Science.gov

Sample records for agricultural surface waters

  1. Modeling global distribution of agricultural insecticides in surface waters.

    PubMed

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Agricultural insecticides threaten surface waters at the global scale

    PubMed Central

    Stehle, Sebastian; Schulz, Ralf

    2015-01-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  3. Agriculture and Extreme Events: Modeling the Conjunctive Use of Groundwater and Surface Water

    NASA Astrophysics Data System (ADS)

    Munoz-Arriola, F.; Hanson, R. T.; Dettinger, M. D.; Cayan, D. R.

    2013-05-01

    Large-scale agriculture has become an important source of food to sustain population growth. Some of these agricultural areas are located in places where surface water supplies are subject to the effect of hydrometeorological phenomena such as droughts and floods. Under these conditions, ground water supplies can play an important role to sustain agriculture. The present work integrates surface and subsurface models [Variable Infiltration Capacity model (VIC) and MODFLOW and its Farming Process package (MODFLOW-FMP), respectively] to evaluate water supplies and demands in California's Central Valley. Extreme-wet to extreme-dry conditions were defined by applying the gamma distribution function to VIC-simulated streamflows flowing from the Sierra Nevada to the alluvial plains of Central Valley (1961 to 2003). Also, streamflows are MODFLOW-FMP's boundary conditions used to identify the influence of climate variability on the conjunctive use of ground water and surface water on the agricultural areas of Central Valley. Preliminary results show that available surface-water supplies satisfy crop irrigation requirements in the wet portion of Central Valley. However, ground water supplies cover large crop irrigation requirements in the south of Central Valley. Groundwater supplies in southern CV fuels the hydrological cycle in the in similar form as surface water supply does in the north. Evaluating the spatiotemporal variability of ground water supplies contributes to better understand the factors involved in the sustainability of the agriculture in Central Valley.

  4. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas

    PubMed Central

    2014-01-01

    The organochlorines (OClPs) and organophosphates (OPPs) pesticides in surface and ground water having intensive agriculture activity were investigated to evaluate their potential pollution and risks on human health. As per USEPA 8081 B method, liquid-liquid extraction followed by Gas-Chromatographic technique with electron capture detector and mass selective detector (GC-MS) were used for monitoring of pesticides. Among organochlorines, α,β,γ,δ HCH’s, aldrin, dicofol, DDT and its derivatives, α,β endosulphan’s and endosulphan-sulphate were analysed; dichlorovos, ethion, parathion-methyl, phorate, chlorpyrifos and profenofos were determined among organophosphates. As compared to ground water, higher concentrations of OClPs and OPPs were found in surface water. Throughout the monitoring study, α - HCH (0.39 μg/L in Amravati region),α - endosulphan (0.78 μg/L in Yavatmal region), chlorpyrifos (0.25 μg/L in Bhandara region) and parathion-methyl (0.09 μg/L in Amravati region) are frequently found pesticide in ground water, whereas α,β,γ-HCH (0.39 μg/L in Amravati region), α,β - endosulphan (0.42 μg/L in Amravati region), dichlorovos (0.25 μg/L in Yavatmal region), parathion-methyl (0.42 μg/L in Bhandara region), phorate (0.33 μg/L in Yavatmal region) were found in surface water. Surface water was found to be more contaminated than ground water with more number of and more concentrated pesticides. Among pesticides water samples are found to be more contaminated by organophosphate than organochlorine. Pesticides in the surface water samples from Bhandara and Yavatmal region exceeded the EU (European Union) limit of 1.0 μg/L (sum of pesticide levels in surface water) but were within the WHO guidelines for individual pesticides. PMID:24398360

  5. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  6. Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: a critical appraisal.

    PubMed

    Stehle, Sebastian; Knäbel, Anja; Schulz, Ralf

    2013-08-01

    Due to the specific modes of action and application patterns of agricultural insecticides, the insecticide exposure of agricultural surface waters is characterized by infrequent and short-term insecticide concentration peaks of high ecotoxicological relevance with implications for both monitoring and risk assessment. Here, we apply several fixed-interval strategies and an event-based sampling strategy to two generalized and two realistic insecticide exposure patterns for typical agricultural streams derived from FOCUS exposure modeling using Monte Carlo simulations. Sampling based on regular intervals was found to be inadequate for the detection of transient insecticide concentrations, whereas event-triggered sampling successfully detected all exposure incidences at substantially lower analytical costs. Our study proves that probabilistic risk assessment (PRA) concepts in their present forms are not appropriate for a thorough evaluation of insecticide exposure. Despite claims that the PRA approach uses all available data to assess exposure and enhances risk assessment realism, we demonstrate that this concept is severely biased by the amount of insecticide concentrations below detection limits and therefore by the sampling designs. Moreover, actual insecticide exposure is of almost no relevance for PRA threshold level exceedance frequencies and consequential risk assessment outcomes. Therefore, we propose a concept that features a field-relevant ecological risk analysis of agricultural insecticide surface water exposure. Our study quantifies for the first time the environmental and economic consequences of inappropriate monitoring and risk assessment concepts used for the evaluation of short-term peak surface water pollutants such as insecticides.

  7. Effectiveness of unfertilized buffer strips for reducing nitrogen loads from agricultural lowland to surface waters.

    PubMed

    Noij, Ignatius G A M; Heinen, Marius; Heesmans, Hanneke I M; Thissen, Jac T N M; Groenendijk, Piet

    2012-01-01

    Unfertilized buffer strips (BS) are widely accepted to reduce nitrogen (N) loads from agricultural land to surface water. However, the relative reduction of N load or concentration (BS effectiveness, BSE), varies with management and local conditions, especially hydrogeology. We present novel experimental evidence on BSE for 5-m-wide grass BS on intensively drained and managed plain agricultural lowland with varying hydrogeology. We selected characteristic sites for five major hydrogeological classes of the Netherlands and installed paired 5-m-wide unfertilized grass (BS) and reference (REF) treatments along the ditch. The REF was managed like the adjacent field, and BS was only harvested. Treatments were equipped with reservoirs in the ditch to collect and measure discharge and flow proportional N concentration for 3 or 4 yr. In addition, N concentration in upper groundwater was measured. We found a statistically significant BSE of 10% on the peat site. At the other sites, BSE for N was low and statistically insignificant. Low BSE was explained by denitrification between adjacent field and ditch, as well as by the site-specific hydrologic factors including low proportion of shallow groundwater flow, downward seepage, low residence time in the BS, and surface runoff away from the ditch. We emphasize that a REF treatment is needed to evaluate BSE in agriculture and recommend reservoirs if drainage patterns are unknown. Introduction of a 5-m-wide BS is ineffective for mitigating N loads from lowland agriculture to surface waters. We expect more from BS specifically designed to abate surface runoff.

  8. Analysis of chlorpyrifos agricultural use in regions of frequent surface water detections in California, USA.

    PubMed

    Zhang, Xuyang; Starner, Keith; Spurlock, Frank

    2012-11-01

    Chlorpyrifos is a common surface water contaminant in California, USA. We evaluated five years of chlorpyrifos use and surface water monitoring data in California's principal agricultural regions. Imperial County and three central coastal regions accounted for only 10% of chlorpyrifos statewide use, but displayed consistently high aquatic benchmark exceedances (13.2%-57.1%). In contrast, 90% of use occurred in Central Valley regions where only 0.6%-6.5% of samples exceeded aquatic benchmarks. Differences among regions are attributable to crop type, use intensity, irrigation practices and monthly application patterns. Application method did not appear to be a factor.

  9. Agricultural chemical interchange between ground water and surface water, Cedar River basin, Iowa and Minnesota; a study description

    USGS Publications Warehouse

    Squillace, P.J.; Liszewski, M.J.; Thurman, E.M.

