Science.gov

Sample records for agricultural sources contribute

  1. Contribution of base flow to nonpoint source pollution loads in an agricultural watershed

    USGS Publications Warehouse

    Schilling, K.E.; Wolter, C.F.

    2001-01-01

    Nonpoint source pollution of surface water from overland flow, drainage tiles, and ground water discharge is a major cause of water quality impairment in Iowa. Nonpoint source pollution from base flow ground water was estimated in the Walnut Creek watershed by measuring chemical loads of atrazine, nitrate, chloride, and sulfate at 18 tributary creeks and 19 tiles. Loads were measured during a stable base flow period at creeks and files that discharged into Walnut Creek between two stream gauges. Chemical concentrations of atrazine (< 0.1-12 ??g/L), nitrate (0.1 to 15 mg/L, and chloride (1.5 to 26 mg/L) in water were similar for creek and tile samples. Water draining predominantly agricultural row crop areas had much higher concentrations than water draining restored prairie areas. Three methods were used to estimate base flow discharge in the watershed: (1) Darcy flux; (2) watershed discharge budget; and (3) discharge-drainage area; each yielded similar results (31.2 L/s to 62.3 L/s). Base flow loads to the main channel were estimated by subtracting the loads from the upstream gauge; creeks and tiles, from the total load measured at the downstream gauge station. Base flow concentration for atrazine ranged from 0.15 to 0.29 ??g/L and sulfate concentration ranged from 32 to 64 mg/L, whereas concentrations for nitrate and chloride were negative (-1 to -4 mg/L). Calculated base flow concentrations of atrazine and sulfate appeared to be reasonable estimates, but negative concentrations of nitrate and chloride imply either loss of chemical mass in the stream from upstream to downstream sampling points or measurement error. Load data suggest little contribution from base flow pollutants to Walnut Creek water quality, with most of the pollutant load derived from major tributary creeks. Results from this study have implications for determining total maximum daily loads in agricultural watersheds where contributions from point sources (creeks and tiles) can he used to

  2. Unaccounted variability in NH3 agricultural sources detected by IASI contributing to European spring haze episode

    NASA Astrophysics Data System (ADS)

    Fortems-Cheiney, A.; Dufour, G.; Hamaoui-Laguel, L.; Foret, G.; Siour, G.; Van Damme, M.; Meleux, F.; Coheur, P.-F.; Clerbaux, C.; Clarisse, L.; Favez, O.; Wallasch, M.; Beekmann, M.

    2016-05-01

    Ammonia (NH3), whose main source in the troposphere is agriculture, is an important gaseous precursor of atmospheric particulate matter (PM). We derived daily ammonia emissions using NH3 total columns measured from the Infrared Atmospheric Sounding Interferometer (IASI) on board Metop-A, at a relatively high spatial resolution (grid cell of 0.5° × 0.5°). During the European spring haze episodes of 24-31 March 2012 and 8-15 March 2014, IASI reveals NH3 total column magnitudes highlighting higher NH3 emissions over central Europe (especially over Germany, Czech Republic, and eastern France) from the ones provided by the European reference European Monitoring and Evaluation Programme inventory. These ammonia emissions exhibit in addition a large day-to-day variability, certainly due to spreading practices. The increase of NH3 emissions in the model, that reaches +300% locally, leads to an increase of both NH3 and PM2.5 surface concentrations and allows for a better comparison with independent measurements (in terms of bias, root-mean-square error, and correlation). This study suggests that there are good prospects for better quantifying NH3 emissions by atmospheric inversions.

  3. Developing unique tracers to distinguish nutrient contributions from agriculture and wastewater sources in the Choptank River and Anacostia River watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eutrophication is a major problem for the Chesapeake Bay ecosystem. The efficacy of the restoration efforts implemented is restricted by the inability to differentiate nutrient sources. This study assessed the use of stable tracers in order to discriminate between urban and agricultural nutrient sou...

  4. AGRICULTURAL NONPOINT SOURCE POLLUTION (AGNPS)

    EPA Science Inventory

    Developed by the USDA Agricultural Research Service, Agricultural Nonpoint Source Pollution (AGNPS) model addresses concerns related to the potential impacts of point and nonpoint source pollution on surface and groundwater quality (Young et al., 1989). It was designed to quantit...

  5. Alternative energy sources for agriculture

    SciTech Connect

    Baird, D.

    1981-05-01

    The following energy systems are discussed as alternative sources of energy for agriculture and potential demonstration projects in vocational agriculture programs: solar water heating, solar greenhouse heating, solar crop drying, gasification of wood or crop residues, and methane generation from livestock wastes. 13 references.

  6. Use of a multi-isotope and multi-tracer approach including organic matter isotopes for quantifying nutrient contributions from agricultural vs wastewater sources

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.; Young, M. B.

    2013-12-01

    While nutrient isotopes are a well-established tool for quantifying nutrients inputs from agricultural vs wastewater treatment plant (WWTP) sources, we have found that combining nutrient isotopes with the C, N, and S isotopic compositions of dissolved and particulate organic matter, as part of a comprehensive multi-isotope and multi-tracer approach, is a much more diagnostic approach. The main reasons why organic matter C-N-S isotopes are a useful adjunct to studies of nutrient sources and biogeochemical processes are that the dissolved and particulate organic matter associated with (1) different kinds of animals (e.g., humans vs cows) often have distinctive isotopic compositions reflecting the different diets of the animals, and (2) the different processes associated with the different land uses (e.g., in the WWTP or associated with different crop types) often result in significant differences in the isotopic compositions of the organics. The analysis of the δ34S of particulate organic matter (POM) and dissolved organic matter (DOM) has been found to be especially useful for distinguishing and quantifying water, nutrient, and organic contributions from different land uses in aquatic systems where much of the organic matter is aquatic in origin. In such environments, the bacteria and algae incorporate S from sulfate and sulfide that is isotopically labeled by the different processes associated with different land uses. We have found that there is ~35 permil range in δ34S of POM along the river-estuary continuum in the San Joaquin/Sacramento River basin, with low values associated with sulfate reduction in the upstream wetlands and high values associated with tidal inputs of marine water into the estuary. Furthermore, rice agriculture results in relatively low δ34S values whereas WWTP effluent in the Sacramento River produces distinctly higher values than upstream of the WWTP, presumably because SO2 is used to treat chlorinated effluent. The fish living

  7. ON ESTIMATING AGRICULTURE'S NET CONTRIBUTION TO ATMOSPHERIC CARBON

    EPA Science Inventory

    Fossil fuel combustion, chlorofluorocarbon releases, and agricultural activities (including deforestation) are the primary anthropogenic sources of greenhouse gases. Of the three sources, agriculture is the only one that also has a sink capacity. Thus, an accounting of the net ca...

  8. Ammonia emissions from non-agricultural sources in the UK

    NASA Astrophysics Data System (ADS)

    Sutton, M. A.; Dragosits, U.; Tang, Y. S.; Fowler, D.

    A detailed literature review has been undertaken of the magnitude of non-agricultural sources of ammonia (NH 3) in the United Kingdom. Key elements of the work included estimation of nitrogen (N) excreted by different sources (birds, animals, babies, human sweat), review of miscellaneous combustion sources, as well as identification of industrial sources and use of NH 3 as a solvent. Overall the total non-agricultural emission of NH 3 from the UK in 1996 is estimated here as 54 (27-106) kt NH 3-N yr -1, although this includes 11 (6-23) kt yr -1 from agriculture related sources (sewage sludge spreading, biomass burning and agro-industry). Compared with previous estimates for 1990, component source magnitudes have changed both because of revised average emissions per source unit (emission factors) and changes in the source activity between 1990 and 1996. Sources with larger average emission factors than before include horses, wild animals and sea bird colonies, industry, sugar beet processing, household products and non-agricultural fertilizer use, with the last three sources being included for the first time. Sources with smaller emission factors than before include: land spreading of sewage sludge, direct human emissions (sweat, breath, smoking, infants), pets (cats and dogs) and fertilizer manufacture. Between 1990 and 1996 source activities increased for sewage spreading (due to reduced dumping at sea) and transport (due to increased use of catalytic converters), but decreased for coal combustion. Combined with the current UK estimates of agricultural NH 3 emissions of 229 kt N yr -1 (1996), total UK NH 3 emissions are estimated at 283 kt N yr -1. Allowing for an import of reduced nitrogen (NH x) of 30 kt N yr -1 and deposition of 230 kt N yr -1, these figures imply an export of 83 kt NH 3-N yr -1. Although export is larger than previously estimated, due to the larger contribution of non-agricultural NH 3 emissions, it is still insufficient to balance the UK

  9. "New World" and Mexican Contributions to Agriculture and Food.

    ERIC Educational Resources Information Center

    Rochin, Refugio I.

    1990-01-01

    Argues that Hispanic-Americans can find reason for pride and positive self-images in their cultural heritage and contributions to California agriculture. Traces history of foods and plant propagation in Mesoamerica. Discusses corn, vanilla, chocolate, chiles, tomatoes, and other foods significant for their culinary legacy. (CH)

  10. Does North Appalachian Agriculture Contribute to Soil Carbon Sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural systems are important for world ecosystems. They can be managed to moderate CO2 emissions. World soils can be both a sink and source of atmospheric CO2, but it is a slow process. Data from long-term soil management experiments are needed to assess soil carbon (C) sink capacity through a...

  11. The sources of deforestation - implications for sustainable agriculture in Brazil

    SciTech Connect

    Torres-Zorrilla, J.; Arnode, C.

    1992-12-01

    Agricultural equilibrium conditions are used to identify the sources of deforestation in Brazil. The rate which forestland can be converted into agricultural land and meet agricultural and environmental goals is calculated. This serves the task of determining how long agricultural land growth can be maintained until environmental targets are violated.

  12. Emissions from Combustion of Open Area Sources: Prescribed Forest and Agricultural Burns

    EPA Science Inventory

    Emissions from wildfires and prescribed forest and agricultural burns generate a variety of emissions that can cause adverse health effects for humans, contribute to climate change, and decrease visibility. Only limited pollutant data are available for these sources, particularly...

  13. Environmental sub models for a macroeconomic model: agricultural contribution to climate change and acidification in Denmark.

    PubMed

    Jensen, Trine S; Jensen, Jørgen D; Hasler, Berit; Illerup, Jytte B; Andersen, Frits M

    2007-01-01

    Integrated modelling of the interaction between environmental pressure and economic development is a useful tool to evaluate environmental consequences of policy initiatives. However, the usefulness of such models is often restricted by the fact that these models only include a limited set of environmental impacts, which are often energy-related emissions. In order to evaluate the development in the overall environmental pressure correctly, these model systems must be extended. In this article an integrated macroeconomic model system of the Danish economy with environmental modules of energy related emissions is extended to include the agricultural contribution to climate change and acidification. Next to the energy sector, the agricultural sector is the most important contributor to these environmental themes and subsequently the extended model complex calculates more than 99% of the contribution to both climate change and acidification. Environmental sub-models are developed for agriculture-related emissions of CH(4), N(2)O and NH(3). Agricultural emission sources related to the production specific activity variables are mapped and emission dependent parameters are identified in order to calculate emission coefficients. The emission coefficients are linked to the economic activity variables of the Danish agricultural production. The model system is demonstrated by projections of agriculture-related emissions in Denmark under two alternative sets of assumptions: a baseline projection of the general economic development and a policy scenario for changes in the husbandry sector within the agricultural sector. PMID:16549237

  14. Tracing crop-specific sediment sources in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Blake, William H.; Ficken, Katherine J.; Taylor, Philip; Russell, Mark A.; Walling, Desmond E.

    2012-02-01

    A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in an agricultural catchment setting against established geochemical fingerprinting techniques. The work demonstrates that novel CSSI techniques have the potential to provide important support for soil resource management policies and inform sediment risk assessment for the protection of aquatic habitats and water resources. Analysis of soil material from a range of crop covers in a mixed land-use agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment eroded from each land-cover to be tracked downstream. High resolution sediment sampling during a storm event and analysis for CSSI and conventional geochemical fingerprints elucidated temporal patterns of sediment mobilisation under different crop regimes and the specific contribution that each crop type makes to downstream sediment load. Pasture sources (65% of the catchment area) dominated the sediment load but areal yield (0.13 ± 0.02 t ha - 1 ) was considerably less than that for winter wheat (0.44 ± 0.15 t ha - 1 ). While temporal patterns in crop response matched runoff and erosion response predictions based on plot-scale rainfall simulation experiments, comparison of biomarker and geochemical fingerprinting data indicated that the latter overestimated cultivated land inputs to catchment sediment yield due to inability to discriminate temporary pasture (in rotation) from cultivated land. This discrepancy, however, presents an opportunity since combination of the two datasets revealed the extremely localised nature of erosion from permanent pasture fields in this system (estimated at up to 0.5 t ha - 1 ). The novel use of CSSI and geochemical tracers in tandem provided unique insights into sediment source dynamics that could not have been derived from each method alone. Research

  15. Particulate Matter Contributions from Agricultural Tilling Operations in an Irrigated Desert Region.

    PubMed

    Qi, Meilan; Lin, Kairong; Li, Xiangzhen; Sammis, Ted W; Miller, David R; Wang, Junming

    2015-01-01

    Sources of regional particulate matter (PM), particularly agricultural operations, must be understood in order to manage the air quality in irrigated dry climates. Direct monitoring measurements alone are useful, but not sufficient, to estimate regional PM source concentrations. This paper combines modeling with ground (point) and airplane (spatial) measurement methods to estimate regional PM10 (PM diameter≤10 μm) contributions from agricultural operations. Hourly data from three air quality monitoring stations positioned at a 2-m height located on the west and east mesas of New Mexico's Mesilla Valley and in the valley at Anthony, NM were acquired from the New Mexico Air Quality Bureau. The study spanned the agricultural tilling season, March 1 to April 30, for the years 2008 to 2012. One- second spatial PM10 concentrations at 200 m above the valley floor were measured during a two-hour controlled field tilling operation on April 1, 2008. The HYSPLIT 4.0 (Hybrid Single-Particle Lagrangian Integrated Trajectory version 4) model was run at the corresponding times and heights, outputting PM10 concentrations from all potential agricultural tilling operations. The calculated percentage contribution (modeled PM10 concentration/measured PM10 concentration) indicated that the near-surface (2-m height) proportion from the agricultural operations for five seasonal averages ranged from 0.7% to 1.5% on the west and east mesas and 1.3% for the valley site at Anthony. There were 71 hourly high values of contribution ratios ranging from 30 to 100% at the three sites, depending on the wind speed and direction. PMID:26422232

  16. Particulate Matter Contributions from Agricultural Tilling Operations in an Irrigated Desert Region

    PubMed Central

    Li, Xiangzhen; Sammis, Ted W.; Miller, David R.; Wang, Junming

    2015-01-01

    Sources of regional particulate matter (PM), particularly agricultural operations, must be understood in order to manage the air quality in irrigated dry climates. Direct monitoring measurements alone are useful, but not sufficient, to estimate regional PM source concentrations. This paper combines modeling with ground (point) and airplane (spatial) measurement methods to estimate regional PM10 (PM diameter≤10 μm) contributions from agricultural operations. Hourly data from three air quality monitoring stations positioned at a 2-m height located on the west and east mesas of New Mexico’s Mesilla Valley and in the valley at Anthony, NM were acquired from the New Mexico Air Quality Bureau. The study spanned the agricultural tilling season, March 1 to April 30, for the years 2008 to 2012. One- second spatial PM10 concentrations at 200 m above the valley floor were measured during a two-hour controlled field tilling operation on April 1, 2008. The HYSPLIT 4.0 (Hybrid Single-Particle Lagrangian Integrated Trajectory version 4) model was run at the corresponding times and heights, outputting PM10 concentrations from all potential agricultural tilling operations. The calculated percentage contribution (modeled PM10 concentration/measured PM10 concentration) indicated that the near-surface (2-m height) proportion from the agricultural operations for five seasonal averages ranged from 0.7% to 1.5% on the west and east mesas and 1.3% for the valley site at Anthony. There were 71 hourly high values of contribution ratios ranging from 30 to 100% at the three sites, depending on the wind speed and direction. PMID:26422232

  17. Management of agricultural nonpoint source pollution in China: current status and challenges.

    PubMed

    Wang, Xiaoyan

    2006-01-01

    Water quality in China shows an overall trend of deterioration in recent years. Nonpoint source pollution from agricultural and rural regions is the leading source of water pollution. The agricultural nonpoint source pollutants are mainly from fertilization of cropland, excessive livestock and poultry breeding and undefined disposal of daily living wastes in rural areas. Agricultural nonpoint sources contribute the main source of pollution to most watersheds in China, but they are ignored in management strategy and policy. Due to the lack of full understanding of water pollution control and management and the lack of perfect water quality standard systems and practical legislative regulations, agricultural nonpoint source pollution will become one of the biggest challenges to the sustainable development of rural areas and to society as a whole. The system for agricultural nonpoint source pollution control in China should include an appropriate legislation and policy framework, financing mechanisms, monitoring system, and technical guidelines and standards. The management of agricultural nonpoint source pollution requires multidisciplinary approaches that will involve a range of government departments, institutions and the public. PMID:16594318

  18. [Contribution of Base Flow to Total Nitrogen Loading in Subtropical Agricultural Catchments].

    PubMed

    Ma, Qiu-mei; Li, Wei; Wang, Yi; Liu, Xin-liang; Li, Yong; Wu, Jin-shui

    2016-04-15

    With the fast development of economics and improvement of people's living standard, non-point source pollution of the agricultural catchments in subtropical China has become more and more severe, where water quality deterioration has become a main barrier for sustainable development and ecological restoration. The process of ecohydrology in catchment is greatly influenced by the process of base flow in channel. This study selected the Tuojia and Jianshan catchments located in Changsha County, Hunan Province, to quantify and compare the contribution of base flow to total nitrogen (TN) loading from January 2011 to December 2013, through field observation and model estimation. The results suggested that the Tuojia catchment with higher intensity of rice agriculture had the greater volume of base flow, higher average flow-weighted TN concentration in base flow, and greater monthly TN loading via base flow [15.2 mm · month⁻¹, 4.14 mg · L⁻¹ and 0.54 kg · (hm² · month)⁻¹, respectively] than those in the Jianshan catchment with lower intensity [11.4 mm · month⁻¹, 1.72 mg · L⁻¹ and 0.20 kg · (hm² · month)⁻¹, respectively]. The base flow contribution to TN loading showed an apparently seasonal pattern. During rice-growing seasons, the contributions of base flow to TN loading were 23.2% and 18.6% in the Tuojia and Jianshan catchments, respectively, lower than those in the fallow seasons (46.9% and 40.0% correspondingly. These results suggested that rice agriculture increased the contribution of base flow in the fallow season to TN loading. Therefore, to alleviate the suffering of non-point source pollution in the rice agriculture catchments, reasonable management measure of rice fields should be implemented to decrease contrihution of base flow to TN loading. PMID:27548958

  19. Sources of fine sediment stored in agricultural lowland streams, Midwest, USA

    NASA Astrophysics Data System (ADS)

    Lamba, Jasmeet; Thompson, A. M.; Karthikeyan, K. G.; Fitzpatrick, Faith A.

    2015-05-01

    Agricultural activities can accelerate the offsite transport of productive soil from fields leading to stream water quality degradation. Identification of the nature and relative contribution of different sources to fine-grained sediment (e.g., silts, clays) in streams is important to effectively focus agricultural best management practices in watersheds. Sediment fingerprinting techniques through the use of geochemical tracers are commonly used to differentiate relative contribution from various sources. Research was conducted in lowland streams in the Pleasant Valley watershed in South Central Wisconsin (USA) to identify provenance of fine-grained sediment deposits and evaluate the impact of land use on relative contributions from the following potential sources: cropland, pasture, woodland, and eroding stream banks. Results show that both agriculture (croplands and pastures) and eroding stream banks are primary sources to fine sediment deposits on the stream bed with contributions ranging from 19 to 100% and 0 to 81%, respectively. The increase in area under agricultural land use within a subwatershed results in greater contribution from agriculture (R2 = 0.846, p = 0.0034). Relative contributions from eroding stream banks increased with increasing area under grasslands and woodlands within a subwatershed (R2 = 0.814, p = 0.0055). Subwatersheds with greater mass of fine sediment deposited on the stream bed per unit area should be prioritized for best management practices. The conservation practices should be targeted to stream banks or croplands depending on the dominant source of fine sediment within a subwatershed. Site specific changes in relative contributions from different sources to fine-grained sediment in this watershed highlights the complexities involved in sediment transport dynamics. The nested sampling sites helped determine that sediment dynamics at the subwatershed scale need to be considered for application of targeted conservation techniques.

  20. COMPARATIVE DIVERSITY OF FECAL BACTERIA IN AGRICULTURALLY SIGNIFICANT ANIMALS TO IDENTIFY ALTERNATIVE TARGETS FOR MICROBIAL SOURCE TRACKING

    EPA Science Inventory

    Animals of agricultural significance contribute a large percentage of fecal pollution to waterways via runoff contamination. The premise of microbial source tracking is to utilize fecal bacteria to identify target populations which are directly correlated to specific animal feces...

  1. Agricultural biotechnology and its contribution to the global knowledge economy.

    PubMed

    Aerni, Philipp

    2007-01-01

    The theory of neoclassical welfare economics largely shaped international and national agricultural policies during the Cold War period. It treated technology as an exogenous factor that could boost agricultural productivity but not necessarily sustainable agriculture. New growth theory, the economic theory of the new knowledge economy, treats technological change as endogenous and argues that intangible assets such as human capital and knowledge are the drivers of sustainable economic development. In this context, the combined use of agricultural biotechnology and information technology has a great potential, not just to boost economic growth but also to empower people in developing countries and improve the sustainable management of natural resources. This article outlines the major ideas behind new growth theory and explains why agricultural economists and agricultural policy-makers still tend to stick to old welfare economics. Finally, the article uses the case of the Cassava Biotechnology Network (CBN) to illustrate an example of how new growth theory can be applied in the fight against poverty. CBN is a successful interdisciplinary crop research network that makes use of the new knowledge economy to produce new goods that empower the poor and improve the productivity and nutritional quality of cassava. It shows that the potential benefits of agricultural biotechnology go far beyond the already known productivity increases and pesticide use reductions of existing GM crops. PMID:17522821

  2. Control of Agricultural Nonpoint Source Pollution by Natural Wetland Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduction of nonpoint source pollutants, principally sediment and nutrients moving from cultivated fields to surface waters, is a major challenge. Remnants of once-extensive natural wetlands occur across the agricultural landscape, and some workers have suggested that these areas might be managed t...

  3. ALTERNATIVE POLICIES FOR CONTROLLING NONPOINT AGRICULTURAL SOURCES OF WATER POLLUTION

    EPA Science Inventory

    This study of policies for controlling water pollution from nonpoint agricultural sources includes a survey of existing state and Federal programs, agencies, and laws directed to the control of soil erosion. Six policies representing a variety of approaches to this pollution prob...

  4. Integrating contributing areas and indexing phosphorus loss from agricultural watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most states in the U.S. have adopted P Indexing to guide P-based management of agricultural fields by identifying the relative risk of P loss at farm and watershed scales. To a large extent, this risk is based on hydrologic principles whereby frequently occurring storms have a given potential to in...

  5. Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections

    NASA Astrophysics Data System (ADS)

    Smith, Hugh G.; Blake, William H.

    2014-01-01

    sediment from upland areas of peaty soils resulted in the non-conservative behaviour of some tracer properties in several catchments. Differences in the particle size and organic carbon content of source soils could explain much of the variation in these properties in downstream sediment, rather than selective transport effects. Inconsistent relationships between particle size, organic carbon and tracer property concentrations further undermined the basis for the use of widely applied corrections to tracer datasets. Sensitivity analysis showed that correcting source tracer data for differences in organic matter can produce large changes to source contribution estimates that cannot be justified, and such corrections should not be used. Confounding factors related to poor source discrimination and non-conservative behaviour are highly likely to affect sediment fingerprinting studies in many agricultural catchments. As a result, estimates of source contributions in many fingerprinting studies may contain significant unquantified errors.

  6. Using Microbial Source Tracking to Enhance Environmental Stewardship of Agriculture

    NASA Astrophysics Data System (ADS)

    Martin, Sherry; Rose, Joan; Flood, Matthew; Aw, Tiong; Hyndman, David

    2016-04-01

    Large scale agriculture relies on the application of chemical fertilizers and animal manure. It is well known that nutrients in excess of a plant's uptake and soil retention capacity can travel to nearby waterways via surface run-off and groundwater pathways, indirectly fertilizing these aquatic ecosystems. It has not yet been possible to distinguish water quality impacts of fertilizer from those derived from human and animal waste sources. However, new microbial source tracking (MST) tools allow specific identification of fecal pollution. Our objective was to examine pollution risks at the regional scale using MST, mapping and classification and regression tree analysis. We present results Bovine M2 genetic marker data from three flow regimes (baseflow, snow melt, and post-planting rain). Key landscape characteristics were related to the presence of the bovine markers and appear to be related to fate and transport. Impacts at this regional watershed scale will be discussed. Our research aims to identify the impacts of agricultural management practices on water quality by linking nutrient concentrations with fecal pollution sources. We hope that our research will provide guidance that will help improve water quality through agricultural best management practices to reduce pathogen contamination.

  7. Quantifying sediment sources in a lowland agricultural catchment pond using (137)Cs activities and radiogenic (87)Sr/(86)Sr ratios.

    PubMed

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J Patrick; Salvador-Blanes, Sébastien; Thil, François; Dapoigny, Arnaud; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2016-10-01

    Soil erosion often supplies high sediment loads to rivers, degrading water quality and contributing to the siltation of reservoirs and lowland river channels. These impacts are exacerbated in agricultural catchments where modifications in land management and agricultural practices were shown to accelerate sediment supply. In this study, sediment sources were identified with a novel tracing approach combining cesium ((137)Cs) and strontium isotopes ((87)Sr/(86)Sr) in the Louroux pond, at the outlet of a lowland cultivated catchment (24km(2), Loire River basin, France) representative of drained agricultural areas of Northwestern Europe. Surface soil (n=36) and subsurface channel bank (n=17) samples were collected to characterize potential sources. Deposited sediment (n=41) was sampled across the entire surface of the pond to examine spatial variation in sediment deposits. In addition, a 1.10m sediment core was sampled in the middle of the pond to reconstruct source variations throughout time. (137)Cs was used to discriminate between surface and subsurface sources, whereas (87)Sr/(86)Sr ratios discriminated between lithological sources. A distribution modeling approach quantified the relative contribution of these sources to the sampled sediment. Results indicate that surface sources contributed to the majority of pond (μ 82%, σ 1%) and core (μ 88%, σ 2%) sediment with elevated subsurface contributions modeled near specific sites close to the banks of the Louroux pond. Contributions of the lithological sources were well mixed in surface sediment across the pond (i.e., carbonate sediment contribution, μ 48%, σ 1% and non-carbonate sediment contribution, μ 52%, σ 3%) although there were significant variations of these source contributions modeled for the sediment core between 1955 and 2013. These fluctuations reflect both the progressive implementation of land consolidation schemes in the catchment and the eutrophication of the pond. This original sediment

  8. U and Sr Isotope Tracers of Agricultural Salinity Sources to the Lower Rio Grande River

    NASA Astrophysics Data System (ADS)

    Nyachoti, S. K.; Ma, L.; Szynkiewicz, A.; Jin, L.; McIntosh, J. C.

    2014-12-01

    Elevated salinity of the lower Rio Grande River deteriorates water quality and limits domestic and agricultural water use. Both natural and anthropogenic processes contribute salts in the Rio Grande. Previous studies have focused on natural salt contributions with less emphasis on anthropogenic sources of salinity in the Rio Grande. Using (234U/238U) activity ratios (UAR), 87Sr/86Sr isotope ratios, and major element concentrations, we aim to trace and quantify the salt loads in the Lower Rio Grande watershed which is greatly impacted by agricultural activities. Between 2009 and 2010, we sampled the Rio Grande stretch and irrigation return flows between the Elephant Butte Reservoir, New Mexico and El Paso, Texas. Furthermore, we monitored in monthly intervals the temporal changes of chemical and isotopic compositions of the Rio Grande at Canutillo, Tx. Our results show higher U and Sr fluxes in the Rio Grande during the irrigation season as compared to the non-irrigation season. The UAR (1.62 to 2.13) and 87Sr/86Sr ratios (0.7099 to 0.7138) were higher in the non-irrigation season compared to the irrigation season (UAR: 1.69 to 1.77; 87Sr/86Sr: 0.7100 to 0.7106). These variations of UAR and 87Sr/86Sr ratios imply multiple sources of U and Sr in the Rio Grande. In contrast, the agricultural return flows show a narrow range of UAR (1.31 to 1.37) and 87Sr/86Sr ratios (0.7091 to 0.7099) in the studied seasons. This is consistent with salinity contributions from agricultural sources. Rio Grande at Canutillo shows low UAR (1.62 to 1.77) and 87Sr/86Sr ratios (0.7104 to 0.7105) during the irrigation season as compared to the non-irrigation season (UAR: 2.04 to 2.24; 87Sr/86Sr: 0.7105 to 0.7109). The low U and Sr signature at Canutillo during the irrigation season is close to that of the agricultural return flows, indicative of agricultural salinity sources. These results provide useful elemental and isotopic constraints for future mass balance calculations of salinity

  9. Stream Sediment Sources in Midwest Agricultural Basins with Land Retirement along Channel.

    PubMed

    Williamson, T N; Christensen, V G; Richardson, W B; Frey, J W; Gellis, A C; Kieta, K A; Fitzpatrick, F A

    2014-09-01

    Documenting the effects of agricultural land retirement on stream-sediment sources is critical to identifying management practices that improve water quality and aquatic habitat. Particularly difficult to quantify are the effects from conservation easements that commonly are discontinuous along channelized streams and ditches throughout the agricultural midwestern United States. Our hypotheses were that sediment from cropland, retired land, stream banks, and roads would be discernible using isotopic and elemental concentrations and that source contributions would vary with land retirement distribution along tributaries of West Fork Beaver Creek in Minnesota. Channel-bed and suspended sediment were sampled at nine locations and compared with local source samples by using linear discriminant analysis and a four-source mixing model that evaluated seven tracers: In, P, total C, Be, Tl, Th, and Ti. The proportion of sediment sources differed significantly between suspended and channel-bed sediment. Retired land contributed to channel-bed sediment but was not discernible as a source of suspended sediment, suggesting that retired-land material was not mobilized during high-flow conditions. Stream banks were a large contributor to suspended sediment; however, the percentage of stream-bank sediment in the channel bed was lower in basins with more continuous retired land along the riparian corridor. Cropland sediments had the highest P concentrations; basins with the highest cropland-sediment contributions also had the highest P concentrations. Along stream reaches with retired land, there was a lower proportion of cropland material in suspended sediment relative to sites that had almost no land retirement, indicating less movement of nutrients and sediment from cropland to the channel as a result of land retirement. PMID:25603248

  10. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources.

    PubMed

    Anderson, Natalie; Strader, Ross; Davidson, Cliff

    2003-06-01

    Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant

  11. Sole-Source Lighting for Controlled-Environment Agriculture

    NASA Technical Reports Server (NTRS)

    Mitchell.Cary; Stutte, Gary W.

    2015-01-01

    Since plants on Earth evolved under broad-spectrum solar radiation, anytime they are grown exclusively under electric lighting that does not contain all wavelengths in similar proportion to those in sunlight, plant appearance and size could be uniquely different. Nevertheless, plants have been grown for decades under fluorescent (FL) (1) + incandescent (IN) (2) lamps as a sole source of lighting (SSL), and researchers have become comfortable that, in certain proportions of FL + IN for a given species, plants can appear "normal" relative to their growth outdoors. The problem with using such traditional SSLs for commercial production typically is short lamp lifespans and not obtaining enough photosynthetically active radiation (PAR, 400-700 nm) when desired. These limitations led to supplementation of FL + IN lamp outputs with longer-lived, high-intensity discharge (HID) lamps in growth chambers (3). As researchers became comfortable that mixes of orange-biased high-pressure sodium (HPS) and blue-biased metal halide (MH) HIDs together also could give normal plant growth at higher intensities, growth chambers and phytotrons subsequently were equipped mainly with HID lamps, with their intense thermal output filtered out by ventilated light caps or thermal-controlled water barriers. For the most part, IN and HID lamps have found a home in commercial protected horticulture, usually for night-break photoperiod lighting (IN) or for seasonal supplemental lighting (mostly HPS) in greenhouses. However, lack of economically viable options for SSL have held back aspects of year-round indoor agriculture from taking off commercially.

  12. Source contributions to fine particulate matter in an urban atmosphere.

    PubMed

    Park, Seung S; Kim, Young J

    2005-04-01

    This paper proposes a practical method for estimating source attribution by using a three-step methodology. The main objective of this study is to explore the use of the three-step methodology for quantifying the source impacts of 24-h PM2.5 particles at an urban site in Seoul, Korea. 12-h PM2.5 samples were collected and analyzed for their elemental composition by ICP-AES/ICP-MS/AAS to generate the source composition profiles. In order to assess the daily average PM2.5 source impacts, 24-h PM2.5 and polycyclic aromatic hydrocarbons (PAH) ambient samples were simultaneously collected at the same site. The PM2.5 particle samples were then analyzed for trace elements. Ionic and carbonaceous species concentrations were measured by ICP-AES/ICP-MS/AAS, IC, and a selective thermal MnO2 oxidation method. The 12-h PM2.5 chemical data was used to estimate possible source signatures using the principal component analysis (PCA) and the absolute principal component scores method followed by the multiple linear regression analysis. The 24-h PM2.5 source categories were extracted with a combination of PM2.5 and some PAH chemical data using the PCA, and their quantitative source contributions were estimated by chemical mass balance (CMB) receptor model using the estimated source profiles and those in the literature. The results of PM2.5 source apportionment using the 12-h derived source composition profiles show that the CMB performance indices; chi2, R2, and percent of mass accounted for are 2.3%, 0.97%, and 100.7%, which are within the target range specified. According to the average PM2.5 source contribution estimate results, motor vehicle exhaust was the major contributor at the sampling site, contributing 26% on average of measured PM2.5 mass (41.8 microg m-3), followed by secondary sulfate (23%) and nitrate (16%), refuse incineration (15%), soil dust (13%), field burning (4%), oil combustion (2.7%), and marine aerosol (1.3%). It can be concluded that quantitative source

  13. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils.

    PubMed

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-12-15

    Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74-100% and 0-24% of the total Hg input, while road dusts and solid wastes contributed for 0-80% and 19-100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions. PMID:26257294

  14. Sources and contributions of wood smoke during winter in London

    NASA Astrophysics Data System (ADS)

    Crilley, Leigh; Bloss, William; Yin, Jianxin; Beddows, David; Harrison, Roy; Zotter, Peter; Prevot, Andre; Green, David

    2014-05-01

    Determining the contribution of wood smoke in large urban centres such as London is becoming increasingly important with the changing nature of domestic heating partly due to the installation of biomass burning heaters to meet renewable energy targets imposed by the EU and also a rise in so-called recreational burning for aesthetic reasons (Fuller et al., 2013). Recent work in large urban centres (London, Paris and Berlin) has demonstrated an increase in the contribution of wood smoke to ambient particles during winter that can at times exceed traffic emissions. In Europe, biomass burning has been identified as a major cause of exceedances of European air quality limits during winter (Fuller et al., 2013). In light of the changing nature of emissions in urban areas there is a need for on-going measurements to assess the impact of biomass burning in cities like London. Therefore we aimed to determine quantitatively the contribution of biomass burning in London and surrounding rural areas. We also aimed to determine whether local emissions or regional sources were the main source of biomass burning in London. Sources of wood smoke during winter in London were investigated at an urban background site (North Kensington) and two surrounding rural sites (Harwell and Detling) by analysing selected wood smoke chemical tracers. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated, indicating a similar source of these species at the three sites. Based on the conversion factor for levoglucosan, mean wood smoke mass at Detling, North Kensington and Harwell was 0.78, 0.87 and 1.0 µg m-3, respectively. At all the sites, biomass burning was found to be a source of OC and EC, with the largest source of OC and EC found to be secondary organic aerosols and traffic emissions, respectively. Peaks in levoglucosan concentrations at the sites were observed to coincide with low ambient temperature, suggesting domestic heating as

  15. Mitigation strategies for methane emissions from agricultural sources

    SciTech Connect

    Duxbury, J.M.

    1993-12-31

    Anthropogenic emissions of CH{sub 4} account for 70% of total global emissions of this greenhouse gas. Current anthropogenic emissions of CH{sub 4} in the US are estimated to be between 24-30 Tg CH{sub 4} or 7-9% of the global anthropogenic total. By comparison the US is responsible for 27% of anthropogenic emissions of CO{sub 2} from fossil fuel use. Table 1 shows that the major anthropogenic sources of CH{sub 4} in the US are landfills (37%), domestic livestock and livestock waste (31%) and the coal mining/natural gas/petroleum industries (28%). On a global basis it is estimated that US landfills contribute 30% to the global landfill total, whereas livestock (including waste) and the coal mining/natural gas/petroleum industries each contribute about 8% to their respective global totals. The US is an insignificant contributor (< 1%) to global emissions of CH{sub 4} from rice paddies.

  16. Contribution to the diffuse radio background from extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Vernstrom, T.; Scott, Douglas; Wall, J. V.

    2011-08-01

    We examine the brightness of the cosmic radio background (CRB) by comparing the contribution from individual source counts to absolute measurements. We use a compilation of radio counts to estimate the contribution of detected sources to the CRB in several different frequency bands. Using a Monte Carlo Markov chain technique, we estimate the brightness values and uncertainties, paying attention to various sources of systematic error. At ν= 150, 325, 408, 610, 1.4, 4.8 and 8.4 GHz, our calculated contributions to the background sky temperature are 18, 2.8, 1.6, 0.71, 0.11, 0.0032 and 0.0059 K, respectively. We then compare our results to absolute measurements from the Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emission (ARCADE 2) experiment. If the ARCADE 2 measurements are correct and come from sources, then there must be an additional population of radio galaxies, fainter than where current data are probing. More specifically, the Euclidean-normalized counts at 1.4 GHz have to have an additional bump below about 10 μJy.

  17. A watershed modeling framework for phosphorus loading from residential and agricultural sources.

    PubMed

    Sinclair, Andrew; Jamieson, Rob; Madani, Ali; Gordon, Robert J; Hart, William; Hebb, Dale

    2014-07-01

    Phosphorus (P) loading from residential onsite wastewater systems (OWSs) into neighboring surface waters is a poorly understood process in rural watersheds; this can be further challenged when rural residential dwellings are intermixed with agricultural land use. The objectives of this research were (i) to design a P onsite wastewater simulator (POWSIM) to assess P loads from individual or clusters of residential OWSs typically used in Nova Scotia, Canada; and (ii) to simulate OWS P loads in a mixed agricultural watershed (Thomas Brook Watershed [TBW], NS) using the Soil and Water Assessment Tool (SWAT) model in conjunction with POWSIM, to predict and compare P loading from agricultural and residential sources. The POWSIM loading tool has three computational components: (i) disposal field selection and treatment media mass calculation, (ii) disposal field P treatment dynamics, and (iii) soil subsurface plume P treatment dynamics. The combination TBW POWSIM and SWAT modeling approach produced a better simulation of baseflow total P (TP) loads in both a predominantly residential subcatchment and one dominated by agriculture than the SWAT model without POWSIM. The residential subcatchment had 48% of its average annual land use TP load (simulated) contributed by OWSs, whereas the agricultural subcatchment had 39%. Watershed-scale sensitivity analyses of POWSIM input parameters for 18- and 50-yr OWS operation periods found the P loading rate into the disposal field, long-term P removal rates in the disposal field and soil systems, soil maximum P sorption capacity, and mass of native soil involved in P treatment to be most sensitive. PMID:25603083

  18. Contributions of natural sources to ozone and PM concentrations

    NASA Astrophysics Data System (ADS)

    Zare, Azimeh; Christensen, Jesper; Gross, Allan; Irannejad, parviz; Glasius, Marianne; Brandt, Jørgen

    2014-05-01

    Natural emissions play an important role in determining ambient levels of harmful atmospheric pollutants, especially tropospheric ozone and particulate matter (PM). Natural sources have become more important with the ongoing reductions of anthropogenic emissions and are expected to be even more significant in the future in connection with a changing climate. Despite of the efforts made for modelling of natural emissions, the uncertainties and gaps with regard to investigation and quantification of these emissions are still quite large. In this study, the large-scale atmospheric chemistry transport model, DEHM (the Danish Eulerian Hemispheric Model) is further developed, evaluated and applied to study and quantify the contributions of many compounds from the natural sources to the concentration of ozone and formation of PM. The relative contributions are calculated for the domain covering more than the Northern Hemisphere for a typical year 2006. Natural source categories adopted in the recent model consist of vegetation, lightning, soils, wild animals and oceans. Here, DEHM has been further developed to include more natural emissions of biogenic volatile organic compounds (VOCs) as well as a scheme for describing secondary organic aerosols. Moreover, the parameterization used for estimating sea-salt generation has been modified to contain additional features. Evaluation of the modeled total fine PM, against observations, is conducted for both the previous and new model versions to assess improvement of the model performance with the updated description of natural emissions. Using the developed DEHM, our simulations indicate that at the Northern Hemisphere the contribution from natural emissions to the average annual ozone concentrations over land is between 4-30 ppbV. Among the natural emissions, biogenic VOCs are found to be the most significant contributors to ozone formation. Our results show that biogenic VOCs enhance the average ozone concentration with around

  19. Potential alternative fuel sources for agricultural crops and plant components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The changing landscape of agricultural production is placing unprecedented demands on farmers as they face increasing global competition and greater natural resource conservation challenges. However, shrinking profit margins due to increasing input costs, particularly of fuel and fertilizer, can res...

  20. Contribution of anthropogenic phosphorus to agricultural soil fertility and food production

    NASA Astrophysics Data System (ADS)

    Ringeval, B.; Nowak, B.; Nesme, T.; Delmas, M.; Pellerin, S.

    2014-07-01

    Agricultural intensification over the last few decades has been accompanied by the extensive use of anthropogenic phosphorus (P) derived from mined phosphate rock. Given the increasing scarcity of P resources, accurate estimates of the reliance of agriculture on anthropogenic P are required. Here we propose a modeling approach for assessing the contribution of anthropogenic P to agricultural soil fertility and food production. We performed computations at country level, and France was chosen as a typical western European country with intensive agriculture. Four soil P pools were identified based on their bioavailability (labile versus stable) and origin (anthropogenic versus natural). Pool evolution between 1948 and 2009 was estimated by combining international databases and a simple biogeochemical model. An optimization procedure demonstrated the necessity of representing a stable P pool capable of replenishing the labile pool within 14 to 33 years in order to match country-scale observations. Mean simulated P pool sizes for 2009 (0-35 cm soil horizon) were 146, 616, 31, and 156 kgP/ha for natural stable, anthropogenic stable, natural labile, and anthropogenic labile pools, respectively. We found that, on average, 82% (min-max: 68-91%) of soil P (sum of labile and above defined stable) in that year was anthropogenic. The temporal evolution of this contribution is directly related to the integral of chemical fertilizer use over time, starting from 1948. The contribution of anthropogenic P to food production was similar at 84% (min-max: 72-91%), which is greater than budget-based estimates (~50-60%) commonly reported in the literature. By focusing on soil fertility and food production, this study provides a quantitative estimation of human perturbations of the P cycle in agroecosystems.

  1. Critical source times for nutrient loss in agricultural catchment streams

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Shore, Mairead; Mellander, Per-Erik; McDonald, Noeleen; Shortle, Ger; Murphy, Paul; Jordan, Phil

    2014-05-01

    Identifying periods of the year when there is a high risk of incidental nutrient loss from farms via runoff to streams underpins current nutrient management legislation in Europe. This research explored high-temporal resolution nutrient transfer patterns relative to the time that manure and fertiliser are prohibited from being spread (the mandatory spreading 'closed' period) in five Irish agricultural catchments. Catchment nutrient losses during the 12 week closed periods in 2009-10, 2010-11 and 2011-12 were compared with losses during the remainder of the year, and with losses in the two week 'shoulder' periods immediately before and after the closed period. The closed period losses were assumed to be residual from soil nutrient stores and the 'shoulder' periods were considered to also include incidental losses. Nutrient loss was measured at sub-hourly frequency as total phosphorus (P) and total oxidised nitrogen (mostly nitrate-N) fluxes in streamflow. The streamflow fluxes showed that the proportion of the annual nitrate-N loss occurring during the closed periods (33-61%) was high compared with the remainder of the year. Six to ten times more nitrate-N loss occurred in the two weeks after, compared with the two weeks before, the closed period. These two week 'shoulder' period losses were, on average, less than or equal to 2.5 kg nitrate-N/ha and 9% of total annual nitrate-N loss in streamflow. On average, 40-53% of the annual P loss occurred during the closed periods but in a runoff-prone catchment in a year with a wet summer, the closed period was the less risky period. Similar to nitrate-N, two to twenty times more P loss occurred in the two weeks after, compared with the two weeks before, the closed period. These shoulder period losses were, on average, less than or equal to 0.027 kg/ha and 4.2% of total annual P loss in streamflow. The proportion of the shoulder period loss that could be attributed to recently spread nutrients was not known but can be

  2. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach.

    PubMed

    Ding, Jingtao; Xi, Beidou; Gao, Rutai; He, Liansheng; Liu, Hongliang; Dai, Xuanli; Yu, Yijun

    2014-06-15

    Nitrate (NO3(-)) pollution is a severe problem in aquatic systems in Taihu Lake Basin in China. A dual isotope approach (δ(15)NNO3(-) and δ(18)ONO3(-)) was applied to identify diffused NO3(-) inputs in a stream in an agricultural field at the basin in 2013. The site-specific isotopic characteristics of five NO3(-) sources (atmospheric deposition, AD; NO3(-) derived from soil organic matter nitrification, NS; NO3(-) derived from chemical fertilizer nitrification, NF; groundwater, GW; and manure and sewage, M&S) were identified. NO3(-) concentrations in the stream during the rainy season [mean±standard deviation (SD)=2.5±0.4mg/L] were lower than those during the dry season (mean±SD=4.0±0.5mg/L), whereas the δ(18)ONO3(-) values during the rainy season (mean±SD=+12.3±3.6‰) were higher than those during the dry season (mean±SD=+0.9±1.9‰). Both chemical and isotopic characteristics indicated that mixing with atmospheric NO3(-) resulted in the high δ(18)O values during the rainy season, whereas NS and M&S were the dominant NO3(-) sources during the dry season. A Bayesian model was used to determine the contribution of each NO3(-) source to total stream NO3(-). Results showed that reduced N nitrification in soil zones (including soil organic matter and fertilizer) was the main NO3(-) source throughout the year. M&S contributed more NO3(-) during the dry season (22.4%) than during the rainy season (17.8%). AD generated substantial amounts of NO3(-) in May (18.4%), June (29.8%), and July (24.5%). With the assessment of temporal variation of diffused NO3(-) sources in agricultural field, improved agricultural management practices can be implemented to protect the water resource and avoid further water quality deterioration in Taihu Lake Basin. PMID:24686140

  3. Estimation of groundwater contribution in runoff from small agricultural dominated catchments

    NASA Astrophysics Data System (ADS)

    Deelstra, Johannes; Jansons, Viesturs; Lagzdiņš, Ainis

    2013-04-01

    Under poor natural drainage condition, agricultural land has to be provided with subsurface drainage systems to discharge excess water from the rootzone, thereby guaranteeing optimal cropping conditions during the growing season, while in addition facilitating land preparation. Subsurface drainage systems can significantly contribute in runoff and nutrient loss generation. A secondary effect of drainage systems is that it reduces surface runoff and thereby erosion and phosphorus loss. In addition to surface and subsurface runoff, a third component, being groundwater, is contributing in runoff. As only information about the total runoff at the catchment outlet is available, uncertainty exists about the contribution of the different flow processes. Agriculture is a main contributor of nutrients and sediments to surface water causing water quality problems. Knowledge about the different pathways of water and hence nutrients and sediments to open water systems is important with respect to the choice of mitigation measures in agricultural dominated catchments. Estimates of groundwater or baseflow contribution (BFI) are often based on the use of digital filters applied to average daily discharge values. When using recommended values for the digital filter, this resulted in BFI of 40 - 50 % when applied to small Norwegian agricultural catchments. When taking the poor natural drainage conditions into consideration in addition to the presence of heavy marine clay deposits at depths greater than 1 - 2 m below soil surface, these values are considered unrealistically high. Deelstra et al (2010) showed that small agricultural catchments can have rather "flashy" runoff behaviour, characterised by large diurnal variations in discharge which also contradicts high baseflow contributions. An approach to obtain a realistic filter parameter for a digital filter has been carried out, based on discharge measurements on a set of small, nested catchments in Norway and further tested in

  4. Contribution of natural terrestrial sources to the atmospheric chloroform budget

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Abel, T.; Pan, D.; Whelan, M.

    2008-12-01

    Chloroform (trichloromethane, CHCl3) is the second largest carrier of natural chlorine in the troposphere after methyl chloride, contributing to the reactive chlorine burden in the troposphere and to ozone destruction in the stratosphere. Our understanding of the biogeochemical cycling of atmospheric CHCl3 has undergone major adjustments recently, including the quantification of the total atmospheric burden of this compound, the estimated global source and sink strengths, and the relative contributions of anthropogenic versus natural contributions. Numerous natural terrestrial sources have been identified, including temperate peatlands, Arctic tundra, termite mounds, salt marshes, grasslands, forests and woodlands. However, the wide variability of fluxes within each ecosystem has complicated efforts to quantify the overall terrestrial source. In addition, the environmental and biogeochemical controls remain largely unknown. We shall present a comparison of recent CHCl3 flux measurements that cover a range of biome types and climatic conditions. To address within-biome variability, flux measurements from the Arctic tundra and temperate grasslands will be compared to common environmental parameters (e.g., temperature, soil moisture, solar insolation) and other trace gas fluxes (CH3Cl, CH4, CCl4). The generally poor correlations demonstrate that the variability of CHCl3 emissions may be affected by site-specific parameters that are not currently measured or by drastic changes in hydrologic conditions. Similar patterns are observed in laboratory incubations of tundra peat and grassland soils. We explore the possibility that the humification of plant material, which has been shown to produce organochlorine compounds through the chlorination of organic matter, may contribute to CHCl3 emissions. If this link exists, then CHCl3 production could potentially act as a proxy for organic matter degradation and carbon sequestration, essential biogeochemical and ecosystem

  5. Using Strontium Isotopes in Arid Agricultural Soils to Determine a Sink or Source of CO2

    NASA Astrophysics Data System (ADS)

    Ortiz, A. C.; Jin, L.

    2014-12-01

    Arid and semi-arid regions of the world are predicted to continue to expand through land degradation and prolonged drought events. Agricultural practices in these drylands degrade soils through elevated salinity, sodicity and alkalinity. Indeed, flood irrigation loads salts onto the soils including carbonate minerals in the form of calcite. Alfalfa and Pecan are salt tolerant and commonly grown in the arid El Paso region, but need irrigation using Rio Grande water with little to no contribution from local ground waters. We hypothesize that the irrigation is loading extra Ca and bicarbonate to soils and anthropogenically enhancing the precipitation of carbonates. We intend to monitor soil CO2 efflux after irrigation, characterize soil minerals, and combine them to isotopic data of soil, irrigation, and drainage waters to link the sources of Ca and C, kinetics of calcite precipitation, to irrigation events. This will include strontium isotopic analysis to determine the source of calcium in the agricultural fields, U-disequilibrium isotopes to estimate the carbonate ages, and CO2 efflux to monitor atmosphere-soil exchange. Carbon dioxide emissions are expected to change during flood irrigation when soils are saturated. After irrigation events, evaporative effects increase Ca and dissolved inorganic carbon concentration in soil waters leading to precipitation of calcite and thus elevated CO2efflux. Preliminary measurements in the pecan field show a marginally significant difference in CO2 fluxes before and after irrigation (p=0.07, t-test). Carbon dioxide emissions are lower during moist conditions (0.6 g m-2hr-1 CO2) than those in dry conditions (1.0 g m-2hr-1 CO2). Future C isotope data are needed to identify the source of extra CO2, biogenic or calcite-precipitation related. A water leachable extraction of alfalfa soils shows 87Sr/86Sr ratios ranged from 0.7101 to 0.7103, indicating Rio Grande river as a dominant calcium source. Further Sr isotopic analysis of

  6. Nitrate behaviors and source apportionment in an aquatic system from a watershed with intensive agricultural activities.

    PubMed

    Lu, Lu; Cheng, Hongguang; Pu, Xiao; Liu, Xuelian; Cheng, Qianding

    2015-01-01

    Nitrate pollution in aquatic systems caused by intensive agricultural activities is a serious problem in the Sanjiang Plain. In this study, a dual isotope approach (δ(15)N-NO3(-) and δ(18)O-NO3(-)) was employed to identify potential nitrate sources (atmospheric deposition, AD; NO3(-) derived from soil organic matter nitrification, NS; NO3(-) derived from chemical fertilizer nitrification, NF; and manure and sewage, M&S) and transformation processes occurring in the Abujiao River watershed located in the Sanjiang Plain. The Bayesian model (stable isotope analysis in R, SIAR) was utilized to apportion the contribution of the potential sources. In this watershed, the nitrate concentrations in the surface water were low (mean ± SD = 1.15 ± 0.84 mg L(-1)), and were greatly influenced by precipitation and land use conditions during the two sampling periods (the high flow period, September; the low flow period, November). On the contrary, in the ground water, high NO3(-) concentrations were observed (7.84 ± 5.83 mg L(-1)) and no significant temporal variation in NO3(-) was found during the sampling periods. The sampled water δ(18)O-NO3(-) values suggest that the nitrification process was not the main N cycling process, because most of the measured δ(18)O-NO3(-) values were above the expected δ(18)O-NO3(-) from nitrification throughout the sampling periods. Both the chemical and isotopic characteristics indicated that the signs of de-nitrification were absent in the surface water. However, significant de-nitrification processes were observed in the ground water for all sample periods. Results from the SIAR model showed that source contributions differed significantly during the two sampling periods. During the high flow period, chemical fertilizers and soil N fertilizer equally contributed to the major sources of nitrate in the surface water. In contrast, manure and sewage sources dominated the source contribution during the low flow period (November). This study

  7. ASSESSMENT OF RISK REDUCTION STRATEGIES FOR THE MANAGEMENT OF AGRICULTURAL NONPOINT SOURCE PESTICIDE RUNOFF IN ESTUARINE ECOSYSTEMS

    EPA Science Inventory

    Agricultural nonpoint source (NPS) runoff may result in significant discharges of pesticides, suspended sediments, and fertilizers into estuarine habitats adjacent to agricultural areas or downstream from agricultural watersheds. Exposure of estuarine fin fish and shellfish to to...

  8. Food and agricultural waste: Sources of carbon for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, wastes derived from agriculture products have met with limited success in the production of biofuels. Our objective in this report is to showcase a new and meaningful concept (called “avoidance”), to measure the environmental importance of converting these waste streams into energy. Agr...

  9. BIOMASS GASIFICATION FOR AGRICULTURAL ENERGY SOURCES AND SOIL ENRICHMENT

    EPA Science Inventory

    Phase I of the Biomass Gasification Project gave birth to many success stories and demonstrated enormous potential for members of the local agricultural community and for students within the university.

    Community-building

    Watauga County Cooperative Ext...

  10. Agriculture as a source of Aeolian sediment affecting air quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian processes on agricultural lands have been examined for the past several decades on nearly every continent and has led to a better understanding of detachment, entrainment, transport, and deposition. Relatively little is known concerning the effect of these processes on air quality. In fact, ...

  11. Source contributions to organic aerosol in the eastern United States

    NASA Astrophysics Data System (ADS)

    Lane, Timothy Edward

    Organic aerosols (OA) and elemental carbon (EC) are important components of atmospheric particulate matter (PM), potentially posing health hazards and contributing to global climate change. Secondary organic aerosol (SOA) is formed when condensable products from the oxidation of volatile organic compounds (VOCs) in the gas phase partition into the aerosol phase. Implementation of effective control strategies for organic PM2.5 (organic particles with diameters less than 2.5 mum) requires the quantification of the contribution of each source to the ambient OA and EC concentrations. The overall goal of this work is to determine which sources contribute the most to the organic aerosol concentrations across the eastern US. First, a source-resolved model is developed to predict the contribution of eight different sources to primary organic aerosol concentrations. Primary organic aerosol (OA) and elemental carbon (EC) concentrations are tracked for eight different sources: gasoline vehicles, non-road diesel vehicles, on-road diesel vehicles, biomass burning, wood burning, natural gas combustion, road dust, and all other sources. The results of the source-resolved model are compared to the results of chemical mass balance (CMB) models for Pittsburgh and multiple urban/rural sites from the Southeastern Aerosol Research and Characterization (SEARCH) network. Significant discrepancies exist between the source-resolved model and the CMB model predictions for several of the sources. There is strong evidence that the organic PM emissions from natural gas combustion are overestimated. Other similarities and discrepancies between the source-resolved model and the CMB model for primary OA and EC are discussed along with problems in the current emission inventory for certain sources. Next, the importance of isoprene as a source of SOA is determined using PMCAMx to predict the isoprene SOA concentration across the eastern US. Isoprene, the most abundant non-methane hydrocarbon

  12. Understanding Stream Channel Sediment Source Contributions For The Paradise Creek Watershed In Northern Idaho

    NASA Astrophysics Data System (ADS)

    Rittenburg, R.; Boll, J.; Brooks, E. S.

    2013-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. In-stream contributions are not well understood, and are a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to differentiate stream bank and stream bed sediment contributions and better understand the role of legacy sediments. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was composed predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 39% of the total annual sediment load for the basin, with a 19-year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term cross sectional data in the watershed, and a sediment fingerprinting analysis will be presented to better understand sediment contributions from within the stream channel system.

  13. Wetlands and Agriculture in Africa: Major Sources of N2O?

    NASA Astrophysics Data System (ADS)

    Gettel, G. M.

    2015-12-01

    Papyrus wetlands in East Africa are rapidly being converted to agricultural production in an effort to increase food security. This conversion is often seasonal, with wetlands being used for grazing and crop production of maize, sugarcane, and rice during dry seasons, and flooding occurring during wet seasons. An important question with respect to greenhouse gas production is whether wetland conversion to agriculture increases N2O fluxes. This trend has been shown in temperate regions where increased N2O fluxes are positively related to low soil C:N ratios, especially when soil moisture content remains high. In order to examine whether denitrification contributes to N2O flux, we measured potential denitrification rates (PDR by acetylene block method) in intact papyrus wetlands and agricultural converted wetlands in Kenya, Tanzania, Uganda, and Rwanda, and also performed multivariate analysis to relate soil characteristics to PDR. Agricultural land-cover types included maize, sugarcane, rice, and grazing. Results showed that intact wetlands are potentially important sources of N2O, as PDR in papyrus vegetation were consistently the highest (p<0.05; 128 - 601 μg N2O g DW-1 hour-1) while grazing sites showed the lowest (0.1 - 0.5 μg N2O g DW-1 hour-1). Rates were second highest in rice fields (2.3 - 303 μg N2O g DW-1 hour-1), and intermediate in maize and sugarcane (6.5 - 75 μmg N2O g DW-1 hour-1 and 5 - 30 μg N2O g DW-1 hour-1 respectively). PDR across all sites was inversely related to soil C:N ratio, with nitrate consistently limiting PDR in the wetland sites while soil carbon limited PDR in agricultural sites. This is seemingly in contrast with other findings that show that lower C:N ratios result in high N2O fluxes from drained wetland sites. However, flux measurements along with more realistic process-based measurements of denitrification are urgently needed to more fully understand the effect of agricultural conversion of wetlands in East Africa.

  14. Source contributions to atmospheric fine carbon particle concentrations

    NASA Astrophysics Data System (ADS)

    Andrew Gray, H.; Cass, Glen R.

    A Lagrangian particle-in-cell air quality model has been developed that facilitates the study of source contributions to atmospheric fine elemental carbon and fine primary total carbon particle concentrations. Model performance was tested using spatially and temporally resolved emissions and air quality data gathered for this purpose in the Los Angeles area for the year 1982. It was shown that black elemental carbon (EC) particle concentrations in that city were dominated by emissions from diesel engines including both on-highway and off-highway applications. Fine primary total carbon particle concentrations (TC=EC+organic carbon) resulted from the accumulation of small increments from a great variety of emission source types including both gasoline and diesel powered highway vehicles, stationary source fuel oil and gas combustion, industrial processes, paved road dust, fireplaces, cigarettes and food cooking (e.g. charbroilers). Strategies for black elemental carbon particle concentration control will of necessity need to focus on diesel engines, while controls directed at total carbon particle concentrations will have to be diversified over a great many source types.

  15. CO source contribution analysis for California during ARCTAS-CARB

    NASA Astrophysics Data System (ADS)

    Pfister, G. G.; Avise, J.; Wiedinmyer, C.; Edwards, D. P.; Emmons, L. K.; Diskin, G. D.; Podolske, J.; Wisthaler, A.

    2011-02-01

    Air pollution is of concern in many parts of California and is impacted by both local emissions and also by pollution inflow from the Pacific. In this study, we use the regional chemical transport model WRF-Chem V3.2 to examine the CO budget over California. We include model CO tracers for different emission sources in the model, which allow estimating the relative importance of local sources versus pollution inflow on the distribution of CO at the surface and in the free troposphere. The focus of our study is on the 15 June-15 July 2008 time period, which coincides with the aircraft deployment of the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission over California. Model simulations are evaluated using these aircraft observations as well as satellite retrievals and surface observations of CO. Evaluation results show that the model overall predicts the observed CO fields well, but points towards an underestimate of CO from the fires in Northern California, which had a strong influence during the study period, and towards a slight overestimate of CO from pollution inflow and local anthropogenic sources. The analysis of the CO budget over California reveals that inflow of CO explains on average 53 ± 21% of surface CO during the study period, compared to 22 ± 18% for local anthropogenic sources and 18 ± 22% for fires. In the free troposphere, the average CO contributions are estimated as 78 ± 16% for CO inflow, 6 ± 4% for CO from local anthropogenic sources and 11 ± 13% for CO from fires.

  16. Agricultural Science Teachers' Barriers, Roles, and Information Source Preferences for Teaching Biotechnology Topics

    ERIC Educational Resources Information Center

    Mowen, Diana L.; Wingenbach, Gary J.; Roberts, T. Grady; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to determine barriers, roles, and information source preferences for teaching agricultural biotechnology topics. Agricultural science teachers were described primarily as 37 year-old males who had taught for 12 years, had bachelor's degrees, and had lived or worked on a farm or ranch. Equipment was perceived as the…

  17. A MODELING-GIS APPROACH FOR THE ASSESSMENT OF SOIL AND GROUND WATER VULNERABILITY TO NONPOINT SOURCE IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    Ground water pollution due to agriculture activities is a major source of concern. Vast agricultural lands constitute a nonpoint source for pollutants, such as pesticides and nitrogen fertilizers, which threatens ground water resources and the integrity of aquatic and terrestria...

  18. OPTIMAL MANAGEMENT OF NON-POINT SOURCE POLLUTION FROM AGRICULTURE: AN APPLICATION OF DYNAMIC PROGRAMMING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural non-point source pollution is a major source of water quality impairment. When considering responses to non-point source pollution, several policy options have been considered historically, including reducing inputs (e.g. fertilizers) altering technologies on the landscape (e.g. conserv...

  19. CO source contribution analysis for California during ARCTAS-CARB

    NASA Astrophysics Data System (ADS)

    Pfister, G. G.; Avise, J.; Wiedinmyer, C.; Edwards, D. P.; Emmons, L. K.; Diskin, G. D.; Podolske, J.; Wisthaler, A.

    2011-08-01

    Air pollution is of concern in many parts of California and is impacted by both local emissions and also by pollution inflow from the North Pacific Ocean. In this study, we use the regional chemical transport model WRF-Chem V3.2 together with the global Model for OZone and Related Chemical Tracers to examine the CO budget over California. We include model CO tracers for different emission sources in the models, which allow estimation of the relative importance of local sources versus pollution inflow on the distribution of CO at the surface and in the free troposphere. The focus of our study is on the 15 June-15 July 2008 time period, which coincides with the aircraft deployment of the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission over California. Model simulations are evaluated using these aircraft observations as well as satellite retrievals and surface observations of CO. Evaluation results show that the model overall predicts the observed CO fields well, but points towards an underestimate of CO from the fires in Northern California, which had a strong influence during the study period, and towards a slight overestimate of CO from pollution inflow and local anthropogenic sources. The analysis of the CO budget over California reveals that inflow of CO explains on average 99 ± 11 ppbV of surface CO during the study period, compared to 61 ± 95 ppbV for local anthropogenic direct emissions of CO and 84 ± 194 ppbV for fires. In the free troposphere, the average CO contributions are estimated as 96 ± 7 ppbV for CO inflow, 8 ± 9 ppbV for CO from local anthropogenic sources and 18 ± 13 ppbV for CO from fires. Accounting for the low bias in the CO fire emission inventory, the fire impact during the study period might have been up to a factor 4 higher than the given estimates.

