyl residues remaining in the soil columns were more racemic than those in soil column leachates. Our findings show that addition of BC affected the final enantioselective behavior of metalaxyl in soil indirectly by reducing its bioavailability through sorption, and to a greater extent than OMWc. BC showed high sorption capacity to remove metalaxyl enantiomers from water, immobilize metalaxyl enantiomers in soil, and mitigate the groundwater contamination problems particularly associated with the high leaching potential of the more persistent enantiomer.

  14. Biodegradation of triclosan in biosolids-amended soils.

    PubMed

    Waria, Manmeet; O'Connor, George A; Toor, Gurpal S

    2011-11-01

    Land application of biosolids can constitute an important source of triclosan (TCS) input to soils, with uncertain effects. Several studies have investigated the degradation potential of TCS in biosolids-amended soils, but the results vary widely. We conducted a laboratory degradation study by mixing biosolids spiked with [¹⁴C]-TCS (final concentration = 40 mg/kg) with Immokalee fine sand and Ashkum silty clay loam soils at an agronomic application rate (22 Mg/ha). Biosolids-amended soils were aerobically incubated in biotic and inhibited conditions for 18 weeks. Subsamples removed at 0, 2, 4, 6, 9, 12, 15, and 18 weeks were sequentially extracted with an operationally defined extraction scheme to determine labile and nonlabile TCS fractions. Over the 18-week incubation, the proportion of [¹⁴C] in the nonlabile fraction increased and the labile fraction decreased, suggesting decreasing availability to biota. Partitioning of TCS into labile and nonlabile fractions depended on soil characteristics. Less than 0.5% of [¹⁴C]-TCS was mineralized to carbon dioxide (¹⁴CO₂) in both soils and all treatments. A degradation metabolite, methyl triclosan (Me-TCS), was identified in both soils only in the biotic treatment, and increased in concentration over time. Even under biotic conditions, biosolids-borne TCS is persistent, with a primary degradation (TCS to Me-TCS) half-life of 78 d in the silty clay loam and 421 d in the fine sand. A half-life of approximately 100 d would be a conservative first approximation of TCS half-life in biosolids-amended soils for risk estimation.

  15. Bioavailability Of Arsenic In Arsenical Pesticide-Amended Soils: Preliminary Greenhouse Study

    NASA Astrophysics Data System (ADS)

    Quazi, S.; Sarkar, D.; Khairom, A.; Datta, R.; Sharma, S.

    2005-05-01

    Long-term application of arsenical pesticides in agricultural lands has resulted in high levels of arsenic (As). Conversion of former agricultural lands to residential areas has resulted in increased human contact with soil As. Soil ingestion from incidental hand-to-mouth activity by children is now a very important issue in assessing human health risk associated with exposure to arsenical pesticide-applied former agricultural soils. Human health risk from direct exposure to soil As via hand to mouth action is restricted only to those fractions of As in the soil that are available to the human gastrointestinal system. Thus this study aimed at addressing the issue of soil variability on As bioavailability as a function of soil physiochemical properties in a dynamic interaction between soils, water and plants and pesticides. In the current greenhouse study two soils with drastically different chemical characteristics w.r.t As reactivity (Immokalee-low As retention potential and Millhopper-high As retention potential) and one pesticide (sodium arsenate) were used. Soils were amended with sodium arsenate at two rates representing the high and low ends of As contamination, generally representative of Superfunds site conditions: 675 and 1500 mg/kg As. Rice (Oryza sativa) was used as the test crop. Sequential digestion to estimate in-vitro As in the stomach phase and the intestinal phase was employed on soils sampled at 4 times: 0-time, after 3 mo, 6 mo and 9 mo of soil-pesticide equilibration. In-vitro bioavailability experiments were also performed with the same soils in order to obtain an estimate of the amount of As that would be absorbed to the intestinal linings in simulated systems. Following the greenhouse study, selective in-vivo bioavailability studies using As-contaminated soils will be conducted on male and female mice to correlate in-vitro results with the in-vivo data. Treatments will consist of a soil group (As in soil), a positive control group (only As

  16. Lead in Urban Soils: A Real or Perceived Concern for Urban Agriculture?

    PubMed

    Brown, Sally L; Chaney, Rufus L; Hettiarachchi, Ganga M

    2016-01-01

    Urban agriculture is growing in cities across the United States. It has the potential to provide multiple benefits, including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. In this paper, direct (soil ingestion via outdoor and indoor exposure) and indirect (consumption of food grown in Pb-contaminated soils) exposure pathways are reviewed. It is highly unlikely that urban agriculture will increase incidences of elevated blood Pb for children in urban areas. This is due to the high likelihood that agriculture will improve soils in urban areas, resulting in reduced bioavailability of soil Pb and reduced fugitive dust. Plant uptake of Pb is also typically very low. The exceptions are low-growing leafy crops where soil-splash particle contamination is more likely and expanded hypocotyl root vegetables (e.g., carrot). However, even with higher bioaccumulation factors, it is not clear that the Pb in root vegetables or any other crops will be absorbed after eating. Studies have shown limited absorption of Pb when ingested with food. Best management practices to assure minimal potential for exposure are also common practices in urban gardens. These include the use of residuals-based composts and soil amendments and attention to keeping soil out of homes. This review suggests that benefits associated with urban agriculture far outweigh any risks posed by elevated soil Pb.

  17. Lead in Urban Soils: A Real or Perceived Concern for Urban Agriculture?

    PubMed

    Brown, Sally L; Chaney, Rufus L; Hettiarachchi, Ganga M

    2016-01-01

    Urban agriculture is growing in cities across the United States. It has the potential to provide multiple benefits, including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. In this paper, direct (soil ingestion via outdoor and indoor exposure) and indirect (consumption of food grown in Pb-contaminated soils) exposure pathways are reviewed. It is highly unlikely that urban agriculture will increase incidences of elevated blood Pb for children in urban areas. This is due to the high likelihood that agriculture will improve soils in urban areas, resulting in reduced bioavailability of soil Pb and reduced fugitive dust. Plant uptake of Pb is also typically very low. The exceptions are low-growing leafy crops where soil-splash particle contamination is more likely and expanded hypocotyl root vegetables (e.g., carrot). However, even with higher bioaccumulation factors, it is not clear that the Pb in root vegetables or any other crops will be absorbed after eating. Studies have shown limited absorption of Pb when ingested with food. Best management practices to assure minimal potential for exposure are also common practices in urban gardens. These include the use of residuals-based composts and soil amendments and attention to keeping soil out of homes. This review suggests that benefits associated with urban agriculture far outweigh any risks posed by elevated soil Pb. PMID:26828157

  18. Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents.

    PubMed

    Cabrera, Alegria; Cox, Lucia; Spokas, Kurt A; Celis, Rafael; Hermosín, M Carmen; Cornejo, Juan; Koskinen, William C

    2011-12-14

    Biochar, the solid residual remaining after the thermochemical transformation of biomass for carbon sequestration, has been proposed to be used as a soil amendment, because of its agronomic benefits. The effect of amending soil with six biochars made from different feedstocks on the sorption and leaching of fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) was compared to the effect of other sorbents: an activated carbon, a Ca-rich Arizona montmorillonite modified with hexadecyltrimethylammonium organic cation (SA-HDTMA), and an agricultural organic residue from olive oil production (OOW). Soil was amended at 2% (w/w), and studies were performed following a batch equilibration procedure. Sorption of both herbicides increased in all amended soils, but decreased in soil amended with a biochar produced from macadamia nut shells made with fast pyrolysis. Lower leaching of the herbicides was observed in the soils amended with the biochars with higher surface areas BC5 and BC6 and the organoclay (OCl). Despite the increase in herbicide sorption in soils amended with two hardwood biochars (BC1 and BC3) and OOW, leaching of fluometuron and MCPA was enhanced with the addition of these amendments as compared to the unamended soil. The increased leaching is due to some amendments' soluble organic compounds, which compete or associate with herbicide molecules, enhancing their soil mobility. Thus, the results indicate that not all biochar amendments will increase sorption and decrease leaching of fluometuron and MCPA. Furthermore, the amount and composition of the organic carbon (OC) content of the amendment, especially the soluble part (DOC), can play an important role in the sorption and leaching of these herbicides.

  19. Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents.

    PubMed

    Cabrera, Alegria; Cox, Lucia; Spokas, Kurt A; Celis, Rafael; Hermosín, M Carmen; Cornejo, Juan; Koskinen, William C

    2011-12-14

    Biochar, the solid residual remaining after the thermochemical transformation of biomass for carbon sequestration, has been proposed to be used as a soil amendment, because of its agronomic benefits. The effect of amending soil with six biochars made from different feedstocks on the sorption and leaching of fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) was compared to the effect of other sorbents: an activated carbon, a Ca-rich Arizona montmorillonite modified with hexadecyltrimethylammonium organic cation (SA-HDTMA), and an agricultural organic residue from olive oil production (OOW). Soil was amended at 2% (w/w), and studies were performed following a batch equilibration procedure. Sorption of both herbicides increased in all amended soils, but decreased in soil amended with a biochar produced from macadamia nut shells made with fast pyrolysis. Lower leaching of the herbicides was observed in the soils amended with the biochars with higher surface areas BC5 and BC6 and the organoclay (OCl). Despite the increase in herbicide sorption in soils amended with two hardwood biochars (BC1 and BC3) and OOW, leaching of fluometuron and MCPA was enhanced with the addition of these amendments as compared to the unamended soil. The increased leaching is due to some amendments' soluble organic compounds, which compete or associate with herbicide molecules, enhancing their soil mobility. Thus, the results indicate that not all biochar amendments will increase sorption and decrease leaching of fluometuron and MCPA. Furthermore, the amount and composition of the organic carbon (OC) content of the amendment, especially the soluble part (DOC), can play an important role in the sorption and leaching of these herbicides. PMID:22023336

  20. Atrazine leaching from biochar-amended soils.

    PubMed

    Delwiche, Kyle B; Lehmann, Johannes; Walter, M Todd

    2014-01-01

    The herbicide atrazine is used extensively throughout the United States, and is a widespread groundwater and surface water contaminant. Biochar has been shown to strongly sorb organic compounds and could be used to reduce atrazine leaching. We used lab and field experiments to determine biochar impacts on atrazine leaching under increasingly heterogeneous soil conditions. Application of pine chip biochar (commercially pyrolyzed between 300 and 550 °C) reduced cumulative atrazine leaching by 52% in homogenized (packed) soil columns (p=0.0298). Biochar additions in undisturbed soil columns did not significantly (p>0.05) reduce atrazine leaching. Mean peak groundwater atrazine concentrations were 53% lower in a field experiment after additions of 10 t ha(-1) acidified biochar (p=0.0056) relative to no biochar additions. Equivalent peat applications by dry mass had no effect on atrazine leaching. Plots receiving a peat-biochar mixture showed no reduction, suggesting that the peat organic matter may compete with atrazine for biochar sorption sites. Several individual measurement values outside the 99% confidence interval in perched groundwater concentrations indicate that macropore structure could contribute to rare, large leaching events that are not effectively reduced by biochar. We conclude that biochar application has the potential to decrease peak atrazine leaching, but heterogeneous soil conditions, especially preferential flow paths, may reduce this impact. Long-term atrazine leaching reductions are also uncertain. PMID:24129000

  1. Atrazine leaching from biochar-amended soils.

    PubMed

    Delwiche, Kyle B; Lehmann, Johannes; Walter, M Todd

    2014-01-01

    The herbicide atrazine is used extensively throughout the United States, and is a widespread groundwater and surface water contaminant. Biochar has been shown to strongly sorb organic compounds and could be used to reduce atrazine leaching. We used lab and field experiments to determine biochar impacts on atrazine leaching under increasingly heterogeneous soil conditions. Application of pine chip biochar (commercially pyrolyzed between 300 and 550 °C) reduced cumulative atrazine leaching by 52% in homogenized (packed) soil columns (p=0.0298). Biochar additions in undisturbed soil columns did not significantly (p>0.05) reduce atrazine leaching. Mean peak groundwater atrazine concentrations were 53% lower in a field experiment after additions of 10 t ha(-1) acidified biochar (p=0.0056) relative to no biochar additions. Equivalent peat applications by dry mass had no effect on atrazine leaching. Plots receiving a peat-biochar mixture showed no reduction, suggesting that the peat organic matter may compete with atrazine for biochar sorption sites. Several individual measurement values outside the 99% confidence interval in perched groundwater concentrations indicate that macropore structure could contribute to rare, large leaching events that are not effectively reduced by biochar. We conclude that biochar application has the potential to decrease peak atrazine leaching, but heterogeneous soil conditions, especially preferential flow paths, may reduce this impact. Long-term atrazine leaching reductions are also uncertain.

  2. Biochar: A soil amendment worth considering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is a fine-grained, carbon enriched product created when biomass (e.g. wood waste, manures) is burned at relatively low temperatures (less than 1300oF) and under an anoxic (lack of oxygen) atmosphere. The benefits of biochar addition to soils have long since been recognized. Amazonian dark ...

  3. SORPTION OF CADMIUM ONTO DIFFERENT FRACTIONS OF BIOSOLIDS AND CADMIUM SALT AMENDED SOILS

    EPA Science Inventory

    Biosolids and Cd salt-amended soils were collected from a long-term field experiment established in 1976. Cadmium sorption experiments were conducted on different fractions of soils amended with biosolids, Cd salt, and unamended soils (control). The organic carbon (OC) of soils ...

  4. Root Induced Heterogeneity In Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Gomes, C.; Gabai, R.; Weisbrod, N.; Furman, A.

    2012-12-01

    In this study we investigate the role of plant induced heterogeneity on water dynamics in agricultural soils. We conducted three experiments in two sites (one still ongoing) in which a trench was excavated in the root zone of an orchard and the subsurface, to a depth of over 1 m, was instrumented in high resolution with water content, water potential and temperature sensors. High temporal resolution monitoring of soil state was carried for over a year, period that included natural (Mediterranean) climate boundary forcing. In addition, sprinkler, flood, and spray irrigation boundary conditions were forced for short time periods to explore the infiltration process under these conditions. One site was an Avocado orchard planted in red sandy soil while the other, still on-going, is in a grape vineyards irrigated by tap and treated wastewater, planted over alluvial clayey soil. In the vineyard, we are comparing soil irrigated with fresh water to soil irrigated with treated waste water for more than 10 years. Our preliminary results indicate several interesting phenomena. First, the role of plant roots is clearly seen as the major roots act as a conduit for water (and solute), providing a fast bypass of the upper soil. Further, we identified different regions of the subsurface that apparently were of the same texture, but in practice presented very different hydraulic properties. Second, the role of these roots depends on the boundary conditions. That is, the root bypass acts differently when soil is flooded than when flow is strictly unsaturated. As expected, simulation of the experimental results show good fit only if the domain heterogeneity of soil properties was incorporated. Results for the clayey soils were not available at time of abstract submission.

  5. Immobilization of potentially toxic metals using different soil amendments.

    PubMed

    Tica, D; Udovic, M; Lestan, D

    2011-10-01

    The in situ stabilization of potentially toxic metals (PTMs), using various easily available amendments, is a cost-effective remediation method for contaminated soils. In the present study, we investigated the effectiveness of apatite and a commercial mixture of dolomite, diatomite, smectite basaltic tuff, bentonite, alginite and zeolite (Slovakite) on Pb, Zn, Cu and Cd stabilization by means of decreasing their bioavailability in contaminated soil from an old lead and zinc smelter site in Arnoldstein, Austria. We also investigated the impact of 5% (w/w) apatite and Slovakite applications on soil functionality and quality, as assessed by glucose-induced soil respiration, dehydrogenase, acid and alkaline phosphatase and β-glucosidase activity. Both amendments resulted in increased soil pH and decreased PTM potential bioavailability assessed by diethylenetriamine pentaacetic acid extraction and by sequential extractions in the water-soluble and exchangeable fractions. The efficiency of stabilization was reflected in the soil respiration rate and in enzymatic activity. The β-glucosidase activity assay was the most responsive of them.

  6. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    PubMed

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils.

  7. Dissipation of fragrance materials in sludge-amended soils.

    PubMed

    DiFrancesco, Angela M; Chiu, Pei C; Standley, Laurel J; Allen, Herbert E; Salvito, Daniel T

    2004-01-01

    A possible removal mechanism for fragrance materials (FMs) in wastewater is adsorption to sludge, and sludge application to land may be a route through which FMs are released to the soil environment. However, little is known about the concentrations and fate of FMs in soil receiving sludge application. This study was conducted to better understand the dissipation of FMs in sludge-amended soils. We first determined the spiking and extraction efficiencies for 22 FMs in soil and leachate samples. Nine FMs were detected in digested sludges from two wastewater treatment plants in Delaware using these methods. We conducted a 1-year die-away experiment which involved four different soils amended with sludge, with and without spiking of the 22 FMs. The initial dissipation of FMs in all spiked trays was rapid, and only seven FMs remained at concentrations above the quantification limits after 3 months: AHTN, HHCB, musk ketone, musk xylene, acetyl cedrene, OTNE, and DPMI. After 1 year, the only FMs remaining in all spiked trays were musk ketone and AHTN. DPMI was the only FM that leached significantly from the spiked trays, and no FMs were detected in leachate from any unspiked tray. While soil organic matter content affected the dissipation rate in general, different mechanisms (volatilization, transformation, leaching) appeared to be important for different FMs.

  8. Immobilization of potentially toxic metals using different soil amendments.

    PubMed

    Tica, D; Udovic, M; Lestan, D

    2011-10-01

    The in situ stabilization of potentially toxic metals (PTMs), using various easily available amendments, is a cost-effective remediation method for contaminated soils. In the present study, we investigated the effectiveness of apatite and a commercial mixture of dolomite, diatomite, smectite basaltic tuff, bentonite, alginite and zeolite (Slovakite) on Pb, Zn, Cu and Cd stabilization by means of decreasing their bioavailability in contaminated soil from an old lead and zinc smelter site in Arnoldstein, Austria. We also investigated the impact of 5% (w/w) apatite and Slovakite applications on soil functionality and quality, as assessed by glucose-induced soil respiration, dehydrogenase, acid and alkaline phosphatase and β-glucosidase activity. Both amendments resulted in increased soil pH and decreased PTM potential bioavailability assessed by diethylenetriamine pentaacetic acid extraction and by sequential extractions in the water-soluble and exchangeable fractions. The efficiency of stabilization was reflected in the soil respiration rate and in enzymatic activity. The β-glucosidase activity assay was the most responsive of them. PMID:21767865

  9. Vanadium bioavailability in soils amended with blast furnace slag.

    PubMed

    Larsson, Maja A; Baken, Stijn; Smolders, Erik; Cubadda, Francesco; Gustafsson, Jon Petter

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg(-1)) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  10. Bioaccumulation of emerging organic compounds (perfluoroalkyl substances and halogenated flame retardants) by earthworm in biosolid amended soils.

    PubMed

    Navarro, Irene; de la Torre, Adrián; Sanz, Paloma; Pro, Javier; Carbonell, Gregoria; Martínez, María de Los Ángeles

    2016-08-01

    In the present work, the bioaccumulation behavior of 49 target emerging organic compounds (20 perfluoroalkyl substances, PFASs, and 29 halogenated flame retardants, HFRs) was studied in soil invertebrates (Eisenia andrei). Multi species soil systems (MS·3) were used to assess the fate and the effects associated with the application of four biosolids in agricultural soil on terrestrial soil organisms. Biosolid amendment increased concentrations 1.5-14-fold for PFASs, 1.1-2.4-fold for polybrominated diphenyl ethers, PBDEs, and 1.1-3.6-fold for chlorinated flame retardants, CFRs. Perfluorooctanesulfonate, PFOS, (25%) and BDE-209 (60%) were the predominant PFAS and HFR compounds, respectively, in biosolids-amended soils. Total concentrations (ng/g dry weight) in earthworms from biosolid-amended soils ranged from 9.9 to 101 for PFASs, from 45 to 76 for PBDEs and 0.3-32 for CFRs. Bioaccumulation factors (BAFs) were calculated to evaluate the degree of exposure of pollutants in earthworms. The mean BAF ranged from 2.2 to 198 for PFASs, 0.6-17 for PBDEs and 0.5-20 for CFRs. The relationship of PFAS and PBDE BAFs in earthworms and their log Kow were compared: PFAS BAFs increased while PBDE BAFs declined with increasing log Kow values. The effect of the aging (21 days) on the bioavailability of the pollutants in amended soils was also assessed: the residence time affected differently to the compounds studied. PMID:27174781

  11. Extractability and leachability of Pb in a shooting range soil amended with poultry litter ash: investigations for immobilization potentials.

    PubMed

    Hashimoto, Yohey; Taki, Tomohiro; Sato, Takeshi

    2009-05-01

    The use of agricultural and industrial by-products as a metal immobilizing agent is cost effective for remediation of vast amounts of contaminated soil. The objective of this study was to assess the effect of an amendment (poultry litter ash) on immobilizing Pb in a shooting range soil. For a contaminant transport study, the soil admixed with amendment at the rate of 0 (control), 0.5, 1, 3 and 6%(w/w) was packed into soil columns and eluted solutions were collected through 40 pore volumes. The amendment application significantly reduced the concentrations of water-extractable and toxicity characteristic leaching procedure (TCLP)-extractable Pb by > 96% and > 97% of control, respectively. The contaminant transport study demonstrated that increasing amendment additions up to 3% decreased eluted Pb concentration below 0.5 mg L(-1). The X-ray diffraction peaks indicative of chloropyromorphite were observed in the soil of the 1 and 3% treatments, but were less intense in the 0.5 and 6% treatments. The 6% treatment had an eluted Pb concentration of 13 mg L(-1) at the first pore volume and significantly increased the total Pb elution (38 mg kg(-1)), mainly due to a drastic increase of organically complexed Pb as a result of soil alkalinization. These results suggest that poultry litter ash may have potential for immobilizing Pb in shooting range sites, if the soil pH is properly managed. PMID:19337921

  12. Effects of Organic Amendments and Tillage on Soil Microorganisms and Microfauna

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of organic amendment and tillage on the soil food web at two depths in a field experiment was investigated. Over a three-year period, field plots received seasonal organic amendments, and the amendments were either incorporated into the soil (tilled) or not (no-till) as part of a tomato:...

  13. Soil amendment with olive mill wastes: impact on groundwater.

    PubMed

    Caputo, Maria Clementina; De Girolamo, Anna Maria; Volpe, Angela

    2013-12-15

    Two sets of soil lysimeters were amended with solid and liquid olive mill wastes and the composition of leachate was analysed. Five treatments were carried out using: olive mill wastewater (OMW) at two different rates (80 and 320 m(3)/ha); OMW pre-treated by catalytical digestion with MnO2; compost obtained by exhausted olive pomace; freshwater as the control. Electric conductivity, pH, potassium, total polyphenols and nitrates were monitored in the leachate as indexes of potential groundwater contamination. The study demonstrated that the impact of all the selected amendments on groundwater was the minimum. OMW was safely applied to soil even at four times the rate allowed by the Italian law, and pre-treatment by catalytical digestion was not necessary to further reduce the impact on groundwater. The application of olive pomace compost was equally safe.

  14. Soil physical and hydrological properties as affected by long-term addition of various organic amendments

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Völkel, Jörg; Mercier, Vincent; Labat, Christophe; Houot, Sabine

    2014-05-01

    The use of organic residues as soil amendments in agriculture not only reduces the amount of waste needing to be disposed of; it may also lead to improvements in soil properties, including physical and hydrological ones. The present study examines a long-term experiment called "Qualiagro", run jointly by INRA and Veolia Environment in Feucherolles, France (near Paris). It was initiated in 1998 on a loess-derived silt loam (787 g/kg silt, 152 g/kg clay) and includes ten treatments: four types of organic amendments and a control (CNT) each at two levels of mineral nitrogen (N) addition: minimal (Nmin) and optimal (Nopt). The amendments include three types of compost and farmyard manure (FYM), which were applied every other year at a rate of ca. 4 t carbon ha-1. The composts include municipal solid waste compost (MSW), co-compost of green wastes and sewage sludge (GWS), and biowaste compost (BIO). The plots are arranged in a randomized block design and have a size of 450 m²; each treatment is replicated four times (total of 40 plots). Ca. 15 years after the start of the experiment soil organic carbon (OC) had continuously increased in the amended plots, while it remained stable or decreased in the control plots. This compost- or manure-induced increase in OC plays a key role, affecting numerous dependant soil properties like bulk density, porosity and water retention. The water holding capacity (WHC) of a soil is of particular interest to farmers in terms of water supply for plants, but also indicates soil quality and functionality. Addition of OC may affect WHC in different ways: carbon-induced aggregation may increase larger-pore volume and hence WHC at the wet end while increased surface areas may lead to an increased retention of water at the dry end. Consequently it is difficult to predict (e.g. with pedotransfer functions) the impact on the amount of water available for plants (PAW), which was experimentally determined for the soils, along with the entire range

  15. Elemental transport and distribution in soils amended with incinerated sewage sludge.

    PubMed

    Paramasivam, S; Sajwan, K S; Alva, A K; VanClief, D; Hostler, K H

    2003-05-01

    Sewage sludge (SS) is the major solid waste of sewage and wastewater treatment plants in cities around the world. Even though treated effluent water from wastewater treatment plants are utilized for irrigation, disposal of sewage sludge is becoming a serious problem. This is due to its high content of certain heavy metals still posing threat of accumulation in plants and groundwater contamination when it is used as soil amendment or disposed in landfills. Water treatment plants incinerate the dewatered activated sewage sludge (ISS) and dissolve the ash in water to store in ash ponds for long-term storage (WISS). A study was undertaken to evaluate the transport and leaching potential of various elements and their distribution within soil columns amended with various rates of ISS. Results of this study indicates that ISS from wastewater treatment plants can be used as soil amendment on agricultural lands at low to medium rates (< or = 100 Mg ha(-1)) without causing potential loading of metals into groundwater.

  16. Environmental risk assessment of the use of different organic wastes as soil amendments

    NASA Astrophysics Data System (ADS)

    Alvarenga, Paula; Palma, Patrícia; Mourinha, Clarisse; Farto, Márcia; Cunha-Queda, Ana Cristina; Natal-da-Luz, Tiago; Sousa, José Paulo

    2013-04-01

    The use of organic wastes in agriculture is considered a way of maintaining or restoring the quality of soils, enlarging the slow cycling soil organic carbon pool. However, a wide variety of undesired substances, such as potentially trace elements and organic contaminants, can have adverse effects on the environment. That fact was highlighted by the Proposal for a Soil Framework Directive, which recognized that "soil degradation or soil improvements have a major impact on other areas, (…) such as surface waters and groundwater, human health, climate change, protection of nature and biodiversity, and food safety". Taking that into account, the research project "ResOrgRisk" aims to assess the environmental risk involved in the use of different organic wastes as soil amendments, evidencing their benefits and constraints, and defining the most suitable tests to reach such assessment. The organic wastes selected for this purpose were: sewage sludge, limed, not limed, and co-composted with agricultural wastes, agro-industrial sludge, mixed municipal solid waste compost, compost produced from organic farming residues, and pig slurry digestate. Whereas threshold values for heavy metals in sludge used for agriculture have been set by the European Commission, actually there is no definitive European legislation for organic contaminants. Guide values for some organic contaminants (e.g. polychlorinated biphenyls - PCBs, and polycyclic aromatic hydrocarbons - PAHs) have been adopted at national level by many European countries, such as Portugal. These values should be taken into account when assessing the risk involved in the use of organic wastes as soil amendments. However, chemical analysis of organic waste often gives scarce information because it does not include possible interactions between chemicals. Furthermore, an exhaustive identification and quantification of all substances is impractical. In this study, ecotoxicological tests (comprising solid and aquatic phases

  17. Anaerobic soil disinfestation and Brassica seed meal amendment alter soil microbiology and system resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassica seed meal amendments and anaerobic soil disinfestation control a spectrum of soil-borne plant pathogens via a diversity of mechanisms. Transformations in microbial community structure and function in certain instances were determinants of disease control and enhanced plant performance. Fo...