    1993-01-01

    A review of the data collected in the Cedar River basin, Iowa and Minnesota, indicates that atrazine is consistently detected in the main-stem river at concentrations greater than 0.10 microgram per liter even during periods of extended base flow. The primary source of atrazine in the river during these periods of base flow is not known. This study is designed to determine how atrazine and other agricultural chemicals move between ground water and surface water in an alluvial aquifer adjacent to a river. A site has been selected in an unfarmed area adjacent to the Cedar River near Bertram, Iowa, to determine how the concentrations of agricultural chemicals in the alluvial aquifer change as a result of bank storage of surface water. Research also is planned to determine the contribution of agricultural chemicals discharged by the alluvial aquifer into the river during base flow.

  10. Estimating Agricultural Water Use using the Operational Simplified Surface Energy Balance Evapotranspiration Estimation Method

    NASA Astrophysics Data System (ADS)

    Forbes, B. T.

    2015-12-01

    Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.

  11. Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters.

    PubMed

    Wittmer, I K; Bader, H-P; Scheidegger, R; Singer, H; Lück, A; Hanke, I; Carlsson, C; Stamm, C

    2010-05-01

    Biocides and pesticides are designed to control the occurrence of unwanted organisms. From their point of application, these substances can be mobilized and transported to surface waters posing a threat to the aquatic environment. Historically, agricultural pesticides have received substantially more attention than biocidal compounds from urban use, despite being used in similar quantities. This study aims at improving our understanding of the influence of mixed urban and agricultural land use on the overall concentration dynamics of biocides and pesticides during rain events throughout the year. A comprehensive field study was conducted in a catchment within the Swiss plateau (25 km(2)). Four surface water sampling sites represented varying combinations of urban and agricultural sources. Additionally, the urban drainage system was studied by sampling the only wastewater treatment plant (WWTP) in the catchment, a combined sewer overflow (CSO), and a storm sewer (SS). High temporal resolution sampling was carried out during rain events from March to November 2007. The results, based on more than 600 samples analyzed for 23 substances, revealed distinct and complex concentration patterns for different compounds and sources. Five types of concentration patterns can be distinguished: a) compounds that showed elevated background concentrations throughout the year (e.g. diazinon >50 ng L(-1)), indicating a constant household source; b) compounds that showed elevated concentrations driven by rain events throughout the year (e.g. diuron 100-300 ng L(-1)), indicating a constant urban outdoor source such as facades; c) compounds with seasonal peak concentrations driven by rain events from urban and agricultural areas (e.g. mecoprop 1600 ng L(-1) and atrazine 2500 ng L(-1) respectively); d) compounds that showed unpredictably sharp peaks (e.g. atrazine 10,000 ng L(-1), diazinon 2500 ng L(-1)), which were most probably due to improper handling or even disposal of products; and

  12. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    USGS Publications Warehouse

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  13. Recharging California's Groundwater: Crop Suitability and Surface Water Availability for Agricultural Groundwater Banking

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Kocis, T. N.; Brown, A.

    2016-12-01

    Groundwater banking, the intentional recharge of groundwater from surface water for storage and recovery, is an important conjunctive use strategy for water management in California (CA). A largely unexplored approach to groundwater banking, agricultural groundwater banking (ag-GB), utilizes flood flows and agricultural lands (alfalfa/pasture) for recharging groundwater. Understanding soil suitability for ag-GB, crop health and flooding tolerance, leaching of soil nitrate and salts, the availability of surface water for recharge, and the economic costs and benefits of ag-GB is fundamental to assessing the feasibility of local-scale implementation of ag-GB. The study presented here considers both the availability of excess streamflow (e.g., the magnitude, frequency, timing, and duration of winter flood flow) for ag-GB and the risks and benefits associated with using alfalfa fields as spreading grounds for ag-GB. The availability of surface water for winter (Nov to Apr) ag-GB were estimated based on daily streamflow records for 93 stream gauges within the Central Valley, CA. Analysis focused on high-magnitude (>90thpercentile) flows because most lower flows are likely legally allocated in CA. Results based >50 years of data indicate that an average winter/spring (Nov. - Apr.) in the Sacramento River Basin could provide 7 million acre-feet (AF) (8.6 km3) of water for ag-GB from flows above the 90th percentile. These flows originate from few storm events (5-7 events) and occur on average for 25-30 days between November and April. Wintertime on-farm recharge experiments were conducted on a 9-yr old, 15-acre alfalfa field in the Scott Valley, CA, where 135 AF and 107 AF of water were recharged during the winters of 2015 and 2016, respectively. Biomass data collected indicates that pulsed application of 6-10 ft of water on dormant alfalfa results in minimal yield loss (0.5 ton/acre reduction), short-duration saturated conditions in the root-zone, and high recharge

  14. The Fate and Transport of Glyphosate and AMPA into Surface Waters of Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2010-12-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops, but is particularly heavily used on crops which are genetically modified to be glyphosate tolerant: predominately soybeans, corn, potatoes, and cotton. Glyphosate is used extensively in almost all agricultural areas of the United States, and annual application has increased from less than 10,000 Mg in 1992 to more than 80,000 Mg in 2007. The greatest areal use is in the Midwest where glyphosate is applied on genetically modified corn and soybeans. Although use is increasing, the characterization of glyphosate transport on the watershed scale is lacking. Glyphosate, and its degradate AMPA [aminomethylphosphoric acid], was frequently detected in the surface waters of four agricultural watersheds. The load as a percent of use of glyphosate ranged from 0.009 to 0.86 percent and can be related to three factors: source strength, hydrology, and flowpath. Glyphosate use within a watershed results in some occurrence in surface water at the part per billion level; however watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  15. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters.

    PubMed

    Borin, Maurizio; Tocchetto, Davide

    2007-07-15

    The performance of a constructed surface flow wetland in reducing diffuse N pollution coming from croplands is being investigated in an ongoing experiment, begun in 1998 in NE Italy. The 0.32 ha wetland is vegetated with Phragmites australis (Cav.) Trin. and Typha latifolia (L.). It receives drainage water from 6 ha of land managed for an experiment on drainage systems, where maize, sugarbeet, winter wheat and soybean are cultivated. During the period 1998-2002, the wetland received from 4698 to 8412 mm of water per year (on average, about 9 times the environmental rainfall); its water regimen was discontinuous and flooding occurred on a variable number of days per year (from 13 to 126). Nitric nitrogen was the most important form of element load. Its concentration in the inflow water over time was rather discontinuous, with median values ranging from 0.2 (in 2001) to 4.5 (in 2000) mg L(-1). Inflow nitric N concentrations were occasionally in the 5-15 mg L(-1) range. Concentrations reduced passing through the wetland, with a more evident effect in the last year. Over 5 years, the wetland received slightly more than 2000 kg ha(-1) of nitrogen, 87% in nitric form mostly from farmland drainage. The remaining 13% of N was applied as organic slurry directly onto the wetland, with 5 distributions during 1998 to assess wetland performance in treating occasional organic loads. Field drainage loads had a discontinuous time pattern and occurred mostly during autumn-winter, with the exception of the 2001-2002 season which was a very dry. The wetland discharged 206 kg ha(-1) of N, over the 5-year period, with an apparent removal efficiency of about 90%. The disappearance was mostly due to plant uptake (1110 kg ha(-1)) and soil accumulation (570 kg ha(-1)), with the contribution of denitrification being estimated at around 7%.

  16. Assessment of Early Season Agricultural Drought Through Land Surface Water Index (lswi) and Soil Water Balance Model

    NASA Astrophysics Data System (ADS)

    Chandrasekar, K.; Sesha Sai, M. V. R.; Behera, G.