  20. On the contribution of modelling to multifunctional agriculture: learning from comparisons.

    PubMed

    Groot, Jeroen C J; Rossing, Walter A H; Tichit, Muriel; Turpin, Nadine; Jellema, André; Baudry, Jacques; Verburg, Peter H; Doyen, Luc; van de Ven, Gerrie W J

    2009-05-01

    In this paper a set of criteria is proposed for the evaluation of the potential contribution of modelling tools to strengthening the multifunctionality of agriculture. The four main areas of evaluation are (1) policy relevance, (2) the temporal resolution and scope, (3) the degree to which spatial and socio-institutional scales and heterogeneity are addressed and (4) the level of integration in the assessment of scientific dimensions and of the multiple functions of agriculture. The evaluative criteria are applied to the portfolio of modelling approaches developed and applied in a joint project of the French research institute INRA and the Dutch Wageningen University & Research Centre. The CLUE-S model focuses on prediction of changes in multifunctional land-use at regional scale, given a set of predetermined scenarios or policy variants, e.g. for ex-ante policy assessment and initiation of discussions on regional development. The two other modelling approaches are complementary and aim to address multifunctional farming activities. The Landscape IMAGES framework generates a range of static images of possible but sometimes distant futures for multifunctional farming activities in a small region or landscape. It supports the exploration of trade-offs between financial returns from agriculture, landscape quality, nature conservation and restoration, and environmental quality. Co-Viability Analysis generates trajectories of states and farming decisions fulfilling a given set of ecological and productive constraints representing a desired and sustainable future. The three modelling approaches differ in their policy relevance, in the ways that spatial and socio-institutional scales are addressed and in their degree of explicitation of interaction between the various functions of agriculture, but jointly cover most of the desired capabilities for assessment of multifunctionality. Caveats were particularly identified in the integration of the socio-institutional dimension

  1. Black carbon contribution to stabilised SOM in soil under slash and burn agriculture

    NASA Astrophysics Data System (ADS)

    Rumpel, C.; Chaplot, V.; Valentin, C.

    2008-12-01

    Black carbon (BC) produced during slash and burn agriculture on tropical soils may enhance the soils organic matter content and hence their biological properties. However, once deposited on the soil surface, BC may be subject to erosion and/or microbial decomposition and thus not be preserved on site. Up to now, few studies have been carried out to assess the contribution of BC to the soils stable carbon pool on sites under slash and burn agriculture. The aim of the study was to assess the survival potential of BC in sloping tropical soils of clayey texture. The study was carried out in Northern Laos, where the soils are subjected to addition of black carbon produced by burning of agricultural crop residues. Our conceptual approach included the characterisation of (a) morphologically distinct BC forms and (b) chemical soil fractions. The samples were analysed for elemental content, chemical composition by 13C CPMAS NMR spectroscopy, carbon resistant to acid hydrolysis with HCl, carbon resistant to oxidation with acid dichromate solution and 14C activity. Our results indicated that BC produced by slash and burn agriculture was highly aromatic in nature. Its elemental composition as well as its susceptibility to be lost by chemical oxidation was dependent on its morphology. Acid hydrolysis did not lead to carbon loss from any BC form. We thus hypothesised that BC should be present in the hydrolysis resistant fraction isolated from soil. The charactersation of the chemical composition by 13C CPMAS NMR spectroscopy showed that the hydrolysis residue was composed of highly aromatic carbon. Considering the low lignin content of these soils and the good recovery of bulk soil aromatic carbon signal (80-100%) in the hydrolysis residue, we consider that this fraction may be suitable to assess BC contribution to clayey soils. We suggest that BC isolated as hydrolysis resistant C may represent up to 25% of the soils C as compared to 8% as isolated by acid dichromate oxidation

  2. Exploration of risk factors contributing to the presence of influenza A virus in swine at agricultural fairs

    PubMed Central

    Bowman, Andrew S; Workman, Jeffrey D; Nolting, Jacqueline M; Nelson, Sarah W; Slemons, Richard D

    2014-01-01

    Influenza A virus infections occurring in exhibition swine populations at agricultural fairs during 2012 served as a source of H3N2 variant influenza A viruses transmitted to humans resulting in more than 300 documented cases. Prior to the outbreak, this investigation was initiated to identify fair-level risk factors contributing to influenza A virus infections in pigs at agricultural fairs. As part of an ongoing active surveillance program, nasal swabs and associated fair-level metadata were collected from pigs at 40 junior fair market swine shows held in Ohio during the 2012 fair season. Analyses of the data show that the adjusted odds of having influenza A virus-infected pigs at a fair were 1.27 (95% confidential interval (CI): 1.04–1.66) higher for every 20 pig increase in the size of the swine show. Additionally, four of the five fairs that hosted breeding swine shows in addition to their junior fair market swine shows had pigs test positive for influenza A virus. While the current study was limited to 40 fairs within one state, the findings provided insight for veterinary and public health officials developing mitigation strategies to decrease the intra- and inter-species transmission of influenza A virus at fairs. PMID:26038494

  3. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  4. Re-examining the basis for source discrimination and data corrections used by sediment fingerprinting studies in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Smith, Hugh; Blake, Will

    2014-05-01

    The sediment fingerprinting technique has been widely used in agricultural catchments to quantify fine sediment contributions from various land use sources. This application of the technique depends on the key assumption that land-use source signatures imprinted on catchment soils are decipherable from those due to other landscape factors affecting soil and sediment properties. We re-examine this key assumption by investigating (i) the physical and chemical basis for source discrimination and (ii) potential factors that may confound source un-mixing in agricultural catchments, including particle size and organic matter effects on tracer properties. The study is situated in the River Tamar, a predominantly agricultural catchment in south-west England that has also been affected by mining. Source discrimination focused on pasture and cultivated land uses and channel banks. Monthly, time-integrated suspended sediment samples were collected across seven catchments for a 12-month period. Physical and chemical properties measured in source soils and sediment included fallout radionuclides, major and minor element geochemical constituents, total organic carbon and particle size. Source discrimination was entirely dependent on differences in tracer property concentrations between surface and sub-surface soils. This is based on fallout radionuclide concentrations that are surface-elevated, while many geochemical properties are surface-depleted due to weathering and pedogenetic effects, although surface soil contamination can reverse this trend. Source discrimination in the study catchments was limited by (i) rotation of cultivated and pasture fields resulting in reduced differences between these two sources and (ii) the cultivated source signature resembling a mix of the pasture and channel bank sources for many tracer properties. Furthermore, metal pollution from abandoned historic mines and organic enrichment of sediment from areas of peaty soil resulted in the non

  5. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    PubMed

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA. PMID:26392092

  6. Research Orientations and Sources of Influence: Agricultural Scientists in the U.S. Land-Grant System.

    ERIC Educational Resources Information Center

    Goldberger, Jessica R.

    2001-01-01

    Uses data from a 1995-96 national survey of agricultural scientists at land-grant universities to investigate the relative importance of 19 sources of influence on agricultural scientists engaged in six areas of agricultural research: productionist-oriented, sustainable agriculture, environmental, basic, consumer-oriented, and rural…

  7. Litter contribution to soil organic carbon in the agriculture abandons processes

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Francaviglia, Dario; La Mantia, tommaso; Gristina, Luciano; La Bella, Salvatore; Tuttolomondo, Teresa

    2015-04-01

    Mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in ecosystem functioning as it regulates the cycle of soil organic matter (SOM), CO2 emission into the atmosphere, carbon sequestration into the soil. In this study, it was investigated the contribution of litters of different stages of Mediterranean secondary succession on Carbon sequestration, analyzing the role of earthworms on translocation of SOM into soil profile. For this purpose δ13C difference between meadow C4-C soil and C3-C litter were used in a field experiment. Four undisturbed litters of different stages of succession were collected (45, 70, 100 and 120 since agriculture abandon) and placed on the top of isolated soil cores. The litter contribution to C stock was affected by plant species and increased with the age of the stage of secondary succession. The soil organic carbon after 1 year since litter position increased up to 40% in comparison to no litter treatment in soil with litter of 120 years since abandon. The new carbon derived from C3-litter was decomposed and transferred into soil profile thanks to earthworms and dissolved organic carbon leaching. After 1 years the carbon increase attributed to earthworm activity ranged from 6% to 13% in soil under litter in field abandoned since 120 and 45 years, respectively.

  8. Litter contribution to soil organic carbon in the agriculture abandons processes

    NASA Astrophysics Data System (ADS)

    Novara, A.; Rühl, J.; La Mantia, T.; Gristina, L.; La Bella, S.; Tuttolomondo, T.

    2015-02-01

    Mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in ecosystem functioning as it regulates the cycle of soil organic matter (SOM), CO2 emission into the atmosphere, carbon sequestration into the soil. In this study, it was investigated the contribution of litters of different stages of Mediterranean secondary succession on Carbon sequestration, analyzing the role of earthworms on translocation of SOM into soil profile. For this purpose δ13C difference between meadow C4-Csoil and C3-Clitter were used in a field experiment. Four undisturbed litters of different stages of succession were collected (45, 70, 100 and 120 since agriculture abandon) and placed on the top of isolated soil cores. The litter contribution to C stock was affected by plant species and increased with the age of the stage of secondary succession. The soil organic carbon after 1 year since litter position increased up to 40% in comparison to no litter treatment in soil with litter of 120 years since abandon. The new carbon derived from C3-litter was decomposed and transferred into soil profile thanks to earthworms and dissolved organic carbon leaching. After 1 years the carbon increase attributed to earthworm activity ranged from 6 to 13% in soil under litter in field abandoned since 120 and 45 years, respectively.

  9. Litter contribution to soil organic carbon in the processes of agriculture abandon

    NASA Astrophysics Data System (ADS)

    Novara, A.; Rühl, J.; La Mantia, T.; Gristina, L.; La Bella, S.; Tuttolomondo, T.

    2015-04-01

    The mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in the functioning of the ecosystem, as they regulate the cycle of soil organic matter (SOM) and CO2 emission into the atmosphere. In this study the contribution of litters of different stages of Mediterranean secondary succession on carbon sequestration was investigated, analyzing the role of earthworms in the translocation of SOM into the soil profile. For this purpose the δ13C difference between meadow C4-C soil and C3-C litter was used in a field experiment. Four undisturbed litters of different stages of succession (45, 70, 100 and 120 since agriculture abandon) were collected and placed on the top of isolated C4 soil cores. The litter contribution to C stock was affected by plant species and it increased with the age of the stage of secondary succession. One year after the litter position, the soil organic carbon increased up to 40% in comparison to soils not treated with litter after 120 years of abandon. The new carbon derived from C3 litter was decomposed and transferred into soil profile thanks to earthworms and the leaching of dissolved organic carbon. After 1 year the carbon increase attributed to earthworm activity was 6 and 13% in the soils under litter of fields abandoned for 120 and 45 years, respectively.

  10. Volatile Organic Compounds source contributions in Paris: Measurement and modeling approaches. Focus on the traffic source

    NASA Astrophysics Data System (ADS)

    Gros, Valerie; Petetin, Hervé; Sarda-Estève, Roland; Kalogridis, Cerise; Baudic, Alexia; Bonnaire, Nicolas; Bonsang, Bernard; Xueref-Rémy, Irène; Ammoura, Lamia; Le Priol, Tiphaine; François Petit, Jean; Sanchez, Olivier; Rosso, Amandine; Perrussel, Olivier; Petit, Jean-Eudes; Sciare, Jean

    2013-04-01

    Paris is one of the few European megacities and with 11 Million inhabitants, almost 1/5 French population lives in Paris and its region. The EU-MEGAPOLI project allowed a detailed characterization of gaseous and particulate pollution in Paris in summer (July 2009) and winter (Jan-Feb 2010). Studies about VOCs source contributions performed for these periods have suggested the importance of traffic emissions, in contradiction with the local emission inventory, for which solvent source is the dominant VOC source in Paris. In order to examine the representativity of such conclusions, one-year (March 2010- March 2011) of continuous measurements of VOCs have been performed at the same urban site in Paris (as part of a French program PRIMEQUAL-FRANCIPOL). In addition, VOCs measurements (along with other gaseous and aerosol compounds) have been performed in a tunnel in order to better characterize the traffic source (October 2012, PRIMEQUAL -PREQUALIF project). Preliminary results will be presented here from this unique dataset, with a focus made on oxygenated compounds (methanol, acetaldehyde, acetone) and aromatic compounds (benzene, toluene, xylens...). We will show that the daily variability of oxygenated compounds is mainly linked to the local traffic source, as suggested by their co-variation with other compounds related to traffic emissions (CO, xylens...). In addition to this local source, we will show that oxygenated compounds baseline concentration levels are significantly enhanced during specific events (of a few day duration) characterized by continental air masses. Surprisingly other long-lived compounds (CO) appear to be much less affected by these events, providing evidences that the nature of these continental sources is not yet well established. Results from VOCs source contributions identification, quantification and geographical origin (Positive Matrix Factorization and Potential Source Contribution Function approaches) will be presented as well as

  11. Sources and processes contributing to nitrogen deposition: an adjoint model analysis applied to biodiversity hotspots worldwide.

    PubMed

    Paulot, Fabien; Jacob, Daniel J; Henze, Daven K

    2013-04-01

    Anthropogenic enrichment of reactive nitrogen (Nr) deposition is an ecological concern. We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to identify the sources and processes that control Nr deposition to an ensemble of biodiversity hotspots worldwide and two U.S. national parks (Cuyahoga and Rocky Mountain). We find that anthropogenic sources dominate deposition at all continental sites and are mainly regional (less than 1000 km) in origin. In Hawaii, Nr supply is controlled by oceanic emissions of ammonia (50%) and anthropogenic sources (50%), with important contributions from Asia and North America. Nr deposition is also sensitive in complicated ways to emissions of SO2, which affect Nr gas-aerosol partitioning, and of volatile organic compounds (VOCs), which affect oxidant concentrations and produce organic nitrate reservoirs. For example, VOC emissions generally inhibit deposition of locally emitted NOx but significantly increase Nr deposition downwind. However, in polluted boreal regions, anthropogenic VOC emissions can promote Nr deposition in winter. Uncertainties in chemical rate constants for OH + NO2 and NO2 hydrolysis also complicate the determination of source-receptor relationships for polluted sites in winter. Application of our adjoint sensitivities to the representative concentration pathways (RCPs) scenarios for 2010-2050 indicates that future decreases in Nr deposition due to NOx emission controls will be offset by concurrent increases in ammonia emissions from agriculture. PMID:23458244

  12. Carbon Sequestration Potential in Irrigated Agriculture: Greenhouse Gas Emissions and the Contribution of Water.

    NASA Astrophysics Data System (ADS)

    Rolston, D. E.; Hopmans, J. W.; van Kessel, C.; Six, J.; Paw U, K.; Plant, R.; Lee, J.; Kochendorfer, J.; Ideris, A. J.; MacIntyre, J.; Louie, D.; Matista, T.; Evatt, J.; Poch, R.; King, A. P.

    2006-12-01

    This study aimed to quantify CO2 and N2O release from an irrigated field in California's Sacramento Valley in an effort to determine greenhouse gas mitigation potentials through minimum tillage (MT) practices. Surface CO2 and N2O flux were monitored on the 30 ha, laser-leveled field site from September 2003 through August 2006. Additional field-representative flux data was collected from eddy-covariance masts and continuously sampling auto-chambers. Irrigation and run-off waters were collected and analyzed for total suspended solids (TSS), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), nitrate-N, ammonium-N, total C and total N in the sediment. Overall, we found very little difference in CO2 flux, water composition, or sediment composition between the two tillage treatments. N2O flux was negligible in both systems until a fertilization and irrigation event occurred in each growing season, at which point the MT treatment showed slightly higher fluxes. NO3-N levels in the run-off exceeded drinking water quality standards only in irrigation events following fertilizer application. Collected CO2 and N2O data from this site will enable us to predict greenhouse gas emissions from similar agricultural systems in the California landscape. Our results indicate that the role of irrigation water in C budgets of agricultural systems is a significant factor in determining total C sequestration potential, but that short-term MT may not significantly decrease the contribution to global warming by irrigated agroecosystems and thus may not be a beneficial strategy for greenhouse gas mitigation.

  13. Horse paddocks - an emerging source of agricultural water pollution

    NASA Astrophysics Data System (ADS)

    Masud Parvage, Mohammed; Ulén, Barbro; Kirchmann, Holger

    2015-04-01

    Horse farms occupy about 4% of the total agricultural land in the EU but are not well investigated with regard to their impact on water quality. Horse paddocks commonly hold horses on a limited space and the animal density often exceeds the recommended density. Therefore, paddock soils receive significant amounts of phosphorus (P) and nitrogen (N) through feed residues and deposition of faeces and urine, which can lead to nutrient build-up in the soil and subsequent losses to aquatic systems. This study characterized the potential risk of phosphorus (P) and nitrogen (N) leaching losses from Swedish horse paddocks through three stage examination of soil and water P and N status. The experiment began with a pilot study where surface soil P status and eight years of drainage P data were examined from a paddock catchment and an adjacent arable catchment both receiving similar amount of P and N over years. Results showed that there were no signi?cant differences in water-soluble P (WSP) or total P data in soils but the drainage water P concentrations, being higher in the paddock catchment (0.33 mg P l-1, mainly in dissolved reactive form) than the arable catchment (0.10 mg P l-1). In the second experiment, soil P and N status were examined in different parts of horse paddocks (feeding, grazing, and excretion areas) to identify existence of any potential hotspots for losses within the paddock. In total, seven horse farms, covering different grazing densities and soil textures representative of Swedish horse paddocks were examined. The results showed that concentrations of WSP, plant available P or P-AL (P extracted in ammonium acetate lactate solution at pH 3.75), and total N were highest in feeding and excretion areas within the paddocks. It was also observed that the WSP concentration in the paddocks was strongly correlated with horse density (R2 = 0.80, p < 0.001) and P-AL with years of paddock management (R2 = 0.78, p < 0.001). In the final experiment, topsoil

  14. Investigating the sources of sediment in a Canadian agricultural watershed using a colour-based fingerprinting technique

    NASA Astrophysics Data System (ADS)

    Barthod, Louise; Lobb, David; Owens, Philip; Martinez-Carreras, Nuria; Koiter, Alexander; Petticrew, Ellen; McCullough, Gregory

    2014-05-01

    The development of beneficial management practises to minimize adverse impacts of agriculture on soil and water quality requires information on the sources of sediment at the watershed scale. Sediment fingerprinting allows for the determination of sediment sources and apportionment of their contribution within a watershed, using unique physical, radiochemical or biogeochemical properties, or fingerprints, of the potential sediment sources. The use of sediment colour as a fingerprint is an emerging technique that can provide a rapid and inexpensive means of investigating sediment sources. This technique is currently being utilized to determine sediment sources within the South Tobacco Creek Watershed, an agricultural watershed located in the Canadian prairies (south-central Manitoba). Suspended sediment and potential source (topsoil, channel bank and shale bedrock material) samples were collected between 2009 and 2011 at six locations along the main stem of the creek. Sample colour was quantified from diffuse reflectance spectrometry measurements over the visible wavelength range using a spectroradiometer (ASD Field Spec Pro, 400-2500 nm). Sixteen colour coefficients were derived from several colour space models (CIE XYZ, CIE xyY, CIE Lab, CIE Luv, CIE Lch, Landsat RGB, Redness Index). The individual discrimination power of the colour coefficients, after passing several prerequisite tests (e.g., linearly additive behaviour), was assessed using discriminant function analysis. A stepwise discriminant analysis, based on the Wilk's lambda criterion, was then performed in order to determine the best-suited colour coefficient fingerprints which maximized the discrimination between the potential sources. The selected fingerprints classified the source samples in the correct category 86% of the time. The misclassification is due to intra-source variability and source overlap which can lead to higher uncertainty in sediment source apportionment. The selected fingerprints

  15. Feasibility of Estimating Relative Nutrient Contributions of Agriculture using MODIS Time Series

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Gasser, Gerald; Spiering, Bruce

    2008-01-01

    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring.

  16. Feasibility of Estimating Relative Nutrient Contributions of Agriculture and Forests Using MODIS Time Series

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Gasser, Gerald; Spiering, Bruce

    2010-01-01

    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring.

  17. Potential pollutant sources in a Choptank River subwatershed: Influence of agricultural and residential land use and aqueous and atmospheric sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture and animal feeding operations have been implicated as sources of water pollution along the Choptank River, an estuary and tributary of the Chesapeake Bay. This study examined a subwatershed within the Choptank River watershed for effects of land use on water quality. Water and sediment...

  18. Conversion to drip irrigated agriculture may offset historic anthropogenic and wildfire contributions to sediment production.

    PubMed

    Gray, A B; Pasternack, G B; Watson, E B; Goñi, M A; Hatten, J A; Warrick, J A

    2016-06-15

    This study is an investigation into the roles of wildfire and changing agricultural practices in controlling the inter-decadal scale trends of suspended sediment production from semi-arid mountainous rivers. In the test case, a decreasing trend in suspended sediment concentrations was found in the lower Salinas River, California between 1967 and 2011. Event to decadal scale patterns in sediment production in the Salinas River have been found to be largely controlled by antecedent hydrologic conditions. Decreasing suspended sediment concentrations over the last 15years of the record departed from those expected from climatic/hydrologic forcing. Sediment production from the mountainous headwaters of the central California Coast Ranges is known to be dominated by the interaction of wildfire and large rainfall/runoff events, including the Arroyo Seco, an ~700km(2) subbasin of the Salinas River. However, the decreasing trend in Salinas River suspended sediment concentrations run contrary to increases in the watershed's effective burn area over time. The sediment source area of the Salinas River is an order of magnitude larger than that of the Arroyo Seco, and includes a more complicated mosaic of land cover and land use. The departure from hydrologic forcings on suspended sediment concentration patterns was found to coincide with a rapid conversion of irrigation practices from sprinkler and furrow to subsurface drip irrigation. Changes in agricultural operations appear to have decreased sediment supply to the Salinas River over the late 20th to early 21st centuries, obscuring the influence of wildfire on suspended sediment production. PMID:26974570

  19. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    PubMed

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. PMID:21546665

  20. Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model

    EPA Science Inventory

    Source culpability assessments are useful for developing effective emissions control programs. The Integrated Source Apportionment Method (ISAM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to track contributions from source groups and regions to ambi...

  1. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    NASA Astrophysics Data System (ADS)

    van der Werf, G.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-12-01

    (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C/yr. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series.

  2. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-12-01

    savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series.

  3. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-06-01

    fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C yr-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series.

  4. Measuring the Contribution of Agricultural Conservation Practices to Observed Trends and Recent Condition in Water Quality Indicators in Ohio, USA.

    PubMed

    Miltner, Robert J

    2015-11-01

    Over the last three decades, significant investments made to upgrade wastewater infrastructure and manage pollution from diffuse sources have resulted in measurably improved water quality and biological conditions in Ohio's rivers and streams. Conservation measures to reduce soil loss appear to have contributed significantly to the improvement witnessed over the last two decades and should therefore be continued. Within the most recent timeframe examined, little difference was found in either total phosphorus or suspended sediment concentration in relation to conservation measures, indicating that the environmental benefits of measures targeting soil loss may be approaching an asymptote. Conservation measures targeting livestock and forage management, however, appear to have reduced nitrogen concentrations within the recent time frame. An examination of the interrelationships between habitat quality, conservation measures, and land use indicated that water quality was generally mediated by interactions with stream habitat quality. However, the positive effect of habitat quality was reduced in catchments draining fine-textured soils. The implication of these latter two findings suggest that proscriptively adding natural function to the large network of ditched and maintained conveyances draining agricultural lands would substantially improve water quality, but management at the field level is necessary to minimize phosphorus losses. PMID:26641334

  5. DETERMINATION OF DIETARY CALCIUM SOURCES: CONTRIBUTIONS FROM FOOD MIXTURES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared dietary sources of calcium by four grouping protocols which varied in the dietary source assignments of calcium from survey foods, from foods and ingredients, or from commodities. Calcium intakes for 18,071 individuals 2 years of age and older from the USDA 1994-96, 1998 Continu...

  6. Proximal Soil Sensing – A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    PubMed Central

    Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens

    2016-01-01

    Background Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Methodology/Principal Findings Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Conclusions/Significance Our

  7. Understanding Multifunctional Agricultural Land by Using Low Cost and Open Source Solutions to Quantify Ecosystem Function and Services

    NASA Astrophysics Data System (ADS)

    Forsmoo, Joel; Anderson, Karen; Brazier, Richard; Macleod, Kit; Wilkinson, Mark

    2016-04-01

    There is a need to advance our understanding of how the spatial structure of farmed landscapes contributes to the provision of functions and services. Agricultural land is of critical importance in NW Europe, covering large parts of NW Europe's temperate land. Moreover, these agricultural areas are primarily intensively managed, with a focus on maximizing food and fibre production. Such landscapes therefore can provide a wealth of ecosystem goods and services (ESs) including regulation of climate, erosion regulation, hydrology, water quality, nutrient cycling and biodiversity conservation. However, it has been shown they are key sources of sediment, phosphorous, nitrogen and storm runoff contributing to flooding, and therefore it is likely that most agricultural landscapes do not maximize the services or benefits that they might provide. The focus of this study is the spatio-temporal assessment of carbon sequestration (particularly through proxies such as above-ground biomass) and hydrological processes on agricultural land. Understanding and quantifying both of these is important to (a) inform payments for ecosystem services frameworks, (b) evaluate and improve carbon sequestration models, (c) manage the flood risk, (d) downstream water security and (e) water quality. Quantifying both of these ESs is dependent on data describing the fine spatial and temporal structure and function of the landscape. Common practice has been to use remote sensing techniques, e.g. satellites, providing coarse spatial resolution (around 30cm at 20° off nadir) and/or temporal resolution (around 5 days revisit time at <20° off nadir). In this paper we will explain how imaging data from lightweight and easily deployed unmanned aerial vehicles (UAVs) can be used to generate structure from motion (SFM) products describing the very fine detailed (<3 cm pixel resolution) structure of the agricultural environment. We will demonstrate how these products can be delivered using advanced free

  8. GREENHOUSE GASES AND AGRICULTURE

    EPA Science Inventory

    Agriculture ranks third in its contribution to Earth's anthropogenically nhanced greenhouse effect. Energy use and production and chlorofluorocarbons are anked first and second, respectively.) pecifically, greenhouse gas sources and inks are increased, and sinks are decreased, by...

  9. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    PubMed Central

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha−1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  10. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    PubMed

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  11. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    NASA Astrophysics Data System (ADS)

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha‑1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  12. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods

    SciTech Connect

    Kyle, G. Page; Luckow, Patrick; Calvin, Katherine V.; Emanuel, William R.; Nathan, Mayda; Zhou, Yuyu

    2011-12-12

    This report presents the data processing methods used in the GCAM 3.0 agriculture and land use component, starting from all source data used, and detailing all calculations and assumptions made in generating the model inputs. The report starts with a brief introduction to modeling of agriculture and land use in GCAM 3.0, and then provides documentation of the data and methods used for generating the base-year dataset and future scenario parameters assumed in the model input files. Specifically, the report addresses primary commodity production, secondary (animal) commodity production, disposition of commodities, land allocation, land carbon contents, and land values.

  13. Identification and contribution of water sources to the extent of floods

    NASA Astrophysics Data System (ADS)

    Berezowski, Tomasz; Partington, Daniel; Chormański, Jarosław; Batelaan, Okke

    2015-04-01

    The extent of floods is the result of the discharge of various water sources in the floodplain. These water sources originate from upstream river discharge, direct rainfall on the floodplain, snowmelt or groundwater discharge. The differentiation between these water sources, including the spatial delineation of their contributing areas is an important issue for flood protection, ecohydrology and hydrological modelling. So far the most reliable method for differentiation and spatial delineation of the water sources in the overall flood extent is extensive hydrochemical analysis involving numerous sampling points. In this study we compare results from such an analysis with a coupled groundwater-surface water simulation approach. The comparison is performed for the Lower Biebrza Basin, north-eastern Poland (453 km2). This study area is a natural wetland river valley dominated by peat soils with extensive agriculture. Floods in this area occur yearly and are considered of major importance for the ecology of the basin. The hydrochemical analysis was conducted for the 2002 spring flood and consisted of sampling 538 points for 19 parameters (pH, electrical conductivity, organic carbon and concentration of 16 ions). The identification of spatial water sources was further conducted by means of dimensionality reduction and cluster analysis. The hydrological modelling of different water sources was conducted with a HydroGeoSphere (HGS) model for the whole Biebrza catchment (7000 km2). HGS is a finite element, fully integrated physically based hydrological model, which simulates unsaturated/saturated groundwater flow, surface flow, evapotranspiration, snowmelt, etc. Hence, it offers coupled groundwater-surface water interaction and an important new feature that allows to calculate the composition of different water sources in each computational node of the model. Results of this mixing-cell methodology are compared with the hydrochemical analysis and show good agreement for

  14. The contribution of outdoor air pollution sources to premature mortality on a global scale

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Evans, J. S.; Fnais, M.; Giannadaki, D.; Pozzer, A.

    2015-09-01

    Assessment of the global burden of disease is based on epidemiological cohort studies that connect premature mortality to a wide range of causes, including the long-term health impacts of ozone and fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5). It has proved difficult to quantify premature mortality related to air pollution, notably in regions where air quality is not monitored, and also because the toxicity of particles from various sources may vary. Here we use a global atmospheric chemistry model to investigate the link between premature mortality and seven emission source categories in urban and rural environments. In accord with the global burden of disease for 2010 (ref. 5), we calculate that outdoor air pollution, mostly by PM2.5, leads to 3.3 (95 per cent confidence interval 1.61-4.81) million premature deaths per year worldwide, predominantly in Asia. We primarily assume that all particles are equally toxic, but also include a sensitivity study that accounts for differential toxicity. We find that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic. Whereas in much of the USA and in a few other countries emissions from traffic and power generation are important, in eastern USA, Europe, Russia and East Asia agricultural emissions make the largest relative contribution to PM2.5, with the estimate of overall health impact depending on assumptions regarding particle toxicity. Model projections based on a business-as-usual emission scenario indicate that the contribution of outdoor air pollution to premature mortality could double by 2050.

  15. The contribution of outdoor air pollution sources to premature mortality on a global scale.

    PubMed

    Lelieveld, J; Evans, J S; Fnais, M; Giannadaki, D; Pozzer, A

    2015-09-17

    Assessment of the global burden of disease is based on epidemiological cohort studies that connect premature mortality to a wide range of causes, including the long-term health impacts of ozone and fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5). It has proved difficult to quantify premature mortality related to air pollution, notably in regions where air quality is not monitored, and also because the toxicity of particles from various sources may vary. Here we use a global atmospheric chemistry model to investigate the link between premature mortality and seven emission source categories in urban and rural environments. In accord with the global burden of disease for 2010 (ref. 5), we calculate that outdoor air pollution, mostly by PM2.5, leads to 3.3 (95 per cent confidence interval 1.61-4.81) million premature deaths per year worldwide, predominantly in Asia. We primarily assume that all particles are equally toxic, but also include a sensitivity study that accounts for differential toxicity. We find that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic. Whereas in much of the USA and in a few other countries emissions from traffic and power generation are important, in eastern USA, Europe, Russia and East Asia agricultural emissions make the largest relative contribution to PM2.5, with the estimate of overall health impact depending on assumptions regarding particle toxicity. Model projections based on a business-as-usual emission scenario indicate that the contribution of outdoor air pollution to premature mortality could double by 2050. PMID:26381985

  16. The source dilemma hypothesis: Perceptual uncertainty contributes to musical emotion.

    PubMed

    Bonin, Tanor L; Trainor, Laurel J; Belyk, Michel; Andrews, Paul W

    2016-09-01

    Music can evoke powerful emotions in listeners. Here we provide the first empirical evidence that the principles of auditory scene analysis and evolutionary theories of emotion are critical to a comprehensive theory of musical emotion. We interpret these data in light of a theoretical framework termed "the source dilemma hypothesis," which predicts that uncertainty in the number, identity or location of sound objects elicits unpleasant emotions by presenting the auditory system with an incoherent percept, thereby motivating listeners to resolve the auditory ambiguity. We describe two experiments in which source location and timbre were manipulated to change uncertainty in the auditory scene. In both experiments, listeners rated tonal and atonal melodies with congruent auditory scene cues as more pleasant than melodies with incongruent auditory scene cues. These data suggest that music's emotive capacity relies in part on the perceptual uncertainty it produces regarding the auditory scene. PMID:27318599

  17. Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources

    NASA Astrophysics Data System (ADS)

    Zhou, Huiping; Chang, Weina; Zhang, Longjiang

    2016-08-01

    Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other

  18. Agricultural biotechnologies in developing countries and their possible contribution to food security.

    PubMed

    Ruane, John; Sonnino, Andrea

    2011-12-20

    Latest FAO figures indicate that an estimated 925 million people are undernourished in 2010, representing almost 16% of the population in developing countries. Looking to the future, there are also major challenges ahead from the rapidly changing socio-economic environment (increasing world population and urbanisation, and dietary changes) and climate change. Promoting agriculture in developing countries is the key to achieving food security, and it is essential to act in four ways: to increase investment in agriculture, broaden access to food, improve governance of global trade, and increase productivity while conserving natural resources. To enable the fourth action, the suite of technological options for farmers should be as broad as possible, including agricultural biotechnologies. Agricultural biotechnologies represent a broad range of technologies used in food and agriculture for the genetic improvement of plant varieties and animal populations, characterisation and conservation of genetic resources, diagnosis of plant or animal diseases and other purposes. Discussions about agricultural biotechnology have been dominated by the continuing controversy surrounding genetic modification and its resulting products, genetically modified organisms (GMOs). The polarised debate has led to non-GMO biotechnologies being overshadowed, often hindering their development and application. Extensive documentation from the FAO international technical conference on Agricultural Biotechnologies in Developing Countries (ABDC-10), that took place in Guadalajara, Mexico, on 1-4 March 2010, gave a very good overview of the many ways that different agricultural biotechnologies are being used to increase productivity and conserve natural resources in the crop, livestock, fishery, forestry and agro-industry sectors in developing countries. The conference brought together about 300 policy-makers, scientists and representatives of intergovernmental and international non

  19. The Contribution of Agricultural Trade for Saving Blue Water in Arid Regions

    NASA Astrophysics Data System (ADS)

    Rolinski, S.; Biewald, A.; Hoff, H.; Lotze-Campen, H.

    2011-12-01

    Trade can mitigate local water scarcity in water scarce regions, but does not always do so because of economic or other pressures to export water intensive products. To assess impacts of trade on blue and green water use in agriculture, we apply two dynamic, global and spatially explicit models. The vegetation and crop model LPJmL calculates water use and crop productivity. Based on the potential agricultural yield of LPJmL, the economic model MAgPIE_trade produces landuse pattern for the most important agricultural production in 10 economic world regions; bilateral trade is controlled by transport costs and trade barriers. We quantify the trade effect by comparing scenarios with and without trade for current and predicted future climatic conditions. The resulting differences in the spatial patterns (0.5° resolution) of agricultural production from MAgPIE_trade enables the quantification of the amount of goods produced for export. Using the consumptive green and blue water fluxes from LPJmL for each agricultural product, the export of virtual water uses are calculated so that water saving or consumption due to trade can be quantified. Although an interesting result in itself, an estimate for relaxation or intensification of water scarcity by trade is still missing. Here, the water shadow price from MAgPIE_trade as an indicator for water scarcity is related to the actual change in blue water usage. This relation is then taken as an indicator for the efficiency of trade on the local savings of blue water.

  20. Rearward Visibility Issues Related to Agricultural Tractors and Self-Propelled Machinery: Contributing Factors, Potential Solutions.

    PubMed

    Ehlers, S G; Field, W E

    2016-01-01

    As the size, complexity, and speed of agricultural tractors and self-propelled machinery have increased, so have the visibility-related issues, placing significant importance on the visual skills, alertness, and reactive abilities of the operator. Rearward movement of large agricultural equipment has been identified in the literature as causing both fatalities and injuries to bystanders who were not visible to the operator and damage to both the machine and stationary objects. The addition of monitoring assistance, while not a new concept, has advanced significantly, offering agricultural machinery operators greater options for increasing their awareness of the area surrounding the machine. In this research, we attempt to (1) identify and describe the key contributors to agricultural machinery visibility issues, i.e., operator-related and machine-related factors, and (2) enumerate and evaluate the potential solutions being offered that address these factors. Enhanced operator safety and efficiency should result from a better understanding of the efforts to solve the visibility problems inherent in large tractors and self-propelled agricultural machinery. PMID:27024992

  1. Sources of nutrients to windward agricultural systems in pre-contact Hawai'i.

    PubMed

    Palmer, Molly A; Graves, Michael; Ladefoged, Thegn N; Chadwick, Oliver A; Duarte, T Ka'eo; Porder, Stephen; Vitousek, Peter M

    2009-09-01

    Prior to European contact in 1778, Hawaiians developed intensive irrigated pondfield agricultural systems in windward Kohala, Hawai'i. We evaluated three potential sources of nutrients to windward systems that could have sustained intensive agriculture: (1) in situ weathering of primary and secondary minerals in upland soils; (2) rejuvenation of the supply of rock-derived nutrients on eroded slopes and in alluvium; and (3) transport of rock-derived nutrients to crops via irrigation water. Our results show that most windward soils are infertile and suggest that weathering of minerals within upland soils was insufficient to sustain intensive agriculture without substantial cultural inputs. Erosion enhances weathering and so increases nutrient supply, with soils of the largest alluvial valleys (>200 m deep) retaining 37% of calcium from parent material (compared to 2% in upland sites). However, soils of smaller valleys that also supported pre-contact agricultural systems are substantially less enriched. Isotopic 87Sr/86Sr analyses of stream water demonstrate that at low to moderate stream flow over 90% of dissolved strontium derives from weathering of basalt rather than deposition of atmospheric sources; most other dissolved cations also derive from basalt weathering. We calculate that irrigation water could have supplied approximately 200 kg ha(-1) yr(-1) of calcium to pondfield systems, nearly 100 times more than was supplied by weathering in soils on stable geomorphic surfaces. In effect, irrigation waters brought nutrients from rocks to the windward crops. PMID:19769093

  2. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    NASA Astrophysics Data System (ADS)

    Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus

    2015-11-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.

  3. Feasibility of point-nonpoint source trading for managing agricultural pollutant loadings to coastal waters

    NASA Astrophysics Data System (ADS)

    Crutchfield, Stephen R.; Letson, David; Malik, Arun S.

    1994-10-01

    A recent focus of water quality policy discussions has been the trading of pollution abatement between point and nonpoint sources. Point-nonpoint trading would allow point sources to sponsor nonpoint source controls rather than install further controls of their own. If nonpoint source loadings are significant and the marginal costs of their control are lower than for additional point source controls, water quality goals could be met at lower cost with trading. We isolate difficulties particular to incentive policies such as point-nonpoint trading and then screen coastal watersheds for those satisfying conditions that play a major role in determining whether trading can improve water quality. We follow the recent Coastal Zone Act Reauthorization Amendments in emphasizing agriculture, the single largest cause of nonpoint source pollution. Our screening analysis provides an initial, empirical assessment of the feasibility of trading for managing agricultural land use to protect coastal water quality. We also illustrate the additional analysis required to quantify the potential for successful trading in those watersheds which meet our screening criteria.

  4. From deposition to erosion: Spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Pellerin, B. A.; Oh, N. H.; Ohara, N.; Bachand, P. A. M.; Bachand, S. M.; Bergamaschi, B. A.; Hernes, P. J.; Kavvas, M. L.

    2011-09-01

    The spatial and temporal variability of sediment sources, storage, and transport were investigated in a small agricultural watershed draining the Coast Ranges and Sacramento Valley in central California. Results of field, laboratory, and historical data analysis in the Willow Slough fluvial system document changes that transformed a transport-limited depositional system to an effective erosion and transport system, despite a large sediment supply. These changes were caused by a combination of factors: (i) an increase in transport capacity, and (ii) hydrologic alteration. Alteration of the riparian zone and drainage network pattern during the past ~ 150 years included a twofold increase in straightened channel segments along with a baselevel change from excavation that increased slope, and increased sediment transport capacity by ~ 7%. Hydrologic alteration from irrigation water contributions also increased transport capacity, by extending the period with potential for sediment transport and erosion by ~ 6 months/year. Field measurements document Quaternary Alluvium as a modern source of fine sediment with grain size distributions characterized by 5 to 40% fine material. About 60% of an upland and 30% of a lowland study reach incised into this deposit exhibit bank erosion. During this study, the wet 2006 and relatively dry 2007 water years exhibited a range of total annual suspended sediment load spanning two orders of magnitude: ~ 108,500 kg/km 2/year during 2006 and 5,950 kg/km 2/year during 2007, only 5% of that during the previous year. Regional implications of this work are illustrated by the potential for a small tributary such as Willow Slough to contribute sediment - whereas large dams limit sediment supply from larger tributaries - to the Sacramento River and San Francisco Bay Delta and Estuary. This work is relevant to lowland agricultural river-floodplain systems globally in efforts to restore aquatic and riparian functions and where water quality

  5. From deposition to erosion: spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed

    USGS Publications Warehouse

    Florsheim, J.L.; Pellerin, B.A.; Oh, N.H.; Ohara, N.; Bachand, P.A.M.; Bachand, Sandra M.; Bergamaschi, B.A.; Hernes, P.J.; Kavvas, M.L.

    2011-01-01

    The spatial and temporal variability of sediment sources, storage, and transport were investigated in a small agricultural watershed draining the Coast Ranges and Sacramento Valley in central California. Results of field, laboratory, and historical data analysis in the Willow Slough fluvial system document changes that transformed a transport-limited depositional system to an effective erosion and transport system, despite a large sediment supply. These changes were caused by a combination of factors: (i) an increase in transport capacity, and (ii) hydrologic alteration. Alteration of the riparian zone and drainage network pattern during the past ~ 150 years included a twofold increase in straightened channel segments along with a baselevel change from excavation that increased slope, and increased sediment transport capacity by ~ 7%. Hydrologic alteration from irrigation water contributions also increased transport capacity, by extending the period with potential for sediment transport and erosion by ~ 6 months/year. Field measurements document Quaternary Alluvium as a modern source of fine sediment with grain size distributions characterized by 5 to 40% fine material. About 60% of an upland and 30% of a lowland study reach incised into this deposit exhibit bank erosion. During this study, the wet 2006 and relatively dry 2007 water years exhibited a range of total annual suspended sediment load spanning two orders of magnitude: ~ 108,500 kg/km2/year during 2006 and 5,950 kg/km2/year during 2007, only 5% of that during the previous year. Regional implications of this work are illustrated by the potential for a small tributary such as Willow Slough to contribute sediment – whereas large dams limit sediment supply from larger tributaries – to the Sacramento River and San Francisco Bay Delta and Estuary. This work is relevant to lowland agricultural river–floodplain systems globally in efforts to restore aquatic and riparian functions and where water quality

  6. Identification of nitrogen sources to four small lakes in the agricultural region of Khorezm, Uzbekistan

    USGS Publications Warehouse

    Shanafield, M.; Rosen, M.; Saito, L.; Chandra, S.; Lamers, J.; Nishonov, Bakhriddin

    2010-01-01

    Pollution of inland waters by agricultural land use is a concern in many areas of the world, and especially in arid regions, where water resources are inherently scarce. This study used physical and chemical water quality and stable nitrogen isotope (δ15N) measurements from zooplankton to examine nitrogen (N) sources and concentrations in four small lakes of Khorezm, Uzbekistan, an arid, highly agricultural region, which is part of the environmentally-impacted Aral Sea Basin. During the 2-year study period, ammonium concentrations were the highest dissolved inorganic N species in all lakes, with a maximum of 3.00 mg N l−1 and an average concentration of 0.62 mg N l−1. Nitrate levels were low, with a maximum concentration of 0.46 mg N l−1 and an average of 0.05 mg N l−1 for all four lakes. The limited zooplankton δ15N values did not correlate with the high loads of synthetic fertilizer applied to local croplands during summer months. These results suggest that the N cycles in these lakes may be more influenced by regional dynamics than agricultural activity in the immediate surroundings. The Amu-Darya River, which provides the main source of irrigation water to the region, was identified as a possible source of the primary N input to the lakes.

  7. Landscape Planning for Agricultural Nonpoint Source Pollution Reduction I: A Geographical Allocation Framework

    NASA Astrophysics Data System (ADS)

    Diebel, Matthew W.; Maxted, Jeffrey T.; Nowak, Peter J.; Vander Zanden, M. Jake

    2008-11-01

    Agricultural nonpoint source pollution remains a persistent environmental problem, despite the large amount of money that has been spent on its abatement. At local scales, agricultural best management practices (BMPs) have been shown to be effective at reducing nutrient and sediment inputs to surface waters. However, these effects have rarely been found to act in concert to produce measurable, broad-scale improvements in water quality. We investigated potential causes for this failure through an effort to develop recommendations for the use of riparian buffers in addressing nonpoint source pollution in Wisconsin. We used frequency distributions of phosphorus pollution at two spatial scales (watershed and field), along with typical stream phosphorus (P) concentration variability, to simulate benefit/cost curves for four approaches to geographically allocating conservation effort. The approaches differ in two ways: (1) whether effort is aggregated within certain watersheds or distributed without regard to watershed boundaries (dispersed), and (2) whether effort is targeted toward the most highly P-polluting fields or is distributed randomly with regard to field-scale P pollution levels. In realistic implementation scenarios, the aggregated and targeted approach most efficiently improves water quality. For example, with effort on only 10% of a model landscape, 26% of the total P load is retained and 25% of watersheds significantly improve. Our results indicate that agricultural conservation can be more efficient if it accounts for the uneven spatial distribution of potential pollution sources and the cumulative aspects of environmental benefits.

  8. A Method for Source-load Allocation of Nutrients in Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Burkart, M. R.; James, D. E.

    2001-12-01

    Identification of pollutant sources is critical to solving water resource contamination problems. Non-point sources of agricultural pollution provide substantial challenges to quantifying and allocating the sources of contaminants to streams. A method is presented for identifying the spatial variability of nitrogen and phosphorus sources and allocating proportional responsibility for source-reduction. The method is applied to data at scales ranging from hydrologic regions (2-digit hydrologic accounting units) of the Mississippi drainage basin to the public land survey grid in two small (14-digit) watersheds. A mass balance of nutrient sources and losses is estimated using georeferenced data derived from national to local digital data bases. Nitrogen excess is estimated by balancing sources associated with inorganic fertilizer, manure, crop fixation, mineralization of organic matter, and atmospheric redeposition of ammonia with losses from crop harvest, plant senescence, denitrification, and volatilization of manure and inorganic fertilizer. Phosphorus sources from inorganic fertilizer and manure are balanced with losses due to crop harvest. Allocation in regional units allows targeting of major pollutant source areas while smaller aggregation areas define greater ranges of source-loads useful for specific allocation. Manure sources control the distribution of excess nutrients at many scales, particularly in watersheds with uniform cropping systems. Absolute values of excess N sources provide substantially different allocation patterns than proportional values of total source-loads. Selection of aggregation scale is critical to source-load allocation needed to define TMDLs, monitor loads, and establish water-quality remediation strategies. >http://www.nstl.gov/pubs/burkart/trends/index.html

  9. The contribution of future agricultural trends in the US Midwest to global climate change mitigation

    SciTech Connect

    Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong; Bandaru, Varaprasad; West, Tristram O.; Wise, Marshall A.; Izaurralde, Roberto C.; Calvin, Katherine V.

    2014-01-19

    Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicator Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.

  10. Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007, the hypoxic zone in the Gulf of Mexico, measuring 20,720 km**2, was one of the two largest reported since measurement of the zone began in 1985. The extent of the hypoxic zone is related to nitrogen and phosphorous loadings originating on agricultural fields in the upper Midwest. This stud...

  11. Thailand's Department of Agricultural Extension and Agrochemical Dependency: Perspectives on Contributing Factors and Mitigation Strategies

    ERIC Educational Resources Information Center

    Nelles, Wayne; Visetnoi, Supawan

    2016-01-01

    Purpose: This paper discusses theoretical, policy and practical issues concerning the problem of "agrochemical dependency" in Thailand, including roles that public extension services play in advocacy or mitigation of agrochemical use. Methodology/Approach: Our research aimed to better understand department of agricultural extension…

  12. THE CONTRIBUTION OF AGRICULTURAL EDUCATION TO THE RURAL DEVELOPMENT OF ETHIOPIA.

    ERIC Educational Resources Information Center

    KERBRET, MAKONNEN

    AN ANALYSIS OF THE PRESENT SITUATION IN ETHIOPIA AND A REVIEW OF AGRICULTURAL EDUCATION DEVELOPMENT IN THE WORLD WAS MADE THROUGH INTENSIVE LIBRARY RESEARCH. GUIDELINES AND OBJECTIVES WERE BASED ON THE REVIEW SUBMITTED TO A JURY OF EXPERTS FOR VERIFICATION. REVISED GUIDELINES AND OBJECTIVES WERE THEN DEVELOPED FOR GUIDING AND IMPLEMENTING THE…

  13. Source regional contributions to PM2.5 in a megacity in China using an advanced source regional apportionment method.

    PubMed

    Tian, Ying-Ze; Chen, Gang; Wang, Hai-Ting; Huang-Fu, Yan-Qi; Shi, Guo-Liang; Han, Bo; Feng, Yin-Chang

    2016-03-01

    To quantify contributions of individual source categories from diverse regions to PM2.5, PM2.5 samples were collected in a megacity in China and analyzed through a newly developed source regional apportionment (SRA) method. Levels, compositions and seasonal variations of speciated PM2.5 dataset were investigated. Sources were determined by Multilinear Engine 2 (ME2) model, and results showed that the PM2.5 in Tianjin was mainly influenced by secondary sulphate & secondary organic carbon SOC (percent contribution of 26.2%), coal combustion (24.6%), crustal dust & cement dust (20.3%), secondary nitrate (14.9%) and traffic emissions (14.0%). The SRA method showed that northwest region R2 was the highest regional contributor to secondary sources, with percent contributions to PM2.5 being 9.7% for secondary sulphate & SOC and 6.0% for secondary nitrates; the highest coal combustion was from local region R1 (6.2%) and northwest R2 (8.0%); the maximum contributing region to crustal & cement dust was southeast region R4 (5.0%); and contributions of traffic emissions were relatively spatial homogeneous. The seasonal variation of regional source contributions was observed: in spring, the crustal and cement dust contributed a higher percentage and the R4 was an important contributor; the secondary process attributed an increase fraction in summer; the mixed coal combustion from southwest R5 enhanced in autumn. PMID:26766363

  14. Emergy evaluation of the contribution of irrigation water, and its utilization, in three agricultural systems in China

    NASA Astrophysics Data System (ADS)

    Chen, Dan; Luo, Zhaohui; Webber, Michael; Chen, Jing; Wang, Weiguang

    2014-09-01

    Emergy theory and method are used to evaluate the contribution of irrigation water, and the process of its utilization, in three agricultural systems. The agricultural systems evaluated in this study were rice, wheat, and oilseed rape productions in an irrigation pumping district of China. A corresponding framework for emergy evaluation and sensitivity analysis methods was proposed. Two new indices, the fraction of irrigation water ( FIW), and the irrigation intensity of agriculture ( IIA), were developed to depict the contribution of irrigation water. The calculated FIW indicated that irrigation water used for the rice production system (34.7%) contributed more than irrigation water used for wheat (5.3%) and oilseed rape (11.2%) production systems in a typical dry year. The wheat production with an IIA of 19.0 had the highest net benefit from irrigation compared to the rice (2.9) and oilseed rape (8.9) productions. The transformities of the systems' products represented different energy efficiencies for rice (2.50E + 05 sej·J-1), wheat (1.66E + 05 sej·J-1) and oilseed rape (2.14E + 05 sej·J-1) production systems. According to several emergy indices, of the three systems evaluated, the rice system had the greatest level of sustainability. However, all of them were less sustainable than the ecological agricultural systems. A sensitivity analysis showed that the emergy inputs of irrigation water and nitrogenous fertilizer were the highest sensitivity factors influencing the emergy ratios. Best Management Practices, and other agroecological strategies, could be implemented to make further improvements in the sustainability of the three systems.

  15. Growing Food for Space and Earth: NASA's Contributions to Vertical Agriculture

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2015-01-01

    Beginning in the 1980s with NASA's Controlled Ecological Life Support System (CELSS) Program and later the 1990s and early 2000s with the Advanced Life Support Project, NASA conducted extensive testing with crops in controlled environment conditions. One series of tests conducted at Kennedy Space Center used a large chamber with vertically stacked shelves to support hydroponic growing trays, with a bank of electric lamps above each shelf. This is essentially the same approach that has become popular for use in so-called vertical agriculture systems, which attempts to optimize plant production in a fixed volume. Some of the findings and commonalities of NASA's work during this period and how it overlaps with current interests in vertical agriculture will be presented in the talk.

  16. Contribution of agricultural and forest fires in Ukraine to impact of Eurasian burnings on Arctic

    NASA Astrophysics Data System (ADS)

    Zibtsev, S.; Goldammer, J. G.; Gilitukha, D.

    2012-04-01

    Burning potentially can occur on major part of lands of Ukraine (total 57.93 million ha) and, first of all, on agricultural ones - that occupy 71% of total area of the country. Forests occupy 17.6% of the area of country, where from 2 to 4 thousands fires happens annually. Good wildfire statistics, as well as proper fire management system only for part of forest lands of Ukraine - 68% is established, in particularly, for forests that managed by State Agency of Forest Resources of Ukraine. While other 2 million ha of forests that managed by other Ministries are out of regular fire management action, detection and protection. There are no reliable detection and accounting of wildfires, outdated or absent fire engines, lack of fire crews and facilities on most part of agricultural, grass, abandoned lands, pastures. During emergency wildfires situation in Ukraine in August 2010 only full mobilization of forest personal together with forces of internal affairs (police) for patrolling of wildfire situation nationwide allows to avoid catastrophic scenario in spite of general low preparedness and unsatisfactory technical provision of fire management on agricultural lands. That year in forest lands totally 3065 cases of fires were registered with total area burned 8916 ha (fire season 2010) and 3145 cases of wildfires on agricultural lands (August 2010). There are no reliable statistics and effective fire management system on grass and agricultural lands in Ukraine even agricultural fires burned much larger area of lands then forest fires and produce significant amount of black carbon both during spring and summer fire events. Results of analysis of wildfire cases in Ukraine at 1x1 km spatial resolution for the period 2006-2008 based on active detection of thermals anomaly by MODIS shows that annually, during the period nearly 20,000 cases of wildfires were detected. In extreme years like 2008, amount of fires doubled. Wildfires in Ukraine make important input in total

  17. Sub-Antarctic marine aerosol: significant contributions from biogenic sources

    NASA Astrophysics Data System (ADS)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-03-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea salt sulfate 2% nitrate, 7% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea salt signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acids/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 40%), a sea salt OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (C : N ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea salt aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated to sea

  18. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    NASA Astrophysics Data System (ADS)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-09-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 41%), a sea spray OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated

  19. Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries.

    PubMed

    Forster, D Lynn; Rausch, Jonathan N

    2002-01-01

    During the past three decades, numerous government programs have encouraged Lake Erie basin farmers to adopt practices that reduce water pollution. The first section of this paper summarizes these state and federal government agricultural pollution abatement programs in watersheds of two prominent Lake Erie tributaries, the Maumee River and Sandusky River. Expenditures are summarized for each program, total expenditures in each county are estimated, and cost effectiveness of program expenditures (i.e., cost per metric ton of soil saved) are analyzed. Farmers received nearly $143 million as incentive payments to implement agricultural nonpoint source pollution abatement programs in the Maumee and Sandusky River watersheds from 1987 to 1997. About 95% of these funds was from federal sources. On average, these payments totaled about $7000 per farm or about $30 per farm acre (annualized equivalent of $2 per acre) within the watersheds. Our analysis raises questions about how efficiently these incentive payments were allocated. The majority of Agricultural Conservation Program (ACP) funds appear to have been spent on less cost-effective practices. Also, geographic areas with relatively low (high) soil erosion rates received relatively large (small) funding. PMID:11837427

  20. Modeling Agricultural Nonpoint Source Pollution Using a Geographic Information System Approach

    NASA Astrophysics Data System (ADS)

    Emili, Lisa A.; Greene, Richard P.

    2013-01-01

    Agricultural non-point source (NPS) pollution, primarily sediment and nutrients, is the leading source of water-quality impacts to surface waters in North America. The overall goal of this study was to develop geographic information system (GIS) protocols to facilitate the spatial and temporal modeling of changes in soils, hydrology, and land-cover change at the watershed scale. In the first part of this article, we describe the use of GIS to spatially integrate watershed scale data on soil erodibility, land use, and runoff for the assessment of potential source areas within an intensively agricultural watershed. The agricultural non-point source pollution (AGNPS) model was used in the Muddy Creek, Ontario, watershed to evaluate the effectiveness of management strategies in decreasing sediment and nutrient [phosphorus (P)] pollution. This analysis was accompanied by the measurement of water-quality parameters (dissolved oxygen, pH, hardness, alkalinity, and turbidity) as well as sediment and P loadings to the creek. Practices aimed at increasing year-round soil cover would be most effective in decreasing sediment and P losses in this watershed. In the second part of this article, we describe a method for characterizing land-cover change in a dynamic urban fringe watershed. The GIS method we developed for the Blackberry Creek, Illinois, watershed will allow us to better account for temporal changes in land use, specifically corn and soybean cover, on an annual basis and to improve on the modeling of watershed processes shown for the Muddy Creek watershed. Our model can be used at different levels of planning with minimal data preprocessing, easily accessible data, and adjustable output scales.

  1. Fingerprinting Sources of Suspended Sediment in a Canadian Agricultural Watershed Using the MixSIAR Bayesian Unmixing Model

    NASA Astrophysics Data System (ADS)

    Smith, J. P.; Owens, P. N.; Gaspar, L.; Lobb, D. A.; Petticrew, E. L.

    2015-12-01

    An understanding of sediment redistribution processes and the main sediment sources within a watershed is needed to support watershed management strategies. The fingerprinting technique is increasingly being recognized as a method for establishing the source of the sediment transported within watersheds. However, the different behaviour of the various fingerprinting properties has been recognized as a major limitation of the technique, and the uncertainty associated with tracer selection needs to be addressed. There are also questions associated with which modelling approach (frequentist or Bayesian) is the best to unmix complex environmental mixtures, such as river sediment. This study aims to compare and evaluate the differences between fingerprinting predictions provided by a Bayesian unmixing model (MixSIAR) using different groups of tracer properties for use in sediment source identification. We used fallout radionuclides (e.g. 137Cs) and geochemical elements (e.g. As) as conventional fingerprinting properties, and colour parameters as emerging properties; both alone and in combination. These fingerprinting properties are being used (i.e. Koiter et al., 2013; Barthod et al., 2015) to determine the proportional contributions of fine sediment in the South Tobacco Creek Watershed, an agricultural watershed located in Manitoba, Canada. We show that the unmixing model using a combination of fallout radionuclides and geochemical tracers gave similar results to the model based on colour parameters. Furthermore, we show that a model that combines all tracers (i.e. radionuclide/geochemical and colour) gave similar results, showing that sediment sources change from predominantly topsoil in the upper reaches of the watershed to channel bank and bedrock outcrop material in the lower reaches. Barthod LRM et al. (2015). Selecting color-based tracers and classifying sediment sources in the assessment of sediment dynamics using sediment source fingerprinting. J Environ Qual

  2. Contribution of polycyclic aromatic hydrocarbon (PAH) sources to the urban environment: A comparison of receptor models.

    PubMed

    Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana Milena; Mattiuzi, Camila Dalla Porta

    2015-12-15

    The aim of this study was to evaluate the contribution of the main emission sources of PAHs associated with PM2.5, in an urban area of the Rio Grande do Sul state. Source apportionment was conducted using both the US EPA Positive Matrix Factorization (PMF) model and the Chemical Mass Balance (CMB) model. The two models were compared to analyze the source contributions similarities and differences, their advantages and disadvantages. PM2.5 samples were collected continuously over 24h using a stacked filter unit at 3 sampling sites of the urban area of the Rio Grande do Sul state every 15days between 2006 and 2008. Both models identified the main emission sources of PAHs in PM2.5: vehicle fleet (diesel and gasoline), coal combustion, wood burning, and dust. Results indicated similar source contribution amongst the sampling sites, as expected because of the proximity amongst the sampling sites, which are under the influence of the same pollutants emitting sources. Moreover, differences were observed in obtained sources contributions for the same data set of each sampling site. The PMF model attributed a slightly greater amount of PAHs to the gasoline and diesel sources, while diesel contributed more in the CMB results. The results were comparable with previous works of the region and in accordance with the characteristics of the study area. Comparison between these receptor models, which contain different physical constraints, is important for understanding better PAH emissions sources in order to reduce air pollution. PMID:26298853

  3. Downstream mixing of sediment and tracers in agricultural catchments: Evidence of changing sediment sources and fluvial processes?

    NASA Astrophysics Data System (ADS)

    Ralph, Timothy; Wethered, Adam; Smith, Hugh; Heijnis, Henk

    2014-05-01

    Land clearance, soil tillage and grazing in agricultural catchments have liberated sediment and altered hydrological connectivity between hillslopes and channels, leading to increased sediment availability, mobilisation and delivery to rivers. The type and amount of sediment supplied to rivers is critical for fluvial geomorphology and aquatic ecosystem health. Contemporary sediment dynamics are routinely investigated using environmental radionuclides such as caesium-137 (Cs-137) and excess lead-210 (Pb-210ex), which can provide information regarding sediment source types and fluvial processes if sediment sources can be distinguished from one another and mixing models applied to representative samples. However, downstream transport, mixing and dilution of radionuclide-labelled sediment (especially from sources with low initial concentrations) can obliterate the tracer signal; sometimes before anything of geomorphological importance happens in the catchment. Can these findings be used as evidence of sediment source variations and fluvial processes when the limits of detection (of Cs-137 in particular) are being exceeded so rapidly downstream? Sediment sources and downstream sediment dynamics were investigated in Coolbaggie Creek, a major supplier of sediment to the Macquarie River in an agricultural catchment with temperate to semi-arid climate in Australia. Radionuclides were used to discriminate between the <63 micron fraction of sediment sources including forested topsoils (Cs-137 11.28 +/- 0.75 Bq/kg; Pb-210ex 181.87 +/- 20.00 Bq/kg), agricultural topsoils (Cs-137 3.21 +/- 0.26 Bq/kg; Pb-210ex 29.59 +/- 10.94 Bq/kg) and sub-soils from channel banks and gullies (Cs-137 1.45 +/- 0.47 Bq/kg; Pb-210ex 4.67 +/- 1.93 Bq/kg). Within the trunk stream, suspended sediment, organic matter and Cs-137 and Pb-210ex concentrations declined downstream. Results from a mixing model suggest that agricultural topsoils account for 95% of fine sediment entering the channel in the

  4. Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Gascuel-Odoux, Chantal; Durand, Patrick; Weiler, Markus

    2016-02-01

    Several controls are known to affect water quality of stream networks during flow recession periods, such as solute leaching processes, surface water-groundwater interactions as well as biogeochemical in-stream turnover processes. Throughout the stream network, combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on snapshot sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analysing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrate from subcatchments. Thereby, we have been able to distinguish quantitatively between nitrate sinks, sources per stream reaches, and subcatchments, and thus we could disentangle the overlay of nitrate sink and source signals. For nitrate sources, we determined their permanent and temporal impact on stream water quality and for nitrate sinks, we found increasing nitrate removal efficiencies from upstream to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resource management.

  5. A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases

    PubMed Central

    Hackstadt, Amber J.; Peng, Roger D.