  18. Effect of carbonaceous soil amendments on potential mobility of weak acid herbicides in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of carbonaceous amendments in soil has been proposed to decrease potential offsite transport of weak acid herbicides and metabolites by increasing their sorption to soil. The effects of organic olive mill waste, biochars from different feed stocks, and humic acid bound to clay on sorption of MCP...

  19. Misrepresentation and amendment of soil moisture in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Although many conceptual models are very effective in simulating river runoff, their soil moisture schemes are generally not realistic in comparison with the reality (i.e., getting the right answers for the wrong reasons). This study reveals two significant misrepresentations in those models through a case study using the Xinanjiang model which is representative of many well-known conceptual hydrological models. The first is the setting of the upper limit of its soil moisture at the field capacity, due to the 'holding excess runoff' concept (i.e., runoff begins on repletion of its storage to the field capacity). The second is neglect of capillary rise of water movement. A new scheme is therefore proposed to overcome those two issues. The amended model is as effective as its original form in flow modelling, but represents more logically realistic soil water processes. The purpose of the study is to enable the hydrological model to get the right answers for the right reasons. Therefore, the new model structure has a better capability in potentially assimilating soil moisture observations to enhance its real-time flood forecasting accuracy. The new scheme is evaluated in the Pontiac catchment of the USA through a comparison with satellite observed soil moisture. The correlation between the XAJ and the observed soil moisture is enhanced significantly from 0.64 to 0.70. In addition, a new soil moisture term called SMDS (Soil Moisture Deficit to Saturation) is proposed to complement the conventional SMD (Soil Moisture Deficit).

  20. Agriculture on Mars: Soils for Plant Growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  1. Carbon and nitrogen mineralization in a vineyard soil amended with grape marc vermicompost.

    PubMed

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2011-11-01

    Vineyard soils in many areas suffer from low organic matter contents, which can be the cause of negative effects such as increasing the risk of erosion, so the use of organic amendments must be considered a good agricultural practice. Even more, if grape marc is recycled as a soil amendment in the vineyards, benefits from a good waste management strategy are also obtained. In the present study, a grape marc from the wine region of Valdeorras (north-west Spain) was used for the production of vermicompost, and this added to a vineyard soil of the same area in a laboratory study. Mixtures of soil and grape marc vermicompost (2 and 4%, dry weight) were incubated for ten weeks at 25°C and the mineralization of C and N studied. The respiration data were fitted to a first-order kinetic model. The rates of grape marc vermicompost which should be added to the vineyard soil in order to maintain the initial levels of organic matter were estimated from the laboratory data, and found to be 1.7 t ha(-1) year(-1) of bulk vermicompost (if the present mean temperature is considered) and 2.1 t ha(-1) year(-1) of bulk vermicompost (if a 2°C increment in temperature is considered), amounts which could be obtained recycling the grape marc produced in the exploitation.

  2. The use of soil organic amendments: an old practice in a changing world

    NASA Astrophysics Data System (ADS)

    Ciavatta, C.; Cavani, L.; Sciubba, L.; Marzadori, C.

    2012-04-01

    The annual production of organic wastes in the so called "developed countries" reaches many decades of tons per year. These wastes are of agro-industrial and municipal origin, mainly in solid or semi-solid form and are rich in organic carbon, macro (i.e., nitrogen, phosphorous, potassium) and micronutrients. On the other hand, soils, especially in the Mediterranean area, are often subjected to severe degradation processes accompanied by a decline of soil organic matter content which adversely affects soil fertility. The use of organic amendments allows restoring soil organic matter content and its physical, chemical and biological functions. Therefore the agricultural use of organic wastes, especially if properly processed such as after composting processes, could be an interesting way to convert a waste into a resource by supplying organic matter and nutrients to cultivated and degraded soils according to an ecological approach. However, organic wastes may contain contaminants, such as heavy metals, patogens and organic pollutants, so they must be processed in order to obtain chemical stabilization and biological maturation of the organic matter. The aim of this work was to look into the list of organic amendments the opportunity of agronomical reuse together with to discuss the possible presence of contaminants that should be regulated in the EU fertiliser legislation. At the same time to identify the contaminants that need to be controlled in fertilisers to ensure a sufficient level of protection of human health and the environment without entailing disproportionate compliance costs for the society.

  3. Impact of biochar amendment on soil water soluble carbon in the context of extreme hydrological events.

    PubMed

    Wang, Daoyuan; Griffin, Deirdre E; Parikh, Sanjai J; Scow, Kate M

    2016-10-01

    Biochar amendments to soil have been promoted as a low cost carbon (C) sequestration strategy as well as a way to increase nutrient retention and remediate contaminants. If biochar is to become part of a long-term management strategy, it is important to consider its positive and negative impacts, and their trade-offs, on soil organic matter (SOM) and soluble C under different hydrological conditions such as prolonged drought or frequent wet-dry cycles. A 52-week incubation experiment measuring the influence of biochar on soil water soluble C under different soil moisture conditions (wet, dry, or wet-dry cycles) indicated that, in general, dry and wet-dry cycles increased water soluble C, and biochar addition further increased release of water soluble C from native SOM. Biochar amendment appeared to increase transformation of native SOM to water soluble C, based on specific ultraviolet absorption (SUVA) and C stable isotope composition; however, the increased amount of water soluble C from native SOM is less than 1% of total biochar C. The impacts of biochar on water soluble C need to be carefully considered when applying biochar to agricultural soil. PMID:27391051

  4. Carbon and nitrogen mineralization in a vineyard soil amended with grape marc vermicompost.

    PubMed

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2011-11-01

    Vineyard soils in many areas suffer from low organic matter contents, which can be the cause of negative effects such as increasing the risk of erosion, so the use of organic amendments must be considered a good agricultural practice. Even more, if grape marc is recycled as a soil amendment in the vineyards, benefits from a good waste management strategy are also obtained. In the present study, a grape marc from the wine region of Valdeorras (north-west Spain) was used for the production of vermicompost, and this added to a vineyard soil of the same area in a laboratory study. Mixtures of soil and grape marc vermicompost (2 and 4%, dry weight) were incubated for ten weeks at 25°C and the mineralization of C and N studied. The respiration data were fitted to a first-order kinetic model. The rates of grape marc vermicompost which should be added to the vineyard soil in order to maintain the initial levels of organic matter were estimated from the laboratory data, and found to be 1.7 t ha(-1) year(-1) of bulk vermicompost (if the present mean temperature is considered) and 2.1 t ha(-1) year(-1) of bulk vermicompost (if a 2°C increment in temperature is considered), amounts which could be obtained recycling the grape marc produced in the exploitation. PMID:20837558

  5. Assessment of olive cake as soil amendment for the controlled release of triazine herbicides.

    PubMed

    Delgado-Moreno, Laura; Sánchez-Moreno, Lourdes; Peña, Aránzazu

    2007-05-25

    Organic matter-rich agricultural by-products are being produced in huge quantities and can be applied to soil as a disposal strategy. The application of two different rates (2 and 8% w/w) of olive cake to a Mediterranean calcareous soil resulted in an increased sorption of four triazine herbicides, which was higher for the more hydrophobic compounds (terbuthylazine and prometryn) and lower for the more polar ones (simazine and cyanazine). However, when the sorption coefficients were normalised to the total soil organic carbon (K(oc)), the results did not significantly differ between simazine and cyanazine which is an indication that the olive cake did not exert different sorption capacity for both compounds. On the contrary, K(oc) values for terbuthylazine and prometryn increased in the amended soils. Our results from experiments using mixtures of several pesticides suggest that competition for sorption sites resulted in a decrease of herbicide sorption. Desorption was hysteretical both for the amended and unamended soils, but the addition of olive cake at the highest dose diminished desorption of most of the herbicides. In conclusion, the addition of olive cake behaves as a promising method for reducing the risk of groundwater pollution by pesticides.

  6. To what extent are soil amendments useful to control Verticillium wilt?

    PubMed

    Goicoechea, Nieves

    2009-08-01

    The genus Verticillium includes several species that attack economically important crops throughout the world. The control of Verticillium spp. becomes especially difficult when they form microsclerotia that can survive in the field soil for several years. It has been common practice to fumigate soil with chemicals such as methyl bromide and/or chloropicrin to control soil-borne fungal pathogens. Other chemicals that are used against Verticillium spp. are the antifungal antibiotic aureofungin, the fungicides benomyl, captan, carbendazim, thiram, azoxystrobin and trifloxystrobin and the plant defence activator acibenzolar-S-methyl. However, the potential risks involved in applying phytochemicals to crop plants for both the environment and human health, together with their limited efficacy for controlling Verticillium-induced diseases, support the need to find alternatives to replace their use or improve their efficacy. Soil amendment with animal or plant organic debris is a cultural practice that has long been used to control Verticillium spp. However, today the organic farming industry is becoming a significant player in the global agricultural production scene. In this review, some of the main results concerning the efficacy of several soil amendments as plant protectors against Verticillium spp. are covered, and the limitations and future perspectives of such products are discussed in terms of the control of plant diseases.

  7. Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants.

    PubMed

    Hentati, Olfa; Abrantes, Nelson; Caetano, Ana Luísa; Bouguerra, Sirine; Gonçalves, Fernando; Römbke, Jörg; Pereira, Ruth

    2015-08-30

    Phosphogypsum (PG) is a metal and radionuclide rich-waste produced by the phosphate ore industry, which has been used as soil fertilizer in many parts of the world for several decades. The positive effects of PG in ameliorating some soil properties and increasing crop yields are well documented. More recently concerns are emerging related with the increase of metal/radionuclide residues on soils and crops. However, few studies have focused on the impact of PG applications on soil biota, as well as the contribution to soils with elements in mobile fractions of PG which may affect freshwater species as well. In this context the main aim of this study was to assess the ecotoxicity of soils amended with different percentages of Tunisian phosphogypsum (0.0, 4.9, 7.4, 11.1, 16.6 and 25%) and of elutriates obtained from PG - amended soil (0.0, 6.25, 12.5 and 25% of PG) to a battery of terrestrial (Eisenia andrei, Enchytraeus crypticus, Folsomia candida, Hypoaspis aculeifer, Zea mays, Lactuca sativa) and aquatic species (Vibrio fischeri, Daphnia magna, Raphidocelis subcapitata, Lemna minor). Both for amended soils and elutriates, invertebrates (especially D. magna and E. andrei) were the most sensitive species, displaying acute (immobilization) and chronic (reproduction inhibition) effects, respectively. Despite the presence of some concerning metals in PG and elutriates (e.g., zinc and cadmium), the extremely high levels of calcium found in both test mediums, suggest that this element was the mainly responsible for the ecotoxicological effects observed. Terrestrial and aquatic plants were the most tolerant species, which is in line with studies supporting the application of PG to increase crop yields. Nevertheless, no stimulatory effects on growth were observed for any of the species tested despite the high levels of phosphorus added to soils by PG. Given the importance of soil invertebrates for several soil functions and services, this study gives rise to new serious

  8. Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants.

    PubMed

    Hentati, Olfa; Abrantes, Nelson; Caetano, Ana Luísa; Bouguerra, Sirine; Gonçalves, Fernando; Römbke, Jörg; Pereira, Ruth

    2015-08-30

    Phosphogypsum (PG) is a metal and radionuclide rich-waste produced by the phosphate ore industry, which has been used as soil fertilizer in many parts of the world for several decades. The positive effects of PG in ameliorating some soil properties and increasing crop yields are well documented. More recently concerns are emerging related with the increase of metal/radionuclide residues on soils and crops. However, few studies have focused on the impact of PG applications on soil biota, as well as the contribution to soils with elements in mobile fractions of PG which may affect freshwater species as well. In this context the main aim of this study was to assess the ecotoxicity of soils amended with different percentages of Tunisian phosphogypsum (0.0, 4.9, 7.4, 11.1, 16.6 and 25%) and of elutriates obtained from PG - amended soil (0.0, 6.25, 12.5 and 25% of PG) to a battery of terrestrial (Eisenia andrei, Enchytraeus crypticus, Folsomia candida, Hypoaspis aculeifer, Zea mays, Lactuca sativa) and aquatic species (Vibrio fischeri, Daphnia magna, Raphidocelis subcapitata, Lemna minor). Both for amended soils and elutriates, invertebrates (especially D. magna and E. andrei) were the most sensitive species, displaying acute (immobilization) and chronic (reproduction inhibition) effects, respectively. Despite the presence of some concerning metals in PG and elutriates (e.g., zinc and cadmium), the extremely high levels of calcium found in both test mediums, suggest that this element was the mainly responsible for the ecotoxicological effects observed. Terrestrial and aquatic plants were the most tolerant species, which is in line with studies supporting the application of PG to increase crop yields. Nevertheless, no stimulatory effects on growth were observed for any of the species tested despite the high levels of phosphorus added to soils by PG. Given the importance of soil invertebrates for several soil functions and services, this study gives rise to new serious

  9. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth.

    PubMed

    Castaldi, Paola; Santona, Laura; Melis, Pietro

    2005-07-01

    The effects of chemical amendments (zeolite, compost and calcium hydroxide) on the solubility of Pb, Cd and Zn in a contaminated soil were determined. The polluted soil was from the Southwest Sardinia, Italy. It showed very high total concentrations of Pb (19663 mgkg(-1) d.m.), Cd (196 mgkg(-1) d.m.) and Zn (14667 mgkg(-1) d.m.). The growth and uptake of heavy metals by white lupin (Lupinus albus L., cv. Multitalia) in amended soils were also studied in a pot experiment under greenhouse conditions. Results showed that the amendments increased the residual fraction of heavy metals in the soils, and decreased the heavy metals uptake by white lupin compared with the unamended control. Among the three amendments, compost and Ca(OH)2 were the most efficient at reducing Pb and Zn uptake, while zeolite was the most efficient at reducing Cd uptake by the plants. White lupin growth was better in amended soils than in unamended control. The above ground biomass increased with a factor 1.8 (soil amended with zeolite), 3.6 (soil amended with compost) and 3.1 (soil amended with Ca(OH)2) with respect to unamended soil. The roots biomass increased with a factor 1.4 (soil amended with zeolite), 5.6 (soil amended with compost) and 4.8 (soil amended with Ca(OH)2). Results obtained suggest that the soil chemical treatment improved the performance of crops by reducing bioavailability of metals in the soils. However it would be therefore interesting to find a suitable mixture of these amendments to contemporarily immobilize the three main pollutants in the polluted soils.

  10. Isolation and evaluation of potent Pseudomonas species for bioremediation of phorate in amended soil.

    PubMed

    Jariyal, Monu; Gupta, V K; Jindal, Vikas; Mandal, Kousik

    2015-12-01

    Use of phorate as a broad spectrum pesticide in agricultural crops is finding disfavor due to persistence of both the principal compound as well as its toxic residues in soil. Three phorate utilizing bacterial species (Pseudomonas sp. strain Imbl 4.3, Pseudomonas sp. strain Imbl 5.1, Pseudomonas sp. strain Imbl 5.2) were isolated from field soils. Comparative phorate degradation analysis of these species in liquid cultures identified Pseudomonas sp. strain Imbl 5.1 to cause complete metabolization of phorate during seven days as compared to the other two species in 13 days. In soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil), Pseudomonas sp. strain Imbl 5.1 resulted in active metabolization of phorate by between 94.66% and 95.62% establishing the same to be a potent bacterium for significantly relieving soil from phorate residues. Metabolization of phorate to these phorate residues did not follow the first order kinetics. This study proves that Pseudomonas sp. strain Imbl 5.1 has huge potential for active bioremediation of phorate both in liquid cultures and agricultural soils.

  11. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    PubMed

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. PMID:26470015

  12. Comparison of soil amendments to decrease high strength in SE USA Coastal Plain soils using fuzzy decision-making analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cemented subsurface layers restrict root growth in many southeastern USA Coastal Plain soils. Though cementation is usually reduced by tillage, soil amendments can offer a more permanent solution if they develop aggregation. To increase aggregation, we amended 450 g of a Norfolk soil blend of 90% E ...

  13. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia.

    PubMed

    Ho, Yu Bin; Zakaria, Mohamad Pauzi; Latif, Puziah Abdul; Saari, Nazamid

    2014-08-01

    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices. PMID:24836135

  14. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia.

    PubMed

    Ho, Yu Bin; Zakaria, Mohamad Pauzi; Latif, Puziah Abdul; Saari, Nazamid

    2014-08-01

    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices.

  15. Soil macronutrient sensing for precision agriculture.

    PubMed

    Kim, Hak-Jin; Sudduth, Kenneth A; Hummel, John W

    2009-10-01

    Accurate measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient agricultural production, including site-specific crop management (SSCM), where fertilizer nutrient application rates are adjusted spatially based on local requirements. Rapid, non-destructive quantification of soil properties, including nutrient levels, has been possible with optical diffuse reflectance sensing. Another approach, electrochemical sensing based on ion-selective electrodes or ion-selective field effect transistors, has been recognized as useful in real-time analysis because of its simplicity, portability, rapid response, and ability to directly measure the analyte with a wide range of sensitivity. Current sensor developments and related technologies that are applicable to the measurement of soil macronutrients for SSCM are comprehensively reviewed. Examples of optical and electrochemical sensors applied in soil analyses are given, while advantages and obstacles to their adoption are discussed. It is proposed that on-the-go vehicle-based sensing systems have potential for efficiently and rapidly characterizing variability of soil macronutrients within a field.

  16. Soil management of copper mine tailing soils--sludge amendment and tree vegetation could improve biological soil quality.

    PubMed

    Asensio, Verónica; Covelo, Emma F; Kandeler, Ellen

    2013-07-01

    Mine soils at the depleted copper mine in Touro (Northwest Spain) are physico-chemically degraded and polluted by chromium and copper. To increase the quality of these soils, some areas at this mine have been vegetated with eucalyptus or pines, amended with sludges, or received both treatments. Four sites were selected at the Touro mine tailing in order to evaluate the effect of these different reclamation treatments on the biological soil quality: (1) Control (untreated), (2) Forest (vegetated), (3) Sludge (amended with sludges) and (4) Forest+Sludge (vegetated and amended). The new approach of the present work is that we evaluated the effect of planting trees or/and amending with sludges on the biological soil quality of mine sites polluted by metals under field conditions. The addition of sludges to mine sites recovered the biological quality of the soil, while vegetating with trees did not increase microbial biomass and function to the level of unpolluted sites. Moreover, amending with sludges increased the efficiency of the soil's microbial community to metabolize C and N, which was indicated by the decrease of the specific enzyme activities and the increase in the ratio Cmic:Nmic (shift towards predominance of fungi instead of bacteria). However, the high Cu and Cr concentrations still have negative influence on the microorganisms in all the treated soils. For the future remediation of mine soils, we recommend periodically adding sludge and planting native legume species.

  17. Dynamics and characterization of soil organic matter in mine soils sixteen years after amendment with native soil, sawdust, and sludge

    SciTech Connect

    Bendfeldt, E.S.; Burger, J.A.; Daniels, W.L.; Feldhake, C.M.

    1999-07-01

    Soil organic matter (SOM) is an important indicator of soil quality and site productivity. Organic amendments may be a means for ameliorating mine soils and other soils that have been depleted of organic matter. In 1982, a mined site was amended with seven different surface treatments: a control, 30 cm of native soil, 112 Mg/ha sawdust, and municipal sewage sludge (SS) at rates of 22, 56, 112, and 224 Mg/ha. Four replicates of each treatment were installed as a randomized complete block design. Each replicate was subsequently split according to vegetation type: pitch x loblolly pine hybrid (Pinus rigda x taeda) trees and Kentucky-31 tall fescue (Festuca arundinacea Schreb.). Soil analyses of composite samples indicated that organic amendments initially improved C and N status of the mine soils, but after 16 years their levels converged to that of the control treatment. Tree volume and biomass were used as indices of the effects of organic matter content 16 years after initial amendment. Individual tree volumes of the sawdust and 22, 56, 112 Mg/ha. SS treatments retained 18 to 26% more volume than the control. Overall, forage production was the same among treatments. Organic amendments improved initial soil fertility for crop establishment, but it appears that they will have little or no long-lasting effect on plant productivity.

  18. Remediation of PAHs in a saline-alkaline soil amended with wastewater sludge and the effect on dynamics of C and N.

    PubMed

    Fernández-Luqueño, F; Marsch, R; Espinosa-Victoria, D; Thalasso, F; Hidalgo Lara, M E; Munive, A; Luna-Guido, M L; Dendooven, L

    2008-08-25

    Contamination of soil with hydrocarbons occurs frequently and organic material, such as sludge, is often applied to accelerate their dissipation. Little is known, however, how sludge characteristics affect removal of polycyclic aromatic hydrocarbons (PAHs) from alkaline-saline soil. Soil of the former lake Texcoco with pH 9 and electrolytic conductivity 7 dS m(-1) was contaminated with phenanthrene and anthracene and amended with sludge, sterilized sludge, sludge adjusted to maintain pH in contaminated soil or glucose plus an inorganic N and P source while emission of CO2 and concentrations of NH4+, NO3-, NO2-, extractable P, phenanthrene and anthracene were monitored in an aerobic incubation experiment of 112 days. An agricultural soil from Acolman treated in the same way served as control. Contaminating the Texcoco soil increased emission of CO2 significantly, but not in the Acolman soil. After 112 days, the largest concentration of anthracene and phenanthrene was found in the Acolman soil added with glucose and the lowest in the sludge-amended soil. The largest concentration of anthracene in the Texcoco soil was found in soil added with sterile sludge and the lowest in the sludge-amended soil. The largest concentration of phenanthrene in the Texcoco soil was found in the glucose-amended soil and the lowest in the sludge-amended soil. It was found that addition of sludge removed more phenanthrene, but not anthracene from soil compared to the unamended contaminated soil, glucose inhibited dissipation of PAHs while microorganisms in the sludge contributed to their removal, and adjustment of soil pH had no effect. Organic material can be used to accelerate removal of hydrocarbons from soil, but the effect is controlled by soil type, contaminant and organic material characteristics. PMID:18538824

  19. Remediation of PAHs in a saline-alkaline soil amended with wastewater sludge and the effect on dynamics of C and N.

    PubMed

    Fernández-Luqueño, F; Marsch, R; Espinosa-Victoria, D; Thalasso, F; Hidalgo Lara, M E; Munive, A; Luna-Guido, M L; Dendooven, L

    2008-08-25

    Contamination of soil with hydrocarbons occurs frequently and organic material, such as sludge, is often applied to accelerate their dissipation. Little is known, however, how sludge characteristics affect removal of polycyclic aromatic hydrocarbons (PAHs) from alkaline-saline soil. Soil of the former lake Texcoco with pH 9 and electrolytic conductivity 7 dS m(-1) was contaminated with phenanthrene and anthracene and amended with sludge, sterilized sludge, sludge adjusted to maintain pH in contaminated soil or glucose plus an inorganic N and P source while emission of CO2 and concentrations of NH4+, NO3-, NO2-, extractable P, phenanthrene and anthracene were monitored in an aerobic incubation experiment of 112 days. An agricultural soil from Acolman treated in the same way served as control. Contaminating the Texcoco soil increased emission of CO2 significantly, but not in the Acolman soil. After 112 days, the largest concentration of anthracene and phenanthrene was found in the Acolman soil added with glucose and the lowest in the sludge-amended soil. The largest concentration of anthracene in the Texcoco soil was found in soil added with sterile sludge and the lowest in the sludge-amended soil. The largest concentration of phenanthrene in the Texcoco soil was found in the glucose-amended soil and the lowest in the sludge-amended soil. It was found that addition of sludge removed more phenanthrene, but not anthracene from soil compared to the unamended contaminated soil, glucose inhibited dissipation of PAHs while microorganisms in the sludge contributed to their removal, and adjustment of soil pH had no effect. Organic material can be used to accelerate removal of hydrocarbons from soil, but the effect is controlled by soil type, contaminant and organic material characteristics.

  20. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation.

    PubMed

    Madejón, P; Xiong, J; Cabrera, F; Madejón, E

    2014-11-01

    The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils. PMID:24950211

  1. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation.

    PubMed

    Madejón, P; Xiong, J; Cabrera, F; Madejón, E

    2014-11-01

    The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils.

  2. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments.

    PubMed

    Chaudhry, Vasvi; Rehman, Ateequr; Mishra, Aradhana; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2012-08-01

    Community level physiological profiling and pyrosequencing-based analysis of the V1-V2 16S rRNA gene region were used to characterize and compare microbial community structure, diversity, and bacterial phylogeny from soils of chemically cultivated land (CCL), organically cultivated land (OCL), and fallow grass land (FGL) for 16 years and were under three different land use types. The entire dataset comprised of 16,608 good-quality sequences (CCL, 6,379; OCL, 4,835; FGL, 5,394); among them 12,606 sequences could be classified in 15 known phylum. The most abundant phylum were Proteobacteria (29.8%), Acidobacteria (22.6%), Actinobacteria (11.1%), and Bacteroidetes (4.7%), while 24.3% of the sequences were from bacterial domain but could not be further classified to any known phylum. Proteobacteria, Bacteroidetes, and Gemmatimonadetes were found to be significantly abundant in OCL soil. On the contrary, Actinobacteria and Acidobacteria were significantly abundant in CCL and FGL, respectively. Our findings supported the view that organic compost amendment (OCL) activates diverse group of microorganisms as compared with conventionally used synthetic chemical fertilizers. Functional diversity and evenness based on carbon source utilization pattern was significantly higher in OCL as compared to CCL and FGL, suggesting an improvement in soil quality. This abundance of microbes possibly leads to the enhanced level of soil organic carbon, soil organic nitrogen, and microbial biomass in OCL and FGL soils as collated with CCL. This work increases our current understanding on the effect of long-term organic and chemical amendment applications on abundance, diversity, and composition of bacterial community inhabiting the soil for the prospects of agricultural yield and quantity of soil.