    2011-08-01

    An attempt was made to address the early season agriculture drought, by monitoring the surface soil wetness during 2010 cropping seasons in the states of Andhra Pradesh and Tamil Nadu. Short Wave Infrared (SWIR) based Land Surface Water Index (LSWI) and Soil Water Balance (SWB) model using inputs from remote sensing and ancillary data were used to monitor early season agriculture drought. During the crop season, investigation was made on LSWI characteristics and its response to the rainfall. It was observed that the Rate of Increase (RoI) of LSWI was the highest during the fortnights when the onset of monsoon occurred. The study showed that LSWI is sensitive to the onset of monsoon and initiation of cropping season. The second part of this study attempted to develop a simple book keeping - bucket type - water tight soil water balance model to derive the top 30cm profile soil moisture using climatic, soil and crop parameters as the basic inputs. Soil moisture derived from the model was used to compute the Area Conducive for Sowing (ACS) during the sowing window of the cropping season. The soil moisture was validated spatially and temporally with the ground observed soil moisture values. The ACS was compared with the RoI of LSWI. The results showed that the RoI was high during the sowing window whenever the ACS was greater than 50% of the district area. The observation was consistent in all the districts of the two states. Thus the analysis revealed the potential of LSWI for early season agricultural drought management.

  17. Applying ECOSTRESS Diurnal Cycle Land Surface Temperature and Evapotranspiration to Agricultural Soil and Water Management

    NASA Astrophysics Data System (ADS)

    Pestana, S. J.; Halverson, G. H.; Barker, M.; Cooley, S.

    2016-12-01

    Increased demand for agricultural products and limited water supplies in Guanacaste, Costa Rica have encouraged the improvement of water management practices to increase resource use efficiency. Remotely sensed evapotranspiration (ET) data can contribute by providing insights into variables like crop health and water loss, as well as better inform the use of various irrigation techniques. EARTH University currently collects data in the region that are limited to costly and time-intensive in situ observations and will greatly benefit from the expanded spatial and temporal resolution of remote sensing measurements from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). In this project, Moderate Resolution Imaging Spectroradiometer (MODIS) Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) data, with a resolution of 5 km per pixel, was used to demonstrate to our partners at EARTH University the application of remotely sensed ET measurements. An experimental design was developed to provide a method of applying future ECOSTRESS data, at the higher resolution of 70 m per pixel, to research in managing and implementing sustainable farm practices. Our investigation of the diurnal cycle of land surface temperature, net radiation, and evapotranspiration will advance the model science for ECOSTRESS, which will be launched in 2018 and installed on the International Space Station.

  18. Predicting Agricultural Drought using NOAH Land Surface Model, MODIS Evapotranspiration and GRACE Terrestrial Water Storage

    NASA Astrophysics Data System (ADS)

    wu, J.; Zhang, X.

    2013-12-01

    Drought is a major natural hazard in the world which costs 6-8 billion per year in the United States. Drought monitoring and prediction are difficult because it usually develops slowly and it is hard to be recognized until it becomes severe. The severity of agricultural drought was estimated by using Soil Moisture Deficit Index (SMDI) based on soil moisture simulated by Noah land surface model. Based on general water balance and delayed response of soil moisture to the forcing of climate variables, a Multiple Linear Regression (MLR) model for agricultural drought prediction was developed, the inputs of which included data at the previous one and two months of precipitation from Parameter-elevation Regressions on Independent Slopes Model (PRISM), evapotranspiration from MODIS MOD 16 product and terrestrial water storage (TWS) derived from Gravity Recovery and Climate Experiment (GRACE). The stability of the MLR model is tested using different training datasets from 2003 to 2009 with time spans of one year to six years and the results indicated that the model is stable, with very limited changes in estimated parameters between different datasets. A sensitivity analysis shows that evapotranspiration is the most significant variable affecting soil moisture change compared to precipitation and TWS. The predicted SMDI was compared with U.S. drought monitor products to evaluate its performance for the period of 2010-2012 when a severe drought occurred in the U.S. (Fig.1). The predicted SMDI successfully forecasted the severe drought in the southern U.S. in early 2012 and its expansion in the following summer. The MLR model has a high predictive skill with short-term forecast (1-2 months), while less accuracy is observed for the long-term forecast (3-6 months) (Fig.2).

  19. The role of hydrology in connecting agricultural phosphorus sources to surface water

    USDA-ARS?s Scientific Manuscript database

    Minimizing the risk of phosphorus (P) loss from land to water represents one of the most important priorities of nutrient management in the Chesapeake Bay watershed. Simply put, for P to pose a water quality problem, there must be a source of P that can readily be connected to surface water by hydro...

  20. A new emission-based approach for regulation of N losses from agricultural areas to surface waters

    NASA Astrophysics Data System (ADS)

    Rosenstand Poulsen, Jane; Kronvang, Brian; Bering Ovesen, Niels; Piil, Kristoffer; Kolind Hvid, Søren

    2015-04-01

    Demands for a reduction and hence regulation of nitrogen (N) emissions to streams, lakes and coastal areas are a central part of many river basin management plans under the EU Water Framework Directive. Therefore, large focus has been placed on exploring different mitigation options that can assist in reducing the N emission from agricultural areas. However, the spatial variability in landscape, geology and hydrology entails significant differences in the vulnerability of catchments to intense agricultural activities. Hence, if rigid regulations of N emissions are applied without considering this variability, it will not necessarily lead to an optimum balance between applied fertilisers, yields and loss of excess N to the surrounding surface waters. Therefore, the overall purpose of this pilot study is to develop a concept for regulation of nutrient emissions to surface waters based on a comprehensive stream monitoring design in order to measure the temporal and spatial transport of N at sub-catchment scale. The purpose of such a monitoring design is twofold: i) quantification of the actual N emissions from a given agricultural sub-catchment or even individual farms; ii) quantification at sub-catchment scale of nitrate retention that may ultimately lead to a more precise regulation of N emissions from agricultural areas to surface waters. In order to investigate down to which scale it is feasible to quantify N emissions to surface waters and to develop the best monitoring concept, three catchments subdivided into several sub-catchments in Denmark will be studied during the period 2014-2017. The catchments represent different landscapes and geological settings as well as three different hydrological regimes. In the three catchments, hydrometric stations have been established at the outlet of the drainage networks where continuous measurements are made of water stage. In addition daily water samples and weekly grab samples of water are taken and weekly discharge

  1. Contribution of agricultural and non-agricultural use of pesticides to the environmental impact on aquatic life in regional surface water systems.

    PubMed

    Jongbloed, R H; Hulskotte, J H J; Kempenaar, C

    2004-01-01

    By means of a modelling tool an analysis was made of the local variation in the use of pesticides in the province of Utrecht in The Netherlands, and the potential environmental impact of pesticide emissions on the aquatic ecosystems. The aim of this study was to identify and quantify the major sources of pesticide use and environmental impact, taking the regional variation of pesticide use into account. The analysis was targeted at different levels: detailed (individual active substances, individual agricultural crops, civil land-use types, hydrological catchment basins) and globally covering agricultural use, non-agricultural use (some civil sectors) and recreational shipping. The results can be used for the (re)design of environmental monitoring programmes of pesticides in surface waters and for the development of region based policies towards sustainable pesticide use. The analysis tool that was developed is considered to be applicable for other regions as well.

  2. Surface soil water content spatial organization within irrigated and non-irrigated agricultural fields

    USDA-ARS?s Scientific Manuscript database

    Understanding soil water content variability is important for monitoring and modeling of land surface processes as well as land and water management practices. With regards to in situ probes, it is sometimes assumed that a single local measurement can represent the larger domain, mostly for practic...

  3. Water in agriculture

    USDA-ARS?s Scientific Manuscript database

    Agricultural water is a precious and limited resource. Increasingly more water types and sources are being explored for use in irrigation within the United States and across the globe. As outlined in this chapter relatively new regulations in the Food Safety and Modernization Act (FSMA) provide irri...

  4. Three Decades of Landsat-derived Spring Surface Water Dynamics in an Agricultural Wetland Mosaic; Implications for Migratory Shorebirds

    NASA Astrophysics Data System (ADS)

    Schaffer-Smith, D.; Swenson, J. J.; Barbaree, B. A.; Reiter, M. E.