    2014-01-01

    Summary Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulators to focus limited resources on reducing emissions from sources that are major contributors to air pollution and are also desired when estimating source-specific health effects. However, researchers often lack direct observations of the emissions at the source level. We propose a Bayesian multivariate receptor model to infer information about source contributions from ambient air pollution measurements. The proposed model incorporates information from national databases containing data on both the composition of source emissions and the amount of emissions from known sources of air pollution. The proposed model is used to perform source apportionment analyses for two distinct locations in the United States (Boston, Massachusetts and Phoenix, Arizona). Our results mirror previous source apportionment analyses that did not utilize the information from national databases and provide additional information about uncertainty that is relevant to the estimation of health effects. PMID:25309119

  6. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    NASA Astrophysics Data System (ADS)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    exported amounts was carried out at the River scale. Different origins (agricultural zones, urban areas and wastewater treatment plants) were assessed to determine the contribution of each usage. These investigations showed the high impact of storm waters and wastewaters upon the Orge River contamination (90%), whereas the agricultural zone contributed to only 10 % of the glyphosate contamination of the River. Glyphosate contaminates the river by direct flow of rainfall sewers towards surface waters. AMPA in the Orge river originates from both degradation of glyphosate in agricultural soils (29%) and from urban sewers (79%). Glyphosate amount transferred via overflows between sewers is the main source (more than 95%) in wastewaters during application period and rainfall events, but represents only 50% of the annual load in wastewaters that reach treatment plants (WWTP). AMPA, always detected in wastewaters and WWTP, is partly related to domestic wastewaters (18 to 23% of the total load). A difference between glyphosate and AMPA load inputs in the Orge River and outputs load at the outlet was registered: Glyphosate load is decreasing downstream as AMPA is increasing, suggesting a degradation of glyphosate into the river. The rule of sediments could have a significant influence of the dynamic transport of glyphosate. The results of the budget calculation are supported by a strong and logical data collection, coupled with detailed spatial information and consciousness of estimation accuracy. Keywords: Catchment, glyphosate, AMPA, inputs, budget

  7. Tracing sources of suspended sediment in a Canadian agricultural watershed using a Bayesian model: Testing different groups of fingerprinting properties

    NASA Astrophysics Data System (ADS)

    Gaspar, Leticia; Owens, Philip; Petticrew, Ellen; Lobb, David; Koiter, Alexander; Reiffarth, Dominic; Barthod, Louise; Liu, Kui; Martinez-Carreras, Nuria

    2015-04-01

    An understanding of sediment redistribution processes and the main sediment sources within a watershed is needed to support catchment management strategies, to control soil erosion processes, and to preserve water quality and ecological status. The fingerprinting technique is increasingly recognised as a method for establishing the source of the sediment transported within a catchment. However, the different behaviour of the various fingerprinting properties has been recognised as a major limitation of the technique, and the uncertainty associated with tracer selection has to be addressed. Do the different properties give similar results? Can we combine different groups of tracers? This study aims to compare and evaluate the differences between fingerprinting predictions provided by a Bayesian mixing model using different groups of tracer properties for use in sediment source identification. We are employing fallout radionuclides (137Cs, 210Pbex) and geochemical elements as conventional fingerprinting properties, and colour parameters and compound-specific stable isotopes (CSSIs) as emerging properties; both alone and in combination. These fingerprinting properties are being used to determine the proportional contributions of fine sediment in the South Tobacco Creek Watershed, an agricultural catchment located in south-central Manitoba in Canada. We present preliminary results to evaluate the use of different statistical procedures to increase the accuracy of fingerprinting outputs and establish protocols for the selection of appropriate fingerprint properties.

  8. Understanding the sources and mitigation potential of nitrous oxide in agriculture

    NASA Astrophysics Data System (ADS)

    Horwath, W. R.; Zhu, X.; Doane, T. A.; Burger, M.

    2014-12-01

    More than half of the global warming potential of GHG emissions from agriculture is attributed to nitrous oxide (N2O).. Many factors control the production and release of N2O from soils. In addition to fertilizer N, soil N, moisture and carbon availability control N2O emissions. In addition, a previously overlooked factor, iron, was recently found to be the most significant factor influencing N2O production. Controlled by soil and management factors, N2O production is attributed to multiple pathways, including ammonia oxidation (AO), denitrification, and abiotic chemical reactions. Ammonia oxidation or nitrifier activity N2O production, is a well known pathway, but it significance to total N2O production is also highly debated and soil conditions influencing its production are poorly understood. Studies in a variety of crops in California strongly suggest that this pathway contributes substantially to N2O emissions. It is well established that denitrification primarily occurs under O2- limiting conditions, while N2O produced from AO is also influenced by soil O2 content, with maximum production occurring at low O2 levels (~0.5%). Since emission of N2O can arise from both AO and denitrification activities at low O2 concentrations, it is difficult to discern the importance of each pathway under various soil conditions and management. Furthermore, both the N form and concentration are determinants of nitrifier N2O production. The nitrifier denitrification pathway has been shown to dominate over nitrifier nitrification and nitrification coupled denitrification pathways. Irrigation, rainfall, and fertilization events stimulate microbial activity, including AO and denitrification that produces N2O and although limited, these events contribute to the majority of annual emissions. This uncertainty and complexity surrounding N2O production pathways has hampered the development of practices to reduce N2O emissions. As agricultural production intensifies in developing

  9. Baseflow contribution to nitrate-nitrogen export from a large, agricultural watershed, USA

    NASA Astrophysics Data System (ADS)

    Schilling, Keith; Zhang, You-Kuan

    2004-08-01

    Nitrate-nitrogen export from the Raccoon River watershed in west-central Iowa is among the highest in the United State and contributes to impairment of downstream water quality. We examined a rare long-term record of streamflow and nitrate concentration data (1972-2000) to evaluate annual and seasonal patterns of nitrate losses in streamflow and baseflow from the Raccoon River. Combining hydrograph separation with a load estimation program, we estimated that baseflow contributes approximately two-thirds (17.3 kg/ha) of the mean annual nitrate export (26.1 kg/ha). Baseflow transport was greatest in spring and late fall when baseflow contributed more than 80% of the total export. Herein we propose a 'baseflow enrichment ratio' (BER) to describe the relation of baseflow water with baseflow nitrate loads. The long-term ratio of 1.23 for the Raccoon River suggests preferential leaching of nitrate to baseflow. Seasonal patterns of the BER identified the strong link between the baseflow nitrate loads and seasonal crop nitrogen requirements. Study results demonstrate the utility of assessing the baseflow contribution to nitrate loads to identify appropriate control strategies for reducing baseflow delivery of nitrate.

  10. Baseflow contribution to nitrate-nitrogen export from a large, agricultural watershed, USA

    USGS Publications Warehouse

    Schilling, K.; Zhang, Y.-K.

    2004-01-01

    Nitrate-nitrogen export from the Raccoon River watershed in west-central Iowa is among the highest in the United State and contributes to impairment of downstream water quality. We examined a rare long-term record of streamflow and nitrate concentration data (1972-2000) to evaluate annual and seasonal patterns of nitrate losses in streamflow and baseflow from the Raccoon River. Combining hydrograph separation with a load estimation program, we estimated that baseflow contributes approximately two-thirds (17.3 kg/ha) of the mean annual nitrate export (26.1 kg/ha). Baseflow transport was greatest in spring and late fall when baseflow contributed more than 80% of the total export. Herein we propose a 'baseflow enrichment ratio' (BER) to describe the relation of baseflow water with baseflow nitrate loads. The long-term ratio of 1.23 for the Raccoon River suggests preferential leaching of nitrate to baseflow. Seasonal patterns of the BER identified the strong link between the baseflow nitrate loads and seasonal crop nitrogen requirements. Study results demonstrate the utility of assessing the baseflow contribution to nitrate loads to identify appropriate control strategies for reducing baseflow delivery of nitrate. ?? 2004 Elsevier B.V. All rights reserved.

  11. Sources and contributions of wood smoke during winter in London: assessing local and regional influences

    NASA Astrophysics Data System (ADS)

    Crilley, L. R.; Bloss, W. J.; Yin, J.; Beddows, D. C. S.; Harrison, R. M.; Allan, J. D.; Young, D. E.; Flynn, M.; Williams, P.; Zotter, P.; Prevot, A. S. H.; Heal, M. R.; Barlow, J. F.; Halios, C. H.; Lee, J. D.; Szidat, S.; Mohr, C.

    2014-10-01

    Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions can exceed the contributions from traffic emissions, and have been identified as a major cause of exceedences of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2.5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction likely included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC using average source ratios from published data was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Black carbon (BC) data from 2 and 7 wavelength Aethalometers were also apportioned into the contributions from biomass burning and traffic, based upon the enhanced absorption of wood smoke at UV wavelengths compared to BC. While the source apportionment of BC using this approach found similar trends to that observed for EC, higher percentage contributions of wood burning to BC were estimated. Based on a wood smoke mass conversion factor for levoglucosan, mean wood smoke mass at the sites was found to range from 0.78-1.0 μg m-3 during the campaign in January-February 2012. Measurements on a 160 m

  12. Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California

    USGS Publications Warehouse

    Sickman, James O.; DiGiorgio, Carol L.; Davisson, M. Lee; Lucero, Delores M.; Bergamaschi, Brian A.

    2010-01-01

    We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Δ14C for DOC was -254‰ in agricultural drains in the Sacramento-San Joaquin Delta, -218‰ in the San Joaquin River, -175‰ in the California State Water Project and -152‰ in the Sacramento River. The age of bulk DOC transiting the rivers of California's Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured 14C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Δ14C of 91 and 76‰ for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, -204‰, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Δ14C values of between -275 and -687‰; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California's Central Valley.

  13. Assessing the contribution of natural sources to regional atmospheric mercury budgets

    SciTech Connect

    Gustin, M.S.; Lindberg, S.E.

    1997-12-31

    Contributions to the global atmospheric mercury budget originate from natural and anthropogenic sources. Constraining inputs from anthropogenic point sources has been the emphasis of past research leaving the contribution from diffuse natural and anthropogenic mercury enriched landscapes poorly constrained and underestimated. From September 1--4, 1997 mercury researchers convened in Reno, NV, US to intercompare methods used to determine in situ mercury flux from a naturally enriched landscape. Data collected indicate that naturally mercury-enriched areas constitute a significant atmospheric Hg source term. Mercury fluxes of 30 to 2,000 ng/m{sup 2} h were measured at the Steamboat springs Geothermal Area. These values are one to three orders of magnitude greater than that applied for natural sources in global mercury budgets. Air concentrations measured in the area indicate that natural sources can increase ambient levels above background concentrations. Assessment of these and other data indicate that natural sources constitute a significant source of atmospheric mercury that is available to the global mercury budget, and that the strength of the source is influenced significantly by environmental factors. Determining the contribution of mercury to the atmosphere from diffuse terrestrial sources is necessary to develop local and regional baselines for environmental regulations and risk assessments, and valid emission inventories. A scaling up mercury fluxes measured for diffuse terrestrial surfaces suggests that the natural atmospheric mercury source term in the US is comparable to the anthropogenic source term.

  14. Source Contribution of Volatile Organic Compounds to Ozone Formation in Southeast Texas

    NASA Astrophysics Data System (ADS)

    Ying, Q.

    2009-12-01

    The Houston-Galveston-Brazoria (HGB) and Beaumont-Port Arthur (BPA) areas in the southeast Texas are respectively in severe and moderate non-attainment status for the National Ambient Air Quality Standards for ozone (O3). In order to design effective emission control strategies to improve ozone air quality, it is necessary to understand the contribution of volatile organic compounds (VOCs) from different sources to O3 formation. In this study, a source-oriented SAPRC-99 gas phase photochemical mechanism was developed and incorporated into the Community Multiscale Air Quality (CMAQ) model to determine the contribution of volatile organic compounds (VOCs) from different sources to the predicted net ozone formation rate in southeast Texas during the Texas Air Quality Study (TexAQS) from 16 August - 6 September 2000. Contribution from eight different sources: biogenic, diesel engines, highway gasoline vehicles, off-highway gasoline engines, solvent utilization, petroleum industry, other industries and wildfire were resolved. This is the first time that the regional source contribution of VOCs to O3 formation has been quantified using a three-dimensional source oriented modeling approach in southeast Texas. Regional source contribution analysis indicates that the VOCs emitted from petrochemical industries are responsible to a large amount of O3 formation in the HGB and BPA area. The peak O3 formation rate due to petroleum industry and other industries combined is ~8 ppb hr(-1) in early afternoon hours, which rivals the O3 formation rate due to biogenic sources (~ 9 ppb hr(-1)). Gasoline vehicles also contribute significantly to the ozone formation, with a maximum contribution of ~3.5 ppb hr(-1). The spatial coverage of vehicle sources is larger that of industrial sources. Solvent utilization contributes ~1.2 ppb hr(-1) and has similar spatial coverage as gasoline vehicle sources. VOC emissions from reciprocating engines powered by natural gas are the most significant

  15. Chloride Sources and Losses in Two Tile-Drained Agricultural Watersheds.

    PubMed

    David, Mark B; Mitchell, Corey A; Gentry, Lowell E; Salemme, Ronald K

    2016-01-01

    Chloride is a relatively unreactive plant nutrient that has long been used as a biogeochemical tracer but also can be a pollutant causing aquatic biology impacts when concentrations are high, typically from rock salt applications used for deicing roads. Chloride inputs to watersheds are most often from atmospheric deposition, road salt, or agricultural fertilizer, although studies on agricultural watersheds with large fertilizer inputs are few. We used long-term (21 and 17 yr) chloride water quality data in two rivers of east-central Illinois to better understand chloride biogeochemistry in two agricultural watersheds (Embarras and Kaskaskia), the former with a larger urban land use and both with extensive tile drainage. During our sampling period, the average chloride concentration was 23.7 and 20.9 mg L in the Embarras and Kaskaskia Rivers, respectively. Annual fluxes of chloride were 72.5 and 61.2 kg ha yr in the Embarras and Kaskaskia watersheds, respectively. In both watersheds, fertilizer chloride was the dominant input (∼49 kg ha yr), with road salt likely the other major source (23.2 and 7.2 kg ha yr for the Embarras and Kaskaskia watersheds, respectively). Combining our monitoring data with earlier published data on the Embarras River showed an increase in chloride concentrations as potash use increased in Illinois during the 1960s and 1970s with a lag of about 2 to 6 yr to changes in potash inputs based on a multiple-regression model. In these agricultural watersheds, riverine chloride responds relatively quickly to potash fertilization as a result of tile-drainage. PMID:26828190

  16. An investigation of element ratios for assessing suspended-sediment sources in small agricultural basins

    USGS Publications Warehouse

    Juracek, K.

    2012-01-01

    Various sediment properties previously have been investigated for the purpose of determining sources of suspended sediment. A remaining research need is an assessment of element ratios for the determination of suspended-sediment sources in different terrestrial environments. In this study, 253 element ratios were assessed to determine which, if any, were potentially useful for sediment-source determinations in six small agricultural basins in northeastern Kansas, USA. Samples of surface soils (cropland and grassland), channel banks, and reservoir bottom sediments were collected, analyzed for 23 elements, and compared. Of the 253 element ratios assessed, only the Co/Pb and Co/Zn ratios were substantially and consistently different between the channel banks and surface soils for all six basins. For three of four reservoirs for which data were available, sediment-source estimates provided by Co/Pb ratios were in agreement with estimates previously provided using 137Cs. For two of the four reservoirs, sediment-source estimates provided by Co/Zn ratios were consistent with the 137Cs estimates. Thus, the Co/Pb ratio potentially may be more useful. Additional research is needed to ascertain whether or not the use of Co/Pb and Co/Zn ratios as tracers is widely applicable or restricted to specific terrestrial environments.

  17. DEVELOPMENTAL CHANGES IN FACT AND SOURCE RECALL: CONTRIBUTIONS FROM EXECUTIVE FUNCTION AND BRAIN ELECTRICAL ACTIVITY

    PubMed Central

    Rajan, Vinaya; Bell, Martha Ann

    2014-01-01

    Source memory involves recollecting the contextual details surrounding a memory episode. When source information is bound together, it makes a memory episodic in nature. Unfortunately, very little is known about the factors that contribute to its formation in early development. This study examined the development of source memory in middle childhood. Measures of executive function were examined as potential sources of variation in fact and source recall. Continuous electroencephalogram (EEG) measures were collected during baseline and fact and source retrieval in order to examine memory-related changes in EEG power. Six and 8-year-old children were taught 10 novel facts from two different sources and recall for fact and source information was later tested. Older children were better on fact recall, but both ages were comparable on source recall. However, source recall performance was poor at both ages, suggesting that this ability continues to develop beyond middle childhood. Regression analyses revealed that executive function uniquely predicted variance in source recall performance. Task-related increases in theta power were observed at frontal, temporal and parietal electrode sites during fact and source retrieval. This investigation contributes to our understanding of age-related differences in source memory processing in middle childhood. PMID:25459873

  18. Patterns in atmospheric circulation affect emission sources contributing to nitrogen deposition in the Columbia River Gorge, Pacific Northwest USA

    NASA Astrophysics Data System (ADS)

    Anderson, S. M.; Chung, S. H.; Welker, J. M.; Harlow, B.; Evans, R. D.

    2014-12-01

    The Columbia River Gorge separating Oregon and Washington provides an ideal setting to investigate how atmospheric circulation patterns determine types of emission sources contributing to atmospheric deposition. Up-gorge and down-gorge atmospheric circulation patterns each provide a different suite of emission sources. Up-gorge airflow originates in the Portland-Vancouver metro area dominated by urban and industrial sources. Down-gorge patterns originate in the Columbia River basin, which is dominated by agricultural production. We tested the dependence of emission sources contributing to atmospheric deposition on circulation patterns by measuring the isotopic composition of nitrate (NO3-) in 2003-2004 precipitation samples from the WA98-Columbia River Gorge NADP & USNIP site. Circulation patterns were determined using back-trajectory analysis with the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model using the archived EDAS meteorological dataset. We observed a significant difference (P=0.01) between up-gorge and down-gorge patterns with mean δ15N-NO3- of +1.8 and -2.1‰ for up- and down-gorge, respectively. The differences observed between these two patterns is likely tied to the different emission sources of N found in these different geographic areas. The lower δ15N of down-gorge sources is due to the large amount of agricultural production in the Columbia River basin. Observed values for the up-gorge patterns likely result from industrial and fossil fuel emissions of NOx, the precursor of deposited NO3-, in the Portland-Vancouver area. The significantly greater amount of NO3- in precipitation from up-gorge patterns (0.72 mg/L) compared to down-gorge patterns (0.36 mg/L, P=0.01) supports the influence of urban sources rather than relatively clean marine air which characteristically has low amounts of NO3-. No significant differences are found in δ18Onitrate or Δ17Onitrate between the two patterns, suggesting that atmospheric chemistry

  19. Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model

    NASA Astrophysics Data System (ADS)

    Kwok, R. H. F.; Napelenok, S. L.; Baker, K. R.

    2013-12-01

    Source culpability assessments are useful for developing effective emissions control programs. The Integrated Source Apportionment Method (ISAM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to track contributions from source groups and regions to ambient levels and deposited amounts of primary and secondary inorganic PM2.5. Confidence in this approach is established by comparing ISAM source contribution estimates to emissions zero-out simulations recognizing that these approaches are not always expected to provide the same answer. The comparisons are expected to be most similar for more linear processes such as those involving primary emissions of PM2.5 and most different for non-linear systems like ammonium nitrate formation. Primarily emitted PM2.5 (e.g. elemental carbon), sulfur dioxide, ammonia, and nitrogen oxide contribution estimates compare well to zero-out estimates for ambient concentration and deposition. PM2.5 sulfate ion relationships are strong, but nonlinearity is evident and shown to be related to aqueous phase oxidation reactions in the host model. ISAM and zero-out contribution estimates are less strongly related for PM2.5 ammonium nitrate, resulting from instances of non-linear chemistry and negative responses (increases in PM2.5 due to decreases in emissions). ISAM is demonstrated in the context of an annual simulation tracking well characterized emissions source sectors and boundary conditions shows source contributions generally following bulk model seasonal trends and spatially corresponding to the geographic distribution of identified emissions source sectors.

  20. User's Guide for the Agricultural Non-Point Source (AGNPS) Pollution Model Data Generator

    USGS Publications Warehouse

    Finn, Michael P.; Scheidt, Douglas J.; Jaromack, Gregory M.

    2003-01-01

    BACKGROUND Throughout this user guide, we refer to datasets that we used in conjunction with developing of this software for supporting cartographic research and producing the datasets to conduct research. However, this software can be used with these datasets or with more 'generic' versions of data of the appropriate type. For example, throughout the guide, we refer to national land cover data (NLCD) and digital elevation model (DEM) data from the U.S. Geological Survey (USGS) at a 30-m resolution, but any digital terrain model or land cover data at any appropriate resolution will produce results. Another key point to keep in mind is to use a consistent data resolution for all the datasets per model run. The U.S. Department of Agriculture (USDA) developed the Agricultural Nonpoint Source (AGNPS) pollution model of watershed hydrology in response to the complex problem of managing nonpoint sources of pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient transport from watersheds that have agriculture as their prime use. The model operates on a cell basis and is a distributed parameter, event-based model. The model requires 22 input parameters. Output parameters are grouped primarily by hydrology, sediment, and chemical output (Young and others, 1995.) Elevation, land cover, and soil are the base data from which to extract the 22 input parameters required by the AGNPS. For automatic parameter extraction, follow the general process described in this guide of extraction from the geospatial data through the AGNPS Data Generator to generate input parameters required by the pollution model (Finn and others, 2002.)

  1. Using multiple composite fingerprints to quantify sediment source contributions: A new direction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative information on sediment provenance is badly needed for calibration and validation of process-based soil erosion models. However, sediment source data are rather limited due to difficulties in direct measurement of various source contributions at a watershed scale. The objectives are t...

  2. Using multiple composite fingerprints to quantify fine sediment source contributions: A new direction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment source fingerprinting provides a vital means for estimating sediment source contributions, which are needed not only for soil conservation planning but also for erosion model evaluation. A single optimum composite fingerprint has been widely used in the literature to estimate sediment prov...

  3. Source Sector and Region Contributions to BC and PM2.5 in Central Asia

    EPA Science Inventory

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector and source region contributions in Central Asia (CA) are analyzed for the period April 2008-July 2009 using the STEM chemical transport model and modeled meteorology from the WRF model. Predicted AOD valu...

  4. Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Schuetz, T.; Gascuel-Odoux, C.; Durand, P.; Weiler, M.

    2015-08-01

    Several controls are known to affect water quality of stream networks during flow recession periods such as solute leaching processes, surface water - groundwater interactions as well as biogeochemical in-stream retention processes. Throughout the stream network combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered as functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on synoptic sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analyzing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrates from sub-catchments. Thereby, we have been able to distinguish between nitrate sinks and sources per stream reaches and sub-catchments. For nitrate sources we have determined their permanent and temporally impact on stream water quality and for nitrate sinks we have found increasing nitrate removal efficiencies from up- to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resources management.

  5. Basic biogenic aerosol precursors: Agricultural source attribution of volatile amines revised

    NASA Astrophysics Data System (ADS)

    Kuhn, U.; Sintermann, J.; Spirig, C.; Jocher, M.; Ammann, C.; Neftel, A.

    2011-08-01

    Despite recent evidence on an important role of volatile amines in the nucleation of particulate matter, very scarce information is available on their atmospheric abundance and source distribution. Previous measurements in animal housings had identified livestock husbandry as the main amine source, with trimethylamine (TMA) being the key component. This has led to the assumption that the agricultural sources for amines are similar as for ammonia, emitted throughout the cascade of animal excretion, storage and application in the field. In this study, we present the first micrometeorological flux measurements as well as dynamic enclosure experiments showing that the amine source strength from stored slurry is negligible, implying significant consequences for the global amine emission inventory. In the case of cattle, amine production is attributed to the animal's rumination activity and exhalation is suggested to be an important emission pathway, similar to the greenhouse gas methane. Fodder like hay and silage also emits volatile amines, potentially assigning these alkaloid compounds a key function in enhancing particle formation in remote areas.

  6. Point-source effects on N and P uptake in a forested and an agricultural Mediterranean streams.

    PubMed

    Merseburger, Gora; Martí, Eugènia; Sabater, Francesc; Ortiz, Jesús D

    2011-02-01

    We examined the effect of point-source inputs from wastewater treatment plants (WWTP) on in-stream uptake of ammonium, nitrate and phosphate and compared it between two streams draining catchments with contrasting land use. The selected streams were La Tordera and Gurri (NE Spain), draining a forest- and an agriculture-dominated catchment, respectively. In each stream, we compared nutrient uptake metrics, estimated from nutrient additions, between two reaches located upstream and downstream of a WWTP input. Measurements were done on 8-9 dates during 2002-2003. In La Tordera, the point-source increased concentrations of all studied nutrients; whereas in Gurri, this effect was less evident. Point-source effects on nutrient uptake differed between the two streams, and among solutes. In La Tordera, uptake lengths (S(w)) of ammonium and phosphate averaged hundreds of meters above the point-source, and increased (i.e., decreased uptake efficiency) 4 and 5 times, respectively, below the point-source. S(w) of nitrate was ≥2km regardless of reach location. In Gurri, S(w) of all studied nutrients was within the km range in the two reaches. In this stream, diffuse nutrient inputs from adjacent fields may overwhelm the local effect of the point-source input. Uptake velocities (v(f)) of the studied nutrients ranged between 10EXP(-6) and 10EXP(-4)m/s in the two streams, and were similar between the two reaches in each stream. However, phosphate v(f) decreased under increasing concentrations following a power function. This trend remained significant when combining our results with those compiled from literature, suggesting the efficiency loss response may be a general trend for phosphate across streams. The relative increases in uptake rates (U) below the point-source were proportional to the relative point-source contribution to downstream nutrient loads, especially for ammonium and nitrate. However, the increases in U were not enough to compensate for the increases in

  7. Nonpoint Source Pollution: Agriculture, Forestry, and Mining. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Buskirk, E. Drannon, Jr.

    Nonpoint sources of pollution have diffuse origins and are major contributors to water quality problems in both urban and rural areas. Addressed in this instructor's manual are the identification, assessment, and management of nonpoint source pollutants resulting from mining, agriculture, and forestry. The unit, part of the Working for Clean Water…

  8. Sources and contributions of wood smoke during winter in London: assessing local and regional influences

    NASA Astrophysics Data System (ADS)

    Crilley, L. R.; Bloss, W. J.; Yin, J.; Beddows, D. C. S.; Harrison, R. M.; Allan, J. D.; Young, D. E.; Flynn, M.; Williams, P.; Zotter, P.; Prevot, A. S. H.; Heal, M. R.; Barlow, J. F.; Halios, C. H.; Lee, J. D.; Szidat, S.; Mohr, C.

    2015-03-01

    Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions have been identified as a major cause of exceedances of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2.5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Aethalometer-derived black carbon data were also apportioned into the contributions from biomass burning and traffic and showed trends similar to those observed for EC. Mean wood smoke mass at the sites was estimated to range from 0.78 to 1.0 μg m-3 during the campaign in January-February 2012. Measurements on a 160 m tower in London suggested a similar ratio of brown to black carbon (reflecting wood burning and traffic respectively) in regional and London air. Peaks in the levoglucosan and K+ concentrations were observed to coincide with low ambient temperature, consistent with domestic heating as a major contributing local source in London. Overall, the source of biomass smoke in London was concluded to be a

  9. Contribution Assessment of Regional Air Pollution over Northeast Asia using CMAQ Source Apportionment Tools

    NASA Astrophysics Data System (ADS)

    Choi, K.; Woo, J.; Kim, H.; Lee, J.; Kim, C.

    2011-12-01

    East Asia is one of the largest emission source regions in the world because of the large population and fast economic growth for several decades. Recent observation from space also demonstrates that emissions in East Asia - especially China - have been increased impressively since 1995. A number of regional scale transport studies using comprehensive 3D modeling system such as CMAQ have been conducted to understand transboundary air pollution. The contribution assessment using such a comprehensive modeling system, however, was not extensively investigated in this region. Air pollution contributions from multiple source types and regions over East Asia were examined using CMAQ based source apportionment tool off-line coupled with a meteorological model (WRF). The simulation was conducted for the entire year of 2009. The CMAQ ozone & particle precursor tagging methodologies (OPTM) source apportionment tool were applied in our study. An anthropogenic emissions inventory and processing methodology have been developed in support of the source-receptor modeling study in East Asia region. Emissions from open biomass burning and biogenic source were also estimated to support air quality contributions assessment from various sources and source types. Remote sensing-based atmosphere information and ground based monitoring data has been included to evaluate the simulation results. The results of our analysis will be presented at the conference.

  10. Local and distant source contributions to secondary organic aerosol in the Beijing urban area in summer

    NASA Astrophysics Data System (ADS)

    Lin, Jian; An, Junling; Qu, Yu; Chen, Yong; Li, Ying; Tang, Yujia; Wang, Feng; Xiang, Weiling

    2016-01-01

    Quantification of local and distant source contributions to particulate matter is a key issue to improving air quality in large urban areas, but few studies have focused on secondary organic aerosol (SOA) source contributions in a large area, especially in China. In this study, we extended the Comprehensive Air Quality Model with Extensions (CAMX) version 5.4, replacing the two-product approach by the volatility basis-set (VBS) approach, with updated SOA yields based on smog chamber studies. The modules related to the computationally efficient particulate source apportionment technology (PSAT) used in CAMX v5.4 were extended based on the volatility basis set (VBS) approach. The updated version of the CAMX model was then used to calculate the local and distant source contributions to SOA in Beijing for the first time. The results indicated that the VBS approach substantially improved hourly, daily, and monthly SOA simulations, compared with the two-product approach and the observations. In August 2007, the local source contributions to anthropogenic and biogenic SOA in Beijing were 23.8% and 16.6%, respectively; distant sources dominated for both anthropogenic and biogenic SOA in Beijing: Northern Hebei, Middle Hebei, Northeast China, Inner Mongolia, Shandong, and Tianjin (including Xianghe) contributed 5.1%-18.2% to anthropogenic SOA in Beijing; whereas, Inner Mongolia, Northern Hebei, and Northeast China contributed 12.2%, 18.6%, and 10.1%, respectively, to biogenic SOA in Beijing. Additionally, other areas outside China respectively contributed 5.3% and 10.8% to anthropogenic and biogenic SOA in Beijing: this could be related to strong summer monsoon.

  11. Nitrogen stable isotopes in streams: effects of agricultural sources and transformations.

    PubMed

    Diebel, Matthew W; Vander Zanden, M Jake

    2009-07-01

    The nitrogen stable isotope ratio of biological tissue has been proposed as an indicator of anthropogenic N inputs to aquatic ecosystems, but overlap in the isotopic signatures of various N sources and transformations make definitive attribution of processes difficult. We collected primary consumer invertebrates from streams in agricultural settings in Wisconsin, U.S.A., to evaluate the relative influence of animal manure, inorganic fertilizer, and denitrification on biotic delta15N. Variance in biotic delta15N was explained by inorganic fertilizer inputs and the percentage of wetland land cover in the watershed, but not by animal manure inputs. These results suggest that denitrification of inorganic fertilizer is the primary driver of delta15N variability among the study sites. Comparison with previously collected stream water NO3-N concentrations at the same sites supports the role of denitrification; for a given N application rate, streams with high biotic delta15N had low NO3-N concentrations. The lack of a manure signal in biotic delta15N may be due its high ammonia content, which can be dispersed outside the range of its application by volatilization. Based on our findings and on agricultural census data for the entire United States, inorganic fertilizer is more likely than manure to drive variability in biotic delta15N and to cause excessive nitrogen concentrations in streams. PMID:19688921

  12. Determination of source contributions to ambient PM2.5 in Kaohsiung, Taiwan, using a receptor model.

    PubMed

    Chen, K S; Lin, C F; Chou, Y M

    2001-04-01

    Ambient particulates of PM2.5 were sampled at three sites in Kaohsiung, Taiwan, during February and March 1999. In addition, resuspended PM2.5 collected from traffic tunnels, paved roads, fly ash of a municipal solid waste (MSW) incinerator, and seawater was obtained. All the samples were analyzed for twenty constituents, including water-soluble ions, organic carbon (OC), elemental carbon (EC), and metallic elements. In conjunction with local source profiles and the source profiles in the model library SPECIATE EPA, the receptor model based on chemical mass balance (CMB) was then applied to determine the source contributions to ambient PM2.5. The mean concentration of ambient PM2.5 was 42.69-53.68 micrograms/m3 for the sampling period. The abundant species in ambient PM2.5 in the mass fraction for three sites were OC (12.7-14.2%), SO4(2-) (12.8-15.1%), NO3- (8.1-10.3%), NH4+ (6.7-7.5%), and EC (5.3-8.5%). Results of CMB modeling show that major pollution sources for ambient PM2.5 are traffic exhaust (18-54%), secondary aerosols (30-41% from SO4(2-) and NO3-), and outdoor burning of agriculture wastes (13-17%). PMID:11321906

  13. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model

    NASA Astrophysics Data System (ADS)

    FitzHugh, T. W.; Mackay, D. S.

    2000-09-01

    The accuracy of agricultural nonpoint source pollution models depends in part on how well model input parameters describe the relevant characteristics of the watershed. The spatial extent of input parameter aggregation has previously been shown to have a substantial impact on model output. This study investigates this problem using the Soil and Water Assessment Tool (SWAT), a distributed-parameter agricultural nonpoint source pollution model. The primary question addressed here is: how does the size or number of subwatersheds used to partition the watershed affect model output, and what are the processes responsible for model behavior? SWAT was run on the Pheasant Branch watershed in Dane County, WI, using eight watershed delineations, each with a different number of subwatersheds. Model runs were conducted for the period 1990-1996. Streamflow and outlet sediment predictions were not seriously affected by changes in subwatershed size. The lack of change in outlet sediment is due to the transport-limited nature of the Pheasant Branch watershed and the stable transport capacity of the lower part of the channel network. This research identifies the importance of channel parameters in determining the behavior of SWAT's outlet sediment predictions. Sediment generation estimates do change substantially, dropping by 44% between the coarsest and the finest watershed delineations. This change is primarily due to the sensitivity of the runoff term in the Modified Universal Soil Loss Equation to the area of hydrologic response units (HRUs). This sensitivity likely occurs because SWAT was implemented in this study with a very detailed set of HRUs. In order to provide some insight on the scaling behavior of the model two indexes were derived using the mathematics of the model. The indexes predicted SWAT scaling behavior from the data inputs without a need for running the model. Such indexes could be useful for model users by providing a direct way to evaluate alternative models

  14. Source and transport factors influencing storm phosphorus losses in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; kelly-quinn, Mary; Wall, David; Murphy, Paul; Melland, Alice

    2014-05-01

    The relative risk of diffuse phosphorus (P) loss from agricultural land was assessed in a well-drained arable catchment and a poorly-drained grassland catchment and in two nested basins within each catchment. This research investigated the relative control of hydrology and soil P on P losses between basins. Quick flow (QF) P losses (defined here as both concentrations and loads), monitored in stream flow during four storm events, were compared with a dynamic metric of transport risk (QF magnitude) and a static metric of critical source area (CSA) risk (extent of highly-connected poorly-drained soils with excess plant-available soil P). The potential for static transport metrics of soil connectivity and soil drainage class, to predict relative QF magnitudes and P losses between basins was also investigated. In basins with similar CSA risk but with contrasting QF magnitudes, mean TRP (total molybdate-reactive P) losses were consistently higher in the basins which had the highest QF magnitudes. This suggests that basin hydrology, rather than hydrology of high-P soils only, determined relative TRP losses between hydrologically contrasting basins. Furthermore, static transport metrics of soil connectivity and soil drainage class reliably discerned relative QF magnitudes and TRP losses between these basins. However, for two of the storm events (both occurring during the hydrologically active season), PP (particulate P) concentrations were frequently higher in basins which had the lowest QF magnitudes and may be attributed to a higher proportion of bare soil in these basins at these times as a result of their predominantly arable nature. In basins with similar hydrology, relative TRP and PP losses did not reflect trends in CSA risk or QF magnitude. The dynamics of TRP and PP losses and QF magnitude between these basins varied across storms, thus could not be predicted using static metrics. Where differences in hydrological dynamics were large, storm TRP losses were well

  15. Indigenous and introduced arbuscular mycorrhizal fungi contribute to plant growth in two agricultural soils from south-western Australia.

    PubMed

    Gazey, C; Abbott, L K; Robson, A D

    2004-12-01

    Arbuscular mycorrhizal (AM) fungi occur in all agricultural soils but it is not easy to assess the contribution they make to plant growth under field conditions. Several approaches have been used to investigate this, including the comparison of plant growth in the presence or absence of naturally occurring AM fungi following soil fumigation or application of fungicides. However, treatments such as these may change soil characteristics other than factors directly involving AM fungi and lead to difficulties in identifying the reason for changes in plant growth. In a glasshouse experiment, we assessed the contribution of indigenous AM fungi to growth of subterranean clover in undisturbed cores of soil from two agricultural field sites (a cropped agricultural field at South Carrabin and a low input pasture at Westdale). We used the approach of estimating the benefit of AM fungi by comparing the curvature coefficients (C) of the Mitscherlich equation for subterranean clover grown in untreated field soil, in field soil into which inoculum of Glomus invermaium was added and in soil fumigated with methyl bromide. It was only possible to estimate the benefit of mycorrhizas using this approach for one soil (Westdale) because it was the only soil for which a Mitscherlich response to the application of a range of P levels was obtained. The mycorrhizal benefit (C of mycorrhizal vs. non-mycorrhizal plants or C of inoculated vs. uninoculated plants) of the indigenous fungi corresponded with a requirement for phosphate by plants that were colonised by AM fungi already present in the soil equivalent to half that required by non-mycorrhizal plants. This benefit was independent of the plant-available P in the soil. There was no additional benefit of inoculation on plant growth other than that due to increased P uptake. Indigenous AM fungi were present in both soils and colonised a high proportion of roots in both soils. There was a higher diversity of morphotypes of mycorrhizal fungi

  16. Source contributions of sulfate aerosol over East Asia estimated by CMAQ-DDM.

    PubMed

    Itahashi, Syuichi; Uno, Itsushi; Kim, Soontae

    2012-06-19

    We applied the decoupled direct method (DDM), a sensitivity analysis technique for computing sensitivities accurately and efficiently, to determine the source-receptor relationships of anthropogenic SO(2) emissions to sulfate aerosol over East Asia. We assessed source contributions from East Asia being transported to Oki Island downwind from China and Korea during two air pollution episodes that occurred in July 2005. The contribution from China, particularly that from central eastern China (CEC), was found to dominate the sulfate aerosols. To study these contributions in more detail, CEC was divided into three regions, and the contributions from each region were examined. Source contributions exhibited both temporal and vertical variability, largely due to transport patterns imposed by the Asian summer monsoon. Our results are consistent with backward trajectory analyses. We found that anthropogenic SO(2) emissions from China produce significant quantities of summertime sulfate aerosols downwind of source areas. We used a parametric scaling method for estimating anthropogenic SO(2) emissions in China. Using column amounts of SO(2) derived from satellite data, and relationships between the column amounts of SO(2) and anthropogenic emissions, 2009 emissions were diagnosed. The results showed that 2009 emissions of SO(2) from China were equivalent to 2004 levels. PMID:22642816

  17. Renormalized second post-Newtonian spin contributions to the accumulated orbital phase for LISA sources

    SciTech Connect

    Gergely, Laszlo Arpad; Mikoczi, Balazs

    2009-03-15

    We give here a new third post-Newtonian (3PN) spin-spin contribution (in the PN parameter {epsilon}) to the accumulated orbital phase of a compact binary, arising from the spin-orbit precessional motion of the spins. In the equal mass case, this contribution vanishes, but Laser Interferometer Space Antenna (LISA) sources of merging supermassive binary black holes have typically a mass ratio of 1:10. For such nonequal masses, this 3PN correction is periodic in time, with a period approximately {epsilon}{sup -1} times larger than the period of gravitational waves. We derive a renormalized and simpler expression of the spin-spin coefficient at 2PN, as an average over the time scale of this period of the combined 2PN and 3PN contribution. We also find that for LISA sources the quadrupole-monopole contribution to the phase dominates over the spin-spin contribution, while the self-spin contribution is negligible even for the dominant spin. Finally, we define a renormalized total spin coefficient {sigma} to be employed in the search for gravitational waves emitted by LISA sources.

  18. Evaluation of land use and water quality in an agricultural watershed in the USA indicates multiple sources of bacterial impairment.

    PubMed

    Wittman, Jacob; Weckwerth, Andrew; Weiss, Chelsea; Heyer, Sharon; Seibert, Jacob; Kuennen, Ben; Ingels, Chad; Seigley, Lynette; Larsen, Kirk; Enos-Berlage, Jodi

    2013-12-01

    Pathogens are the number one cause of impairments of assessed rivers and streams in the USA and pose a significant human health hazard. The Dry Run Creek Watershed in Northeast Iowa has been designated as impaired by the State of Iowa because of high levels of Escherichia coli bacteria. To investigate the nature of this impairment, land use and stream bank assessments were coupled with comprehensive water quality monitoring. Physical, chemical, and biological parameters were measured at 13 different sites in the watershed, including pH, temperature, conductivity, dissolved oxygen, turbidity, total Kjeldahl nitrogen, ammonia-N, nitrate + nitrite-N, total phosphorus, and E. coli. In addition, benthic macroinvertebrate communities were analyzed at seven sites, and optical brightener tests were performed late in the season. Results identified segments of the watershed that were more prominent contributors of E. coli, and correlations were observed between levels of E. coli and several chemical parameters, including ammonia-N, total Kjeldahl nitrogen, and total phosphorus. Interestingly, distinct sites emerged as more prominent contributors of these elements during rain vs. non-rain events, suggesting different types of sources. Both the amount of rainfall and the time elapsed between the rain event and the sampling influenced E. coli levels during wet weather conditions. Nitrate + nitrite-N displayed a unique response to rain events compared with the other parameters, suggesting a different delivery route. Analyses of benthic macroinvertebrate communities were consistent with pollution trends. Collectively, these data suggest distinct agriculturally related E. coli contributions, as well as specific areas and practices for water quality improvement strategies. This study can serve as a resource for evaluating agricultural watersheds that are impaired for bacteria. PMID:23873513

  19. Contributions of local and regional sources of NO x to ozone concentrations in Southeast Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Ying, Qi

    2011-06-01

    The Community Multi-scale Air Quality (CMAQ) model with a modified SAPRC-99 photochemical mechanism was used to investigate the contributions of local and upwind NO x sources to O 3 concentrations in Southeast Texas during the 2000 Texas Air Quality Study (TexAQS 2000) from August 25 to September 5, 2000. Contributions from eight different local NO x source types and eight different source regions to the 8-h average daytime O 3 concentrations from 1100 to 1800 CST (referred to as AD O 3 hereafter) are determined. Both diesel engines and highway gasoline vehicles account for 25 ppb of AD O 3 in the urban Houston area. NO x from natural gas combustion produces 35 ppb of AD O 3 in the industrial area of Houston. Contributions from industrial sources and coal combustion to AD O 3 have comparatively less broad spatial distribution with maximum values of 14 ppb and 20 ppb, respectively. Although the local sources are the most important sources, upwind sources have non-negligible influences (20-50%) on AD O 3 in the entire domain, with a maximum of 50 ppb in rural and coastal areas and 20 ppb in urban and industrial areas. To probe the origins of upwind sources contributions, NO x emissions in the entire eastern United States are divided into eight different regions and their contributions to O 3 concentrations in the Houston-Galveston-Brazoria (HGB) and Beaumont-Port Arthur (BPA) areas are determined. Among the various NO x source regions resolved in this study, other Texas counties near the HGB and BPA areas and southeastern states are the most important non-local sources of O 3. Under favorable transport conditions, emissions from neighbor states and northeastern states could also contribute to non-negligible O 3 concentrations (7-15%) in the HGB and BPA areas. This indicates that in addition to reduce local emissions, regional NO x emission controls, especially from the neighbor counties and states, are also necessary to improve O 3 air quality in Southeast Texas.

  20. Source identification of atmospheric PCBs in Philadelphia/Camden using positive matrix factorization followed by the potential source contribution function

    NASA Astrophysics Data System (ADS)

    Du, Songyan; Rodenburg, Lisa A.

    The concentrations of gas-phase polychlorinated biphenyls (PCBs) in the atmosphere of the Camden, NJ, USA are elevated by as much as 20 times over regional background. These high PCB levels are a concern because they lead to atmospheric deposition loadings of PCBs to the tidal Delaware River that exceed the entire total maximum daily load (TMDL). Two models were applied to the atmospheric PCB concentration data from Camden in an attempt to identify the PCB source types and regions. Positive matrix factorization (PMF) was used to identify the source types. Four factors were identified which are thought to represent sources such as volatilized Aroclors and particle-phase PCBs. The potential source contribution function (PSCF) model was then used to identify the geographic source regions by examining the origination points for air parcels that result in high PCB concentrations at the Camden receptor site. The PSCF model for ΣPCBs indicates PCB source regions throughout the Philadelphia-Camden metro area, including portions of both Pennsylvania and New Jersey. The PSCF plots for the resolved PMF factors suggest that factors 1-4 show fewer distinct source regions, indicating that their sources are diffuse and/or lie very close to the receptor site. The PSCF plots for factors 2 and 3 reveal very different source regions. Factor 2 primarily arises from the city of Philadelphia, whereas factor 3 originates in southern New Jersey and south of Philadelphia. This study demonstrates the utility of the combined PMF/PSCF approach in identifying atmospheric PCB source types and regions.

  1. Constrained positive matrix factorization: Elemental ratios, spatial distinction, and chemical transport model source contributions

    NASA Astrophysics Data System (ADS)

    Sturtz, Timothy M.

    Source apportionment models attempt to untangle the relationship between pollution sources and the impacts at downwind receptors. Two frameworks of source apportionment models exist: source-oriented and receptor-oriented. Source based apportionment models use presumed emissions and atmospheric processes to estimate the downwind source contributions. Conversely, receptor based models leverage speciated concentration data from downwind receptors and apply statistical methods to predict source contributions. Integration of both source-oriented and receptor-oriented models could lead to a better understanding of the implications sources have on the environment and society. The research presented here investigated three different types of constraints applied to the Positive Matrix Factorization (PMF) receptor model within the framework of the Multilinear Engine (ME-2): element ratio constraints, spatial separation constraints, and chemical transport model (CTM) source attribution constraints. PM10-2.5 mass and trace element concentrations were measured in Winston-Salem, Chicago, and St. Paul at up to 60 sites per city during two different seasons in 2010. PMF was used to explore the underlying sources of variability. Information on previously reported PM10-2.5 tire and brake wear profiles were used to constrain these features in PMF by prior specification of selected species ratios. We also modified PMF to allow for combining the measurements from all three cities into a single model while preserving city-specific soil features. Relatively minor differences were observed between model predictions with and without the prior ratio constraints, increasing confidence in our ability to identify separate brake wear and tire wear features. Using separate data, source contributions to total fine particle carbon predicted by a CTM were incorporated into the PMF receptor model to form a receptor-oriented hybrid model. The level of influence of the CTM versus traditional PMF was

  2. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    USGS Publications Warehouse

    Diebel, M.W.; Maxted, J.T.; Robertson, D.M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  3. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  4. Source Contribution Analysis of Surface Particulate Polycyclic Aromatic Hydrocarbon Concentrations in Northeastern Asia by Source-receptor Relationships

    SciTech Connect

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-11-01

    We analyzed the sourceereceptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40-60%) and central China (30-40°N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.

  5. A Description and Source Listing of Curriculum Materials in Agricultural Education, 1969-1970.

    ERIC Educational Resources Information Center

    American Vocational Association, Washington, DC. Agricultural Education Div.

    The purpose of this annotated bibliography is to provide teachers of vocational agriculture, agricultural supervisors, and agricultural teacher educators with information on current curriculum materials available to them. Classified according to the AGDEX filing system, the 163 references are grouped under the headings: (1) Field Crops, (2)…

  6. A Description and Source Listing of Curriculum Materials in Agricultural Education, 1970-1971.

    ERIC Educational Resources Information Center

    American Vocational Association, Washington, DC. Agricultural Education Div.

    To provide teachers of vocational agriculture, agricultural supervisors, and agricultural teacher educators with information on current curriculum materials available to them, this annotated bibliography presents 207 references classified according to the AGDEX filing system. Topics are: (1) Field Crops, (2) Horticulture, (3) Forestry, (4) Animal…

  7. A Description and Source Listing of Curriculum Materials in Agricultural Education. 1972-73.

    ERIC Educational Resources Information Center

    American Vocational Association, Washington, DC. Agricultural Education Div.

    Listed are 246 curriculum material items in ten categories: field crops, horticulture, forestry, animal science, soils, diseases and pests, agricultural engineering, agricultural economics, agricultural occupations, and professional. Most materials are annotated and all are classified according to the AGPEX filing system. Bibliographic and…

  8. LARGE-SCALE PREDICTIONS OF MOBILE SOURCE CONTRIBUTIONS TO CONCENTRATIONS OF TOXIC AIR POLLUTANTS

    EPA Science Inventory

    This presentation shows concentrations and deposition of toxic air pollutants predicted by a 3-D air quality model, the Community Multi Scale Air Quality (CMAQ) modeling system. Contributions from both on-road and non-road mobile sources are analyzed.

  9. Estimates of the contributions of sources to inhalable particulate concentrations in detroit

    NASA Astrophysics Data System (ADS)

    Wolff, George T.; Korsog, Patricia E.

    For a one-week period during July 1981, samples of fine (diameter < 2.5 μm) and coarse (diameter ⩾ 2.5-15 μm) paniculate matter were collected every 4 h using dichotomous samplers. The filters were analyzed for the major ions, carbonaceous content and a number of trace elements. The source contributions to the particles were estimated using absolute principal component analysis and information on trace element emissions. During the study, the fine mass averaged 42.4 μg m -3. A major contribution from a sulfate source, which appears to be coal combustion, was identified. This source is estimated to account for about 50% of the fine mass. Small contributions (less than 10%) from motor vehicles, incineration, fugitive dust and fuel oil combustion were also identified. Organic carbon, not associated with any of the above sources, also accounted for ≈ 10%. The coarse fraction which averaged 25.8 μg m -3 was dominated by crustal material which accounted for about two-thirds of the coarse material. Significant contributions were also identified from motor vehicles (mostly due to reintrained road dust) and iron and steel industry emissions.

  10. Using Cesium-137 to quantify sediment source contribution and uncertainty in a small watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of sediment provenance is critical for precision conservation and calibration of soil erosion models. The objectives are to evaluate the ability of Cs-137 to apportion sediment source contributions, quantify uncertainty of the estimates, and estimate desirable sample size. We collected 5...

  11. Application of optimally scaled target factor analysis for assessing source contribution of ambient PM10.

    PubMed

    Escrig, Alberto; Monfort, Eliseo; Celades, Irina; Querol, Xavier; Amato, Fulvio; Minguillón, María Cruz; Hopke, Philip K

    2009-11-01

    Speciated coarse particulate matter (PM10) data obtained at three air quality monitoring sites in a highly industrialized area in Spain between 2002 and 2007 were analyzed for assessing source contribution of ambient particulate matter (PM). The source apportionment of PM in this area is an especially difficult task. There are industrial mineral dust emissions that need to be separately quantified from the natural sources of mineral PM. On the other hand, the diversity of industrial processes in the area results in a puzzling industrial emissions scenario. To solve this complex problem, a two-step methodology based on the possibilities of the Multilinear Engine was used. Application of positive matrix factorization to the dataset allowed the identification of nine factors relevant to the study area. This preliminary analysis permitted resolving two mineral factors. As a second step, a target rotation was implemented for transforming the mineral factors into experimentally characterized soil resuspension and industrial clay sources. In addition to improving the physical interpretation of these factors, the target rotation reduced the errors arising from the rotational freedom of the solution and the multicollinearity among sources. In this way, the main primary industrial emissions of PM in the zone were identified by this target factor analysis. A marked decrease was observed between 2002 and 2007 for the contributions of industrial sources coinciding with the implementation of mitigation measures in their processes. This study supports the utility of source apportionment methodologies for quantitatively evaluating the effectiveness of the abatement programs for air quality improvement. PMID:19947111

  12. Seasonal source contributions of tropospheric ozone over East Asia based on CMAQ-HDDM

    NASA Astrophysics Data System (ADS)

    Itahashi, Syuichi; Uno, Itsushi; Kim, Soontae

    2013-05-01

    Determining the source contributions of tropospheric ozone concentration is an important issue for East Asia, due to the dramatic and rapid increase in emissions of atmospheric pollutants. To achieve this, the higher-order decoupled direct method (HDDM), a technique for efficient calculation of sensitivities, was applied in this study. Tropospheric ozone concentrations at observation sites located in remote areas of Japan were well-reproduced by Community Multi-scale Air Quality (CMAQ) model simulations, and exhibited a maximum peak in spring, a relatively small peak in autumn and a summer minimum. This seasonal pattern is a reflection of long-range transport and chemical processes, coupled with continental-oceanic air mass exchanges forced by the East Asian monsoon. For the HDDM simulation, we focused on episodic pollution events during each season of 2007 to clarify the seasonal characteristics, and then assessed source contributions paying attention to both precursor emissions (NOx and VOC) and source regions (China, central eastern China, Korea, and Japan). An ozone-sensitive regime (NOx- or VOC-sensitive regime) was also determined based on the HDDM results. This suggested a regime over East Asia that was NOx sensitive in summer, VOC sensitive in winter, and either NOx or VOC sensitive during spring and autumn. At observation sites in remote areas of Japan, by separating the precursor contribution into NOx and VOC components of ozone production, it was found that the contribution of NOx emissions was larger than that of VOC emissions in spring, autumn, and especially summer, therefore, a reduction in NOx emissions could reduce the severity of episodes of tropospheric ozone pollution in downwind areas. Due to the strong VOC-sensitive conditions in winter, NOx emissions enabled a reduction in surface ozone concentrations. In terms of the contributions attributed to source regions, the source contribution of China was relatively high during spring, but local

  13. Assessing the underlying breast cancer risk of Chinese females contributed by dietary intake of residual DDT from agricultural soils.

    PubMed

    Tang, Mengling; Zhao, Meirong; Zhou, Shanshan; Chen, Kun; Zhang, Chunlong; Liu, Weiping

    2014-12-01

    The greatest concern over DDT exposure in China arose since the early 1990s for the rising breast cancer incidence, and the cause still remains to be elucidated. An extensive survey of DDT background in agricultural soils, covered the entire region of China, was conducted. DDT at concentrations greater than 100 ng/g (the China's Farmland Environmental Quality Evaluation Standards for Edible Agricultural Products) was found to impact 42.3 million Chinese population. Considering the geographical differences with diverse DDT contributions and different diet products and habits, the average daily dietary intake was modeled and estimated to be 0.34 μg/kg p,p'-DDE (the main bioactive constituent in DDT). Population attributable fraction derived from a case-control study from 78 women with breast cancer and 72 controls was used to assess the DDT exposure risk to breast cancer. Based on the estimated population attributable fraction with a median value of 0.6% (IQR 0.23-2.11%), the excess annual breast cancer incidence rate attributable to p,p'-DDE exposure averaged 0.06×10(-5) with significant spatial variations varying from 0.00021×10(-5) to 11.05×10(-5) in Chinese females. Exposure to DDT is a contributor to breast cancer, but the overall limited relative risk and population attributable fraction imply confounding factors for breast cancer in Chinese females. Exposure risk in a regional scale helps understand the cause and prevention of breast cancer. Our mapping and modeling method could be used to assess other environmental carcinogens and related cancer diseases. PMID:25160079

  14. The contribution of anthropogenic sources to the aerosols over East China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Fujiang; Chen, Ying; Meng, Xi; Fu, Jiangping; Wang, Bo

    2016-02-01

    Total suspended particulate (TSP) samples were collected at a pristine island (Huaniao) in northern East China Sea (ECS) between Mar. 2011 and Jan. 2013 and analyzed for the concentrations of major ions and trace elements. Aerosol sources and the distribution of source regions are identified using positive matrix factorization (PMF) and potential source contribution function (PSCF) methods. It is found that aerosols over Huaniao Island are contributed by six main factors including primary industrial emissions (11.3%), secondary aerosol (22%), oxalate-associated aerosol (15.7%), sea salt (36.7%), ship emission (6.3%) and mineral dust (8.1%). Anthropogenic source contribution to the resolved aerosol mass reached the highest (76.6%) and lowest (18%) values in January 2013 and August 2012 respectively, strongly influenced by the prevailing winds of East Asian monsoon. The main source regions of secondary aerosol are southeastern Hebei and Shandong, which is consistent with the most intensive distribution of coal-fired power plants and the largest emission of precursors in this area. Oxalate-associated aerosol is produced primarily along the coastal line. Primary industrial emissions mainly originate from southwestern Shandong and Yangtze River Delta.

  15. Source contributions to seasonal vegetative exposure to ozone in the US

    NASA Astrophysics Data System (ADS)

    Lapina, K.; Henze, D. K.; Milford, J.; Huang, M.; Lin, M.; Pfister, G.; Emmons, L. K.; Fiore, A. M.; Boynard, A.; Carmichael, G. R.; Sandiford, V.; Herrick, J. D.; Dutton, S.; Smith, T.; Porter, E. M.

    2012-12-01

    Frequent exposure to high levels of ozone leads to vegetation damage and can result in substantial economic losses. A cumulative ozone exposure metric, W126, has been considered by the US EPA for use as a secondary ozone standard. Information on source regions contributing to the non-attainment of this standard is crucial for developing a successful strategy to mitigate the negative effects of ozone on vegetation. In this work we quantify W126 source contributions for the US regions exceeding selected levels of the W126 standard by applying several source attribution techniques, including "tagging", emissions perturbation and adjoint sensitivity analysis, to a suite of five global and regional chemical transport models. We estimate the W126 North American background (defined as the W126 levels in the absence of North American anthropogenic emissions) and separate source contributions by sector and country of origin. Our calculations are performed for two periods in 2008 and 2010 and are compared to the W126 observations from the Air Quality System and CASTNET. Given that the W126 metric is highly non-linear, we discuss the pros and cons of the applied source attribution methods and the applicability of the results.

  16. Source contributions of Polycyclic Aromatic Hydrocarbons in soils around oilfield in the Brahmaputra Valley.

    PubMed

    Deka, Jinu; Sarma, Kali Prasad; Hoque, Raza Rafiqul

    2016-11-01

    Surface soils from Borholla oilfield in the upper Brahmaputra Valley in India were studied for the USEPA's 16 priority Polycyclic Aromatic Hydrocarbons (PAHs). Analysis of PAHs was carried out by high performance liquid chromatography (HPLC) system equipped with an UV detector. Seasonality in PAHs concentrations was evident and the concentrations were found to be greater in post-monsoon season. There has been a dominance of low molecular weight PAHs (80-90% of total PAHs) indicating recent deposition from combustion sources. The concentration profiles appeared in the decreasing order of 3-ring >2-ring >4-ring >5-ring >6 ring PAHs. The sources of PAHs were identified using isomer pair ratios and Principal Component Analysis-Multiple Linear Regression (PCA-MLR) and Positive Matrix Factorisation (PMF). The ratios of diagnostic pairs indicated for both pyrogenic and petrogenic input of PAHs. The PCA-MLR modelling revealed that the <16% of contribution came from petrogenic origin and the rest 85% was found to be from pyrogenic sources. The PMF model also shown that <19% of PAHs source were petrogenic origin whereas rest from pyrogenic origin. The correlations of black carbon (BC) with PAHs also supported the pyrogenic contribution. The analysis of air mass back trajectories revealed that there has been contribution of both local and distant sources, through long range transport of pollutants, which were deposited to the site. PMID:27479772

  17. Source rock contributions to the Lower Cretaceous heavy oil accumulations in Alberta: a basin modeling study

    USGS Publications Warehouse

    Berbesi, Luiyin Alejandro; di Primio, Rolando; Anka, Zahie; Horsfield, Brian; Higley, Debra K.

    2012-01-01

    The origin of the immense oil sand deposits in Lower Cretaceous reservoirs of the Western Canada sedimentary basin is still a matter of debate, specifically with respect to the original in-place volumes and contributing source rocks. In this study, the contributions from the main source rocks were addressed using a three-dimensional petroleum system model calibrated to well data. A sensitivity analysis of source rock definition was performed in the case of the two main contributors, which are the Lower Jurassic Gordondale Member of the Fernie Group and the Upper Devonian–Lower Mississippian Exshaw Formation. This sensitivity analysis included variations of assigned total organic carbon and hydrogen index for both source intervals, and in the case of the Exshaw Formation, variations of thickness in areas beneath the Rocky Mountains were also considered. All of the modeled source rocks reached the early or main oil generation stages by 60 Ma, before the onset of the Laramide orogeny. Reconstructed oil accumulations were initially modest because of limited trapping efficiency. This was improved by defining lateral stratigraphic seals within the carrier system. An additional sealing effect by biodegraded oil may have hindered the migration of petroleum in the northern areas, but not to the east of Athabasca. In the latter case, the main trapping controls are dominantly stratigraphic and structural. Our model, based on available data, identifies the Gordondale source rock as the contributor of more than 54% of the oil in the Athabasca and Peace River accumulations, followed by minor amounts from Exshaw (15%) and other Devonian to Lower Jurassic source rocks. The proposed strong contribution of petroleum from the Exshaw Formation source rock to the Athabasca oil sands is only reproduced by assuming 25 m (82 ft) of mature Exshaw in the kitchen areas, with original total organic carbon of 9% or more.

  18. Source contributions to the regional distribution of secondary particulate matter in California

    NASA Astrophysics Data System (ADS)

    Ying, Qi; Kleeman, Michael J.

    Source contributions to PM2.5 nitrate, sulfate and ammonium ion concentrations in California's San Joaquin Valley (SJV) (4-6 January 1996) and South Coast Air Basin (SoCAB) surrounding Los Angeles (23-25 September 1996) were predicted using a three-dimensional source-oriented Eulerian air quality model. The air quality model tracks the formation of PM2.5 nitrate, sulfate and ammonium ion from primary particles and precursor gases emitted from different sources though a mathematical simulation of emission, chemical reaction, gas-to-particle conversion, transport and deposition. The observed PM2.5 nitrate, sulfate and ammonium ion concentrations, and the mass distribution of nitrate, sulfate and ammonium ion as a function of particle size have been successfully reproduced by the model simulation. Approximately 45-57% of the PM2.5 nitrate and 34-40% of the PM2.5 ammonium ion in the SJV is formed from precursor gaseous species released from sources upwind of the valley. In the SoCAB, approximately 83% of the PM2.5 nitrate and 82% of the PM2.5 ammonium ion is formed from precursor gaseous species released from sources within the air basin. In the SJV, transportation related sources contribute approximately 24-30% of the PM2.5 nitrate (diesel engines ˜13.5-17.0%, catalyst equipped gasoline engines ˜10.2-12.8% and non-catalyst equipped gasoline engines ˜0.3-0.4%). In the SoCAB, transportation related sources directly contribute to approximately 67% of the PM2.5 nitrate (diesel engines 34.6%, non-catalyst equipped gasoline engine 4.7% and catalyst equipped gasoline engine 28.1%). PM2.5 ammonium ion concentrations in the SJV were dominated by area (including animal) NH 3 sources (16.7-25.3%), soil (7.2-10.9%), fertilizer NH 3 sources (11.4-17.3%) and point NH 3 sources (14.3-21.7%). In the SoCAB, ammonium ion is mainly associated with animal sources (28.2%) and catalyst equipped gasoline engines (16.2%). In both regions, the majority of the relatively low PM2.5 sulfate

  19. Measurement of Ambient Ammonia and Surface-level Meteorological Forcing Variables near an Agricultural Emission Source

    NASA Astrophysics Data System (ADS)

    Myles, L.; Heuer, M. W.

    2012-12-01

    Atmospheric ammonia (NH3) is a reduced form of reactive nitrogen that is primarily emitted from agricultural activities. NH3 volatilizes from animal waste and fertilized land directly into the atmosphere where it can either react with other gases to form fine particulate matter or deposit on surfaces through air-surface exchange processes. Field measurements in different ecosystems and under various conditions are necessary to improve the understanding of the complex relationships between ambient NH3 and meteorological parameters, such as temperature and relative humidity, which influence volatilization rates and ultimately, ambient concentrations near emission sources. However, the measurement of ambient NH3 is challenging. NH3 is hydroscopic and reactive, and measurement techniques are subject to errors caused by sampling artifacts and other interferences. Recent advancements have led to improved techniques that allow real-time measurement of ambient NH3. A cavity ring-down spectrometer was deployed at a cattle research facility in Knoxville, TN during spring 2012 to measure ambient NH3, and meteorological instrumentation was collocated to measure 3-D winds, temperature, relative humidity, precipitation and other parameters (z = 2 m). The study site was rolling pasture typical of the eastern Tennessee Valley and included two large barns and approximately 30-40 cattle. Daytime ambient NH3 averaged 15-20 ppb most days with lows of approximately 7 ppb at night. Higher concentrations (greater than 50 ppb) seemed to correlate with higher temperatures (greater than 27 C), although the data are not consistent. Several instances of 100 ppb concentrations were measured when temperatures were high and winds were from the direction of the barns. Overall, the study shows that ambient NH3 levels near agricultural emission sources may vary greatly with time and a variety of factors, including meteorological conditions. The data support the need for real-time measurements of NH

  20. Differential dose contributions on total dose distribution of 125I brachytherapy source

    PubMed Central

    Camgöz, B.; Yeğin, G.; Kumru, M.N.