  3. Effects of conventional and no-tillage soil management and compost and sludge amendment on soil CO2 fluxes and microbial activities

    NASA Astrophysics Data System (ADS)

    Garcia-Gil, Juan Carlos; Haller, Isabel; Soler-Rovira, Pedro; Polo, Alfredo

    2010-05-01

    Soil management exerts a significant influence on the dynamic of soil organic matter, which is a key issue to enhance soil quality and its ecological functions, but also affects to greenhouse gas emissions and C sequestration processes. The objective of the present research was to determine the influence of soil management (conventional deep-tillage and no-tillage) and the application of two different organic amendment -thermally-dry sewage sludge (TSL) and municipal waste compost (MWC)- on soil CO2 fluxes and microbial activities in a long-term field experiment under semi-arid conditions. Both organic amendments were applied at a rate of 30 t ha-1 prior to sowing a barley crop. The experiment was conducted on an agricultural soil (Calcic Luvisol) from the experimental farm "La Higueruela" (Santa Olalla, Toledo). Unamended soils were used as control in both conventional and no-tillage management. During the course of the experiment, soil CO2 fluxes, microbial biomass C (MBC) and enzyme activities involved in the biogeochemical cycles of C, N and P were monitored during 12 months. The results obtained during the experiment for soil CO2 fluxes showed a great seasonal fluctuation due to semi-arid climate conditions. Overall, conventional deep-tillage soils exhibited higher CO2 fluxes, which was particularly larger during the first hours after deep-tillage was performed, and smaller MBC content and significantly lower dehydrogenase, beta-glucosidase, phosphatase, urease and BAA protease activities than no-tillage soils. Both MWC and TSL amendments provoked a significant increase of CO2 fluxes in both conventional and no-tillage soils, which was larger in TSL amended soils and particularly in no-tillage soils. The application of these organic amendments also enhanced MBC content and the overall enzyme activities in amended soils, which indicate a global revitalization of soil microbial metabolism in response to the fresh input of organic compounds that are energy

  4. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    NASA Astrophysics Data System (ADS)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  5. EVALUATION OF A SOIL AMENDMENT PROCESS DEMONSTRATION FOR REDUCING THE BIOAVAILABILITY OF LEAD

    EPA Science Inventory

    The USEPA evaluated an in situ application of a soil amendment process at a residential site that was contaminated with lead. The goal of the evaluation was to determine if the soil amendment process resulted in lower concentrations of bioavailable lead in the contaminated soils...

  6. Use of oily waste organics as amendment to soils

    SciTech Connect

    Mendoza, R.E.; Taboada, M.A.; Rodriguez, D.; Caso, O.; Portal, R.

    1995-12-31

    The effect of oily waste organics (OWO) from petroleum wells used as amendment in soils of Tierra del Fuego (Argentina) was studied. The soil in Tierra del Fuego is dominated by a xeric heath community of very little forage value for sheep. In a pot experiment, applying OWO as a band 2 cm below the soil surface decreased water evaporation, increased the soil temperature by 15%, and decreased the growth of orchard grass (Dactylis glomerata) by 29% with respect to the control. In another pot experiment, OWO was mixed with soil, fertilized with N and P, and incubated for 0, 18, 39, and 75 days at 4 and 30 C. Incubation increased the population of nitrifier bacteria in soil only when OWO was applied at 0 or 10%; at 20% nitrifier bacteria were depressed. Fertilization increased the growth of orchard grass and overcame any depressive effect of OWO on shoot yield. In a third experiment, the percentage of germination of orchard seeds was not affected by adding up to 40% of OWO, although the addition of OWO depressed root elongation rate. In a field experiment, adding OWO between rows of potato plants increased soil water content and total potato yield.

  7. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation.

    PubMed

    Torri, Silvana; Lavado, Raúl

    2009-07-30

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  8. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations.

    PubMed

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R; Li, Y; Baligar, V C

    2016-09-01

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils and amendments. Cadmium was added at 0 or 5 mg kg(-1) (spiked), then, amendments were incorporated at 0, 0.5, or 2 %. Amended soils were incubated at room temperature for 28 days. Plant-available Cd was determined using 0.01 M CaCl2 (WSE) and Mehlich 3 (M3) extraction procedures in subsamples taken from individual bags at six time intervals. Soils and amendments displayed different sorption characteristics and a better fit was attained with Freundlich model (R (2) > 0.82). Amendments were ineffective in reducing extractable Cd in non-spiked soils. In Cd-spiked soils, vermicompost at 2 % significantly reduced WSE-Cd (P < 0.01) from 3.36, 0.54, and 0.38 mg kg(-1) to values lower that instrument's detection in all the three soils and significantly diminished M3-extractable Cd (P < 0.05) from 4.62 to 4.11 mg kg(-1) in only one soil. Vermicompost at 0.5 % significantly decreased WSE-Cd (P < 0.01) from 3.04 and 0.31 to 1.69 and 0.20 mg kg(-1), respectively, in two soils with low sorption capacity for Cd. In contrast, zeolite failed to reduce WSE- or M3-extractable Cd in all studied soils. A negative correlation occurred between soil pH and WSE-Cd (r > -0.89, P < 0.01). The decrease in WSE-Cd appears to be associated with the increase in pH of the vermicompost-amended soils. PMID:27234831

  9. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations.

    PubMed

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R; Li, Y; Baligar, V C

    2016-09-01

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils and amendments. Cadmium was added at 0 or 5 mg kg(-1) (spiked), then, amendments were incorporated at 0, 0.5, or 2 %. Amended soils were incubated at room temperature for 28 days. Plant-available Cd was determined using 0.01 M CaCl2 (WSE) and Mehlich 3 (M3) extraction procedures in subsamples taken from individual bags at six time intervals. Soils and amendments displayed different sorption characteristics and a better fit was attained with Freundlich model (R (2) > 0.82). Amendments were ineffective in reducing extractable Cd in non-spiked soils. In Cd-spiked soils, vermicompost at 2 % significantly reduced WSE-Cd (P < 0.01) from 3.36, 0.54, and 0.38 mg kg(-1) to values lower that instrument's detection in all the three soils and significantly diminished M3-extractable Cd (P < 0.05) from 4.62 to 4.11 mg kg(-1) in only one soil. Vermicompost at 0.5 % significantly decreased WSE-Cd (P < 0.01) from 3.04 and 0.31 to 1.69 and 0.20 mg kg(-1), respectively, in two soils with low sorption capacity for Cd. In contrast, zeolite failed to reduce WSE- or M3-extractable Cd in all studied soils. A negative correlation occurred between soil pH and WSE-Cd (r > -0.89, P < 0.01). The decrease in WSE-Cd appears to be associated with the increase in pH of the vermicompost-amended soils.

  10. Combining agricultural practices key to elevating soil microbial activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of soil health is an emerging topic in applied ecology, specifically as it pertains to the agriculture, which utilizes approximately 40% of earth’s land. However, rigorous quantification of soil health and the services provided by soil organisms to support agriculture production (e.g., n...

  11. Fate of di-2-(ethylhexyl)phthalate in three sludge-amended New Mexico soils

    SciTech Connect

    Fairbanks, B.C.; O'Connor, G.A.; Smith, S.E.

    1985-01-01

    Di-3-(ethylhexyl)phthalate (DEHP) is a toxic organic of concern limiting the reuse of sewage sludge on agricultural lands. The degradation, volatilization, and adsorption of DEHP-/sup 14/C were monitored in three calcareous soils from New Mexico amended or unamended with sewage sludge. Evolution of /sup 14/CO/sub 2/ was the only mechanism of loss of DEPH from these soils. No volatilization of parent compound or organic metabolites was detected. The effects of sewage sludge on DEHP degradation varied with soil, DEHP concentration, and sludge incubation time. As a result, 50% disappearance time varied from 8 to 72 d, depending on treatment interactions. After 146 d, 76 to 93% of the DEHP-/sup 14/C was evolved as CO/sub 2/. In general, DEHP persistence was reduced by previous exposure of the soil to sludge, but was increased or unaffected by fresh additions of sludge. Increasing DEHP concentration from 2 to 20 mg kg/sup -1/ soil increased DEHP persistence. Degradation of DEHP was greater in two sandy loams (Typic Haplargids and petrocalcic Paleustolls) than in a clay soil (Typic Torrifluvents). Preliminary data suggest extensive adsorption of DEHP by all soils with no effect of sewage sludge additions.

  12. Persistence of Viruses in Desert Soils Amended with Anaerobically Digested Sewage Sludge

    PubMed Central

    Straub, Timothy M.; Pepper, Ian L.; Gerba, Charles P.

    1992-01-01

    Pima County, Ariz., is currently investigating the potential benefits of land application of sewage sludge. To assess risks associated with the presence of pathogenic enteric viruses present in the sludge, laboratory studies were conducted to measure the inactivation rate (k = log10 reduction per day) of poliovirus type 1 and bacteriophages MS2 and PRD-1 in two sludge-amended desert agricultural soils (Brazito Sandy Loam and Pima Clay Loam). Under constant moisture (approximately -0.05 × 105 Pa for both soils) and temperatures of 15, 27, and 40°C, the main factors controlling the inactivation of these viruses were soil temperature and texture. As the temperature increased from 15 to 40°C, the inactivation rate increased significantly for poliovirus and MS2, whereas, for PRD-1, a significant increase in the inactivation rate was observed only at 40°C. Clay loam soils afforded more protection to all three viruses than sandy soils. At 15°C, the inactivation rate for MS2 ranged from 0.366 to 0.394 log10 reduction per day in clay loam and sandy loam soils, respectively. At 27°C, this rate increased to 0.629 log10 reduction per day in clay loam soil and to 0.652 in sandy loam soil. A similar trend was observed for poliovirus at 15°C (k = 0.064 log10 reduction per day, clay loam; k = 0.095 log10 reduction per day, sandy loam) and 27°C (k = 0.133 log10 reduction per day, clay loam; k = 0.154 log10 reduction per day, sandy loam). Neither MS2 nor poliovirus was recovered after 24 h at 40°C. No reduction of PRD-1 was observed after 28 days at 15°C and after 16 days at 27°C. At 40°C, the inactivation rates were 0.208 log10 reduction per day in amended clay loam soil and 0.282 log10 reduction per day in sandy loam soil. Evaporation to less than 5% soil moisture completely inactivated all three viruses within 7 days at 15°C, within 3 days at 27°C, and within 2 days at 40°C regardless of soil type. This suggests that a combination of high soil temperature and rapid

  13. Influence of soil amendments made from digestate on soil physics and the growth of spring wheat

    NASA Astrophysics Data System (ADS)

    Dietrich, Nils; Knoop, Christine; Raab, Thomas; Krümmelbein, Julia

    2016-04-01

    Every year 13 million tons of organic wastes accumulate in Germany. These wastes are a potential alternative for the production of energy in biogas plants, especially because the financial subventions for the cultivation of renewable resources for energy production were omitted in 2014. The production of energy from biomass and organic wastes in biogas plants results in the accumulation of digestate and therefore causes the need for a sustainable strategy of the utilization of these residues. Within the scope of the BMBF-funded project 'VeNGA - Investigations for recovery and nutrient use as well as soil and plant-related effects of digestate from waste fermentation' the application of processed digestate as soil amendments is examined. Therefore we tested four different mechanical treatment processes (rolled pellets, pressed pellets, shredded compost and sieved compost) to produce soil amendments from digestate with regard to their impact on soil physics, soil chemistry and the interactions between plants and soil. Pot experiments with soil amendments were performed in the greenhouse experiment with spring wheat and in field trials with millet, mustard and forage rye. After the first year of the experiment, preliminary results indicate a positive effect of the sieved compost and the rolled pellets on biomass yield of spring wheat as compared to the other variations. First results from the Investigation on soil physics show that rolled pellets have a positive effect on the soil properties by influencing size and distribution of pores resulting in an increased water holding capacity. Further ongoing enhancements of the physical and chemical properties of the soil amendments indicate promising results regarding the ecological effects by increased root growth of spring wheat.

  14. Nitrogen and Phosphorus Loss Potential from Biosolids-Amended Soils and Biotic Response in the Receiving Water.

    PubMed

    Hanief, Aslam; Matiichine, Denis; Laursen, Andrew E; Bostan, I Vadim; McCarthy, Lynda H

    2015-07-01

    Application of municipal biosolids to agricultural soil can improve soil quality and improve crop yields. However, runoff or tile leachate from biosolids-applied fields may contribute to localized eutrophication of surface water. A laboratory experiment was conducted to determine loss potential of nutrients from soils amended with two different biosolids (anaerobically digested and chemically stabilized) relative to loss from a reference soil and to determine response in freshwater microcosms to nutrients lost from soils. Total phosphorus (TP) and total nitrogen (TN) were measured in runoff, and equivalent amounts were added to reference microcosms to determine if aquatic systems would respond similarly to TN and TP loading in bioavailable forms (PO, NH, NO) simulating loading related to inorganic fertilizer application. Nutrient concentrations (TP, TN, PO, NH, NO, and organic P and N) were similar in the runoff from the two biosolids-amended soils and higher than those in the runoff from the reference soil. Runoff from biosolids-amended soils stimulated algal growth and production (chlorophyll a and dissolved oxygen) relative to runoff from reference soil, but the response was weaker than in microcosms receiving equivalent amounts of inorganic N and P. Nutrient runoff from land-applied biosolids does have potential to increase algal production in receiving waters; however, this experiment suggests receiving waters may absorb a single large nutrient loading event associated with runoff from biosolids-amended soil without substantial impact. Moreover, the response to N and P in biosolids versus inorganic nutrient additions suggests biosolids may contribute relatively less to eutrophication than inorganic fertilizers, assuming equivalent TN and TP loading to aquatic systems. PMID:26437111

  15. Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zhu, S.

    2015-12-01

    Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.

  16. Modeling field-scale vertical movement of zinc and copper in a pig slurry-amended soil in Brazil.

    PubMed

    Mallmann, Fábio Joel Kochem; dos Santos, Danilo Rheinheimer; Ceretta, Carlos Alberto; Cella, Cesar; Simůnek, Jirka; van Oort, Folkert

    2012-12-01

    Organic amendments often represent a source of trace metals (TMs) in soils, which may partly leach into the groundwater. The objectives of this study were (1) to validate Hydrus-2D for modeling the transport of Zn and Cu in an Alfisol amended with pig slurry (PS) by comparing numerical simulations and experimental field data, and (2) to model the next 50 years of TM movements under scenarios of suspended or continued PS amendments. First, between 2000 and 2008, we collected detailed Zn and Cu data from a soil profile in Santa Maria, Brazil. Two hypotheses about Zn and Cu reactivity with the solid phase were tested, considering physical, hydraulic, and chemical characteristics of six soil layers. Using a two-site sorption model with a sorption kinetic rate adjusted based on laboratory EDTA extractions, Hydrus simulations of the vertical TM transport were found to satisfactorily describe the soil Zn and Cu concentration profiles. Second, the long-term fate of Zn and Cu in the soil was assessed using the validated parameterized model. Numerical simulations showed that Zn and Cu did not present risks for groundwater pollution. However, future Cu accumulation in the surface soil layer would exceed the Brazilian threshold for agricultural soils.

  17. Proton binding to humic acids from organic amendments and amended soils by the NICA-Donnan model.

    PubMed

    Plaza, César; Brunetti, Gennaro; Senesi, Nicola; Polo, Alfredo

    2005-09-01

    The acid-base properties of humic acids (HAs) are known to significantly affect the acid-base buffering capacity of soils, thus having a marked influence on the speciation of cations in the soil solid and liquid phases. Detailed information on the proton binding behavior of humic-like acids (HALs) from organic amendments and humic acids (HAs) from amended soils is, therefore, of intrinsic interest for the evaluation of the agronomic efficacy and environmental impact of soil amendment. In this work, the acid-base properties of HLAs isolated from sewage sludge (SS) and municipal solid waste compost (MSWC), and HAs isolated from soils amended with either SS or MSWC and the corresponding nonamended control soils were investigated by potentiometric titrations at various ionic strengths (0.01, 0.05, 0.1, and 0.3 M) over the pH range from 3.5 to 10.5. The nonideal competitive adsorption (NICA)-Donnan model that describes proton binding by two classes of binding sites with low and high proton affinity, i.e., carboxylic- and phenolic-type groups, was fit to titration data, and a set of fitting parameters was obtained for each HLA and HA sample. The NICA-Donnan model successfully described the shapes of the titration curves, and highlighted substantial differences in site density and proton-binding affinity between the HLAs and HAs examined. With respect to the nonamended control soil HAs, SS-HLA and MSWC-HLA were characterized by smaller carboxylic-type and phenolic-type group contents, larger affinities for proton binding by the carboxylic-type groups, and smaller affinities for proton binding by the phenolic-type groups. Amendment with SS and MSWC determined a number of modifications in soil HAs, including decrease of acidic functional group contents, slight increase of proton affinity of carboxylic-type groups, and slight decrease of the affinities for proton binding by phenolic-type groups. These effects were more evident in the HA fraction from the SS-amended soil than

  18. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils.

    PubMed

    Cambier, Philippe; Pot, Valérie; Mercier, Vincent; Michaud, Aurélia; Benoit, Pierre; Revallier, Agathe; Houot, Sabine

    2014-11-15

    Recycling composted organic residues in agriculture can reduce the need of mineral fertilizers and improve the physicochemical and biological properties of cultivated soils. However, some trace elements may accumulate in soils following repeated applications and impact other compartments of the agrosystems. This study aims at evaluating the long-term impact of such practices on the composition of soil leaching water, especially on trace metal concentrations. The field experiment QualiAgro started in 1998 on typical loess Luvisol of the Paris Basin, with a maize-wheat crop succession and five modalities: spreading of three different urban waste composts, farmyard manure (FYM), and no organic amendment (CTR). Inputs of trace metals have been close to regulatory limits, but supplies of organic matter and nitrogen overpassed common practices. Soil solutions were collected from wick lysimeters at 45 and 100 cm in one plot for each modality, during two drainage periods after the last spreading. Despite wide temporal variations, a significant effect of treatments on major solutes appears at 45 cm: DOC, Ca, K, Mg, Na, nitrate, sulphate and chloride concentrations were higher in most amended plots compared to CTR. Cu concentrations were also significantly higher in leachates of amended plots compared to CTR, whereas no clear effect emerged for Zn. The influence of amendments on solute concentrations appeared weaker at 1 m than at 45 cm, but still significant and positive for major anions and DOC. Average concentrations of Cu and Zn at 1m depth lied in the ranges [2.5; 3.8] and [2.5; 10.5 μg/L], respectively, with values slightly higher for plots amended with sewage sludge compost or FYM than for CTR. However, leaching of both metals was less than 1% of their respective inputs through organic amendments. For Cd, most values were <0.05 μg/L. So, metals added through spreading of compost or manure during 14 years may have increased metal concentrations in leachates of

  19. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils.

    PubMed

    Cambier, Philippe; Pot, Valérie; Mercier, Vincent; Michaud, Aurélia; Benoit, Pierre; Revallier, Agathe; Houot, Sabine

    2014-11-15

    Recycling composted organic residues in agriculture can reduce the need of mineral fertilizers and improve the physicochemical and biological properties of cultivated soils. However, some trace elements may accumulate in soils following repeated applications and impact other compartments of the agrosystems. This study aims at evaluating the long-term impact of such practices on the composition of soil leaching water, especially on trace metal concentrations. The field experiment QualiAgro started in 1998 on typical loess Luvisol of the Paris Basin, with a maize-wheat crop succession and five modalities: spreading of three different urban waste composts, farmyard manure (FYM), and no organic amendment (CTR). Inputs of trace metals have been close to regulatory limits, but supplies of organic matter and nitrogen overpassed common practices. Soil solutions were collected from wick lysimeters at 45 and 100 cm in one plot for each modality, during two drainage periods after the last spreading. Despite wide temporal variations, a significant effect of treatments on major solutes appears at 45 cm: DOC, Ca, K, Mg, Na, nitrate, sulphate and chloride concentrations were higher in most amended plots compared to CTR. Cu concentrations were also significantly higher in leachates of amended plots compared to CTR, whereas no clear effect emerged for Zn. The influence of amendments on solute concentrations appeared weaker at 1 m than at 45 cm, but still significant and positive for major anions and DOC. Average concentrations of Cu and Zn at 1m depth lied in the ranges [2.5; 3.8] and [2.5; 10.5 μg/L], respectively, with values slightly higher for plots amended with sewage sludge compost or FYM than for CTR. However, leaching of both metals was less than 1% of their respective inputs through organic amendments. For Cd, most values were <0.05 μg/L. So, metals added through spreading of compost or manure during 14 years may have increased metal concentrations in leachates of

  20. Copper phytoavailability and uptake by Elsholtzia splendens from contaminated soil as affected by soil amendments.

    PubMed

    Peng, Hong-Yun; Yang, Xiao-E; Jiang, Li-Ying; He, Zhen-Li

    2005-01-01

    Pot and field experiments were conducted to evaluate bioavailability of Cu in contaminated paddy soil (PS) and phytoremediation potential by Elsholtzia splendens as affected by soil amendments. The results from pot experiment showed that organic manure (M) applied to the PS not only remarkably raised the H2O exchangeable Cu, which were mainly due to the increased exchangeable and organic fractions of Cu in the PS by M, but also stimulated plant growth and Cu accumulation in E. splendens. At M application rate of 5.0%, shoot Cu concentration in the plant increased by four times grown on the PS, so as to the elevated shoot Cu accumulation by three times as compared to the control. In the field trial, soil amendments by M and furnace slag (F), and soil preparations like soil capping (S) and soil discing (D) were performed in the PS. Soil capping and discing considerably declined total Cu in the PS. Application of M solely or together with F enhanced plant growth and increased H2O exchangeable Cu levels in the soil. The increased extractability of Cu in the rhizosphere of E. splendens was noted, which may have mainly attributed to the rhizospheric acidification and chelation by dissolved organic matter (DOM), thus resulting in elevating Cu uptake and accumulation by E. splendens. Amendments with organic manure plus furnace slag (MF) to the PS caused the highest exactable Cu with saturated H2O in the rhizospheric soil of E. splendens after they were grown for 170 days in the PS, thus achieving 1.74 kg Cu ha(-1) removal from the contaminated soil by the whole plant of E. splendens at one season, which is higher than those of the other soil treatments. The results indicated that application of organic manure at a proper rate could enhance Cu bioavailability and increase effectiveness of Cu phytoextraction from the contaminated soil by the metal-tolerant and accumulating plant species (E. splendens). PMID:15792303

  1. Crop residue stabilization and application to agricultural and degraded soils: A review.

    PubMed

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. PMID:25936555

  2. Monitoring changes in soil carbon resulting from intensive production, a non-traditional agricultural methodology.

    SciTech Connect

    Dwyer, Brian P.

    2013-03-01

    New Mexico State University and a group of New Mexico farmers are evaluating an innovative agricultural technique they call Intensive Production (IP). In contrast to conventional agricultural practice, IP uses intercropping, green fallowing, application of soil amendments and soil microbial inocula to sequester carbon as plant biomass, resulting in improved soil quality. Sandia National Laboratories role was to identify a non-invasive, cost effective technology to monitor soil carbon changes. A technological review indicated that Laser Induced Breakdown Spectroscopy (LIBS) best met the farmers objectives. Sandia partnered with Los Alamos National Laboratory (LANL) to analyze farmers test plots using a portable LIBS developed at LANL. Real-time LIBS field sample analysis was conducted and grab samples were collected for laboratory comparison. The field and laboratory results correlated well implying the strong potential for LIBS as an economical field scale analytical tool for analysis of elements such as carbon, nitrogen, and phosphate.

  3. Crop residue stabilization and application to agricultural and degraded soils: A review.

    PubMed

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components.

  4. Meloidogyne incognita Infested Soil Amended With Chicken Litter

    PubMed Central

    Riegel, C.; Fernandez, F. A.; Noe, J. P.

    1996-01-01

    The effects of chicken litter on Meloidogyne incognita in cotton, Gossypium hirsutum cv. DPL50 were determined in field microplots. Litters (manure and pine-shaving bedding) from a research facility and a commercial broiler house were used. Treatments consisted of 0.25%, 0.5%, and 1% litter by dry weight of soil for each kind of litter. Three control treatments consisted of soil not amended with litter, with and without nematodes, and one treatment to which mineral fertilizer was added at a nitrogen rate equivalent to that of the 0.5% litter rate, with nematodes. Microplots were inoculated at planting with 900 eggs/100 cm³ soil in 1993 and 1,000 eggs/100 cm³ soil in 1994. At 92 and 184 days after planting, nematode population densities decreased linearly with increasing rates of litter. Nematode numbers at midseason were larger in plots treated with mineral fertilizer than in plots treated with a rate of litter equivalent to the 0.5% rate. Fungal and bacterial population densities fluctuated throughout the growing season. Bacterial numbers had a positive linear relationship, with increasing rates of litter only in October 1993; however, significant positive relationships were observed throughout the 1994 growing season. In 1994, nematode population density at 92 days after planting decreased linearly with increasing bacterial numbers 30 days after planting. No other significant relationships between nematode densities and microbial densities were observed. Fungi and bacteria isolated from the litter and litter-amended soil were identified. Fungal genera isolated included Acremonium, Aspergillus, Eurotium, Paecilomyces, Petriella, and Scopulariopsis, whereas bacteria genera included Arthrobacter, Bacillus, and Pseudomonus. PMID:19277155

  5. Phosphorus leaching from biosolids-amended sandy soils.

    PubMed

    Elliott, H A; O'Connor, G A; Brinton, S

    2002-01-01

    Increasing emphasis on phosphorus (P)-based nutrient management underscores the need to understand P behavior in soils amended with biosolids and manures. Laboratory and greenhouse column studies characterized P forms and leachability of eight biosolids products, chicken manure (CM), and commercial fertilizer (triple superphosphate, TSP). Bahiagrass (Paspalum notatum Flugge) was grown for 4 mo on two acid, P-deficient Florida sands, representing both moderate (Candler series: hyperthermic, uncoated Typic Quartzipsamments) and very low (Immokalee series: sandy, siliceous, hyperthermic Arenic Alaquods) P-sorbing capacities. Amendments were applied at 56 and 224 kg P(T) ha(-1), simulating P-based and N-based nutrient loadings, respectively. Column leachate P was dominantly inorganic and lower for biosolids P sources than TSP. For Candler soil, only TSP at the high P rate exhibited P leaching statistically greater (alpha = 0.05) than control (soil-only) columns. For the high P rate and low P-sorbing Immokalee soil, TSP and CM leached 21 and 3.0% of applied P, respectively. Leachate P for six biosolids was <1.0% of applied P and not statistically different from controls. Largo biosolids, generated from a biological P removal process, exhibited significantly greater leachate P in both cake and pelletized forms (11 and 2.5% of applied P, respectively) than other biosolids. Biosolids P leaching was correlated to the phosphorus saturation index (PSI = [Pox]/[Al(ox) + Fe(ox)]) based on oxalate extraction of the pre-applied biosolids. For hiosolids with PSI < or = approximately 1.1, no appreciable leaching occurred. Only Largo cake (PSI = 1.4) and pellets (PSI = 1.3) exhibited P leaching losses statistically greater than controls. The biosolids PSI appears useful for identifying biosolids with potential to enrich drainage P when applied to low P-sorbing soils. PMID:11931462

  6. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers.

    PubMed

    López-Valdez, F; Fernández-Luqueño, F; Luna-Suárez, S; Dendooven, L

    2011-12-15

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO(2) and N(2)O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO(2) and N(2)O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N(2)O emissions but not CO(2) emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern. PMID:22033361

  7. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers.

    PubMed

    López-Valdez, F; Fernández-Luqueño, F; Luna-Suárez, S; Dendooven, L

    2011-12-15

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO(2) and N(2)O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO(2) and N(2)O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N(2)O emissions but not CO(2) emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern.

  8. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.).