    2016-12-01

    To balance human demand for limited freshwater with biodiversity and other ecosystem values, it is critical that we develop a more thorough understanding of the spatial and temporal extent of surface water resources. Satellite measurements of surface water dynamics offer promise for understanding wetland habitat availability and quality at broad spatial scales. We used an innovative approach combining random forest models and receiver operating characteristic curve analysis to systematically identify a mid-infrared (1.5-1.7 µm) threshold for classification of water and non-water areas at an important stopover site for shorebirds during spring migration. We analyzed water extent dynamics for a 1983-2015 Landsat time series, using a customized data interpolation to fill missing data gaps in classifications of SLC-off Landsat 7 imagery. Combined with a simple masking procedure, our approach identifies inundation in wetlands and agricultural fields in the Sacramento Valley of California at 30-m resolution with an average of 92% accuracy across the time series, which is comparable to other approaches that require more intensive user input. We found substantial variability in interannual and within-season water extent. Flood-irrigated agriculture provided the greatest potential habitat area for shorebirds; however, herbaceous wetlands on federal state and private lands provided the most reliable habitat. Spring water extent has been most limited during the peak of shorebird migration; on average we detected open water on 26,000 ha ( 3% of the study area) in early April, which is only 18% of the average extent in late May. Furthermore, the water extent on the landscape in late March, leading into peak migration, has significantly declined over time. Our findings provide important information that can be used directly in water and wildlife management under climate change. The unique classification and interpolation methods that we developed for this study could be adapted

  5. Potential of the Conservation Reserve Program to control agricultural surface water pollution

    NASA Astrophysics Data System (ADS)

    Lant, Christopher L.

    1991-07-01

    The Conservation Reserve Program (CRP), initiated by the Conservation Title of the Food Security Act of 1985, is the primary federal program to control nonpointsource pollution in agricultural watersheds of the United States. However, the program is designed primarily to reduce soil erosion rather than to retire croplands in a manner optimal for controlling runoff of sediment and associated pollutants. This study estimates potential enrollment of streamside and floodplain croplands in this ten-year retirement program in order to gauge the potential of the CRP as a water-quality improvement policy. A contingent choice survey design was employed in Fayette County, Illinois, to demonstrate that there is substantial potential for retirement of streamside and floodplain croplands in the CRP. Enrollments in each program climb from less than 6% to over 83% of eligible croplands as the annual rental rate is increased from 20 to 200/acre. Potential retirement of streamside and floodplain croplands declines, however, if tree planting, drainage removal, or a 20-year contract are required. The potential of a CRP-based water-quality program to improve water quality and aquatic ecosystems in agricultural watersheds is thus substantial but constrained by the economic trade-offs that farmers make between crop production and conservation incentives in determining the use of their riparian lands.

  6. The distribution of Salmonella enterica serovars and subtypes in surface water from five agricultural regions across Canada.

    PubMed

    Jokinen, C C; Koot, J; Cole, L; Desruisseau, A; Edge, T A; Khan, I U H; Koning, W; Lapen, D R; Pintar, K D M; Reid-Smith, R; Thomas, J L; Topp, E; Wang, L Y; Wilkes, G; Ziebell, K; van Bochove, E; Gannon, V P J

    2015-06-01

    Serovar prevalence of the zoonotic pathogen, Salmonella enterica, was compared among 1624 surface water samples collected previously from five different Canadian agricultural watersheds over multiple years. Phagetyping, pulsed field gel electrophoresis (PFGE), and antimicrobial resistance subtyping assays were performed on serovars Enteritidis, Typhimurium, and Heidelberg. Serovars and subtypes from surface water were compared with those from animal feces, human sewage, and serovars reported to cause salmonellosis in Canadians. Sixty-five different serovars were identified in surface water; only 32% of these were isolated from multiple watersheds. Eleven of the 13 serovars most commonly reported to cause salmonellosis in Canadians were identified in surface water; isolates of these serovars constituted >40% of the total isolates. Common phagetypes and PFGE subtypes of serovars associated with illness in humans such as S. Enteritidis and S. Typhimurium were also isolated from surface water and animal feces. Antimicrobial resistance was generally low, but was highest among S. Typhimurium. Monitoring of these rivers helps to identify vulnerable areas of a watershed and, despite a relatively low prevalence of S. enterica overall, serovars observed in surface water are an indication of the levels of specific S. enterica serovars present in humans and animals.

  7. Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed-use areas.

    PubMed

    Velicu, Magdalena; Suri, Rominder

    2009-07-01

    The occurrence of pharmaceutically active chemicals (PACs) in the natural aquatic environment is recognized as an emerging issue due to the potential adverse effects these compounds pose to aquatic life and humans. This study presents the monitoring of two major categories of PACs in surface water: steroid hormones and antibiotics. Surface water samples were collected in the fall season from 21 locations in suburban (4), agricultural (5) and mixed (12) use suburban and agricultural areas. The water samples collected were analyzed using GC/MS for aqueous concentration of eleven steroid hormones: six natural (17alpha-estradiol, 17beta-estradiol, estrone, estriol, 17alpha-dihydroequilin, progesterone) and five synthetic (gestodene, norgestrel, levonorgestrel, medrogestone, trimegestone). In addition, 12 antibiotics (oxytetracycline, chlorotetracycline, tetracycline, sulfamethoxazole, sulfamethazine, trimethoprim, lincomycin, norfloxacin, ofloxacin, roxithromycin, erythromycin, tylosin tartrate) were analyzed using LC/MS. Steroid hormones detected in surface water were: 17alpha-estradiol, 17beta-estradiol, 17alpha-dihydroequilin, estriol, estrone, progesterone and trimegestone. Estrone had the highest detection frequency of >90% with concentrations ranging from 0.6 to 2.6 ng/l. The second most frequently detected estrogen was estriol (>80%) with concentrations ranging from 0.8 to 19 ng/l. The detection frequency varied at different sampling locations. No antibiotics were detected in the 21 streams sampled. This study aims to give a better understanding on the presence, fate and transport of PACs derived from humans and animals.

  8. Modeling the Surface Water-Groundwater Interaction in Arid and Semi-Arid Regions Impacted by Agricultural Activities

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Wu, B.; Zheng, Y.

    2013-12-01

    In many semi-arid and arid regions, interaction between surface water and groundwater plays an important role in the eco-hydrological system. The interaction is often complicated by agricultural activities such as surface water diversion, groundwater pumping, and irrigation. In existing surface water-groundwater integrated models, simulation of the interaction is often simplified, which could introduce significant simulation uncertainty under certain circumstance. In this study, GSFLOW, a USGS model coupling PRMS and MODFLOW, was improved to better characterize the surface water-groundwater interaction. The practices of water diversion from rivers, groundwater pumping and irrigation are explicitly simulated. In addition, the original kinematic wave routing method was replaced by a dynamic wave routing method. The improved model was then applied in Zhangye Basin (the midstream part of Heihe River Baisn), China, where the famous 'Silk Road' came through. It is a typical semi-arid region of the western China, with extensive agriculture in its oasis. The model was established and calibrated using the data in 2000-2008. A series of numerical experiments were conducted to evaluate the effect of those improvements. It has been demonstrated that with the improvements, the observed streamflow and groundwater level were better reproduced by the model. The improvements have a significant impact on the simulation of multiple fluxes associated with the interaction, such as groundwater discharge, riverbed seepage, infiltration, etc. Human activities were proved to be key elements of the water cycle in the study area. The study results have important implications to the water resources modeling and management in semi-arid and arid basins.

  9. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    USGS Publications Warehouse

    Gregoire, Caroline; Capel, Paul D.; Coupe, Richard H.; Kalkhoff, Stephen J.

    2011-01-01

    CONCLUSIONS: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil.

  10. A pesticide surface water mobility index and its relationship with concentrations in agricultural drainage watersheds.