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 125I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically. PMID:24376927

  1. Evaluating the ability of grass filter strips to contribute to the restoration of degraded agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass filter strips are planted adjacent to agricultural streams in the United States as riparian buffers to reduce nutrient, pesticide, and sediment input into streams. This frequently used agricultural conservation practice is assumed to have the ability to mitigate the effects of agriculture on s...

  2. Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China's agricultural regions

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Song, Yu; Mao, Yi; Mao, Zhichun; Wu, Yusheng; Li, Mengmeng; Huang, Xin; He, Qichao; Hu, Min

    2014-08-01

    To determine the contribution of the open burning of wheat straw residues to local PM2.5 during the harvest season of June 2013, PM2.5 was sampled in an agricultural region in eastern China. The sampling site was approximately 1 km from the nearest wheat field. Chemical compositions were analyzed, and source apportionment was undertaken using the positive matrix factorization model. The average PM2.5 concentration was 110.7 μg/m3, containing 36.4 μg/m3 organics, 7.3 μg/m3 EC, 6.0 μg/m3 potassium (K) and 4.9 μg/m3 chloride ion (Cl-). The sampling period was divided into three phases: the pre-local-burning phase (Phase 1), the local-burning phase (Phase 2) and the post-local-burning phase (Phase 3). In Phase 2, the concentrations of PM2.5 and the organics, EC, K and Cl- in PM2.5 were 163.6 μg/m3, 59.0 μg/m3, 12.2 μg/m3, 11.0 μg/m3 and 10.8 μg/m3, respectively, which were all remarkably higher than in both Phase 1 and Phase 3. Eight sources of PM2.5 were determined, including two types of wheat residue burning sources, which showed a significant difference in Cl- content. The atmospheric relative humidity (RH) and the aging process of PM2.5 might be the causes: only fresh particulate emissions from wheat residue burning could feature high-concentration Cl- under high RH conditions. In Phase 2, wheat residue burning contributed 51.3% of PM2.5, 75.8% of OC, 74.5% of EC, 90.1% of K and 104.1% of Cl-. These percentages were lower in Phases 1 and 3 than in Phase 2. Wheat residue burning caused such severe air pollution that it's necessary to prohibit the open burning of crop residues in order to protect public health and the environment.

  3. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources.

    PubMed

    Tran, Quynh K; Schwabe, Kurt A; Jassby, David

    2016-09-01

    Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California's wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses. PMID:27499353

  4. Ammonia-oxidizer communities in an agricultural soil treated with contrasting nitrogen sources

    PubMed Central

    Habteselassie, Mussie Y.; Xu, Li; Norton, Jeanette M.

    2013-01-01

    The community of ammonia-oxidizing prokaryotes was examined in an agricultural soil treated for six seasons with contrasting nitrogen (N) sources. Molecular tools based on the genes encoding ammonia monooxygenase were used to characterize the ammonia oxidizer (AO) communities and their abundance. Soil DNA was extracted from soils sampled from silage corn plots that received no additional N (control), dairy waste compost, liquid dairy waste (LW), and ammonium sulfate (AS) treatments at approximately 100 and 200 kg available N ha-1 over 6 years. The N treatment affected the quantity of AO based on estimates of amoA by real-time PCR. Ammonia oxidizing bacteria (AOB) were higher in soils from the AS200, AS100, and LW200 treatments (2.5 × 107, 2.5 × 107, and 2.1 × 107copies g-1 soil, respectively) than in the control (8.1 × 106 copies g-1 soil) while the abundance of amoA encoding archaea [ammonia oxidizing archaea (AOA)] was not significantly affected by treatment (3.8 × 107 copies g-1 soil, average). The ratio of AOA/AOB was higher in the control and compost treated soils, both treatments have the majority of their ammonium supplied through mineralization of organic nitrogen. Clone libraries of partial amoA sequences indicated AOB related to Nitrosospira multiformis and AOA related to uncultured Nitrososphaera similar to those described by soil fosmid 54d9 were prevalent. Profiles of the amoC-amoA intergenic region indicated that both Nitrosospira- and Nitrosomonas-type AOB were present in all soils examined. In contrast to the intergenic amoC-amoA profile results, Nitrosomonas-like clones were recovered only in the LW200 treated soil-DNA. The impact of 6 years of contrasting nitrogen sources applications caused changes in AO abundance while the community composition remained relatively stable for both AOB and AOA. PMID:24223575

  5. Suspended particulates and bioaerosols emitted from an agricultural non-point source.

    PubMed

    Hameed, A A; Khodr, M I

    2001-02-01

    Suspended particulate and bioaerosol levels were measured at three sites downwind of an agricultural non-point source during the wheat harvesting season. Suspended particulates were detected at mean values ranging from 10000 to 2420 micrograms m-3 at distances of from 20 to 60 m downwind of the source, respectively. Airborne viable bacterial counts were recorded at mean values ranging between 10(4) and 10(6) colony forming units (cfu) m-3, whereas, Gram negative (Gram -ve) bacteria varied between 10(3) and 10(5) cfu m-3. Fungi levels were detected at mean values varying between 10(5) and 10(6) cfu m-3. However, streptomycetes were found at lower counts than those recorded for viable bacteria and fungi. Total viable bacteria, Gram -ve bacteria, fungi and streptomycetes associated hay fragments were determined at mean values of 1.5 x 10(6), 1.6 x 10(3), 2.2 x 10(4) and 6 x 10(3) cfu g-1 of hay, respectively. Cladosporium, white and red yeasts as well as Alternaria were the predominant airborne fungi, whereas, Alternaria was the dominant species associated with hay fragments. Pseudomonas, Acinetobacter and Enterobacteriaceae were the dominant Gram -ve bacteria. The most common fungal genera, such as Cladosporium and Fusarium (minor short axis), as well as Streptomyces species have an aerodynamic diameter (dae) of less than 5 microns, which can penetrate and deposit in the alveoli. Farmers and nearby residents are exposed to high levels of organic dust and bioaerosols during the wheat harvesting season. This may cause health problems in exposed persons based on toxic or allergic reactions. PMID:11354730

  6. Source contributions and regional transport of primary particulate matter in China.

    PubMed

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-12-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50-80%), POC (60%-90%), and PPM (30-70%). For summer/fall, industrial contributes 30-50% for EC/POC and 40-60% for PPM. Transportation is more important for EC (20-30%) than POC/PPM (<5%). Open burning is important in summer/fall of Guangzhou and Chongqing. Dust contributes to 1/3-1/2 in spring/fall of Beijing, Xi'an and Chongqing. Based on sector-region combination, local residential/transportation and residential/industrial from Heibei are major contributors to spring PPM in Beijing. In summer/fall, local industrial is the largest. In winter, residential/industrial from local and Hebei account for >90% in Beijing. PMID:26340297

  7. Nonpoint-Source Agricultural Hazard Index: A Case Study of the Province of Cremona, Italy

    NASA Astrophysics Data System (ADS)

    Trevisan, Marco; Padovani, Laura; Capri, Ettore

    2000-11-01

    This paper reports the results of a study aimed at the evaluation of the hazard level of farming activities in the province of Cremona, Italy, with particular reference to groundwater. The applied methodology employs a parametric approach based on the definition of potential hazard indexes (nonpoint-source agricultural hazard indexes, NPSAHI). Two categories of parameters were considered: the hazard factors (HF), which represent all farming activities that cause or might cause an impact on groundwater (use of fertilizers and pesticides, application of livestock and poultry manure, food industry wastewater, and urban sludge), and the control factors (CF), which adapt the hazard factor to the characteristics of the site (geographical location, slope, agronomic practices, and type of irrigation). The hazard index (HI) can be calculated multiplying the hazard factors by the control factors and, finally, the NPSAHI are obtained dividing HI into classes on a percentile basis using a scale ranging from 1 to 10. Organization, processing, and display of all data layers were performed using the geographical information system (GIS) ArcView and its Spatial Analyst extension. Results show that the potential hazard of groundwater pollution by farming activities in the province of Cremona falls mainly in the fifth class (very low hazard).

  8. GEMAS: Mercury in European agricultural and grazing land soils - sources and environmental risk

    NASA Astrophysics Data System (ADS)

    Tore Ottesen, Rolf; Birke, Manfred; Gosar, Mateja; Reimann, Clemens

    2014-05-01

    Agricultural (Ap, Ap-horizon, 0-20 cm) and grasing land soil samples (Gr, 0-10 cm) were collected from a large part of Europe (33 countries, 5.6 million km2) at an average density of 1 sample site/2500 km2. The resulting more than 2 x 2000 soil samples were air dried, sieved to <2 mm and analysed for their Hg concentrations following an aqua regia extraction. Median concentrations for Hg are 0.030 mg/kg (range: <0.003 - 1.56 mg/kg) for the Ap samples and 0.035 mg/kg (range:<0.003 - 3.12 mg/kg) for the Gr samples. Only 5 Ap and 10 Gr samples returned Hg concentrations above 0.5 mg/kg. In the geochemical maps the continental-scale distribution of the element is clearly dominated by geology. Climate plays also an important role, Hg accumulates in those areas of northern Europe where a wet and cold climate favors the build-up of organic material. Typical anthropogenic sources like coal fired power plants, chlor-alkaline factories, metal smelters and urban agglomerations are hardly visible at the continental scale but can have a major impact at the local scale.

  9. Source contributions to the size and composition distribution of urban particulate air pollution

    NASA Astrophysics Data System (ADS)

    Kleeman, Michael J.; Cass, Glen R.

    A mechanistic air quality model has been constructed which is capable of predicting the contribution of individual emissions source types to the size- and chemical-composition distribution of airborne particles. This model incorporates all of the major aerosol processes relevant to regional air pollution studies including emissions, transport, deposition, gas-to-particle conversion and fog chemistry. In addition, the aerosol is represented as a source-oriented external mixture which is allowed to age in a more realistic fashion than can be accomplished when fresh particle-phase emissions are averaged into the pre-existing atmospheric aerosol size and composition distribution. A source-oriented external mixture is created by differentiating the primary particles emitted from the following source types: catalyst-equipped gasoline engines, non-catalyst-equipped gasoline engines, diesel engines, meat cooking, paved road dust, crustal material from sources other than paved road dust, and sulfur-bearing particles from fuel burning and industrial processes. Discrete primary seed particles from each of these source types are emitted into a simulation of atmospheric transport and chemical reaction. The individual particles evolve over time in the presence of gas-to-particle conversion processes while retaining information on the initial source from which they were emitted. The source- and age-resolved particle mechanics model is applied to the 1987 August SCAQS episode and comparisons are made between model predictions and observations at Claremont, CA. The model explains the origin of the bimodal character of the sub-micron aerosol size distribution. The mode located between 0.2 and 0.3 μm particle diameter is shaped by transformed emissions from diesel engines and meat cooking operations with lesser contributions from gasolinepowered vehicles and other fuel burning. The larger mode located at 0.7-0.8 μm particle diameter is due to fine particle background aerosol that

  10. Source contributions to visibility impairment in the southeastern and western United States.

    PubMed

    Brewer, Patricia; Moore, Tom

    2009-09-01

    The 1999 Regional Haze Rule requires states to complete comprehensive technical analyses of air pollutants that impair visibility and to define long-term strategies to improve visibility in the nation's 156 visibility-protected federal Class I national parks and wilderness areas. Class I areas in the southeastern United States are among the most impacted in the country; fine particle loadings in the western United States are a fraction of those in the East. In the Southeast, (NH4)2SO4 (ammonium sulfate) predominantly from SO2 (sulfur dioxide) emissions from electric generating utilities and industrial sources contributes 60-70% of the light extinction on the 20% haziest days; particulate organic matter (POM) predominantly from biogenic emissions and biomass burning is the second largest contributor. In the West, the mix of source contributions is more complex. At Class I areas downwind of major urban areas (e.g., California), ammonium nitrate (NH4NO3), predominantly because of mobile sources, is the dominant contributor to haze. For many western Class L areas, POM from wildland fires and fine particles from windblown dust, largely uncontrollable sources, are significant contributors to haze. International emissions are an additional uncontrollable and significant contribution to total sulfate (SO4) and nitrate (NO3) concentrations at the western Class I areas. In the Southeast, SO2 emissions reductions are projected to result in nearly 1:1 regional SO4 reductions; oxides of nitrogen (NO(x)) emissions reductions have minimal impact on NO3 concentrations and haze. In the West, SO2 emissions reductions result in incremental SO4 reductions, whereas mobile NO(x) emissions reductions are projected to reduce NO3 and improve visibility at Class I areas affected by urban areas. Because wildfire, dust, and international emissions have large contributions to the haziest days and are mostly uncontrollable in the West, reductions from anthropogenic sources in the West have less

  11. Studies by the U.S. Geological Survey on sources, transport, and fate of agricultural chemicals

    USGS Publications Warehouse

    Capel, Paul D.; Hamilton, Pixie A.; Erwin, Martha L.

    2004-01-01

    Information from these studies will help with decision-making related to chemical use, conservation, and other farming practices that are used to reduce runoff of agricultural chemicals and sediment from fields. This information also will benefit the U.S. Environmental Protection Agency, the Department of Agriculture, local and regional water managers, and agricultural chemical manufacturers who are involved in managing chemical use and pesticide registration.

  12. Investigating the Environmental Effects of Agriculture Practices on Natural Resources: Scientific Contributions of the U.S. Geological Survey to Enhance the Management of Agricultural Landscapes

    USGS Publications Warehouse

    U.S. Geological Survey

    2007-01-01

    The U.S. Geological Survey (USGS) enhances and protects the quality of life in the United States by advancing scientific knowledge to facilitate effective management of hydrologic, biologic, and geologic resources. Results of selected USGS research and monitoring projects in agricultural landscapes are presented in this Fact Sheet. Significant environmental and social issues associated with agricultural production include changes in the hydrologic cycle; introduction of toxic chemicals, nutrients, and pathogens; reduction and alteration of wildlife habitats; and invasive species. Understanding environmental consequences of agricultural production is critical to minimize unintended environmental consequences. The preservation and enhancement of our natural resources can be achieved by measuring the success of improved management practices and by adjusting conservation policies as needed to ensure long-term protection.

  13. A modeling study of coarse particulate matter pollution in Beijing: regional source contributions and control implications for the 2008 summer Olympics

    SciTech Connect

    Litao Wang; Jiming Hao; Kebin He

    2008-08-15

    In the last 10 yr, Beijing has made a great effort to improve its air quality. However, it is still suffering from regional coarse particulate matter (PM10) pollution that could be a challenge to the promise of clean air during the 2008 Olympics. To provide scientific guidance on regional air pollution control, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) air quality modeling system was used to investigate the contributions of emission sources outside the Beijing area to pollution levels in Beijing. The contributions to the PM10 concentrations in Beijing were assessed for the following sources: power plants, industry, domestic sources, transportation, agriculture, and biomass open burning. In January, it is estimated that on average 22% of the PM10 concentrations can be attributed to outside sources, of which domestic and industrial sources contributed 37 and 31%, respectively. In August, as much as 40% of the PM10 concentrations came from regional sources, of which approximately 41% came from industry and 31% from power plants. However, the synchronous analysis of the hourly concentrations, regional contributions, and wind vectors indicates that in the heaviest pollution periods the local emission sources play a more important role. The implications are that long-term control strategies should be based on regional-scale collaborations, and that emission abatement of local sources may be more effective in lowering the PM10 concentration levels on the heavy pollution days. Better air quality can be attained during the Olympics by placing effective emission controls on the local sources in Beijing and by controlling emissions from industry and power plants in the surrounding regions. 44 refs., 6 figs., 3 tabs.

  14. Quantifying the dominant sources of sediment in a drained lowland agricultural catchment: The application of a thorium-based particle size correction in sediment fingerprinting

    NASA Astrophysics Data System (ADS)

    Foucher, Anthony; Laceby, Patrick J.; Salvador-Blanes, Sébastien; Evrard, Olivier; Le Gall, Marion; Lefèvre, Irène; Cerdan, Olivier; Rajkumar, Vignesh; Desmet, Marc

    2015-12-01

    Soil erosion is one of the main factors influencing land degradation and water quality at the global scale. Identifying the main sediment sources is therefore essential for the implementation of appropriate soil erosion mitigation measures. Accordingly, caesium-137 (137Cs) concentrations were used to determine the relative contribution of surface and subsurface erosion sources in a lowland drained catchment in France. As 137Cs concentrations are often dependent on particle size, specific surface area (SSA) and novel thorium (Th) based particle size corrections were applied. Surface and subsurface samples were collected to characterize the radionuclide properties of potential sources. Sediment samples were collected during one hydrological year and a sediment core was sampled to represent sediment accumulated over a longer temporal period. Additionally, sediment from tile drains was sampled to determine the radionuclide properties of sediment exported from the drainage network. A distribution modelling approach was used to quantify the relative sediment contributions from surface and subsurface sources. The results highlight a substantial enrichment in fine particles and associated 137Cs concentrations between the sources and the sediment. The application of both correction factors reduced this difference, with the Th correction providing a more accurate comparison of source and sediment samples than the SSA correction. Modelling results clearly indicate the dominance of surface sources during the flood events and in the sediment core. Sediment exported from the drainage network was modelled to originate predominantly from surface sources. This study demonstrates the potential of Th to correct for 137Cs particle size enrichment. More importantly, this research indicates that drainage networks may significantly increase the connectivity of surface sources to stream networks. Managing sediment transferred through drainage networks may reduce the deleterious effects of

  15. Contribution from cosmological scalar perturbations to the angular velocity spectrum of extragalactic sources

    SciTech Connect

    Marakulin, A. O. Sazhina, O. S.; Sazhin, M. V.

    2012-07-15

    The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of {Lambda}-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.

  16. Contribution from cosmological scalar perturbations to the angular velocity spectrum of extragalactic sources

    NASA Astrophysics Data System (ADS)

    Marakulin, A. O.; Sazhina, O. S.; Sazhin, M. V.

    2012-07-01

    The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of Λ-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.

  17. Relative source contributions of diet and air to ingested asbestos exposure.

    PubMed Central

    Rowe, J N

    1983-01-01

    Reliable assessments of the relative contributions of diet (food, beverages, and orally administered drugs) and air (inhaled fibers) to total ingested asbestos exposure are not feasible due to the paucity of quantitative data on the subject. Instead, scenarios for both modes of exposure were developed from the limited information available to give crude estimates of ingestion of asbestos from these routes. They suggest that such sources are potentially significant relative to the contribution of asbestos exposure derived from drinking water. Research recommendations are discussed. PMID:6662081

  18. The oil and gas potential of southern Bolivia: Contributions from a dual source rock system

    SciTech Connect

    Hartshorn, K.G.

    1996-08-01

    The southern Sub-Andean and Chaco basins of Bolivia produce oil, gas and condensate from reservoirs ranging from Devonian to Tertiary in age. Geochemical evidence points to contributions from two Paleozoic source rocks: the Devonian Los Monos Formation and the Silurian Kirusillas Formation. Rock-Eval pyrolysis, biomarker data, microscopic kerogen analysis, and burial history modeling are used to assess the quality, distribution, and maturity of both source rock systems. The geochemical results are then integrated with the structural model for the area in order to determine the most likely pathways for migration of oil and gas in the thrust belt and its foreland. Geochemical analysis and modeling show that the primary source rock, shales of the Devonian Los Monos Formation, entered the oil window during the initial phase of thrusting in the sub-Andean belt. This provides ideal timing for oil accumulation in younger reservoirs of the thrust belt. The secondary source rock, although richer, consumed most of its oil generating capacity prior to the development of the thrust related structures. Depending on burial depth and location, however, the Silurian source still contributes gas, and some oil, to traps in the region.

  19. Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM2.5 pollution episode in Xi'an, China

    NASA Astrophysics Data System (ADS)

    Wang, Dexiang; Hu, Jianlin; Xu, Yong; Lv, Di; Xie, Xiaoyang; Kleeman, Michael; Xing, Jia; Zhang, Hongliang; Ying, Qi

    2014-11-01

    Average PM2.5 concentrations of ˜250 μg m-3 and peak concentrations of ˜500 μg m-3 were observed in Xi'an, the largest city in Northwest China during an extreme event in January 2013. The source-oriented versions of the Community Multi-scale Air Quality (CMAQ) model with anthropogenic emissions from Emissions Database for Global Atmospheric Research (EDGAR) were used to study the source contributions of six different source categories including energy production, industries, transportation, residential activities, “other” (agriculture, biomass, waste burning, and biogenic sources), and windblown dust to primary and secondary inorganic PM2.5 (nitrate and sulfate) during this episode. The model generally captured the variation and magnitude of PM2.5 concentrations at monitoring sites. The monthly average concentration of the predicted PM2.5 in Xi'an was >200 μg m-3, comparing favorably with the measurement of ˜250 μg m-3. Predicted concentrations of elemental carbon (EC), organic aerosol (OA), sulfate, nitrate, and ammonium were 6, 35, 18, 22, and 12 μg m-3, respectively. Chemically unresolved PM2.5 components (PM2.5 Other) were ˜80 μg m-3. Industries and residential activities dominated EC, organic carbon (OC) and PM2.5 Other, contributing 85%, 95%, and 83%, respectively. Energy production (mainly coal combustion) was the dominating source for secondary nitrate, contributing 46%. Other local and upwind sources were also important, contributing 43% and 11% of total nitrate, respectively. Primary sulfate was ˜10 μg m-3 in vicinity surrounding point sources. Secondary sulfate from upwind sources was also important with concentrations of ˜4-5 μg m-3. Secondary sulfate formed by SO2 emitted from local sources was dominated by energy production. Based on the contributions of different sources to primary components and secondary nitrate and sulfate, the contributions of different sources to PM2.5 total mass in Xi'an during the extremely polluted months

  20. A Summary of NASA Related Contributions for the Remote Sensing of Evapotranspiration in Support of Water Management and Agriculture

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Brad; Lawford, Rick; Anderson, Martha; Allen, Rick; Martin, Timothy; Wood, Eric; Ferguson, Craig

    2010-01-01

    The amount of evapotranspiration (ET) to the atmosphere can account for 60% or more of the water loss in many semi-arid locations, and can critically affect local economies tied to agriculture, recreation, hydroelectric power, ecosystems, and numerous other water-related areas. NASA supports many activities using satellite and Earth science data to more accurately and cost effectively estimate ET. NASA ET related work includes the research, development and application of techniques. The free and open access of NASA satellite data and products now permits a much wider application of ET mapping. Typically the NASA supported approaches ranges from large regional and continental ET mapping using MODIS (also with AIRS and CERES), GRACE (gravimetric water balance), geostationary (e.g., GOES and Meteosat for near continental sca|e), land surface modeling (i.e, Land Data Assimilation Systems) to fine scale mapping such as provided bvLandsatdata(<100 m). Usually satellite or airborne thermal imagery are used as input to an ET estimated surface energy balance based approach. There are currently several of these ET approaches under development and implementation including 'METRIC', 'SEBS', 'ALEXI/DisALEXI', etc.. One exception is an approach using GRACE satellite data that estimates the terrestrial water storage using gravimetric data over large areas and estimates ET indirectly. Also land surface modeling within the context of data assimilation and integration schemes provides the capability to integrate in situ, ancillary and satellite together to provide a spatially and synoptic estimates of ET also for use to provide for short-term ET predictions. We will summarize NASA related activities contributing to the improved estimation of ET for water management and agriculture with an emphasis on the Western U3.. This summary includes a description of ET projects in the Middle Rio Grande, Yakima, North Platte and other selected basins in the western US. We will also discuss

  1. Characterizing the ozone formation potential of agricultural sources in California's San Joaquin Valley: A computational and experimental approach

    NASA Astrophysics Data System (ADS)

    Howard, Cody Jerome

    The global pattern of expanding urban centers and increasing agricultural intensity is leading to more frequent interactions between air pollution emissions from urban and agricultural sources. The confluence of these emissions that traditionally have been separated by hundreds of kilometers is creating new air quality challenges in numerous regions across the United States. An area of particular interest is California's San Joaquin Valley (SJV), which has an agricultural output higher than many countries, a rapidly expanding human population, and ozone concentrations that are already higher than many dense urban areas. New regulations in the SJV restrict emissions of reactive organic gases (ROG) from animal sources in an attempt to meet Federal and State ozone standards designed to protect human health. A transportable "smog" chamber was developed and tested to directly measure the ozone formation potential of a variety of agricultural emissions in representative urban and rural atmospheres. After validation of the experimental procedure, four animal types were examined: beef cattle, dairy cattle, swine, and poultry, as well as six commonly used animal feeds: cereal silage (wheat grain and oat grain), alfalfa silage, corn silage, high moisture ground corn, almond shells, almond hulls, and total mixed ration. The emitted ROG composition was also measured so that the theoretical incremental reactivity could be calculated for a variety of atmospheres and directly compared with the measured ozone formation potential (OFP) under the experimental conditions. A computational model was created based on a modified form of the Caltech Atmospheric Chemistry Mechanism and validated against experimental results. After validation, the computational model was used to predict OFP across a range of NOx and ROG concentrations. The ROG OFP measurements combined with adjusted agricultural ROG emissions inventory estimates were used to predict the actual ozone production in the SJV

  2. Life from the stars?. [extraterrestrial sources contributing to chemical evolution on Earth

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Cruikshank, Dale P.

    1994-01-01

    Scientists are now seriously considering the possibility that organic matter from interstellar space could have influenced, or even spurred, the origin of life on Earth. Various aspects of chemical evolution are discussed along with possible extraterrestrial sources responsible for contributing to Earth's life-producing, chemical composition. Specific topics covered include the following: interstellar matter, molecular clouds, asteroid dust, organic molecules in our solar system, interplanetary dust and comets, meteoritic composition, and organic-rich solar-system bodies.

  3. Assessment of transboundary ozone contribution toward South Korea using multiple source-receptor modeling techniques

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Chul; Lee, Jong-Jae; Bae, Chang Han; Kim, Cheol-Hee; Kim, Soontae; Chang, Lim-Seok; Ban, Soo-Jin; Lee, Suk-Jo; Kim, Jongchoon; Woo, Jung-Hun

    2014-08-01

    Ozone concentrations in East Asia were simulated using the Community Multi-scale Air Quality (CMAQ) model, and its source contributions were estimated by multiple source-receptor modeling techniques. To study relationships between ozone concentrations and precursor emission sources, three approaches were applied to four months (January, April, July, and October 2009) to represent seasonal characteristics and compare results, with a particular focus on South Korea. Brute force (BF) is a traditional sensitivity analysis method used to estimate model output response to an input change. The high-order decoupled direct method (HDDM), a computational method, is an efficient and accurate alternative to the BF method for sensitivity. The Ozone and Particulate Precursor Tagging Methodology (OPTM) provides contribution information quantified by tracking emissions from selected sources throughout the simulation period. The approaches generally show that most of the receptor regions were substantially influenced by emissions from central China, which is the largest anthropogenic emissions source region in East Asia. Local emissions were still major contributors, especially South Korea and Japan during July 2009. On the other hand, a case study of maximum 8-h ozone concentrations derived from CMAQ-OPTM on April 9 in South Korea shows that the NOx and VOCs emissions from China contributed approximately 82% and 91%, respectively, to maximum 8-h ozone in Region 4 (South Korea) without boundary inflow, which indicates that Chinese emissions are the dominant contributor in this episode. A comparison study of the three approaches shows that HDDM tends to estimate biogenic source contributions lower than that from OPTM in China but similar to OPTM in South Korea and Japan. When comparing the BF method and HDDM, the sensitivity results show a reasonably good agreement during a given period. The location- and time-dependent maximum 8-h ozone isopleths over South Korea as a receptor

  4. Anthropogenic and geogenic Cd, Hg, Pb and Se sources of contamination in a brackish aquifer below agricultural fields

    NASA Astrophysics Data System (ADS)

    Mastrocicco, Micòl; Colombani, Nicolò; Di Giuseppe, Dario; Faccini, Barbara; Ferretti, Giacomo; Coltorti, Massimo

    2015-04-01

    Groundwater quality is often threatened by industrial, agricultural and land use practices (anthropogenic input). In deltaic areas is however difficult to distinguish between geogenic and anthropogenic inorganic contaminants pollution, since these phenomena can influence each other and often display a seasonal cycling. The effect of geogenic groundwater ionic strength (>10 g/l) on the mobility of trace elements like Cd, Hg, Pb and Se was studied in combination with the anthropogenic sources of these elements (fertilizers) in a shallow aquifer. The site is located in the Po river plain (Northern Italy) in an agricultural field belonging to a reclaimed deltaic environment, near Codigoro town. It is 6 ha wide and is drained by a subsurface drainage system made of PVC tile drains with a slope of 3‰, which provides gravity drainage towards two ditches that in turn discharge in a main channel. The whole area has been intensively cultivated with cereal rotation since 1960, mainly using synthetic urea as nitrogen fertilizer at an average rate of 180 kg-N/ha/y and pig slurry at an average rate of 60 kg-N/ha/y. The sediments were analyzed for major and trace elements via XRF, while major ions in groundwater were analyzed via IC and trace elements via ICP-MS. Three monitoring wells, with an inner diameter of 2 cm and screened down to 4 m below ground level, were set up in the field and sampled every four month from 2012 to 2014. The use of intensive depth profiles with resolution of 0.5 m in three different locations, gave insights into groundwater and sediment matrix interactions. To characterize the anthropogenic inputs synthetic urea and pig slurry were analyzed for trace elements via ICP-MS. The synthetic urea is a weak source of Cd and Hg (~1 ppb), while Se and Pb are found below detection limits. The pig slurry is a much stronger source of Se (~19 ppb) and Pb (~23 ppb) and a weak source of Cd (~3 ppb) and Hg (~2 ppb). Although, the mass loading rate pig slurry is

  5. Safety and Security of Radioactive Sealed and Disused/Orphan Sources in Ukraine - German Contribution - 13359

    SciTech Connect

    Brasser, Thomas; Hertes, Uwe; Meyer, Thorsten; Uhlenbruck, Hermann; Shevtsov, Alexey

    2013-07-01

    transports of radioactive sources within the city of Kiev. In future, the new established hot cell at IZOTOP's transport and storage facility will be useful for identification and characterization of orphan/disused radioactive sources. The projects implemented are performed in accordance with international recommendations (e. g. IAEA) and national normative documents and will make a crucial contribution towards an improved safety and security management of radioactive sources in Ukraine. (authors)

  6. Determination of Subject Matter Units Taught in Wisconsin and the Extent of Contribution Made Toward Meeting the National Objectives of Vocational Agriculture.

    ERIC Educational Resources Information Center

    Pumper, Fred John

    The primary purpose of this study was to identify the subject matter units taught, ascertain the length of time allotted to teaching of the subject matter units, and ascertain the extent of contribution made by categories of subject matter toward attaining national objectives of vocational agriculture in Wisconsin. The study also included a…

  7. An Appraisal of the Contribution of Rural Sociological and Agricultural Extension Research to the Transfer of Technology to Small Scale Farmers in Nigeria.

    ERIC Educational Resources Information Center

    Monu, Erasmus D.

    A review of the information provided by rural sociologists and agricultural extensionists regarding the adoption of new and/or improved farm practices in Nigeria in order to determine their contribution to the transfer of technology to farmers indicates that a great deal of attention had been paid to communication variables and to personal and…

  8. Source contributions to 2012 summertime aerosols in the Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Rea, G.; Turquety, S.; Menut, L.; Briant, R.; Mailler, S.; Siour, G.

    2015-07-01

    In the Mediterranean area, aerosols may originate from anthropogenic or natural emissions (biogenic, mineral dust, fire and sea salt) before undergoing complex chemistry. In case of a huge pollution event, it is important to know whether European pollution limits are exceeded and, if so, whether the pollution is due to anthropogenic or natural sources. In this study, the relative contribution of emissions to surface PM10, surface PM2.5 and total aerosol optical depth (AOD) is quantified. For Europe and the Mediterranean regions and during the summer of 2012, the WRF and CHIMERE models are used to perform a sensitivity analysis on a 50 km resolution domain (from -10° W to 40° E and from 30° N to 55° N): one simulation with all sources (reference) and all others with one source removed. The reference simulation is compared to data from the AirBase network and two ChArMEx stations, and from the AERONET network and the MODIS satellite instrument, to quantify the ability of the model to reproduce the observations. It is shown that the correlation ranges from 0.19 to 0.57 for surface particulate matter and from 0.35 to 0.75 for AOD. For the summer of 2012, the model shows that the region is mainly influenced by aerosols due to mineral dust and anthropogenic emissions (62 and 19 %, respectively, of total surface PM10 and 17 and 52 % of total surface PM2.5). The western part of the Mediterranean is strongly influenced by mineral dust emissions (86 % for surface PM10 and 44 % for PM2.5), while anthropogenic emissions dominate in the northern Mediterranean basin (up to 75 % for PM2.5). Fire emissions are more sporadic but may represent 20 % of surface PM2.5, on average, during the period near local sources. Sea salt mainly contributes for coastal sites (up to 29 %) and biogenic emissions mainly in central Europe (up to 20 %). The same analysis was undertaken for the number of daily exceedances of the European Union limit of 50 μg m-3 for PM10 (over the stations), and

  9. Contribution of electric energy to the process of elimination of low emission sources in Cracow

    SciTech Connect

    Lach, J.; Mejer, T.; Wybranski, A.

    1995-12-31

    At present energy supply belongs to the most important global problems. A significant part of energy is consumed for residential heating purposes. Depending on climatic conditions, fuel distribution and the level of technological development, the contribution of these purposes ranges between ca. 50% (Poland) and ca. 12% (Spain). The power engineering structure in Poland is based almost exclusively upon solid fuels, i.e. hard and brown coal. Chemical compounds (carbon dioxide, sulfur dioxide and nitrogen oxides) produced in combustion process influence negatively the natural environment. The contribution of residential heating in this negative effect is rather significant. Because of the fact, that the resources of fossil fuels (the most important source of energy at present) are limited and their influence on natural environment is negative, efforts are made to find out more effective ways of energy consumption and to reduce the pollutant emission from heating sources. This problem is a topical issue in Cracow, especially during the heating season because the coal-fired stoves situated in the central part of the town remain the most important source of pollutant emission. These sources cause serious menace to the health of inhabitants; furthermore the pollutants destroy Cracow monuments entered in the UNESCO world list of human heritage.

  10. In-situ source path contribution analysis of structure borne road noise

    NASA Astrophysics Data System (ADS)

    Elliott, A. S.; Moorhouse, A. T.; Huntley, T.; Tate, S.

    2013-11-01

    Source-path-contribution (SPC) analysis, also known as transfer path analysis (TPA), is a technique widely used in the automotive industry for rank ordering noise and vibration sources. The SPC approach is known to provide reliable diagnostic information but is time consuming to apply. In this paper, a faster SPC approach that allows all measurements to be performed in-situ is outlined and tested. For validation purposes a classic example consisting of a vehicle's suspension system (considered a vibration source) attached to a vehicle body (receiver) is analysed. It is found that structure borne noise inside the vehicle can be predicted well by either the conventional or the novel in-situ SPC approaches and that both methods give the same diagnostic information in terms of the rank ordering of path contributions. Thus, the new in-situ approach provides results at least as reliable as the conventional inverse SPC approach but has significant practical advantages in terms of reduced test time, transferability of data and flexibility in the location of the source-receiver interface. An additional investigation also demonstrates the feasibility of including rotational motions and moments in the analysis and it is shown that improved accuracy can be achieved as a result.

  11. Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons

    NASA Astrophysics Data System (ADS)

    Sedrati, R.; Attallah, R.

    2014-04-01

    In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥ 10 GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data.

  12. Historical accumulation of N and P and sources of organic matter and N in sediment in an agricultural reservoir in Northern China.

    PubMed

    Ni, Zhaokui; Wang, Shengrui; Chu, Zhaosheng; Jin, Xiangcan

    2015-07-01

    Agriculture has significantly intensified in Northern China since the 1980s. This intensification has caused a series of simultaneous lake ecological environment problems in this area. However, little is known about the role of agricultural intensification in historical nutrient dynamics and lake eutrophication processes. The Yanghe reservoir, a typical artificial reservoir characterized by high-yield grain production in Northern China, has been suffering from serious eutrophication and water quality deterioration. This study evaluates the effect of agricultural intensification on nutrient retention and source in the sediments using (210)Pb and (137)Cs dating techniques combined with stable C and N isotopes (δ(13)C, δ(15)N) and total organic carbon/total nitrogen, as well as total nitrogen (TN), total phosphorus (TP), and P fractions. Results suggested that agricultural intensification was keys to the accumulation of nutrients and was a source of organic matter (OM) and N in sediment for the past three decades. N and P pollution started in the 1980s and worsened from the 1990s. Good water quality status and steady sedimentary environment with low nutrient content (mean concentrations of TN and TP were 815 and 387 mg kg(-1), respectively) were observed before the 1980s. Sediment OM was primarily derived from aquatic plants, whereas N was primarily derived from soil erosion and aquatic plants. However, water quality began to deteriorate while sediment nutrient content began to increase after the 1980s, with values of 1186 mg kg(-1) for TN and 434 mg kg(-1) for TP in 1989. Sediment OM was primarily derived from C3 (sweet potato) and aquatic plants, and the major sources of N were soil erosion, fertilizer, and sewage, which accompany the rapid development of agriculture in the watershed. Following the further growth of grain production and fertilizers, excessive external nutrient loading has resulted in dramatic water quality and ecosystem deterioration since 1990

  13. Relative Contributions of Habitat and Water Quality to the Integrity of Fish Communities in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of agricultural drainage ditches focuses on removing water from agricultural fields and ignores the potential impacts of these hydrological and geomorphological modifications on the water quality and aquatic biota. There is a need to identify methods of incorporating environmental conside...

  14. Degradation State, Sources, and Reactivity of Dissolved Organic Matter from an Amino Acid Time Series in an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Matiasek, S. J.; Pellerin, B. A.; Spencer, R. G.; Bergamaschi, B. A.; Hernes, P.

    2015-12-01

    A detailed time series of dissolved amino acids was obtained in an agricultural watershed in the northern Central Valley, California, USA to investigate the roles of hydrologic and seasonal changes on the composition of dissolved organic matter (DOM). Total hydrolysable amino acid (THAA) concentrations ranged from 0.55 to 9.96 μM (mean 3.76 ± 1.80 μM) and not only peaked with discharge during winter storms, but also remained elevated throughout the irrigation season when discharge was low. Summer irrigation was a critical hydrologic regime for DOM cycling, since it mobilized DOM similar in concentration and reactivity to DOM released during winter storms for an extended period of time, with the largest amino acid contributions to the dissolved organic carbon (DOC) and the dissolved organic nitrogen (DON) pools (3.4 ‒ 3.7 % DOC-AA, 17.4 ‒ 22.5 % DON-AA), the largest proportion of basic amino acids (B/(B+A) = 0.19 ‒ 0.22), and the largest degradation index values (mean 1.37 ± 0.96). The mole percent of non-protein amino acids, commonly considered as an indicator of microbial degradation, decreased with DOM processing and was highest during summer (mean 4.1 ± 1.1%). A lack of correlation between THAA concentrations and UV-Vis absorbance and fluorescence proxies (including "protein-like" fluorophores B and T) indicated that optical properties may be limited in representing amino acid dynamics in this system. A new parameter for DOM processing derived from trends in individual amino acids demonstrated strong potential for inferring the extent of DOM degradation in freshwater systems. The biogeochemical relevance of irrigation practices is heightened by timing, since the additional export of reactive DOM coincides with enhanced downstream DOM processing in the Sacramento-San Joaquin River Delta, a critical habitat for endangered species serving as water source for 25 million Californians.

  15. Forests on drained agricultural peatland are potentially large sources of greenhouse gases - insights from a full rotation period simulation

    NASA Astrophysics Data System (ADS)

    He, Hongxing; Jansson, Per-Erik; Svensson, Magnus; Björklund, Jesper; Tarvainen, Lasse; Klemedtsson, Leif; Kasimir, Åsa

    2016-04-01

    The CoupModel was used to simulate a Norway Spruce forest on fertile drained peat over 60 years, from planting in 1951 until 2011, describing abiotic, biotic and greenhouse gas (GHG) emissions (CO2 and N2O). By calibrating the model against tree ring derived biomass data and measured 6 year abiotic data we obtained a "reference" model by which we were able to describe the GHG fluxes and controlling factors over the 60 years. The GHG fluxes are composed of two important quantities, the forest carbon (C) uptake, 405 g C m‑2 yr‑1 and the decomposition of peat soil, 396 g C m‑2 yr‑1. N2O emissions contribute to the GHG emissions by 0.5 g N m‑2 yr‑1, corresponding to 56.8 g C m‑2 yr‑1. The 60-year-old Spruce forest has an accumulated biomass of 164 Mg C ha‑1. However, over this period 208 Mg C ha‑1 GHG has been added to the atmosphere, which means a net addition of GHG emissions. The main losses are from the peat soil and, indirectly, from forest thinning products, which we assume have a short lifetime. Model sensitivity analysis by changing initial soil C, drainage depth and initial soil C/N ratio also confirms that forests on drained agricultural peatland are a GHG source. We conclude that after harvest at an age of 80 years, most of the stored biomass carbon is liable to be released, the system having captured C only temporarily and with a cost of disappeared peat, adding both CO2 and N2O to the atmosphere.

  16. Traffic induced particle resuspension in Paris: Emission factors and source contributions

    NASA Astrophysics Data System (ADS)

    Amato, F.; Favez, O.; Pandolfi, M.; Alastuey, A.; Querol, X.; Moukhtar, S.; Bruge, B.; Verlhac, S.; Orza, J. A. G.; Bonnaire, N.; Le Priol, T.; Petit, J.-F.; Sciare, J.

    2016-03-01

    Gaining knowledge on the process of particle resuspension from urban paved roads is of particular importance considering the increasing relevance of this source in urban air quality management and the lack of basic information on emission factors and source contributions. In this study we performed extensive field measurements for the quantification of the emission factors from different types of road in the city of Paris, and investigated the causes of their variability and the contributions to the ambient air PM10 observed across one year at one traffic monitoring site in the ring road of Paris. Results show agreement between lower road dust loadings (RD10: 0.7-2.2 mg m-2) and emission factors (5.4-9.0 mg vehicle-1 km-1) at inner-roads of Paris, compared to the ring road (2.4 mg m-2 and 17 mg vehicle-1 km-1, respectively), where the two parameters are estimated independently. The higher values in the ring road were likely caused by the poor state of pavement and higher share of heavy duty vehicles. Road wear, brake wear and a carbonaceous source, were almost equally responsible for 96% of RD10. At the traffic monitoring site located at the ring road (220,000 vehicle/day), the contributions of road dust emissions were estimated by receptor modeling to be 13% of PM10 on an annual mean (6.3 μg m-3), while the sum of vehicle exhaust and wear accounted for 47% resulting in a total traffic contribution of 60% of PM10. Road salting resulted to be a minor contributor (1% of annual mean) also in winter time (2%).

  17. Nitrate-nitrogen and oxygen isotope ratios for identification of nitrate sources and dominant nitrogen cycle processes in a tile-drained dryland agricultural field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural systems are a leading source of reactive nitrogen to aquatic and atmospheric ecosystems. Natural d15Nnitrate and d18Onitrate are used to identify the dominant nitrogen cycle processes and sources of NO3- leached from a tile-drained, dryland agricultural field. Tile-drain water discharge...

  18. Sources and their contribution to two water-soluble organic carbon fractions at a roadway site

    NASA Astrophysics Data System (ADS)

    Park, Seung-Shik; Schauer, James J.; Cho, Sung-Yong

    2013-10-01

    24-h PM2.5 samples were collected at a roadway site every 6th day for one year (September 2010 through August 2011) and analyzed for organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), hydrophilic and hydrophobic fractions of WSOC (WSOCHPI and WSOCHPO), and ionic species, to provide important seasonal quantitative information on the primary and secondary sources of two WSOC fractions. Five minute black carbon (BC) concentrations were also measured using a seven-channel wavelength aethalometer to investigate the relationship of biomass burning (BB)-derived BC data from a BC@880 nm tracer method and WSOC. There has been increased interest in the light adsorption of WSOC and water-insoluble OC but most of the tools that have been used to understand these relationships have limited to extracts of filter-based samples. The impact of BB emissions on WSOC fractions was examined using the relationship between ΔBC (=BC@370 nm - BC@880 nm) and WSOC (or K+), and between BB tracers (WSOC and K+) and BB-derived BC (BCBB) estimated. The moderate correlation (R2 = 0.41) of WSOC and ΔBC during the cold months of November through April may support the contribution of BB emissions to the observed WSOC. Predicted BCBB correlated well with K+, WSOCHPI, and WSOCHPO concentrations (R2 of 0.65, 0.43, and 0.61, respectively), suggesting BB emissions may have an influence on the WSOC fractions observed. Contributions of non-BB, BB, and secondary OC (SOC) to both WSOCHPI and WSOCHPO were estimated using a multiple linear regression analysis. The monthly average contribution of non-BB emissions ranged from 12.6% to 29.4% of the WSOCHPI and from 21.5% to 44.1% of the WSOCHPO, with high contributions occurring during the cold months and low contributions occurred during the warm months. BB emissions contributed more to WSOCHPI (2.7%-13.1%) than WSOCHPO (0.2%-1.1%), and the SOC contribution to both WSOC fractions was significant. SOC accounted for 57.2%-79.7% of

  19. PROBABILISTIC ASSESSMENT OF GROUNDWATER VULNERABILITY TO NONPOINT SOURCE POLLUTION IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    This paper presents a probabilistic framework for the assessment of groundwater pollution potential by pesticides in two adjacent agricultural watersheds in the Mid-Altantic Coastal Plain. Indices for estimating streams vulnerability to pollutants' load from the surficial aquifer...

  20. Characteristic and potential sources of polychlorinated dibenzo-P-dioxins and dibenzofurans in agricultural soils in Beijing, China.

    PubMed

    Li, Wei; Li, Chaoqin; Chen, Zuosheng; Cai, Zongwei

    2014-09-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in 25 background and 80 agricultural soil samples collected from 21 sites in Beijing, China. The levels of PCDD/Fs in the north agricultural soils were low (0.15-0.58 ng international toxic equivalent quantity [I-TEQ]/kg), which were comparable with those of the background soils (0.091-0.35 ng I-TEQ/kg). In the southern agricultural soils, however, concentrations were several times higher (0.27-3.3 ng I-TEQ/kg). Comparison of PCDD/Fs congener compositions between possible sources and samples indicated that agricultural soils in Beijing had not been contaminated by the 3 main PCDD/F contamination sources in China--ferrous and nonferrous metal, waste incineration, and power generation. They had, however, been slightly contaminated by the impurities of some organochlorine pesticides, such as sodium pentachlorophenate, and by open burning of biomass, vehicle exhaust, atmospheric deposition, sediment, and sewage sludge. These results have been supported by the principal components analysis. PMID:24863628

  1. Source Contributions of PM2.5 in the Severe Haze Episode in Hebei Cities.

    PubMed

    Wei, Zhe; Wang, Litao; Ma, Simeng; Zhang, Fenfen; Yang, Jing

    2015-01-01

    Beijing-Tianjin-Hebei area is one of the most polluted areas in China. This paper used the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) and Model-3/Community Multiscale Air Quality (CMAQ) modeling system to quantify the source contribution to PM2.5 in Hebei cities in order to obtain an in-depth understanding haze process in January and February 2013, using the Multiresolution Emission Inventory for China (MEIC). The result showed that PM2.5 were mainly originated from the southern Hebei (SHB) with the fractions of 70.8% and 66.4% to Shijiazhuang, 70.6% and 63.9% to Xingtai, and 68.5% and 63.0% to Handan in January and February 2013, respectively. The northern Hebei (NHB) contributed 69.8% and 70.7% to Zhangjiakou, 68.7% and 66.2% to Chengde, and 57.7% and 59.6% to Qinhuangdao in January and February. In Cangzhou, Hengshui, and Langfang, regional joint policy making should be implemented due to the pollution of multiple sources. In Baoding and Tangshan, industrial emissions contributed 38.1% and 41.9% of PM2.5 to Baoding and 39.8% and 45.8% to Tangshan in January and February, respectively. Industrial and domestic emissions should be controlled in Tangshan and Baoding, especially for industrial emissions of NHB. PMID:26618192

  2. Source Contributions of PM2.5 in the Severe Haze Episode in Hebei Cities

    PubMed Central

    Wei, Zhe; Wang, Litao; Ma, Simeng; Zhang, Fenfen; Yang, Jing

    2015-01-01

    Beijing-Tianjin-Hebei area is one of the most polluted areas in China. This paper used the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) and Model-3/Community Multiscale Air Quality (CMAQ) modeling system to quantify the source contribution to PM2.5 in Hebei cities in order to obtain an in-depth understanding haze process in January and February 2013, using the Multiresolution Emission Inventory for China (MEIC). The result showed that PM2.5 were mainly originated from the southern Hebei (SHB) with the fractions of 70.8% and 66.4% to Shijiazhuang, 70.6% and 63.9% to Xingtai, and 68.5% and 63.0% to Handan in January and February 2013, respectively. The northern Hebei (NHB) contributed 69.8% and 70.7% to Zhangjiakou, 68.7% and 66.2% to Chengde, and 57.7% and 59.6% to Qinhuangdao in January and February. In Cangzhou, Hengshui, and Langfang, regional joint policy making should be implemented due to the pollution of multiple sources. In Baoding and Tangshan, industrial emissions contributed 38.1% and 41.9% of PM2.5 to Baoding and 39.8% and 45.8% to Tangshan in January and February, respectively. Industrial and domestic emissions should be controlled in Tangshan and Baoding, especially for industrial emissions of NHB. PMID:26618192

  3. Modeling left and right atrial contributions to the ECG: A dipole-current source approach.

    PubMed

    Jacquemet, Vincent

    2015-10-01

    This paper presents the mathematical formulation, the numerical validation and several illustrations of a forward-modeling approach based on dipole-current sources to compute the contribution of a part of the heart to the electrocardiogram (ECG). Clinically relevant applications include identifying in the ECG the contributions from the right and the left atrium. In a Courtemanche-based monodomain computer model of the atria and torso, 1000 dipoles distributed throughout the atrial mid-myocardium are found to be sufficient to reproduce body surface potential maps with a relative error <1% during both sinus rhythm and atrial fibrillation. When the boundary element method is applied to solve the forward problem, this approach enables fast offline computation of the ECG contribution of any anatomical part of the atria by applying the principle of superposition to the dipole sources. In the presence of a right-left activation delay (sinus rhythm), pulmonary vein isolation (sinus rhythm) or left-right differences in refractory period (atrial fibrillation), the decomposition of the ECG is shown to help interpret ECG morphology in relation to the atrial substrate. These tools provide a theoretical basis for a deeper understanding of the genesis of the P wave or fibrillatory waves in normal and pathological cases. PMID:26149374

  4. Hydrologic controls on the sources and dynamics of dissolved organic matter in an agricultural catchment in the Central Valley, California (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Dyda, R. Y.; Hernes, P. J.; Spencer, R. G.; Pellerin, B. A.; Bergamaschi, B. A.

    2008-12-01

    The influence of agricultural practices on the dynamics of dissolved organic matter (DOM) cycling in river systems is poorly understood. We investigated molecular compositions of DOM at 14 sites in an agriculturally-impacted catchment (Willow Slough; 415 km2) under several different flow regimes over the course of two years in order to investigate the influence of sub-catchments on the biogeochemistry at the mouth of the catchment. The Willow Slough catchment area includes eastern foothills of the inner Coast Range to the alluvial plains and encompasses diverse land uses, including natural grasslands, orchards, viticulture and pasture, all draining toward the Sacramento River. Knowledge of the composition of DOM composition is crucial, as dissolved organic carbon (DOC) can form EPA-regulated carcinogenic compounds during the drinking water disinfection process and is therefore considered a drinking water constituent of concern. Willow Slough offers the opportunity to examine carbon source, cycling and transportation through multiple flowpaths and land uses that are common in Californian agricultural watersheds. As a constituent of DOM, lignin phenols provide information on the source, composition, quality and degradation state of DOM. Uniquely derived from vascular plants, lignin phenols can be used to distinguish between angiosperm and gymnosperm tissues and carbon-normalized yields can offer insight on the proportion of vascular plant-derived carbon versus in-situ production. Throughout the Willow Slough watershed, ratios of syringyl to vanillyl and cinnamyl to vanillyl lignin phenols show that the vascular plant component of DOM can be primarily attributed to non-woody angiosperm tissues. Lower lignin phenol concentrations and carbon-normalized yields were observed in the headwaters (0.1-0.6 mg/100mg OC and 2.6-33 μg/L) versus the mouth (0.7-2.0 mg/100mg OC and 25-72 μg/L), indicating that mid-catchment tributaries play important roles in determining the

  5. Contribution of the source velocity to the scattering of electromagnetic fields caused by airborne magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Emanoel Starteri Sampaio, Edson

    2014-08-01

    The velocity of controlled airborne sources of electromagnetic geophysical surveys plays an additional role in the scattering of the fields by the earth. Therefore, it is necessary to investigate its contribution in the space and time variation of secondary electromagnetic fields. The model of a vertical magnetic dipole moving at a constant speed along a horizontal line in the air and above a homogeneous conductive half-space constitutes a first approach to stress the kinematic aspect and determine the difference between the fields due to an airborne and a static source. The magnetic moment of the source is equal to 104 A m2, its height is 120 m, and the horizontal and vertical separations between it and the receiver are, respectively, equal to 100 and 50 m: these values of the model are typical of towed-bird airborne TDEM surveys. We employed four values for the common velocities of source and receiver (0, 60, 80, and 100 m s-1), four values of the conductivity of the half-space (0.5, 0.1, 0.05, and 0.01 S m-1), and two causal source currents (box with periods of 80 and 10 ms and periodic with frequency values of 12.5 and 100 Hz). The results demonstrate that the relative velocity between source and medium yields a measurable variation compared to the static condition. Therefore, it must be taken into consideration by compensating the discrepancy in measured data employing the respective theoretical result. The results also show that it is necessary to adjust the concepts of time and frequency domain for electromagnetic measurements with traveling sources.

  6. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Sang, Xuefang; Zhang, Zhisheng; Chan, Chuenyu; Engling, Guenter

    2013-10-01

    An intensive measurement campaign was conducted at a mountain and suburban site at the edge of the southeastern Tibetan Plateau during spring. Concentrations of PM2.5, carbonaceous species (OC and EC) and anhydrosugars (levoglucosan, mannosan and galactosan) as well as their ratios were utilized to identify possible biomass burning categories and contributions of biomass burning smoke to ambient aerosols. The average concentrations of levoglucosan and mannosan were 193.8 and 12.4 ng m-3, respectively at the mountain site, and 713 and 61.5 ng m-3 respectively at the suburban site. According to characteristic levoglucosan/mannosan (Lev/Man) and mannosan/galactosan (Man/Gal) ratios, we identified for the first time that mixed smoke particles (18.5, 72.3 and 9.1% for crop residues, softwood and hard wood respectively) derived from the study region and Southeast Asia contributed to the aerosol burden in the southeastern Tibetan Plateau. The biomass smoke contributions to organic carbon and organic matter were estimated to be 28.4% and 18.9-25.7% respectively at the mountain site and 38.3% and 33.5-45.4% respectively at the suburban site. The large contribution estimates indicate that biomass burning was an important anthropogenic/natural source of aerosol particles which impact regional atmospheric chemistry and climate in the southeastern Tibetan Plateau.

  7. Agricultural sources of contaminants of emerging concern and adverse health effects on freshwater fish

    USGS Publications Warehouse

    Tillitt, Donald E.; Buxton, Herbert T.

    2011-01-01

    Agricultural contaminants of emerging concern (CECs) are generally thought of as certain classes of chemicals associated with animal feeding and production facilities. Veterinary pharmaceuticals used in animal food production systems represent one of the largest groups of CECs. In our review, we discuss the extensive increase in use of antibiotics in animal feeding operations (AFOs) around the world. AFOs are a major consumer of antibiotics and other veterinary pharmaceuticals and over the past decade there has been growing information on the occurrence, release, and fate of CECs from animal food production operations, including the application of pharmaceutical-containing manure to agricultural fields and releases from waste lagoons. Concentrations of CECs in surface and ground water in proximity to AFOs correspond to their presence in the AFO wastes. In many cases, the environmental concentrations of agriculturally-derived CECs are below toxicity thresholds. Hormones and hormone replacement compounds are a notable exception, where chemical concentrations near AFOs can exceed concentrations known to cause adverse effects on endocrine-related functions in fish. In addition, some agricultural pesticides, once thought to be safe to non-target organisms, have demonstrated endocrine-related effects that may pose threats to fish populations in agricultural regions. That is, we have pesticides with emerging concerns, thus, the concern is emerging and not necessarily the chemical. In this light, one must consider certain agricultural pesticides to be included in the list of CECs. Even though agricultural pesticides are routinely evaluated in regulatory testing schemes which have been used for decades, the potential hazards of some pesticides have only recently been emerging. Emerging concerns of pesticides in fish include interference with hormone signaling pathways; additive (or more than additive) effects from pesticide mixtures; and adverse population-level effects at

  8. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China.

    PubMed

    Sun, Chongyu; Liu, Jingshuang; Wang, Yang; Sun, Liqiang; Yu, Hongwen

    2013-07-01

    The characterization of the content and source of heavy metals in soils are necessary to establish quality standards on a regional level and to assess the potential threat of metals to food safety and human health. The surface horizons of 114 agricultural soils in Dehui, a representative agricultural area in the black soil region, Northeast China, were collected and the concentrations of Cr, Ni, Cu, Zn, and Pb were analyzed. The mean values of the heavy metals were 49.7 ± 7.04, 20.8 ± 3.06, 18.9 ± 8.51, 58.9 ± 7.16, and 35.4 ± 9.18 mg kg(-1) for Cr, Ni, Cu, Zn, and Pb, respectively. Anthropic activities caused an enrichment of Cu and Pb in soils. However, metal concentrations in all samples did not exceed the guideline values of Chinese Environmental Quality Standard for Soils. Multivariate and geostatistical analyses suggested that soil Cr, Ni, and Zn had a lithogenic origin. Whereas, the elevated Cu concentrations in the study area were associated with industrial and agronomic practices, and the main sources of Pb were industrial fume, coal burning exhausts, and domestic waste. Source identification of heavy metals in agricultural soil is a basis for undertaking appropriate action to reduce metal inputs. PMID:23608467

  9. Point Source Scatter Contributions From Finite Size Objects In Radioisotope Imaging

    NASA Astrophysics Data System (ADS)

    Bieszk, J. A.; Lim, C. B.

    1982-11-01

    A Monte Carlo simulation was developed to study scatter contributions from a 140 keV point source at various depths and for different energy windows in finite water phantoms. Photoelectric and Compton interactions were considered. Scatter fractions, energy spectra, and radial spread functions of three approximately patientsized phantoms (rectangular prism, elliptical cylinder, and a sphere) were examined as a function of point-source depth and detector energy-window width. For a 100% energy window, energy spectra are characterized by a high energy region, a backscatter peak region, and a low energy, multi-scatter region. Depth dependent spatial limitations to the radial spread functions occur with decreasing window width. Scatter fractions for the sphere are much smaller than those of the other two phantoms, but approach their values as the size of the energy window decreases.

  10. Thermal imager sources of non-uniformities: modeling of static and dynamic contributions during operations

    NASA Astrophysics Data System (ADS)

    Sozzi, B.; Olivieri, M.; Mariani, P.; Giunti, C.; Zatti, S.; Porta, A.

    2014-05-01

    Due to the fast-growing of cooled detector sensitivity in the last years, on the image 10-20 mK temperature difference between adjacent objects can theoretically be discerned if the calibration algorithm (NUC) is capable to take into account and compensate every spatial noise source. To predict how the NUC algorithm is strong in all working condition, the modeling of the flux impinging on the detector becomes a challenge to control and improve the quality of a properly calibrated image in all scene/ambient conditions including every source of spurious signal. In literature there are just available papers dealing with NU caused by pixel-to-pixel differences of detector parameters and by the difference between the reflection of the detector cold part and the housing at the operative temperature. These models don't explain the effects on the NUC results due to vignetting, dynamic sources out and inside the FOV, reflected contributions from hot spots inside the housing (for example thermal reference far of the optical path). We propose a mathematical model in which: 1) detector and system (opto-mechanical configuration and scene) are considered separated and represented by two independent transfer functions 2) on every pixel of the array the amount of photonic signal coming from different spurious sources are considered to evaluate the effect on residual spatial noise due to dynamic operative conditions. This article also contains simulation results showing how this model can be used to predict the amount of spatial noise.

  11. The Contribution of Local and Regional Sources to Particulate Matter in European Megacities

    NASA Astrophysics Data System (ADS)

    Skyllakou, Ksakousti; Megaritis, Athanasios; Fountoukis, Christos; Murphy, Benjamin; Pandis, Spyros

    2013-04-01

    The ongoing urbanization over the past decade has led to an increasing number of Megacities around the world, now hosting more than half of the world's population (UN 2007). These large urban centers are substantial sources of anthropogenic pollutants having adverse effects on human health, visibility and ecosystems (Seinfeld and Pandis, 2006). In order to improve air quality in those urban areas we need to quantify the fraction of the pollution originating from local and regional sources and to determine the response of the system to emission controls. Three-dimensional chemical transport models (CTMs) are well suited to help address these source receptor questions since they model all the necessary processes that impact air pollution concentrations and transport in the domain. In this study we applied PMCAMx (Fountoukis et al., 2011) a three dimensional CTM over Europe to study the influence that emissions in large European urban areas (eg. Paris, London, etc.) might have on the concentration of the major PM2.5 components during a summer and a winter period. We combined PMCAMx with the Particulate Source Apportionment Technology (PSAT) (Wagstrom et al., 2011) which directly computes the contribution of different emission areas or source types. The contributions of local, short, medium, and long range transport and different source categories (e.g., transport, fires, etc.) were quantified. Local emission sources are predicted to have a significant effect on primary pollutant levels, like black carbon (BC) while secondary pollutants concentrations are dominated by sources outside the major urban areas. The PSAT results were compared with those of an "annihilation" scenario zeroing out all anthropogenic emissions over an urban area. The results of these simulations suggest that the two methods show a good agreement with each other, but PSAT is a lot more computationally efficient. References Fountoukis C., Racherla P. N., Denier van der Gon H. A. C., Polymeneas P

  12. Contribution of anthropogenic and natural sources to atmospheric sulfur in parts of the United States

    NASA Astrophysics Data System (ADS)

    Rice, Harbert; Nochumson, D. H.; Hidy, G. M.

    This paper presents an estimate of the contributions to atmospheric sulfur of natural vs anthropogenic processes in areas of the United States. The areas were selected on the basis of population density, industrialization and potential for different kinds of geographically unique natural emissions. The sulfur emissions were estimated in part from land use practice and from geochemical arguments relating sulfur to biological carbon cycling. The natural or quasi-natural processes considered include sulfur gas production in freshwater sediments and intertidal mudflats, soil processes and vegetation. Agricultural activities and acid mine drainage were also taken into account as a perturbation to the available natural sulfur resources. The emissions appear to be heavily influenced by contributions from sulfate reduction in freshwater sediments and intertidal mudflats, and acid mine drainage. The anthropogenic emissions were calculated from the U.S. Environmental Protection Agency's inventories in the late 1960s. The natural vs man-derived sulfur were compared for 2° longitude by 2° latitude sectors in New England, the mid-Atlantic States, the Atlantic Coastal South, the Midwest, and the arid Southwest. In the sample regions where the anthropogenic emissions exceed 50-100 × 10 3 tonne S y -1 over a 2 × 2° sector, or ≳ 15-30 kg(S) ha -1 y -1, they tend to dominate the biogenic emissions. This appears to be the case for industrialized Ohio, Illinois, and New England. If 10% of the available biogenic sulfur is released to the atmosphere, natural or quasi-natural emissions may be a significant contributor in air over Minnesota and Wisconsin, Florida, and perhaps the rural areas of Virginia and remote parts of Arizona and Utah.