    PubMed

    Carbonell, Gregoria; de Imperial, Rosario Miralles; Torrijos, Manuel; Delgado, Mar; Rodriguez, José Antonio

    2011-11-01

    Soil amendments based on crop nutrient requirements are considered a beneficial management practice. A greenhouse experiment with maize seeds (Zea mays L.) was conducted to assess the inputs of metals to agricultural land from soil amendments. Maize seeds were exposed to a municipal solid waste (MSW) compost (50 Mg ha(-1)) and NPK fertilizer (33 g plant(-1)) amendments considering N plant requirement until the harvesting stage with the following objectives: (1) determine the accumulation of total and available metals in soil and (2) know the uptake and ability of translocation of metals from roots to different plant parts, and their effect on biomass production. The results showed that MSW compost increased Cu, Pb and Zn in soil, while NPK fertilizer increased Cd and Ni, but decreased Hg concentration in soil. The root system acted as a barrier for Cr, Ni, Pb and Hg, so metal uptake and translocation were lower in aerial plant parts. Biomass production was significantly enhanced in both MSW and NPK fertilizer-amended soils (17%), but also provoked slight increases of metals and their bioavailability in soil. The highest metal concentrations were observed in roots, but there were no significant differences between plants growing in amended soil and the control soil. Important differences were found for aerial plant parts as regards metal accumulation, whereas metal levels in grains were negligible in all the treatments.

  9. SITE EVALUATION OF SOIL AMENDMENT TECHNOLOGIES AT THE CROOKSVILLE/ROSEVILLE POTTERY AREA OF CONCERN - STAR ORGANICS SOIL RESCUE CAPSULE

    EPA Science Inventory

    This report briefly summarizes Star Organics treatment technology demonstration of a soil amendment process for lead contaminated soil at Roseville, OH. The evaluation included leaching, bioavailability, geotechnical, and geochemical testing methods.

  10. Sampling for Soil Carbon Stock Assessment in Rocky Agricultural Soils

    NASA Technical Reports Server (NTRS)

    Beem-Miller, Jeffrey P.; Kong, Angela Y. Y.; Ogle, Stephen; Wolfe, David

    2016-01-01

    Coring methods commonly employed in soil organic C (SOC) stock assessment may not accurately capture soil rock fragment (RF) content or soil bulk density (rho (sub b)) in rocky agricultural soils, potentially biasing SOC stock estimates. Quantitative pits are considered less biased than coring methods but are invasive and often cost-prohibitive. We compared fixed-depth and mass-based estimates of SOC stocks (0.3-meters depth) for hammer, hydraulic push, and rotary coring methods relative to quantitative pits at four agricultural sites ranging in RF content from less than 0.01 to 0.24 cubic meters per cubic meter. Sampling costs were also compared. Coring methods significantly underestimated RF content at all rocky sites, but significant differences (p is less than 0.05) in SOC stocks between pits and corers were only found with the hammer method using the fixed-depth approach at the less than 0.01 cubic meters per cubic meter RF site (pit, 5.80 kilograms C per square meter; hammer, 4.74 kilograms C per square meter) and at the 0.14 cubic meters per cubic meter RF site (pit, 8.81 kilograms C per square meter; hammer, 6.71 kilograms C per square meter). The hammer corer also underestimated rho (sub b) at all sites as did the hydraulic push corer at the 0.21 cubic meters per cubic meter RF site. No significant differences in mass-based SOC stock estimates were observed between pits and corers. Our results indicate that (i) calculating SOC stocks on a mass basis can overcome biases in RF and rho (sub b) estimates introduced by sampling equipment and (ii) a quantitative pit is the optimal sampling method for establishing reference soil masses, followed by rotary and then hydraulic push corers.

  11. Testing amendments for remediation of military range contaminated soil.

    PubMed

    Siebielec, Grzegorz; Chaney, Rufus L

    2012-10-15

    Military range soils are often strongly contaminated with metals. Information on the effectiveness of remediation of these soils is scarce. We tested the effectiveness of compost and mineral treatments for remediation and revegetation of military range soil collected in Aberdeen, MD. The soil was barren due to zinc (Zn) phytotoxicity while lead (Pb) posed a substantial risk to soil biota, wildlife and humans through various pathways. Seven treatments were tested: untreated control, agricultural NPK fertilization, high phosphate fertilization plus agricultural rates of NK, CaCO(3), "Orgro" biosolid compost, "Orgro" + CaCO(3), "Orgro" + CaCO(3) + Mn sulfate. All compost treatments alleviated Zn phytotoxicity to tall fescue; however compost combined with liming reduced plant Zn content up to 158-162 mg kg(-1). Compost added with lime reduced Pb in-vitro bioaccessibility from 32.5 to 20.4% of total Pb and was the most effective among the tested treatments. The study revealed the effectiveness of biosolids compost and lime mixture in the rapid stabilization of metals and revegetation of military range contaminated soils. The persistence of the remediation needs to be, however, confirmed in the long-term field study.

  12. Role of phosphogypsum and NPK amendments on the retention or leaching of metals in different soils.

    PubMed

    Ammar, Rawaa; Kanbar, Hussein Jaafar; Kazpard, Véronique; Wazne, Mahmoud; El Samrani, Antoine G; Amacha, Nabil; Saad, Zeinab; Chou, Lei

    2016-08-01

    Column leaching tests were conducted to investigate the effects of soil physicochemical characteristics on metal mobility in the subsurface. The metals investigated originated from disposed industrial waste byproducts and from agrochemicals spread over the farmlands. Soil column tests can provide insights into leaching of metals to underlying water compartments. The findings of this study can be used for prevention strategies and for setting risk assessment approaches to land-use and management, and soil and water quality and sustainability. Soils collected from an industrial (IS) watershed and an agricultural (AQ) hydrographic basin were used in soil column leaching experiments. The soil samples were characterized for mineralogy, functional groups, grain size, surface charge, soil type, porosity, and cation exchange capacity (CEC) along with elemental composition. Varying concentrations of phosphogypsum industrial waste or agrochemical (NPK fertilizer) was then added to the surface of the packed columns (n = 28). The columns were subjected to artificial rain over a period of 65 days. Leachates were collected and analyzed for dissolved Na(+), K(+), and Cd(2+) throughout the experimental period, whereas residual Cd content in the subsurface soil was measured at the end of the experiment. Physicochemical characterization indicated that the AQ soil has a higher potential for metal retention due to its fine clay texture, calcareous pH, high organic matter content and CEC. Metal release was more prominent in the IS soil indicating potential contamination of the surrounding soil and water compartments. The higher metal release is attributed to soil physicochemical characteristics. High calcium concentrations of phosphogypsum origin is expected to compete for adsorbed bivalent elements, such as Cd, resulting in their release. The physicochemical characteristics of the receiving media should be taken into consideration when planning land-use in order to achieve

  13. Role of phosphogypsum and NPK amendments on the retention or leaching of metals in different soils.

    PubMed

    Ammar, Rawaa; Kanbar, Hussein Jaafar; Kazpard, Véronique; Wazne, Mahmoud; El Samrani, Antoine G; Amacha, Nabil; Saad, Zeinab; Chou, Lei

    2016-08-01

    Column leaching tests were conducted to investigate the effects of soil physicochemical characteristics on metal mobility in the subsurface. The metals investigated originated from disposed industrial waste byproducts and from agrochemicals spread over the farmlands. Soil column tests can provide insights into leaching of metals to underlying water compartments. The findings of this study can be used for prevention strategies and for setting risk assessment approaches to land-use and management, and soil and water quality and sustainability. Soils collected from an industrial (IS) watershed and an agricultural (AQ) hydrographic basin were used in soil column leaching experiments. The soil samples were characterized for mineralogy, functional groups, grain size, surface charge, soil type, porosity, and cation exchange capacity (CEC) along with elemental composition. Varying concentrations of phosphogypsum industrial waste or agrochemical (NPK fertilizer) was then added to the surface of the packed columns (n = 28). The columns were subjected to artificial rain over a period of 65 days. Leachates were collected and analyzed for dissolved Na(+), K(+), and Cd(2+) throughout the experimental period, whereas residual Cd content in the subsurface soil was measured at the end of the experiment. Physicochemical characterization indicated that the AQ soil has a higher potential for metal retention due to its fine clay texture, calcareous pH, high organic matter content and CEC. Metal release was more prominent in the IS soil indicating potential contamination of the surrounding soil and water compartments. The higher metal release is attributed to soil physicochemical characteristics. High calcium concentrations of phosphogypsum origin is expected to compete for adsorbed bivalent elements, such as Cd, resulting in their release. The physicochemical characteristics of the receiving media should be taken into consideration when planning land-use in order to achieve

  14. INFLUENCE OF AN ORGANIC WASTE USED AS SOIL AMENDMENT ON TRIAZINE HERBICIDE SORPTION AND AVAILABILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work we have studied the influence of an organic waste generated in the olive oil mill process, used as soil amendment, on atrazine and terbuthylazine sorption and availability in soil. The soils studied were two sandy soils with different origin, Spain and Minnesota and the effect of soil a...

  15. Amending metal contaminated mine soil with biochars to sequester metals and improve plant growth cover

    EPA Science Inventory

    There are numerous mine spoil sites in the U.S. Pacific Northwest that contain highly acidic, heavy metal-laden soils, which limits establishment of a soil-stabilizing plant cover. Biochars may be a suitable soil amendment to reduce toxic metals, improve soil fertility, soil wa...

  16. Introduction to biochar as an agricultural and environmental amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This introductory chapter justifies and outlines biochar for current and potential agricultural and environmental applications. Biochar is fine-grained, recalcitrant charcoal made from heating vegetative biomass, bones, manure solids, and other plant-derived organic residues in an oxygen-free or oxy...

  17. Biodegradation of phthalate esters in compost-amended soil.

    PubMed

    Chang, B V; Lu, Y S; Yuan, S Y; Tsao, T M; Wang, M K

    2009-02-01

    In this study, we investigated the biodegradation of the phthalate acid esters (PAEs) di-n-butyl phthalate (DBP) and di-(2-ethyl hexyl) phthalate (DEHP) in compost and compost-amended soil. DBP (50 mg kg(-1)) and DEHP (50 mg kg(-1)) were added to the two types of compost (straw and animal manure) and subsequently added to the soil; they were tested as a single compound and in combination. Optimal PAE degradation in soil was at pH 7 and 30 degrees C. The degradation of PAE was enhanced when DBP and DEHP were simultaneously present in the soil. The addition of either of the two types of compost individually also improved the rate of PAE degradation. Compost samples were separated into fractions with various particle size ranges, which spanned from 0.1-0.45 to 500-2000 microm. We observed that the compost fractions with smaller particle sizes demonstrated higher PAE degradation rates. When the different compost fractions were added to soil, however, compost particle size had no significant effect on the rate of PAE degradation.

  18. Biochar and compost as amendments in copper-enriched vineyard soils - stabilization or mobilization of copper?

    NASA Astrophysics Data System (ADS)

    Soja, Gerhard; Fristak, Vladimir; Wimmer, Bernhard; Bell, Stephen; Chamier Glisczinski, Julia; Pardeller, Georg; Dersch, Georg; Rosner, Franz; Wenzel, Walter; Zehetner, Franz

    2016-04-01

    Copper is an important ingredient for several fungicides that have been used in agriculture. For organic viticulture, several diseases as e.g. downy mildew (Plasmopara viticola) can only be antagonized with Cu-containing fungicides. This long-lasting dependence on Cu-fungicides has led to a gradual Cu enrichment of vineyard soils in traditional wine-growing areas, occasionally exceeding 300 mg/kg. Although these concentrations do not affect the vines or wine quality, they may impair soil microbiological functions in the top soil layer or the root growth of green cover plants. Therefore measures are demanded that reduce the bioavailability of copper, thereby reducing the ecotoxicological effects. The use of biochar and compost as soil amendment has been suggested as a strategy to immobilize Cu and reduce the exchangeable fractions. This study consisted of lab and greenhouse experiments that were designed to test the sorption and desorption behavior of copper in vineyard soils with or without biochar and/or compost as soil amendment. Slightly acidic soils (pH<6) showed a clearer biochar-induced immobilization of copper with biochar than neutral or alkaline soils. The analyses of leachate waters of microlysimeter experiments showed that the biochar effects were more evident for a reduction of the ionic form Cu2+ than for total soluble copper, even in alkaline soils. Biochar modified with citric or tartaric acid did not significantly decrease the solubility of copper based on total dissolved concentrations although CEC was higher than in unmodified biochar. Treatments consisting of compost only or that had an equal amount of compost and biochar rather had a mobilizing effect on biochar. Sorption experiments with different DOC concentrations and biochar, however, showed a positive effect on copper sorption. Apparently in vineyard soils the predisposition to form organic-Cu-complexes may outbalance the binding possibilities of these complexes to biochar, occasionally

  19. Carbon dynamics in an almond orchard soil amended with raw and treated pig slurry

    NASA Astrophysics Data System (ADS)

    Domínguez, Sara G.; Zornoza, Raúl; Faz, Ángel

    2010-05-01

    In SE Spain, intensive farming is very common which supposes the generation of great amounts of pig slurries. These residues cause many storage problems due to their pollution capacity. A good management of them is necessary to avoid damages to the environment. The use of this effluent as fertilizer is a usual practice that in the correct dose is a good amend and important for sustainable development, but in excess can be a risk of polluting and damaging soil, water and crop conditions. Pig slurry is a source of many nutrients and specially rich in organic matter. The main objective of this study is to determine changes in soil organic carbon dynamics resulting from raw and treated slurry amendments applied in different doses. The experimental area is an almond orchard located in Cartagena (SE Spain). The climate of the area is semiarid Mediterranean with mean annual temperature of 18°C and mean annual rainfall of 275 mm. A total of 10 plots (12 m x 30 m) were designed, one of them being the control without fertilizer. Surface soil samples (0-25 cm) were collected in September 2009. Three different treatments were applied, raw slurry, the effluent obtained after solid-liquid separation and solid manure, all of them in three doses being the first one of 170 kg N/ha, (maximum permitted in nitrates directive 91/676/CEE), and the others two and three times the first one. Soil biochemical parameters are rapid indicators of changes in soil quality. According to this, total organic carbon, soil microbial biomass carbon, soluble carbon, and β-glucosidase, β-galactosidase and arylesterase activities were measured in order to assess some soil biochemical conditions and carbon dynamics in terms of the different treatments. As we expected, the use of these organic fertilizers rich in organic matter, had an effect on soil carbon and soil microbial activity resulting in an increase in most of the parameters; total organic carbon and β-galactosidase activity showed the

  20. Biochar Amendment to the Soil Surface Reduces Fumigant Emissions and Enhances Soil Microorganism Recovery.

    PubMed

    Shen, Guoqing; Ashworth, Daniel J; Gan, Jay; Yates, Scott R

    2016-02-01

    During soil fumigation, it is ideal to mitigate soil fumigant emissions, ensure pest control efficacy, and speed up the recovery of the soil microorganism population established postapplication. However, no current fumigant emission reduction strategy can meet all these requirements. In the present study, replicated soil columns were used to study the effect of biochar derived from rice husk (BR) and green waste (BG) applied to the soil surface on 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions and soil gas distribution, and on microorganism population re-establishment. Relative to fumigated bare soil (no emission reduction strategy), high-density polyethylene (HDPE), and ammonium thiosulfate (ATS) treatments, BR gave dramatic emission reductions for both fumigants with no obvious emission peak, whereas BG was very effective only for 1,3-D. With BR application, the concentration of fumigant in the soil gas was higher than in the bare soil and ATS treatment. After the soil column experiment, mixing the BR with the fumigated soil resulted in higher soil respiration rates than were observed for HDPE and ATS treatments. Therefore, biochar amendment to the soil surface may be an effective strategy for fumigant emission reduction and the recovery of soil microorganism populations established postapplication. PMID:26726779

  1. Biochar Amendment to the Soil Surface Reduces Fumigant Emissions and Enhances Soil Microorganism Recovery.

    PubMed

    Shen, Guoqing; Ashworth, Daniel J; Gan, Jay; Yates, Scott R

    2016-02-01

    During soil fumigation, it is ideal to mitigate soil fumigant emissions, ensure pest control efficacy, and speed up the recovery of the soil microorganism population established postapplication. However, no current fumigant emission reduction strategy can meet all these requirements. In the present study, replicated soil columns were used to study the effect of biochar derived from rice husk (BR) and green waste (BG) applied to the soil surface on 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions and soil gas distribution, and on microorganism population re-establishment. Relative to fumigated bare soil (no emission reduction strategy), high-density polyethylene (HDPE), and ammonium thiosulfate (ATS) treatments, BR gave dramatic emission reductions for both fumigants with no obvious emission peak, whereas BG was very effective only for 1,3-D. With BR application, the concentration of fumigant in the soil gas was higher than in the bare soil and ATS treatment. After the soil column experiment, mixing the BR with the fumigated soil resulted in higher soil respiration rates than were observed for HDPE and ATS treatments. Therefore, biochar amendment to the soil surface may be an effective strategy for fumigant emission reduction and the recovery of soil microorganism populations established postapplication.

  2. Antibiotic resistance genes in manure-amended soil and vegetables at harvest.

    PubMed

    Wang, Feng-Hua; Qiao, Min; Chen, Zheng; Su, Jian-Qiang; Zhu, Yong-Guan

    2015-12-15

    Lettuce and endive, which can be eaten raw, were planted on the manure-amended soil in order to explore the influence of plants on the abundance of antibiotic resistance genes (ARGs) in bulk soil and rhizosphere soil, and the occurrence of ARGs on harvested vegetables. Twelve ARGs and one integrase gene (intI1) were detected in all soil samples. Five ARGs (sulI, tetG, tetC, tetA, and tetM) showed lower abundance in the soil with plants than those without. ARGs and intI1 gene were also detected on harvested vegetables grown in manure-amended soil, including endophytes and phyllosphere microorganisms. The results demonstrated that planting had an effect on the distribution of ARGs in manure-amended soil, and ARGs were detected on harvested vegetables after growing in manure-amended soil, which had potential threat to human health.

  3. SITE Technology Capsule. Demonstration of Rocky Mountain Remediation Services Soil Amendment

    EPA Science Inventory

    This report briefly summarizes the Rocky Mountain Remediation Services treatment technology demonstration of a soil amendment process for lead contaminated soil at Roseville, OH. The evaluation included leaching, bioavailability, geotechnical, and geochemical methods.

  4. EFFECTS OF BIOSOLIDS ON SORPTION AND DESORPTION BEHAVIOR OF CADMIUM IN BIOSOLIDS-AMENDED SOILS

    EPA Science Inventory

    Cadmium sorption and desorption experiments were conducted on different fractions of soils amended with different biosolids with varying chemical properties and unamended soil (control). Biosolids addition increased the slope of the Cd sorption isotherms compared to the control s...

  5. EFFECT OF BIOSOLIDS ON PHYTOAVAILABILITY OF CD IN LONG-TERM AMENDED SOILS

    EPA Science Inventory

    Cadmium sorption and desorption experiments were conducted on different fractions of soils amended with different biosolids with varying chemical properties and unamended soil (control). Biosolids addition increased the slope of the Cd sorption isotherms compared to the control s...

  6. Degradation of phthalate and di-(2-ethylhexyl)phthalate by indigenous and inoculated microorganisms in sludge-amended soil

    SciTech Connect

    Roslev, P.; Madsen, P.L.; Thyme, J.B.; Henriksen, K.

    1998-12-01

    The metabolism of phthalic acid (PA) and di-(2-ethylhexyl) (DEHP) in sludge-amended agricultural soil was studied with radiotracer techniques. The initial rates of metabolism of PA and DEHP were estimated to be 731.8 and 25.6 pmol/g (dry weight) per day, respectively. Indigenous microorganisms assimilated 28 and 17% of the carbon in [{sup 14}C]PA and [{sup 14}C]DEHP, respectively, into microbial biomass. The rates of DEHP metabolism were much greater in sludge assays without soil than in assays with sludge-amended soil. Mineralization of [{sup 14}C]DEHP to {sup 14}CO{sub 2} increased fourfold after inoculation of sludge and soil samples with DEHP-degrading strain SDE 2. The elevated mineralization potential was maintained for more than 27 days. Experiments performed with strain SDE 2 suggested that the bioavailability and mineralization of DEHP decreased substantially in the presence of soil and sludge components. The microorganisms metabolizing PA and DEHP in sludge and sludge-amended soil were characterized by substrate-specific radiolabelling, followed by analysis of {sup 14}C-labelled phospholipid ester-linked fatty acids ({sup 14}C-PLFAs).

  7. Field dissipation and risk assessment of typical personal care products TCC, TCS, AHTN and HHCB in biosolid-amended soils.

    PubMed

    Chen, Feng; Ying, Guang-Guo; Ma, Yi-Bing; Chen, Zhi-Feng; Lai, Hua-Jie; Peng, Feng-Jiao

    2014-02-01

    The antimicrobial agents triclocarban (TCC) and triclosan (TCS) and synthetic musks AHTN (Tonalide) and HHCB (Galaxolide) are widely used in many personal care products. These compounds may release into the soil environment through biosolid application to agricultural land and potentially affect soil organisms. This paper aimed to investigate accumulation, dissipation and potential risks of TCC, TCS, AHTN and HHCB in biosolid-amended soils of the three field trial sites (Zhejiang, Hunan and Shandong) with three treatments (CK: control without biosolid application, T1: single biosolid application, T2: repeated biosolid application every year). The one-year monitoring results showed that biosolids application could lead to accumulation of these four chemicals in the biosolid-amended soils, with the residual concentrations in the following order: TCC>TCS>AHTN>HHCB. Dissipation of TCC, TCS, AHTN and HHCB in the biosolid-amended soils followed the first-order kinetics model. Half-lives for TCC, TCS, AHTN and HHCB under the field conditions of Shandong site were 191, 258, 336 and 900 days for T1, and 51, 106, 159 and 83 days for T2, respectively. Repeated applications of biosolid led to accumulation of these personal care products and result in higher ecological risks. Based on the residual levels in the trial sites and limited toxicity data, high risks to soil organisms are expected for TCC and TCS, while low-medium risks for AHTN and HHCB.

  8. Straw management effects on CO2 efflux and C storage in different Mediterranean agricultural soils.

    PubMed

    Badía, David; Martí, Clara; Aguirre, Angel J

    2013-11-01

    The crop residues buried in semiarid soils as a carbon sink are evaluated. Both C-CO2 evolved and C sequestered from agricultural soils amended with barley straw were measured seasonally over 2 farming seasons in a semiarid environment (NE Spain). Six experimental soils with low organic matter content and contrasted properties were selected. The CO2 efflux, as a result of soil microbial activity, showed a significant seasonal variation according to changes in both soil moisture and temperature being the spring and early summer when respiration rates get higher. On annual average, more organic, calcareous soils, evolved higher carbon dioxide efflux (up to 53 mg CO2/kg and day) than soils with high levels of gypsum or more soluble salts (up to 25 mg CO2/kg and day), which have a lower percentage of organic carbon. Straw residue incorporation increases these CO2 emissions significantly for each soil type. Although CO2 emissions are significantly and negatively correlated with the C storage, straw addition increases soil organic C content, at the end of the period of study. In calcareous soils were stored up to 550 kgC/ha and year, gypseous soils up to 1135 kgC/ha and year and saline soils up to 1450 kgC/ha and year. According to the amount of stored C in the different soil types, the isohumic coefficient of barley straw ranges from 0.087 to 0.259 (kg of humus formed from 1 kg of dry straw).

  9. Soil conservation under climate change: use of recovery biomasses on agricultural soil subjected to the passage of agricultural machinery

    NASA Astrophysics Data System (ADS)

    Bergonzoli, S.; Beni, C.; Servadio, P.

    2012-04-01

    Biomass administration is a good practice to preserve the soil fertility in climate change conditions. A test regarding the use of compost derived by wine distillation residues was conducted in the coastal area sited west of Rome, on a sandy soil in continuous cropping with carrot, two cycles per year, with a consequent deep environmental impact. The soil was fertilized with different systems: T = unfertilized soil; F = fertigation 200 kg N ha-1; FC = fertigation 100 kg N ha-1 plus half agronomic dose of compost 4 t ha-1; C2 = double compost dose 16 t ha-1; C4 = quadruple compost dose 32 t ha-1. The functional qualities of the soil, subjected to the passage of agricultural machineries, were determined through the following parameters: bulk density, shear strength, water infiltration rate, organic matter and nitrogen content, cation exchange capacity. At the summer harvest, yield of carrots, their sugar content, firmness and nutrients concentration were determined. The plots only amended (C2 and C4), compared to other treatments, presented lower bulk density (1.36 and 1.28 Mg m-3 respectively), higher shear strength (9 and 8 kPa respectively), as well as increased hydraulic conductivity. In these treatments (C2 and C4), in addition, occurred a higher content of organic matter (0.95 and 1.07% respectively) and nitrogen (0.11 and 0.12% respectively) and increased CEC (541 and 556 respectively) respect to the T treatment that was 521 meq 100g-1. In plots T and F, the organic matter content was reduced at the end of the field test. The yield of carrots increased in FC, C2, and C4, compared to the other treatments. In plots C4, however, morphological changes were induced in approximately 30% of tap-roots, due to the excessive compost dose. In treatments C2 and C4 was observed a reduction of the concentration of Na in the roots, as opposed to the higher concentration of Ca and K and trace elements. The administration of compost has also induced the increase of soluble

  10. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were

  11. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were

  12. Release dynamics of dissolved organic matter in soil amended with biosolids

    NASA Astrophysics Data System (ADS)

    Trifonov, Pavel; Ilani, Talli; Arye, Gilboa

    2014-05-01

    Among the soil organic matter (SOM) components, dissolved organic matter (DOM) is the link between the solid phase and the soil solution. Previous studies emphasize the turnover of dissolved organic carbon (DOC) and nitrogen (DON) in soils as major pathways of element cycling. In addition to DOM contribution to carbon, nitrogen and other nutrient budgets, it also influence soil biological activity, reduces metal-ion toxicity, increase the transport of some compounds and contribute to the mineral weathering. Amending soils with biosolids originated from sludge have become very popular in the recent years. Those additions significantly affect the quantity and the composition of the DOM in agricultural soils. It should be noted that under most irrigation habitants, the soil is subjected to drying and re-wetting cycles, inducing a complex changes of soil structure, aggregation, SOM quality and micro-flora. However, most studies that addressed the above issues (directly or indirectly) are engaged with soils under cover of naturally occurring forests of relatively humid areas rather than agricultural soils in arid areas. In the current study we examined the DOC and DON release dynamic of sand and loess soils sampled from the Negev Desert of Israel. Each one of the soils were mixing with 5% (w/w) of one of the biosolids and packed into a Plexiglass column (I.d. 5.2 cm, L=20 cm). The flow-through experiments were conducted under low (1 ml/min) or high (10 ml/min) flow rates in a continuous or interrupted manner. The leachates were collected in time intervals equivalent to about 0.12 pore volume of a given soil-biosolids mixture. The established leaching curves of DOC, DON, NO3-, NH4+ and Cl- are analyzed by water flow and solute transport model for saturate (continuous runs) or variably saturate water flow conditions (interrupted runs). The chemical equilibrium or non-equilibrium (i.e. equilibrium and/or kinetics adsorption/desorption) versions of the convection dispersion

  13. Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity.

    PubMed

    Lee, Sang-Hwan; Oh, Bang-Il; Kim, Jeong-gyu

    2008-05-01

    To examine the effects of amendments on the degradation of heavy mineral oil, we conducted a pilot-scale experiment in the field for 105 days. During the experiment, soil samples were collected and analyzed periodically to determine the amount of residual hydrocarbons and evaluate the effects of the amendments on microbial activity. After 105 days, the initial level of contamination (7490+/-480 mg hydrocarbon kg(-1) soil) was reduced by 18-40% in amended soils, whereas it was only reduced by 9% in nonamended soil. Heavy mineral oil degradation was much faster and more complete in compost-amended soil than in hay-, sawdust-, and mineral nutrient-amended soils. The enhanced degradation of heavy mineral oil in compost-amended soil may be a result of the significantly higher microbial activity in this soil. Among the studied microbial parameters, soil dehydrogenase, lipase, and urease activities were strongly and negatively correlated with heavy mineral oil biodegradation (P<0.01) in compost-amended soil.