    PubMed

    Chen, Wenlin; Hertl, Peter; Chen, Sunmao; Tierney, Dennis

    2002-02-01

    An index to benchmark pesticide mobility relevant to surface water runoff and soil erosion (surface water mobility index, or SWMI) was derived based on two key environmental fate parameters: degradation half-life and organic carbon-normalized soil/water sorption coefficient (Koc). Values assigned with the index of each individual compound correlate well with the concentration trend of 13 pesticides monitored in six Lake Erie, USA, tributaries from 1983 to 1991. Regression using a power function of SWMI fits concentration data well at various percentiles in the database for each tributary and all six tributaries combined, with r2 ranging from 0.71 to 0.94 for the concentrations at the 95th percentile. Good agreement was also obtained between SWMI and the time-weighted annual mean concentrations (r2 = 0.67-0.87). Although concentrations at or near peaks tend to be driven by rare hydrological events (intense precipitation immediately after application), SWMI explains the peak concentration data generally well (r2 = 0.53-0.86). The SWMI-concentration relationship was further evaluated with two other pesticide monitoring databases: the U.S. Geological Survey National Water Quality Assessment Program White River Study Unit (1991-1996) at Hazelton, Indiana, USA, and the Syngenta (previously Novartis) Voluntary Monitoring Program with Community Water Systems at the Higginsville City Lake, Missouri, USA (1995-1997). The ability of the proposed SWMI to discriminate pesticide runoff mobility and its correlation with surface water monitoring data can be significant in the development of screening methodologies and data-based models for government agencies and/or practitioners in general facing increasing pressure to assess pesticide occurrence in aquatic environments.

  11. Concentration patterns of agricultural pesticides and urban biocides in surface waters of a catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Wittmer, I.; Bader, H.-P.; Scheidegger, R.; Alder, A.; Lück, A.; Hanke, I.; Singer, H.

    2009-04-01

    Organic pesticides and biocides that are found in surface waters, can originate from agricultural and urban sources. For a long time, agricultural pesticides have received substantially more attention than biocidal compounds from urban use like material protection or in-can preservatives (cosmetics etc.). Recent studies however revealed that the amounts of urban biocides used may exceed those of agricultural pesticides. This study aims at comparing the input of several important pesticides and biocides into a small Swiss stream with a special focus on loss events triggered by rainfall. A set of 16 substances was selected to represent urban and agricultural sources. The selected substances are either only used as biocides (irgarol, isothiazolinones, IPBC), as pesticides (atrazine, sulcotrione, dichlofluanid, tolylfluanid) or have a mixed use (isoproturon, terbutryn, terbutylazine, mecoprop, diazinon, carbendazim) The study catchment has an area of 25 km2 and is inhabited by about 12'000 people. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a wastewater treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. The results, based on more than 500 analyzed samples, revealed distinct concentration patterns for different compounds and sources. Agricultural pesticides exhibited a strong seasonality as expected based on the application periods. During the first one or two rain events after application the concentrations reached up to several thousand ng/l during peak flow (atrazine, isoproturon). The temporal patterns of urban biocides were more diverse. Some compounds obviously stem from permanent sources independent of rainfall because they were found mostly in the outlet of the wastewater

  12. Agriculture and water pollution

    NASA Astrophysics Data System (ADS)

    Page, G. William

    The attempt by certain jurisdictions to preserve a rural lifestyle by means of farmland preservation may produce some unwanted side effects, such as polluted water supplies. While there are many excellent and important reasons to preserve high-quality agricultural land for food production, efforts to retain or encourage agricultural activities in areas experiencing rapid population growth may produce some serious environmental problems.For the entire post-WW II period the United States has experienced almost continuous suburban sprawl. Many incorporated areas, experiencing rapid development, have attempted to preserve open-space and less-developed land uses by actively attempting to preserve agricultural activities. Often the most recent migrants to a growing municipality exemplify the ‘last in’ syndrome by being among the most vociferous in attempting to halt further development.

  13. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    NASA Astrophysics Data System (ADS)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    Increasing human pressures on the natural environment through the demand for increased agricultural productivity have exacerbated and deteriorated water quality conditions within many environments due to an unbalancing of the nutrient cycle. As a consequence, increased agricultural diffuse water pollution has resulted in elevated concentrations of nutrients within surface water and groundwater bodies. This deterioration in water quality has direct consequences for the health of aquatic ecosystems and biodiversity, human health, and the use of water as a resource for public water supply and recreation. To mitigate these potential impacts and to meet commitments under the EU Drinking Water and Water Framework Directives, there is a need to improve our understanding of the impacts that agricultural land use and management practices have on water quality. Water quality models are one of the tools available which can be used to facilitate this aim. These simplified representations of the physical environment allow a variety of changes to be simulated within a catchment, including for example changes in agricultural land use and management practices, allowing for predictions of the impacts of those measures on water quality to be developed and an assessment to be made of their effectiveness in improving conditions. The aim of this research is to apply the water quality model SWAT (Soil and Water Assessment Tool) to the Wensum catchment (area 650 km2), situated in the East of England, to predict the impacts of potential changes in land use and land management practices on water quality as part of a process to select those measures that in combination will have the greatest potential to improve water quality. Model calibration and validation is conducted at three sites within the catchment against observations of river discharge and nitrate and total phosphorus loads at a monthly time-step using the optimisation algorithm SUFI-2 (Sequential Uncertainty Fitting Version 2

  14. Perceived agricultural runoff impact on drinking water.

    PubMed

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  15. A review of monitoring approaches and outcomes of surface water quality mitigation measures in meso-scale agricultural catchments

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Murphy, Paul; Mellander, Per-Erik; Shortle, Ger

    2013-04-01

    Critical for an informative feedback loop from scientific monitoring of biophysical change, to making and implementing suitable policy to effect the desired change, are both accurate measurement of biophysical change, and measurement or modelling of the causes of change. For example the European Environment Agency uses the DPSIR framework to assess change in the state (S) of natural resources due to changes in specific drivers (D) and pressures (P) that can have an impact (I) and are the focus of policy responses (R). This paper provides a review of meso-catchment scale studies worldwide that have measured the impacts of agricultural land management practice on surface water quality. Approaches for measuring water quality impacts of agricultural mitigation practices in meso-catchments (1-100 km2) ranged from measuring water quality over a time series, such as before and after a land management change, or over a spatial series such as in paired catchments with and without agricultural practice change (or over a gradient of practices or catchment types), and by cause and effect studies that measure sources, pathways and impacts of practices. Agricultural mitigation measures had no measurable effect, or positive, or negative effects on water quality over periods of 3 to 20 years. In most catchments where beneficial effects of mitigation measures were successfully measured, combinations of measures that address nutrient or pollutant sources, pathways, delivery and impact have been implemented. Successful farm measures included substantial reductions in the intensity of the farming systems, improved engineering and crop management to reduce runoff and drainage transport of nutrients and sediment, as well as high rates of implementation of measures across the catchments. In many cases, the potential to measure improvement in one or more water quality indicators was limited by the impact of a few management or weather events. Reasons that water quality did not improve in

  16. Risk assessment of surface water and groundwater pollution through agricultural activity on the catchment area of the Shelek River

    NASA Astrophysics Data System (ADS)

    Zubairov, Bulat; Dautova, Assel

    2015-04-01

    Agricultural activity in rural areas of Kazakhstan can create a potential risk of surface and groundwater pollution. In our contribution, we will focus on the risk assessment of surface water and groundwater pollution in the catchment area of the Shelek River basin in southeast Kazakhstan. Since soviet time, in the research area an intensive cultivation of tobacco was performed which means to use a big amount of pesticides during the growing-process. Therefore, this research was conducted in order to receive reliable data for management decisions justification and for practical testing of approach which is recommended by WHO for drinking water supply based on risks mapping. For our study, the soil and water samples from tobacco fields, artesian spring, and surface water source were taken for analysis on pesticides content. The samples were investigated in laboratory of Centre of Sanitary and Epidemiological Expertise of Almaty city (CSEE) according to approved methods from the national standards which are accepted in Kazakhstan. For the first time, in artesian spring small amount of nitrate pollution was found whose groundwater is one of the drinking water supplies of the region.

  17. Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review.