  13. SEPARATING SPATIAL AND TEMPORAL SOURCES OF VARIATION FOR MODEL TESTING IN PRECISION AGRICULTURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Applying crop simulation models to precision agriculture appears to be a matter of developing spatial suites of input parameters and running a model for each set. Extensive modeling literature has reported independent tests in multiple combinations of variety, soils, and climate, which has been gene...

  14. Using lidar to characterize particles from point and diffuse sources in an agricultural field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lidar (LIght Detection And Ranging) provides the means to quantitatively evaluate the spatial and temporal variability of particulate emissions from agricultural activities. Aglite is a three-wavelength portable scanning lidar system built at the Energy Dynamics Laboratory (EDL) to measure the spati...

  15. FILTRATION OF AGRICULTURAL NON-POINT SOURCE PHOSPHORUS POLLUTION WITH INDUSTRIAL MATERIALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of phosphorus (P) from agricultural lands to water bodies is an environmental concern. Ditch drainage from lands with heavy poultry manure application on the Eastern Shore of the Chesapeake Bay provides a pathway to deliver dissolved P to the bay. Best management practices designed to reduce ...

  16. A Description and Source Listing of Curriculum Materials in Agricultural Education, 1971-1972.

    ERIC Educational Resources Information Center

    American Vocational Association, Washington, DC. Agricultural Education Div.

    Members of the Curriculum Materials Committee collect materials available to them prior to each American Vocational Association Meeting. The resulting bibliography contains current, non-commercial materials developed by persons in vocational education in agriculture for use in that field, but of interest beyond the state in which it was developed.…

  17. A DESCRIPTION AND SOURCE LISTING OF PROFESSIONAL INFORMATION IN AGRICULTURAL EDUCATION, 1963-64.

    ERIC Educational Resources Information Center

    SLEDGE, GEORGE W.; AND OTHERS

    BRIEF ANNOTATIONS ARE GIVEN FOR MANY OF THE 107 REFERENCES LISTED UNDER THE FOLLOWING CATEGORIES -- (1) ADULT EDUCATION, (2) AGRICULTURAL ENGINEERING, (3) ANIMAL SCIENCE, (4) CURRICULUM DEVELOPMENT AND CURRICULUM IN CROPS, ENTOMOLOGY, FARM MANAGEMENT, FARM MECHANICS, AND LIVESTOCK, (5) FARM BUSINESS MANAGEMENT AND MARKETING, (6) FORESTRY, (7)…

  18. Seasonal trends in PM2.5 source contributions in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Salmon, Lynn G.; Schauer, James J.; Zeng, Limin; Kiang, C. S.; Zhang, Yuanhang; Cass, Glen R.

    The 24-h PM2.5 samples (particles with an aerodynamic diameter of 2.5 μm or less) were taken at 6-day intervals at five urban and rural sites simultaneously in Beijing, China for 1 month in each quarter of calendar year 2000. Samples at each site were combined into a monthly composite for the organic tracer analysis by GC/MS (gas chromatography/mass spectrometry). Compared to the data obtained from other metropolitan cities in the US, the PM2.5 mass and fine organic carbon (OC) concentrations in Beijing were much higher with an annual average of 101 and 20.9 μg m -3, respectively. Over one hundred organic compounds including unique tracers for important sources were quantified in PM2.5 in Beijing. Source apportionment of fine OC was conducted using chemical mass balance receptor model (CMB) in combination with particle-phase organic compounds as fitting tracers. Carbonaceous aerosols and major ions (sulfate, nitrate and ammonium) constituted 69% of PM2.5 mass on average. The major sources of PM2.5 mass in Beijing averaged over five sites on an annual basis were determined as dust (20%), secondary sulfate (17%), secondary nitrate (10%), coal combustion (7%), diesel and gasoline exhaust (7%), secondary ammonium (6%), biomass aerosol (6%), cigarette smoke (1%), and vegetative detritus (1%). The lowest PM2.5 mass concentration was found in January (60.9 μg m -3), but the contribution of carbonaceous aerosol to PM2.5 mass was maximal during this season, accounting for 57% of the mass. During cold heating season, the contributions from coal combustion and biomass aerosol to PM2.5 mass increased, accounting for 20.9% of fine particle mass in October and 24.5% in January. The contribution of the biomass aerosols peaked in the fall. In April 2000, the impact of dust storms was so significant that dust alone constituted 36% of PM2.5 mass. On average, the model resolved 88% of the sources of the PM2.5 mass concentrations in Beijing.

  19. Geogenic Sources Strongly Contribute to the Mackenzie River Delta's Methane Emissions Derived From Airborne Flux Data

    NASA Astrophysics Data System (ADS)

    Kohnert, K.; Serafimovich, A.; Metzger, S.; Hartmann, J.; Sachs, T.

    2015-12-01

    Arctic permafrost-associated wetlands and thawing permafrost emit the greenhouse gas methane (CH4), either as a product of recent microbial activity in the active layer or taliks, or from deeper geogenic sources where pathways through the permafrost exist. Current emission estimates vary strongly between different models and there is still disagreement between bottom-up estimates from local field studies and top-down estimates from atmospheric measurements. We use airborne flux data from two campaigns in the Mackenzie River Delta, Canada, in July 2012 and 2013 to directly quantify permafrost CH4 emissions on the regional scale, to analyse the regional pattern of CH4 fluxes and to estimate the contribution of geogenic emissions to the overall CH4 budget of the delta. CH4 fluxes were calculated with a time-frequency resolved version of the eddy covariance technique, resulting in a gridded 100 m x 100 m resolution flux map within the footprints of the flight tracks. We distinguish geogenic gas seeps from biogenic sources by their strength and show that they contribute strongly to the annual CH4 budget of the delta. Our study provides the first estimate of annual CH4 release from the Mackenzie River Delta and the adjacent coastal plain. We show that one percent of the covered area contains the strongest geogenic seeps which contribute disproportionately to the annual emission estimate. Our results show that geogenic CH4 emissions might need more attention, especially in areas where permafrost is vulnerable to thawing sufficiently to create pathways for geogenic gas migration. The presented map can be used as a baseline for future CH4 flux studies in the Mackenzie River Delta.

  20. Contributions of projected land use to global radiative forcing ascribed to local sources

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2013-12-01

    With global demand for food expected to dramatically increase and put additional pressures on natural lands, there is a need to understand the environmental impacts of land use and land cover change (LULCC). Previous studies have shown that the magnitude and even the sign of the radiative forcing (RF) of biogeophysical effects from LULCC depends on the latitude and forest ecology of the disturbed region. Here we ascribe the contributions to the global RF by land-use related anthropogenic activities to their local sources, organized on a grid of 1.9 degrees latitude by 2.5 degrees longitude. We use RF estimates for the year 2100, using five future LULCC projections, computed from simulations with the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. Our definition of the LULCC RF includes changes to terrestrial carbon storage, methane and nitrous oxide emissions, atmospheric chemistry, aerosol emissions, and surface albedo. We ascribe the RF to gridded locations based on LULCC-related emissions of relevant trace gases and aerosols, including emissions from fires. We find that the largest contributions to the global RF in year 2100 from LULCC originate in the tropics for all future scenarios. In fact, LULCC is the largest tropical source of anthropogenic RF. The LULCC RF in the tropics is dominated by emissions of CO2 from deforestation and methane emissions from livestock and soils. Land surface albedo change is rarely the dominant forcing agent in any of the future LULCC projections, at any location. By combining the five future scenarios we find that deforested area at a specific tropical location can be used to predict the contribution to global RF from LULCC at that location (the relationship does not hold as well in the extratropics). This information could support global efforts like REDD (Reducing Emissions from Deforestation and Forest Degradation), that aim to reduce greenhouse gas

  1. Human-, Ovine-, and Bovine-Specific Viral Source Tracking Tools to Discriminate Between the Major Fecal Sources in Agricultural Waters.

    PubMed

    Rusiñol, Marta; Moriarty, Elaine; Lin, Susan; Bofill-Mas, Sílvia; Gilpin, Brent

    2016-03-01

    This study evaluated the sources of fecal contamination in different river catchments, using a combination of microbial source tracking tools, for human, ruminant, ovine and bovine livestock, in order to define appropriate water management strategies. Every source of waterway pollution was evaluated in river water samples from one urban river catchment and two important farming regions in New Zealand. Fecal pollution was initially measured by testing Escherichia coli and evaluating the presence of human- and ruminant-associated DNA markers of Bacteroidales (BiAdo, BacHum-UCD, BacH, and BacR) and human and ruminant fecal sterols/stanols ratios. Then specific fecal pollution sources were assessed with previously reported quantitative PCR assays targeting human-, bovine-, and ovine-specific viruses: human adenoviruses (HAdV), human JC polyomaviruses, bovine polyomaviruses (BPyV), and ovine polyomaviruses (OPyV). High level of ruminant fecal contamination was detected all over the farming areas, whereas no ruminant sources were identified in the urban river sampling sites. BacR was the most frequently observed ruminant marker and OPyV and BPyV allowed the identification of ovine and bovine fecal sources. The human fecal viral marker (HAdV) was the most frequently observed human marker, highly abundant in the urban sites, and also present in farming areas. This is the first study using simultaneously the ovine and the bovine viral markers to identify and quantify both bovine and ovine fecal pollution. PMID:26607578

  2. Source contribution of PM₂.₅ at different locations on the Malaysian Peninsula.

    PubMed

    Ee-Ling, Ooi; Mustaffa, Nur Ili Hamizah; Amil, Norhaniza; Khan, Md Firoz; Latif, Mohd Talib

    2015-04-01

    This study determined the source contribution of PM2.5 (particulate matter <2.5 μm) in air at three locations on the Malaysian Peninsula. PM2.5 samples were collected using a high volume sampler equipped with quartz filters. Ion chromatography was used to determine the ionic composition of the samples and inductively coupled plasma mass spectrometry was used to determine the concentrations of heavy metals. Principal component analysis with multilinear regressions were used to identify the possible sources of PM2.5. The range of PM2.5 was between 10 ± 3 and 30 ± 7 µg m(-3). Sulfate (SO4 (2-)) was the major ionic compound detected and zinc was found to dominate the heavy metals. Source apportionment analysis revealed that motor vehicle and soil dust dominated the composition of PM2.5 in the urban area. Domestic waste combustion dominated in the suburban area, while biomass burning dominated in the rural area. PMID:25652682

  3. Tracing sources of freshwater contributions to first-year sea ice in Svalbard fjordss

    NASA Astrophysics Data System (ADS)

    Alkire, Matthew B.; Nilsen, Frank; Falck, Eva; Søreide, Janne; Gabrielsen, Tove M.

    2015-06-01

    Salinity, δ18O, and total alkalinity were determined from sea ice cores collected from various fjords (Billefjorden, Tempelfjorden, Raudfjorden, Rijpfjorden, and Palanderbukta) around Spitsbergen and Nordaustlandet, Svalbard between February and April 2013. The data were used to determine whether ice cores could be used to quantitatively evaluate contributions of meteoric water (glacial meltwater, river runoff, and precipitation) to the fjords instead of traditional methods that rely on data collected from the water column where brine introduced during sea ice formation can complicate interpretation. The majority of the cores exhibited only small contributions (≤5%) of meteoric water ice compared to that derived from seawater; however, cores collected close to the front of Tunabreen, a tidewater glacier located at the head of Tempelfjorden, contained a significant contribution (36%) of meteoric water ice. The shape of the vertical δ18O profiles, as well as excess total alkalinities (relative to salinity) from the Tempelfjorden cores suggested that the source of this meteoric water was subglacial meltwater discharged from Tunabreen during fall and/or winter. Although cores were also collected close to the front of Nordenskiöldbreen (a tidewater glacier in Billefjorden), these did not exhibit a large meltwater influence. We speculate that the combination of the 2004 surge and subsequent retreat of Tunabreen, combined with the cyclonic circulation pattern of warm Atlantic waters that intruded into the Isfjorden system in mid-January of 2012 might have played a role in the apparently larger meltwater contribution to Tempelfjorden. Increasing Atlantic water temperatures in the West Spitsbergen Current and larger and/or more frequent intrusion of these waters into Isfjorden reduces winter sea ice growth and can thereby aid in the melt of tidewater glaciers (during summer and winter months). These interactions have important implications on glacier flow and deserve

  4. Flowpaths, source water contributions and water residence times in a Mexican tropical dry forest catchment

    NASA Astrophysics Data System (ADS)

    Farrick, Kegan K.; Branfireun, Brian A.

    2015-10-01

    Runoff in forested tropical catchments has been frequently described in the literature as dominated by the rapid translation of rainfall to runoff through surface and shallow subsurface pathways. However, studies examining runoff generation in tropical catchments with highly permeable soils have received little attention, particularly in tropical dry forests. We present a study focused on identifying the dominant flowpaths, water sources and stream water residence times in a tropical dry forest catchment near the Pacific coast of central Mexico. During the wet season, pre-event water contributions to stormflow ranged from 72% to 97%, with the concentrations of calcium, magnesium, sodium and potassium closely coupling the geochemistry of baseflow and groundwater from the narrow riparian/near-stream zone. Baseflow from the intermittent stream showed a strongly damped isotopic signature and a mean baseflow residence time of 52-110 days was estimated. These findings all suggest that instead of the surface and near-surface subsurface lateral pathways observed over many tropical catchments, runoff is generated through vertical flow processes and the displacement and discharge of stored water from the saturated zone. As the wet season progressed, contributions from the saturated zone persisted; however, the stormflow and baseflow geochemistry suggests that the contributing area of the catchment increased. Our results show that during the early part of the wet season, runoff originated primarily from the headwater portion of the catchment. As the wet season progressed and catchment wetness increased, connectivity among sub-basin was improved, resulting in runoff contributions from across the entire catchment.

  5. Interactively Improving Agricultural Field Mapping in Sub-Saharan Africa with Crowd-Sourcing and Active Learning

    NASA Astrophysics Data System (ADS)

    Debats, S. R.; Estes, L. D.; Caylor, K. K.

    2015-12-01

    As satellite imagery becomes increasingly available, management of large image databases becomes more important for efficient image processing. We have developed a computer vision-based classification algorithm to distinguish smallholder agricultural land cover in Sub-Saharan Africa, using a group of high-resolution images from South Africa as a case study. For supervised classification, smallholder agriculture, with ambiguous patterns of small, irregular fields, requires a wide range of training data samples to adequately describe the variability in appearance. We employ crowd-sourcing to obtain new training data to expand the geographic range of our algorithm. A crowd-sourcing user is asked to hand-digitize the boundaries of agricultural fields in an assigned 1 km2 image. Yet random assignment of images to users could result in a highly redundant training data set with limited discriminative power. Furthermore, larger training data sets require a greater number of users to hand-digitize fields, which increases costs through crowd-sourcing engines like Amazon Mechanical Turk, as well as longer algorithm training times, which increases computing costs. Therefore, we employ an active learning approach to interactively select the most informative images to be hand-digitized for training data by crowd-sourcing users, based on changes in algorithm accuracy. We investigate the use of various image similarity measures used in content-based image retrieval systems, which quantify the distance, such as Euclidean distance or Manhattan distance, between a variety of extracted feature spaces to determine how similar the content of two images are. We determine the minimum training data set needed to maximize algorithm accuracy, as well as automate the selection of additional training images to classify a new target image that expands the geographic range of our algorithm.

  6. Migrant and Seasonal Workers in Michigan's Agriculture: A Study of Their Contributions, Characteristics, Needs, and Services. Research Report No. 1.

    ERIC Educational Resources Information Center

    Rochin, Refugio I.; Santiago, Anne M.; Dickey, Karla S.

    This study examines the characteristics and needs of Michigan's migrant and seasonal farmworkers. The study was based on census data, state agency records, and a statewide survey of service providers. Results indicate that neither mechanization nor other structural changes in Michigan's agricultural economy have diminished the industry's…

  7. Predicting the impacts of climate change on nonpoint source pollutant loads from agricultural small watershed using artificial neural network.

    PubMed

    Lee, Eunjeong; Seong, Chounghyun; Hakkwan, Kim; Park, Seungwoo; Kang, Moonseong

    2010-01-01

    This study described the development and validation of an artificial neural network (ANN) for the purpose of analyzing the effects of climate change on nonpoint source (NPS) pollutant loads from agricultural small watershed. The runoff discharge was estimated using ANN algorithm. The performance of ANN modelwas examined using observed data from s tudy watershed. The simulationresults agreed well with observed values during calibration and validation periods. NPS pollutant loads were calculated from load-discharge relationship driven by long-term monitoring data. LARS-WG (Long Ashton Research Station-Weather Generator) model was used to generate rainfall data. The calibrated ANN model and load-discharge relationship with the generated data from LARS-WGwere applied to analyze the effects of climate change on NPS pollutant loads from the agricultural small watershed. The results showed that the ANN model provided valuable approach i n estimating future runof f discharge, and the NPS pollutantloads. PMID:20923094

  8. Sources and Contributions of Oxygen During Microbial Pyrite Oxidation: the Triple Oxygen Isotopes of Sulfate

    NASA Astrophysics Data System (ADS)

    Ziegler, K.; Coleman, M. L.; Mielke, R. E.; Young, E. D.

    2008-12-01

    The triple isotopes of oxygen (Δ17O' = δ17O'-0.528 × δ18O' using logarithmic deltas) can trace the oxygen sources of sulfate produced during sulfide oxidation, an important biogeochemical process on Earth's surface and possibly also on Mars [1]. δ18OSO4 compositions are determined by the isotopic selectivity of the mechanism(s) responsible for their changes, and the δ18O value of the reactants (O2 vs. H2O). The relative proportional importance and contribution of each of those sources and mechanisms, as well as their associated isotopic fractionations, are not well understood. We are investigating the use of Δ 17O as a quantitative and qualitative tracer for the different processes and oxygen sources involved in sulfate production. Δ17O signatures are distinct fingerprints of these reservoirs, independent of fractionation factors that can be ambiguous. We conducted controlled abiotic and biotic (Acidithiobacillus ferrooxidans, A.f.) laboratory experiments in which water was spiked with 18O, allowing us to quantify the sources of sulfate oxygen and therefore the processes attending sulfate formation. Results of this Δ17O tracer study show that A.f. microbes initiate pyrite S-oxidation within hours of exposure, and that sulfate is produced from ~90% atmospheric oxygen. This initial lag-phase (< 3 days) is characterized by subtle and multiple changes in oxygen source and contribution that is likely due to the adjustment of the microbial metabolism from S to Fe2+-oxidation. A more detailed understanding of the microbial mechanisms and behavior in the initial lag-phase will aid in the understanding of the ecological conditions required for microbial populations to establish and survive. An exponential phase of growth, facilitated by microbial Fe2+-oxidation, follows. The source of sulfate rapidly switches to abiotic sulfide oxidation during exponential growth and the source of oxygen switches from atmospheric O2 to nearly ~100% water. Pending acquisition of

  9. Source apportionment of groundwater pollutants in Apulian agricultural sites using multivariate statistical analyses: case study of Foggia province

    PubMed Central

    2012-01-01

    Background Ground waters are an important resource of water supply for human health and activities. Groundwater uses and applications are often related to its composition, which is increasingly influenced by human activities. In fact the water quality of groundwater is affected by many factors including precipitation, surface runoff, groundwater flow, and the characteristics of the catchment area. During the years 2004-2007 the Agricultural and Food Authority of Apulia Region has implemented the project “Expansion of regional agro-meteorological network” in order to assess, monitor and manage of regional groundwater quality. The total wells monitored during this activity amounted to 473, and the water samples analyzed were 1021. This resulted in a huge and complex data matrix comprised of a large number of physical-chemical parameters, which are often difficult to interpret and draw meaningful conclusions. The application of different multivariate statistical techniques such as Cluster Analysis (CA), Principal Component Analysis (PCA), Absolute Principal Component Scores (APCS) for interpretation of the complex databases offers a better understanding of water quality in the study region. Results Form results obtained by Principal Component and Cluster Analysis applied to data set of Foggia province it’s evident that some sampling sites investigated show dissimilarities, mostly due to the location of the site, the land use and management techniques and groundwater overuse. By APCS method it’s been possible to identify three pollutant sources: Agricultural pollution 1 due to fertilizer applications, Agricultural pollution 2 due to microelements for agriculture and groundwater overuse and a third source that can be identified as soil run off and rock tracer mining. Conclusions Multivariate statistical methods represent a valid tool to understand complex nature of groundwater quality issues, determine priorities in the use of ground waters as irrigation water

  10. Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900-2010.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Porcal, Petr; Posch, Maximilian

    2014-02-01

    Using dynamic, mass budget, and empirical models, we quantified sulphate-sulphur (SO4-S) leaching from soils in a large central European catchment (upper Vltava river, Czech Republic) over a 110-year period (1900-2010). SO4-S inputs to soils with synthetic fertilisers and atmospheric deposition increased in the 1950s-1980s, then rapidly decreased (~80%), and remained low since the middle 1990s. The proportion of drained agricultural land rapidly increased from 4 to 43% between the 1950s and 1990s; then the draining ability of the system slowly decreased due to its ageing. Sulphate concentrations in the Vltava exhibited similar trends as the external SO4-S inputs, suggesting that they could be explained by changes in atmospheric and fertiliser S inputs. The available data and modelling, however, showed that (i) internal SO4-S sources (mineralization of soil organic S in the drained agricultural land), (ii) a hysteresis in SO4-S leaching from forest soils (a net S retention at the high S inputs and then a net release at the lowered inputs), and (iii) hydrology must be taken into account. An empirical model was then employed, based on parameters representing hydrology (discharge), external SO4-S sources (inputs by synthetic fertilisers and atmospheric deposition), and internal SO4-S sources (mineralization related to soil drainage). The model explained 84% of the observed variability in annual SO4-S concentrations in the Vltava river during 1900-2010 and showed that forest soils were a net sink (105 kg ha(-1)) while agricultural land was a net source (55 kg ha(-1)) of SO4-S during 1960-2010. In the late 1980s, forest soils changed from a sink to a source of S, and the present release of SO4-S accumulated in forest soils thus delays recovery of surface waters from acidification, while S losses from agricultural soils increase the risk of future S deficiency in S-demanding crops. PMID:24176702

  11. Contrasts between estimates of baseflow help discern multiple sources of water contributing to rivers

    NASA Astrophysics Data System (ADS)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2014-01-01

    This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. During the early stages of high-discharge events, the chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those based on chemical mass balance using Cl calculated from continuous electrical conductivity measurements. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of the annual discharge with a net baseflow contribution of 16% of total discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of discharge annually with a net baseflow contribution between 2001 and 2011 of 35% of total discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge and 26% of total discharge). These differences most probably reflect how the different techniques characterise baseflow. The local minimum and recursive digital filters probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow, floodplain storage, or interflow) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low

  12. Application of the Soil and Water Assessment Tool and Annualized Agricultural Non-Point Source Models in the St. Joseph River Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the performance of two water quality models in accordance to specific tasks designated in the USDA Agricultural Research Service Conservation Effects Assessment Project. The Soil and Water Assessment Tool (SWAT) and the Annualized Agricultural Non-Point Source (AnnAGNPS) models ...

  13. Helicopter main-rotor noise: Determination of source contributions using scaled model data

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas F.; Jolly, J. Ralph, Jr.; Marcolini, Michael A.

    1988-08-01

    Acoustic data from a test of a 40 percent model MBB BO-105 helicopter main rotor are scaled to equivalent full-scale flyover cases. The test was conducted in the anechoic open test section of the German-Dutch Windtunnel (DNW). The measured data are in the form of acoustic pressure time histories and spectra from two out-of-flow microphones underneath and foward of the model. These are scaled to correspond to measurements made at locations 150 m below the flight path of a full-scale rotor. For the scaled data, a detailed analysis is given for the identification in the data of the noise contributions from different rotor noise sources. Key results include a component breakdown of the noise contributions, in terms of noise criteria calculations of a weighted sound pressure level (dBA) and perceived noise level (PNL), as functions of rotor advance ratio and descent angle. It is shown for the scaled rotor that, during descent, impulsive blade-vortex interaction (BVI) noise is the dominant contributor to the noise. In level flight and mild climb, broadband blade-turbulent wake interaction (BWI) noise is dominant due to the absence of BVI activity. At high climb angles, BWI is reduced and self-noise from blade boundary-layer turbulence becomes the most prominent.

  14. Helicopter main-rotor noise: Determination of source contributions using scaled model data

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Jolly, J. Ralph, Jr.; Marcolini, Michael A.

    1988-01-01

    Acoustic data from a test of a 40 percent model MBB BO-105 helicopter main rotor are scaled to equivalent full-scale flyover cases. The test was conducted in the anechoic open test section of the German-Dutch Windtunnel (DNW). The measured data are in the form of acoustic pressure time histories and spectra from two out-of-flow microphones underneath and foward of the model. These are scaled to correspond to measurements made at locations 150 m below the flight path of a full-scale rotor. For the scaled data, a detailed analysis is given for the identification in the data of the noise contributions from different rotor noise sources. Key results include a component breakdown of the noise contributions, in terms of noise criteria calculations of a weighted sound pressure level (dBA) and perceived noise level (PNL), as functions of rotor advance ratio and descent angle. It is shown for the scaled rotor that, during descent, impulsive blade-vortex interaction (BVI) noise is the dominant contributor to the noise. In level flight and mild climb, broadband blade-turbulent wake interaction (BWI) noise is dominant due to the absence of BVI activity. At high climb angles, BWI is reduced and self-noise from blade boundary-layer turbulence becomes the most prominent.

  15. Simulated spatial distribution and seasonal variation of atmospheric methane over China: Contributions from key sources

    NASA Astrophysics Data System (ADS)

    Zhang, Dingyuan; Liao, Hong; Wang, Yuesi

    2014-03-01

    We used the global atmospheric chemical transport model, GEOS-Chem, to simulate the spatial distribution and seasonal variation of surface-layer methane (CH4) in 2004, and quantify the impacts of individual domestic sources and foreign transport on CH4 concentrations over China. Simulated surface-layer CH4 concentrations over China exhibit maximum concentrations in summer and minimum concentrations in spring. The annual mean CH4 concentrations range from 1800 ppb over western China to 2300 ppb over the more populated eastern China. Foreign emissions were found to have large impacts on CH4 concentrations over China, contributing to about 85% of the CH4 concentrations over western China and about 80% of those over eastern China. The tagged simulation results showed that coal mining, livestock, and waste are the dominant domestic contributors to CH4 concentrations over China, accounting for 36%, 18%, and 16%, respectively, of the annual and national mean increase in CH4 concentration from all domestic emissions. Emissions from rice cultivation were found to make the largest contributions to CH4 concentrations over China in the summer, which is the key factor that leads to the maximum seasonal mean CH4 concentrations in summer.

  16. Critical source area management of agricultural phosphorus: experiences, challenges and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of critical source areas of phosphorus (P) loss produced by coinciding source and transport factors has been studied since the mid 1990s. It is widely recognized that identification of such areas has led to targeting of management strategies and conservation practices that more effectiv...

  17. The impact of source contribution uncertainty on the effects of source-specific PM2.5 on hospital admissions: a case study in Boston, MA.

    PubMed

    Kioumourtzoglou, Marianthi-Anna; Coull, Brent A; Dominici, Francesca; Koutrakis, Petros; Schwartz, Joel; Suh, Helen

    2014-07-01

    Epidemiologic studies of particulate sources and adverse health do not account for the uncertainty in the source contribution estimates. Our goal was to assess the impact of uncertainty on the effect estimates of particulate sources on emergency cardiovascular (CVD) admissions. We examined the effects of PM2.5 sources, identified by positive matrix factorization (PMF) and absolute principle component analysis (APCA), on emergency CVD hospital admissions among Medicare enrollees in Boston, MA, during 2003-2010, given stronger associations for this period. We propagated uncertainty in source contributions using a block bootstrap procedure. We further estimated average across-methods source-specific effect estimates using bootstrap samples. We estimated contributions for regional, mobile, crustal, residual oil combustion, road dust, and sea salt sources. Accounting for uncertainty, same-day exposures to regional pollution were associated with an across-methods average effect of 2.00% (0.18, 3.78%) increase in the rate of CVD admissions. Weekly residual oil exposures resulted in an average 2.12% (0.19, 4.22%) increase. Same-day and 2-day exposures to mobile-related PM2.5 were also associated with increased admissions. Confidence intervals when accounting for the uncertainty were wider than otherwise. Agreement in PMF and APCA results was stronger when uncertainty was considered in health models. Accounting for uncertainty in source contributions leads to more stable effect estimates across methods and potentially to fewer spurious significant associations. PMID:24496220

  18. Indoor PM2.5 in Santiago, Chile, spring 2012: Source apportionment and outdoor contributions

    NASA Astrophysics Data System (ADS)

    Barraza, Francisco; Jorquera, Héctor; Valdivia, Gonzalo; Montoya, Lupita D.

    2014-09-01

    Indoor and outdoor PM2.5 sampling campaigns were carried out at Santiago, Chile (6 million inhabitants, 33.5°S, 70.6°W) in spring 2012. A pair of samplers was placed inside each household studied and an additional pair of samplers was placed at a fixed outdoor location for measuring trace elements and elemental (EC) and organic carbon (OC) in Teflon and quartz filters, respectively. A total of 47 households in downtown Santiago were included in this study. Mean outdoor and indoor PM2.5 concentrations were 19.2 and 21.6 μg/m3, respectively. Indoor concentrations of PM2.5 were affected by socioeconomic status (p = 0.048) but no such evidence was found for PM2.5 species, except lead (p = 0.046). Estimated species infiltration factors were 0.70 (±0.19), 0.98 (±0.21), 0.80 (±0.12) and 0.80 (±0.03) for PM2.5, OC, EC and sulfur, respectively. Estimated household infiltration factors had a median of 0.75, mean of 0.78, standard deviation of 0.18 and interquartile range (IQR) 0.67-0.86. For the very first time, Positive Matrix Factorization (PMF3) was applied to an indoor PM2.5 chemical composition data set measured at Santiago. Source identification was carried out by inspection of key species and by comparison with published source profiles; six sources were identified. Three of them were outdoor contributions: motor vehicles with 5.6 (±0.7) μg/m3, street dust with 2.9 (±0.5) μg/m3 and secondary sulfates with 3.4 (±0.5) μg/m3. The indoor sources were: indoor dust with 1.6 (±0.3) μg/m3, cleaning and cooking with 2.3 (±0.3) μg/m3 and cooking and environmental tobacco smoke with 6.1 (±0.7) μg/m3. There is potential for further reducing PM2.5 population exposure in the short term -by improving ventilation of indoor air and controlling indoor sources - and in the long term - with filtration of outdoor air and household improvements to reduce air change rates.

  19. Methane and nitrous oxide emissions of China: Sources from agricultural systems and mitigation options

    SciTech Connect

    Lin Erda; Li Yue; Dong Hongmin; Zhou Wennong

    1994-12-31

    This paper reports the estimated results of methane and nitrous oxide emissions from China`s agricultural systems. The results show that the overall methane emissions from paddies and ruminants were 11.335 and 5.796 Tg/y, respectively in 1990. For mitigation options, based on some experiments, a number of options were recommended to reduce methane and nitrous oxide emissions. Several research priority areas were proposed to reduce the uncertainties in estimates they are: (1) improve measurement methods; (2) further identify controlling factors; and (3) develop simulation models.

  20. Eco-environment contribution of agroforestry to agriculture development in the plain area of China--Huai' an Prefecture, Jiangsu Province as the case study area.

    PubMed

    Ren, Hong-chang; Lu, Yong-long; Liu, Can; Meng, Qing-hua; Shi, Ya-juan

    2005-01-01

    For improving the environmental quality and ensuring supply of wood and non-timber forest products, many forests have been planted in plain areas of China. Scientists have studied their benefits, almost all of the approaches were based on fixed-point data, and few was considered on the non-efficient factors and temporal scale effects. This paper studies the positive and negative benefits at a large temporal scale, and the effects of plain afforestation on stockbreeding and rural economy. The benefits of plain afforestation, correlation coefficiency of agroforestry and production factors are analyzed via stochastic frontier modeling in Huanghuaihai Plain Area of China; elastic coefficient of agroforestry, husbandry, farming, and total output of agricultural sector are calculated through adopting partial differential equation. Some conclusions can be drawn that, plain forests have an important effect on the development of plain agriculture. But shelterbelts and small-scale forests have different effect on the development of agricultural economy. Shelterbelts have negative effect on the industries, but small-scale forest has positive effect. On the whole, contribution of forest resource to value of animal husbandry and gross production value of agriculture is positive, and to the value of farming is negative. PMID:16295915

  1. Summertime formaldehyde observations in New York City: Ambient levels, sources and its contribution to HOx radicals

    NASA Astrophysics Data System (ADS)

    Lin, Yu Chi; Schwab, James J.; Demerjian, Kenneth L.; Bae, Min-Suk; Chen, Wei-Nai; Sun, Yele; Zhang, Qi; Hung, Hui-Ming; Perry, Jacqueline

    2012-04-01

    Measurements of ambient formaldehyde (HCHO), related gases and particulate matter were carried out from the SUNY Albany mobile platform at the Queens College site in New York City (NYC) from 15 July to 3 August 2009. Ambient HCHO was measured using a quantum cascade laser (QCL) trace gas detector. HCHO concentrations ranged from 0.4 to 7.5 ppb with a mean value of 2.2 ± 1.1 ppb. Daily HCHO peaks were nearly always found between 1100 EST (Eastern Standard Time) and noontime throughout the sampling period. HCHO correlated strongly with NOx and black carbon during the traffic rush hours, but around noontime HCHO correlated much better with total oxidants (Ox = O3 + NO2). Using the diurnal pattern of HCHO/BC ratios, we estimated that 70% of HCHO present between 1200 EST to 1500 EST was produced by photochemical reactions. Sources of photochemically produced HCHO were calculated using measured concentrations of hydrocarbons, their reaction kinetics with OH radicals, and HCHO yields. These calculations indicated that isoprene oxidation was the dominant source of HCHO for this period at this site, responsible for 44%, followed by methane (25%) and propene (18%). To assess the impact of HCHO as a radical source, the HOx production rates from HCHO, HONO, O3 photolysis, and alkenes +O3 were calculated as well. Daily averaged HOx production rates from HONO, HCHO, O3 photolysis and alkenes +O3 were 8.6 × 106, 2.3 × 106, 1.7 × 106, 2.1 × 105 molecules cm-3 s-1, respectively, contributing 67, 18, 13 and 2% to the overall daily HOx radical budget from these precursors.

  2. Reducing future non-point source sediment and phosphorus loading under intensifying agricultural production in the Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Mogus, Mamaru; Schmitter, Petra; Tilahun, Seifu; Steenhuise, Tammo

    2016-04-01

    Intensification of agriculture will bring along non-point source pollution in the Ethiopian highlands resulting in eutrophication of lakes. The first signs of eutrophication have been observed already in Lake Tana. The lake it supports the lives of millions in the surrounding through fishing, tourism, transportation and hydropower.Presently, information on non-point source pollution is lacking in the Ethiopian highlands. There are few studies carried out in the highlands on the extent and the source areas of pollution, and models are not available for predicting sediment and phosphorus loading other than those developed for temperate climates. The objective of this chapter is to review existing non-point source studies, report on our findings of sediment and phosphorus sources that are related the non-point source pollution of Lake Tana and to present a non-point source model for the Ethiopian highland based on the Parameter Efficient Semi-distributed Watershed Hydrology Model (PED-WHM).In our research we have found that the saturation excess runoff from valley bottoms and from degraded lands are prevalent in the Ethiopia highlands. The periodically runoff source areas are also the sources for the non-point source pollution and by concentrating best management practices in these source areas we expect that we can reduce pollution without affecting the profitability of the existing farms. The water balance component of the non-point source model has been performing well in predicting both the discharge and the location of the runoff source areas. Sediment and phosphorus prediction models have been developed and are currently being tested for the 7km2Awramba watershed and the 1350 km2Gumara basin. Initial results indicate that 11.2 ton/ha/year sediment load and an accumulation rate of 17.3 mg/kg/year of dissolved phosphorus from Gumara watershed joining the lake. By developing best management practices at this time before non-point source pollution is rampant and

  3. Mycotoxins: diffuse and point source contributions of natural contaminants of emerging concern to streams

    USGS Publications Warehouse

    Kolpin, Dana W.; Schenzel, Judith; Meyer, Michael T.; Phillips, Patrick J.; Hubbard, Laura E.; Scott, Tia-Marie; Bucheli, Thomas D.

    2014-01-01

    To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. < 50 ng/L) during this study, concentrations exceeding 1000 ng/L were measured during spring snowmelt conditions in agricultural settings and in wastewater treatment plant effluent. Results of this study suggest that both diffuse (e.g. release from infected plants and manure applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown

  4. Long-term agricultural non-point source pollution loading dynamics and correlation with outlet sediment geochemistry

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Jiao, Wei; Li, Xiaoming; Giubilato, Elisa; Critto, Andrea

    2016-09-01

    Some agricultural non-point source (NPS) pollutants accumulate in sediments in the outlet sections of watersheds. It is crucial to evaluate the historical interactions between sediment properties and watershed NPS loading. Therefore, a sediment core from the outlet of an agricultural watershed was collected. The core age was dated using the 210Pb method, and sedimentation rates were determined using the constant rate of supply (CRS) model. The total nitrogen (TN), total phosphorus (TP), Cd, Pb, Cu, Ni and Cr accumulations in the sediment generally showed fluctuating increases, with the highest sedimentation fluxes all occurring in approximately 1998. The measurement of specific mass sedimentation rates reflected a record of watershed soil erosion dynamics. Using SWAT (Soil and Water Assessment Tool) to simulate long-term watershed agricultural NPS pollution loadings, the historical interactions between sediment properties and NPS loadings were further evaluated. The N leaching process weakened these interactions, but the historical accumulations of TP and heavy metals in sediments generally correlated well with watershed NPS TP loading. The regression analysis suggested that Pb and Cr were the most suitable indexes for assessing long-term NPS TN and TP pollution, respectively. Assessing the NPS loading dynamics using the vertical characteristics of sediment geochemistry is a new method.

  5. Source Contributions to Wintertime Elemental and Organic Carbon in the Western Arctic Based on Radiocarbon and Tracer Apportionment.

    PubMed

    Barrett, T E; Robinson, E M; Usenko, S; Sheesley, R J

    2015-10-01

    To quantify the contributions of fossil and biomass sources to the wintertime Arctic aerosol burden source apportionment is reported for elemental (EC) and organic carbon (OC) fractions of six PM10 samples collected during a wintertime (2012-2013) campaign in Barrow, AK. Radiocarbon apportionment of EC indicates that fossil sources contribute an average of 68 ± 9% (0.01-0.07 μg m(-3)) in midwinter decreasing to 49 ± 6% (0.02 μg m(-3)) in late winter. The mean contribution of fossil sources to OC for the campaign was stable at 38 ± 8% (0.04-0.32 μg m(-3)). Samples were also analyzed for organic tracers, including levoglucosan, for use in a chemical mass balance (CMB) source apportionment model. The CMB model was able to apportion 24-53% and 99% of the OC and EC burdens, respectively, during the campaign, with fossil OC contributions ranging from 25 to 74% (0.02-0.09 μg m(-3)) and fossil EC contributions ranging from 73 to 94% (0.03-0.07 μg m(-3)). Back trajectories identified two major wintertime source regions to Barrow: the Russian and North American Arctic. Atmospheric lifetimes of levoglucosan, ranging from 50 to 320 h, revealed variability in wintertime atmospheric processing of this biomass burning tracer. This study allows for unambiguous apportionment of EC to fossil fuel and biomass combustion sources and intercomparison with CMB modeling. PMID:26325404

  6. The organic agricultural waste as a basic source of biohydrogen production

    NASA Astrophysics Data System (ADS)

    Sriwuryandari, Lies; Priantoro, E. Agung; Sintawardani, Neni; Astuti, J. Tri; Nilawati, Dewi; Putri, A. Mauliva Hada; Mamat, Sentana, Suharwadji; Sembiring, T.

    2016-02-01

    Biohydrogen production research was carried out using raw materials of agricultural organic waste that was obtained from markets around the Bandung city. The organic part, which consisted of agricultural waste material, mainly fruit and vegetable waste, was crushed and milled using blender. The sludge that produced from milling process was then used as a substrate for mixed culture microorganism as a raw material to produce biohydrogen. As much as 1.2 kg.day-1 of sludge (4% of total solid) was fed into bioreactor that had a capacity of 30L. Experiment was done under anaerobic fermentation using bacteria mixture culture that maintained at pH in the range of 5.6-6.5 and temperature of 25-30oC on semi-continuous mode. Parameters of analysis include pH, temperature, total solid (TS), organic total solid (OTS), total gas production, and hydrogen gas production. The results showed that from 4% of substrate resulted 897.86 L of total gas, which contained 660.74 L (73.59%) of hydrogen gas. The rate of hydrogen production in this study was 11,063 mol.L-1.h-1.

  7. Carbonization on combustion and biodegradation of agricultural waste as a possible source of silica.

    PubMed

    Krishnamoorthy, Sarayu; Iyer, Nagesh R; Murthy, A Ramachandra

    2015-02-01

    Agricultural waste being the major solid waste in the environment, the study has explored and identified the presence of minerals especially silica in the agricultural waste like sugarcane bagasse ash and rice husk ash by carbonization on combustion at different thermal conditions and biodegradation. Presence of silica in the ash samples has been well characterized by the XRD, FT-IR, EDX, SEM and N2 sorption techniques. Presence of crystal phases of silica like quartz and cristoballite is well indexed by the X-ray diffraction peaks that appeared at 2θ = 27, 40 and 60 which is further confirmed by the peaks at 1100, 820 and 620 cm(-1) of FT-IR. The elemental composition of the silica in ash is determined by EDX analysis. The exothermic reaction and the mass loss observed in the TG/DTG at the transient temperature of 840-850 °C has confirmed the presence of the α-quartz. SEM micrograph has also supported the presence of silica and has revealed the various crystal shapes that were present in the sugarcane and husk ash. The study has clearly revealed that the silica content has increased with the increase in temperature and refinement of the combustion condition to a maximum of 18.7-52 % and on biodegradation to about 48.3-92.4 %. PMID:25413790

  8. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  9. Contribution of area sources to hazardous air pollutant emissions in three urban areas. Report for November 1992-October 1994

    SciTech Connect

    Jones, J.W.; Campbell, D.L.

    1995-04-01

    The paper discusses the contribution of area sources to hazardous air pollutant (HAP) emissions in three urban areas--Baltimore, Chicago, and Seattle-Tacoma (Puget Sound). U.S. Environmental Protection Agency (EPA) has implemented the Urban Area Source Program (UASP) required until Title III of the 1990 Clean Air Act Amendments (CAAA). The HAPs emitted in the greatest quantities in these area source inventories are from degreasing and dry cleaning. Another important source category is fossil fuel combustion. The best approach to use in developing a HAP area source emissions inventory may be to combine the top-down method with local surveys of small manufacturing facilities and service industies.

  10. Evaluating Source Area Contributions from Aircraft Flux Measurements Over Heterogeneous Land Using Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Kustas, William P.; Albertson, John D.

    2013-05-01

    environmental conditions, footprint models will need to predict differing source area/footprint contributions between active ( H) and passive ( LE) scalar fluxes by considering land-surface heterogeneity and ABL dynamics.

  11. Towards a nutrient export risk matrix approach to managing agricultural pollution at source

    NASA Astrophysics Data System (ADS)

    Hewett, C. J. M.; Quinn, P. F.; Whitehead, P. G.; Heathwaite, A. L.; Flynn, N. J.

    A generic Nutrient Export Risk Matrix (NERM) approach is presented. This provides advice to farmers and policy makers on good practice for reducing nutrient loss and, hopefully, persuades them to implement such measures. Combined with a range of nutrient transport modelling tools and field experiments, NERMs can play an important role in reducing nutrient export from agricultural land. The Phosphorus Export Risk Matrix (PERM) is presented as an example NERM. The PERM integrates hydrological understanding of runoff with a number of agronomic and policy factors into a clear problem-solving framework. This allows farmers and policy makers to visualise strategies for reducing phosphorus loss through proactive land management. The risk of pollution is assessed by a series of informed questions relating to farming intensity and practice. This information is combined with the concept of runoff management to point towards simple, practical remedial strategies which do not compromise farmers’ ability to obtain sound economic returns from their crop and livestock.

  12. Integrating different knowledge sources and disciplines for practical applications in Forest and Agricultural Engineering

    NASA Astrophysics Data System (ADS)

    Guzmán, Gema; Castillo, Carlos; Taguas, Encarnación

    2013-04-01

    One of the aims of 'The Bologna Process' is to promote among the students the acquisition of practical, social and creative skills to face real-life situations and to solve the difficulties they might find during their professional life. It involves an important change in the educational system, from a traditional approach focused on teaching, towards a new one that encourages learning. Under this context, University teaching implies the design of activities addressed to the dissemination of "know-how" to solve different problems associated with two technical disciplines: Forest and Agricultural Engineering. This study presents a preliminary experience where a group of information and communication technologies (ICT) such as, audiovisual resources (videos, reports and photo gallery), virtual visits to blogs and interactive activities have been used to provide a comprehensive knowledge of the environmental and sociocultural components of the landscape in order to facilitate the decision-making process in the engineering project context . With these tools, the students must study and characterize all these aspects in order to justify the chosen solutions and the project design. This approach was followed in the analysis of the limiting factors of practical cases in projects about forestation, landscape restoration and hydrological planning. This communication shows how this methodology has been applied in Forest and Agricultural Engineering and the students' experience with these innovative tools. The use of ICTs involved a friendly framework that stimulated students' interest and made subjects more attractive, since it allowed to assess the complex relationships between landscape, history and economy. Furthermore, this type of activities promotes the interdisciplinary training and the acquisition of creative and autonomous skills which are not included in many cases into the main objectives of the subjects.

  13. Relative Contributions of the Saharan and Sahelian Sources to the Atmospheric Dust Load Over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul; Chin, M.; Torres, O.; Prospero, J.; Dubovik, O.; Holben, B.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It has long been recognized that Saharan desert is the major source for long range transport of mineral dust over the Atlantic. The contribution from other natural sources to the dust load over the Atlantic has generally been ignored in previous model studies or been replaced by anthropogenically disturbed soil emissions. Recently, Prospero et.at. have identified the major dust sources over the Earth using TOMS aerosol index. They showed that these sources correspond to dry lakes with layers of sediment deposed in the late Holocene or Pleistocene. One of the most active of these sources seem to be the Bodele depression. Chiapello et al. have analyzed the mineralogical composition of dust on the West coast of Africa. They found that Sahelian dust events are the most intense but are less frequent than Saharan plumes. This suggests that the Bodele depression could contribute significantly to the dust load over the Atlantic. The relative contribution of the Sahel and Sahara dust sources is of importance for marine biogeochemistry or atmospheric radiation, because each source has a distinct mineralogical composition. We present here a model study of the relative contributions of Sahara and Sahel sources to the atmospheric dust aerosols over the North Atlantic. The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate dust distribution in 1996-1997. Dust particles are labeled depending on their sources. In this presentation, we will present the comparison between the model results and observations from ground based measurements (dust concentration, optical thickness and size distribution) and satellite data (TOMS aerosol index). The relative contribution of each source will then be analyzed spatially and temporally.

  14. Source sector and region contributions to BC and PM2.5 in Central Asia

    DOE PAGESBeta

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; et al

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 μg m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly valuesmore » from 2 to 90 μg m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of

  15. Comprehensive study of emission source contributions for tropospheric ozone formation over East Asia

    NASA Astrophysics Data System (ADS)

    Itahashi, Syuichi; Hayami, Hiroshi; Uno, Itsushi

    2015-01-01

    Emission source contributions of tropospheric ozone (O3) were comprehensively investigated by using the higher-order decoupled direct method (HDDM) for sensitivity analysis and the ozone source apportionment technology (OSAT) for mass balance analysis in the comprehensive air-quality model with extensions (CAMx). The response of O3 to emissions reductions at various levels in mainland China, Korea, and Japan were estimated and compared with results calculated by the brute force method (BFM) where one model parameter is varied at a time. Emissions were assessed at three receptor sites in Japan that experienced severe pollution events in May 2009. For emissions from China, HDDM assessed O3 response with a bias of only up to 3 ppbv (a relative error of 4.5%) even for a 50% reduction but failed to assess a more extreme reduction. OSAT was reasonably accurate at 100% reduction, with a -4 ppbv (-7%) bias, but was less accurate at moderate ranges of reduction (˜50-70%). For emissions from Korea and Japan, HDDM captured the nonlinear response at all receptor sites and at all reduction levels to within 1% in all but one case; however, the bias of OSAT increased with the increasing reduction of emissions. One possible reason for this is that OSAT does not account for NO titration. To address this, a term for potential ozone (PO; O3 and NO2 together) was introduced. Using of PO instead of O3 improved the performance of OSAT, especially for emissions reductions from Korea and Japan. The proposed approach with PO refined the OSAT results and did not degrade HDDM performance.

  16. Molecular markers for identifying municipal, domestic and agricultural sources of organic matter in natural waters.

    PubMed

    Harwood, John J

    2014-01-01

    Molecular markers can be used to determine the sources of organic pollution in water. This review summarizes progress made during the last two decades in identifying reliable molecular markers to distinguish pollution from sewage, animal production, and other sources. Two artificial sweeteners, sucralose and acesulfame-K, are sufficiently stable to be molecular markers and easily associated with domestic wastewater. Waste from different animal species may be distinguished by profiling fecal sterols and bile acids. Other markers which have been evaluated, including caffeine, detergent components, and compounds commonly leached from landfills are discussed. PMID:24200048

  17. Stable isotopes as ecological tracers: an efficient method for assessing the contribution of multiple sources to mixtures

    NASA Astrophysics Data System (ADS)

    Bugalho, M. N.; Barcia, P.; Caldeira, M. C.; Cerdeira, J. O.

    2008-09-01

    Stable isotopes are increasingly being used as tracers of ecological processes potentially providing relevant information to environmental management issues. An application of the methodology consists in relating the stable isotopic composition of a sample mixture to that of sources. The number of stable isotopes, however, is usually lower than that of potential sources existing in an ecosystem, which creates mathematical difficulties in correctly tracing sources. We discuss a linear programming model which efficiently derives information on the contribution of sources to mixtures for any number of stable isotopes and any number of sources by addressing multiple sources simultaneously. The model identifies which sources are present in all, present in a subset of the samples or absent from all samples simultaneously and calculates minimum and maximum values of each source in the mixtures. We illustrate the model using a data set consisting of the isotopic signatures of different plant sources ingested by primary consumers in tropical riverine habitat in Asia. The model discussed may contribute to extend the scope of stable isotopes methodology to a range of new problems dealing with multiple sources and multiple tracers. For instance, in food web studies, if particular organic matter sources disappear or decrease in availability (e.g. climate change scenarios) the model allows simulation of alternative diets of the consumers providing potentially relevant information for managers and decision makers.

  18. Stable isotopes as ecological tracers: an efficient method for assessing the contribution of multiple sources to mixtures

    NASA Astrophysics Data System (ADS)

    Bugalho, M. N.; Barcia, P.; Caldeira, M. C.; Cerdeira, J. O.

    2008-06-01

    Stable isotopes are increasingly being used as tracers of ecological processes potentially providing relevant information to environmental management issues. An application of the methodology consists in relating the stable isotopic composition of a sample mixture to that of sources. The number of stable isotopes, however, is usually lower than that of potential sources existing in an ecosystem, which creates mathematical difficulties in correctly tracing sources. We discuss a linear programming model which efficiently derives information on the contribution of sources to mixtures for any number of stable isotopes and any number of sources by addressing multiple sources simultaneously. The model identifies which sources are present in all, present in a subset of the samples or absent from all samples simultaneously and calculates minimum and maximum values of each source in the mixtures. We illustrate the model using a data set consisting on the isotopic signatures of different plant sources ingested by primary consumers in tropical riverine habitat in Asia. The model discussed may contribute to extend the scope of stable isotopes methodology to a range of new problems dealing with multiple sources and multiple tracers. For instance, in food web studies, if particular organic matter sources disappear or decrease in availability (e.g. climate change scenarios) the model allows simulation of alternative diets of the consumers providing potentially relevant information for managers and decision makers.

  19. Distribution, enrichment and principal component analysis for possible sources of naturally occurring and anthropogenic radionuclides in the agricultural soil of Punjab state, India.

    PubMed

    Kumar, Ajay; Joshi, Vikram M; Mishra, Manish K; Karpe, Rupali; Rout, Sabyasachi; Narayanan, Usha; Tripathi, Raj M; Singh, Jaspal; Kumar, Sanjeev; Hegde, Ashok G; Kushwaha, Hari S

    2012-06-01

    Enrichment factor (EF) of elements including geo-accumulation indices for soil quality and principal component analysis (PCA) were used to identify the contributions of the origin of sources in the studied area. Results of (40)K, (137)Cs, (238)U and (232)Th including their decay series isotopes in the agricultural soil of Mansa and Bathinda districts in the state of Punjab were presented and discussed. The measured mean radioactivity concentrations for (238)U, (232)Th and (40)K in the agricultural soil of the studied area differed from nationwide average crustal abundances by 51, 17 and 43 %, respectively. The sequence of the EFs of radionuclides in soil from the greatest to the least was found to be (238)U > (40)K > (226)Ra > (137)Cs > (232)Th > (228)Ra. Even though the enrichment of naturally occurring radionuclides was found to be higher, they remained to be in I(geo) class of '0', indicating that the soil is uncontaminated with respect to these radionuclides. Among non-metals, N showed the highest EF and belonged to I(geo) class of '2', indicating that soil is moderately contaminated due to intrusion of fertiliser. The resulting data set of elemental contents in soil was also interpreted by PCA, which facilitates identification of the different groups of correlated elements. The levels of the (40)K, (238)U and (232)Th radionuclides showed a significant positive correlation with each other, suggesting a similar origin of their geochemical sources and identical behaviour during transport in the soil system. PMID:21893521

  20. Using Radioactive Fallout Cesium (137Cs) to Distinguish Sediment Sources in an Agricultural Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radioactive fallout Cesium (Cs-137) has been used for quantifying sources of accumulating sediment in water bodies and to determine the rates and pattern of soil erosion. The objectives of this research are to use Cs-137 as a tracer to determine patterns of soil erosion and deposition of eroding soi...

  1. Organic matter source and degradation as revealed by molecular biomarkers in agricultural soils of Yuanyang terrace

    NASA Astrophysics Data System (ADS)

    Li, Fangfang; Pan, Bo; Zhang, Di; Yang, Xiaolei; Li, Hao; Liao, Shaohua; Ghaffar, Abdul; Peng, Hongbo; Xing, Baoshan

    2015-06-01

    Three soils with different tillage activities were collected and compared for their organic matter sources and degradation. Two soils (TD and TP) with human activities showed more diverse of chemicals in both free lipids and CuO oxidation products than the one (NS) without human activities. Branched alkanoic acids only accounted for less than 5% of lipids, indicating limited microbial inputs in all three investigated soils. The degradation of lignin in NS and TD was relatively higher than TP, probably because of the chemical degradation, most likely UV light-involved photodegradation. Lignin parameters obtained from CuO oxidation products confirmed that woody gymnosperm tissue (such as pine trees) may be the main source for NS, while angiosperm tissues from vascular plant may be the predominant source for the lignins in TD and TP. Analysis of BPCAs illustrated that BC in NS may be mainly originated from soot or other fossil carbon sources, whereas BC in TD and TP may be produced during corn stalk and straw burning. BC was involved in mineral interactions for TD and TP. The dynamics of organic matter needs to be extensively examined for their nonideal interactions with contaminants.

  2. Organic matter source and degradation as revealed by molecular biomarkers in agricultural soils of Yuanyang terrace

    PubMed Central

    Li, Fangfang; Pan, Bo; Zhang, Di; Yang, Xiaolei; Li, Hao; Liao, Shaohua; Ghaffar, Abdul; Peng, Hongbo; Xing, Baoshan

    2015-01-01

    Three soils with different tillage activities were collected and compared for their organic matter sources and degradation. Two soils (TD and TP) with human activities showed more diverse of chemicals in both free lipids and CuO oxidation products than the one (NS) without human activities. Branched alkanoic acids only accounted for less than 5% of lipids, indicating limited microbial inputs in all three investigated soils. The degradation of lignin in NS and TD was relatively higher than TP, probably because of the chemical degradation, most likely UV light-involved photodegradation. Lignin parameters obtained from CuO oxidation products confirmed that woody gymnosperm tissue (such as pine trees) may be the main source for NS, while angiosperm tissues from vascular plant may be the predominant source for the lignins in TD and TP. Analysis of BPCAs illustrated that BC in NS may be mainly originated from soot or other fossil carbon sources, whereas BC in TD and TP may be produced during corn stalk and straw burning. BC was involved in mineral interactions for TD and TP. The dynamics of organic matter needs to be extensively examined for their nonideal interactions with contaminants. PMID:26046574

  3. The seasonal dynamics of the stream sources and input flow paths of water and nitrogen of an Austrian headwater agricultural catchment.

    PubMed

    Exner-Kittridge, Michael; Strauss, Peter; Blöschl, Günter; Eder, Alexander; Saracevic, Ernis; Zessner, Matthias

    2016-01-15

    Our study examines the source aquifers and stream inputs of the seasonal water and nitrogen dynamics of a headwater agricultural catchment to determine the dominant driving forces for the seasonal dynamics in the surface water nitrogen loads and concentrations. We found that the alternating aquifer contributions throughout the year of the deep and shallow aquifers were the main cause for the seasonality of the nitrate concentration. The deep aquifer water typically contributed 75% of the total outlet discharge in the summer and 50% in the winter when the shallow aquifer recharges due to low crop evapotranspiration. The shallow aquifer supplied the vast majority of the nitrogen load to the stream due to the significantly higher total nitrogen concentration (11 mg-N/l) compared to the deep aquifer (0.50 mg-N/l). The main stream input pathway for the shallow aquifer nitrogen load was from the perennial tile drainages providing 60% of the total load to the stream outlet, while only providing 26% of the total flow volume. The diffuse groundwater input to the stream was the largest input to the stream (39%), but only supplied 27% to the total nitrogen load as the diffuse water was mostly composed of deep aquifer water. PMID:26562340

  4. Evaluating the critical source area concept of phosphorus loss from soils to water-bodies in agricultural catchments.

    PubMed

    Shore, M; Jordan, P; Mellander, P-E; Kelly-Quinn, M; Wall, D P; Murphy, P N C; Melland, A R

    2014-08-15

    Using data collected from six basins located across two hydrologically contrasting agricultural catchments, this study investigated whether transport metrics alone provide better estimates of storm phosphorus (P) loss from basins than critical source area (CSA) metrics which combine source factors as well. Concentrations and loads of P in quickflow (QF) were measured at basin outlets during four storm events and were compared with dynamic (QF magnitude) and static (extent of highly-connected, poorly-drained soils) transport metrics and a CSA metric (extent of highly-connected, poorly-drained soils with excess plant-available P). Pairwise comparisons between basins with similar CSA risks but contrasting QF magnitudes showed that QF flow-weighted mean TRP (total molybdate-reactive P) concentrations and loads were frequently (at least 11 of 14 comparisons) more than 40% higher in basins with the highest QF magnitudes. Furthermore, static transport metrics reliably discerned relative QF magnitudes between these basins. However, particulate P (PP) concentrations were often (6 of 14 comparisons) higher in basins with the lowest QF magnitudes, most likely due to soil-management activities (e.g. ploughing), in these predominantly arable basins at these times. Pairwise comparisons between basins with contrasting CSA risks and similar QF magnitudes showed that TRP and PP concentrations and loads did not reflect trends in CSA risk or QF magnitude. Static transport metrics did not discern relative QF magnitudes between these basins. In basins with contrasting transport risks, storm TRP concentrations and loads were well differentiated by dynamic or static transport metrics alone, regardless of differences in soil P. In basins with similar transport risks, dynamic transport metrics and P source information additional to soil P may be required to predict relative storm TRP concentrations and loads. Regardless of differences in transport risk, information on land use and

  5. Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Seuntjens, Piet

    2013-04-01

    Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

  6. Estimation of contribution ratios of pollutant sources to a specific section based on an enhanced water quality model.

    PubMed

    Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu

    2015-05-01

    Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment. PMID:25779107

  7. Agricultural waste as a source for the production of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Vaibhav, Vineet; Vijayalakshmi, U.; Roopan, S. Mohana

    2015-03-01

    The major interest of the paper deals with the extraction of silica from four natural sources such as rice husk, bamboo leaves, sugarcane bagasse and groundnut shell. These waste materials in large quantities can create a serious environmental problem. Hence, there is a need to adopt proper strategy to reduce the waste. In the present investigation, all the waste materials are subjected to moisture removal in a hot plate and sintered at 900 °C for 7 h. The sintered powder was treated with 1 M NaOH to form sodium silicate and then with 6 M H2SO4 to precipitate silica. The prepared silica powders were characterized by FT-IR, XRD and SEM-EDAX analysis. The silica recovered from different sources was found to vary between 52% and 78%. Magnesium substituted silica was formed from the groundnut waste and further treatment is required to precipitate silica.

  8. Agricultural waste as a source for the production of silica nanoparticles.

    PubMed

    Vaibhav, Vineet; Vijayalakshmi, U; Roopan, S Mohana

    2015-03-15

    The major interest of the paper deals with the extraction of silica from four natural sources such as rice husk, bamboo leaves, sugarcane bagasse and groundnut shell. These waste materials in large quantities can create a serious environmental problem. Hence, there is a need to adopt proper strategy to reduce the waste. In the present investigation, all the waste materials are subjected to moisture removal in a hot plate and sintered at 900°C for 7 h. The sintered powder was treated with 1 M NaOH to form sodium silicate and then with 6M H2SO4 to precipitate silica. The prepared silica powders were characterized by FT-IR, XRD and SEM-EDAX analysis. The silica recovered from different sources was found to vary between 52% and 78%. Magnesium substituted silica was formed from the groundnut waste and further treatment is required to precipitate silica. PMID:25576950

  9. [Mechanism of stomatal regulation by root sourced signaling and its agricultural signficance].

    PubMed

    Guo, Anhong; Li, Zhaoxiang; Liu, Gengshan; Yang, Yuanyan; An, Shunqing

    2004-06-01

    Under soil drought condition, root sourced signal abcisic acid (ABA) plays an important role in the long distance signaling process, and can be a measurement of soil water availability. ABA is also an effective stomatal closing agent, and acts to reduce transpiration and canopy water loss. This paper briefly introduced the physiological mechanism and theoretical model about the stomatal regulation by root sourced signaling, and indicated that the combination of this model with root water absorption model and stomatal conductance model could be more effective in depicting the response of plant to soil drying and atmospheric drought. In addition, some effective irrigation approaches, such as regulated deficit irrigation (RDI), partial root-zone drying (PRD) and controlled alternative irrigation (CAI) were profited from the mechanism of plant water use regulation by the root sourced signaling. These irrigation measures favored to reasonably distribute available soil water in root-zone. Root signaling system also played important role in regulating root growth and its development, retarding shoot growth to adjusting root shoot ratio, and optimizing assimilation allocation to favor to improve reproductive development. These processes hold substantial promise for enhancing crop water use efficiency. PMID:15362642

  10. Agriculture and food animals as a source of antimicrobial-resistant bacteria.

    PubMed

    Economou, Vangelis; Gousia, Panagiota

    2015-01-01

    One of the major breakthroughs in the history of medicine is undoubtedly the discovery of antibiotics. Their use in animal husbandry and veterinary medicine has resulted in healthier and more productive farm animals, ensuring the welfare and health of both animals and humans. Unfortunately, from the first use of penicillin, the resistance countdown started to tick. Nowadays, the infections caused by antibiotic-resistant bacteria are increasing, and resistance to antibiotics is probably the major public health problem. Antibiotic use in farm animals has been criticized for contributing to the emergence of resistance. The use and misuse of antibiotics in farm animal settings as growth promoters or as nonspecific means of infection prevention and treatment has boosted antibiotic consumption and resistance among bacteria in the animal habitat. This reservoir of resistance can be transmitted directly or indirectly to humans through food consumption and direct or indirect contact. Resistant bacteria can cause serious health effects directly or via the transmission of the antibiotic resistance traits to pathogens, causing illnesses that are difficult to treat and that therefore have higher morbidity and mortality rates. In addition, the selection and proliferation of antibiotic-resistant strains can be disseminated to the environment via animal waste, enhancing the resistance reservoir that exists in the environmental microbiome. In this review, an effort is made to highlight the various factors that contribute to the emergence of antibiotic resistance in farm animals and to provide some insights into possible solutions to this major health issue. PMID:25878509

  11. Agriculture and food animals as a source of antimicrobial-resistant bacteria

    PubMed Central

    Economou, Vangelis; Gousia, Panagiota

    2015-01-01

    One of the major breakthroughs in the history of medicine is undoubtedly the discovery of antibiotics. Their use in animal husbandry and veterinary medicine has resulted in healthier and more productive farm animals, ensuring the welfare and health of both animals and humans. Unfortunately, from the first use of penicillin, the resistance countdown started to tick. Nowadays, the infections caused by antibiotic-resistant bacteria are increasing, and resistance to antibiotics is probably the major public health problem. Antibiotic use in farm animals has been criticized for contributing to the emergence of resistance. The use and misuse of antibiotics in farm animal settings as growth promoters or as nonspecific means of infection prevention and treatment has boosted antibiotic consumption and resistance among bacteria in the animal habitat. This reservoir of resistance can be transmitted directly or indirectly to humans through food consumption and direct or indirect contact. Resistant bacteria can cause serious health effects directly or via the transmission of the antibiotic resistance traits to pathogens, causing illnesses that are difficult to treat and that therefore have higher morbidity and mortality rates. In addition, the selection and proliferation of antibiotic-resistant strains can be disseminated to the environment via animal waste, enhancing the resistance reservoir that exists in the environmental microbiome. In this review, an effort is made to highlight the various factors that contribute to the emergence of antibiotic resistance in farm animals and to provide some insights into possible solutions to this major health issue. PMID:25878509

  12. Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver

    SciTech Connect

    Wstringfellow@lbl.gov

    2002-07-24

    The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated

  13. Inverse modeling to estimate local source contributions in a complex environment with nearby port, airport, highway, and industrial sources

    EPA Science Inventory

    Source apportionment is challenging in urban environments with clustered sourceemissions that have similar chemical signatures. A field and inverse modeling studywas conducted in Elizabeth, New Jersey to observe gaseous and particulate pollutionnear the Port of New York and New J...