  14. Long-term use of biosolids as organic fertilizers in agricultural soils: potentially toxic elements occurrence and mobility.

    PubMed

    Marguí, E; Iglesias, M; Camps, F; Sala, L; Hidalgo, M

    2016-03-01

    The presence of potentially toxic elements (PTEs) may hinder a more widespread application of biosolids in agriculture. At present, the European Directive 86/278/CEE limit the total concentrations of seven metals (Cu, Cr, Ni, Pb, Zn, Cd and Hg) in agricultural soils and in sewage sludges used as fertilizers but it has not taken into consideration the potential impacts of other emerging micropollutants that may be present in the biosolids as well as their mobility. The aim of this study was to evaluate the accumulation and mobility of 13 elements (including regulated metals and other inorganic species) in agricultural soils repeatedly amended with biosolids for 15 years. Firstly, three digestions programs using different acid mixtures were tested to evaluate the most accurate and efficient method for analysis of soil and sludge. Results demonstrated that sewage sludge application increased concentrations of Pb and Hg in soil, but values did not exceed the quality standard established by legislation. In addition, other elements (As, Co, Sb, Ag, Se and Mn) that at present are not regulated by the Spanish and European directives were identified in the sewage sludge, and significant differences were found between Ag content in soils amended with biosolids in comparison with control soils. This fact can be related to the increasing use of silver nanoparticles in consumer products due to their antibacterial properties. Results from the leaching tests show up that, in general, the mobility degree for both regulated and non-regulated elements in soils amended with biosolids was quite low (<10 %).

  15. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochars contain an assemblage of organic and inorganic compounds; they can be used as an amendment for carbon sequestration and soil quality improvement. Not all biochars are viable soil amendments, however, because of differences in their chemical composition. In this study, we demonstrate how bio...

  16. 76 FR 29238 - Methyl Bromide; Cancellation Order for Registration Amendments To Terminate Certain Soil Uses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... provided, EPA received no comments in response to the February 9, 2011, Federal Register notice (76 FR 7200... AGENCY Methyl Bromide; Cancellation Order for Registration Amendments To Terminate Certain Soil Uses... for the amendments to terminate soil uses, voluntarily requested by the registrants and accepted...

  17. Potential effects of vinasse as a soil amendment to control runoff and soil loss

    NASA Astrophysics Data System (ADS)

    Hazbavi, Z.; Sadeghi, S. H. R.

    2016-02-01

    Application of organic materials are well known as environmental practices in soil restoration, preserving soil organic matter and recovering degraded soils of arid and semiarid lands. Therefore, the present research focused on evaluating the effectiveness of vinasse, a byproduct mainly of the sugar-ethanol industry, on soil conservation under simulated rainfall. Vinasse can be recycled as a soil amendment due to its organic matter content. Accordingly, the laboratory experiments were conducted by using 0.25 m2 experimental plots at 20 % slope and rainfall intensity of 72 mm h-1 with 0.5 h duration. The effect of vinasse was investigated on runoff and soil loss control. Experiments were set up as a control (with no amendment) and three treated plots with doses of 0.5, 1, and 1.5 L m-2 of vinasse subjected to simulated rainfall. Laboratory results indicated that vinasse at different levels could not significantly (P > 0.05) decrease the runoff amount and soil loss rate in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m-2 level of vinasse application.

  18. Influences of winery-distillery waste compost stability and soil type on soil carbon dynamics in amended soils.

    PubMed

    Bustamante, M A; Said-Pullicino, D; Paredes, C; Cecilia, J A; Moral, R

    2010-10-01

    The application of organic materials to replenish soil organic matter and improve soil structure and fertility has become a common agronomic practice. This research deals with the effects of soil amendment with winery and distillery waste composts on organic carbon (C) mineralisation in two arable soils. A sandy-loam and clay-loam soil were treated and incubated with a number organic materials obtained from the co-composting of different proportions of grape stalk, grape marc, exhausted grape marc and vinasse, with sewage sludge or animal manure. Moreover, the effect of compost stability on C mineralisation dynamics was studied by applying organic materials from different stages of the composting process. The results obtained showed that the addition of exogenous organic matter stimulated microbial growth, enhanced soil respiration and increased water-extractable C contents in both soils, particularly in the days immediately following amendment. The initial composition of the different organic materials used, especially for the mature samples, and the texture of the receiving soil did not influence significantly the C mineralisation final values, with around 11-20% of the added organic C being mineralised over the first 140 days. However, the contribution of organic amendment to the labile organic C pool, maximum rates of soil respiration, as well as the extent of initial disturbance of the soil microbiota were all found to be related to the degree of organic matter stability. Moreover, irrespective of the type and stability of the organic amendment, the mineralogical composition of the receiving soil was found to significantly influence its resilience in such systems.

  19. Influences of winery-distillery waste compost stability and soil type on soil carbon dynamics in amended soils.

    PubMed

    Bustamante, M A; Said-Pullicino, D; Paredes, C; Cecilia, J A; Moral, R

    2010-10-01

    The application of organic materials to replenish soil organic matter and improve soil structure and fertility has become a common agronomic practice. This research deals with the effects of soil amendment with winery and distillery waste composts on organic carbon (C) mineralisation in two arable soils. A sandy-loam and clay-loam soil were treated and incubated with a number organic materials obtained from the co-composting of different proportions of grape stalk, grape marc, exhausted grape marc and vinasse, with sewage sludge or animal manure. Moreover, the effect of compost stability on C mineralisation dynamics was studied by applying organic materials from different stages of the composting process. The results obtained showed that the addition of exogenous organic matter stimulated microbial growth, enhanced soil respiration and increased water-extractable C contents in both soils, particularly in the days immediately following amendment. The initial composition of the different organic materials used, especially for the mature samples, and the texture of the receiving soil did not influence significantly the C mineralisation final values, with around 11-20% of the added organic C being mineralised over the first 140 days. However, the contribution of organic amendment to the labile organic C pool, maximum rates of soil respiration, as well as the extent of initial disturbance of the soil microbiota were all found to be related to the degree of organic matter stability. Moreover, irrespective of the type and stability of the organic amendment, the mineralogical composition of the receiving soil was found to significantly influence its resilience in such systems. PMID:20382012

  20. Characterization of Biochars Produced from Cornstovers for Soil Amendment

    SciTech Connect

    Lee, Dr. James W; Kidder, Michelle; Evans, Barbara; Buchanan III, A C; Garten Jr, Charles T; Paik, Sok W; Brown, Dr. Robert C.

    2010-01-01

    Through cation exchange capacity assay, nitrogen adsorption-desorption surface area measurements, scanning electron microscopic imaging, infrared spectra and elemental analyses, we characterized biochar materials produced from cornstover under two different pyrolysis conditions, fast pyrolysis at 450 C and gasification at 700 C. Our experimental results showed that the cation exchange capacity (CEC) of the fastpyrolytic char is about twice as high as that of the gasification char as well as that of a standard soil sample. The CEC values correlate well with the increase in the ratios of the oxygen atoms to the carbon atoms (O:C ratios) in the biochar materials. The higher O:C ratio was consistent with the presence of more hydroxyl, carboxylate, and carbonyl groups in the fast pyrolysis char. These results show how control of biomass pyrolysis conditions can improve biochar properties for soil amendment and carbon sequestration. Since the CEC of the fast-pyrolytic cornstover char can be about double that of a standard soil sample, this type of biochar products would be suitable for improvement of soil properties such as CEC, and at the same time, can serve as a carbon sequestration agent.

  1. Biodegradation of phenanthrene and pyrene in compost-amended soil.

    PubMed

    Yuan, Shaw Y; Su, Lai M; Chang, Bea V

    2009-06-01

    This study investigated the biodegradation of the polycyclic aromatic hydrocarbons (PAHs) phenanthrene and pyrene in compost and compost-amended soil. The degradation rates of the two PAHs were phenanthrene>pyrene. The degradation of PAH was enhanced when the two PAHs were present simultaneously in the soil. The addition of either of the two types of compost (straw and animal manure) individually enhanced PAH degradation. Compost samples were separated into fractions with various particle size ranges, which spanned 2-50 microm, 50-105 microm, 105-500 microm, and 500-2000 microm. We observed that the compost fractions with smaller particle sizes demonstrated higher PAH degradation rates. However, when the different compost fractions were added to soil, compost particle size had no significant effect on the rate of PAH degradation. Of the micro-organisms isolated from the soil-compost mixtures, strains S1, S2, and S8, which were identified as Arthrobacter nicotianae, Pseudomonas fluorescens, and Bordetella Petrii, respectively, demonstrated the best degradation ability.

  2. Rapid transport and transformation of phosphorus species during the leaching of poultry manure amended soil

    NASA Astrophysics Data System (ADS)

    Giles, Courtney; Cade-Menun, Barbara; Liu, Corey; Hill, Jane

    2015-04-01

    The loss of phosphorus (P) from soils due to leaching is a major concern in heavily fertilized agricultural regions. The mobility and transformation of P species will depend on the source of manure fertilizer, leaching regime, and the extent of soil P saturation within the soil profile. We investigate spatial and temporal changes in the distribution of P species within a poultry manure-amended soil at two depths (0-5, 10-15 cm) as well as leachate P fractions during 10 weeks of leaching. Leachate P was primarily composed of dissolved fractions (soluble reactive P; dissolved unreactive P) and reached a maximum in the fourth week of leaching. In soils, the degree of P saturation (80%) and water extractable P (9 mg kg-1) were also greatest in week 4. 31P NMR spectra of the 0-5 cm depth indicate that surface soils were most similar to the poultry manure in week 4. During peak leaching, the proportion of orthophosphate (OrthoP) at the soil surface (0-5 cm; 80%) was greater than that from the lowest depth (10-15 cm; 72%), which contained relatively larger proportions of monoester-(17%) and diester-P classes (10%). Poultry manure likely contributed to the mobile pool of P species, including OrthoP, myo-inositol hexakisphosphate (myo-IHP), and nucleic acids. The appearance of neo- and D-chiro-IHP, as well as phospholipid signals during the leaching period indicate possible short-term (<10 week) contributions of organic P to the generation and leaching of OrthoP, under P-saturated conditions. Further work is needed to determine how fertilization and leaching will affect the mobility and transformation of P species across a wider range of soil types. Keywords: Phytate, organic phosphorus, degree of phosphorus saturation, soil, leachate, poultry manure

  3. Achilles heel of environmental risk from recycling of sludge to soil as amendment: A summary in recent ten years (2007-2016).

    PubMed

    Liu, Hong-Tao

    2016-10-01

    Recycling sludge as a soil amendment has both positive and negative effects because of its enrichment in both nutrients and contaminants. So far, the negative effect has to be extensively investigated that the severities of different types of contaminants also remain unclear. The environmental behavior and risk of organic contaminant and pharmaceuticals, heavy metal and salt as well as pathogenic microorganisms brought by sludge amendment are summarized and discussed here. Organic contaminants and pharmaceuticals are typically found at low concentrations in sludge, the risks from sludge-amended soil decrease over time owing to its biodegradability. On the other hand, application of sludge generally increases soil salinity, which may cause physiological damage to plants grown in sludge-amended soil. In some extent, this negative effect can be alleviated by means of dilution; however, greater attention should be paid to long term increasing possible risk of eutrophication. Heavy metal (particularly of mobile heavy metals, such as Cd) with high concentrations in sludge and soil receiving considerable sludge can cause its incremental abundance in soil and crop contamination, further posing risks to humans, but most cases showed that there remained not excessive in heavy metal caused by sludge amendment. It is worth noting that increasing soil organic matter content may reduce transfer of heavy metal from soil to crops, but not restrict its uptake by crops at all. Combined literature together, it is summarized that heavy metal becomes a relatively severe bottleneck in recycling of sludge as soil amendment due to its non-biodegradability and potential damage to health by adventuring contamination from agricultural products. Particular attention should therefore be paid to long term monitoring the change of heavy metals concentration in sludge amended soil.

  4. Burkholderia cordobensis sp. nov., from agricultural soils.

    PubMed

    Draghi, Walter O; Peeters, Charlotte; Cnockaert, Margo; Snauwaert, Cindy; Wall, Luis G; Zorreguieta, Angeles; Vandamme, Peter

    2014-06-01

    Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus Burkholderia, with Burkholderia zhejiangensis as most closely related formally named species; this relationship was confirmed through comparative gyrB sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus Burkholderia. Burkholderia sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100% similarity) and gyrB (99.1-99.7%) gene sequences. The results of DNA-DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name Burkholderia cordobensis sp. nov. is proposed, with strain MMP81(T) ( = LMG 27620(T) = CCUG 64368(T)) as the type strain.

  5. Extractability and bioavailability of Pb and As in historically contaminated orchard soil: effects of compost amendments.

    PubMed

    Fleming, Margaret; Tai, Yiping; Zhuang, Ping; McBride, Murray B

    2013-06-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron.

  6. Extractability and Bioavailability of Pb and As in Historically Contaminated Orchard Soil: Effects of Compost Amendments

    PubMed Central

    Fleming, Margaret; Yiping, Tai; Ping, Zhuang; McBride, Murray B.

    2015-01-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron. PMID:23474982

  7. P losses in soil columns amended with compost and digestate from municipal solid wastes

    NASA Astrophysics Data System (ADS)

    García-Albacete, Marta; Cartagena, M. Carmen

    2013-04-01

    Sludge's, manures and compost applied to agricultural soils in high quantities and long-term application to increase crop productivity, result in accumulation of soil phosphorous (P). Soluble P is directly available to algae (Sonzogni et al., 1982) and thus particularly relevant to water quality degradation. Transport of P from agricultural soils to surface waters has been linked to eutrophication in fresh water and estuaries (Sharpley and Lemunyon, 1998). Almost 50% of stored water in Spain is degraded by eutrophication processes that cause the proliferation of algae and other organisms and a decrease in oxygen content (Environmental Profile of Spain 2005). Fertilizers and biodegradable wastes application rates in agriculture are based on nitrogen requirements. This results in a P supply that is in excess of crops needs since the ratio of P to N in waste use to be greater than required by plants (Smith, 1995). While surface runoff is an important pathway of phosphorus losses from agricultural lands, significant losses can also occur via leaching thought soils. Leaching tests are important for assessing the risk of release of potential pollutants from biodegradable wastes into groundwater or surface water. Percolation tests also get information about the interaction of organic waste with soils. The study was conducted according to the percolation leaching test CEN/TS 14405 "Characterization of waste-Leaching behavior test- Up-flow percolation test" with three different soils mixed with organic wastes from msw (compost and digestato) and an inorganic fertilizer (NaH2PO4). Each soil was amended with the P sources at rates of 100 kg P ha-1. Leachates were collected and analyzed for each column for dissolved reactive P by inductively coupled plasma atomic emission spectroscopy (ICP) following USEPA Method 3050A digestion (USEPA, 1995). The fact that P sorption capacity (Xmax, PSI) of the soils was determined using Langmuiŕs isotherms and the P forms from organic

  8. Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science.

    PubMed

    Scheckel, Kirk G; Diamond, Gary L; Burgess, Michele F; Klotzbach, Julie M; Maddaloni, Mark; Miller, Bradley W; Partridge, Charles R; Serda, Sophia M

    2013-01-01

    Ingested soil and surface dust may be important contributors to elevated blood lead (Pb) levels in children exposed to Pb contaminated environments. Mitigation strategies have typically focused on excavation and removal of the contaminated soil. However, this is not always feasible for addressing widely disseminated contamination in populated areas often encountered in urban environments. The rationale for amending soils with phosphate is that phosphate will promote formation of highly insoluble Pb species (e.g., pyromorphite minerals) in soil, which will remain insoluble after ingestion and, therefore, inaccessible to absorption mechanisms in the gastrointestinal tract (GIT). Amending soil with phosphate might potentially be used in combination with other methods that reduce contact with or migration of contaminated soils, such as covering the soil with a green cap such as sod, clean soil with mulch, raised garden beds, or gravel. These remediation strategies may be less expensive and far less disruptive than excavation and removal of soil. This review evaluates evidence for efficacy of phosphate amendments for decreasing soil Pb bioavailability. Evidence is reviewed for (1) physical and chemical interactions of Pb and phosphate that would be expected to influence bioavailability, (2) effects of phosphate amendments on soil Pb bioaccessibility (i.e., predicted solubility of Pb in the GIT), and (3) results of bioavailability bioassays of amended soils conducted in humans and animal models. Practical implementation issues, such as criteria and methods for evaluating efficacy, and potential effects of phosphate on mobility and bioavailability of co-contaminants in soil are also discussed.

  9. Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils

    PubMed Central

    Van Trump, J. Ian; Wrighton, Kelly C.; Thrash, J. Cameron; Weber, Karrie A.; Andersen, Gary L.; Coates, John D.

    2011-01-01

    ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g−1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. PMID:21750120

  10. Assessment of amendments for the immobilization of Cu in soils containing EDDS leachates.

    PubMed

    Yang, Li; Jiang, Longfei; Wang, Guiping; Chen, Yahua; Shen, Zhenguo; Luo, Chunling

    2015-11-01

    In this study, the effectiveness of six soil amendments (ferrihydrite, manganese dioxide, gibbsite, calcium carbonate, biochar, and organic fertilizer) was investigated to assess the feasibility of minimizing possible environmental contaminant leaching during S,S-ethylenediaminedisuccinic acid (EDDS)-enhanced phytoextraction process based on 0.01-M CaCl2 extraction. Results showed that the application of EDDS could significantly increase Cu concentrations in the leaching solution. Compared with control, incorporation of six amendments (excluding organic fertilizer) significantly decreased CaCl2-extractable Cu concentrations in both soils. When EDDS-containing solutions leached from the soil columns (mimicking the upper soil layers) were added to soils with different amendments (mimicking the subsoil), CaCl2-extractable Cu in the soils amended with ferrihydrite, manganese dioxide, gibbsite, and calcium carbonate was significantly lower than that in the control soil (no amendments) and remained relatively constant during the first 14 days. Incorporation of biochar or organic fertilizer had no positive effect on the immobilization of Cu in EDDS leachates in soils. After 14 days, CaCl2-extractable Cu concentration decreased rapidly in soils incorporated with various amendments. Integrating soil washing with biodegradable chelating agents or chelant-enhanced phytoextraction and immobilization of heavy metals in subsoil could be used to rapidly reduce the concentration of bioavailable metal fractions in the upper soil layers and minimize environmental risks of secondary pollution. PMID:26077318

  11. Accumulation of heavy metals in a long-term poultry waste-amended soil

    SciTech Connect

    Han, F.X.; Kingery, W.L.; Selim, H.M.; Gerard, P.D.

    2000-03-01

    Various metals are added to poultry diets to facilitate weight increase and disease prevention. The large amounts of poultry waste produced annually are dispersed intensively over relatively small areas of land, resulting in accumulations that pose potential environmental risks to the surface and groundwater. The focus of this study was to assess the distribution of heavy metals among various solid-phase fractions in soil profiles from a 25-year poultry waste-amended soil. Copper and Zn accumulated close to the soil surface where the total amounts of Cu and Zn in waste-amended soils were significantly higher than in nonamended soils. The total metal concentrations in amended soils were not critically high. Copper in the amended soil was present mostly in the organic matter (OM) fraction (46.9%), whereas Zn was found in the easily reducible oxide (ERO) fraction (47.3%). This suggests that the Cu and Zn in this long-term amended soil are potentially bioavailable and mobile. The authors observed the mobility of Zn through much of the soil profile of the long-term waste-amended soil. Zinc in this soil profile was found primarily in forms of the residual (RES) and crystalline iron oxide bound (CryFe) fractions, followed by the organic matter-bound and exchangeable (EXC) fractions.

  12. Survival and persistence of non-pathogenic Escherichia coli and attenuated Escherichia coli O157:H7 in soils amended with animal manure in a greenhouse environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological soil amendments (BSA's), including dairy cattle, poultry litter, and horse manure, play an important role in agriculture but may contain pathogens that can contaminate raw or ready-to-eat fruit and vegetable crops that are consumed raw. Proposed FDA standards include a 90- or 120-day inte...

  13. Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes.

    PubMed

    Bulluck, L R; Ristaino, J B

    2002-02-01

    ABSTRACT Soil fertility amendments, including composted cotton-gin trash, swine manure, a rye-vetch green manure, or synthetic fertilizers, were applied to subplots and tillage on bare soil; or tillage followed by surface mulch with wheat straw were applied to main plots to determine the effect on the incidence of southern blight caused by Sclerotium rolfsii, yield of processing tomato, and soil microbial communities. The amendment-tillage interaction was significant in 1997 and disease incidence was 67% in tilled bare soil receiving synthetic fertilizers; whereas disease incidence was 3, 12, and 16% in surface-mulched plots amended with a composted cotton-gin trash, swine manure, or a rye-vetch green manure. The amendment effect was significant in 1998, and disease incidence was 61% in plots receiving synthetic fertilizer and was 23, 44, and 53% in plots receiving cotton-gin trash, swine manure, or rye-vetch green manure, respectively. In 1997, yields were highest in tilled surface-mulched plots amended with synthetic fertilizers, cotton-gin trash, or swine manure, respectively. In 1998, yields were low in all plots and there were no significant differences in yield due to treatment. Propagule densities of antagonistic soil fungi in the genus Trichoderma were highest in soils amended with composted cotton-gin trash or swine manure in both years. Propagule densities of fluorescent pseudomonads in soil were higher in plots amended with organic amendments than with synthetic fertilizers in both years. Propagules densities of enteric bacteria were elevated in soils amended with raw swine manure biosolids in both years. Our research indicates that some organic amendments, such as cotton-gin trash, reduced the incidence of southern blight in processing tomato and also enhanced populations of beneficial soil microbes. PMID:18943092

  14. Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes.

    PubMed

    Bulluck, L R; Ristaino, J B

    2002-02-01

    ABSTRACT Soil fertility amendments, including composted cotton-gin trash, swine manure, a rye-vetch green manure, or synthetic fertilizers, were applied to subplots and tillage on bare soil; or tillage followed by surface mulch with wheat straw were applied to main plots to determine the effect on the incidence of southern blight caused by Sclerotium rolfsii, yield of processing tomato, and soil microbial communities. The amendment-tillage interaction was significant in 1997 and disease incidence was 67% in tilled bare soil receiving synthetic fertilizers; whereas disease incidence was 3, 12, and 16% in surface-mulched plots amended with a composted cotton-gin trash, swine manure, or a rye-vetch green manure. The amendment effect was significant in 1998, and disease incidence was 61% in plots receiving synthetic fertilizer and was 23, 44, and 53% in plots receiving cotton-gin trash, swine manure, or rye-vetch green manure, respectively. In 1997, yields were highest in tilled surface-mulched plots amended with synthetic fertilizers, cotton-gin trash, or swine manure, respectively. In 1998, yields were low in all plots and there were no significant differences in yield due to treatment. Propagule densities of antagonistic soil fungi in the genus Trichoderma were highest in soils amended with composted cotton-gin trash or swine manure in both years. Propagule densities of fluorescent pseudomonads in soil were higher in plots amended with organic amendments than with synthetic fertilizers in both years. Propagules densities of enteric bacteria were elevated in soils amended with raw swine manure biosolids in both years. Our research indicates that some organic amendments, such as cotton-gin trash, reduced the incidence of southern blight in processing tomato and also enhanced populations of beneficial soil microbes.

  15. Effects of N-ammonoxidized lignins amendment on N availability and soil fertility: An incubation study

    NASA Astrophysics Data System (ADS)

    María De la Rosa, José; López-Martín, María; Liebner, Falk; Knicker, Heike

    2013-04-01

    The shift towards a biobased economy will probably generate the application of bioenergy by-products and charred residues to the soil as either amendments or fertilizers. The process of ammonoxidation (application of gaseous oxygen and aqueous ammonia under ambient pressure breaks down aromatic lignin moieties and introduces N in the form of urea, amides and amines), converts lignin, a major by-product of the pulp and paper industry, or other ligneous materials into artificial humic matter (N-lignin). The use of N-ammonoxidized lignin as soil improvers is in theory an economically viable solution, especially interesting for agricultural areas of Mediterranean countries, in which additional factors such as water shortage and fires contribute to declining N availability by lowering nutrient diffusion, litter input or sequestration of N in charred structures. However, limited research has been done to determine how this will influence C and N dynamics and soil fertility. Therefore we performed pot experiments in which a perennial ryegrass (Lolium perenne L.) was grown on a typical Andalusian soil (chromic Luvisol) after amendment of N-lignins highly enriched in 15N (Sarkanda and Indulin ammonoxidized lignins) for 75 days. For comparison, the incubation was also carried out on soils fertilized with 15NO3 and unfertilized (control). The application of ammonoxidized lignins altered the pH and electrical conductivity of the soil. At higher concentrations a retardation of seed germination was evidenced, an observation that needs further considerations before N-enriched technical lignins can be applied in agriculture. After 75 days, the plant shoots from the pots amended with15N-Indulin and 15N-Sarkanda accumulated 8% and 20%, respectively of the initial 15N (15N0). The N was efficiently sequestered from fast release or leaching and most of 15N0 remained in the soil (64%) in the 15N-Indulin pots. In contrast, the 15N-Sarkanda pots showed a lower efficiency in the N

  16. Seasonal dynamics of CO2 efflux in soils amended with composted and thermally-dried sludge as affected by soil tillage systems in a semi-arid agroecosystem

    NASA Astrophysics Data System (ADS)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo

    2014-05-01

    In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0

  17. Impact of an intensive management on soil biochemical and biological properties in an agricultural soil of Southern Italy

    NASA Astrophysics Data System (ADS)

    Scotti, R.; D'Ascoli, R.; Rao, M. A.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    An intensive management of agricultural soils is widely carried out to increase vegetation productivity. Nevertheless, the large use of machineries, chemical fertilizers and pesticides can often cause, in time, a substantial decline in soil fertility by affecting soil physical and chemical properties and, in turn, growth and activity of soil microbial community. In fact, alteration in soil structure, nutrient losses and, in particular, changes in quality and quantity of soil organic matter are some of the principal soil degradation processes deriving from an intensive agricultural management that can affect, in different ways, soil biochemical and biological properties. The aim of this research was to assess the impact of intensive management on agricultural soils by measuring soil physical, chemical and biochemical/biological properties. The use of appropriate indicators as quantitative tools could allow to assess soil quality. Moreover, although soil physical and chemical properties have received great attention, soil biochemical/biological properties, such as enzyme activities and microbial biomass, functionally related properties involved in the nutrient cycles, can be considered as sensitive indicators of soil quality and health changes because, they show a faster turn over compared to soil organic matter. Our attention was focused on the Plane of Sele river (Campania region, Italy), an area characterized by an intensive agriculture and greenhouse cultures. Twenty-five farms were chosen, with the aid of regional soil map, in order to get soils with different physical and chemical properties. As common trait, the selected farms, all with greenhouse cultures, used no organic amendments but only mineral compounds to fertilize soils. Moreover, to better understand the impact of intensive agricultural practices on soil of each farm, control soils from orchards or uncultivated plots were chosen. In each farm soil samples were collected in three different plots

  18. Hardwood tree growth on amended mine soils in west virginia.

    PubMed

    Wilson-Kokes, Lindsay; Delong, Curtis; Thomas, Calene; Emerson, Paul; O'Dell, Keith; Skousen, Jeff

    2013-09-01

    Each year surface mining in Appalachia disrupts large areas of forested land. The Surface Mining Control and Reclamation Act requires coal mine operators to establish a permanent vegetative cover after mining, and current practice emphasizes soil compaction and planting of competitive forage grasses to stabilize the site and control erosion. These practices hinder recolonization of native hardwood trees on these reclaimed sites. Recently reclamation scientists and regulators have encouraged re-establishment of hardwood forests on surface mined land through careful selection and placement of rooting media and proper selection and planting of herbaceous and tree species. To evaluate the effect of rooting media and soil amendments, a 2.8-ha experimental plot was established, with half of the plot being constructed of weathered brown sandstone and half constructed of unweathered gray sandstone. Bark mulch was applied to an area covering both sandstone types, and the ends of the plot were hydroseeded with a tree-compatible herbaceous seed mix, resulting in eight soil treatments. Twelve hardwood tree species were planted, and soil chemical properties and tree growth were measured annually from 2007 to 2012. After six growing seasons, average tree volume index was higher for trees grown on brown sandstone (5333 cm) compared with gray sandstone (3031 cm). Trees planted in mulch outperformed trees on nonmulched treatments (volume index of 6187 cm vs. 4194 cm). Hydroseeding with a tree-compatible mix produced greater ground cover (35 vs. 15%) and resulted in greater tree volume index than nonhydroseed areas (5809 vs. 3403 cm). Soil chemical properties were improved by mulch and improved tree growth, especially on gray sandstone. The average pH of brown sandstone was 5.0 to 5.4, and gray sandstone averaged pH 6.9 to 7.7. The mulch treatment on gray sandstone resulted in tree growth similar to brown sandstone alone and with mulch. After 6 yr, tree growth on brown sandstone was

  19. Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (a...