    PubMed

    Schoumans, O F; Chardon, W J; Bechmann, M E; Gascuel-Odoux, C; Hofman, G; Kronvang, B; Rubæk, G H; Ulén, B; Dorioz, J-M

    2014-01-15

    The EU Water Framework Directive (WFD) obliges Member States to improve the quality of surface water and groundwater. The measures implemented to date have reduced the contribution of point sources of pollution, and hence diffuse pollution from agriculture has become more important. In many catchments the water quality remains poor. COST Action 869 was an EU initiative to improve surface water quality that ran from 2006 to 2011, in which 30 countries participated. Its main aim was a scientific evaluation of the suitability and cost-effectiveness of options for reducing nutrient loss from rural areas to surface waters at catchment scale, including the feasibility of the options under different climatic and geographical conditions. This paper gives an overview of various categories of mitigation options in relation to phosphorus (P). The individual measures are described in terms of their mode of action, applicability, effectiveness, time frame, environmental side-effects (N cycling) and cost. In total, 83 measures were evaluated in COST Action 869.

  18. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  19. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, Geoffrey N.; Landon, Matthew K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5–2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone.

  20. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5-2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone. Copyright ?? 2002 Elsevier Science B.V.

  1. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting.

    PubMed

    Delin, Geoffrey N; Landon, Matthew K

    2002-08-05

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site ppears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5-2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone.

  2. Protection of ground and surface waters, January 1982-August 1987: Citations from AGRICOLA (Agricultural Online Access) concerning diseases and other environmental considerations. Final report

    SciTech Connect

    Bebee, C.N.

    1987-07-01

    The citations in this bibliography are selected from English-language material from the international literature on the agricultural aspects of the pollution of ground and surface water by chemicals. Some of the subject areas include: Agricultural operations; Pesticides; Legislation; Land use; Urban hydrology and pollution; Food processing wastes; and Waste treatment.

  3. Evaluating the potential of 'on-line' constructed wetlands for mitigating pesticide transfers from agricultural land to surface waters

    NASA Astrophysics Data System (ADS)

    Whelan, Michael; Ramos, Andre; Guymer, Ian; Villa, Raffaella; Jefferson, Bruce

    2016-04-01

    Pesticides make important contributions to modern agriculture but losses from land to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water. Where artificial field drains represent a dominant pathway for pesticide transfers, buffer zones provide little mitigation potential. Instead, "on-line" constructed wetlands have been proposed as a potential means of reducing pesticide fluxes in drainage ditches and headwater streams. Here, we evaluate the potential of small free-surface wetlands to reduce pesticide concentrations in surface waters using a combination of field monitoring and numerical modelling. Two small constructed wetland systems in a first order catchment in Cambridgeshire, UK, were monitored over the 2014-2015 winter season. Discharge was measured at several flow control structures and samples were collected every eight hours and analysed for metaldehyde, a commonly-used molluscicide. Metaldehyde is moderately mobile and, like many other compounds, it has been regularly detected at high concentrations in surface water samples in a number of drinking water supply catchments in the UK over the past few years. However, it is unusually difficult to remove via conventional drinking water treatment which makes it particularly problematical for water companies. Metaldehyde losses from the upstream catchment were significant with peak concentrations occurring in the first storm events in early autumn, soon after application. Concentrations and loads appeared to be unaffected by transit through the wetland over a range of flow conditions - probably due to short solute residence times (quantified via several tracing experiments employing rhodamine WT - a fluorescent dye). A dynamic model, based on fugacity concepts, was constructed to describe chemical fate in the wetland system. The model was used to evaluate mitigation potential and management options under field conditions and

  4. Historic, Current, and Future Availability of Surface Water for Agricultural Groundwater Banking in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Kocis, T. N.; Dahlke, H. E.

    2015-12-01

    Groundwater banking, the intentional recharge of groundwater from surface water for storage and recovery, is an important conjunctive use strategy for water management in California. A largely unexplored approach to groundwater banking, agricultural groundwater banking (ag-GB), utilizes flood flows and agricultural lands for recharging groundwater. Understanding the availability of excess streamflow (e.g., the magnitude, frequency, timing, and duration of winter flood flows) is fundamental to assessing the feasibility of local-scale implementation of ag-GB. In this study, we estimate the current availability and forecast the future availability of winter (Nov to Apr) flood flows based on current and historic daily streamflow records for 200 stream gauges on tributaries to and streams within the Central Valley, California. For each gauge, we consider flows above a stationary 90th percentile as ideal for ag-GB because reservoir operations mitigate flood risk by releasing early winter flood flows. Results based on 70 years of data show that for 25% of the gauges there are significantly decreasing flow volumes above the 90th percentile and a decreasing number of days with flows above the 90th percentile. These flows, on average, make up 20% of the total annual winter flows. The majority of gauges further show, over the past 70 years, a decrease in total annual streamflow magnitude, a decrease in the magnitude of extreme flood events, and an increase in the frequency of flood events. Variations in winter flood flows due to climate change and climate variability are a challenge to water management in California. To aid the long-term forecast of streamflow conditions in California, we present a new water year type index for the Central Valley, which considers the variation in flow percentiles over time. Together, our results suggest that flexible, coordinated efforts for the local diversion of flood flows are needed to better utilize the increasingly rare winter flood

  5. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  6. Predicting runoff-induced pesticide input in agricultural sub-catchment surface waters: linking catchment variables and contamination.

    PubMed

    Dabrowski, James M; Peall, Sue K C; Van Niekerk, Adriaan; Reinecke, Adriaan J; Day, Jenny A; Schulz, Ralf

    2002-12-01

    An urgent need exists for applicable methods to predict areas at risk of pesticide contamination within agricultural catchments. As such, an attempt was made to predict and validate contamination in nine separate sub-catchments of the Lourens River, South Africa, through use of a geographic information system (GIS)-based runoff model, which incorporates geographical catchment variables and physicochemical characteristics of applied pesticides. We compared the results of the prediction with measured contamination in water and suspended sediment samples collected during runoff conditions in tributaries discharging these sub-catchments. The most common insecticides applied and detected in the catchment over a 3-year sampling period were azinphos-methyl (AZP), chlorpyrifos (CPF) and endosulfan (END). AZP was predominantly found in water samples, while CPF and END were detected at higher levels in the suspended particle samples. We found positive (p < 0.002) correlations between the predicted average loss and the concentrations of the three insecticides both in water and suspended sediments (r between 0.87 and 0.94). Two sites in the sub-catchment were identified as posing the greatest risk to the Lourens River mainstream. It is assumed that lack of buffer strips, presence of erosion rills and high slopes are the main variables responsible for the high contamination at these sites. We conclude that this approach to predict runoff-related surface water contamination may serve as a powerful tool for risk assessment and management in South African orchard areas.

  7. Quantitative risk analysis for potentially resistant E. coli in surface waters caused by antibiotic use in agricultural systems.

    PubMed

    Limayem, Alya; Martin, Elizabeth M

    2014-01-01

    Antibiotics are frequently used in agricultural systems to promote livestock health and to control bacterial contaminants. Given the upsurge of the resistant fecal indicator bacteria (FIB) in the surface waters, a novel statistical method namely, microbial risk assessment (MRA) was performed, to evaluate the probability of infection by resistant FIB on populations exposed to recreational waters. Diarrheagenic Escherichia coli, except E. coli O157:H7, were selected for their prevalence in aquatic ecosystem. A comparative study between a typical E. coli pathway and a case scenario aggravated by antibiotic use has been performed via Crystal Ball® software in an effort to analyze a set of available inputs provided by the US institutions including E. coli concentrations in US Great Lakes through using random sampling and probability distributions. Results from forecasting a possible worst-case scenario dose-response, accounted for an approximate 50% chance for 20% of the exposed human populations to be infected by recreational water in the U.S. However, in a typical scenario, there is a 50% chance of infection for only 1% of the exposed human populations. The uncertain variable, E. coli concentration accounted for approximately 92.1% in a typical scenario as the major contributing factor of the dose-response model. Resistant FIB in recreational waters that are exacerbated by a low dose of antibiotic pollutants would increase the adverse health effects in exposed human populations by 10 fold.