  14. Landscape Planning for Agricultural Non-Point Source Pollution Reduction. II. Balancing Watershed Size, Number of Watersheds, and Implementation Effort

    NASA Astrophysics Data System (ADS)

    Maxted, Jeffrey T.; Diebel, Matthew W.; Vander Zanden, M. Jake

    2009-01-01

    Agricultural non-point source (NPS) pollution poses a severe threat to water quality and aquatic ecosystems. In response, tremendous efforts have been directed toward reducing these pollution inputs by implementing agricultural conservation practices. Although conservation practices reduce pollution inputs from individual fields, scaling pollution control benefits up to the watershed level (i.e., improvements in stream water quality) has been a difficult challenge. This difficulty highlights the need for NPS reduction programs that focus efforts within target watersheds and at specific locations within target watersheds, with the ultimate goal of improving stream water quality. Fundamental program design features for NPS control programs—i.e., number of watersheds in the program, total watershed area, and level of effort expended within watersheds—have not been considered in any sort of formal analysis. Here, we present an optimization model that explores the programmatic and environmental trade-offs between these design choices. Across a series of annual program budgets ranging from 2 to 200 million, the optimal number of watersheds ranged from 3 to 27; optimal watershed area ranged from 29 to 214 km2; and optimal expenditure ranged from 21,000 to 35,000/km2. The optimal program configuration was highly dependent on total program budget. Based on our general findings, we delineated hydrologically complete and spatially independent watersheds ranging in area from 20 to 100 km2. These watersheds are designed to serve as implementation units for a targeted NPS pollution control program currently being developed in Wisconsin.

  15. Targeting allergenic fungi in agricultural environments aids the identification of major sources and potential risks for human health.

    PubMed

    Weikl, F; Radl, V; Munch, J C; Pritsch, K

    2015-10-01

    Fungi are, after pollen, the second most important producers of outdoor airborne allergens. To identify sources of airborne fungal allergens, a workflow for qPCR quantification from environmental samples was developed, thoroughly tested, and finally applied. We concentrated on determining the levels of allergenic fungi belonging to Alternaria, Cladosporium, Fusarium, and Trichoderma in plant and soil samples from agricultural fields in which cereals were grown. Our aims were to identify the major sources of allergenic fungi and factors potentially influencing their occurrence. Plant materials were the main source of the tested fungi at and after harvest. Amounts of A. alternata and C. cladosporioides varied significantly in fields under different management conditions, but absolute levels were very high in all cases. This finding suggests that high numbers of allergenic fungi may be an inevitable side effect of farming in several crops. Applied in large-scale studies, the concept described here may help to explain the high number of sensitization to airborne fungal allergens. PMID:26022406

  16. Partitioning Native and Imported Source Contributions and their Uncertainties for Urban Runoff in Los Angeles

    NASA Astrophysics Data System (ADS)

    Liu, S.; Hogue, T. S.; Stein, E. D.; Barco, J.

    2011-12-01

    Water conservation efforts strive to reduce dependency on imported water. A critical first step in these efforts is evaluating the range of hydrologic inputs and outputs of highly complex urban watersheds. The Ballona Creek Watershed is an ideal location to demonstrate application of a water budget analysis to quantify native and non-native inputs and outputs as well as associated uncertainties. The Ballona Creek Watershed is located within Los Angeles County, the second most populous metropolitan region in the United States. This extensively developed watershed relies heavily on imported water to meet the demands of its 1.2 million residents. Rapid development has led to an increase in impervious land cover, reducing natural infiltration and directing pollutant-loaded urban runoff to the concrete-lined channels which drain to the Santa Monica Bay. Results of the long-term water budget analysis show that the annual runoff ratio exhibits a distinct rising trend through the study period (1938 to 2010) which is indicative of rapid development; however, trends in the last decade have deviated from this pattern, often yielding annual runoff ratios greater than 1. At the monthly time scale, average dry season runoff exceeds precipitation during the June to August period for all decades between the 1940s to 2000s, with the exception of a few anomalous summer storm events. Most of this additional water is attributed to imported water and irrigation excess resulting in dry season runoff and artificial groundwater recharge. However, contributing native water sources also exist. Perennial natural springs were identified through field investigation in the foothills and along faults in the watershed. Summer season flow rates from sampled springs range from 2 to 200 m3/day. Historical evapotranspiration rates are also being investigated using traditional models and a remote-sensing algorithm. Information obtained from this study is being used to inform managers and decision

  17. Perceptual factors contribute more than acoustical factors to sound localization abilities with virtual sources

    PubMed Central

    Andéol, Guillaume; Savel, Sophie; Guillaume, Anne

    2015-01-01

    Human sound localization abilities rely on binaural and spectral cues. Spectral cues arise from interactions between the sound wave and the listener's body (head-related transfer function, HRTF). Large individual differences were reported in localization abilities, even in young normal-hearing adults. Several studies have attempted to determine whether localization abilities depend mostly on acoustical cues or on perceptual processes involved in the analysis of these cues. These studies have yielded inconsistent findings, which could result from methodological issues. In this study, we measured sound localization performance with normal and modified acoustical cues (i.e., with individual and non-individual HRTFs, respectively) in 20 naïve listeners. Test conditions were chosen to address most methodological issues from past studies. Procedural training was provided prior to sound localization tests. The results showed no direct relationship between behavioral results and an acoustical metrics (spectral-shape prominence of individual HRTFs). Despite uncertainties due to technical issues with the normalization of the HRTFs, large acoustical differences between individual and non-individual HRTFs appeared to be needed to produce behavioral effects. A subset of 15 listeners then trained in the sound localization task with individual HRTFs. Training included either visual correct-answer feedback (for the test group) or no feedback (for the control group), and was assumed to elicit perceptual learning for the test group only. Few listeners from the control group, but most listeners from the test group, showed significant training-induced learning. For the test group, learning was related to pre-training performance (i.e., the poorer the pre-training performance, the greater the learning amount) and was retained after 1 month. The results are interpreted as being in favor of a larger contribution of perceptual factors than of acoustical factors to sound localization

  18. Assessment of groundwater vulnerability to nitrates from agricultural sources using a GIS-compatible logic multicriteria model.

    PubMed

    Rebolledo, Boris; Gil, Antonia; Flotats, Xavier; Sánchez, José Ángel

    2016-04-15

    In the present study an overlay method to assess groundwater vulnerability is proposed. This new method based on multicriteria decision analysis (MCDA) was developed and validated using an appropriate case study in Aragon area (NE Spain). The Vulnerability Index to Nitrates from Agricultural Sources (VINAS) incorporates a novel Logic Scoring of Preferences (LSP) approach, and it has been developed using public geographic information from the European Union. VINAS-LSP identifies areas with five categories of vulnerability, taking into account the hydrogeological and environmental characteristics of the territory as a whole. The resulting LSP map is a regional screening tool that can provide guidance on the potential risk of nitrate pollution, as well as highlight areas where specific research and farming planning policies are required. PMID:26874616

  19. Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Praphulla Chandra, Boggarapu; Sinha, Vinayak

    2016-04-01

    benzene and ensure compliance with the NAAQS. Calculations of excessive lifetime cancer risk due to benzene amount to 25 and 10 per million inhabitants for children and adults, respectively, exceeding the USEPA threshold of 1 per million inhabitants. Annual exposure to isocyanic acid was close to 1 ppb, the concentration considered to be sufficient to enhance risks for cardiovascular diseases and cataracts. This study makes a case for urgent mitigation of post-harvest paddy residue fires as the unknown synergistic effect of multi-pollutant exposure due to emissions from this anthropogenic source may be posing grave health risks to the population of the N.W. IGP. This work has been published very recently and the citation to the complete work is: B.P. Chandra, Vinayak Sinha, Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide, Environment International, Volume 88, March 2016, Pages 187-197, ISSN 0160-4120, http://dx.doi.org/10.1016/j.envint.2015.12.025.

  20. Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes.

    PubMed

    Xia, Xinghui; Wu, Qiong; Zhu, Baotong; Zhao, Pujun; Zhang, Shangwei; Yang, Lingyan

    2015-08-01

    We applied a mixing model based on stable isotopic δ(13)C, δ(15)N, and C:N ratios to estimate the contributions of multiple sources to sediment nitrogen. We also developed a conceptual model describing and analyzing the impacts of climate change on nitrogen enrichment. These two models were conducted in Miyun Reservoir to analyze the contribution of climate change to the variations in sediment nitrogen sources based on two (210)Pb and (137)Cs dated sediment cores. The results showed that during the past 50years, average contributions of soil and fertilizer, submerged macrophytes, N2-fixing phytoplankton, and non-N2-fixing phytoplankton were 40.7%, 40.3%, 11.8%, and 7.2%, respectively. In addition, total nitrogen (TN) contents in sediment showed significant increasing trends from 1960 to 2010, and sediment nitrogen of both submerged macrophytes and phytoplankton sources exhibited significant increasing trends during the past 50years. In contrast, soil and fertilizer sources showed a significant decreasing trend from 1990 to 2010. According to the changing trend of N2-fixing phytoplankton, changes of temperature and sunshine duration accounted for at least 43% of the trend in the sediment nitrogen enrichment over the past 50years. Regression analysis of the climatic factors on nitrogen sources showed that the contributions of precipitation, temperature, and sunshine duration to the variations in sediment nitrogen sources ranged from 18.5% to 60.3%. The study demonstrates that the mixing model provides a robust method for calculating the contribution of multiple nitrogen sources in sediment, and this study also suggests that N2-fixing phytoplankton could be regarded as an important response factor for assessing the impacts of climate change on nitrogen enrichment. PMID:25862992

  1. Agricultural drainage ditches mitigate phosphorus loads as a function of hydrological variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus loading from non-point sources such as agricultural landscapes contributes to downstream aquatic ecosystem degradation. Specifically within the Mississippi watershed, enriched runoff contributions have far reaching consequences for coastal water eutrophication and Gulf of Mexico hypoxia. ...

  2. Modelling phosphorus inputs from agricultural sources and urban areas in river basins

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Björn; Vereecken, Harry; Kunkel, Ralf; Wendland, Frank

    2009-03-01

    An area-differentiated model approach (MEPhos) for the quantification of mean annual P-inputs from point and diffuse sources is presented. The following pathways are considered: artificial drainage, wash-off, groundwater outflow, soil erosion, rainwater sewers, combined sewer overflows, municipal waste water treatment plants and industrial effluents. Two retention functions for rivers and reservoirs are included in order to model P-sinks within a river basin. This allows a complete record of P-loads in heterogeneous meso- and macroscale river basins and enables validation of modeling results with water quality data on a load basis. The model is applied to the River Ruhr basin (4,485 km2) in Germany, which includes contrasting natural conditions, land use patterns as well as population and industry densities. Based on validated modelling results sub-areas of high P-loads are localized and management options for the reduction of P-inputs to surface waters are proposed taking into account the site conditions of the sub-areas relevant for high P-inputs into surface waters.

  3. Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability

    NASA Astrophysics Data System (ADS)

    Landers, John N.; Rass, Gerard; de Freitas, Pedro L.; Basch, Gottlieb; González Sanchez, Emilio J.; Tabaglio, Vincenzo; Kassan, Amir; Derpsch, Rolf; Friedrich, Theodor; Giupponi, Luca

    2013-04-01

    Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter (SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion, reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO2 emissions, (iv) cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff, (vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x) an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European countries, mainstream adoption is still to come

  4. Contribution of various carbon sources toward isoprene synthesis mediated by altered atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Trowbridge, A. M.; Asensio, D.; Eller, A. S.; Wilkinson, M. J.; Schnitzler, J.; Jackson, R. B.; Monson, R. K.

    2010-12-01

    Biogenically released isoprene is abundant in the troposphere, and has an essential function in determining atmospheric chemistry and important implications for plant metabolism. As a result, considerable effort has been made to understand the underlying mechanisms driving isoprene synthesis, particularly in the context of a rapidly changing environment. Recently, a number of studies have focused on the contribution of recently assimilated carbon as opposed to stored/alternative intracellular or extracellular carbon sources in the context of environmental stress. Results from these studies can offer clues about the importance of various carbon pools for isoprene production and elucidate the corresponding physiological changes that are responsible for these dynamic shifts in carbon allocation. We performed a 13CO2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of the incorporation of recently assimilated photosynthate into isoprene emitted from poplar (Poplar x canescens) under sub-ambient, ambient, and elevated CO2 growth conditions. We also monitored the importance of pyruvate-derived carbon for isoprene biosynthesis and obtained a detailed account of where individual carbons are derived from by analyzing the ratio of the 3C subunit of isoprene (M41+) (a fragment which contains two carbons from pyruvate) to the ratio of the parent isoprene molecule (M69+). Dynamics in the M41+:M69+ ratio indicate that recently assimilated carbon is incorporated into the pyruvate carbon pool slowly across all CO2 treatments and is therefore accessible for isoprene synthesis at a slower rate when compared to substrates derived directly from photosynthesis. Analysis of the rates of change for individual masses indicated that the carbon pools in trees grown in sub-ambient CO2 (200 ppm) are labeled ~2 times faster than those of trees grown in ambient or elevated CO2. Analysis of the total isoprene emission rates between treatments

  5. Woodchip bioreactors for N-source reduction in a highly managed agricultural landscape

    NASA Astrophysics Data System (ADS)

    Kult, K.; Jones, C. S.

    2011-12-01

    Excess nutrification and the resulting hypoxia in the Gulf of Mexico are increasingly understood to originate in managed landscapes of the Upper Mississippi River basin. Nitrogen inputs to cropped fields are high in landscapes with soils containing high organic nitrogen content that, when mineralized, releases nitrogen in the soluble nitrate form. These in situ sources supply extensive subsurface drainage systems that rapidly transport nitrogen to streams and ultimately the Gulf. Aggressive in-field N management can reduce loading to streams, but will not reduce loads to sufficiently impact Gulf hypoxia. Edge of Field (EOF) treatment will be needed to reach water quality objectives. Denitrification bioreactors are one technology being studied for practical and economical EOF nitrate reduction. Bioreactors intercept the high-N tile-drain effluent with woodchip substrates that provide carbon and energy to support denitrification. Iowa Soybean Association (ISA) installed six bioreactors. Design of the ISA bioreactors has focused on the diameter of the field tile and the catchment area. Designs balance discharge with retention times. The bioreactors have been designed to have a 4-hour hydraulic retention time (HRT) capable of treating 20% of peak flow. Denitrification is assumed to follow zero-order kinetics given the high NO3 concentrations in the studied systems. Aerobic organisms must deplete DO sufficiently so anaerobic denitrifying organisms can compete. Insufficient HRT results in unsatisfactory NO3 reductions. Conditions favoring incomplete denitrification can lead to emission of the greenhouse gas N2O. Excessive retention times allow for complete denitrification enabling SO4-reducing bacteria to thrive. This produces undesirable results: conversion of SO4 to H2S, C-source depletion, production of toxic CH3Hg+, and methanogenesis. A flow control structure (FCS) allows for management of HRT by modifying the position of stop logs. Increased HRT reduces the amount

  6. Phosphorus Treated Coal Combustion Products (CCP-bottom ash) as an Agricultural Source of Phosphorus

    NASA Astrophysics Data System (ADS)

    Junfeng, Shen; Powell, M. A.; Hayden, D. B.

    Coal combustion products (CCP or "ash") have been seen to be beneficial for improving soil quality and increasing vegetative yields. Owing to their structure with more holes, they are also potential carriers of plant nutrients. The bottom ash from the Lambton Generating Station, Sarnia, Ontario, Canada was treated for 66 hours in 0.10 mol/L P solutions prepared from NaH 2PO 4, which resulted in the ash adsorbing 784 µg/g of phosphorus. The ash was mixed with quartz sand and/or non P-loaded ash from the same source to provide a set of growth media that contained 10%, 25%, 50%, 75%, and 100% of the recommended dose of P (50 µg/g) for maize. Biomass yields at 26, 34, and 46 days after planting were compared with control (non-doped ash) and fertilized with 0-20-0 fertilizer. In general, growth media containing between 25% and 100% of the recommended P dose performed as well or better than the fertilized trials. 46 days after planting, the shoot fresh weight for the 50%, 75%, and 100% doped media were 39.46%, 42.73%, and 46.13%, respectively, greater compared to fertilized trials. The shoot dry weight increased by 29.71%, 13.39%, and 28.87%, respectively. Also, root fresh and dry weight increased averagely by 16.62% and 14.03%. These results implied that coal ashes are a better carrier for P uptaking, and P-loaded ash can be a good additive for sand soil improvement.

  7. RELATIVE CONTRIBUTION OF LEAD FROM ANTHROPOGENIC SOURCES TO THE TOTAL HUMAN LEAD EXPOSURE IN THE U.S.

    EPA Science Inventory

    The paper evaluates human exposure to lead at a baseline level for persons living in non-urban communities away from stationary or mobile sources of lead, eating typical diets, and engaging in no lead-related occupational or avocational activities. Relative contributions of atmos...

  8. PAIRED-CITY STUDY TO DETERMINE THE CONTRIBUTION OF SOURCE WATER TYPE TO THE ENDEMIC LEVEL OF MICROBIAL DISEASE

    EPA Science Inventory

    Paired-City Study to Determine the Contribution of Source Water Type to the Endemic Level of Microbial Disease

    F Frost PhD, T Kunde MPH, L Harter PhD, T Muller MS, GF Craun PE MPH, RL Calderon MPH PhD

    ABSTRACT

    Context: The effectiveness of current drinking...

  9. Effects of disturbance on contribution of energy sources to growth of juvenile chinook salmon (Oncorhynchus tshawytscha) in boreal streams

    USGS Publications Warehouse

    Perry, R.W.; Bradford, M.J.; Grout, J.A.

    2003-01-01

    We used stable isotopes of carbon in a growth-dependent tissue-turnover model to quantify the relative contribution of autochthonous and terrestrial energy sources to juvenile chinook salmon (Oncorhynchus tshawytscha) in five small boreal streams tributary to the upper Yukon River. We used a tissue-turnover model because fish did not grow enough to come into isotopic equilibrium with their diet. In two streams, autochthonous energy sources contributed 23 and 41% to the growth of juvenile salmon. In the other three, fish growth was largely due to terrestrial (i.e., allochthonous) energy sources. This low contribution of autochthonous energy appeared to be related to stream-specific disturbances: a recent forest fire impacted two of the streams and the third was affected by a large midsummer spate during the study. These disturbances reduced the relative abundance of herbivorous macroinvertebrates, the contribution of autochthonous material to other invertebrates, and ultimately, the energy flow between stream algae and fish. Our findings suggest that disturbances to streams can be an important mechanism affecting transfer of primary energy sources to higher trophic levels.

  10. Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria-A Step to Phosphorus Security in Agriculture.

    PubMed

    Mukherjee, Chandan; Chowdhury, Rajojit; Ray, Krishna

    2015-01-01

    Phosphorus (P), an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50-100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale. PMID:26733966

  11. Dioxins, furans, biphenyls, arsenic, thorium and uranium in natural and anthropogenic sources of phosphorus and calcium used in agriculture.

    PubMed

    Avelar, A C; Ferreira, W M; Pemberthy, D; Abad, E; Amaral, M A

    2016-05-01

    The aim of this study was to assess the presence of dioxins, furans and biphenyls, and the inorganic contaminants such as arsenic (As), thorium (Th) and uranium (U) in three main products used in Agriculture in Brazil: feed grade dicalcium phosphate, calcined bovine bone meal and calcitic limestone. The first two are anthropogenic sources of phosphorus and calcium, while calcitic limestone is a natural unprocessed mineral. Regarding to dioxin-like substances, all samples analyzed exhibited dioxins (PCDD) and furans (PCDF) and dioxin-like polychlorinated biphenyls (dl-PCBs) concentrations below limit of detection (LOD). In general, achieved is in accordance with regulation in Brazil where is established a maximum limit in limestone used in the citric pulp production (0.50pg WHO-TEQ g(-1)). In addition, reported data revealed very low levels for limestone in comparison with similar materials reported by European legislation. As result for toxic metals, achieved data were obtained using Instrumental Neutron Activation Analysis (INAA). On one hand, limestone sample exhibits the largest arsenic concentration. On another hand, dicalcium phosphate exhibited the largest uranium concentration, which represents a standard in animal nutrition. Therefore, it is phosphorus source in the animal feed industry can be a goal of concern in the feed field. PMID:26901743

  12. Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria—A Step to Phosphorus Security in Agriculture

    PubMed Central

    Mukherjee, Chandan; Chowdhury, Rajojit; Ray, Krishna

    2015-01-01

    Phosphorus (P), an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50–100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale. PMID:26733966

  13. Investigating the Sources and Dynamics of Dissolved Organic Matter in an Agricultural Watershed in California (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Dyda, R. Y.; Hernes, P. J.; Spencer, R. G.; Ingrum, T. D.; Pellerin, B. A.; Bergamaschi, B. A.

    2007-12-01

    Dissolved organic matter (DOM) is ubiquitous and plays critical roles in nutrient cycling, aquatic food webs and numerous other biogeochemical processes. Furthermore, various factors control the quality and quantity of DOM, including land use, soil composition, in situ production, microbial uptake and assimilation and hydrology. As a component of DOM, dissolved organic carbon (DOC) has been recently identified as a drinking water constituent of concern due to its propensity to form EPA-regulated carcinogenic compounds when disinfected for drinking water purposes. Therefore, understanding the sources, cycling and modification of DOC across various landscapes is of direct relevance to a wide range of studies. The Willow Slough watershed is located in the Central Valley of California (U.S.A.) and is characterized by both diverse geomorphology as well as land use. The watershed drains approximately 425 km2 and is bordered by Cache and Putah Creeks to the north and south. The study area in the watershed includes the eastern portion of the foothills of the inner Coast Range and the alluvial plain and encompasses diverse land uses, including orchards, viticulture, dairy, pasture and natural grasslands. The Willow Slough watershed represents a unique opportunity to examine DOC dynamics through multiple land uses and hydrologic flow paths that are common throughout California. Preliminary data show that DOC concentrations at the watershed mouth peak during winter storms and also increase gradually throughout the summer months during the agricultural irrigation season. The increasing DOC concentrations during the summer months may result from agricultural runoff and/or primary production in channel. In addition, initial results using the chromophoric DOM (CDOM) absorption coefficient and spectral slope parameters indicate seasonal differences in the composition of the DOM. Spectral slopes decreased during both the summer irrigation season and winter storms relative to winter

  14. Contributed Review: A new synchronized source solution for coherent Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Wang, Yuxin; Liang, Runfu; Wang, Jiaqi; Qiu, Ping

    2016-07-01

    Based on vibrational spectroscopy, coherent Raman Scattering (CRS) microscopy allows label-free imaging of biological and chemical samples with endogenous image contrast. Two-color, synchronized picosecond pulses are typically used for high spectral resolution imaging, which in turn constitutes a dramatic laser source challenge for CRS microscopy. Recently, synchronized time-lens source, inspired from ultrafast optical signal processing, has emerged as a promising laser source solution and has found application in various modalities of CRS microscopy. Time-lens is based on space-time analogy, which uses a "lens" in the time domain to compress long optical pulses or even continuous waves to ultrashort pulses, mimicking a lens in the space domain. Phase and intensity modulators driven with electrical signals are used in the time-lens source for picosecond pulse generation. As a result, the time-lens source is highly versatile and naturally compatible with modulation capabilities. More importantly, if the electrical signals used to drive the time-lens source are derived from other laser sources, such as mode-locked lasers, then synchronization between them can be realized, underlying the physics of a synchronized time-lens source. In this paper, we review recent progress on the basic principle, design of the synchronized time-lens source, and its applications to CRS microscopy of both biological and chemical samples.

  15. Contribution of PAHs from coal-tar pavement sealcoat and other sources to 40 U.S. lakes

    USGS Publications Warehouse

    Van Metre, Peter C.; Mahler, Barbara J.

    2010-01-01

    Contamination of urban lakes and streams by polycyclic aromatic hydrocarbons (PAHs) has increased in the United States during the past 40 years. We evaluated sources of PAHs in post-1990 sediments in cores from 40 lakes in urban areas across the United States using a contaminant mass-balance receptor model and including as a potential source coal-tar-based (CT) sealcoat, a recently recognized source of urban PAH. Other PAH sources considered included several coal- and vehicle-related sources, wood combustion, and fuel-oil combustion. The four best modeling scenarios all indicate CT sealcoat is the largest PAH source when averaged across all 40 lakes, contributing about one-half of PAH in sediment, followed by vehicle-related sources and coal combustion. PAH concentrations in the lakes were highly correlated with PAH loading from CT sealcoat (Spearman's rho=0.98), and the mean proportional PAH profile for the 40 lakes was highly correlated with the PAH profile for dust from CT-sealed pavement (r=0.95). PAH concentrations and mass and fractional loading from CT sealcoat were significantly greater in the central and eastern United States than in the western United States, reflecting regional differences in use of different sealcoat product types. The model was used to calculate temporal trends in PAH source contributions during the last 40 to 100 years to eight of the 40 lakes. In seven of the lakes, CT sealcoat has been the largest source of PAHs since the 1960s, and in six of those lakes PAH trends are upward. Traffic is the largest source to the eighth lake, located in southern California where use of CT sealcoat is rare.

  16. A lighting assembly based on red and blue light-emitting diodes as a lighting source for space agriculture

    NASA Astrophysics Data System (ADS)

    Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Ptushenko, Vasiliy; Erokhin, Alexei

    Light-emitting diodes (LEDs) are a promising lighting source for space agriculture due to their high efficiency, longevity, safety, and other factors. Assemblies based on red and blue LEDs have been recommended in literature, although not all plants show sufficient productivity in such lighting conditions. Adding of green LEDs proposed in some works was aimed at psychological support for the crew, and not at the improvement of plant growth. We studied the growth and the state of the photosynthetic apparatus in Chinese cabbage (Brassica chinensis L.) plants grown under red (650 nm) and blue (470 nm) light-emitting diodes (LEDs). Plants grown under a high-pressure sodium lamp (HPS lamp) were used as a control. The plants were illuminated with two photosynthetic photon flux levels: nearly 400 µE and about 100 µE. Plants grown under LEDs with 400 µE level, as compared to control plants, showed lower fresh weight, edible biomass, growth rate, and sugar content. The difference in fresh weight and edible biomass was even more pronounced in plants grown with 100 µE level; the data indicate that the adaptability of the test plants to insufficient lighting decreased. Under LEDs, we observed the decreasing of root growth and the absence of transition to the flowering stage, which points to a change in the hormonal balance in plants grown in such lighting conditions. We also found differences in the functioning of the photosynthetic apparatus and its reaction to a low lighting level. We have concluded that a lighting assembly with red and blue LEDs only is insufficient for the plant growth and productivity, and can bring about alterations in their adaptive and regulatory mechanisms. Further studies are needed to optimize the lighting spectrum for space agriculture, taking into account the photosynthetic, phototropic and regulatory roles of light. Using white LEDs or adding far-red and green LEDs might be a promising approach.

  17. Contribution of Two Sources of Listener Knowledge to Intelligibility of Speakers with Cerebral Palsy

    ERIC Educational Resources Information Center

    Hustad, Katherine C.

    2007-01-01

    Purpose: This study examined the independent and combined effects of two sources of linguistic knowledge (alphabet cues and semantic predictability) on the intelligibility of speakers with dysarthria. The study also examined the extent to which each source of knowledge accounted for variability in intelligibility gains. Method: Eight speakers with…

  18. CARBON CONTAINING COMPONENT OF THE LOS ANGELES AEROSOL: SOURCE APPORTIONMENT AND CONTRIBUTIONS TO THE VISIBILITY BUDGET

    EPA Science Inventory

    Source resolution of the organic component of the fine fraction of the ambient aerosol (d(sub p) < 3.5 micrometers) has been carried out by combining source information from the organic component with thermal analysis and local emission inventories. The primary and secondary carb...

  19. The Contribution of Executive Function to Source Memory Development in Early Childhood

    ERIC Educational Resources Information Center

    Rajan, Vinaya; Cuevas, Kimberly; Bell, Martha Ann

    2014-01-01

    Age-related differences in episodic memory judgments assessing recall of fact information and the source of this information were examined. The role of executive function (EF) in supporting early episodic memory ability was also explored. Four- and 6-year-old children were taught 10 novel facts from two different sources (experimenter or puppet),…

  20. Dual Nitrate Isotopes in Dry Deposition: Utility for Partitioning Nox Source Contributions to Landscape Nitrogen Deposition

    EPA Science Inventory

    Dry deposition is a major component of total nitrogen deposition and thus an important source of bioavailable nitrogen to ecosystems. However, relative to wet deposition, less is known regarding the sources and spatial variability of dry deposition. This is in part due to diffi...

  1. The Contribution of Executive Function to Source Memory Development in Early Childhood

    PubMed Central

    Rajan, Vinaya; Cuevas, Kimberly; Bell, Martha Ann

    2013-01-01

    Age-related differences in episodic memory judgments assessing recall of fact information and the source of this information were examined. The role of executive function in supporting early episodic memory ability was also explored. Four- and 6-year-old children were taught 10 novel facts from two different sources (experimenter or puppet) and memory for both fact and source information was later tested. Measures of working memory, inhibitory control, and set-shifting were obtained to produce an indicator of children’s executive function. Six-year-olds recalled more fact and source information than 4-year-olds. Regression analyses revealed that age, language ability, and executive function accounted for unique variance in children’s fact recall and source recall performance. These findings suggest a link between episodic memory and executive function, and we propose that developmental investigations should further explore this association. PMID:24829540

  2. Application of swine manure on agricultural fields contributes to extended-spectrum β-lactamase-producing Escherichia coli spread in Tai'an, China

    PubMed Central

    Gao, Lili; Hu, Jiaqing; Zhang, Xiaodan; Wei, Liangmeng; Li, Song; Miao, Zengmin; Chai, Tongjie

    2015-01-01

    The prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) is increasing rapidly in both hospital environments and animal farms. A lot of animal manure has been directly applied into arable fields in developing countries. But the impact of ESBL-positive bacteria from animal manure on the agricultural fields is sparse, especially in the rural regions of Tai'an, China. Here, we collected 29, 3, and 10 ESBL-producing E. coli from pig manure, compost, and soil samples, respectively. To track ESBL-harboring E. coli from agricultural soil, these isolates of different sources were analyzed with regard to antibiotic resistance profiles, ESBL genes, plasmid replicons, and enterobacterial repetitive intergenic consensus (ERIC)-polymerase chain reaction (PCR) typing. The results showed that all the isolates exhibited multi-drug resistant (MDR). CTX-M gene was the predominant ESBL gene in the isolates from pig farm samples (30/32, 93.8%) and soil samples (7/10, 70.0%), but no SHV gene was detected. Twenty-five isolates contained the IncF-type replicon of plasmid, including 18 strains (18/32, 56.3%) from the pig farm and 7 (7/10, 70.0%) from the soil samples. ERIC-PCR demonstrated that 3 isolates from soil had above 90% genetic similarity with strains from pig farm samples. In conclusion, application of animal manure carrying drug-resistant bacteria on agricultural fields is a likely contributor to antibiotic resistance gene spread. PMID:25926828

  3. Application of strontium isotope measurements to trace sediment sources in an upstream agricultural catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Thil, François; Foucher, Anthony; Salvador-Blanes, Sébastien; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. It accelerates the supply of sediment to the rivers and degrades water quality. To limit those impacts and optimize management programs in such areas, sources of sediment need to be identified and sediment transport to be controlled. Here, we determined the sources of suspended sediment in the Louroux (24 km², French Loire River basin), a small catchment representative of lowland cultivated environments of Northwestern Europe. In this catchment, channels have been reshaped and 220 tile drain outlets have been installed over the last several decades. As a result, soil erosion and sediment fluxes have increased drastically. The variation of 87Sr/86Sr ratios, driven by the weathering of rocks with different ages and chemical composition, may reflect the mixing of different sediment sources. Strontium isotopic ratios (87Sr/86Sr) were therefore determined in potential soil sources, suspended particulate matter (SPM) and a sediment core sampled in the Louroux Pond at the catchment outlet. Soil, SPM and core samples displayed significantly different isotopic signatures. 87Sr/86Sr ratios in soil samples varied from 0.712763 to 0.724631 ± 0.000017 (2σ, n=20). Highest values were observed in silicic parts of the catchment whereas the lower values were identified in a calcareous area close to the Louroux Pond. 87Sr/86Sr ratios in SPM (0.713660 to 0.725749 ± 0.000017, 2σ, n=20) plotted between the soil and sediment core (0.712255 to 0.716415 ± 0.000017, 2σ, n=12), suggesting the presence of particles originating from at least two different lithological sources, i.e. silicic rocks and carbonate material. Variations in 87Sr/86Sr ratios in the outlet core sample were used to reconstruct the sedimentary dynamics in the catchment during the last decades. These results will guide the future implementation of appropriate management practices aiming to reduce erosion in upstream

  4. Seasonal and regional variations of source contributions for PM10 and PM2.5 in urban environment.

    PubMed

    Tian, Ying-Ze; Shi, Guo-Liang; Huang-Fu, Yan-Qi; Song, Dan-Lin; Liu, Jia-Yuan; Zhou, Lai-Dong; Feng, Yin-Chang

    2016-07-01

    To characterize the sources of to PM10 and PM2.5, a long-term, speciate and simultaneous dataset was sampled in a megacity in China during the period of 2006-2014. The PM concentrations and PM2.5/PM10 were higher in the winter. Higher percentages of Al, Si, Ca and Fe were observed in the summer, and higher concentrations of OC, NO3(-) and SO4(2-) occurred in the winter. Then, the sources were quantified by an advanced three-way model (defined as an ABB three-way model), which estimates different profiles for different sizes. A higher percentage of cement and crustal dust was present in the summer; higher fractions of coal combustion and nitrate+SOC were observed in the winter. Crustal and cement contributed larger portion to coarse part of PM10, whereas vehicular and secondary source categories were enriched in PM2.5. Finally, potential source contribution function (PSCF) and source regional apportionment (SRA) methods were combined with the three-way model to estimate geographical origins. During the sampling period, the southeast region (R4) was an important region for most source categories (0.6%-11.5%); the R1 (centre region) also played a vital role (0.3-6.9%). PMID:27037891

  5. Determining contributions of biomass burning and other sources to fine particle contemporary carbon in the western United States

    NASA Astrophysics Data System (ADS)

    Holden, Amanda S.; Sullivan, Amy P.; Munchak, Leigh A.; Kreidenweis, Sonia M.; Schichtel, Bret A.; Malm, William C.; Collett, Jeffrey L., Jr.

    2011-02-01

    Six-day integrated fine particle samples were collected at urban and rural sampling sites using Hi-Volume samplers during winter and summer 2004-2005 as part of the IMPROVE (Interagency Monitoring of PROtected Visual Environments) Radiocarbon Study. Filter samples from six sites (Grand Canyon, Mount Rainier, Phoenix, Puget Sound, Rocky Mountain National Park, and Tonto National Monument) were analyzed for levoglucosan, a tracer for biomass combustion, and other species by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). Contemporary carbon concentrations were available from previous carbon isotope measurements at Lawrence Livermore National Laboratory. Primary contributions of biomass burning to measured fine particle contemporary carbon were estimated for residential wood burning (winter) and wild/prescribed fires (summer). Calculated contributions ranged from below detection limit to more than 100% and were typically higher at rural sites and during winter. Mannitol, a sugar alcohol emitted by fungal spores, was analyzed and used to determine contributions of fungal spores to fine particle contemporary carbon. Contributions reached up to 13% in summer samples, with higher contributions at rural sites. Concentrations of methyltetrols, oxidation products of isoprene, were also measured by HPAEC-PAD. Secondary organic aerosol (SOA) from isoprene oxidation was estimated to contribute up to 22% of measured contemporary carbon. For each sampling site, a substantial portion of the contemporary carbon was unexplained by primary biomass combustion, fungal spores, or SOA from isoprene oxidation. This unexplained fraction likely contains contributions from other SOA sources, including oxidation products of primary smoke emissions and plant emissions other than isoprene, as well as other primary particle emissions from meat cooking, plant debris, other biological aerosol particles, bio-diesel combustion, and other sources. Loss

  6. The real-time method of assessing the contribution of individual sources on visibility degradation in Taichung.

    PubMed

    Chen, Wei-Nai; Chen, Yu-Chieh; Kuo, Chung-Yih; Chou, Chun-Hung; Cheng, Chung-Hao; Huang, Chun-Chieh; Chang, Shih-Yu; Roja Raman, M; Shang, Wen-Lin; Chuang, Tzu-Yao; Liu, Su-Ching

    2014-11-01

    Visibility degradation caused by air pollution has become a serious environmental problem in megacities in Northeast Asia. In general, aerosol chemical compositions are measured by a conventional method of time integrated filter sampling for off-line analysis, which cannot represent temporal and spatial variations in the real atmosphere. The in situ air composition measuring equipment, OCEC carbon aerosol analyzer and a long-path visibility transmissometer-3 were used to collect hourly measurements of the soluble ions, organic/elemental carbon, and ambient visibility, respectively. During the observation, two types of weather conditions were identified: transport and stagnant. Because PM2.5 was identified as the predominant species of light extinction, the sources of PM2.5 were determined and investigated using a positive matrix factorization (PMF) analysis. The PMF outputs characterized the six main emission sources (marine/crustal aerosols, secondary nitrate, secondary sulfate, direct vehicle exhaust, coal/incinerator combustion, and local sewage emission) and reconstructed the PM2.5 mass concentrations of each pollutant source in two weather conditions. In addition, the light extinction (bext) was reconstructed using a multivariate linear regression analysis with hourly-reconstructed PM2.5 mass concentrations to determine the contributions of each source to bext. The primary results showed that the extinction coefficient was proportional to the PM2.5 with high value in stagnant weather conditions. The secondary sulfate was the most abundant source of bext contribution during the sampling period. In addition, the bext contributions of direct vehicle exhaust and coal/incinerator combustion significantly increased in the stagnant weather condition. According to the results of hourly measurements, this work further emphasized that the sources of direct vehicle exhaust and coal/incinerator combustion in PM2.5 were the important sources of visibility degradation in

  7. Estimating true human and animal host source contribution in quantitative microbial source tracking using the Monte Carlo method.

    PubMed

    Wang, Dan; Silkie, Sarah S; Nelson, Kara L; Wuertz, Stefan

    2010-09-01

    Cultivation- and library-independent, quantitative PCR-based methods have become the method of choice in microbial source tracking. However, these qPCR assays are not 100% specific and sensitive for the target sequence in their respective hosts' genome. The factors that can lead to false positive and false negative information in qPCR results are well defined. It is highly desirable to have a way of removing such false information to estimate the true concentration of host-specific genetic markers and help guide the interpretation of environmental monitoring studies. Here we propose a statistical model based on the Law of Total Probability to predict the true concentration of these markers. The distributions of the probabilities of obtaining false information are estimated from representative fecal samples of known origin. Measurement error is derived from the sample precision error of replicated qPCR reactions. Then, the Monte Carlo method is applied to sample from these distributions of probabilities and measurement error. The set of equations given by the Law of Total Probability allows one to calculate the distribution of true concentrations, from which their expected value, confidence interval and other statistical characteristics can be easily evaluated. The output distributions of predicted true concentrations can then be used as input to watershed-wide total maximum daily load determinations, quantitative microbial risk assessment and other environmental models. This model was validated by both statistical simulations and real world samples. It was able to correct the intrinsic false information associated with qPCR assays and output the distribution of true concentrations of Bacteroidales for each animal host group. Model performance was strongly affected by the precision error. It could perform reliably and precisely when the standard deviation of the precision error was small (≤ 0.1). Further improvement on the precision of sample processing and q

  8. Food mixture or ingredient sources for dietary calcium: shifts in food group contributions using four grouping protocols.

    PubMed

    Cook, Annetta J; Friday, James E

    2003-11-01

    Identifying dietary sources of nutrients by assigning survey foods to food groups can under- or overestimate the contribution a group makes to the intake of specific nutrients. Using calcium and food intakes from USDA's 1994-1996, 1998 Continuing Survey of Food Intakes by Individuals, the authors determined the proportion of dietary calcium from the dairy, grains, meats, fruits, and vegetables groups using four grouping protocols. Calcium contributions from milk and cheese were higher as more ingredient sources and fewer survey food items were represented in the dairy group. Milk, cheese, and yogurt reported as separate survey food items contributed 42% of total calcium intake. An additional 21% of dietary calcium came from dairy ingredients in mixed foods such as macaroni and cheese, pizza, sandwiches, and desserts. The remaining dietary calcium sources were single grains (16%); vegetable (7%); meat, poultry, and fish (5%); fruit (3%); and miscellaneous foods (7%). Data quantifying the nutrient contributions from dairy ingredients could affect dietary guidance messages or research using dairy foods as variables. PMID:14576718

  9. Using U-series Isotopes To Determine Sources Of Pedogenic Carbonates: Comparison Of Natural And Agricultural Soils In The Semi-arid Southern New Mexico And Western Texas

    NASA Astrophysics Data System (ADS)

    Nyachoti, S. K.; Ma, L.; Borrok, D. M.; Jin, L.; Tweedie, C. E.

    2012-12-01

    Pedogenic carbonates commonly precipitate from infiltrating soil water in arid and semi-arid lands and are observed in soils of southern New Mexico and western Texas. These carbonates could form an impermeable layer in the soil horizons impairing water infiltration, thus affecting crop growth and yield. It is important to determine the source of C and Ca in these carbonates and to understand conditions favoring their formation, kinetics and precipitation rates. In this study, major elements and U-series isotopes in bulk calcic soils, and weak acid leachates and residues were measured from one irrigated alfalfa site in the Hueco basin near El Paso, TX and one natural shrubland site on the USDA Jornada experimental range in southern NM. The combined geochemical and isotopic results allow us to determine the formation ages of the carbonates; investigate the mobility of U, Th, and major elements in these soils; and infer for the effects of irrigation on carbonate formation in agricultural soils. Our results show distinctive U and Th isotope systems in the two soil profiles analyzed. For example, (234U/238U) ratios in the Jornada bulk soils decrease from ~1.01 to 0.96 towards the surface, consistent with a preferential loss of 234U over 238U during chemical weathering. At the Jornada site, (238U/232Th) ratios decrease while (230Th/238U) increase towards the surface, consistent with a general depletion of U and the immobility of Th in the natural soils. By contrast at the Alfalfa site, (234U/238U) ratios of bulk soils increase from ~ 0.97 to 1.02 towards the surface, suggesting an additional source of external uranium, most likely the irrigation water from Rio Grande which has a (234U/238U) ratio of ~ 1.5 near El Paso. The (238U/232Th) and (230Th/238U) ratios also imply leaching of U from shallower soils but precipitation in greater depths at Alfalfa site; suggests that partial dissolution and re-precipitation of younger carbonates occur. Calculated carbonate ages from U

  10. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system?

    PubMed Central

    Watanabe, Kenta; Kuwae, Tomohiro

    2015-01-01

    Carbon captured by marine organisms helps sequester atmospheric CO2, especially in shallow coastal ecosystems, where rates of primary production and burial of organic carbon (OC) from multiple sources are high. However, linkages between the dynamics of OC derived from multiple sources and carbon sequestration are poorly understood. We investigated the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of particulate OC (POC) and dissolved OC (DOC) in the water column and sedimentary OC using elemental, isotopic, and optical signatures in Furen Lagoon, Japan. Based on these data analysis, we explored how OC from multiple sources contributes to sequestration via storage in sediments, water column sequestration, and air–sea CO2 exchanges, and analyzed how the contributions vary with salinity in a shallow seagrass meadow as well. The relative contribution of terrestrial POC in the water column decreased with increasing salinity, whereas autochthonous POC increased in the salinity range 10–30. Phytoplankton-derived POC dominated the water column POC (65–95%) within this salinity range; however, it was minor in the sediments (3–29%). In contrast, terrestrial and phytobenthos-derived POC were relatively minor contributors in the water column but were major contributors in the sediments (49–78% and 19–36%, respectively), indicating that terrestrial and phytobenthos-derived POC were selectively stored in the sediments. Autochthonous DOC, part of which can contribute to long-term carbon sequestration in the water column, accounted for >25% of the total water column DOC pool in the salinity range 15–30. Autochthonous OC production decreased the concentration of dissolved inorganic carbon in the water column and thereby contributed to atmospheric CO2 uptake, except in the low-salinity zone. Our results indicate that shallow coastal ecosystems function not only as transition zones between land and ocean but also as carbon sequestration filters

  11. CONTRIBUTION OF UNRESOLVED POINT SOURCES TO THE DIFFUSE X-RAY BACKGROUND BELOW 1 keV

    SciTech Connect

    Gupta, A.; Galeazzi, M.

    2009-09-01

    We present here the analysis of X-ray point sources detected in several observations available in the XMM-Newton public archive. We focused, in particular, on energies below 1 keV, which are of particular relevance to the understanding of the diffuse X-ray background (DXB). The average field of all the exposures is 0.09 deg{sup -2}. We reached an average flux sensitivity of 5.8 x 10{sup -16}ergs{sup -1}cm{sup -2} in the soft band (0.5-2.0 keV) and 2.5 x 10{sup -16}ergs{sup -1}cm{sup -2} in the very soft band (0.4-0.6 keV). In this paper, we discuss the log N-log S results, the contribution to the integrated X-ray sky flux, and the properties of the cumulative spectrum from all sources. In particular, we found an excess flux at around 0.5 keV in the composite spectrum of faint sources. The excess seems to be a general property of all the fields observed suggesting an additional class of weak sources is contributing to the X-ray emission at these energies. Combining our results with previous investigations, we have also quantified the contribution of the individual components of the DXB in the 3/4 keV band.

  12. A CASE STUDY OF NONPOINT SOURCES BACTERIAL CONTRIBUTION TO RURAL SURFACE WATER

    EPA Science Inventory

    The presentation will address several bacterial issues affecting the Turkey Creek (TC) watershed, in north central Ok. Our results from seasonal stream Escherichia coli (E. coli) analysis, bacterial source tracking, and antibiotic resistance will be shared and discussed in relat...

  13. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    EPA Science Inventory

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  14. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers.

    PubMed

    Koh, Dong-Chan; Mayer, Bernhard; Lee, Kwang-Sik; Ko, Kyung-Seok

    2010-10-21

    Sources and transformation processes of nitrate in groundwater from shallow aquifers were investigated in an agricultural area in the mid-western part of South Korea using a multi-tracer approach including δ²H and δ¹⁸O values of water, δ¹⁵N and δ¹⁸O values of nitrate, Cl/Br ratios and chlorofluorocarbons (CFCs). The study area was comprised of four land-use types with natural areas at higher altitudes, upland areas with fruit orchards, paddy fields and residential areas at lower elevations. The isotopic composition of water was suitable for distinguishing groundwater that had infiltrated in the higher elevation natural areas with lower δ²H and δ¹⁸O values from groundwater underneath paddy fields that was characterized by elevated δ²H and δ¹⁸O values due to evaporation. δ¹⁸O-H₂O values and Cl⁻ concentrations indicated that groundwater and contaminant sources were derived from three land-use types: natural areas, residential areas and paddy fields. Groundwater age determination based on CFCs showed that nitrate contamination of groundwater is primarily controlled by historic nitrogen loadings at least in areas with higher nitrate contamination. Nitrate sources were identified using the stable isotope composition of nitrate and Cl/Br ratios. Higher δ¹⁵N-NO₃⁻ values and Cl/Br ratios of 300 to 800 in residential areas indicated that waste water and septic effluents were major nitrate sources whereas lower δ¹⁵N-NO₃⁻ values and Cl/Br ratios of 100 to 700 in upland areas suggested that synthetic fertilizers constituted a major source of nitrate contamination of aquifers. With only few exceptions in the natural area, contributions of atmospheric nitrate were insignificant due to the resetting of δ¹⁸O-NO₃⁻ values via immobilization and re-mineralization of nitrate in the soil zone. In groundwater underneath paddy fields, 30% of samples had δ¹⁸O-NO₃⁻ values at least 2‰ higher than expected for nitrate formed

  15. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers

    NASA Astrophysics Data System (ADS)

    Koh, Dong-Chan; Mayer, Bernhard; Lee, Kwang-Sik; Ko, Kyung-Seok,

    2010-10-01

    Sources and transformation processes of nitrate in groundwater from shallow aquifers were investigated in an agricultural area in the mid-western part of South Korea using a multi-tracer approach including δ 2H and δ 18O values of water, δ 15N and δ 18O values of nitrate, Cl/Br ratios and chlorofluorocarbons (CFCs). The study area was comprised of four land-use types with natural areas at higher altitudes, upland areas with fruit orchards, paddy fields and residential areas at lower elevations. The isotopic composition of water was suitable for distinguishing groundwater that had infiltrated in the higher elevation natural areas with lower δ 2H and δ 18O values from groundwater underneath paddy fields that was characterized by elevated δ 2H and δ 18O values due to evaporation. δ 18O-H 2O values and Cl - concentrations indicated that groundwater and contaminant sources were derived from three land-use types: natural areas, residential areas and paddy fields. Groundwater age determination based on CFCs showed that nitrate contamination of groundwater is primarily controlled by historic nitrogen loadings at least in areas with higher nitrate contamination. Nitrate sources were identified using the stable isotope composition of nitrate and Cl/Br ratios. Higher δ 15N-NO 3- values and Cl/Br ratios of 300 to 800 in residential areas indicated that waste water and septic effluents were major nitrate sources whereas lower δ 15N-NO 3- values and Cl/Br ratios of 100 to 700 in upland areas suggested that synthetic fertilizers constituted a major source of nitrate contamination of aquifers. With only few exceptions in the natural area, contributions of atmospheric nitrate were insignificant due to the resetting of δ 18O-NO 3- values via immobilization and re-mineralization of nitrate in the soil zone. In groundwater underneath paddy fields, 30% of samples had δ 18O-NO 3- values at least 2‰ higher than expected for nitrate formed by chemolithoautotrophic

  16. Agricultural lung diseases.

    PubMed Central

    Kirkhorn, S R; Garry, V F

    2000-01-01

    Agriculture is considered one of the most hazardous occupations. Organic dusts and toxic gases constitute some of the most common and potentially disabling occupational and environmental hazards. The changing patterns of agriculture have paradoxically contributed to both improved working conditions and increased exposure to respiratory hazards. Animal confinement operations with increasing animal density, particularly swine confinement, have contributed significantly to increased intensity and duration of exposure to indoor air toxins. Ongoing research has implicated bacterial endotoxins, fungal spores, and the inherent toxicity of grain dusts as causes of upper and lower airway inflammation and as immunologic agents in both grain and animal production. Animal confinement gases, particularly ammonia and hydrogen sulfide, have been implicated as additional sources of respiratory irritants. It has become evident that a significant percentage of agricultural workers have clinical symptoms associated with long-term exposure to organic dusts and animal confinement gases. Respiratory diseases and syndromes, including hypersensitivity pneumonitis, organic dust toxic syndrome, chronic bronchitis, mucous membrane inflammation syndrome, and asthmalike syndrome, result from ongoing acute and chronic exposures. In this review we focus upon the emerging respiratory health issues in a changing agricultural economic and technologic environment. Environmental and occupational hazards and exposures will be emphasized rather than clinical diagnosis and treatment. Methods of prevention, from both engineering controls and personal respiratory perspectives, are also addressed. PMID:10931789

  17. Seasonal variation of the source contribution of atmospheric C2-C7 NMHCs (non-methanehydrocarbons) in central Tokyo

    NASA Astrophysics Data System (ADS)

    Shirai, T.; Yokouchi, Y.; Kita, K.; Izumi, K.; Koike, M.; Komazaki, Y.; Fukuda, M.; Kondo, Y.

    2005-12-01

    Seasonal change of the relative contribution of the sources of C2-C7 NMHCs has been investigated using the datasets obtained from the IMPACT (Integrated Measurement Program for Aerosol and Oxidant Chemistry in Tokyo) measurement campaigns conducted in downtown Tokyo in four different periods (19 July - 13 August and 2-15 October of 2003, 20 January - 6 February and 26 July - 14 August of 2004). Among 18 compounds (7 alkanes, 8 alkenes, 1 alkyne, and 2 aromatics) measured during the campaigns, isoprene showed the distinct diurnal variation in summer. The mixing ratio of isoprene tightly correlated with solar flux and temperature measured at the observation site, indicating the local vegetation as its dominant source. In autumn and winter, no such correlation was observed and the atmospheric level of isoprene was 10 times lower than in summer. To determine the relative contribution of major sources of NMHCs, Principal Component analyses has been applied to each dataset, which gave different result according to the season. In summer, the three components were figured out to have significant contribution; automotive exhaust, fuel evaporation, and photochemical production. On the contrary, no signature of evaporative emission and photochemical production was seen in autumn and winter. Measured NMHCs showed fairly good correlation with C2H2 (R2>0.6 except for C3H6) which is considered to be emitted exclusively from automotives in urban area, suggesting that the car exhaust is the dominant source of C2-C7 NMHCs in central Tokyo in winter. Considering the composition observed in winter as the typical composition from automotive emission in central Tokyo, the contribution from other sources was estimate for summer composition. In result, 30-60% of C4-C5 alkanes, 70% of n-C6H14 and up to 50% of C7H8 were attributed to non-automotive emissions, most likely gasoline vapor and solvent use, respectively.

  18. Contribution of the Middle Eastern dust source areas to PM10 levels in urban receptors: Case study of Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Givehchi, Raheleh; Arhami, Mohammad; Tajrishy, Massoud

    2013-08-01

    The origins and evolution of the Middle Eastern dust storms which frequently impact the residents of this arid region were studied. A methodology was adapted and developed to identify the desert regions of potential dust sources and determine their contributions to PM10 concentrations in the highly-populated receptor city of Tehran, Iran. Initially, the episodes of regional dust intrusion and the resulting amounts of increase in the particulate concentrations during these episodes were determined using a statistical analyzing methodology. The dust episodes were also inspected with the aerosol index information from the Ozone Monitoring Instrument (OMI). The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used as the main tool to determine the proportions of dust originating from different deserts during the dusty episodes of 2009-2010. Daily 5-day back trajectories were obtained from the receptor stations during the dust outbreaks in order to find and confirm the location of potential sources. After the boundaries of the potential sources were determined by 5-day backward trajectories, this region was divided into different areas to quantify their contributions to the measured PM10 levels. The proximity between the measured and simulated data confirmed the ability of HYSPLIT in modeling the Middle Eastern dust intrusion and estimating the particulate concentration in the downwind receptor sites. Results showed that the deserts in Iraq and Syria are the main contributing dust sources which comprise more than 90% of the dust related PM10 concentrations in Tehran, during the studied dust episodes. The sources in northern Iraq and eastern Syria respectively represented 44% and 32% contributions on average.

  19. Oscillating line source in a shear flow with a free surface: critical layer-like contributions

    NASA Astrophysics Data System (ADS)

    Ellingsen, Simen Å.; Tyvand, Peder A.

    2016-07-01

    The linearized water-wave radiation problem for an oscillating submerged line source in an inviscid shear flow with a free surface is investigated analytically at finite, constant depth in the presence of a shear flow varying linearly with depth. The surface velocity is taken to be zero relative to the oscillating source, so that Doppler effects are absent. The radiated wave out from the source is calculated based on Euler's equation of motion with the appropriate boundary and radiation conditions, and differs substantially from the solution obtained by assuming potential flow. To wit, an additional wave is found in the downstream direction in addition to the previously known dispersive wave solutions; this wave is non-dispersive and we show how it is the surface manifestation of a critical layer-like flow generated by the combination of shear and mass flux at the source, passively advected with the flow. As seen from a system moving at the fluid velocity at the source's depth, streamlines form closed curves in a manner similar to Kelvin's cat's eye vortices. A resonant frequency exists at which the critical wave resonates with the downstream propagating wave, resulting in a downstream wave pattern diverging linearly in amplitude away from the source.

  20. [Source Contribution Analysis of the Fine Particles in Shanghai During a Heavy Haze Episode in December, 2013 Based on the Particulate Matter Source Apportionment Technology].

    PubMed

    Li, Li; An, Jing-yu; Yan, Ru-sha

    2015-10-01

    The haze pollution caused by high PM2.5 concentrations has become one of the major environmental issues restricting urban and regional sustainable development in China in recent years. Therefore, the diagnosis of the pollution sources of PM2.5 and its major components in a scientific and efficient way is of great significance both scientifically and theoretically. A rare heavy haze pollution event occurred in Shanghai and the surrounding Yangtze River Delta in early December, 2013, that the hourly PM2.5 concentration reached 640 μg x m(-3). In this study, we analyzed the three typical episodes that occurred in Shanghai during this period. The particulate matter source apportionment technology (PSAT) was applied to study the source contributions to PM2.5 and its major components. Results showed that NO3-(2.5) were mostly contributed by industrial boilers and kilns, transportation and power plants. Comparatively, most of the SO4(2-) 2.5 came from industry and transport sectors. During the three episodes including haze, foggy haze and transport, local emissions contributed 35.3%, 44.8%, 22.7%, while super-regional transport accounted for 42.0%, 41.1% and 59.8% to PM2.5, respectively. In the YRD modeling domain, fugitive dust, industrial processing, volatile source, industrial boilers and kilns and transport were the major contributors to high concentrations of PM2.5, with the average contributions of 25.1%, 14.9%, 15.8%, 13.7% and 15.9%, respectively. Results showed that the very heavy haze pollution is usually not caused by a single city, the regional joint pollution control is of great importance to relieve the pollution level. PMID:26841584

  1. Does proximity to a mature forest contribute to the seed rain and recovery of an abandoned agriculture area in a semiarid climate?

    PubMed

    Souza, J T; Ferraz, E M N; Albuquerque, U P; Araújo, E L

    2014-07-01

    Proximity to forests contributes to the recolonisation of anthropogenic-disturbed areas through seed input. We evaluated the role of proximity to a mature forest in the recolonisation of an agricultural area that has been abandoned for 18 years and is currently a young forest. Seed rain was monitored at fixed distances from the mature forest. The type of surface recolonisation (germination versus resprouting) and the reproductive season were measured in both forests. The majority of plants recolonising the young forest originated from seed germination. Proximity to the mature forest contributed to the seed rain in the young forest; however, 18 years has not provided sufficient time for the recolonisation of 80 species present in the mature forest. Some species shared between forests differed in their fruiting season and seed dispersal. The seed rain had a total species richness of 56, a total density of 2270 seeds·m(-2)·year(−1) and predominance of self- and wind dispersal. A significant reduction in seed rain with increasing distance from the mature forest was observed. The young forest contained 35 species not observed in the mature forest, and the floristic similarity between the two forests was 0.5, indicating that the two forests are floristically distinct. PMID:25068159

  2. Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators.

    PubMed

    Springer, Nathaniel P; Garbach, Kelly; Guillozet, Kathleen; Haden, Van R; Hedao, Prashant; Hollander, Allan D; Huber, Patrick R; Ingersoll, Christina; Langner, Megan; Lipari, Genevieve; Mohammadi, Yaser; Musker, Ruthie; Piatto, Marina; Riggle, Courtney; Schweisguth, Melissa; Sin, Emily; Snider, Sara; Vidic, Nataša; White, Aubrey; Brodt, Sonja; Quinn, James F; Tomich, Thomas P

    2015-01-01

    Understanding how to source agricultural raw materials sustainably is challenging in today's globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly--depending largely on the stakeholder perspective--as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 "integrated" issues--24 impact issues and 36 vulnerability issues--that are composed of 318 "component" issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent them. Issues in the

  3. Using SWAT, Bacteroidales microbial source tracking markers, and fecal indicator bacteria to predict waterborne pathogen occurrence in an agricultural watershed.

    PubMed

    Frey, Steven K; Topp, Edward; Edge, Thomas; Fall, Claudia; Gannon, Victor; Jokinen, Cassandra; Marti, Romain; Neumann, Norman; Ruecker, Norma; Wilkes, Graham; Lapen, David R

    2013-10-15

    Developing the capability to predict pathogens in surface water is important for reducing the risk that such organisms pose to human health. In this study, three primary data source scenarios (measured stream flow and water quality, modelled stream flow and water quality, and host-associated Bacteroidales) are investigated within a Classification and Regression Tree Analysis (CART) framework for classifying pathogen (Escherichia coli 0157:H7, Salmonella, Campylobacter, Cryptosporidium, and Giardia) presence and absence (P/A) for a 178 km(2) agricultural watershed. To provide modelled data, a Soil Water Assessment Tool (SWAT) model was developed to predict stream flow, total suspended solids (TSS), total N and total P, and fecal indicator bacteria loads; however, the model was only successful for flow and total N and total P simulations, and did not accurately simulate TSS and indicator bacteria transport. Also, the SWAT model was not sensitive to an observed reduction in the cattle population within the watershed that may have resulted in significant reduction in E. coli concentrations and Salmonella detections. Results show that when combined with air temperature and precipitation, SWAT modelled stream flow and total P concentrations were useful for classifying pathogen P/A using CART methodology. From a suite of host-associated Bacteroidales markers used as independent variables in CART analysis, the ruminant marker was found to be the best initial classifier of pathogen P/A. Of the measured sources of independent variables, air temperature, precipitation, stream flow, and total P were found to be the most important variables for classifying pathogen P/A. Results indicate a close relationship between cattle pollution and pathogen occurrence in this watershed, and an especially strong link between the cattle population and Salmonella detections. PMID:24079968

  4. Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators

    PubMed Central

    Springer, Nathaniel P.; Garbach, Kelly; Guillozet, Kathleen; Haden, Van R.; Hedao, Prashant; Hollander, Allan D.; Huber, Patrick R.; Ingersoll, Christina; Langner, Megan; Lipari, Genevieve; Mohammadi, Yaser; Musker, Ruthie; Piatto, Marina; Riggle, Courtney; Schweisguth, Melissa; Sin, Emily; Snider, Sara; Vidic, Nataša; White, Aubrey; Brodt, Sonja; Quinn, James F.; Tomich, Thomas P.

    2015-01-01

    Understanding how to source agricultural raw materials sustainably is challenging in today’s globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly—depending largely on the stakeholder perspective—as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 “integrated” issues—24 impact issues and 36 vulnerability issues —that are composed of 318 “component” issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent them

  5. On the source contribution to Beijing PM2.5 concentrations

    NASA Astrophysics Data System (ADS)

    Zíková, Naděžda; Wang, Yungang; Yang, Fumo; Li, Xinghua; Tian, Mi; Hopke, Philip K.