  20. ADSORPTION OF CADMIUM ONTO DIFFERENT FRACTIONS OF BIOSOLID-AMENDED SOILS

    EPA Science Inventory

    We hypothesized not only organic but also inorganic fraction in biosolids controls the metal availability in soil systems. To test this hypothesis we conducted Cd adsorption experiments on different fractions of biosolids, biosolid amended soils, and unamended soils. Soils were c...

  1. Effect of cow slurry amendment on atrazine dissipation and bacterial community structure in an agricultural Andisol.

    PubMed

    Briceño, G; Jorquera, M A; Demanet, R; Mora, M L; Durán, N; Palma, G

    2010-06-15

    Atrazine is a commonly used herbicide for maize production in Chile, but it has recently been shown to be ineffective in soils that receive applications of cow slurries generated from the dairy industry. This effect may be caused either by the sorption of the pesticide to organic matter or more rapid degradation in slurry-amended soils. The objectives of this study were to evaluate the effects of cow slurry on atrazine dissipation, the formation of atrazine metabolites and the modification of bacterial community in Andisol. The cow slurry was applied at doses of 100,000-300,000 Lha(-1). After 4 weeks, atrazine was applied to the slurry-amended soils at concentrations of 1-3 mg kg(-1). The amounts of atrazine and its metabolites were determined by high performance liquid chromatography (HPLC). The soil microbial community was monitored by measurement of CO(2) evolution and changes in bacterial community using PCR-DGGE of 16S rRNA genes. The results show that cow slurry applications had no effect on atrazine dissipation, which had a half-life of 15-19 days. The atrazine metabolites were detected after 20 days and were significantly higher in soils amended with the slurry at both 20 and 40 days after application of the herbicide. Respiration rates were elevated after 10 days in all soils with atrazine addition. Both the atrazine and slurry amendments altered the bacterial community structures, indicated by the appearance of specific bands in the DGGE gels after 10 days. Cloning and sequencing of the 16S rRNA genes from the DGGE gels showed that the bands represented various genera of beta-proteobacteria that appeared in response to atrazine. According to our results, further field studies are required to explain the lower effectiveness of atrazine in weed control. These studies may include the effect of dissolved organic carbon on the atrazine mobility.

  2. Accumulation and translocation of metals in soil and different parts of French bean (Phaseolus vulgaris L.) amended with sewage sludge.

    PubMed

    Kumar, Vinod; Chopra, A K

    2014-01-01

    A pot experiment was conducted to study the accumulation and translocation of metals in French bean (Phaseolus vulgaris L.). Plants were grown in soil amended with up to 100 % sewage sludge. Significant (p < 0.01) changes to soil characteristics were observed. The maximum growth of P. vulgaris was noted in the treatment with 40 % of sewage sludge. Metal concentrations were significantly (p < 0.05) higher in P. vulgaris after sewage sludge amendment where Fe > Zn > Cd > Cu > Cr > Pb. The translocation for Fe and Zn was in the order of leaves > shoot > root > fruits, for Cd, shoot > root > leaves > fruits, for Cu and Pb shoot > leaves > root > fruits and for Cr root > shoot > leaves > fruits of P. vulgaris. All accumulated metal concentrations except Cd in the fruit were below the FAO/WHO standard limits. Thus, the amendment of agricultural soil by sewage sludge might be feasible. However, a regular monitoring of metal levels in agricultural products is recommended to prevent their accumulation in the food chain.

  3. Adsorption of methabenzthiazuron on six allophanic and nonallophanic soils: effect of organic matter amendment.

    PubMed

    Báez, M E; Rodríguez, M; Vilches, P; Romero, E

    2001-01-01

    This article reports on methabenzthiazuron [1-(1,3-benzothiazol-2-yl)-1,3-dimethylurea] (MBT) adsorption process on six agricultural allophanic and nonallophanic soils. The effect of amendment with exogenous organic matter was also studied. Adsorption kinetic fits an hyperbolic model. MBT adsorption reached an apparent equilibrium within 2 h and followed a second-order reaction. The maximum adsorbed amounts for natural soils ranged from 32 to 145 microg g(-1). Rate constants were considered relatively low (0.27-1.5 x 10(-4) [microg g(-1)](1-n) s-1); the slow process was attributed to a combined effect of difussion and adsorption. MBT adsorption fits the Freundlich model with r values > or =0.998 at P < or = 0.001 significance levels. Kf and Freundlich exponents (l/n) ranged from 5.3 to 82.1 cm3 g(-1) and from 0.66 to 0.73, respectively. Kf values for soils with a low organic matter content were lower than that obtained from the only typical allophanic soil derived from volcanic ash under study. Lineal regression analysis between Kf and organic matter content of nonallophanic soils gave a correlation coefficient of 0.980 (P = 0.02). Dispersion of Kd values together with close values of K(OM) indicate that organic matter (OM) was the principal component responsible for MBT adsorption in unamended soils. Addition of peat decreased soil pH and increased adsorption capacity for allophanic and nonallophanic soils. Kinetic experiments showed enhancements of Xmax values and lower rate constants.

  4. Response of Plant Parasitic and Free Living Soil Nematodes to Composted Animal Manure Soil Amendments

    PubMed Central

    Renčo, M.; Kováčik, P.

    2012-01-01

    In an outside pot experiment, dry pig manure processed on pine sawdust litter and fermented for seven days by house fly larvae (fermented manure), and pine sawdust applied alone, and in combination with a spring application of inorganic nitrogen fertilizer were used to determine their effects on plant parasitic and free-living soil nematodes on sugar beets (cv. Antek). Non amended soil was used as a control. All treatments with fermented pig manure and sawdust with nitrogen fertilizer decreased number of plant parasitic nematodes and also root-fungal feeding nematodes compared to the untreated control. Sawdust applied alone had no effect on plant parasitic and root-fungal feeding nematode suppression. Free-living nematodes which were mainly bacteriovores and fungivores were significantly more abundant in soil amended with fermented pig manure, while the sawdust had no effect on these nematodes. The effect of all tested treatments on omnivores-predators was rather random, and in general, the number of these nematodes decreased after soil amendment applications compared to the untreated control. PMID:23482503

  5. Response of plant parasitic and free living soil nematodes to composted animal manure soil amendments.

    PubMed

    Renčo, M; Kováčik, P

    2012-12-01

    In an outside pot experiment, dry pig manure processed on pine sawdust litter and fermented for seven days by house fly larvae (fermented manure), and pine sawdust applied alone, and in combination with a spring application of inorganic nitrogen fertilizer were used to determine their effects on plant parasitic and free-living soil nematodes on sugar beets (cv. Antek). Non amended soil was used as a control. All treatments with fermented pig manure and sawdust with nitrogen fertilizer decreased number of plant parasitic nematodes and also root-fungal feeding nematodes compared to the untreated control. Sawdust applied alone had no effect on plant parasitic and root-fungal feeding nematode suppression. Free-living nematodes which were mainly bacteriovores and fungivores were significantly more abundant in soil amended with fermented pig manure, while the sawdust had no effect on these nematodes. The effect of all tested treatments on omnivores-predators was rather random, and in general, the number of these nematodes decreased after soil amendment applications compared to the untreated control.

  6. Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials.

    PubMed

    Clemente, Rafael; Escolar, Angeles; Bernal, M Pilar

    2006-10-01

    Degradation of organic matter (OM) from organic amendments used in the remediation of metal contaminated soils leads to changes in soil chemical properties shortly after their addition, which may affect the soil metal distribution. The effects of two differing organic amendments on OM mineralisation and fractionation of heavy metals in a contaminated soil were investigated in an incubation experiment. The treatments were: control unamended soil, soil amended with fresh cow manure, and soil amended with a compost having a high maturity degree. The soil used was characteristic of the mining area at La Unión (Murcia, Spain) with 28% CaCO(3) and sandy-loam texture (pH 7.7; 2602 mg kg(-1)Zn; 1572 mg kg(-1)Pb). Manure and compost C-mineralisation after 56 days (24% and 3.8%, respectively) were below values reported previously for uncontaminated soils. Both amendments favoured Zn and Pb fixation, particularly the manure. Mn solubility increased at the beginning of the experiment due to a pH effect, and only Cu solubility increased through organic matter chelation in both amended soils.

  7. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    SciTech Connect

    Wang, Q.R.; Li, Y.C.; Klassen, W.

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  8. Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils.

    PubMed

    Jones, Sarah; Bardos, R Paul; Kidd, Petra S; Mench, Michel; de Leij, Frans; Hutchings, Tony; Cundy, Andrew; Joyce, Chris; Soja, Gerhard; Friesl-Hanl, Wolfgang; Herzig, Rolf; Menger, Pierre

    2016-04-15

    Contamination of soil with trace elements, such as Cu, is an important risk management issue. A pot experiment was conducted to determine the effects of three biochars and compost on plant growth and the immobilisation of Cu in a contaminated soil from a site formerly used for wood preservation. To assess Cu mobility, amended soils were analysed using leaching tests pre- and post-incubation, and post-growth. Amended and unamended soils were planted with sunflower, and the resulting plant material was assessed for yield and Cu concentration. All amendments significantly reduced leachable Cu compared to the unamended soil, however, the greatest reductions in leachable Cu were associated with the higher biochar application rate. The greatest improvements in plant yields were obtained with the higher application rate of biochar in combination with compost. The results suggest joint biochar and compost amendment reduces Cu mobility and can support biomass production on Cu-contaminated soils. PMID:26850677

  9. How the type of pyrogenic organic matter determines the SOM quality in amended soils

    NASA Astrophysics Data System (ADS)

    Merino, Agustin; Gartzia-Bengoetxea, Nahia; Morangues, Lur; Arias-Gonzalez, Ander

    2016-04-01

    Charred biomass can be used as an organic amendment and to enhance the C sink capacity of soils. There are two types of by-products containing pyrogenic OM that could be used to improve in agricultural or forestry, biochar and wood ash. Due to their different heating conditions under which it is produced (pyrolysis, combustion and different temperatures, feedstocks,..), the properties of this pyrogenic OM might be highly variable, which could affect the SOM quality and the C sink capacity of the amended soil. The purpose of this study was to assess how SOM quality is influenced by pyrogenic organic matter with different degree of carbonization. Biochar and bottom wood ash were added to two Atlantic forest soils (Pinus radiata, 12 °C, 1200 mm) with different texture, clayey loam and sandy loam. The experiment consisted in a randomized block trials, in which different doses of biochar (0, 3, 9, 18 Mh ha-1) and wood ash (0, 1.5, 4.5, and 9 Mg ha-1) were added. The Biochar applied (pH: 9.8; C: 87 %) was produced by the pyrolysis of Myscanthus sp. at 450°C in a Pyreg® pyrolysis unit. The bottom wood ash (pH: 10.6; C: 30 %) was produced by combustion in a biomass power plant. The aromatization/carbonization was lightly higher in biochar than in wood ash. This latter by-product, in addition to the black carbon, it also contained mineral ash, as well as unburnt or lightly charred plant biomass. The evolution of soil chemical and SOM properties were monitored over three years by solid state Differential Scanning Calorimetry (DSC) and 13C CPMAS NMR. These techniques were applied in bulk samples and also in fractions of different densityes. The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration and soil microbial community. Three years after applications the SOM content increased lightly in the treatment receiving the highest doses of biochar and wood ash, specially in the clay loam soil. SOM in the treated soils displayed a

  10. Application of organic amendments to restore degraded soil: effects on soil microbial properties.

    PubMed

    Carlson, Jennifer; Saxena, Jyotisna; Basta, Nicholas; Hundal, Lakhwinder; Busalacchi, Dawn; Dick, Richard P

    2015-03-01

    Topsoil removal, compaction, and other practices in urban and industrial landscapes can degrade soil and soil ecosystem services. There is growing interest to remediate these for recreational and residential purposes, and urban waste materials offers potential to improve degraded soils. Therefore, the objective of this study was to compare the effects of urban waste products on microbial properties of a degraded industrial soil. The soil amendments were vegetative yard waste compost (VC), biosolids (BioS), and a designer mix (DM) containing BioS, biochar (BC), and drinking water treatment residual (WTR). The experiment had a completely randomized design with following treatments initiated in 2009: control soil, VC, BioS-1 (202 Mg ha(-1)), BioS-2 (403 Mg ha(-1)), and DM (202 Mg BioS ha(-1) plus BC and WTR). Soils (0-15-cm depth) were sampled in 2009, 2010, and 2011 and analyzed for enzyme activities (arylsulfatase, β-glucosaminidase, β-glucosidase, acid phosphatase, fluorescein diacetate, and urease) and soil microbial community structure using phospholipid fatty acid analysis (PLFA). In general, all organic amendments increased enzyme activities in 2009 with BioS treatments having the highest activity. However, this was followed by a decline in enzyme activities by 2011 that were still significantly higher than control. The fungal PLFA biomarkers were highest in the BioS treatments, whereas the control soil had the highest levels of the PLFA stress markers (P < 0.10). In conclusion, one-time addition of VC or BioS was most effective on enzyme activities; the BioS treatment significantly increased fungal biomass over the other treatments; addition of BioS to soils decreased microbial stress levels; and microbial measures showed no statistical differences between BioS and VC treatments after 3 years of treatment. PMID:25673270

  11. Does North Appalachian Agriculture Contribute to Soil Carbon Sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural systems are important for world ecosystems. They can be managed to moderate CO2 emissions. World soils can be both a sink and source of atmospheric CO2, but it is a slow process. Data from long-term soil management experiments are needed to assess soil carbon (C) sink capacity through a...

  12. Can biosolids reduce wind erosion of agricultural soils?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of biosolids to agricultural land has the potential to improve soil health and crop production. In addition, organic material contained in biosolids may enhance biological activity, retention of soil water, and soil aggregation. Thus, there is a likelihood that biosolids applied to s...

  13. Nitrogen loss from windblown agricultural soils in the Columbia Plateau

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion of agricultural soils can degrade both air quality and soil productivity in the Columbia Plateau of the Pacific Northwest United States. Soils in the region contain fine particles that, when suspended, are highly susceptible to long range transport in the atmosphere. Nitrogen (N) associ...

  14. Carbon mineralisation and plant growth in soil amended with compost samples at different degrees of maturity.

    PubMed

    García-Gómez, Antonio; Bernal, María Pilar; Roig, Asunción

    2003-04-01

    The carbon and nitrogen mineralisation of a composting mixture of brewing yeast and lemon tree prunings was studied, at different degrees of stabilisation of this matrix, within an incubation experiment in soil. Meanwhile, a growth test in pots with ryegrass (Lolium perenne L.) was carried out using the selected soil and equal amounts of the composting mixture taken at different maturation steps, in order to evaluate the additions of these organic amendments in terms of fertilising value. Samples of the composting mixture, when poorly transformed through the biostabilisation process, showed high CO2-C releases in the soil, due to the microbial attack on easily degradable organic fractions still present in the mixture, with 24.7% mineralisation of the initial total organic carbon (TOC) after a 70 day incubation. On the other hand, mature compost was the most stable matrix, with only 5.4% of TOC mineralised after 70 days. Furthermore, amendments with the initial composting mixture led to negative net N-mineralisation during 56 days of incubation with soil. Only slight negative values of the net N-mineralisation were detected with fully stabilised compost. Nevertheless, pot experiments with ryegrass revealed that mature compost may promote N mineralisation to certain extents. Moreover, mature compost did not produce any phytotoxic effect, behaving as a slow-action organic fertiliser with N made available through a progressive mineralisation. Thus, the results gained through this study are a confirmation that the fertilising quality of a compost destined for agricultural uses is heavily affected by the complete exhaustion of the maturation reactions.

  15. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    NASA Astrophysics Data System (ADS)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  16. Degradation of organic pollutants in Mediterranean forest soils amended with sewage sludge.

    PubMed

    Francisca Gomez-Rico, M; Font, Rafael; Vera, Jose; Fuentes, David; Disante, Karen; Cortina, Jordi

    2008-05-01

    The degradation of two groups of organic pollutants in three different Mediterranean forest soils amended with sewage sludge was studied for nine months. The sewage sludge produced by a domestic water treatment plant was applied to soils developed from limestone, marl and sandstone, showing contrasting alkalinity and texture. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10-13 carbon alkylic chain, and nonylphenolic compounds, including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EO+NP2EO). These compounds were studied because they frequently exceed the limits proposed for sludge application to land in Europe. After nine months, LAS decomposition was 86-96%, and NP+NP1EO+NP2EO decomposition was 61-84%, which can be considered high. Temporal trends in LAS and NP+NP1EO+NP2EO decomposition were similar, and the concentrations of both types of compounds were highly correlated. The decomposition rates were higher in the period of 6-9 months (summer period) than in the period 0-6 months (winter+spring period) for total LAS and NP+NP1EO+NP2EO. Differences in decay rates with regard to soil type were not significant. The average values of decay rates found are similar to those observed in agricultural soils. PMID:18329688

  17. Evaluation of pulverized trommel fines for use as a soil amendment.

    PubMed

    Walker, Paul M; Kelley, Tim R; Smiciklas, Ken D

    2008-11-01

    Pulverized trommel fines collected from the City of Chicago's municipal solid waste were applied as a soil amendment over a 2-year period to evaluate: (1) their effects on soil quality by measuring soil elemental concentrations, pH, organic matter and cation exchange capacity; (2) their potential for pathogen transfer. A secondary objective was to examine crop growth, yield and productivity. Total and fecal coliform, Enterococci, Escherichia coli, Staphylococci and Salmonella were below minimum detection limits in trommel fines. Trommel fines contained 894.5+/-171.4 mg/kg Pb, and when applied at a rate equivalent to 9.95 mt/ha dry wt, resulted in a soil Pb concentration increase of 18.80 mg/kg, thereby limiting lifetime trommel fine application to 15.9 years before reaching the 300 ppm IEPA (USEPA) regulatory limit. Trommel fines were subjected to a shake extraction procedure and resulting leachate Pb samples were 88.7% below the IEPA (USEPA) regulatory limit (5 mg/l). For the first year, corn yield was significantly higher on soil amended with trommel fines than soil amended with inorganic nitrogen fertilizer. During the second year, soybean yield was significantly lower on soil amended with trommel fines than on soil amended with inorganic fertilizer due to lower plant population. Results of this study suggest that trommel fines can be land applied as a soil amendment if best management practices are followed.

  18. Ecotoxicity evaluation of an amended soil contaminated with uranium and radium using sensitive plants

    NASA Astrophysics Data System (ADS)

    Abreu, M. M.; Lopes, J.; Magalhães, M. C. F.; Santos, E.

    2012-04-01

    In the centre-north granitic regions of Portugal, during the twenty century radium and uranium were exploited from approximately 60 mines. The closure of all uranium mines, in 2001, raised concerns regarding the possible chemical and radiological effects on the inhabitants health around the mine areas. The main objective of this work was to evaluate the effect of organic amendments and organic hydroxiapatite in the ecotoxicity reduction of agricultural soils contaminated with uranium and radium, by germination and growth tests of two sensitive plants (Lactuca sativa L. and Zea mays L.). Pot experiments, under controlled conditions, were undertaken during two months of incubation at 70% of the soil water-holding capacity. Fluvisol from Urgeiriça region containing large concentration of Utotal (635 mg/kg) and 226Ra (2310 Bq/kg) was used. The soil available fraction, extracted with ammonium acetate, corresponds to 90% and 25% of total concentration of Utotal and 226Ra, respectively. Fine ground bone (FB) and sheep manure (OM) single or mixtures were used as amendments. Four treatments, plus control were carried out in triplicate: (A) soil+40 Mg/ha of FB; (B) soil+70 Mg/ha of OM; (C) soil+70 Mg/ha of OM+40 Mg/ha of FB; (D) soil+70 Mg/ha of OM+20 Mg/ha of FB. After the incubation moist soils were kept at 4-5 °C and subsamples were used for leachates extraction following DIN 38414-S4 method. Maize and lettuce seeds were sown in filter paper moistened with the leachates aqueous solutions and in the moist soil for germination and growth tests. Seedlings after three days of germination were used for growth tests in hydroponic, during seven days, using the leachates. Five seeds per replicate were used. Soil presented: pH(H2O)=5.15, EC=7.3 µS/cm; and Corgnic=12.5 g/kg. After two months of incubation soil pH increased to a maximum of 6.53 in amended samples, and EC showed a dramatic increase when compared to the control (0.398 dS/m), from 1.5 dS/m (treatment-A) to 4.7 d

  19. Arsenic(V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition.

    PubMed

    Arco-Lázaro, Elena; Agudo, Inés; Clemente, Rafael; Bernal, M Pilar

    2016-09-01

    High total and bioavailable concentrations of As in soils represent a potential risk for groundwater contamination and entry in the food chain. The use of organic amendments in the remediation of As-contaminated soils has been found to produce distinct effects on the solubility of As in the soil. Therefore, knowledge about As adsorption-desorption processes that govern its solubility in soil is of relevance in order to predict the behaviour of this element during these processes. In this paper, the objective was to determine As adsorption and desorption in four different soils, with and without compost addition, and also in competition with phosphate, through the determination of sorption isotherms. Batch experiments were carried out using three soils affected differently by previous mining activity of the Sierra Minera of La Unión-Cartagena (SE Spain) and an agricultural soil from Segovia province (central Spain). Adsorption was higher in the mining soils (and highest in the acidic one) than in the agricultural soils, although the latter were not affected negatively by organic matter or phosphate competition for sorption sites. The results show that As adsorption in most soils, both with and without compost, fitted better a multimolecular layer model (Freundlich), whereas As adsorption in competition with P fitted a monolayer model (Langmuir). Moreover, the use of compost and phosphate reduced the adsorption of As in the mining soils, while in the agricultural soils compost increased their low adsorption capacity. Therefore, the use of compost can be a good option to favour As immobilisation in soils of low adsorption, but knowledge of the soil composition will be crucial to predict the effects of organic amendments on As solubility in soils and its associated environmental risk.

  20. Arsenic(V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition.

    PubMed

    Arco-Lázaro, Elena; Agudo, Inés; Clemente, Rafael; Bernal, M Pilar

    2016-09-01

    High total and bioavailable concentrations of As in soils represent a potential risk for groundwater contamination and entry in the food chain. The use of organic amendments in the remediation of As-contaminated soils has been found to produce distinct effects on the solubility of As in the soil. Therefore, knowledge about As adsorption-desorption processes that govern its solubility in soil is of relevance in order to predict the behaviour of this element during these processes. In this paper, the objective was to determine As adsorption and desorption in four different soils, with and without compost addition, and also in competition with phosphate, through the determination of sorption isotherms. Batch experiments were carried out using three soils affected differently by previous mining activity of the Sierra Minera of La Unión-Cartagena (SE Spain) and an agricultural soil from Segovia province (central Spain). Adsorption was higher in the mining soils (and highest in the acidic one) than in the agricultural soils, although the latter were not affected negatively by organic matter or phosphate competition for sorption sites. The results show that As adsorption in most soils, both with and without compost, fitted better a multimolecular layer model (Freundlich), whereas As adsorption in competition with P fitted a monolayer model (Langmuir). Moreover, the use of compost and phosphate reduced the adsorption of As in the mining soils, while in the agricultural soils compost increased their low adsorption capacity. Therefore, the use of compost can be a good option to favour As immobilisation in soils of low adsorption, but knowledge of the soil composition will be crucial to predict the effects of organic amendments on As solubility in soils and its associated environmental risk. PMID:27239690

  1. Climatic and agricultural drivers of soil erosion in Africa

    NASA Astrophysics Data System (ADS)

    Irvine, Brian; Kirkby, Mike; Fleskens, Luuk

    2015-04-01

    Soil erosion was the most frequently identified driver of land degradation across a selection of global research sites within the DESIRE-EU project. The PESERA model was adopted in the project to upscale field results and consider the potential biophysical impact both with and without stakeholder selected sustainable land management (SLM) technologies in place. The PESERA model was combined with the DESMICE economic model and focussed on forecasting the regional effects of combating desertification both in environmental and socio-economical terms. The PESERA-DESMICE approach is further developed in the WAHARA project to consider the potential of a range of water harvesting technologies to improve biophysical conditions. Modelling in the WAHARA project considers detail of water harvesting technologies at the study site scale through to a coarser application at the continental scale with the latter being informed by the detail provided by study site observations an approach adopted in DESIRE-EU. The PESERA-DESMICE approach considers the difference between a baseline scenario and a (water harvesting) technology scenario at both scales in terms of productivity, financial viability and scope for reducing erosion risk. This paper considers the continental scale and focuses on estimating the impact of in-situ water harvesting technologies across Africa under current and future agricultural and climate pressure. PESERA is adopted in this continental application as it implicitly considers the impact of land-use and climate and can be readily amended to simulate in-situ WHT. Input data for PESERA; land use, management (crop type and planting dates), soil data and topography are derived from global data resources. Climate data for present and future scenarios are available through the QUEST-GSI initiative, where future scenarios are based on the outputs of seven GCM's.

  2. National markets for organic waste-derived fertilizers and soil amendments

    SciTech Connect

    Logan, T.J.; Pierzynski, G.M.; Pepperman, R.E.

    1995-12-31

    The last decade has seen enormous growth in the U.S. in the recycling of organic waste materials like sewage sludge, manures, yard waste, solid waste and various industrial wastes. This has been prompted by real or perceived shortages of landfill capacity, state and federal regulations favoring beneficial use of organic wastes, and public support for recycling. Use of fertilizers and soil amendments derived from these wastes has been stimulated by favorable supply-side economics, a shift to organic/sustainable agriculture, and water quality concerns that favor slow-release nutrient sources. This paper summarizes the properties and beneficial use attributes of the various wastes and their derived products, markets for these materials, and constraints/strategies for market penetration.