  8. Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed

    USGS Publications Warehouse

    Essaid, Hedeff I.; Caldwell, Rodney R.

    2017-01-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  9. A Statistical Assessment of the Impact of Agricultural Land Use Intensity on Regional Surface Water Quality at Multiple Scales

    PubMed Central

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-01-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO3-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (CODMn) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO3-N and CODMn, respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  10. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    PubMed

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  11. Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Scheidegger, R.; Bader, H. P.

    2012-04-01

    Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed

  12. Effect of the submergence, the bed form geometry, and the speed of the surface water flow on the mitigation of pesticides in agricultural ditches

    NASA Astrophysics Data System (ADS)

    Boutron, Olivier; Margoum, Christelle; Chovelon, Jean-Marc; Guillemain, CéLine; Gouy, VéRonique

    2011-08-01

    Pesticides, which have been extensively used in agriculture, have become a major environmental issue, especially regarding surface and groundwater contamination. Of particular importance are vegetated farm drainage ditches, which can play an important role in the mitigation of pesticide contamination by adsorption onto ditch bed substrates. This role is, however, poorly understood, especially regarding the influence of hydrodynamic parameters, which make it difficult to promote best management practice of these systems. We have assessed the influence of three of these parameters (speed of the surface water flow, submergence, and geometrical characteristics of the bed forms) on the transfer and adsorption of selected pesticides (isoproturon, diuron, tebuconazole, and azoxystrobin) into the bed substrate by performing experiments with a tilted experimental flume, using hemp fibers as a standard of natural organic substrates that are found at the bottom of agricultural ditches. Results show the transfer of pesticides from surface water flow into bed substrate is favored, both regarding the amounts transferred into the bed substrate and the kinetics of the transfer, when the surface water speed and the submergence increase and when the bed forms are made of rectangular shapes. Extrapolation of flume data over a distance of several hundred meters suggests that an interesting possibility for improving the mitigation of pesticides in ditches would be to increase the submergence and to favor bed forms that tend to enhance perturbations and subsequent infiltration of the surface water flow.

  13. Agricultural pesticide applications and observed concentrations in surface waters from four drainage basins in the Central Columbia Plateau, Washington and Idaho, 1993-94

    USGS Publications Warehouse

    Wagner, R.J.; Ebbert, J.C.; Roberts, L.M.; Ryker, S.J.

    1995-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, the use and occurrence of agricultural pesticides were investigated in four drainage basins--two dominated by irrigated agriculture and two by dryland agriculture--in the Central Columbia Plateau of eastern Washington. For this study, 85 pesticides or pesticide metabolites were selected for analysis from a list of nearly 400 compounds commonly used in the United States. Pesticide-use data included estimates of the total quantity of herbicides, insecticides, and fungicides applied to croplands in each of the four drainage basins and reported times of application for selected pesticides. Pesticide-occurrence data included concentrations of pesticides in samples collected at one surface-water site at or near the outflow of each of the four drainage basins, where surface waters were sampled one to five times a month from March 1993 through May 1994. Of the 85 pesticides or pesticide metabolites targeted for analysis, a total of 45 different compounds were detected in samples from the four sites, ranging in concentration from at or near the limit of detection (as low as 0.001 microgram per liter) to a maximum of 8.1 micrograms per liter. None of the concentrations of pesticides exceeded the U.S. Environmental Protection Agency (USEPA) drinking water standards, but concentrations of five pesticides exceeded the USEPA freshwater-chronic criteria for the protection of aquatic life. Forty-one different pesticides or pesticide metabolites were detected in surface waters sampled at the two sites representing irrigated agriculture drainage basins. The herbicides atrazine, DCPA, and EPTC were detected most frequently at the two sampling sites. Not all pesticides that were applied were detected, however. For example, disulfoton, phorate, and methyl parathion accounted for 15 percent of the insecticides applied in the two irrigated drainage basins, yet none of these pesticides were detected in

  14. Residence time, chemical and isotopic analysis of nitrate in the groundwater and surface water of a small agricultural watershed in the Coastal Plain, Bucks Branch, Sussex County, Delaware

    USGS Publications Warehouse

    Clune, John W.; Denver, Judith M.

    2012-01-01

    Nitrate is a common contaminant in groundwater and surface water throughout the Nation, and water-resource managers need more detailed small-scale watershed research to guide conservation efforts aimed at improving water quality. Concentrations of nitrate in Bucks Branch are among the highest in the state of Delaware and a scientific investigation was performed to provide water-quality information to assist with the management of agriculture and water resources. A combination of major-ion chemistry, nitrogen isotopic composition and age-dating techniques was used to estimate the residence time and provide a chemical and isotopic analysis of nitrate in the groundwater in the surficial aquifer of the Bucks Branch watershed in Sussex County, Delaware. The land use was more than 90 percent agricultural and most nitrogen inputs were from manure and fertilizer. The apparent median age of sampled groundwater is 18 years and the estimated residence time of groundwater contributing to the streamflow for the entire Bucks Branch watershed at the outlet is approximately 19 years. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter (as nitrogen) in 60 percent of groundwater samples and 42 percent of surface-water samples. The overall geochemistry in the Bucks Branch watershed indicates that agriculture is the predominant source of nitrate contamination and the observed patterns in major-ion chemistry are similar to those observed in other studies on the Mid-Atlantic Coastal Plain. The pattern of enrichment in nitrogen and oxygen isotopes (δ15N and δ18O) of nitrate in groundwater and surface water indicates there is some loss of nitrate through denitrification, but this process is not sufficient to remove all of the nitrate from groundwater discharging to streams, and concentrations of nitrate in streams remain elevated.

  15. Analysis of the potential impacts on surface water quality resulting from the proposed use of the San Luis Drain to transport agricultural drainage through the northern Grasslands

    SciTech Connect

    Quinn, N.W.T.

    1992-05-01

    An Environmental Assessment and initial Study for the interim use of a portion of the San Luis Drain for conveyance water through the Grassland Water District and adjacent Grassland areas was conducted. The project proposes the use of 18 miles of the San Luis Drain for the conveyance of agricultural drainage water for a period of five years and the elimination of agricultural drainage discharges from 76 miles of existing channels in and adjacent to the Grassland Water District. A report was prepared to (a) quantify the potential project effects on surface water quality within Salt and Mud Sloughs and the San Joaquin River using currently available data, and (b) to improve the understanding of existing water supply and drainage operations within the Grassland area. After submission of the original report it was brought to the attention of one of the coauthors that the database on selenium and boron concentrations in drainage water did not include the water quality data collected by the Regional Water Quality Control Board (CRWQCB). In addition, the US Bureau of Reclamation (USBR) requested further examination of Grasslands hydrology to estimate the quantity of supplemental water that would be needed to restore the San Joaquin River to the same TDS and trace element concentrations prior to implementation of the project. This report addresses these issues.

  16. Analysis of the potential impacts on surface water quality resulting from the proposed use of the San Luis Drain to transport agricultural drainage through the northern Grasslands

    SciTech Connect

    Quinn, N.W.T.

    1992-05-01

    An Environmental Assessment and initial Study for the interim use of a portion of the San Luis Drain for conveyance water through the Grassland Water District and adjacent Grassland areas was conducted. The project proposes the use of 18 miles of the San Luis Drain for the conveyance of agricultural drainage water for a period of five years and the elimination of agricultural drainage discharges from 76 miles of existing channels in and adjacent to the Grassland Water District. A report was prepared to (a) quantify the potential project effects on surface water quality within Salt and Mud Sloughs and the San Joaquin River using currently available data, and (b) to improve the understanding of existing water supply and drainage operations within the Grassland area. After submission of the original report it was brought to the attention of one of the coauthors that the database on selenium and boron concentrations in drainage water did not include the water quality data collected by the Regional Water Quality Control Board (CRWQCB). In addition, the US Bureau of Reclamation (USBR) requested further examination of Grasslands hydrology to estimate the quantity of supplemental water that would be needed to restore the San Joaquin River to the same TDS and trace element concentrations prior to implementation of the project. This report addresses these issues.