    2016-06-01

    Beijing is a city with some of the world's worst particulate air pollution. Although there have been various control strategies implemented since 1998, there are still episodes of PM2.5 concentrations of hundreds of micrograms per cubic meter. In this study, samples were collected over a year in Beijing, chemically characterized, and the resulting data analyzed for source apportionment. The new error analysis capabilities built into EPA PMF V5.0 have been employed to better evaluate the profiles and assign them to source types. Secondary sulfate, local coal combustion and secondary nitrate were the major contributors to the PM2.5 mass. However, in this study, traffic was found to be more important as a PM compared to prior studies. It was actually the largest PM2.5 source in autumn and winter although local coal combustion is also a large source of PM in the winter months. These results demonstrate the value of using the displacement method to assess the variability in source profiles to improve our interpretation of PMF results. They also suggest more attention needs to be paid to traffic emissions in Beijing.

  6. Application of particle size distributions to total particulate stack samples to estimate PM2.5 and PM10 emission factors for agricultural sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particle size distributions (PSD) have long been used to more accurately estimate the PM10 fraction of total particulate matter (PM) stack samples taken from agricultural sources. These PSD analyses were typically conducted using a Coulter Counter with 50 micrometer aperture tube. With recent increa...

  7. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production

    NASA Astrophysics Data System (ADS)

    Lockhart, K. M.; King, A. M.; Harter, T.

    2013-08-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. The San Joaquin Valley, California, is an example of an agricultural landscape with a large diversity of field, vegetable, tree, nut, and citrus crops, but also confined animal feeding operations (CAFOs, here mostly dairies) that generate, store, and land apply large amounts of liquid manure. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤ 150 m deep), of which many have been affected by nitrate. Variability in crops, soil type, and depth to groundwater contribute to large variability in nitrate occurrence across the underlying aquifer system. The role of these factors in controlling groundwater nitrate contamination levels is examined. Two hundred domestic wells were sampled in two sub-regions of the San Joaquin Valley, Stanislaus and Merced (Stan/Mer) and Tulare and Kings (Tul/Kings) Counties. Forty six percent of well water samples in Tul/Kings and 42% of well water samples in Stan/Mer exceeded the MCL for nitrate (10 mg/L NO3-N). For statistical analysis of nitrate contamination, 78 crop and landuse types were considered by grouping them into ten categories (CAFO, citrus, deciduous fruits and nuts, field crops, forage, native, pasture, truck crops, urban, and vineyards). Vadose zone thickness, soil type, well construction information, well proximity to dairies, and dominant landuse near the well were considered. In the Stan/Mer area, elevated nitrate levels in domestic wells most strongly correlate with the combination of very shallow (≤ 21 m) water table and the presence of either CAFO derived animal waste applications or deciduous fruit and nut crops (synthetic fertilizer applications). In Tulare County, statistical data indicate that elevated

  8. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production.

    PubMed

    Lockhart, K M; King, A M; Harter, T

    2013-08-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. The San Joaquin Valley, California, is an example of an agricultural landscape with a large diversity of field, vegetable, tree, nut, and citrus crops, but also confined animal feeding operations (CAFOs, here mostly dairies) that generate, store, and land apply large amounts of liquid manure. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Variability in crops, soil type, and depth to groundwater contribute to large variability in nitrate occurrence across the underlying aquifer system. The role of these factors in controlling groundwater nitrate contamination levels is examined. Two hundred domestic wells were sampled in two sub-regions of the San Joaquin Valley, Stanislaus and Merced (Stan/Mer) and Tulare and Kings (Tul/Kings) Counties. Forty six percent of well water samples in Tul/Kings and 42% of well water samples in Stan/Mer exceeded the MCL for nitrate (10mg/L NO3-N). For statistical analysis of nitrate contamination, 78 crop and landuse types were considered by grouping them into ten categories (CAFO, citrus, deciduous fruits and nuts, field crops, forage, native, pasture, truck crops, urban, and vineyards). Vadose zone thickness, soil type, well construction information, well proximity to dairies, and dominant landuse near the well were considered. In the Stan/Mer area, elevated nitrate levels in domestic wells most strongly correlate with the combination of very shallow (≤21 m) water table and the presence of either CAFO derived animal waste applications or deciduous fruit and nut crops (synthetic fertilizer applications). In Tulare County, statistical data indicate that elevated

  9. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States

    USGS Publications Warehouse

    Elliott, E.M.; Kendall, C.; Wankel, Scott D.; Burns, Douglas A.; Boyer, E.W.; Harlin, K.; Bain, D.J.; Butler, T.J.

    2007-01-01

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (??15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in ??15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that ??15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO 42-, or NO3- concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO 3- deposition at sites in this study is strongly associated with NOx emissions from stationary sources. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in ??15N values are a robust indicator of stationary NOx contributions to wet NO3- deposition and hence a valuable complement to existing tools for assessing relationships between NO 3- deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. ?? 2007 American Chemical Society.

  10. Assessment of PCDD/F source contributions in Baltic Sea sediment core records.

    PubMed

    Assefa, Anteneh T; Tysklind, Mats; Sobek, Anna; Sundqvist, Kristina L; Geladi, Paul; Wiberg, Karin

    2014-08-19

    Spatial and temporal trends of sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the Baltic Sea were evaluated by positive matrix factorization (PMF) and principal component analysis (PCA). Sediment cores were sampled at eight coastal, one coastal reference, and six offshore sites covering the northern to the southern Baltic Sea. The cores, which covered the period 1919-2010, were sliced into 2-3 cm disks among which 8-11 disks per core (in total 141 disks) were analyzed for all tetra- through octa-CDD/Fs. Identification and apportionment of PCDD/F sources was carried out using PMF. Five stable model PCDD/F congener patterns were identified, which could be associated with six historically important source types: (i) atmospheric background deposition (ABD), (ii) use and production of penta-chlorophenol (PCP), (iii) use and production of tetra-chlorophenol (TeCP), (iv) high temperature processes (Thermal), (v) hexa-CDD-related sources (HxCDD), and (vi) chlorine-related sources (Chl), all of which were still represented in the surface layers. Overall, the last four decades of the period 1920-2010 have had a substantial influence on the Baltic Sea PCDD/F pollution, with 88 ± 7% of the total amount accumulated during this time. The 1990s was the peak decade for all source types except TeCP, which peaked in the 1980s in the northern Baltic Sea and has still not peaked in the southern part. The combined impact of atmospheric-related emissions (ABD and Thermal) was dominant in the open sea system throughout the study period (1919-2010) and showed a decreasing south to north trend (always >80% in the south and >50% in the north). Accordingly, to further reduce levels of PCDD/Fs in the open Baltic Sea ecosystem, future actions should focus on reducing atmospheric emissions. PMID:25103626

  11. Optimum Installation of Sorptive Building Materials Using Contribution Ratio of Pollution Source for Improvement of Indoor Air Quality

    PubMed Central

    Park, Seonghyun; Seo, Janghoo

    2016-01-01

    Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index. PMID:27043605

  12. Optimum Installation of Sorptive Building Materials Using Contribution Ratio of Pollution Source for Improvement of Indoor Air Quality.

    PubMed

    Park, Seonghyun; Seo, Janghoo

    2016-04-01

    Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index. PMID:27043605

  13. Source sector and region contributions to concentration and direct radiative forcing of black carbon in China

    NASA Astrophysics Data System (ADS)

    Li, Ke; Liao, Hong; Mao, Yuhao; Ridley, David A.

    2016-01-01

    We quantify the contributions from five domestic emission sectors (residential, industry, transportation, energy, and biomass burning) and emissions outside of China (non-China) to concentration and direct radiative forcing (DRF) of black carbon (BC) in China for year 2010 using a nested-grid version of the global chemical transport model (GEOS-Chem) coupled with a radiative transfer model. The Hemispheric Transport of Air Pollution (HTAP) anthropogenic emissions of BC for year 2010 are used in this study. Simulated surface-layer BC concentrations in China have strong seasonal variations, which exceed 9 μg m-3 in winter and are about 1-5 μg m-3 in summer in the North China Plain and the Sichuan Basin. Residential sector is simulated to have the largest contribution to surface BC concentrations, by 5-7 μg m-3 in winter and by 1-3 μg m-3 in summer, reflecting the large emissions from winter heating and the enhanced wet deposition during summer monsoon. The contribution from industry sector is the second largest and shows relatively small seasonal variations; the emissions from industry sector contribute 1-3 μg m-3 to BC concentrations in the North China Plain and the Sichuan Basin. The contribution from transportation sector is the third largest, followed by that from biomass burning and energy sectors. The non-China emissions mainly influence the surface-layer concentrations of BC in western China; about 70% of surface-layer BC concentration in the Tibet Plateau is attributed to transboundary transport. Averaged over all of China, the all-sky DRF of BC at the top of the atmosphere (TOA) is simulated to be 1.22 W m-2. Sensitivity simulations show that the TOA BC direct radiative forcings from the five domestic emission sectors of residential, industry, energy, transportation, biomass burning, and non-China emissions are 0.44, 0.27, 0.01, 0.12, 0.04, and 0.30 W m-2, respectively. The domestic and non-China emissions contribute 75% and 25% to BC DRF in China

  14. CLOTHES AS A SOURCE OF PARTICLES CONTRIBUTING TO THE "PERSONAL CLOUD"

    EPA Science Inventory

    Previous studies such as EPA's PTEAM Study have documented increased personal exposures to particles compared to either indoor or outdoor concentrations--a finding that bas been characterized as a "personal cloud." The sources of the personal cloud are unknown, but co...

  15. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Broers, Hans Peter; Berendrecht, Wilbert; Rozemeijer, Joachim; Osté, Leonard; Griffioen, Jasper

    2016-05-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream water bodies. This paper introduces new insights in nutrient sources and transport processes in a polder in the Netherlands situated below sea level using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring programme at six locations within the drainage area. Seasonal trends and short-scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N loss from agricultural lands. The NO3 loads appear as losses via tube drains after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration and turbidity almost doubled during operation of the pumping station, which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but retention of TP due to sedimentation of particulate P then results in the absence of rainfall induced TP concentration peaks. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is primarily due to the artificial pumping regime

  16. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Broers, H. P.; Berendrecht, W. L.; Rozemeijer, J. C.; Osté, L. A.; Griffioen, J.

    2015-08-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas. This paper introduces new insights in nutrient sources and transport processes in a low elevated polder in the Netherlands using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring program at six locations within the drainage area. Seasonal trends and short scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N-loss from agricultural lands. The NO3 loads appear as losses with drain water discharge after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration almost doubled during operation of the pumping station which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The by rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but this is then buffered in the water system due to sedimentation of particulate P. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is highly due to the artificial pumping regime that buffers high flows. As the TP concentration is affected by operation of the pumping station, timing of sampling

  17. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport

  18. Long-range potential source contributions of episodic aerosol events to PM 10 profile of a megacity

    NASA Astrophysics Data System (ADS)

    Karaca, Ferhat; Anil, Ismail; Alagha, Omar

    2009-12-01

    This paper evaluates possible long-range source contributions to the PM 10 profile of Istanbul, Turkey. A novel method for classifying PM 10 episodic events resulting from long-range transport, as opposed to local ones, was implemented. Hourly PM 10 mass concentrations from ten stations distributed throughout Istanbul during the year 2008 were used for this purpose. Hourly backward trajectories for the arrival of air masses to the center of Istanbul for the year 2008 were calculated using the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Significant episodes from these backward trajectories were selected and employed in Potential Source Contribution Function (PSCF) analysis to estimate the possible contribution of long-range PM 10 transport (LRPMT) to observed PM 10 concentrations. The PSCF results showed significant seasonal variations. Based on the results obtained, PM 10 concentrations observed in Istanbul during summer and autumn are not heavily affected by LRPMT. Mediterranean countries, especially those of the central part of northern Africa (northern Algeria and Libya) are the most significant potential PM 10 contributors to Istanbul's atmosphere during springtime. During winter, Balkan countries, including the Aegean part of Turkey, Greece, Bulgaria, Serbia, and Croatia, as well as northern Italy, eastern France, southern Germany, Austria and the eastern part of Russia, were the most important LRPMT source regions for high PSCF values.

  19. Seasonal variation of source contributions to atmospheric fine and coarse particles at suburban area in Istanbul, Turkey

    SciTech Connect

    Karaca, F.; Alagha, O.; Erturk, F.; Yilmaz, Y.Z.; Ozkara, T.

    2008-06-15

    Daily samples of fine (PM2.5) and coarse (PM2.5-10) particles were collected from July 2002 to July 2003 to provide a better understanding of the elemental concentration and source contribution to both PM fractions. Sampling location represents suburban part of Istanbul metropolitan city. Samples were collected on Teflon filters using a 'Dichotomous Sampler.' Concentrations of Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, and Zn were measured by GFAAS, FAAS, and FAES techniques. Elemental variations of heating and nonheating seasons were discussed. Fossil fuel-related atmospheric metals dramatically increased during the heating season, while natural originated atmospheric metals increased during the nonheating season. Seasonal variations of source contributions were evaluated using factor analysis, which was separately applied to the collected fine and coarse particles data sets during heating and nonheating seasons (four data sets: PM2.5 heating, PM2.5 nonheating, PM2.5-10 heating, and PM2.5-10 nonheating). Significant seasonal differences in source contributions were observed. Four factor groups were extracted for PM2.5 dataset during the nonheating season, while five factor groups were extracted for all the other cases. Mineral dust transportation, traffic, and industry-related activities were classified as different factor groups in all the cases.

  20. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones

    NASA Astrophysics Data System (ADS)

    Seyedabbasi, Mir Ahmad; Newell, Charles J.; Adamson, David T.; Sale, Thomas C.

    2012-06-01

    The relative contribution of dense non-aqueous phase liquid (DNAPL) dissolution versus matrix diffusion processes to the longevity of chlorinated source zones was investigated. Matrix diffusion is being increasingly recognized as an important non-DNAPL component of source behavior over time, and understanding the persistence of contaminants that have diffused into lower permeability units can impact remedial decision-making. In this study, a hypothetical DNAPL source zone architecture consisting of several different sized pools and fingers originally developed by Anderson et al. (1992) was adapted to include defined low permeability layers. A coupled dissolution-diffusion model was developed to allow diffusion into these layers while in contact with DNAPL, followed by diffusion out of these same layers after complete DNAPL dissolution. This exercise was performed for releases of equivalent masses (675 kg) of three different compounds, including chlorinated solvents with solubilities ranging from low (tetrachloroethene (PCE)), moderate (trichloroethene (TCE)) to high (dichloromethane (DCM)). The results of this simple modeling exercise demonstrate that matrix diffusion can be a critical component of source zone longevity and may represent a longer-term contributor to source longevity (i.e., longer time maintaining concentrations above MCLs) than DNAPL dissolution alone at many sites. For the hypothetical TCE release, the simulation indicated that dissolution of DNAPL would take approximately 38 years, while the back diffusion from low permeability zones could maintain the source for an additional 83 years. This effect was even more dramatic for the higher solubility DCM (97% of longevity due to matrix diffusion), while the lower solubility PCE showed a more equal contribution from DNAPL dissolution vs. matrix diffusion. Several methods were used to describe the resulting source attenuation curves, including a first-order decay model which showed that half-life of

  1. Quantifying the contributions of individual NO x sources to the trend in ozone radiative forcing

    NASA Astrophysics Data System (ADS)

    Dahlmann, K.; Grewe, V.; Ponater, M.; Matthes, S.

    2011-06-01

    Source attribution of ozone radiative forcing (RF) is a prerequisite for developing adequate emission mitigation strategies with regards to climate impact. Decadal means of ozone fields from transient climate-chemistry simulations (1960-2019) are analysed and the temporal development of ozone RF resulting from individual NO x sources, e.g. road traffic, industry and air traffic, is investigated. We calculated an ozone production efficiency which is mainly dependent on the altitude of NO x emission and on the amount of background NO x with values varying over one order of magnitude. Air traffic and lightning are identified as NO x sources with a two and five times higher ozone production efficiency, respectively, than ground based sources. Second, radiative efficiency of source attributed ozone (i.e. total induced radiative flux change per column ozone) shows clear dependence on latitudinal structure of the ozone anomaly and, to a lesser extent, to its altitude. Lightning induced ozone shows the highest radiative efficiency because lightning primarily enhances ozone in low latitudes in the mid-troposphere (higher altitudes). Superimposed on these effects, a saturation effect causes a decreasing radiative efficiency with increasing background ozone concentrations. Changes in RF attributed to NO x induced ozone from 1960 to 2019 are controlled by three factors: changes in emissions, changes in ozone production efficiency and changes in the radiative efficiency. Leading effect is emission increase, but changes in ozone production efficiency increase ozone RF by a factor of three for air traffic, or reduce ozone RF by around 30% for ships. Additionally, changes in the radiative efficiency due to saturation effects change ozone RF by 2-5%.

  2. Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: a significant contribution to agricultural greenhouse gas budgets?

    PubMed

    Outram, Faye N; Hiscock, Kevin M

    2012-08-01

    In the UK agriculture is by far the largest source of nitrous oxide (N(2)O) emissions. Direct N(2)O emissions as a result of nitrogen (N) application to soils have been well documented in the UK, whereas indirect emissions produced in surface waters and groundwaters from leached N are much less understood with limited data to support IPCC emission factors. Indirect emissions were studied in surface waters in the Upper Thurne, a lowland drained arable catchment in eastern England. All surface waters were found to have dissolved N(2)O concentrations above that expected if in equilibrium with ambient concentrations, demonstrating all surface waters were acting as a source of N(2)O. The drainage channels represented 86% of the total indirect N(2)O flux, followed by wetland areas, 11%, and the river, 3%. The dense drainage network was found to have the highest dissolved N(2)O concentrations of all the water bodies studied with a combined N(2)O flux of 16 kg N(2)O-N per day in March 2007. Such indirect fluxes are comparable to direct fluxes per hectare and represent a significant proportion of the total N(2)O flux for this catchment. Separate emission factors were established for the three different surface water types within the same catchment, suggesting that the one emission factor used in the Intergovernmental Panel on Climate Change (IPCC) methodology for predicting all indirect N(2)O emissions is inappropriate. PMID:22789002

  3. Bisphenol a: how the most relevant exposure sources contribute to total consumer exposure.

    PubMed

    von Goetz, Natalie; Wormuth, Matthias; Scheringer, Martin; Hungerbühler, Konrad

    2010-03-01

    Bisphenol A (BPA) is an endocrine disrupting chemical that is found in human urine throughout industrial societies around the globe. Consumer exposure pathways to BPA include packaged food, household dust, air, and dental fillings. To date, information on the relative contribution of the different pathways to total consumer exposure is lacking, but is key for managing substance-associated risks. We investigated the relative contributions of the pathways known to be most relevant for nine different consumer groups. Our results suggest that the most important pathways for infants and children are the use of polycarbonate (PC) baby bottles and for adults and teenagers the consumption of canned food. Dental surgery can also considerably contribute over a short time directly after the surgery. For infants fed with PC baby bottles with mean dose rates of 0.8 microg/kg(bw)/d the highest exposure dose rate was calculated. This dose rate is far below the tolerable daily intake of 50 microg/kg(bw)/d. However, it is of the same order of magnitude as recently reported concentrations that caused low-dose health effects in rodents. We find a pattern of falling exposure levels with rising age that is supported by urinary concentrations of BPA available for selected consumer groups. Similarly, the exposure levels we predict are confirmed by the levels reported in these studies. PMID:20136739

  4. High-resolution mapping of sources contributing to urban air pollution using adjoint sensitivity analysis: benzene and diesel black carbon.

    PubMed

    Bastien, Lucas A J; McDonald, Brian C; Brown, Nancy J; Harley, Robert A

    2015-06-16

    The adjoint of the Community Multiscale Air Quality (CMAQ) model at 1 km horizontal resolution is used to map emissions that contribute to ambient concentrations of benzene and diesel black carbon (BC) in the San Francisco Bay area. Model responses of interest include population-weighted average concentrations for three highly polluted receptor areas and the entire air basin. We consider both summer (July) and winter (December) conditions. We introduce a novel approach to evaluate adjoint sensitivity calculations that complements existing methods. Adjoint sensitivities to emissions are found to be accurate to within a few percent, except at some locations associated with large sensitivities to emissions. Sensitivity of model responses to emissions is larger in winter, reflecting weaker atmospheric transport and mixing. The contribution of sources located within each receptor area to the same receptor's air pollution burden increases from 38-74% in summer to 56-85% in winter. The contribution of local sources is higher for diesel BC (62-85%) than for benzene (38-71%), reflecting the difference in these pollutants' atmospheric lifetimes. Morning (6-9am) and afternoon (4-7 pm) commuting-related emissions dominate region-wide benzene levels in winter (14 and 25% of the total response, respectively). In contrast, afternoon rush hour emissions do not contribute significantly in summer. Similar morning and afternoon peaks in sensitivity to emissions are observed for the BC response; these peaks are shifted toward midday because most diesel truck traffic occurs during off-peak hours. PMID:26001097

  5. Dioxin in the agricultural food chain

    SciTech Connect

    Stevens, J.B.; Gerbec, E.N.

    1988-09-01

    Polychlorinated dibenzo-p-dioxin's (PCDD) behavior in the agricultural food chain was modeled in this study. The source of PCDD was a municipal solid waste (MSW) incinerator. Of the farm livestock investigated only the beef cow and the milk cow were shown to contribute significant amounts of PCDD to humans. Milk was the single highest dietary source of PCDD. Comparison of the calculated human dose of PCDD from the agricultural food chain with an estimate human PCDD dose from inhalation of contaminated air revealed that the agricultural food chain could be responsible for a vast majority of the dose to an individual impacted by these facilities. Thus, these data suggest that operating MSW facilities in agricultural areas may result in enhanced PCDD exposure to individuals via the agricultural food chain. The data also suggest that milk and beef may be good sentinels to evaluate environmental impacts of these facilities.

  6. Impact of legacy phosphorus sources on diffuse phosphorus pollution from agriculture: lessons from the Chesapeake Bay watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legacy phosphorus (P), the accumulation of P in soils and sediments due to past agricultural management activities, represents an emerging challenge to ongoing efforts to mitigate diffuse P pollution from agriculture. Nutrient management programs, already tasked with minimizing the effects of today...

  7. A Description and Source Listing of Professional Information in Agricultural Education, 1964-65, 1965-66.

    ERIC Educational Resources Information Center

    American Vocational Association, Washington, DC. Agricultural Education Div.

    This bibliography, containing professional information in agricultural education published in the school years 1964-65 and 1965-66 was prepared by the Professional Information Committee of the Agricultural Division of the American Vocational Association. Respectively they contain 141 and 170 listings with short annotations including availability…

  8. Descriptions and Source Listings of Professional Information in Agricultural Education, 1966-67, 1967-68, and 1968-69.

    ERIC Educational Resources Information Center

    American Vocational Association, Washington, DC. Professional Information Committee.

    These annotated bibliographies contain a total of 449 references of professional information in agricultural education published annually. References are organized under headings of: (1) Agricultural Mechanics, (2) Animal Science, (3) Conservation and Forestry, (4) Curriculum Development and Course of Study, (5) Farm Business Management and…

  9. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States

    SciTech Connect

    E.M. Elliott; C. Kendall; S.D. Wanke; D.A. Burns; E.W. Boyer; K. Harlin; D.J. Bain; T.J. Butler

    2007-11-15

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in 15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that 15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO{sub 4}{sup 2-}, or NO{sub 3}{sup -} concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO{sub 3}{sup -} deposition at sites in this study is strongly associated with NOx emissions from power plants. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in 15N values are a robust indicator of stationary NOx contributions to wet NO{sub 3}{sup -} deposition and hence a valuable complement to existing tools for assessing relationships between NO{sub 3}{sup -} deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. 44 refs., 3 figs.

  10. Estimating the contribution of point sources to atmospheric metals using single-particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Snyder, David C.; Schauer, James J.; Gross, Deborah S.; Turner, Jay R.

    Single-particle mass spectra were collected using an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) during December of 2003 and February of 2004 at an industrially impacted location in East St. Louis, IL. Hourly integrated peak areas for twenty ions were evaluated for their suitability in representing metals/metalloids, particularly those reported in the US EPA Toxic Release Inventory (TRI). Of the initial twenty ions examined, six (Al, As, Cu, Hg, Ti, and V) were found to be unsuitable due to strong isobaric interferences with commonly observed organic fragments, and one (Be) was found to have no significant signal. The usability of three ions (Co, Cr, and Mn) was limited due to suspected isobaric interferences based on temporal comparisons with commonly observed organic fragments. The identity of the remaining ions (Sb, Ba, Cd, Ca, Fe, Ni, Pb, K, Se, and Zn) was substantiated by comparing their signals with the integrated hourly signals of one or more isotope ions. When compared with one-in-six day integrated elemental data as determined by X-ray fluorescence spectroscopy (XRF), the daily integrated ATOFMS signal for several metal ions revealed a semi-quantitative relationship between ATOFMS peak area and XRF concentrations, although in some cases comparison of these measurements were poor at low elemental concentrations/ion signals due to isobaric interferences. A method of estimating the impact of local point sources was developed using hourly integrated ATOFMS peak areas, and this method attributed as much as 85% of the concentration of individual metals observed at the study site to local point sources. Hourly surface wind data were used in conjunction with TRI facility emissions data to reveal likely point sources impacting metal concentrations at the study site and to illustrate the utility of using single-particle mass spectral data to characterize atmospheric metals and identify point sources.

  11. Contribution of neutral production to ion flux from a vacuum arc source

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley, Jr.; Lockner, Thomas R.

    1996-02-01

    This article describes studies of the effect of electrode spacing on the performance of vacuum arc plasma sources for ion accelerators and other applications. We measured the time-resolved emission of neutrals from a compact arc source with a titanium cathode and 100 A drive current and found that the source emitted roughly 100 atoms for each extracted ion. The inferred neutral pressure in the arc gap was about 500 mTorr. The result suggested the possibility of achieving significant ionization in the plasma expansion region by increasing the anode-cathode gap length, thereby forcing the drive current to flow through the gas column. With a new two-stage trigger, we were able to ignite arcs with gaps as long as 20 cm. Extended gaps doubled the ion flux, gave better output directionality, and helped to stabilize the location of emission spots on the cathode. These improvements, coupled with direct observations of discharge luminosity, support the hypothesis of ionization of the expanding vapor.

  12. Contribution from indoor sources to particle number and mass concentrations in residential houses

    NASA Astrophysics Data System (ADS)

    He, Congrong; Morawska, Lidia; Hitchins, Jane; Gilbert, Dale

    As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify emission characteristics of indoor particle sources in 15 houses. Submicrometer particle number and approximation of PM 2.5 concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak), respectively. In addition, characterizations of particles resulting from cooking conducted in an identical way in all the houses were measured by using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS) and a DustTrak. All the events of elevated particle concentrations were linked to indoor activities using house occupants diary entries, and catalogued into 21 different types of indoor activities. This enabled quantification of the effect of indoor sources on indoor particle concentrations as well as quantification of emission rates from the sources. For example, the study found that frying, grilling, stove use, toasting, cooking pizza, cooking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor submicrometer particle number concentration levels by more than five times, while PM 2.5 concentrations could be up to 3, 30 and 90 times higher than the background levels during smoking, frying and grilling, respectively.

  13. Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon

    SciTech Connect

    Wahlen, M.; Tanaka, N.; Henry, R.; Deck, B.; Zeglen, J. ); Vogel, J.S.; Southon, J. ); Shemesh, A.; Fairbanks, R.; Broecker, W. )

    1989-07-21

    Measurements of carbon-14 in small samples of methane from major biogenic sources, from biomass burning, and in clean air samples from both the Northern and Southern hemispheres reveal that methane from ruminants contains contemporary carbon, whereas that from wetlands, peat bogs, rice fields, and tundra is somewhat, depleted in carbon-14. Atmospheric {sup 14}CH{sub 4} seems to have increased from 1986 to 1987, and levels at the end of 1987 were 123.3 {plus minus} 0.8% modern carbon (pMC) in the Northern Hemisphere and 120.0 {plus minus} 0.7 pMC in the Southern Hemisphere. Model calculations of source partitioning based on the carbon-14 data, CH{sub 4} concentrations, and {delta}{sup 13}C in CH{sub 4} indicate that 21 {plus minus} 3% of atmospheric CH{sub 4} was derived from fossil carbon at the end of 1987. The data also indicate that pressurized water reactors are an increasingly important source of {sup 14}CH{sub 4}. 38 refs., 3 figs., 2 tabs.

  14. Contribution of Satellite Gravimetry to Understanding Seismic Source Processes of the 2011 Tohoku-Oki Earthquake

    NASA Technical Reports Server (NTRS)

    Han, Shin-Chan; Sauber, Jeanne; Riva, Riccardo

    2011-01-01

    The 2011 great Tohoku-Oki earthquake, apart from shaking the ground, perturbed the motions of satellites orbiting some hundreds km away above the ground, such as GRACE, due to coseismic change in the gravity field. Significant changes in inter-satellite distance were observed after the earthquake. These unconventional satellite measurements were inverted to examine the earthquake source processes from a radically different perspective that complements the analyses of seismic and geodetic ground recordings. We found the average slip located up-dip of the hypocenter but within the lower crust, as characterized by a limited range of bulk and shear moduli. The GRACE data constrained a group of earthquake source parameters that yield increasing dip (7-16 degrees plus or minus 2 degrees) and, simultaneously, decreasing moment magnitude (9.17-9.02 plus or minus 0.04) with increasing source depth (15-24 kilometers). The GRACE solution includes the cumulative moment released over a month and demonstrates a unique view of the long-wavelength gravimetric response to all mass redistribution processes associated with the dynamic rupture and short-term postseismic mechanisms to improve our understanding of the physics of megathrusts.

  15. Identification of sources and behavior of agricultural contaminants in groundwater using nitorgen and sulfur isootope in Haean basin, Korea

    NASA Astrophysics Data System (ADS)

    Kaown, Dugin; Kim, Heejung; Mayer, Bernard; Hyun, Yunjung; Lee, Jin-Yong; Lee, Kang-Kun

    2013-04-01

    The Haean basin shows a bowl-shaped topographic feature and the drainage system shows a dendritic pattern. The study area is consisted of forests (58.0%), vegetable fields (27.6%), rice paddy fields (11.4%) and fruit fields (0.5%). Most of residents in the study area practice agriculture and paddy rice and vegetables (Chinese radish) are the typical crops grown. The concentration of nitrate in groundwater showed 0.8 ~ 67.3 mg/L in June, 2012 and 2.0 ~ 65.7 mg/L in September, 2012. Hydrogeochemical values and stable isotope ratios of dissolved nitrate and sulfate in groundwater were used to identify contamination sources and transformation processes in shallow groundwater. The δ15N-NO3- values in the study area ranged between +5.2 and +16.9‰ in June and between +4.4 and +13.0‰ in September. The sulfate concentration in groundwater samples obtained from the study area varied from 0.8 to 16.5 mg/L in June and 0 to 19.7 mg/L in September. δ34S-SO42- values ranged from +2.9 to +11.7‰ in June and +1.6 to +8.2‰ in September. The values of δ15N-NO3- and δ34S-SO42- in September were slightly decreased than those of values in June. The chemical composition of groundwater in vegetable and fruit fields showed slightly lower values of δ34S-SO42- and δ15N-NO3- indicated that a mixture of synthetic and organic fertilizers is responsible for groundwater contamination with agro-chemicals. Most groundwater from forests and paddy fields showed slightly higher values of δ15N-NO3- suggested that organic fertilizer is introduced into subsurface.

  16. Variation in Quantity, Source and Bioreactivity of Dissolved Organic Matter in Streams Draining Watersheds along a Gradient of Agricultural Land Use

    NASA Astrophysics Data System (ADS)

    Shang, P.; Lu, Y.; Jaffe, R.; Du, Y.; Findlay, R.

    2015-12-01

    In order to address the effects of agricultural land use on stream water dissolved organic matter (DOM), we sampled a regional group of second to third order streams draining watersheds along a gradient of percentage agricultural lands in northwestern Alabama, USA. Samples were collected under baseflow conditions, five different times over the year 2014. We analyzed dissolved organic carbon (DOC) concentrations, DOM optical properties (i.e. ultraviolet-visible and fluorescence spectrophotometry), and DOM bioreactivity over the course of 22 d incubation. We found that air temperature and antecedent precipitation intensity (API) were two major factors positively controlling DOC concentrations. High DOC concentrations were associated with high fluorescence index values, low percent contributions from terrestrially derived humic-like DOM fluorescence component (C1), and high percent contributions from microbially derived humic-like DOM fluorescence component (C3). We suggest that elevated microbial DOM production under high temperature and API was the primary reason for DOC enrichment in stream water. Percentage agricultural land was the secondary predictor of DOM characteristics. The percentages of forest land use within watersheds positively correlated with percent protein-like DOM fluorescence component (C4). DOC concentrations and relative abundance of humic-like DOM fluorescence components (C1, C2 and C3) were higher in agricultural streams than in forested streams, which could be attributed to flow path differences between agricultural and forested watersheds. Larger amount and percentage of bioreactive DOC was observed in agricultural streams, which might decrease oxygen level and impact fluvial ecosystem in downstream regions during degradation.

  17. An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lee, Y. C.; Lam, Y. F.; Kuhlmann, G.; Wenig, M. O.; Chan, K. L.; Hartl, A.; Ning, Z.

    2013-12-01

    Biomass burning is the largest source of primary fine carbonaceous particles and globally the second largest source of trace gases, contributing to climate change and regional air pollution. This study investigates the most serious black carbon (BC) episodes in Hong Kong in 2010, which occurred on 22 February, 18 March, 6, 20 and 21 December. The contributing sources were identified using an integrated approach of ground-based measurement, satellite data analyses and model simulations. Hourly maximum BC concentrations from continuous monitoring ranged from 15.6 to 18.9 μg m-3. The correlation coefficients between hourly BC and carbon monoxide (CO) concentrations (CO as an indicator of biomass burning) varied from 0.88 to 0.97 during episodic/high BC days whereas daily ΔBC/ΔCO ratios for the episodes were between 9.05 and 13.1 ng m-3 ppbv-1, significantly higher than the seasonal averages. Non-sea-salt (nss)-K+ (daily), another indicator of biomass burning, correlated moderately with BC (r = 0.52) for concentrations above the 80th percentile. The area-averaged statistics for fire pixel counts from satellite measurement showed the intensity of biomass burning in 2010 was strongest in Africa, Southwest China and Indochina, followed by North/Central, South China and India. Except for North/Central China, all sources are upwind of Hong Kong when the northeast monsoon and the mid/upper-tropospheric westerlies (subtropical jet) prevail. GEOS-Chem simulations indicate that biomass burning contributed most significantly from Indochina (southwest China included) in the spring of 2010. This model sensitivity analysis complements the MODIS-based fire map(s), the high-level vector wind plots, the AIRS CO and backward trajectory analyses. Results suggest that other contributors of BC include not only South China, but also the Indian subcontinent (in spring) and Africa in winter. The latter's influence is evident in the February and December episodes.

  18. Dissecting the molecular basis of the contribution of source strength to high fructan accumulation in wheat.

    PubMed

    Xue, Gang-Ping; Drenth, Janneke; Glassop, Donna; Kooiker, Maarten; McIntyre, C Lynne

    2013-01-01

    Fructans represent the major component of water soluble carbohydrates (WSCs) in the maturing stem of temperate cereals and are an important temporary carbon reserve for grain filling. To investigate the importance of source carbon availability in fructan accumulation and its molecular basis, we performed comparative analyses of WSC components and the expression profiles of genes involved in major carbohydrate metabolism and photosynthesis in the flag leaves of recombinant inbred lines from wheat cultivars Seri M82 and Babax (SB lines). High sucrose levels in the mature flag leaf (source organ) were found to be positively associated with WSC and fructan concentrations in both the leaf and stem of SB lines in several field trials. Analysis of Affymetrix expression array data revealed that high leaf sucrose lines grown in abiotic-stress-prone environments had high expression levels of a number of genes in the leaf involved in the sucrose synthetic pathway and photosynthesis, such as Calvin cycle genes, antioxidant genes involved in chloroplast H(2)O(2) removal and genes involved in energy dissipation. The expression of the majority of genes involved in fructan and starch synthetic pathways were positively correlated with sucrose levels in the leaves of SB lines. The high level of leaf fructans in high leaf sucrose lines is likely attributed to the elevated expression levels of fructan synthetic enzymes, as the mRNA levels of three fructosyltransferase families were consistently correlated with leaf sucrose levels among SB lines. These data suggest that high source strength is one of the important genetic factors determining high levels of WSC in wheat. PMID:23114999

  19. Carbon-14 in methane sources and in atmospheric methane - The contribution from fossil carbon

    NASA Astrophysics Data System (ADS)

    Wahlen, M.; Tanaka, N.; Henry, R.; Deck, B.; Zeglen, J.

    1989-07-01

    Measurements of carbon-14 in small samples of methane from major biogenic sources, from biomass burning, and in clean air samples from both the Northern and Southern hemispheres reveal that methane from ruminants contains contemporary carbon, whereas that from wetlands, peat bogs, rice fields, and tundra, is somewhat depleted in carbon-14. Atmospheric (C-14)H4 seems to have increased from 1986 to 1987, and levels at the end of 1987 were 123.3 + or - 0.8 percent modern carbon in the Northern Hemisphere and 120.0 + or - 0.7 percent modern carbon in the Southern Hemisphere.

  20. Carbon-14 in methane sources and in atmospheric methane - The contribution from fossil carbon

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Tanaka, N.; Henry, R.; Deck, B.; Zeglen, J.

    1989-01-01

    Measurements of carbon-14 in small samples of methane from major biogenic sources, from biomass burning, and in clean air samples from both the Northern and Southern hemispheres reveal that methane from ruminants contains contemporary carbon, whereas that from wetlands, peat bogs, rice fields, and tundra, is somewhat depleted in carbon-14. Atmospheric (C-14)H4 seems to have increased from 1986 to 1987, and levels at the end of 1987 were 123.3 + or - 0.8 percent modern carbon in the Northern Hemisphere and 120.0 + or - 0.7 percent modern carbon in the Southern Hemisphere.

  1. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s

    PubMed Central

    Gibbs, H. K.; Ruesch, A. S.; Achard, F.; Clayton, M. K.; Holmgren, P.; Ramankutty, N.; Foley, J. A.

    2010-01-01

    Global demand for agricultural products such as food, feed, and fuel is now a major driver of cropland and pasture expansion across much of the developing world. Whether these new agricultural lands replace forests, degraded forests, or grasslands greatly influences the environmental consequences of expansion. Although the general pattern is known, there still is no definitive quantification of these land-cover changes. Here we analyze the rich, pan-tropical database of classified Landsat scenes created by the Food and Agricultural Organization of the United Nations to examine pathways of agricultural expansion across the major tropical forest regions in the 1980s and 1990s and use this information to highlight the future land conversions that probably will be needed to meet mounting demand for agricultural products. Across the tropics, we find that between 1980 and 2000 more than 55% of new agricultural land came at the expense of intact forests, and another 28% came from disturbed forests. This study underscores the potential consequences of unabated agricultural expansion for forest conservation and carbon emissions. PMID:20807750

  2. Source identification of PCDD/Fs in agricultural soils near to a Chinese MSWI plant through isomer-specific data analysis.

    PubMed

    Xu, Meng-Xia; Yan, Jian-Hua; Lu, Sheng-Yong; Li, Xiao-Dong; Chen, Tong; Ni, Ming-Jiang; Dai, Hui-Fen; Cen, Ke-Fa

    2008-04-01

    Isomer-specific data were investigated in order to identify the sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in agricultural soils, including Fluvo-aquic and paddy soils, in the vicinity of a Chinese municipal solid waste incineration (MSWI) plant. Homologue and isomer profiles of PCDD/Fs in soils were compared with those of potential sources, including combustion sources, i.e., MSWI flue gas and fly ash; and the impurities in agrochemicals, such as the pentachlorophenol (PCP), sodium pentachlorophenate (PCP-Na) and 1,3,5-trichloro-2-(4-nitrophenoxy) benzene (CNP). The results showed that the PCDD/F isomer profiles of combustion sources and agricultural soils were very similar, especially for PCDFs, although their homologue profiles varied, indicating that all the isomers within each homologue behave identically in the air and soil. Moreover, factor analysis of the isomer compositions among 33 soil samples revealed that the contamination of PCDD/Fs in agricultural soils near the MSWI plant were primarily influenced by the combustion sources, followed by the PCP/PCP-Na and CNP sources. This implication is consistent with our previous findings based on chemometric analysis of homologue profiles of soil and flue gas samples, and identifies PCP/PCP-Na as an additional important source of PCDD/Fs in the local area. This makes the similarities and differences of isomer profiles between Fluvo-aquic and paddy soils more explainable. It is, therefore, advisable to use isomer-specific data for PCDD/F source identifications where possible. PMID:18279911

  3. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Amato, F.; Minguillón, M. C.; Karanasiou, A.; Alastuey, A.; Querol, X.

    2015-11-01

    During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at twelve hours resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (Positive Matrix Factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 μg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 μg m-3, 8-12 %), (3) mineral dust (5 μg m-3, 13-26 %), (4) aged marine (3-5 μg m-3, 13-20 %), (5) heavy oil (0.4-0.6 μg m-3, 2 %), (6) industrial (1 μg m-3, 3-5 %), (7) sulphate (3-4 μg m-3, 11-17 %) and (8) nitrate (4-6 μg m-3, 17-21 %). Three aerosol sources were found enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factors concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and

  4. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, Mariola; Dall'Osto, Manuel; Amato, Fulvio; Cruz Minguillón, María; Karanasiou, Angeliki; Alastuey, Andrés; Querol, Xavier

    2016-06-01

    During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at 12-hour resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements, allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (positive matrix factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 µg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 µg m-3, 8-12 %), (3) mineral dust (5 µg m-3, 13-26 %), (4) aged marine (3-5 µg m-3, 13-20 %), (5) heavy oil (0.4-0.6 µg m-3, 2 %), (6) industrial (1 µg m-3, 3-5 %), (7) sulfate (3-4 µg m-3, 11-17 %) and (8) nitrate (4-6 µg m-3, 17-21 %). Three aerosol sources were found to be enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factor concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and

  5. Contribution of regional sources to atmospheric methane over the Amazon Basin in 2010 and 2011

    NASA Astrophysics Data System (ADS)

    Wilson, Chris; Gloor, Manuel; Gatti, Luciana V.; Miller, John B.; Monks, Sarah A.; McNorton, Joey; Bloom, A. Anthony; Basso, Luana S.; Chipperfield, Martyn P.

    2016-03-01

    We present an assessment of methane (CH4) atmospheric concentrations over the Amazon Basin for 2010 and 2011 using a 3-D atmospheric chemical transport model, two wetland emission models, and new observations made during biweekly flights made over four locations within the basin. We attempt to constrain basin-wide CH4 emissions using the observations, and since 2010 was an unusually dry year, we assess the effect of this drought on Amazonian methane emissions. We find that South American emissions contribute up to 150 ppb to concentrations at the sites, mainly originating from within the basin. Our atmospheric model simulations agree reasonably well with measurements at three of the locations (0.28 ≤ r2 ≤ 0.63, mean bias ≤ 9.5 ppb). Attempts to improve the simulated background CH4 concentration through analysis of simulated and observed sulphur hexafluoride concentrations do not improve the model performance, however. Through minimisation of seasonal biases between the simulated and observed atmospheric concentrations, we scale our prior emission inventories to derive total basin-wide methane emissions of 36.5-41.1 Tg(CH4)/yr in 2010 and 31.6-38.8 Tg(CH4)/yr in 2011. These totals suggest that the Amazon contributes significantly (up to 7%) to global CH4 emissions. Our analysis indicates that factors other than precipitation, such as temperature variations or tree mortality, may have affected microbial emission rates. However, given the uncertainty of our emission estimates, we cannot say definitively whether the noncombustion emissions from the region were different in 2010 and 2011, despite contrasting meteorological conditions between the two years.

  6. Technical note: An improved estimate of uncertainty for source contribution from effective variance Chemical Mass Balance (EV-CMB) analysis

    NASA Astrophysics Data System (ADS)

    Shi, Guo-Liang; Zhou, Xiao-Yu; Feng, Yin-Chang; Tian, Ying-Ze; Liu, Gui-Rong; Zheng, Mei; Zhou, Yang; Zhang, Yuan-Hang

    2015-01-01

    The CMB (Chemical Mass Balance) 8.2 model released by the USEPA is a commonly used receptor model that can determine estimated source contributions and their uncertainties (called default uncertainty). In this study, we propose an improved CMB uncertainty for the modeled contributions (called EV-LS uncertainty) by adding the difference between the modeled and measured values for ambient species concentrations to the default CMB uncertainty, based on the effective variance least squares (EV-LS) solution. This correction reconciles the uncertainty estimates for EV and OLS regression. To verify the formula for the EV-LS CMB uncertainty, the same ambient datasets were analyzed using the equation we developed for EV-LS CMB uncertainty and a standard statistical package, SPSS 16.0. The same results were obtained by both ways indicate that the equation for EV-LS CMB uncertainty proposed here is acceptable. In addition, four ambient datasets were studies by CMB 8.2 and the source contributions as well as the associated uncertainties were obtained accordingly.

  7. Source contributions to PM2.5 and PM10 at an urban background and a street location

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Moerman, M.; Voogt, M.; Blom, M.; Weijers, E. P.; Röckmann, T.; Dusek, U.

    2013-06-01

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The 14C content in EC and OC concentrations was also determined, to distinguish the contribution from "modern" carbon (e.g., biogenic emissions, biomass burning and wildfires) and fossil fuel combustion. It was concluded that the urban background of PM2.5 and PM10 is dominated by the regional background, and that primary and secondary PM emission by urban sources contribute less than 15%. The 14C analysis revealed that 70% of OC originates from modern carbon and 30% from fossil fuel combustion. The corresponding percentages for EC are, respectively 17% and 83%. It is concluded that in particular the urban population living in street canyons with intense road traffic has potential health risks. This is due to exposure to elevated concentrations of a factor two for EC from exhaust emissions in PM2.5 and a factor 2-3 for heavy metals from brake and tyre wear, and re-suspended road dust in PM10. It follows that local air quality management may focus on local measures to street canyons with intense road traffic.

  8. Source contributions of PAHs and toxicity in reed wetland soils of Liaohe estuary using a CMB-TEQ method.

    PubMed

    Li, Guoliang; Lang, Yinhai; Yang, Wei; Peng, Peng; Wang, Xiaomei

    2014-08-15

    16 US EPA priority PAHs were analyzed in surface soils collected from reed wetland of Liaohe estuary. Total concentrations of the sixteen PAHs ranged from 235 ng g(-1) to 374 ng g(-1), while the total concentrations of seven carcinogenic PAHs (cPAHs) varied from 82.6 ng g(-1) to 109 ng g(-1). Toxicity of PAHs was assessed using toxic equivalent quantity (TEQ). The BaP and DBahA were the major contributors to TEQBaP, although IND showed the highest concentration level. Quantitative source apportionment of PAHs and toxicity (i.e. TEQBaP) were performed, using the CMB-TEQ (chemical mass balance model and TEQ) method. Results showed that, the vehicular sources (gasoline and diesel engine emissions) yielded a higher contribution to TEQBaP (95.7%) than that to PAHs (57.1%), while petrogenic source and biomass burning, two important contributors for total PAHs (21.6% and 21.3%, respectively), contributed a little to TEQBaP (3.6% and 0.7%, respectively). PMID:24858217

  9. Point-Source Contributions to the Water Quality of an Urban Stream

    NASA Astrophysics Data System (ADS)

    Little, S. F. B.; Young, M.; Lowry, C.

    2014-12-01

    Scajaquada Creek, which runs through the heart of the city of Buffalo, is a prime example of the ways in which human intervention and local geomorphology can impact water quality and urban hydrology. Beginning in the 1920's, the Creek has been partially channelized and connected to Buffalo's combined sewer system (CSS). At Forest Lawn Cemetery, where this study takes place, Scajaquada Creek emerges from a 3.5-mile tunnel built to route stream flow under the city. Collocated with the tunnel outlet is a discharge point for Buffalo's CSS, combined sewer outlet (CSO) #53. It is at this point that runoff and sanitary sewage discharge regularly during rain events. Initially, this study endeavored to create a spatial and temporal picture for this portion of the Creek, monitoring such parameters as conductivity, dissolved oxygen, pH, temperature, and turbidity, in addition to measuring Escherichia coli (E. coli) concentrations. As expected, these factors responded directly to seasonality, local geomorphology, and distance from the point source (CSO #53), displaying a overall, linear response. However, the addition of nitrate and phosphate testing to the study revealed an entirely separate signal from that previously observed. Concentrations of these parameters did not respond to location in the same manner as E. coli. Instead of decreasing with distance from the CSO, a distinct periodicity was observed, correlating with a series of outflow pipes lining the stream banks. It is hypothesized that nitrate and phosphate occurring in this stretch of Scajaquada Creek originate not from the CSO, but from fertilizers used to maintain the lawns within the subwatershed. These results provide evidence of the complexity related to water quality issues in urban streams as a result of point- and nonpoint-source hydrologic inputs.

  10. The carbon isotopic composition of atmospheric methane and its sources and trends; distribution of source fluxes and their contribution to the increasing concentration

    SciTech Connect

    Stevens, C.M.

    1991-01-01

    The goal of isotopic studies of atmospheric methane is the determination of the relative fluxes of the various sources of different isotopic composition. Because of the large number of generic anthropogenic source types it is not possible to determine their relative strengths based on carbon-13 data alone. However, by combining sources of similar isotopic composition (as well as similar origin), and utilizing results from other studies it is possible to calculate some important features of the atmospheric CH{sub 4} cycle. The {sup 13}C/{sup 12}C ratio of atmospheric CH{sub 4} is increasing in both the southern and northern hemisphere with a faster rate in the former. Analysis of these results shows that the increasing fluxes of CH{sub 4} from biomass burning in the southern hemisphere contribute about 60% of the rate of increasing concentration. In the past decade the trend in the northern hemisphere can be interpreted as caused by both increasing and decreasing fluxes from the natural wetlands sources. 26 refs., 2 figs., 4 tabs.

  11. Contribution of inorganic arsenic sources to population exposure risk on a regional scale.

    PubMed

    Chou, Wei-Chun; Chen, Jein-Wen; Liao, Chung-Min

    2016-07-01

    Chronic exposure to inorganic arsenic (iAs) in the human population is associated with various internal cancers and other adverse outcomes. The purpose of this study was to estimate a population-scale exposure risk attributable to iAs consumptions by linking a stochastic physiological-based pharmacokinetic (PBPK) model and biomonitoring data of iAs in urine. The urinary As concentrations were obtained from a total of 1,043 subjects living in an industrial area of Taiwan. The results showed that the study subjects had an iAs exposure risk of 27 % (the daily iAs intake for 27 % study subjects exceeded the WHO-recommended value, 2.1 μg iAs day(-1) kg(-1) body weight). Moreover, drinking water and cooked rice contributed to the iAs exposure risk by 10 and 41 %, respectively. The predicted risks in the current study were 4.82, 27.21, 34.69, and 64.17 %, respectively, among the mid-range of Mexico, Taiwan (this study), Korea, and Bangladesh reported in the literature. In conclusion, we developed a population-scale-based risk model that covered the broad range of iAS exposure by integrating stochastic PBPK modeling and reverse dosimetry to generate probabilistic distribution of As intake corresponding to urinary As measured from the cohort study. The model can also be updated as new urinary As information becomes available. PMID:27048329

  12. Tracing organic and inorganic pollution sources of agricultural crops and water resources in Güzelhisar Basin of the Aegean Region - Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander

    2014-05-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic and inorganic marker substances, will identify and quantitatively assess sources and their impact on water pollution and the pollutant pathways in this agricultural crop production system.

  13. A simulation-based interval two-stage stochastic model for agricultural non-point source pollution control through land retirement.

    PubMed

    Luo, B; Li, J B; Huang, G H; Li, H L

    2006-05-15

    This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural non-point source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and "off-site" water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties. PMID:16242757

  14. Combining Hydrologic and Geochemical Methods to Quantify Sources and Volumetric Contributions of Baseflow

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Stolp, B.; Marston, T.; Miller, M. P.; Heilweil, V. M.; Susong, D.

    2013-12-01

    A cohesive definition and robust understanding of stream baseflow remains elusive, particularly at broad temporal and spatial scales in snowmelt dominated watersheds. In these types of settings, baseflow is quantified (or estimated) using a number of approaches including hydrograph separation based on gaged streamflow, watershed and groundwater modeling, and chemical transport partitioning. In western US seasonal snowmelt-dominated watersheds, runoff is the primary contributor to streamflow. However, many separation methods incorporate the seasonal snowmelt runoff generation as baseflow. The question remains whether this baseflow is an artifact of the algorithm used or an accurate assessment of the groundwater flow processes that are altered during snowmelt induced recharge. We used a combination of hydrologic and geochemical hydrograph separation methods to estimate the spatial discretization and volumetric contribution of baseflow and spring discharge in a northern Utah watershed. Results of the various separation techniques were evaluated from continuous streamflow records, discrete stream discharge measurements, and geochemical indicators of in-stream conditions. Results suggested that the majority of baseflow inputs to the watershed are constrained to the catchment headwaters. The comparison identifies strengths and weaknesses in both the separation methods and data collection choices used to elucidate baseflow separation. The benefit of this study is that it offers general suggestions for baseflow separation, a first-order assessment of data-collection that will increase confidence in baseflow estimates and points to potential methods for scaling up to regional estimates. We further compare the results from the baseflow separation in Utah to multiple baseflow estimation results from the Tomorrow River in Wisconsin.

  15. Principal aquifers can contribute radium to sources of drinking water under certain geochemical conditions

    USGS Publications Warehouse

    Szabo, Zoltan; Fischer, Jeffrey M.; Hancock, Tracy Connell

    2012-01-01

    What are the most important factors affecting dissolved radium concentrations in principal aquifers used for drinking water in the United States? Study results reveal where radium was detected and how rock type and chemical processes control radium occurrence. Knowledge of the geochemical conditions may help water-resource managers anticipate where radium may be elevated in groundwater and minimize exposure to radium, which contributes to cancer risk. Summary of Major Findings: * Concentrations of radium in principal aquifers used for drinking water throughout the United States generally were below 5 picocuries per liter (pCi/L), the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for combined radium - radium-226 (Ra-226) plus radium-228 (Ra-228) - in public water supplies. About 3 percent of sampled wells had combined radium concentrations greater than the MCL. * Elevated concentrations of combined radium were more common in groundwater in the eastern and central United States than in other regions of the Nation. About 98 percent of the wells that contained combined radium at concentrations greater than the MCL were east of the High Plains. * The highest concentrations of combined radium were in the Mid-Continent and Ozark Plateau Cambro-Ordovician aquifer system and the Northern Atlantic Coastal Plain aquifer system. More than 20 percent of sampled wells in these aquifers had combined radium concentrations that were greater than or equal to the MCL. * Concentrations of Ra-226 correlated with those of Ra-228. Radium-226 and Ra-228 occur most frequently together in unconsolidated sand aquifers, and their presence is strongly linked to groundwater chemistry. * Three common geochemical factors are associated with the highest radium concentrations in groundwater: (1) oxygen-poor water, (2) acidic conditions (low pH), and (3) high concentrations of dissolved solids.

  16. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures

    SciTech Connect

    Radaelli, P. G.; Dhesi, S. S.

    2015-01-26

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007–2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described.

  17. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures.

    PubMed

    Radaelli, P G; Dhesi, S S

    2015-03-01

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. PMID:25624510

  18. Nonpoint-source agricultural chemicals in ground water in Nebraska; preliminary results for six areas of the High Plains Aquifer

    USGS Publications Warehouse

    Chen, Hsiu-Hsiung; Druliner, A.D.

    1987-01-01

    The reconnaissance phase of a study to determine the occurrence of agricultural chemicals from nonpoint sources in groundwater in six areas, which represented the major provinces of the High Plains aquifer in Nebraska is described. In 1984, water from 82 wells in the 6 study areas was analyzed for nitrate, and water from 57 of the 82 wells was analyzed for triazine herbicides. Data for 9 of the 21 independent variables suspected of affecting concentrations of nitrate and triazine herbicides in groundwater were compiled from the 82 well sites. The variables and their ranges are: hydraulic gradient (XI), 0.006-0.0053; hydraulic conductivity (X2), 5-149 ft/day; specific discharge (X3), 0.0128-0.2998 ft/day; depth to water (X4), 3-239 ft; well depth (X5), 40-550 ft; annual precipitation (X6), 12.0-39.3 inches; soil permeability (X7), 0.76-9.0 inches; irrigation well density (X8), 0-8 irrigation wells/ sq mi; and annual nitrogen fertilizer use (X9), 0-260 lbs of nitrogen/acre. Nitrate concentrations ranged from < 0.1 to 45 mg/L as nitrogen. Triazine herbicide concentrations were detected in samples from five of the six study areas in concentrations ranging from < 0.1 to 2.3 mg/L. Statistical tests indicated that there were significant differences in nitrate concentrations among the six study areas, while no significant differences in triazine herbicide concentrations were found. Concentrations of nitrate and triazine herbicide were significantly larger in more intensively irrigated areas. Preliminary correlations with the independent variables and nitrate concentrations indicated significant relations at the 95% confidence level with variables X2, X5, and X8. Correlations with triazine herbicide concentrations indicated significant relations with variables X2 , X3, X5, X6, and X8, and with nitrate concentrations (X10). By using a simple multiple regression technique, variables X5, X8, and X9 explained about 51% of the variation in nitrate concentrations. Variables X3

  19. Relative Contributions of Fossil and Contemporary Carbon sources to PM 2.5 Aerosols at Nine IMPROVE Network Sites

    SciTech Connect

    Bench, G; Fallon, S; Schichtel, B; Malm, W; McDade, C

    2006-06-26

    Particulate matter aerosols contribute to haze diminishing vistas and scenery at National Parks and Wilderness Areas within the United States. To increase understanding of the sources of carbonaceous aerosols at these settings, the total carbon loading and {sup 14}C/C ratio of PM 2.5 aerosols at nine IMPROVE (Interagency Monitoring for Protection Of Visual Environments) network sites were measured. Aerosols were collected weekly in the summer and winter at one rural site, two urban sites, five sites located in National Parks and one site located in a Wildlife Preserve. The carbon measurements together with the absence of {sup 14}C in fossil carbon materials and the known {sup 14}C/C levels in contemporary carbon materials were used to derive contemporary and fossil carbon contents of the particulate matter. Contemporary and fossil carbon aerosol loadings varied across the sites and suggest different percentages of carbon source inputs. The urban sites had the highest fossil carbon loadings that comprised around 50% of the total carbon aerosol loading. The Wildlife Preserve and National Park sites together with the rural site had much lower fossil carbon loading components. At these sites, variations in the total carbon aerosol loading were dominated by non-fossil carbon sources. This suggests that reduction of anthroprogenic sources of fossil carbon aerosols may result in little decrease in carbonaceous aerosol loading at many National Parks and rural areas.

  20. INTEGRATING SUSTAINABLE AGRICULTURE, ECOLOGY, AND ENVIRONMENTAL POLICY

    EPA Science Inventory

    Current agricultural practices are contributing to environmental degradation, which also threatens the sustainability of agricultural production. cology has the potential to contribute significantly to the development of a sustainable and environmentally sound agriculture. owever...

  1. Polybrominated diphenyl ethers in residential and agricultural soils from an electronic waste polluted region in South China: distribution, compositional profile, and sources.

    PubMed

    Zhang, Shaohui; Xu, Xijin; Wu, Yousheng; Ge, Jingjing; Li, Weiqiu; Huo, Xia

    2014-05-01

    A detailed investigation was conducted to understand the concentration, distribution, profile and possible source of polybrominated diphenyl ethers (PBDEs) in residential and agricultural soils from Guiyu, Shantou, China, one of the largest electronic waste (e-waste) recycling and dismantling areas in the world. Ten PBDEs were analyzed in 46 surface soil samples in terms of individual and total concentrations, together with soil organic matter concentrations. Much higher concentrations of the total PBDEs were predicted in the residential areas (more than 2000 ng g(-1)), exhibiting a clear urban source, while in the agricultural areas, concentrations were lower than 1500 ng g(-1). PBDE-209 was the most dominant congener among the study sites, indicating the prevalence of commercial deca-PBDE. However signature congeners from commercial octa-PBDE were also found. The total PBDE concentrations were significantly correlated with each individual PBDE. Principal component analysis indicated that PBDEs were mainly distributed in three groups according to the number of bromine atoms on the phenyl rings, and potential source. This study showed that the informal e-waste recycling has already introduced PBDEs into surrounding areas as pollutant which thus warrants an urgent investigation into the transport of PBDEs in the soil-plant system of agricultural areas. PMID:24374188

  2. The use of conditional probability functions and potential source contribution functions to identify source regions and advection pathways of hydrocarbon emissions in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Xie, Yulong; Berkowitz, Carl M.

    In this study, we demonstrate the utility of conditional probability functions (CPFs), potential source contribution functions (PSCFs), and hierarchical clustering analysis (HAC) to identify the source region and transport pathways of hydrocarbons measured at five photochemical assessment monitoring stations (PAMS) near the Houston Ship Channel from June to October 2003. In contrast to scatter plots, which only show the pair-wise correlation of species, commonality in CPF figures shows both correlation and information on the source region of the species in question. In this study, we use over 50 hourly volatile organic compound (VOC) concentrations and surface wind observations to show that VOCs with similar CPF patterns likely have common transport pathways. This was established with the multivariate technique, which uses the hierarchical clustering analysis to define clusters of VOCs having similar CPF patterns. This method revealed that alkenes, and in particular those with geometric isomers such as cis-/ trans-2-butene and cis-/ trans-2-pentene, have similar CPF patterns and hence, a common area of origin. The alkane isomers often show CPF patterns among themselves, and similarly, aromatic compounds often show similar patterns. We also show how calculated trajectory information can be used in the PSCF analysis to produce a graphic picture that identifies specific geographic areas associated with a given VOC (or other pollutant). The use of these techniques in the chemically and meteorologically complex environment of Houston, Texas, suggests its further utility in other areas with relatively simpler conditions.

  3. The Use of Conditional Probability Functions and Potential Source Contribution Functions to Identify Source Regions and Advection Pathways of Hydrocarbon Emissions in Houston, Texas

    SciTech Connect

    Xie, YuLong; Berkowitz, Carl M.

    2007-09-01

    In this study, we demonstrate the utility of conditional probability functions (CPFs), potential source contribution functions (PSCFs), and hierarchical clustering analysis to identify the source region and transport pathways of hydrocarbons measured at five photochemical assessment monitoring stations (PAMS) near the Houston ship channel from June to October 2003. Over 50 volatile organic compound (VOC) concentrations were measured on the hourly collected samples. Routine surface observations of wind directions measured at each of the receptor sites were used extensively. We show that VOCs with similar CPF patterns likely have common transport pathways. This was established with the multivariate technique, which uses the hierarchical clustering analysis to allow clusters of groups of VOCs to form with similar CPF patterns. This method revealed that alkenes, and in particular those with geometric isomers such as cis-/trans-2-butene and cis-/trans-2-pentene, have similar CPF patterns. The alkane isomers often show CPF patterns among themselves, and similarly, aromatic compounds often show similar patterns among themselves too. We also show how trajectory information can be used in conjunction with the PSCF analysis to produce a graphic analysis suggesting specific source areas for a given VOC. The use of these techniques in the chemically and meteorologically complex environment of Houston, Texas, suggests its further utility in other areas with relatively simpler conditions.

  4. Sources and Quantities of Nitrogen Contributing to Eutrophication of Barnegat Bay-Little Egg Harbor Estuary, New Jersey

    NASA Astrophysics Data System (ADS)

    Wieben, C. M.; Baker, R. J.; Nicholson, R.