  3. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    PubMed

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. PMID:25898984

  4. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    PubMed

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials.

  5. Survival and Persistence of Nonpathogenic Escherichia coli and Attenuated Escherichia coli O157:H7 in Soils Amended with Animal Manure in a Greenhouse Environment.

    PubMed

    Sharma, Manan; Millner, Patricia D; Hashem, Fawzy; Camp, Mary; Whyte, Celia; Graham, Lorna; Cotton, Corrie P

    2016-06-01

    Animal manure provides benefits to agriculture but may contain pathogens that contaminate ready-to-eat produce. U.S. Food and Drug Administration standards include 90- or 120-day intervals between application of manure and harvest of crop to minimize risks of pathogen contamination of fresh produce. Data on factors affecting survival of Escherichia coli in soils under greenhouse conditions are needed. Three separate studies were conducted to evaluate survival of nonpathogenic E. coli (gEc) and attenuated E. coli O157:H7 (attO157) inoculated at either low (4 log CFU/ml) or high (6 log CFU/ml) populations over 56 days. Studies involved two pot sizes (small, 398 cm(3); large, 89 liters), three soil types (sandy loam, SL; clay loam, CL; silt loam, SIL), and four amendments (poultry litter, PL; dairy manure liquids, DML; horse manure, HM; unamended). Amendments were applied to the surface of the soil in either small or large containers. Study 1, conducted in regularly irrigated small containers, showed that populations of gEc and attO157 (2.84 to 2.88 log CFU/g) in PL-amended soils were significantly (P < 0.05) greater than those in DML-amended (0.29 to 0.32 log CFU/g [dry weight] [gdw]) or unamended (0.25 to 0.28 log CFU/gdw) soils; soil type did not affect E. coli survival. Results from study 2, in large pots with CL and SIL, showed that PL-amended soils supported significantly higher attO157 and gEc populations compared with HM-amended or unamended soils. Study 3 compared results from small and large containers that received high inoculum simultaneously. Overall, in both small and large containers, PLamended soils supported higher gEc and attO157 populations compared with HM-amended and unamended soils. Populations of attO157 were significantly greater in small containers (1.83 log CFU/gdw) than in large containers (0.65 log CFU/gdw) at week 8, perhaps because small containers received more regular irrigation than large pots. Regular irrigation of small pots may have

  6. Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils.

    PubMed

    Bopp, Charlotte; Christl, Iso; Schulin, Rainer; Evangelou, Michael W H

    2016-09-01

    Soils contaminated by trace elements (TEs) pose a high risk to their surrounding areas as TEs can spread by wind and water erosion or leaching. A possible option to reduce TE transfer from these sites is phytostabilisation. It is a long-term and cost-effective rehabilitation strategy which aims at immobilising TEs within the soil by vegetation cover and amendment application. One possible amendment is biochar. It is charred organic matter which has been shown to immobilise metals due to its high surface area and alkaline pH. Doubts have been expressed about the longevity of this immobilising effect as it could dissipate once the carbonates in the biochar have dissolved. Therefore, in a pot experiment, we determined plant metal uptake by ryegrass (Lolium perenne) from three TE-contaminated soils treated with two biochars, which differed only in their pH (acidic, 2.80; alkaline, 9.33) and carbonate (0.17 and 7.3 %) content. Root biomass was increased by the application of the alkaline biochar due to the decrease in TE toxicity. Zinc and Cu bioavailability and plant uptake were equally reduced by both biochars, showing that surface area plays an important role in metal immobilisation. Biochar could serve as a long-term amendment for TE immobilisation even after its alkalinity effect has dissipated. PMID:27230149

  7. Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils.

    PubMed

    Bopp, Charlotte; Christl, Iso; Schulin, Rainer; Evangelou, Michael W H

    2016-09-01

    Soils contaminated by trace elements (TEs) pose a high risk to their surrounding areas as TEs can spread by wind and water erosion or leaching. A possible option to reduce TE transfer from these sites is phytostabilisation. It is a long-term and cost-effective rehabilitation strategy which aims at immobilising TEs within the soil by vegetation cover and amendment application. One possible amendment is biochar. It is charred organic matter which has been shown to immobilise metals due to its high surface area and alkaline pH. Doubts have been expressed about the longevity of this immobilising effect as it could dissipate once the carbonates in the biochar have dissolved. Therefore, in a pot experiment, we determined plant metal uptake by ryegrass (Lolium perenne) from three TE-contaminated soils treated with two biochars, which differed only in their pH (acidic, 2.80; alkaline, 9.33) and carbonate (0.17 and 7.3 %) content. Root biomass was increased by the application of the alkaline biochar due to the decrease in TE toxicity. Zinc and Cu bioavailability and plant uptake were equally reduced by both biochars, showing that surface area plays an important role in metal immobilisation. Biochar could serve as a long-term amendment for TE immobilisation even after its alkalinity effect has dissipated.

  8. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil.

    PubMed

    Lin, Dasong; Zhou, Qixing

    2009-07-01

    The effects of chemical amendments including zeolite, compost and mesoporous molecular sieves (MCM-41) on the extractability and speciation of heavy metals (Cd, Pb and Cu) in a contaminated soil were investigated. Results showed that the application of soil amendments decreased Cd, Pb and Cu uptake by the shoots of pakchoi, up to 44.2-53.2%, 30.2-42.7% and 16.9-22.1%, respectively, compared with the control. Among the three amendments, zeolite and MCM-41 were more efficient in reducing Cd and Cu uptake, while compost was more efficient in reducing Pb uptake by the plants. The growth of pakchoi was improved in amended soils due to the action of chemical amendments.

  9. Evolution of organic matter fractions after application of co-compost of sewage sludge with pruning waste to four Mediterranean agricultural soils. A soil microcosm experiment.

    PubMed

    Pérez-Lomas, A L; Delgado, G; Párraga, J; Delgado, R; Almendros, G; Aranda, V

    2010-10-01

    The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha(-1) were incubated for 90 days at two temperatures: 5 and 35 degrees C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 2(3) factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 degrees C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E(4)/E(6) ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E(4)/E(6) ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC

  10. Global Warming Potential from early phase decomposition of soil organic matter amendments

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Silver, W. L.

    2015-12-01

    Organic matter amendments to soil are widely used as a method of enhancing nutrient availability for crops or grassland. Amendments such as composted manure or greenwaste also have the co-benefits of potentially increasing soil carbon (C) stocks (DeLonge et al., 2013) and diverting organic waste from landfills or manure lagoons. However, application of organic matter amendments can also stimulate emissions of greenhouse gases (GHGs). In this study we determined how the chemical quality of organic matter amendments affected soil C and N content and GHG emissions during early stage decomposition. California grassland soils were amended with six different amendments of varying C and N content including three composts and three feedstocks (goat and horse bedding and cattle manure). Amendments and soils were incubated in the laboratory for 7 weeks; GHG fluxes were measured weekly. The three feedstocks emitted significantly more GHGs than the composted materials. With the exception of cow manure, N content of the amendment was linearly correlated with global warming potential emitted (R2= 0.66, P <0.0001). C:N ratios were not a significant predictor of GHG emissions. Cow manure stimulated a net loss of C (or C equivalents) in the mineral soil, as expected. However, greenwaste compost also surprisingly resulted in net C losses, while goat bedding, horse bedding, and the other compost were either C neutral or a slight net C sink at the end of the incubation. Ongoing analyses are examining the fate of the C incorporated from the amendment to the soil as occluded or free light fraction, as well as N mineralization rates. Our data suggest that N content of organic matter amendments is a good predictor of initial GHG emissions. The study also indicates that composting greenwaste with N-rich bedding and manure can result in lower GHG emissions and C sequestration compared to the individual uncomposted components.

  11. Agriculture Canada Central Saskatchewan Vector Soils Data

    NASA Technical Reports Server (NTRS)

    Knapp, David; Hall, Forrest G. (Editor); Rostad, Harold

    2000-01-01

    This data set consists of GIS layers that describe the soils of the BOREAS SSA. These original data layers were submitted as vector data in ARC/INFO EXPORT format. These data also include the soil name and soil layer files, which provide additional information about the soils. There are three sets of attributes that include information on the primary, secondary, and tertiary soil type within each polygon. Thus, there is a total of nine main attributes in this data set.

  12. Utilisation of biochar and superabsorbent polymers for soil amendment.

    PubMed

    Ekebafe, M O; Ekebafe, L O; Maliki, M

    2013-01-01

    The application of superabsorbent polymers (SAPs) and/or biochars to stressed lands offer solutions to several critical ecological, energy and economic challenges posed by degraded lands due to human activities. These substances are like, 'artificial humus' as they are hydrophilic and contain carboxylic groups (SAPs) which enable them to bind cations and water and sequester carbon from air to reverse global warming (biochars). Several research studies using these substances point to their ability to increase the plant-available water in the soil which enables the plants to survive longer with water shortage, increase soil fertility and agricultural yields, improve soil structure, aeration and water penetration, reduce use of synthetic fertilisers and pesticides, reduce nitrous oxide and methane emission from soil, reduce nitrate and farm chemicals leaching into watersheds, convert green and brown wastes into valuable resources, and reduce the evapotranspiration rate of the plants. SAPs and biochars induce a significantly higher growth rate in plants; they bind heavy metals and mitigate their action on plants as well as mitigate the effects of salinity. This paper reviews what is known about these claims and considers the wider environmental implications of the adoption of these processess. The intention is not just to summarise the current knowledge but also to identify gaps that require further research.

  13. Biochar soil amendment: Impact of soil types on heavy metal sorption-desorption behaviors and repeated nutrient leaching

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depending on soil types, properties of chars especially pH and leachable organic/inorganic components can have varying impacts when used as a soil amendment. We have investigated sorption-desorption behaviors of metal contaminant of concern in shooting ranges and urban soils (Cu), nutrient supply (...

  14. Impacts of wastewater sludge amendments in restoring nitrogen cycle in p-nitrophenol contaminated soil.

    PubMed

    Sagban, F Olcay Topac

    2011-01-01

    The possible impacts on nitrogen-cycle in a p-nitrophenol (PNP) polluted soil and the effectiveness of wastewater sludge amendments in restoring nitrification potential and urease activity were evaluated by an incubation study. The results indicated that PNP at 250 mg/kg soil inhibited urease activity, nitrification potential, arginine ammonification rate and heterotrophic bacteria counts to some extents. After exposure to PNP, the nitrification potential of the tested soil was dramatically reduced to zero over a period of 30 days. Based on the findings, nitrification potential was postulated as a simple biochemical indicator for PNP pollution in soils. Nitrogen-cycling processes in soils responded positively to the applications of wastewater sludges. A sludge application rate of 200 tons/ha was sufficient for successful biostimulation of these nitrogen processes. The microbial activities in sludge-amended, heavy PNP-polluted soils seemed to recover after 30-45 days, indicating the effectiveness of sludge as a useful soil amendment.

  15. To amend the Agricultural Adjustment Act to exclude raisins from agricultural marketing orders.

    THOMAS, 113th Congress

    Rep. Radel, Trey [R-FL-19

    2013-07-25

    08/13/2013 Referred to the Subcommittee on Horticulture, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. How can soil organic carbon stocks in agriculture be maintained or increased?

    NASA Astrophysics Data System (ADS)

    Don, Axel; Leifeld, Jens

    2015-04-01

    CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.

  17. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.

    PubMed

    Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu

    2009-11-01

    Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.

  18. Dissolved organic matter dynamic and resident microbiota evolution in soil amended with fresh and composted olive mill wastes

    NASA Astrophysics Data System (ADS)

    Gigliotti, Giovanni; Massaccesi, Luisa; Federici, Ermanno; Fidati, Laura; Nasini, Luigi; Proietti, Primo

    2013-04-01

    The disposal of olive mill wastes represents a problem of environmental relevance particularly in the Mediterranean countries where olive oil is mostly produced. Among the several valorisation and recycling methods proposed, interesting for its operational simplicity and convenience is land spreading, either directly or after composting. However, the agriculture use of the water-saturated husk produced by the new two-phase oil extraction systems may be hampered by its consistency and its high content of phenolic compounds, which may finally lead to phytotoxicity. Humid husk may indeed modify the dynamic of soil organic matter (SOM) and the structure and function of microbial communities. On the other hand, organic amendments are known to positively affect SOM fractions, particularly by increasing the concentration and quality of dissolved organic matter (DOM), which may eventually lead to an increase in microbial activity. The aim of this work was to investigate, during a 90-day field trial, the modifications in soil DOM composition and the effects on the soil microbiota induced by a humid husk, obtained from a new generation two-phase oil extraction plant, spread in an olive orchard either as a fresh amendment or after a composting process. With respect to the control, the soil amended with either fresh or composted husk showed an increase in water extractable organic carbon (WEOC). Interestingly, while during the first 30 days the soil amended with the composted husk showed a WEOC content higher than the one amended with the fresh husk, after that time only in the latter the WEOC remained significantly higher than in the control. The total content of phenolic compounds showed a similar trend, with the only difference that their concentration in the soil amended with both treatments remained higher than the control for the entire trial. Similarly, both treatments induced an increase in soil reducing sugars, with an higher effect observed in the soil amended with

  19. How agricultural management shapes soil microbial communities: patterns emerging from genetic and genomic studies

    NASA Astrophysics Data System (ADS)

    Daly, Amanda; Grandy, A. Stuart

    2016-04-01

    Agriculture is a predominant land use and thus a large influence on global carbon (C) and nitrogen (N) balances, climate, and human health. If we are to produce food, fiber, and fuel sustainably we must maximize agricultural yield while minimizing negative environmental consequences, goals towards which we have made great strides through agronomic advances. However, most agronomic strategies have been designed with a view of soil as a black box, largely ignoring the way management is mediated by soil biota. Because soil microbes play a central role in many of the processes that deliver nutrients to crops and support their health and productivity, agricultural management strategies targeted to exploit or support microbial activity should deliver additional benefits. To do this we must determine how microbial community structure and function are shaped by agricultural practices, but until recently our characterizations of soil microbial communities in agricultural soils have been largely limited to broad taxonomic classes due to methodological constraints. With advances in high-throughput genetic and genomic sequencing techniques, better taxonomic resolution now enables us to determine how agricultural management affects specific microbes and, in turn, nutrient cycling outcomes. Here we unite findings from published research that includes genetic or genomic data about microbial community structure (e.g. 454, Illumina, clone libraries, qPCR) in soils under agricultural management regimes that differ in type and extent of tillage, cropping selections and rotations, inclusion of cover crops, organic amendments, and/or synthetic fertilizer application. We delineate patterns linking agricultural management to microbial diversity, biomass, C- and N-content, and abundance of microbial taxa; furthermore, where available, we compare patterns in microbial communities to patterns in soil extracellular enzyme activities, catabolic profiles, inorganic nitrogen pools, and nitrogen

  20. Suitability of marginal biomass-derived biochars for soil amendment.

    PubMed

    Buss, Wolfram; Graham, Margaret C; Shepherd, Jessica G; Mašek, Ondřej

    2016-03-15

    The term "marginal biomass" is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average+82.8% Cr, +226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition +22.5 mg Cr kg(-1) biochar and +44.4 mg Ni kg(-1) biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser.

  1. Suitability of marginal biomass-derived biochars for soil amendment.

    PubMed

    Buss, Wolfram; Graham, Margaret C; Shepherd, Jessica G; Mašek, Ondřej

    2016-03-15

    The term "marginal biomass" is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average+82.8% Cr, +226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition +22.5 mg Cr kg(-1) biochar and +44.4 mg Ni kg(-1) biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser. PMID:26789369

  2. Chromium fractionation and plant availability in tannery-sludge amended soil

    NASA Astrophysics Data System (ADS)

    Allué, Josep; Moya Garcés, Alba; Bech, Jaume; Barceló, Juan; Poschenrieder, Charlotte

    2013-04-01

    The leather industry represents an important economic sector in both developed and developing countries. Chromium tanning is the major process used to obtain high quality leather. Within the REACH regulation the use of Cr, especially CrVI, in the tanning process is under discussion in Europe. High Cr concentration in shoes and other Cr-tanned leather products can cause contact dermatitis in sensitive population. Moreover, the high Cr concentration is the major limiting factor for the use of tannery sludge as a source of organic matter in agricultural soils. Interest in Cr, however is not limited to its potential toxic effects. Chromium III is used as a dietary supplement because there are reports, but also controversy, about the positive effects of Cr III in glucose tolerance and type-2 diabetes. Adequate intake levels for Cr by the diet have been established between 25 and 35 µg/day for adult females and males, respectively. Sufficient supply of Cr III by the diet is preferable to the use of CrIII-salt based dietary supplements. The objective of the present work was to investigate whether Cr from tannery sludge-amended soil is available to Trigonella foenum-graecum plants, a plant used both as a spice and as a medicinal herb, because of its hypoglucemic effects. For this purpose clay loam soil (pH 7.8) was sieved (2mm) and thoroughly mixed with tannery sludge from a depuration station (Igualadina Depuració i Recuperació S.L., Igualada, Barcelona, Spain). The sludge had a Cr concentration of 6,034mg kg-1 and a 0.73 % of NH4-nitrogen. All the Cr was in the form of CrIII. Three treatments were disposed. Control soil receiving no sludge, a 60 mg kg-1 Cr treatment (10 g fresh sludge kg-1 soil) and a 120 mg kg-1 Cr treatment (20 g fresh sludge kg-1 soil). Control soil and the soil treated with 10g kg-1 sludge received NPK fertilizer in the form of ammonium sulfate, superfosfate, and KCl to rise the N,P, and K concentrations to similar levels to those achieved in the

  3. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions.

    PubMed

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-10-01

    No tillage (NT) has been associated to increased N2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N2O and CH4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N2O emissions by 68% compared to NT and generally led to higher CH4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH4 oxidation was enhanced after liming application due to decreased Al(3+) toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N2O and CH4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH4 emissions and, under CT, abate N2O emissions. PMID:27235901

  4. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions.

    PubMed

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-10-01

    No tillage (NT) has been associated to increased N2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N2O and CH4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N2O emissions by 68% compared to NT and generally led to higher CH4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH4 oxidation was enhanced after liming application due to decreased Al(3+) toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N2O and CH4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH4 emissions and, under CT, abate N2O emissions.

  5. Evaluation of wastewater treatment by-products as soil amendment: Growth of sorghum-sudan grass and trace elements concentrations.

    PubMed

    Sivapatham, Paramasivam; Potts, Mariel C; Delise, Jeffrey A; Sajwan, Kenneth S; Alva, Ashok K; Jayaraman, Kuppuswamy; Chakraborty, Paromita

    2012-01-01

    Wastewater treatment by-products (WTBP), such as sewage sludge (SS) may be used to enhance soil chemical, physical, and biological properties. These enhanced soil properties, in turn, could from its source of production to its site of application. These concerns may be mitigated by incineration of the SS to produce ash (SSA) and dissolved in water and stored in ponds as contribute to an increase in plant growth, production, mineral nutrition. Some SS is difficult to handle due to bad odor in its raw state and has large mass, hence expensive for transportation weathered SSA (WSSA). A greenhouse study was conducted using Candler fine sand CFS; (CFS; pH = 6.8) and Ogeechee loamy sand OLS; (pH = 5.2) with application of either 0, 24.7, 49.4, 98.8, or 148.2 Mg ha(-1) as either SS, SSA, or WSSA to evaluate the biomass production and elemental composition responses of sorghum-sudan grass (Sorghum vulgaris var. Sudanese hitche). Shoot and root biomass were 2 to 3 fold greater in the soil amended with SS, than either SSA or WSSA. Concentrations of nutrient and trace elements in the shoots and roots increased with increasing rates of amendments. Application of these by-products up to 98.8 Mg ha(-1) rate did not adversely affect growth or accumulation of trace elements in sorghum-sudan grass. Long-term field studies are recommended to investigate the potential leaching of various elements from the amended soils in addition to evaluation of plant growth and production responses to determine the acceptable rates of these by-products as amendments to agricultural soils.

  6. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of a biochar made from switchgrass on four soil enzymes (ß- glucosidase, ß-N-acetylglucosaminidase, lipase, and leucine aminopeptidase) to determine if biochar would consistently modify soil biological activities. Inconsistent results from enzyme assays of char-amended soils s...

  7. Metolachlor sorption and degradation in soil amended with fresh and aged biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Addition of organic amendments such as biochar to soils can influence pesticide sorption-desorption processes, and in turn, pesticide availability and biodegradation. Availability is affected by both the physical and chemical properties of soils and pesticides, as well as soil-pesticide contact time...

  8. EVALUATION OF EXTRACTION AND SPECTROSCOPIC METHODS FOR PB SPECIATION IN AN AMENDED SOIL

    EPA Science Inventory

    Immobilization of pyromorphite (Pbs(PO4hCI) via P amendments to Pb contaminated soils is proving to be a viable method of remediation. However, the issue of ascertaining the amount of soil Pb converted to pyromorphite is difficult in heterogeneous soil systems. Previous attempts ...

  9. Influence of olive oil mill waste amendment on fate of oxyfluorfen in Southern Spain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of olive oil mill waste (OOMW) amendment on soil processes affecting the herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl-3-ethoxy-4-nitrophenyl ether) in two soils (P2 and SJ) was assessed under laboratory conditions. The soils used were from two diverse locations in Guadalqui...

  10. Phosphorus Amendment Efficacy for In Situ Remediation of Soil Lead Depends on the Bioaccessible Method

    EPA Science Inventory

    A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccesible Pb in P-treated soils. Two Pb-contaminated soils...

  11. Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Performance of compost and biochar amendments for in situ risk mitigation of aged DDT, DDE and dieldrin residues in an old orchard soil was examined. The change in bioavailability of pesticide residues relative to an unamended control soil was assessed using Lumbricus terrestris in 4-L soil microcos...

  12. Biochar soil amendment for waste-stream diversion, nutrient holding capacity, and carbon sequestration in two contrasting soils

    NASA Astrophysics Data System (ADS)

    Deem, L. M.; Crow, S. E.; Deenik, J. L.; Penton, C. R.; Yanagida, J.

    2013-12-01

    Biochar is organic matter that has been pyrolized under low oxygen conditions for use as a soil amendment. Currently biochar is viewed as a way to improve soil quality (e.g., increased nutrient and water holding capacity) and increase in soil carbon (C) sequestration. The use of biochar in soil is not new, yet little is known about the underlying mechanisms that control the interactions between biochar and soil following amendment. In the past, the effects of biochar addition on crop yields, soil properties and greenhouse gas (GHG) fluxes in both in-situ and controlled experiments have produced inconsistent results. These discrepancies may be uncovered in part by chemical and physical characterization of the biochar prior to amendment and identification of soil- and biochar-specific interactions. Furthermore, a more holistic consideration of the system may demonstrate the virtues of biochar amendment beyond the typical considerations of yield and gas flux. We expect that as the differences between the physical and chemical properties of the biochar and the soil increase, the impact on the soil quality metrics will also increase. For this study, we used a waste product (i.e., anaerobic digester sludge) biochar with 81.5% C, pH of 10.44, pH-independent charge for anion exchange capacity (AEC) and a pH-dependent charge for cation exchange capacity (CEC), 4.14% moisture content and 25.75 cmol¬c /kg exchangeable base cations. This biochar was incorporated into both a low and a high fertility Hawaiian field soil to quantitate biochar effects on crop yield, soil pH, CEC, AEC, hot and cold water extractable C and nitrogen, bulk density, phosphorus, soil microbial ecology, and GHG flux in varying soil conditions. Compared to the higher fertility soil, we hypothesized that the low fertility soil would demonstrate a greater increase in soil quality, including higher pH, CEC and water holding capacity. Two crop management practices were included with each soil: traditional

  13. Sorption and desorption of cadmium by different fractions of biosolids-amended soils.

    PubMed

    Hettiarachchi, Ganga M; Ryan, James A; Chaney, Rufus L; La Fleur, Cherie M

    2003-01-01

    To evaluate the importance of both the inorganic and organic fractions in biosolids on Cd chemistry, a series of Cd sorption and desorption batch experiments (at pH 5.5) were conducted on different fractions of soils from a long-term field experimental site. The slope of the Cd sorption isotherm increased with rate of biosolids and was different for the different biosolids. Removal of organic carbon (OC) reduced the slope of the Cd sorption isotherm but did not account for the observed differences between biosolids-amended soils and a control soil, indicating that the increased adsorption associated with biosolids application was not limited to the increased OC from the addition of biosolids. Removal of both OC and Fe/Mn further reduced the slopes of Cd sorption isotherms and the sorption isotherm of the biosolids-amended soil was the same as that of the control, indicating both OC and Fe/Mn fractions added by the biosolids were important to the increased sorption observed for the biosolids-amended soil samples. Desorption experiments failed to remove from 60 to 90% of the sorbed Cd. This "apparent hysteresis" was higher for biosolids-amended soil than the control soil. Removal of both OC and Fe/Mn fractions was more effective in removing the observed differences between the biosolids-amended soil and the control than either alone. Results show that Cd added to biosolids-amended soil behaves differently than Cd added to soils without biosolids and support the hypothesis that the addition of Fe and Mn in the biosolids increased the retention of Cd in biosolids-amended soils.

  14. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community

    PubMed Central

    Harter, Johannes; Krause, Hans-Martin; Schuettler, Stefanie; Ruser, Reiner; Fromme, Markus; Scholten, Thomas; Kappler, Andreas; Behrens, Sebastian

    2014-01-01

    Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil. PMID:24067258

  15. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community.

    PubMed

    Harter, Johannes; Krause, Hans-Martin; Schuettler, Stefanie; Ruser, Reiner; Fromme, Markus; Scholten, Thomas; Kappler, Andreas; Behrens, Sebastian

    2014-03-01

    Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil. PMID:24067258

  16. Evaluation of composted sewage sludge (CSS) as a soil amendment for Bermudagrass growth.

    PubMed

    Roudsari, O Nouri; Pishdar, H

    2007-05-01

    In order to evaluate the growth of Bermudagrass (Cynodon dactylon L.) in soils amended with 5-100% composted sewage sludge (CSS) and the impacts of CSS amendment on soil physical and chemical properties an experiment was conducted. Soils amended with < or = 20% CSS did not significantly affect the seedling emergence, while the contents of chlorophyll, nitrogen, phosphorous and potassium of Bermudagrass grown in such soils were greatly improved. Bulk density, water retention and nutrient contents of the soil were also improved with the amendment of CSS, but high CSS contents introduced excessive amounts of heavy metals and soluble salts. Results show that Cu, Zn and Pb accumulated slightly (up to approximately 2.3 times) in clippings of Bermudagrass grown in CSS-amended soils compared to those grown in the base and reference soils, while no significant Cd absorption in shoots of Bermudagrass occurred. The detrimental effects on seedling emergence and turfgrass growth observed on substrates with high (> or = 40%) CSS contents were mainly attributed to the presence of high soluble salt concentrations. The findings suggest that addition of CSS at 10-20% levels can greatly improve the soil nutrient supply for turfgrass growth without significantly affecting heavy metal and soluble salt contents of the soil.