    2010-12-01

    Barnegat Bay-Little Egg Harbor (BB-LEH) estuary is among the most valuable recreational and economic natural resources in New Jersey. Historically, it has been important as a fishery and fish spawning area. However, negative effects of excessive nutrients have led the National Oceanic and Atmospheric Administration to classify this large, shallow water body as highly eutrophic. Although most nitrogen point sources have been eliminated from the watershed, environmental conditions in the estuary continue to deteriorate, and reduction of nonpoint sources is essential to the ecological health of the estuary. A thorough understanding of the relative contributions of nitrogen sources is needed to develop effective management strategies for the estuary and its watershed. This paper presents the results of recent investigations designed to identify sources and loading of nitrogen to BB-LEH estuary. Quantification of nitrogen loads from the most substantial delivery pathways was completed by using available water-quality, hydrologic, and atmospheric-deposition data. Total annual loading from surface water, groundwater discharge, and atmospheric deposition is estimated to be 650,000 kilograms of nitrogen per year (kg N/yr). Surface water contributes 66 percent (431,000 kg N/yr), direct ground-water discharge accounts for 12 percent (78,000 kg N/yr), and atmospheric deposition accounts for 22 percent (141,000 kg N/yr). Results of the studies demonstrate a relation between urban land use and nitrogen inputs and indicate that the most developed areas draining to the estuary--watersheds of the Toms and Metedeconk River Basins-- account for more than 60 percent of the nitrogen load to the BB-LEH estuary from surface-water discharge. In a previous study, loads of nitrogen in stormwater runoff to tributaries of the Toms River were shown to be strongly correlated with percentage of urban land development. In order to fill data gaps and refine the loading estimates, stormwater and

  5. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species

    NASA Astrophysics Data System (ADS)

    König, Georg; Brunda, Monika; Puxbaum, Hans; Hewitt, C. Nicholas; Duckham, S. Craig; Rudolph, Jochen

    Emission rates of more than 50 individual VOCs were determined for eight plant species and three different types of grass land typical for natural deciduous and agricultural vegetation in Austria. In addition to the emissions of isoprene and monoterpenes, 33 biogenic oxygenated volatile organic compounds (BOVOCs) were detected. Of these, 2-methyl-l-propanol, 1-butanal, 2-butanal, 1-pentanol, 3-pentanol, 1-hexanol, 6-methyl-5-hepten-2-one, butanal and ethylhexylacetate were observed for the first time as plant emissions. In terms of prevalence of one of the groups of emitted VOCs (isoprene, terpenes, BOVOCs) the grain plants wheat and rye, grape, oilseed rape and the decidous trees hombeam and birch could be classified as "BOVOC"-emitters. For the grass plots examined, BOVOCs and terpenes appear to be of equal importance. The emission rates of the total assigned organic plant emissions ranged from 0.01 μ g -1 h -1 for wheat to 0.8 μg g -1 h -1 for oak (based on dry leaf weight). Intercomparison with available data from other studies show that our emission rates are rather at the lower end of reported ranges. The influence of the stage of growth was examined for rye, rape (comparing emissions of blossoming and nonblossoming plants) and for grape (with and without fruit). Emission rate differences for different stages of growth varied from nondetectable for blossoming and nonblossoming rye to a factor of six for the grape with fruits vs grape without fruits (emission rate based on dry leaf weight). The major decidous tree in Austria (beech) is a terpene emitter, with the contribution of BOVOCs below 5% of the total assigned emissions of 0.2 μg g -1 h -1 for the investigations of 20°C.

  6. Source apportionment of airborne particles in commercial aircraft cabin environment: Contributions from outside and inside of cabin

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Guan, Jun; Yang, Xudong; Lin, Chao-Hsin

    2014-06-01

    Airborne particles are an important type of air pollutants in aircraft cabin. Finding sources of particles is conducive to taking appropriate measures to remove them. In this study, measurements of concentration and size distribution of particles larger than 0.3 μm (PM>0.3) were made on nine short haul flights from September 2012 to March 2013. Particle counts in supply air and breathing zone air were both obtained. Results indicate that the number concentrations of particles ranged from 3.6 × 102 counts L-1 to 1.2 × 105 counts L-1 in supply air and breathing zone air, and they first decreased and then increased in general during the flight duration. Peaks of particle concentration were found at climbing, descending, and cruising phases in several flights. Percentages of particle concentration in breathing zone contributed by the bleed air (originated from outside) and cabin interior sources were calculated. The bleed air ratios, outside airflow rates and total airflow rates were calculated by using carbon dioxide as a ventilation tracer in five of the nine flights. The calculated results indicate that PM>0.3 in breathing zone mainly came from unfiltered bleed air, especially for particle sizes from 0.3 to 2.0 μm. And for particles larger than 2.0 μm, contributions from the bleed air and cabin interior were both important. The results would be useful for developing better cabin air quality control strategies.

  7. A Study on the contribution of different food sources to shrimp growth in an intensive Fenneropenaeus chinensis pond

    NASA Astrophysics Data System (ADS)

    Su, Yuepeng; Ma, Shen; Tian, Xiangli; Dong, Shuanglin

    2008-11-01

    Stable isotope methods can be used to determine the food sources and prey items of aquatic organisms accurately and reliably. This study examined the relative contribution of artificial foods (the formulated feed and Artemia) and natural foods to shrimp growth in an intensive Fenneropenaeus chinensis pond by using carbon and nitrogen stable isotopes. The results showed that the nutrition utilization efficiency of the harvested shrimp was low, only 33.18% of feed nitrogen and 21.73% of feed carbon being converted to shrimp flesh. Our stable isotope results showed that the shrimp obtained nutrition for maximum growth from artificial foods, whose contribution was 93.5%, with the remaining attributed to the natural foods. However, there was 0.94 t harvested shrimp derived from natural foods (the rest of 13.56 t harvested shrimp derived from artificial foods) in 1ha intensive pond with a shrimp production of 14.50 t ha-1. Therefore, unit area shrimp production can be increased by increasing the contribution proportion of natural foods in intensive shrimp farming.

  8. Diurnal and weekday variations in the source contributions of ozone precursors in California's South Coast Air Basin.

    PubMed

    Fujita, Eric M; Campbell, David E; Zielinska, Barbara; Sagebiel, John C; Bowen, John L; Goliff, Wendy S; Stockwell, William R; Lawson, Douglas R

    2003-07-01

    For at least 30 years, ozone (O3) levels on weekends in parts of California's South Coast (Los Angeles) Air Basin (SoCAB) have been as high as or higher than on weekdays, even though ambient levels of O3 precursors are lower on weekends than on weekdays. A field study was conducted in the Los Angeles area during fall 2000 to test whether proposed relationships between emission sources and ambient nonmethane hydrocarbon (NMHC) and oxides of nitrogen (NOx) levels can account for observed diurnal and day-of-week variations in the concentration and proportions of precursor pollutants that may affect the efficiency and rate of O3 formation. The contributions to ambient NMHC by motor vehicle exhaust and evaporative emissions, estimated using chemical mass balance (CMB) receptor modeling, ranged from 65 to 85% with minimal day-of-week variation. Ratios of ambient NOx associated with black carbon (BC) to NOx associated with carbon monoxide (CO) were approximately 1.25 +/- 0.22 during weekdays and 0.76 +/- 0.07 and 0.52 +/- 0.07 on Saturday and Sunday, respectively. These results demonstrate that lower NOx emissions from diesel exhaust can be a major factor causing lower NOx mixing ratios and higher NMHC/NOx ratios on weekends. Nonmobile sources showed no significant day-of-week variations in their contributions to NMHC. Greater amounts of gasoline emissions are carried over on Friday and Saturday evenings but are, at most, a minor factor contributing to higher NMHC/NOx ratios on weekend mornings. PMID:12880072

  9. Source contribution to the bulk atmospheric deposition of minor and trace elements in a Northern Spanish coastal urban area

    NASA Astrophysics Data System (ADS)

    Fernández-Olmo, Ignacio; Puente, Mariano; Montecalvo, Lucia; Irabien, Angel

    2014-08-01

    The bulk atmospheric deposition of the minor and trace elements As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn was investigated in Santander, a Northern Spanish coastal city. Bulk deposition samples were collected monthly for three years using a bottle/funnel device. Taking into account that heavy metals are bioavailable only in their soluble forms, water-soluble and water-insoluble fractions were evaluated separately for element concentration. The fluxes of the studied elements in the bulk deposition exhibited the following order: Zn > Mn ≫ Cu > Cr > Pb > V > Ni ≫ As > Mo > Cd. The fluxes of Zn and Mn were more than 10 times higher than those of the other elements, with maximum values of 554.5 and 334.1 μg m- 2 day- 1, respectively. Low solubilities (below 22%) were found for Cr, Ti and Pb, whereas the highest solubility was found for Zn (78%). With the exception of Cu, all of the studied metals in the water-soluble fraction of the atmospheric deposition showed seasonal dependence, due to the seasonal variability of precipitation. The enrichment factors (EFs) of Cu, Cd and Zn were higher than 100, indicating a clear anthropogenic origin. The EF of Mn (50) was below 100, but an exclusively industrial origin is suggested. Positive Matrix Factorisation (PMF) was used for the source apportionment of the studied minor and trace elements in the soluble fraction. Four factors were identified from PMF, and their chemical profiles were compared with those calculated from known sources that were previously identified in Santander Bay: two industrial sources, the first of which was characterised by Zn and Mn, which contributes 62.5% of the total deposition flux of the studied elements; a traffic source; and a maritime source. Zinc and Mn are considered to be the most characteristic pollutants of the studied area.

  10. Quantification of the methane emission flux from the city of Indianapolis, IN: identification and contribution of sources

    NASA Astrophysics Data System (ADS)

    Cambaliza, M. L.; Shepson, P. B.; Stirm, B. H.; Caulton, D.; Miller, C.; Hendricks, A.; Moser, B.; Lavoie, T. N.; Salmon, O. E.; Karion, A.; Sweeney, C.; Turnbull, J. C.; Davis, K. J.; Lauvaux, T.; Crosson, E.; Prasad, K.; Whetstone, J. R.; Miles, N. L.; Richardson, S.

    2013-12-01

    We report the methane emission flux from the city of Indianapolis, IN, the site of the INFLUX project for developing, testing, and improving top-down and bottom-up methods for quantifying urban greenhouse gas emissions. Using an aircraft-based mass balance approach, we find that the average methane emission flux from Indianapolis is ~150 moles per second from several flight experiments, a factor of ~6 smaller than the total emissions from the Los Angeles Air Basin, CA (with a population that is 7 times greater than Indianapolis) for 2007 - 2010 (Wennberg et al., 2012). We also consistently observed elevated CH4 concentrations at specific coordinates along our horizontal transects downwind of the city. Inflight investigations as well as backtrajectories using measured wind directions showed that the elevated concentrations originate from the southwest side of the city where a landfill and a natural gas transmission regulating station (TRS) are located. Surface mobile measurements supported the results of aircraft-based data, and were used to quantify the relative contributions from the two sources as well as to determine other sources contributing to the citywide flux. We find that the emission from the TRS was negligible relative to the landfill, which was responsible for about a third of the citywide methane emission flux. Surface mobile data further suggests that most of the rest of the emission derive from the natural gas distribution system. Here we discuss the combination of surface mobile observations in concert with aircraft city-wide flux measurements to enable determination of the total flux and apportionment among sources. The latter will enable development of a set of prior emission fluxes useful for inverse modeling.

  11. Information for Agricultural Development.

    ERIC Educational Resources Information Center

    Kaungamno, E. E.

    This paper describes the major international agricultural information services, sources, and systems; outlines the existing information situation in Tanzania as it relates to problems of agricultural development; and reviews the improvements in information provision resources required to support the process of agricultural development in Tanzania.…

  12. Semi volatile organic compounds in ambient PM2.5. Seasonal trends and daily resolved source contributions.

    PubMed

    Schnelle-Kreis, Jürgen; Sklorz, Martin; Orasche, Jürgen; Stölzel, Matthias; Peters, Annette; Zimmermann, Ralf

    2007-06-01

    Concentrations of ambient semivolatile organic compounds (SVOC) in the PM2.5 fraction of Augsburg, Germany, have been monitored on a daily basis from January 2003 through December 2004. Samples were taken in a large garden in the city center. Quantitative analysis of n-alkanes, alkanones, alkanoic acid methylesters, long chain linear alkyl benzenes and toluenes, hopanes, polycyclic aromatic hydrocarbons (PAH) and oxidized PAH, and some abietan type diterpenes was done. All compounds showed distinct seasonal variations in concentration. Most compounds showed highest concentrations during the cold seasons, but some n-alkanones and 6,10,14-trimethylpentadecanone showed maximum concentration during summer. Changes in patterns between and within compound classes were obvious, e.g., the hopane pattern exhibited a strong seasonal variation. The main source related contributions to changes observed were discussed. Using positive matrix factorization (PMF) for the statistical investigation of the data set, five factors have been separated. These factors are dominated by the pattern of single sources or groups of similar sources: factor 1, lubricating oil; factor 2, emissions of unburned diesel and heating oil consumption; factor 3, wood combustion; factor 4, brown coal combustion; and factor 5, biogenic emissions and transport components. Like the SVOC, the factors showed strong seasonality with highest values in winter for factors 1-4 and in summer for factor 5. PMID:17612155

  13. Semi volatile organic compounds in ambient PM2.5. Seasonal trends and daily resolved source contributions

    SciTech Connect

    Juergen Schnelle-Kreis; Martin Sklorz; Juergen Orasche; Matthias Stoelzel; Annette Peters; Ralf Zimmermann

    2007-06-01

    Concentrations of ambient semivolatile organic compounds (SVOC) in the PM2.5 fraction of Augsburg, Germany, have been monitored on a daily basis from January 2003 through December 2004. Samples were taken in a large garden in the city center. Quantitative analysis of n-alkanes, alkanones, alkanoic acid methylesters, long chain linear alkyl benzenes and toluenes, hopanes, polycyclic aromatic hydrocarbons (PAH) and oxidized PAH, and some abietan type diterpenes was done. All compounds showed distinct seasonal variations in concentration. Most compounds showed highest concentrations during the cold seasons, but some n-alkanones and 6,10,14-trimethylpentadecanone showed maximum concentration during summer. Changes in patterns between and within compound classes were obvious, e.g., the hopane pattern exhibited a strong seasonal variation. The main source related contributions to changes observed were discussed. Using positive matrix factorization (PMF) for the statistical investigation of the data set, five factors have been separated. These factors are dominated by the pattern of single sources or groups of similar sources: factor 1, lubricating oil; factor 2, emissions of unburned diesel and heating oil consumption; factor 3, wood combustion; factor 4, brown coal combustion; and factor 5, biogenic emissions and transport components. Like the SVOC, the factors showed strong seasonality with highest values in winter for factors 1-4 and in summer for factor 5. 56 refs., 3 figs., 1 tab.

  14. Alternative control technology document: Control of VOC emissions from the application of agricultural pesticides

    SciTech Connect

    Not Available

    1993-03-01

    In many States, some of the ozone nonattainment areas are comprised primarily of agricultural counties where a potentially significant contribution to the ozone may result from area sources of volatile organic compounds (VOC's) emissions. A potential source of VOC emissions in agricultural counties is the release of organic compounds from the application of agricultural pesticides. The report provides technical information that State and local agencies can consider while developing strategies for reducing VOC emissions.

  15. Agriculture Education. Agriculture Structures.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agriculture structures. The guide presents units of study in the following areas: (1) shop safety, (2) identification and general use of hand tools, (3) power tools, (4) carpentry, (5) blueprint…

  16. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    SciTech Connect

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

  17. Dissimilarity of yellow-blue surfaces under neutral light sources differing in intensity: separate contributions of light intensity and chroma.

    PubMed

    Tokunaga, Rumi; Logvinenko, Alexander D; Maloney, Laurence T

    2008-01-01

    Observers viewed two side-by-side arrays each of which contained three yellow Munsell papers, three blue, and one neutral Munsell. Each array was illuminated uniformly and independently of the other. The neutral light source intensities were 1380, 125, or 20 lux. All six possible combinations of light intensities were set as illumination conditions. On each trial, observers were asked to rate the dissimilarity between each chip in one array and each chip in the other by using a 30-point scale. Each pair of surfaces in each illumination condition was judged five times. We analyzed this data using non-metric multi-dimensional scaling to determine how light intensity and surface chroma contributed to dissimilarity and how they interacted. Dissimilarities were captured by a three-dimensional configuration in which one dimension corresponded to differences in light intensity. PMID:18598408

  18. Relative contribution of lead from anthropogenic sources to the total human lead exposure in the United States. Final report

    SciTech Connect

    Elias, R.W.

    1986-08-01

    The paper evaluates human exposure to lead at a baseline level for persons living in non-urban communities away from stationary or mobile sources of lead, eating typical diets, and engaging in no lead-related occupational or avocational activities. Relative contributions of atmospheric and metallic lead are evaluated for each exposure pathway. For this baseline situation, perhaps 40 to 55% of the total human exposure to lead is of atmospheric origin. Beyond the baseline level, additional exposure factors can be determined for other environments (e.g. urban, occupational, smelter communities) and for certain habits and activities (e.g., pica, smoking, drinking, and various hobbies), with variations for age, sex, or socioeconomic status. Although quantification of these factors is uncertain, they provide guidelines in determining relative exposures under differing environmental conditions. The added exposure factors can also be partitioned into atmospheric, metallic, and pigment lead.

  19. Indicators of the sources and distribution of nitrate in water from shallow domestic wells in agricultural areas of the New Jersey Coastal Plain

    USGS Publications Warehouse

    Vowinkel, Eric F.; Tapper, Robert J.

    1995-01-01

    Previously collected and new water-quality data from shallow wells (screened interval less than 30 meters below the land surface) in predominantly agricultural areas of the New Jersey Coastal Plain were used to determine the relation of nitrate concentrations in shallow ground water to various hydrogeologic and land-use factors in the study area. Information on land use, well construction, hydrogeology, and water quality were used to predict the conditions under which concentrations of nitrate as nitrogen in water from domestic wells in predominantly agricultural areas are most likely to be equal to or larger than the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 10 milligrams per liter. Results of the analyses of water-quality samples collected during 1980-89 from 230 shallow wells in the outcrop areas of the Kirkwood-Cohansey and Potomac-Raritan-Magothy aquifer systems were used to evaluate the regional effects of land use on shallow-ground-water quality. Results of statistical analysis indicate that concentrations of nitrate in shallow ground water are significantly different (p= 0.001) in agricultural areas than in undeveloped areas in both aquifer systems. Concentrations of nitrate nitrogen exceeded the MCL in water from more than 33 percent of the 60 shallow wells in agricultural areas. Concentrations of hitrate in water from shallow wells in agricultural areas increased as the percentage of agricultural land within an 800-meter-radius buffer zone of the wellhead increased (r= 0.81). Concentrations ofhitrate in water from domestic wells in agricultural areas were similar (p= 0.23) to those concentrations in water from irrigation wells. These results indicate that most of the nitrate in water from domestic wells in agricultural areas results from agricultural practices rather than other sources, such as septic systems. Water-quality samples collected from 12 shallow domestic wells in agricultural areas screened in the outcrop areas of

  20. Exploring the uncertainty in attributing sediment contributions in fingerprinting studies due to uncertainty in determining element concentrations in source areas.

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Owens, Phillip N.; Koiter, Alex J.; Lobb, David

    2016-04-01

    determine an average value for each of the different maps of element concentration and sub-catchment, under different sampling densities: 200 different average values for the "high" sampling density (average of 50 samples); 400 different average values for the "medium" sampling density (average of 25 samples); and 1,000 different average values for the "low" sampling density (average of 10 samples). All these combinations of possible values of element concentrations in the source areas were solved for the concentration in the sediment already determined for the "true" solution using limSolve (Soetaert et al., 2014) in R language. The sediment source solutions found for the different situations and values were analyzed in order to: 1) evaluate the uncertainty in the sediment source attribution; and 2) explore strategies to detect the most probable solutions that might lead to improved methods for constructing the most robust mixing models. Preliminary results on these will be presented and discussed in this communication. Key words: sediment, fingerprinting, uncertainty, variability, mixing model. References Collins, A.L., Zhang, Y., McChesney, D., Walling, D.E., Haley, S.M., Smith, P. 2012. Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling. Science of the Total Environment 414: 301-317. Freeze, R.A. 1980. A stochastic-conceptual analysis of rainfall-runoff processes on a hillslope. Water Resources Research 16: 391-408.

  1. Combining multiple data sources for the quantification of snow and glacier melt contributions to streamflow over the last 100 years

    NASA Astrophysics Data System (ADS)

    Stahl, Kerstin; Freudiger, Daphné S.; Kohn, Irene; Seibert, Jan; Weiler, Markus

    2015-04-01

    High alpine headwater catchments are important source areas for many large rivers. There is considerable interest in understanding and predicting the changing hydrological processes in these catchments due to climatic changes. At the same time, high elevation regions tend to be data scarce. The aim of the study is a re-analysis of the changing contributions of snow and glacier melt to streamflow in the river Rhine over the entire 20th Century. The success of quantifying these contributions across scales and over such a long time period depends on the use of all available information. We present the challenges and benefits of combining multiple regional data sources (i) to analyze these changes empirically and (ii) to constrain hydrological modeling in the headwater basins. The reconstruction of gridded meteorological variables for the period 1901-1950 based on an analogue resampling technique created a consistent meteorological forcing over the entire period. Glacier extents from maps of the early 20th Century defined the starting conditions to bridge the time to existing glacier volume and area change data. The analysis of the co-variability and trends in a set of long time series of climate variables and streamflow in unregulated headwaters provided insight into different phases of changing climate-hydrology relations. These signatures, together with the snow water equivalent maps for the last 30 years produced by the SLF and the collection of all available streamflow records provided important benchmarks for model calibration and validation. This work improves the understanding of climate sensitivity in high mountain environments and demonstrates important challenges when modeling partly compensating effects of a changing climate.

  2. 26 CFR 31.3121(g)-1 - Agricultural labor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Agricultural labor. 31.3121(g)-1 Section 31.3121(g)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX AT SOURCE EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX AT SOURCE Federal Insurance Contributions Act (Chapter...

  3. Potential groundwater and heterogeneous heat source contributions to ice sheet dynamics in critical submarine basins of East Antarctica

    NASA Astrophysics Data System (ADS)

    Gooch, Brad T.; Young, Duncan A.; Blankenship, Donald D.

    2016-02-01

    We present the results of two numerical models describing contributions of groundwater and heterogeneous heat sources to ice dynamics directly relevant to basal processes in East Antarctica. A two-phase, one-dimensional hydrothermal model demonstrates the importance of groundwater flow in vertical heat flux advection near the ice-bed interface. Typical, conservative vertical components of groundwater volume fluxes (from either topographical gradients or vertically channeled flow) on the order of ±1-10 mm/yr can alter vertical heat flux by ±50-500 mW/m2 given parameters typical for the interior of East Antarctica. This heat flux has the potential to produce considerable volumes of meltwater depending on basin geometry and geothermal heat production. A one-dimensional hydromechanical model demonstrates that groundwater is mainly recharged into saturated, partially poroelastic (i.e., vertical stress only; not coupled to a deformation equation) sedimentary aquifers during ice advance. During ice retreat, groundwater discharges into the ice-bed interface, which may contribute to water budgets on the order of 0.1-1 mm/yr. We also present an estimated map of potentially heterogeneous heat flow provinces using radiogenic heat production data from East Antarctica and southern Australia, calculated sedimentary basin depths, and radar-derived bed roughness. These are overlaid together to delineate the areas of greatest potential effect from these modeled processes on the ice sheet dynamics of the East Antarctic Ice Sheet.

  4. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, V.; Byčenkienė, S.; Bozzetti, C.; Vlachou, A.; Plauškaitė, K.; Mordas, G.; Dudoitis, V.; Abbaszade, G.; Remeikis, V.; Garbaras, A.; Masalaite, A.; Blees, J.; Fröhlich, R.; Dällenbach, K. R.; Canonaco, F.; Slowik, J. G.; Dommen, J.; Zimmermann, R.; Schnelle-Kreis, J.; Salazar, G. A.; Agrios, K.; Szidat, S.; El Haddad, I.; Prévôt, A. S. H.

    2015-09-01

    In early spring the Baltic region is frequently affected by high pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 μg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the TC, respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 % and 7-12 %, respectively. Isotope ratio of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  5. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco; Slowik, Jay G.; Dommen, Josef; Zimmermann, Ralf; Schnelle-Kreis, Jürgen; Salazar, Gary A.; Agrios, Konstantinos; Szidat, Sönke; El Haddad, Imad; Prévôt, André S. H.

    2016-05-01

    In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 µg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the total carbon (TC), respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 and 7-13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  6. Combination of Unmix and positive matrix factorization model identifying contributions to carcinogenicity and mutagenicity for polycyclic aromatic hydrocarbons sources in Liaohe delta reed wetland soils, China.

    PubMed

    Lang, Yin-Hai; Li, Guo-Liang; Wang, Xiao-Mei; Peng, Peng; Bai, Jie

    2015-02-01

    Surface soils were collected from Liaohe delta, China, the largest reed wetland in the world dominated by common reed (Phragmites australis). Samples were analyzed for sixteen priority polycyclic aromatic hydrocarbons (PAHs) by GC/MS. The potential source patterns and source contributions to seven carcinogenic PAH congeners were performed by combining of Unmix and positive matrix factorization (PMF) model with the formula of toxic equivalent quantity (TEQ BaP) and mutagenic equivalent quantity (MEQ BaP), respectively. Four source categories, including petrogenic source, biomass burning, diesel emission and coal combustion, were identified by Unmix and PMF models. For both Unmix and PMF model, the mixed sources (gasoline and diesel engine emission) contributed the most to the TEQ BaP and MEQ BaP, while petrogenic source, the largest contributor for PAHs, made lower contribution to TEQ BaP and MEQ BaP. Minor source contribution difference was found between two models, which might be attributed to uncertainties model parameters and species variables. Hence, it is very essential to use combined source apportionment techniques for quantitatively identifying PAHs sources and estimated their carcinogenicity and mutagenicity. PMID:25217882

  7. Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: sorption mechanism and source contributions to respiratory deposition

    NASA Astrophysics Data System (ADS)

    Lv, Yan; Li, Xiang; Xu, Ting Ting; Cheng, Tian Tao; Yang, Xin; Chen, Jian Min; Iinuma, Yoshiteru; Herrmann, Hartmut

    2016-03-01

    In order to better understand the particle size distribution of polycyclic aromatic hydrocarbons (PAHs) and their source contribution to human respiratory system, size-resolved PAHs have been studied in ambient aerosols at a megacity Shanghai site during a 1-year period (2012-2013). The results showed the PAHs had a bimodal distribution with one mode peak in the fine-particle size range (0.4-2.1 µm) and another mode peak in the coarse-particle size range (3.3-9.0 µm). Along with the increase in ring number of PAHs, the intensity of the fine-mode peak increased, while the coarse-mode peak decreased. Plotting of log(PAH / PM) against log(Dp) showed that all slope values were above -1, suggesting that multiple mechanisms (adsorption and absorption) controlled the particle size distribution of PAHs. The total deposition flux of PAHs in the respiratory tract was calculated as being 8.8 ± 2.0 ng h-1. The highest lifetime cancer risk (LCR) was estimated at 1.5 × 10-6, which exceeded the unit risk of 10-6. The LCR values presented here were mainly influenced by accumulation mode PAHs which came from biomass burning (24 %), coal combustion (25 %), and vehicular emission (27 %). The present study provides us with a mechanistic understanding of the particle size distribution of PAHs and their transport in the human respiratory system, which can help develop better source control strategies.

  8. The contribution of Escherichia coli from human and animal sources to the integron gene pool in coastal waters

    PubMed Central

    Moura, Alexandra; Araújo, Susana; Alves, Marta S.; Henriques, Isabel; Pereira, Anabela; Correia, António C. M.

    2014-01-01

    To understand the contribution of animal- and human-derived fecal pollution sources in shaping integron prevalence and diversity in beach waters, 414 Escherichia coli strains were collected from beach waters (BW, n = 166), seagull feces (SF, n = 179), and wastewaters (WW, n = 69), on the World Biosphere Reserve of the Berlenga Island, Portugal. Statistical differences were found between the prevalence of integrons in BW (21%) and WW (10%), but not between BW and SF (19%). The majority of integrase-positive (intI+)-strains affiliated to commensal phylogroups B1 (37%), A0 (24%), and A1 (20%). Eighteen different gene cassette arrays were detected, most of them coding for resistances to aminoglycosides, trimethoprim, chloramphenicol, and quaternary ammonia compounds. Common arrays were found among strains from different sources. Multi-resistance to three or more different classes of antibiotics was observed in 89, 82, and 57% of intI+-strains from BW, SF and WW, respectively. Plasmids were detected in 79% of strains (60/76) revealing a high diversity of replicons in all sources, mostly belonging to IncF (Frep, FIA, and FIB subgroups), IncI1, IncN, IncY, and IncK incompatibility groups. In 20% (15/76) of strains, integrons were successfully mobilized through conjugation to E. coli CV601. Results obtained support the existence of a diverse integron pool in the E. coli strains from this coastal environment, associated with different resistance traits and plasmid incompatibility groups, mainly shaped by animal fecal pollution inputs. These findings underscore the role of wild life in dissemination of integrons and antibiotic resistance traits in natural environments. PMID:25161650

  9. Dynamics and sources of reduced sulfur, humic substances and dissolved organic carbon in a temperate river system affected by agricultural practices.

    PubMed

    Marie, Lauriane; Pernet-Coudrier, Benoît; Waeles, Matthieu; Gabon, Marine; Riso, Ricardo

    2015-12-15

    Although reduced organic sulfur substances (RSS) as well as humic substances (HS) are widely suspected to play a role in, for example, metal speciation or used as a model of dissolved organic carbon (DOC) in laboratory studies, reports of their quantification in natural waters are scarce. We have examined the dynamics and sources of reduced sulfur, HS and DOC over an annual cycle in a river system affected by agricultural practices. The new differential pulse cathodic stripping voltammetry was successfully applied to measure glutathione-like compounds (GSHs), thioacetamide-like compounds (TAs) and the liquid chromatography coupled to organic detector to analyze HS and DOC at high frequency in the Penzé River (NW France). The streamflow-concentration patterns, principal components analysis and flux analysis allowed discrimination of the source of each organic compound type. Surprisingly, the two RSS and HS detected in all samples, displayed different behavior. As previously shown, manuring practice is the main source of DOC and HS in this watershed where agricultural activity is predominant. The HS were then transferred to the river systems via runoff, particularly during the spring and autumn floods, which are responsible of >60% of the annual flux. TAs had a clear groundwater source and may be formed underground, whereas GSHs displayed two sources: one aquagenic in spring and summer probably linked to the primary productivity and a second, which may be related to bacterial degradation. High sampling frequency allowed a more accurate assessment of the flux values which were 280 tC y(-1) for DOC representing 20 kg C ha(-1) y(-1). HS, TAs and GSHs fluxes represented 60, 13, and 4% of the total annual DOC export, respectively. PMID:26278374

  10. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    PubMed

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution. PMID:27441855

  11. Designing Schemes to Mitigate Non-Point Source Water Pollution from Agriculture: The Value of High-Resolution Hydrochemical and Hydrophysical Data

    NASA Astrophysics Data System (ADS)

    Barber, N.; Reaney, S. M.

    2014-12-01

    To effectively mitigate non-point source water pollution from agriculture, first it is vital to have an awareness of a watershed's hydrological and contaminant regime. Understanding the magnitude and timing of pollutant export, as well as the pathways by which different constituents are delivered to a water course, is paramount. One approach to gaining this type of knowledge is to observe pollutant fluxes at the watershed outlet. The River Eden Demonstration Test Catchments programme uses in-situ monitoring equipment to provide high-resolution (30 minute) data for three mixed-agriculture watersheds (ca. 10km2) in north western England. Determinands measured include turbidity, phosphorus, nitrate, chlorophyll-a, dissolved oxygen, conductivity, pH and temperature, along with river discharge and rainfall. Provided with these data, and an awareness of significant agricultural activities carried out in the watershed on an annual basis, this study demonstrates how it is possible to identify different pollutant transfer pathways, along with their spatio-temporal nature, and their relative importance. This information is then used to inform appropriate mitigation design. In relation to this purpose, the pros and cons of the different hydrochemical and hydrophysical data are described, and recommendations made for other determinands that should be considered for measurement in future similar studies.

  12. Methane in groundwater used for Japanese agriculture: Its relationship to other physico-chemical properties and possible tropospheric source strength

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Kimura, M.; Kasuya, M.; Kotake, M.; Katoh, T.

    1994-01-01

    The concentration of CH4 in 131 groundwater samples used for agriculture in Aichi Prefecture, central Japan, averaged 1.58 mgC l-1 for those water samples above detection (>0.006 mgC l-1), with the highest value of 18.4 mgC l-1. Methane was detected in more than half of the groundwater samples. The amount of CH4 released to the atmosphere because of agricultural groundwater use was estimated to be 2.00 × 107 gC yr-1 for a cultivated area of 8.61 × 104 ha, or about 1.4% of the CH4 production in paddy fields derived from soil organic matter in the same geographic area. Distribution of measurements of redox potential (Eh), chemical oxygen demand (COD), Fe, Mn, NH4-N, and NO3-N was clearly different between the CH4-detected and undetected samples; Eh values and NO3-N concentrations were lower while the other four factors were higher in the CH4-detected samples.

  13. Dissociating the contributions of slow-wave sleep and rapid eye movement sleep to emotional item and source memory.

    PubMed

    Groch, S; Zinke, K; Wilhelm, I; Born, J

    2015-07-01

    Sleep benefits the consolidation of emotional memories, and this influence is commonly attributed to the rapid eye movement (REM) stage of sleep. However, the contributions of sleep stages to memory for an emotional episode may differ for the event per se (i.e., item memory), and the context in which it occurred (source memory). Here, we examined the effects of slow wave sleep (SWS) and REM sleep on the consolidation of emotionally negative and neutral item (picture recognition) and source memory (recall of picture-location and picture-frame color association) in humans. In Study 1, the participants (n=18) learned 48 negative and 48 neutral pictures which were presented at specific locations and preceded by colored frames that had to be associated with the picture. In a within-subject design, learning was either followed by a 3-h early-night SWS-rich or by a late-night REM sleep-rich retention interval, then retrieval was tested. Only after REM-rich sleep, and not after SWS-rich sleep, was there a significant emotional enhancement, i.e., a significantly superior retention of emotional over neutral pictures. On the other hand, after SWS-rich sleep the retention of picture-frame color associations was better than after REM-rich sleep. However, this benefit was observed only for neutral pictures; and it was completely absent for the emotional pictures. To examine whether this absent benefit reflected a suppressive effect of emotionality on associations of minor task relevance, in Study 2 we manipulated the relevance of the picture-frame color association by combining it with information about monetary reward, following otherwise comparable procedures. Here, rewarded picture-frame color associations were equally well retained over SWS-rich early sleep no matter if the frames were associated with emotional or neutral pictures. Results are consistent with the view that REM sleep favors the emotional enhancement of item memory whereas SWS appears to contribute primarily

  14. Case study of the Asian dust and pollutant event in spring 2006: source, transport, and contribution to Taiwan.

    PubMed

    Tsai, Fujung; Tu, Jien-Yi; Hsu, Shih-Chieh; Chen, Wei-Nai

    2014-04-15

    Surface measurements and a regional dust model were used to analyze the source, transport, and contribution of a dust event transporting with aerosol pollutant over Taiwan from 16 to 19 March, 2006. During the event, the hourly aerosol concentrations reached close to 400 μg m(-3) in northern Taiwan, and approximately 300 μg m(-3) in other areas of the island. Trajectory and regional dust models show that the dust event originated in eastern Mongolia and northern China, and the dust layer can descend from 2 to 3 km in the source area to below 1.5 km over Taiwan. On the other hand, model results show that pollution was transported near the surface from coastal China to Taiwan. During this dust event, polluted aerosol was first observed over northern Taiwan right after a frontal passage, and the concentration was strongly enhanced following the passage of the light rainfall 12h later. The descent of dusty air from the free troposphere lagged the arrival of polluted air by 7h, and was partially mixed with polluted aerosol when the transport decelerated over Taiwan. During the event, dust particles accounted for up to 60% of observed particulate matter less than 10 μm (PM10) over Taiwan, but decreased to less than 35% for particulate matter less than 2.5 μm (PM2.5) over most areas of the island. On the other hand, the long-range transport of non-dust aerosols, mainly anthropogenic pollutants, accounted for close to 30% of observed PM10 concentration in northern and western Taiwan prior to dust arrival, and the contribution of PM2.5 increased to close to 40% over the same areas. Local emission of aerosols accounted for less than 25% of PM10 concentrations in northern Taiwan, but was about 60% for PM2.5 in central and southern Taiwan because these areas are less influenced by long-range transport. PMID:24530595

  15. Source sector and region contributions to BC and PM2.5 in Central Asia

    SciTech Connect

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; Lu, Z.; Streets, D. G.; Janssens-Maenhout, G.; Wiedinmyer, C.; Lantz, J.; Artamonova, M.; Chen, B.; Imashev, S.; Sverdlik, L.; Deminter, J. T.; Adhikary, B.; D'Allura, A.; Wei, C.; Carmichael, G. R.

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 μg m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly values from 2 to 90 μg m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located

  16. Major food sources contributing to energy intake--a nationwide survey of Brazilians aged 10 years and older.

    PubMed

    Sichieri, Rosely; Bezerra, Ilana Nogueira; Araújo, Marina Campos; de Moura Souza, Amanda; Yokoo, Edna Massae; Pereira, Rosangela Alves

    2015-05-28

    Identification of major sources of energy in the diet helps to implement dietary recommendations to reduce obesity. To determine the food sources of energy consumed by Brazilians, we used the traditional method of ranking energy contribution of selected food groups and also compared days with and without consumption of specific food groups. Analysis was based on two non-consecutive days of dietary record from the Brazilian National Dietary Survey, conducted among 34,003 Brazilians (aged 10 years or more), taking into account the complex design of the survey. Comparison of days with and without consumption gave more consistent results, with sweets and cookies as the most important contributors to energy intake, increasing 992 kJ/d (95% CI 883, 1096) for those days when consumption of cakes, cookies and desserts was reported compared to days without their consumption. Savoury snacks, cheese and sugar-sweetened beverages (SSB) also increase energy intake by about 600 kJ. The only group associated with decreased energy intake was vegetable (-155 kJ; 95% CI -272, -37). Consumption of beans, milk and fruits increased the energy intake by about 210 kJ. In total, the mean energy intake of the group was 8000 kJ. Except for the consumption of vegetables, all of the other ten food groups analysed were associated with increased energy intake. Sweets and cookies may increase the energy intake by 12% and SSB by 7%, indicating that these two groups are major targets for improving healthy eating by reducing energy intake; whereas vegetable intake is associated with the reduction of energy content of the diet. PMID:25864784

  17. Contributions of natural arsenic sources to surface waters on a high grade arsenic-geochemical anomaly (French Massif Central).

    PubMed

    Bossy, A; Grosbois, C; Hendershot, W; Beauchemin, S; Crouzet, C; Bril, H

    2012-08-15

    The subwatershed studied drains a non-exploited area of the St-Yrieix-la-Perche gold mining district (French Massif Central) and it is located on an arsenic (As) geochemical anomaly. In this context, it is important to know the geochemical processes involved in the transfer of As from solid environmental compartments to the aquatic system. The stream showed a temporal variation of dissolved As (As(d)) content from 69.4 μg.L(-1) in the low flow period to 7.5 μg.L(-1) in the high flow period. Upstream, ground- and wetland waters had As(d) concentrations up to 215 and 169 μg.L(-1), respectively. The main representative As sources were determined at the subwatershed scale with in-situ monitoring of major and trace element contents in different waters and single extraction experiments. The As sources to stream water could be regrouped into two components: (i) one As-rich group (mainly in the low flow period) with groundwater, gallery exploration outlet waters and wetland waters, and (ii) one As-poor group (mainly in the high flow period) with rainwaters and soil solutions. In the soil profile, As(d) showed a significant decrease from 52.4 μg.L(-1) in the 0-5 cm superficial soil horizon to 14.4 μg.L(-1) in the 135-165 cm deep soil horizon. This decrease may be related to pedogenic processes and suggests an evolution of As-bearing phase stability through the soil profile. Quantification of As(d) fluxes at the subwatershed scale showed that groundwater was the major input (>80%) of As(d) to surface water. Moreover, natural weathering of the As-rich solid phases showed an impact on the As release, mainly from superficial soil horizons with runoff contributing about 5% to As input in surface water. PMID:22750171

  18. Comparison of Measured to Predicted Estimations of Nonpoint Source Contaminants Using Conservation Practices in an Agriculturally-Dominated Watershed in Northeast Arkansas, USA.

    PubMed

    Frasher, Sarah K; Woodruff, Tracy M; Bouldin, Jennifer L

    2016-06-01

    In efforts to reduce nonpoint source runoff and improve water quality, Best Management Practices (BMPs) were implemented in the Outlet Larkin Creek Watershed. Farmers need to make scientifically informed decisions concerning BMPs addressing contaminants from agricultural fields. The BMP Tool was developed from previous studies to estimate BMP effectiveness at reducing nonpoint source contaminants. The purpose of this study was to compare the measured percent reduction of dissolved phosphorus (DP) and total suspended solids to the reported percent reductions from the BMP Tool for validation. Similarities were measured between the BMP Tool and the measured water quality parameters. Construction of a sedimentation pond resulted in 74 %-76 % reduction in DP as compared to 80 % as predicted with the BMP Tool. However, further research is needed to validate the tool for additional water quality parameters. The BMP Tool is recommended for future BMP implementation as a useful predictor for farmers. PMID:27194420

  19. Sources of the PM10 aerosol in Flanders, Belgium, and re-assessment of the contribution from wood burning.

    PubMed

    Maenhaut, Willy; Vermeylen, Reinhilde; Claeys, Magda; Vercauteren, Jordy; Roekens, Edward

    2016-08-15

    From 30 June 2011 to 2 July 2012 PM10 aerosol samples were simultaneously taken every 4th day at four urban background sites in Flanders, Belgium. The sites were in Antwerpen, Gent, Brugge, and Oostende. The PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical analysis, the wood burning tracers levoglucosan, mannosan and galactosan were determined by gas chromatography/mass spectrometry, 8 water-soluble ions were measured by ion chromatography, and 15 elements were determined by a combination of inductively coupled plasma atomic emission spectrometry and mass spectrometry. The multi-species dataset was subjected to receptor modeling by PMF. The 10 retained factors (with their overall average percentage contributions to the experimental PM10 mass) were wood burning (9.5%), secondary nitrate (24%), secondary sulfate (12.6%), sea salt (10.0%), aged sea salt (19.2%), crustal matter (9.7%), non-ferrous metals (1.81%), traffic (10.3%), non-exhaust traffic (0.52%), and heavy oil burning (3.0%). The average contributions of wood smoke for the four sites were quite substantial in winter and ranged from 12.5 to 20% for the PM10 mass and from 47 to 64% for PM10 OC. Wood burning appeared to be also a notable source of As, Cd, and Pb. The contribution from wood burning to the PM10 mass and OC was also assessed by making use of levoglucosan as single marker compound and the conversion factors of Schmidl et al. (2008), as done in our previous study on wood burning in Flanders (Maenhaut et al., 2012). However, the apportionments were much lower than those deduced from PMF. It seems that the conversion factors of Schmidl et al. (2008) may not be applicable to wood burning in Flanders. From scatter plots of the PMF-derived wood smoke OC and PM versus levoglucosan, we arrived at conversion factors of 9.7 and 22.6, respectively. PMID:27110969

  20. Using watershed characteristics, sediment, and tissue of resident mollusks to identify potential sources of trace elements to streams in a complex agricultural landscape.

    PubMed

    Ciparis, Serena; Schreiber, Madeline E; Voshell, J Reese

    2012-05-01

    Trace elements used in animal feed additives can be introduced to aquatic environments through application of manures from animal feeding operations to agricultural land as fertilizer. The use of poultry feed additives containing arsenic (As) is of particular concern in the Shenandoah River watershed (Virginia, USA), an agricultural landscape with a high density of poultry operations. This study investigated the relationship between watershed characteristics of Shenandoah River tributaries and trace element concentrations in streambed sediment and tissue of resident mollusks, including: Asian clams (Corbicula fluminea), which are commonly used biomonitors, and pleurocerid snails (Leptoxis carinata), which are generally understudied. Results failed to support the primary hypothesis of a predictive relationship between watershed densities of poultry operations and As concentrations in sediment and mollusk tissue. However, there were statistical relationships between land use in tributary watersheds and other trace elements in sediment (Cu, Mn, Pb, Zn) and tissue (Cd, Hg, Pb). Principal components analysis of the sediment data suggested a possible geologic source of As at some sites. Tissue concentrations of As were significantly higher in snails than in clams, but clams accumulated higher concentrations of other trace elements (Cd, Cr, Hg, Pb, Se). Snails may be useful biomonitors of environmental As, but appear to be less suitable than clams for studies of landscape sources of other trace elements. PMID:21713480

  1. Agriculture and climate change

    SciTech Connect

    Abelson, P.H.

    1992-07-03

    How will increases in levels of CO{sub 2} and changes in temperature affect food production A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO{sub 2} but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO{sub 2} from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO{sub 2} by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops.

  2. Comparison of Online Agricultural Information Services.

    ERIC Educational Resources Information Center

    Reneau, Fred; Patterson, Richard

    1984-01-01

    Outlines major online agricultural information services--agricultural databases, databases with agricultural services, educational databases in agriculture--noting services provided, access to the database, and costs. Benefits of online agricultural database sources (availability of agricultural marketing, weather, commodity prices, management…

  3. Management of Antibiotic Residues from Agricultural Sources: Use of Composting to Reduce Chlortetracycline Residues in Beef Manure from Treated Animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlortetracycline (CTC) is one of only ten antibiotics licensed in the U.S.A. for use as a growth promoter for livestock. The widespread use of CTC may contribute to development of antibiotic-resistant bacteria. The objective of this study was to determine the effect of composting on the fate of C...

  4. The Disruption of Subsistence Agricultural Systems in Rural Yucatan, Mexico may have Contributed to the Coexistence of Stunting in Children with Adult Overweight and Obesity.

    PubMed

    Gurri, Francisco D

    2015-12-01

    This paper attempts to link last century's disruption of local agricultural systems to today's presence of childhood under nutrition and adult overweight and obesity in the Yucatan Peninsula. It first compares Height for Age (H/A), Weight for Age (W/A) and Body Mass Index (BMI) of children from three rural populations in Yucatan and Campeche, Mexico whose subsistence strategy had been altered to different degrees since 1970. It then compares BMI in adults, in the same regions, born before and after the alteration of their environment in the 1970's. Children in the least disrupted zone were taller and had lower BMI than children in the other two, but were not heavier than children from the richest disrupted zone. Children in the poorest disrupted zone were shorter and lighter than the rest. BMI in adult men was higher in the two most disrupted zones only in those cohorts that grew up after the traditional agricultural regime was altered. It is concluded that disruptions of staple-based subsistence agriculture promoted a stockier phenotype in children and a tendency to accumulate body fat. Persistence of these conditions in the twenty first century has favored the coexistence of stunting during childhood with adults who easily become overweight. PMID:26987151

  5. Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Food and Agricultural Materials Using a Transient Plane-Source Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...

  6. Agricultural soil monitoring of PCDD/Fs in the vicinity of a municipal solid waste incinerator in Eastern China: temporal variations and possible sources.

    PubMed

    Xu, Meng-xia; Yan, Jian-hua; Lu, Sheng-yong; Li, Xiao-dong; Chen, Tong; Ni, Ming-jiang; Dai, Hui-fen; Wang, Fei; Cen, Ke-fa

    2009-07-30

    The temporal variations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in 33 agricultural soil samples in the vicinity of a municipal solid waste incinerator (MSWI) in Eastern China were determined one year after the initial investigation in 2006. The soil PCDD/F concentrations in 2007 ranged from 73.6 to 377 ng kg(-1) (0.60-6.38 ng I-TEQ kg(-1)). During 2006-2007, the overall soil PCDD/F levels increased significantly, i.e., 33% and 39% for total concentration and I-TEQ (median value), respectively. Moreover, soils in the study area are proved to be almost free from previously suspected PCDD/F sources, i.e., pentachlorophenol/sodium penta-chlorophenate (PCP/PCP-Na) and 1,3,5-trichloro-2-(4-nitrophenoxy) benzene (CNP) contaminations. Furthermore, the results from a congener-specific factor analysis between soils (collected in two investigations) and dioxin emission sources suggest that diffuse sources including open burning of wastes, traffic and hot water boilers are major contributors that are responsible for the accumulation of PCDD/Fs in soils. By contrast, the impact of the presumably major PCDD/F source identified in our previous study, i.e., the MSWI, seems to be limited. PMID:19135306

  7. ALMA constraints on the faint millimetre source number counts and their contribution to the cosmic infrared background

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Maiolino, R.; De Zotti, G.; Negrello, M.; Marconi, A.; Bothwell, M. S.; Capak, P.; Carilli, C.; Castellano, M.; Cristiani, S.; Ferrara, A.; Fontana, A.; Gallerani, S.; Jones, G.; Ohta, K.; Ota, K.; Pentericci, L.; Santini, P.; Sheth, K.; Vallini, L.; Vanzella, E.; Wagg, J.; Williams, R. J.

    2015-12-01

    We have analysed 18 ALMA continuum maps in Bands 6 and 7, with rms down to 7.8 μJy, to derive differential number counts down to 60 μJy and 100 μJy at λ = 1.3 mm and λ = 1.1 mm, respectively. Furthermore, the non-detection of faint sources in the deepest ALMA field enabled us to set tight upper limits on the number counts down to 30 μJy. This is a factor of four deeper than the currently most stringent upper limit. The area covered by the combined fields is 9.5 × 10-4 deg2 at 1.1 mm and 6.6 × 10-4 deg2 at 1.3 mm. With respect to previous works, we improved the source extraction method by requiring that the dimension of the detected sources be consistent with the beam size. This method enabled us to remove spurious detections that have plagued the purity of the catalogues in previous studies. We detected 50 faint sources (at fluxes <1 mJy) with signal-to-noise (S/N) >3.5 down to 60 μJy, hence improving the statistics by a factor of four relative to previous studies. The inferred differential number counts are dN/ d(Log10S) = 1 × 105 deg2 at a 1.1 mm flux Sλ = 1.1 mm = 130 μJy, and dN/ d(Log10S) = 1.1 × 105 deg2 at a 1.3 mm flux Sλ = 1.3 mm = 60 μJy. At the faintest flux limits probed by our data, i.e. 30 μJy and 40 μJy, we obtain upper limits on the differential number counts of dN/ d(Log10S) < 7 × 105 deg2 and dN/ d(Log10S) < 3 × 105 deg2, respectively. Determining the fraction of cosmic infrared background (CIB) resolved by the ALMA observations was hampered by the large uncertainties plaguing the CIB measurements (a factor of four in flux). However, our results provide a new lower limit to CIB intensity of 17.2 Jy deg-2 at 1.1 mm and of 12.9 Jy deg-2 at 1.3 mm. Moreover, the flattening of the integrated number counts at faint fluxes strongly suggests that we are probably close to the CIB intensity. Our data imply that galaxies with star formation rate (SFR) < 40 M⊙/yr certainly contribute less than 50% to the CIB (and probably a much lower

  8. Estimating the contributions of mobile sources of PAH to urban air using real-time PAH monitoring.

    PubMed

    Dunbar, J C; Lin, C I; Vergucht, I; Wong, J; Duran, J L

    2001-11-12

    Motor vehicles are a significant source of airborne polycyclic aromatic hydrocarbons (PAH) in many urban areas. Traditional approaches used in determining the relative contributions of individual vehicle types to the total amount of PAH in air have been based on the analysis of integrated samples of airborne particles and gases for the presence of chemical tracers indicative of the vehicles from which the chemicals derived. As an alternative, we have used a photoelectric aerosol sensor (PAS) capable of measuring PAH levels in real-time in the emissions plumes from motor vehicles. We placed the PAS near a traffic-light in Kenmore Square, a busy crossroads in downtown Boston (MA, USA). A video camera co-located at the site recorded the vehicles passing the sensor, and this record was correlated with the PAS data. During a 5-day monitoring period (approximately 59 h) in the summer of 1998, over 34,000 motor vehicles were counted and classified and over 24,000 PAS readings were recorded (frequency = 1/8.6 s). The composition of the vehicle population was 94% passenger vehicles, 1.4% buses, 2.6% small trucks, 1.3% medium trucks, 0.35% large trucks, and 0.45% garbage and construction trucks. In analyzing the PAS data, it was assumed that the highest PAS measurements--those that exceeded the 95% critical level of the 5-min moving average of all the PAS measurements--were indicative of primary vehicular emissions. We found that approximately 46% of the mass of particle-bound PAH (i.e. approximately 46% of the integrated area under the PAS signal vs. time plots) was attributable to primary emissions from motor vehicles passing the sensor. Of this, 35-61% was attributable to passenger vehicles (cars, pickup trucks, and sports utility vehicles) and 39-65% was attributable to non-passenger vehicles [buses (14-23%), small trucks (12-20%), medium trucks (8.4-14%), large trucks (2.9-4.8%) and garbage and construction trucks (1.9-3.2%)]. Our results suggest that on a per vehicle

  9. AKARI All Sky Survey: contribution from AGB stars to the far infrared flux from the Milky Way related to point sources outside the Galactic plane

    NASA Astrophysics Data System (ADS)

    Pollo, A.; Takeuchi, T. T.; Rybka, P.

    2011-10-01

    Using data from the FIS AKARI All-Sky Survey, we make a first step towards the estimation of the contribution from Asymptotic Giant Branch (AGB) stars to the far-infrared (FIR) flux from the Milky Way. We estimate the contribution from the AGB, and post-AGB, stars to the total flux generated by point sources outside the Galactic plane. Additionally, we present the positions of different types of AGB, and post-AGB, stars in the FIR color-color diagrams. Our main conclusion is that there is a high contribution from AGB stars, and particularly post-AGB stars, to the FIR flux coming from point sources in the outer parts of the Milky Way and possibly other Milky Way-type galaxies. FIR colors of different types of AGB stars remain similar but post-AGB stars are redder in the FIR and, as a result, contribute more to the total Galaxy flux density at longer FIR wavelengths.

  10. Extrahepatic sources of factor VIII potentially contribute to the coagulation cascade correcting the bleeding phenotype of mice with hemophilia A

    PubMed Central

    Zanolini, Diego; Merlin, Simone; Feola, Maria; Ranaldo, Gabriella; Amoruso, Angela; Gaidano, Gianluca; Zaffaroni, Mauro; Ferrero, Alessandro; Brunelleschi, Sandra; Valente, Guido; Gupta, Sanjeev; Prat, Maria; Follenzi, Antonia

    2015-01-01

    A large fraction of factor VIII in blood originates from liver sinusoidal endothelial cells although extrahepatic sources also contribute to plasma factor VIII levels. Identification of cell-types other than endothelial cells with the capacity to synthesize and release factor VIII will be helpful for therapeutic approaches in hemophilia A. Recent cell therapy and bone marrow transplantation studies indicated that Küpffer cells, monocytes and mesenchymal stromal cells could synthesize factor VIII in sufficient amount to ameliorate the bleeding phenotype in hemophilic mice. To further establish the role of blood cells in expressing factor VIII, we studied various types of mouse and human hematopoietic cells. We identified factor VIII in cells isolated from peripheral and cord blood, as well as bone marrow. Co-staining for cell type-specific markers verified that factor VIII was expressed in monocytes, macrophages and megakaryocytes. We additionally verified that factor VIII was expressed in liver sinusoidal endothelial cells and endothelial cells elsewhere, e.g., in the spleen, lungs and kidneys. Factor VIII was well expressed in sinusoidal endothelial cells and Küpffer cells isolated from human liver, whereas by comparison isolated human hepatocytes expressed factor VIII at very low levels. After transplantation of CD34+ human cord blood cells into NOD/SCIDγNull-hemophilia A mice, fluorescence activated cell sorting of peripheral blood showed >40% donor cells engrafted in the majority of mice. In these animals, plasma factor VIII activity 12 weeks after cell transplantation was up to 5% and nine of 12 mice survived after a tail clip-assay. In conclusion, hematopoietic cells, in addition to endothelial cells, express and secrete factor VIII: this information should offer further opportunities for understanding mechanisms of factor VIII synthesis and replenishment. PMID:25911555

  11. Fluxed of fixed nitrogen species contributed by two adjacent wetland streams with different flow-source terms in Watkinsville, GA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inorganic, fixed nitrogen from agricultural settings often is introduced to first-order streams via surface runoff and shallow ground-water flow. Best management practices for limiting the flux of fixed N to surface waters often include buffers such as wetlands. However, the efficiency of wetlands t...

  12. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    EPA Science Inventory

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  13. Total and infectious Cryptosporidium oocyst and total Giardia cyst concentrations from distinct agricultural and urban contamination sources in Eastern Canada.

    PubMed

    Lalancette, Cindy; Généreux, Mylène; Mailly, Jacinthe; Servais, Pierre; Côté, Caroline; Michaud, Aubert; Di Giovanni, George D; Prévost, Michèle

    2012-03-01

    Cryptosporidium and Giardia (oo)cyst concentrations are frequently used for assessing drinking water safety. The widely used USEPA Method 1623 provides total counts of (oo)cysts, but may not be accurate for human health risk characterization, since it does not provide infectivity information. The total counts and infectious fraction of Cryptosporidium oocysts and the total counts of Giardia cysts were assessed in major fecal pollution sources. Fresh calf and cow feces, their manure, and the discharge point were sampled in a small rural sub-watershed (n = 20, 21, 10, 10). Median concentrations for total (oo)cysts were higher in calves (333 oocysts g(-1); 111 cysts g(-1)) than in cows (52 oocysts g(-1); 7 cysts g(-1)). Infectious oocysts were found in 17 (7%) of the samples and none were found in manure or at the discharge point. Urban sources were sampled in the influent and effluent (n = 19, 18) of two wastewater treatment plants. Peak concentrations were 533 oocysts L(-1) and 9,010 cysts L(-1) for influents and 89 oocysts L(-1) and 472 cysts L(-1) for effluents. Infectious oocyst fractions varied from below the detection limit to 7-22% in the effluent and influent respectively. These infectious fractions are significantly lower than those currently used for quantitative microbial risk assessment estimates. PMID:22361710

  14. Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part II. Emission sector and source region contributions.

    PubMed

    Qiao, Xue; Tang, Ya; Kota, Sri Harsha; Li, Jingyi; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Ying, Qi

    2015-11-01

    A source-oriented Community Multiscale Air Quality (CMAQ) model driven by the meteorological fields generated by the Weather Research and Forecasting (WRF) model was used to study the dry and wet deposition of nitrate (NO3(-)), sulfate (SO4(2-)), and ammonium (NH4(+)) ions in the Jiuzhaigou National Nature Reserve (JNNR), China from June to August 2010 and to identify the contributions of different emission sectors and source regions that were responsible for the deposition fluxes. Contributions from power plants, industry, transportation, domestic, biogenic, windblown dust, open burning, fertilizer, and manure management sources to deposition fluxes in JNNR watershed and four EANET sites are determined. In JNNR, 96%, 82%, and 87% of the SO4(2-), NO3(-) and NH4(+) deposition fluxes are in the form of wet deposition of the corresponding aerosol species. Industry and power plants are the two major sources of SO4(2-) deposition flux, accounting for 86% of the total wet deposition of SO4(2-), and industry has a higher contribution (56%) than that of power plants (30%). Power plants and industry are also the top sources that are responsible for NO3(-) wet deposition, and contributions from power plants (30%) are generally higher than those from industries (21%). The major sources of NH4(+) wet deposition flux in JNNR are fertilizer (48%) and manure management (39%). Source-region apportionment confirms that SO2 and NOx emissions from local and two nearest counties do not have a significant impact on predicted wet deposition fluxes in JNNR, with contributions less than 10%. While local NH3 emissions account for a higher fraction of the NH4(+) deposition, approximately 70% of NH4(+) wet deposition in JNNR originated from other source regions. This study demonstrates that S and N deposition in JNNR is mostly from long-range transport rather than from local emissions, and to protect JNNR, regional emission reduction controls are needed. PMID:26050092

  15. Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China.

    PubMed

    Zhao, Long; Hou, Hong; Shangguan, Yuxian; Cheng, Bin; Xu, Yafei; Zhao, Ruifen; Zhang, Yigong; Hua, Xiaozan; Huo, Xiaolan; Zhao, Xiufeng

    2014-10-01

    A comprehensive investigation of the levels, distribution patterns, and sources of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils of the coal production area surrounding Xinzhou, China, was conducted, and the potential human health risks associated with the levels observed were addressed. A total of 247 samples collected from agricultural soils from the area were analyzed for sixteen PAHs, including highly carcinogenic isomers. The PAH concentrations had a range of n.d. to 782ngg(-1), with a mean value of 202ngg(-1). The two-three ring PAHs were the dominant species, making up 60 percent of total PAHs. Compared with the pollution levels and carcinogenic potential risks reported in other studies, the soil PAH concentrations in the study area were in the low to intermediate range. A positive matrix factorization model indicates that coal/biomass combustion, coal and oil combustion, and coke ovens are the primary PAH sources, accounting for 33 percent, 26 percent, and 24 percent of total PAHs, respectively. The benzo[a]pyrene equivalent (BaPeq) concentrations had a range of n.d. to 476ngg(-1) for PAH7c, with a mean value of 34ngg(-1). The BaPeq concentrations of PAH7c accounted for more than 99 percent of the ∑PAH16, which suggests that seven PAHs were major carcinogenic contributors of ∑PAH16. According to the Canadian Soil Quality Guidelines, only six of the soil samples had concentrations above the safe BaPeq value of 600ngg(-1); the elevated concentrations observed at these sites can be attributed to coal combustion and industrial activities. Exposure to these soils through direct contact probably poses a significant risk to human health as a result of the carcinogenic effects of PAHs. PMID:25050801

  16. Response of Polish rivers (Vistula, Oder) to reduced pressure from point sources and agriculture during the transition period (1988-2008)

    NASA Astrophysics Data System (ADS)

    Pastuszak, Marianna; Stålnacke, Per; Pawlikowski, Krzysztof; Witek, Zbigniew

    2012-06-01

    The Vistula and Oder Rivers, two out of the seven largest rivers in the Baltic drainage basin, were responsible for 25% of total riverine nitrogen (TN) and 37% of total riverine phosphorus (TP) input to the Baltic Sea in 2000. The aim of this paper is to evaluate the response of these two rivers to changes that took place in Polish economy during the transition period (1988-2008). The economic changes encompassed: construction of nearly 900 waste water treatment plants in 1999-2008, modernization or closure of obsolete factories, economizing in water consumption, closure or change of ownership of State-owned farms, a drop in fertilizer application, and a decline in livestock stocking. More intensive agriculture and higher point source emissions in the Oder than in the Vistula basin resulted in higher concentrations of TN, nitrate (NO3-N), and TP in the Oder waters in the entire period of our studies. In both rivers, nutrient concentrations and loads showed significant declining trends in the period 1988-2008. TN loads decreased by ca. 20% and 25% in the Vistula and Oder; TP loads dropped by ca. 15% and 65% in the Vistula and Oder. The reduction in phosphorus loads was particularly pronounced in the Oder basin, which was characterized by efficient management systems aiming at mitigation of nutrient emission from the point sources and greater extent of structural changes in agricultural sector during the transition period. The trends in riverine loads are discussed in the paper in relation to socio-economical changes during the transition period, and with respect to physiographic features.

  17. The ever-increasing CO2 seasonal cycle amplitude: contributions from high latitude warming, CO2 fertilization, and the agricultural Green Revolution

    NASA Astrophysics Data System (ADS)

    Zeng, N.; Martin, C.; Zhao, F.; Collatz, G. J.; Kalnay, E.; Salawitch, R. J.; West, T. O.; Guanter, L.

    2014-12-01

    Human activities has tranformed the Earth's surface in complex ways. Here we show that not only land cover change, but also the management intensity, namely the intensification of agriculture through the Green Revolution has had a profound impact on the carbon cycle. A long-standing puzzle in the global carbon cycle is the increase in the amplitude of the seasonal cycle of atmospheric CO2. This increase likely reflects enhanced biological activity in the Northern Hemisphere (NH). It has been hypothesized that vegetation growth may have been stimulated by higher concentrations of CO2 as well as warming in recent decades, but the role of such specific mechanisms has not been quantified and they have been unable to explain the full range and magnitude of observations. Here we suggest another potential driver of the increased seasonal amplitude: the intensification of agriculture from the Green Revolution to feed a rising population, that led to a 3-fold increase in world crop production over the last 5 decades. Our analysis of CO2 data and atmospheric inversions shows a robust 15% long-term increase in CO2 seasonal amplitude from 1961 to 2010 that is punctuated by large decadal and interannual variations. The three pillars of the Green Revolution, consisting of high yield cultivars, fertilizer use, and irrigation, are represented in a terrestrial carbon cycle model. The results reveal that the long-term increase in CO2 seasonal amplitude arises from two major regions in the NH: the mid-latitude cropland between 25N-60N that encompasses the world's major agriculture zones in Asia, Europe and North America, and the high-latitude natural vegetation between 50N-70N that includes much of the Northern boreal forests, tundra and some deciduous forests. The long-term trend of seasonal amplitude is 0.3% per year, of which sensitivity experiments attribute 43% to land use change, 31% to climate variability and change, and 26% to CO2 fertilization. Our results suggest that human

  18. The Use of LiDAR Elevation Data and Satellite Imagery to Locate Critical Source Areas to Diffuse Pollution in Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represe