  17. The EDTA Amendment in Phytoextraction of (134)Cs From Soil by Indian Mustard (Brassica juncea).

    PubMed

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Roosmini, Dwina

    2015-01-01

    Soil contamination with radiocaesium is a significant problem at any countries when a nuclear accident occurred. Recently, phytoextraction technique is developed to remediate the contaminated environment. However, the application is limited by the availability of the contaminant for root uptake. Therefore, a green house trial experiment of soil amendment with ethylene diamine tetraacetic acid (EDTA) has been conducted to examine (134)Cs availability for root uptake. Two groups of Indian mustard (Brassica juncea) were cultivated in (134)Cs contaminated soil. The soil in the first group was treated with EDTA amendment, while the other was not. Plant growth was observed gravimetrically and the (134)Cs concentration in soil as well as plants were determined using gamma spectrometry. The plant uptake capacity was determined as transfer factor (Fv), and the Fv values of 0.22 ± 0.0786 and 0.12 ± 0.039 were obtained for the soil treated with and without EDTA amendment, respectively. The phytoextraction efficiency of the plant cultivated in (134)Cs contaminated soil both with and without EDTA amendment was low. The EDTA amendment to the soil seems to enhance the (134)Cs availability for root uptake of Indian mustard and can still be considered to assist the field phytoremediation of contaminated soil.

  18. The EDTA Amendment in Phytoextraction of (134)Cs From Soil by Indian Mustard (Brassica juncea).

    PubMed

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Roosmini, Dwina

    2015-01-01

    Soil contamination with radiocaesium is a significant problem at any countries when a nuclear accident occurred. Recently, phytoextraction technique is developed to remediate the contaminated environment. However, the application is limited by the availability of the contaminant for root uptake. Therefore, a green house trial experiment of soil amendment with ethylene diamine tetraacetic acid (EDTA) has been conducted to examine (134)Cs availability for root uptake. Two groups of Indian mustard (Brassica juncea) were cultivated in (134)Cs contaminated soil. The soil in the first group was treated with EDTA amendment, while the other was not. Plant growth was observed gravimetrically and the (134)Cs concentration in soil as well as plants were determined using gamma spectrometry. The plant uptake capacity was determined as transfer factor (Fv), and the Fv values of 0.22 ± 0.0786 and 0.12 ± 0.039 were obtained for the soil treated with and without EDTA amendment, respectively. The phytoextraction efficiency of the plant cultivated in (134)Cs contaminated soil both with and without EDTA amendment was low. The EDTA amendment to the soil seems to enhance the (134)Cs availability for root uptake of Indian mustard and can still be considered to assist the field phytoremediation of contaminated soil. PMID:26208541

  19. Arsenic bioaccessibility and speciation in the soils amended with organoarsenicals and drinking-water treatment residuals based on a long-term greenhouse study

    NASA Astrophysics Data System (ADS)

    Nagar, Rachana; Sarkar, Dibyendu; Makris, Konstantinos C.; Datta, Rupali

    2014-10-01

    SummaryAlthough organoarsenical pesticides are no longer applied to agricultural fields in the US, their widespread use until recently, toxicity, and potential transformation to inorganic arsenic has raised serious concern. Drinking-water treatment residuals (WTRs) have been proposed as a low-cost amendment for remediation of organoarsenical pesticide contaminated soils. A long-term greenhouse study was initiated to evaluate the effect WTR application on bioaccessibility, geochemical partitioning, and speciation of the Dimethylarsinic acid (DMA). Two soils (Immokalee and Orelia series) were spiked with DMA (1500 mg As kg-1) and amended with an Al- and Fe-based WTR at two rates (5% and 10% by wt.). Soil sampling was done immediately after spiking (time zero) and after 0.25, 0.5, 1, and 3 (time final) years of equilibration and subjected to bioaccessibility test and sequential extraction. Results showed that compared to the unamended (no WTR) control, As bioaccessibility in the WTR-amended soils significantly (p < 0.001) decreased by 40-70% in 3 years. The Fe-WTR was more effective than Al-WTR in decreasing soil As bioaccessibility. The in vitro and water-extracted samples were subjected to As speciation at time zero and time final. Results showed transformation of DMA into inorganic As, irrespective of WTR amendments. The Orelia soil showed significantly (p < 0.001) higher transformation than the Immokalee soil.

  20. Biochar amendment to lead-contaminated soil: Effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice.

    PubMed

    Tan, Xiaofei; Liu, Yunguo; Gu, Yanling; Zeng, Guangming; Hu, Xinjiang; Wang, Xin; Hu, Xi; Guo, Yiming; Zeng, Xiaoxia; Sun, Zhichao

    2015-09-01

    The amendment effects of biochar on total microbial activity was measured by fluorescein diacetate (FDA) hydrolytic activity, and phytotoxicity in Pb(II)-contaminated soils was examined by the application of 4 different biochars to soil, with rice as a test plant. The FDA hydrolytic activities of biochar-amended soils were much higher than that of the control. The survival rate of rice in lead-contaminated biochar-amended soils showed significant improvement over the control, especially for bamboo biochar-amended soil (93.3%). In addition, rice grown in lead-contaminated control sediment displayed lower biomass production than that in biochar-amended soil. The immobilization of Pb(II) and the positive effects of biochar amendment on soil microorganisms may account for these effects. The results suggest that biochar may have an excellent ability to mitigate the toxic effects of Pb(II) on soil microorganisms and rice.

  1. Ecology of plant and free-living nematodes in natural and agricultural soil.

    PubMed

    Neher, Deborah A

    2010-01-01

    Nematodes are aquatic organisms that depend on thin water films to live and move within existing pathways of soil pores of 25-100 mum diameter. Soil nematodes can be a tool for testing ecological hypotheses and understanding biological mechanisms in soil because of their central role in the soil food web and linkage to ecological processes. Ecological succession is one of the most tested community ecology concepts, and a variety of nematode community indices have been proposed for purposes of environmental monitoring. In contrast, theories of biogeography, colonization, optimal foraging, and niche partitioning by nematodes are poorly understood. Ecological hypotheses related to strategies of coexistence of nematode species sharing the same resource have potential uses for more effective biological control and use of organic amendments to foster disease suppression. Essential research is needed on nematodes in natural and agricultural soils to synchronize nutrient release and availability relative to plant needs, to test ecological hypotheses, to apply optimal foraging and niche partitioning strategies for more effective biological control, to blend organic amendments to foster disease suppression, to monitor environmental and restoration status, and to develop better predictive models for land-use decisions. PMID:20455699

  2. Ecology of plant and free-living nematodes in natural and agricultural soil.

    PubMed

    Neher, Deborah A

    2010-01-01

    Nematodes are aquatic organisms that depend on thin water films to live and move within existing pathways of soil pores of 25-100 mum diameter. Soil nematodes can be a tool for testing ecological hypotheses and understanding biological mechanisms in soil because of their central role in the soil food web and linkage to ecological processes. Ecological succession is one of the most tested community ecology concepts, and a variety of nematode community indices have been proposed for purposes of environmental monitoring. In contrast, theories of biogeography, colonization, optimal foraging, and niche partitioning by nematodes are poorly understood. Ecological hypotheses related to strategies of coexistence of nematode species sharing the same resource have potential uses for more effective biological control and use of organic amendments to foster disease suppression. Essential research is needed on nematodes in natural and agricultural soils to synchronize nutrient release and availability relative to plant needs, to test ecological hypotheses, to apply optimal foraging and niche partitioning strategies for more effective biological control, to blend organic amendments to foster disease suppression, to monitor environmental and restoration status, and to develop better predictive models for land-use decisions.

  3. Development of fugal strains in biochar amended soils

    NASA Astrophysics Data System (ADS)

    Miller, Ana Z.; De la Rosa, José M.; Paneque, Marina; Knicker, Heike

    2016-04-01

    The application of carbonized materials (including biochar and hydrochar) produced by the pyrolysis of biomass to soil has been proposed as a novel approach to establish a significant long-term sink for atmospheric carbon dioxide in terrestrial ecosystems [1]. In addition, several research studies pointed out that biochar can act as a soil conditioner enhancing plant growth by supplying and, more importantly, retaining nutrients, and by providing other benefits such as improving soil physical and biological properties [2]. Despite numerous authors take for granted that microbial degradation of carbonized materials is highly unlikely, this fact is far away from being true for all the chars. Nevertheless, the knowledge concerning the natural degradation of chars by microorganisms is of high interest due to the direct decline on the char capacity for C stabilization. In order to achieve this goal, biochars from different feedstock and pyrolysis conditions were applied to soil from a Calcareous Cambisol (0, 2.5 and 5%) which was filled into 30-cm long methacrylate columns. They were incubated during 4 months under controlled conditions (25 °C, 12 hours of light per day and water holding capacity maintained at 60% by adding deionized sterile water). After 1 month of incubation, white colonies were observed on a biochar derived from paper-sludge. The microorganisms were cultured from paper sludge biochar, isolated and further identified by DNA-based molecular analysis [3]. The identified fungi grouped into the Fusarium genus within Ascomycota phylum, being represented by F. oxysporum. These fungi are soil-borne and have the ability to exist as saprophytes. F. oxysporum strains are known to degrade lignin and complex carbohydrates associated with soil debris [4]. However, many strains within the F. oxysporum are pathogenic to plants, especially in agricultural settings. Fusarium oxysporum f. sp. Cucumerinum is responsible for vascular wilt in cucumber plants [5]. These

  4. Irrigated agriculture and soil salinization in the Maltese islands.

    PubMed

    Vella, Sonya J; Camilleri, Sharlo

    2003-08-01

    In the Maltese islands, soil is one of the most threatened natural resources, being continuously exposed to a multitude of climatic, environmental, and man-induced impacts. The changes in agricultural practices as well as increases in urban development have intensified environmental problems and have accentuated the pressures on agricultural land and fragile semi-natural ecosystems. Between 1956 and 2001, the total agricultural land declined from 20,433 ha to 10,713 ha, however, during the same period, the irrigated land as a percentage of total agricultural land increased from 3.9% to 10.7%. The poor quality of irrigation water sources, and the supply of treated sewage effluent with a high level of salts, contribute to a significant salt input. The extent of salt-affected soils in the Maltese islands is not well-documented, however, field observations and technical reports indicate that soil salinity is a potential constraint for agricultural production. This article gives a comparative review of the salinity status of soils in three case study areas in Malta, the agricultural dryland at Ghammieri, the intensively cultivated irrigated valley of Pwales, and the agricultural land irrigated with treated sewage effluent of the Sant Antnin Sewage Treatment Plant in the South-East of Malta. This analysis is provided in the context of the environmental impact of irrigation on soil quality in the Maltese islands.

  5. Evaluation of emission of greenhouse gases from soils amended with sewage sludge.

    PubMed

    Paramasivam, S; Fortenberry, Gamola Z; Julius, Afolabi; Sajwan, Kenneth S; Alva, A K

    2008-02-01

    Increase in concentrations of various greenhouse gases and their possible contributions to the global warming are becoming a serious concern. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in C and N, as soil amendments could contribute to the increase in emission of greenhouse gases such as methane (CH(4)) and nitrous oxide (N(2)O) into the atmosphere. Therefore, evaluation of flux of various greenhouse gases from soils amended with sewage sludge is essential to quantify their release into the atmosphere. Two soils with contrasting properties (Candler fine sand [CFS] from Florida, and Ogeechee loamy sand [OLS] from Savannah, GA) were amended with varying rates (0, 24.7, 49.4, 98.8, and 148.3 Mg ha(-1)) of 2 types of sewage sludge (industrial [ISS] and domestic [DSS] origin. The amended soil samples were incubated in anaerobic condition at field capacity soil water content in static chamber (Qopak bottles). Gas samples were extracted immediately after amending soils and subsequently on a daily basis to evaluate the emission of CH(4), CO(2) and N(2)O. The results showed that emission rates and cumulative emission of all three gases increased with increasing rates of amendments. Cumulative emission of gases during 25-d incubation of soils amended with different types of sewage sludge decreased in the order: CO(2) > N(2)O > CH(4). The emission of gases was greater from the soils amended with DSS as compared to that with ISS. This may indicate the presence of either low C and N content or possible harmful chemicals in the ISS. The emission of gases was greater from the CFS as compared to that from the OLS. Furthermore, the results clearly depicted the inhibitory effect of acetylene in both soils by producing more N(2)O and CH(4) emission compared to the soils that did not receive acetylene at the rate of 1 mL g(-1) soil. Enumeration of microbial population by fluorescein diacetate

  6. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relationships among biological indicators of soil quality and soil organic matter characteristics in a claypan soil were evaluated across a continuum of long-term agricultural practices in Missouri, USA. In addition to chemical and physical soil quality indicators, dehydrogenase and phenol oxidase a...

  7. Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils.

    PubMed

    Si, Youbin; Wang, Midao; Tian, Chao; Zhou, Jing; Zhou, Dongmei

    2011-04-01

    The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r=0.957**, P<0.01). The amount of isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation (DT(50)) in soils greatly extended when the rate of added charcoal increased from 0 to 50 g kg(-1) (for Paddy soil, DT(50) values increased from 54.6 to 71.4 days; for Alfisol, DT(50) from 16.0 to 136 days; and for Vertisol, DT(50) from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils.

  8. Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils

    NASA Astrophysics Data System (ADS)

    Si, Youbin; Wang, Midao; Tian, Chao; Zhou, Jing; Zhou, Dongmei

    2011-04-01

    The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r = 0.957 **, P < 0.01). The amount of isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation ( DT50) in soils greatly extended when the rate of added charcoal inceased from 0 to 50 g kg - 1 (for Paddy soil, DT50 values increased from 54.6 to 71.4 days; for Alfisol, DT50 from 16.0 to 136 days; and for Vertisol, DT50 from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils.

  9. Organic phosphorus fractions in organically amended paddy soils in continuously and intermittently flooded conditions.

    PubMed

    Yang, Changming; Yang, Linzhang; Jianhua, Lee

    2006-01-01

    Soil organic phosphorus (SOP) can greatly contribute to plant-available P and P nutrition. The study was conducted to determine the effects of organic amendments on organic P fractions and microbiological activities in paddy soils. Samples were collected at the Changshu Agro-ecological Experiment Station in Tahu Lake Basin, China, from an experiment that has been performed from 1999 to 2004, on a paddy soil (Gleysols). Treatments consisted of swine manure (SM), wheat straw (WS), swine manure plus wheat straw (SM + WS), and a control (chemical fertilization alone). Organic amendments markedly increased soil total organic phosphorus (TOP) and total organic carbon (TOC), especially in continuously flooded conditions. Based on the fractionation of SOP, organic amendments significantly increased soil labile organic phosphorus (LOP), moderately labile organic phosphorus (MLOP), and moderately stable organic phosphorus (MSOP) compared with the control. For SM and SM + WS treatments, LOP in continuously flooded soils decreased by 30.1 and 36.4%, respectively, compared to intermittently flooded soils. In organically amended soils, continuous flooding showed significantly lower microbial biomass phosphorus (MBP) and alkaline phosphatase activities (APA) than intermittent flooding. In intermittently flooded conditions, incorporating organic amendments into soil resulted in greater P uptake and biomass yield of rice than the control. In the intermittently flooded soils, APA (P < 0.05) and MBP (P < 0.01) were significantly and positively related to TOP, LOP, MLOP, and MSOP, whereas in continuously flooded soils, there was a significant (P < 0.05) negative relationship between MBP, TOP, and MSOP. Based on soil organic P fractions and soil enzymatic and microbiological activities, continuous flooding applied to paddy soils should be avoided, especially when swine manure is incorporated into paddy soil. PMID:16738400

  10. Dissipation of fungicides in a vineyard soil amended with different spent mushroom substrates.

    PubMed

    Marín-Benito, Jesús M; Andrades, M Soledad; Sánchez-Martín, María J; Rodríguez-Cruz, M Sonia

    2012-07-18

    The degradation kinetics and formation of metabolites for fungicides of different chemical classes (iprovalicarb, metalaxyl, penconazole, and pyrimethanil) and determination of bound residues for metalaxyl and penconazole were studied in both an unamended vineyard soil and in the same soil amended with two spent mushroom substrates (composted (C-SMS1) and fresh (F-SMS2)). The degradation kinetics was fitted to single first-order or first-order multicompartment patterns. Degradation rates decreased in C-SMS1-amended soils for all fungicides as compared to unamended soil, but in F-SMS2-amended soils, they decreased only for iprovalicarb and penconazole. The DT(50) values were higher by up to 1.8 (metalaxyl), 3.8 (pyrimethanil), 4.1 (iprovalicarb), and >1000 (penconazole) times in the soil plus C-SMS1 compared to those for soil plus F-SMS2 or unamended soil. The dissipation mechanism recorded the highest mineralization in the unamended soil for (14)C-metalaxyl and (14)C-penconazole, with the highest formation of nonextractable residues in the F-SMS2-amended soil for (14)C-metalaxyl. The results are consistent with (1) the chemical characteristics of each SMS (total and soluble organic carbon) controlling sorption and the bioavailability of fungicides and (2) the microbial activity of SMS-amended soils, which affects fungicide biodegradation. The findings of this work highlight the potential of SMS amendments with different characteristics to decrease or increase the degradation rate of a fungicide in a vineyard soil. PMID:22715816

  11. Effect of spent mushroom substrate amendment of vineyard soils on the behavior of fungicides: 1. Adsorption-desorption of penconazole and metalaxyl by soils and subsoils.

    PubMed

    Marín-Benito, Jesús M; Sánchez-Martín, María J; Andrades, M Soledad; Pérez-Clavijo, Margarita; Rodríguez-Cruz, M Sonia

    2009-10-28

    The effect of the addition of fresh and composted spent mushroom substrates (F-SMS and C-SMS) to vineyard soils on the adsorption-desorption of penconazole and metalaxyl was studied under laboratory conditions. SMS is a promising agricultural residue as an amendment to increase the soil organic matter (OM) content. It may also modify the behavior of fungicides applied to vineyards. Freundlich Kf adsorption constants of both fungicides by soils and subsoils from three experimental plots unamended and amended in the field ranged between 2.78 and 13.4 (penconazole) and 0.14 and 0.67 (metalaxyl) with scant differences for unamended soil and subsoil. However, Kf values of amended soils were higher than those corresponding to subsoils and generally higher than those of unamended soils (up to 2.3 times for penconazole and 1.3 times for metalaxyl). The influence of SMS treatment (fresh or composted) was observed in the adsorption of the most hydrophobic fungicide penconazole. Simple and multiple correlations between soil and subsoil properties and adsorption constants indicated the influence of the OM on the adsorption of both fungicides, together with the clay, silt, and CaCO(3) content for metalaxyl and the pH for penconazole. The results revealed changes in the adsorption-desorption processes of these fungicides, which could give rise to a decrease in the mobility of metalaxyl (highly water-soluble) and an increase in the retention of penconazole (more hydrophobic). These effects could have an impact on surface and/or groundwater contamination.

  12. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

    PubMed Central

    Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo

    2016-01-01

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms–the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs. PMID:27782159

  13. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L.

    PubMed

    Yan, Xiulan; Zhang, Min; Liao, Xiaoyong; Tu, Shuxin

    2012-06-01

    Increasing availability of soil arsenic is of significance for accelerating phytoremediation efficiency of As-polluted sites. The effects of seven amendments, i.e., citrate, oxalate, EDTA, sodium polyacrylate (SPA), phosphate rock (PR), single superphosphate (SSP), and compost on fractionation and phytoavailability of soil As were investigated in lab culture experiment. The results showed that the addition of PR, SPA, EDTA or compost to soils significantly increased the concentration of NaHCO(3)-extractable As over a 120 d incubation period compared with the control (amendment-free) soil. Then, the four amendments were selected to add to As-contaminated soil growing Pteris vittata. It was concluded that As accumulation by the fern increased significantly under the treatments of PR and SPA by 25% and 31%, respectively. For As fractionation in soil, SPA increased Fe-As significantly by 51% and PR increased Ca-As significantly by 18%, while both the two amendments reduced occluded-As by 16% and 19%, respectively. Adding PR and SPA in soil increased the activities of urease and neutral phosphatase resulting from the improvement the fertility and physical structure of the soil, which benefits plant growth and As absorption of P. vittata. The results of the research revealed that both PR and SPA were effective amendments for improving phytoremediation of As-contaminated sites by P. vittata. PMID:22463947

  14. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L.

    PubMed

    Yan, Xiulan; Zhang, Min; Liao, Xiaoyong; Tu, Shuxin

    2012-06-01

    Increasing availability of soil arsenic is of significance for accelerating phytoremediation efficiency of As-polluted sites. The effects of seven amendments, i.e., citrate, oxalate, EDTA, sodium polyacrylate (SPA), phosphate rock (PR), single superphosphate (SSP), and compost on fractionation and phytoavailability of soil As were investigated in lab culture experiment. The results showed that the addition of PR, SPA, EDTA or compost to soils significantly increased the concentration of NaHCO(3)-extractable As over a 120 d incubation period compared with the control (amendment-free) soil. Then, the four amendments were selected to add to As-contaminated soil growing Pteris vittata. It was concluded that As accumulation by the fern increased significantly under the treatments of PR and SPA by 25% and 31%, respectively. For As fractionation in soil, SPA increased Fe-As significantly by 51% and PR increased Ca-As significantly by 18%, while both the two amendments reduced occluded-As by 16% and 19%, respectively. Adding PR and SPA in soil increased the activities of urease and neutral phosphatase resulting from the improvement the fertility and physical structure of the soil, which benefits plant growth and As absorption of P. vittata. The results of the research revealed that both PR and SPA were effective amendments for improving phytoremediation of As-contaminated sites by P. vittata.

  15. Biodegradation of Used Motor Oil in Soil Using Organic Waste Amendments

    PubMed Central

    Abioye, O. P.; Agamuthu, P.; Abdul Aziz, A. R.

    2012-01-01

    Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92%) was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day−1) in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day−1) in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration. PMID:22919502

  16. Biodegradation of used motor oil in soil using organic waste amendments.

    PubMed

    Abioye, O P; Agamuthu, P; Abdul Aziz, A R

    2012-01-01

    Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92%) was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day(-1)) in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day(-1)) in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration. PMID:22919502

  17. Impact of Organic Amendments with and Without Mineral Fertilizers on Soil Microbial Respiration

    NASA Astrophysics Data System (ADS)

    Gilani, S. S.; Bahmanyar, M. A.

    A field experiment was conducted to study the effects of Sewage Sludge (SS), Municipal Waste Compost (MWC) and Vermicompost (VC) with and without chemical fertilizer (Urea, 50 kg ha-1 + Potassium sulfate, 100 kg ha-1 + Triple super phosphate, 127.5 kg ha-1) on Soil Microbial Respiration (SMR) and Total Organic Carbon (TOC) in a soil cropped to soybean. Experiment was arranged in a complete block design with three replications. Organic amendments were added to soil at rate of 0 (control treatment), 20 and 40 Mg ha-1. Furthermore each level of organic fertilizers with ½ normal of chemical fertilizer was also enriched. Soil samples were taken after one year of fertilization. Results illustrated that application of organic amendments increased TOC and SMR and soybean yield compared to control and chemical fertilizer treatments. Sewage sludge amended soils showed higher SMR, TOC and soybean yield than that of other organic amendment treatments. An increasing trend was observed in all studied parameters, as rates of application increased. All parameters were greater in treatments receiving a combination of chemical fertilizers and organic amendments (enriched treatments) compared to soils receiving organic amendments alone. Results obtained by discriminate analysis indicated that rates of application were more effective to create discriminating among treatments. This study showed that TOC was significantly correlated with SMR. Significant correlation was also observed between SMR and soybean yield.

  18. Growth, yield and metal residues in Solanum melongena grown in fly ash amended soils.

    PubMed

    Gond, D P; Singh, Siddharth; Pal, Amit; Tewary, B K

    2013-05-01

    Fly ash from Chandrapura Thermal Power Station, Bokaro, Jharkhand (India) was used for amending soil at levels 0, 60, 120, 180 and 240 tons ha(-1) in which, brinjal (Solanum melongena) was grown and elemental residues of amended soil and plant parts were enumerated. Fly ash amendments caused significant improvement in soil quality, water holding capacity (52.64-65.76), pH (6.45-7.05), composition of photosynthetic pigment (chlorophyll a, chlorophyll b, total chlorophyll and carotenoid) and few growth parameters (fresh weight, root length, shoot length) of brinjal with the increase in fly ash amendments. Fruit (edible part) of plants grown in fly ash amended soils had metal residues (mg kg(-1)) like Cr (0.80-1.16), Co (0.34-1.46), Ni (0.85-1.00), Zn (24.41-32.33), Cu (10.61-15.49), and Mo (0.49-1.46) within the permissible limits. Results indicate that soil amended with fly ash at 180 tons ha(-1), not only improved the physical properties of the soil but also contributed to the better growth and yield of brinjal.

  19. EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum.

    PubMed

    Hashimoto, Yohey; Yamaguchi, Noriko; Takaoka, Masaki; Shiota, Kenji

    2011-02-01

    Due to unregulated uses of lead pellets for hunting purposes in Japan, soils and sediments in some river basins and wetlands have become highly contaminated with Pb. Deterioration of natural vegetation has occurred sporadically in these areas, and therefore revegetation is needed for ecological restoration. The objectives of the present study were to assess the effects of surface applications of compost and gypsum amendments on Pb availability to a watercress plant (Nasturtium officinale W.T. Aiton) and molecular-scale speciation of Pb in soil solid phases. The compost and gypsum amendments significantly decreased dissolved Pb and Sb in pore water. The concentration of Pb in aboveground plant tissues was 190mg kg(-1) in the control soil and was reduced to <20mg kg(-1) in the compost and gypsum-amended soils. The concentration of Sb in plants grown in the control soil was 13mg kg(-1), whereas that in the soils receiving compost and gypsum decreased below detectable levels. Redox potential was higher in vegetated soils (ave. 349mV) than in the unvegetated soils (ave. 99mV) due to oxygen introduced by plant roots. Extended X-ray absorption fine structure (EXAFS) spectroscopy illustrated that Pb occurred as Pb sorbed on birnessite and/or ferrihydrite (Pb-Mn/Fe, ~60%) and Pb sorbed on organic matter (Pb-org, ~15%), and galena (PbS, ~10%) in the vegetated and unvegetated control soils. The compost amendment increased the proportion of Pb-org by 2-fold than in the control soils. The amended soils with plant growth decreased the proportion of Pb-Mn/Fe phases by half of that without plant growth. Galena and anglesite (PbSO(4)) were not detected in compost-amended soils and even in gypsum-amended soils since a significant soil reduction to anoxic levels did not occur in the entire soil. The present study indicated that, under flooded conditions, surface applications of compost and gypsum amendments reduced plant Pb uptake from the Pb contaminated soil.

  20. Soil Type Identification Using Remotely Sensed Data for Agricultural Purpose

    NASA Astrophysics Data System (ADS)

    Jiji, G. Wiselin; Nadar, Pallavi

    2016-09-01

    Soil assessment plays important role in making decisions for Agriculture. In this paper, an approach by integrating the image processing and pattern recognition techniques to find the type of soil has been presented. The soil from the area of interest is selected and soil indices are extracted as features. Indexing technique is used for faster retrieval. The efficiency of the proposed system is proved using sensitivity, specificity, precision and recall. Our empirical evaluation has a superior retrieval performance over the performance of other works. This work is of great use to the farmers, who need to identify their field's soil type.

  1. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas.

    PubMed

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no-tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems may

  2. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas.

    PubMed

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no-tillage systems. Overall, our results suggest that agronomical land use and the