  17. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    NASA Astrophysics Data System (ADS)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    The general use of pesticides in the Orge Basin, located in the southern part of the Paris suburb (France), is damaging surface water quality. Consequently, an increase in the water supply costs is registered by the water supply agencies that are situated downstream the Orge confluence with the Seine River. In this catchment, high uses of glyphosate are registered for fallow fields (upstream part) and for roadway weed control (downstream part). The proportion of glyphosate coming from these two zones was not well known, along with the double source of its metabolite AMPA originated from the degradation of some detergent phosphonates. The aim of this work was firstly to identify the potential sources of glyphosate and AMPA in urban sectors (such as sewerage system inputs) and in agricultural areas and to quantify the origins of urban pesticides pathways towards surface waters at the basin scale. The new approach of this project was to collect information at three different scales to establish a first step of modeling. At the basin scale, 1 year of surface water monitoring at the outlet of the Orge River was useful to establish the inputs towards the Seine River. At the urban catchment scale, the investigations have permitted to record glyphosate and AMPA loads transferred by storm waters and by wastewaters. Loads were estimated during and out of application calendar, in different hydrological conditions such as rainfall with high intensity or dry conditions. Impact of WWTP on surface water was also demonstrated. The third phase of this work was the interpretation of agricultural inputs from two different agricultural catchments of the Orge River. The results showed the impact of urban uses of glyphosate upon the Orge River contamination with annual loads from 100 times higher from the urban zone than from the agricultural one. Storm sewers were recognized to be the main way for glyphosate transfer towards surface waters. A budget of glyphosate and AMPA inputs and

  18. Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: a significant contribution to agricultural greenhouse gas budgets?

    PubMed

    Outram, Faye N; Hiscock, Kevin M

    2012-08-07

    In the UK agriculture is by far the largest source of nitrous oxide (N(2)O) emissions. Direct N(2)O emissions as a result of nitrogen (N) application to soils have been well documented in the UK, whereas indirect emissions produced in surface waters and groundwaters from leached N are much less understood with limited data to support IPCC emission factors. Indirect emissions were studied in surface waters in the Upper Thurne, a lowland drained arable catchment in eastern England. All surface waters were found to have dissolved N(2)O concentrations above that expected if in equilibrium with ambient concentrations, demonstrating all surface waters were acting as a source of N(2)O. The drainage channels represented 86% of the total indirect N(2)O flux, followed by wetland areas, 11%, and the river, 3%. The dense drainage network was found to have the highest dissolved N(2)O concentrations of all the water bodies studied with a combined N(2)O flux of 16 kg N(2)O-N per day in March 2007. Such indirect fluxes are comparable to direct fluxes per hectare and represent a significant proportion of the total N(2)O flux for this catchment. Separate emission factors were established for the three different surface water types within the same catchment, suggesting that the one emission factor used in the Intergovernmental Panel on Climate Change (IPCC) methodology for predicting all indirect N(2)O emissions is inappropriate.

  19. Surface-water quality in agricultural watersheds of the North Carolina Coastal Plain associated with concentrated animal feeding operations

    USGS Publications Warehouse

    Harden, Stephen L.

    2015-01-01

    A classification tree model was developed to examine relations of watershed environmental attributes among the study sites with and without CAFO manure effects. Model results indicated that variations in swine barn density, percentage of wetlands, and total acres available for applying swine-waste manures had an important influence on those watersheds where CAFO effects on water quality were either evident or mitigated. Measurable effects of CAFO waste manures on stream water quality were most evident in those SW and SP watersheds having lower percentages of wetlands combined with higher swine barn densities and (or) higher total acres available for applying waste manure at the swine CAFOs. Stream water quality was similar to background agricultural conditions in SW and SP watersheds with lower swine barn densities coupled with higher percentages of wetlands or lower acres available for swine manure applications. The model provides a useful tool for exploring and identifying similar, unmonitored watersheds in the North Carolina Coastal Plain with potential CAFO manure influences on water quality that might warrant further examination.

  20. Surface Water and Groundwater Nitrogen Dynamics in a Well Drained Riparian Forest within a Poorly Drained Agricultural Landscape

    EPA Science Inventory

    The effectiveness of riparian zones in mitigating nutrients in ground and surface water depends on the climate, management and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well-drained, mixed-deciduous riparian forest to buffer a ri...

  1. Surface Water and Groundwater Nitrogen Dynamics in a Well Drained Riparian Forest within a Poorly Drained Agricultural Landscape

    EPA Science Inventory

    The effectiveness of riparian zones in mitigating nutrients in ground and surface water depends on the climate, management and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well-drained, mixed-deciduous riparian forest to buffer a ri...

  2. Caffeine and agricultural pesticide concentrations in surface water and groundwater on the north shore of Kauai (Hawaii, USA).

    PubMed

    Knee, Karen L; Gossett, Richard; Boehm, Alexandria B; Paytan, Adina

    2010-08-01

    Caffeine has been associated with wastewater pollution in temperate and subtropical locations, but environmental caffeine concentrations in tropical locations have not been reported. The objectives of this study were to measure caffeine and agricultural pesticide (carbaryl, metalaxyl, and metribuzin) concentrations in environmental waters on the tropical north shore of Kauai (Hawaii, USA) and assess whether patterns in caffeine concentration were consistent with a wastewater caffeine source. Groundwater, river, stream and coastal ocean samples were collected in August 2006 and February 2007. Caffeine was detected in all August 2006 samples and in 33% of February 2007 samples at concentrations up to 88ngL(-1). Metribuzin was detected in five samples collected in February 2007. Carbaryl and metalaxyl were not detected in any sample. Caffeine was not detected in offshore ocean samples or river samples upstream of human development. A positive correlation between caffeine and enterococci suggested a possible wastewater caffeine source. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Temporal trends and relationships between groundwater and surface water nitrate concentrations in headwater agricultural catchments: what can we learn from a monitoring over 20 years?

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Gascuel, C.; Faucheux, M.; Ruiz, L.; Aquilina, L.; Molenat, J.

    2012-04-01

    The intensification of agriculture during the 20th century led to strong issues on water quality related to nutrients enrichments in groundwater and surface water. In this context, Western France is an extreme case regarding to the high nitrate concentrations observed in rivers (around 7 mg N-NO3/l1 in average). In the early 90ies, an Environmental Research Observatory AgrHys has been created and instrumented to investigate the response time of hydro-chemical fluxes to landuse changes in agrohydrosystems. This observatory is part of a French Catchments Network (Critical Zone Observatory), and composed of two sites. Kervidy-Naizin monitoring has been recently analyzed to identify the effect of climatic factors on water quality, while we focus here on Kerbernez site. This site is composed of 5 first-order and adjacent catchments, less than 1 km^2, where land use agricultural practices have been recorded with precision. Hydrological, hydrochemical and climatic data were recorded over the last 20 years. Since 2001, the monitoring was extended to groundwater using piezometric measurements and chemical analyses. Previous studies [1] suggested that nitrate transport was essentially a transport limited process on this site. The long-term and extensive monitoring programs can help us understanding the effect of agricultural practices on nitrate concentration in streams. We reconsider this hypothesis 10 years later by analyzing if the streams nitrate concentrations reacted to the changes in agricultural practices. Different protocols of monitoring (manual vs. automatic measurements) are compared though the annual water fluxes at the outlet in order to estimate the incertitude on water discharge for such small streams. All the water balances computed were not equilibrated suggesting important subsurface flows. The high contribution of the shallow groundwater is confirmed by the hydrochemical data. Mean annual nitrate concentration in the drainage water is computed using two

  4. Phenotypic and Genotypic Characteristics of Shiga Toxin-Producing Escherichia coli Isolated from Surface Waters and Sediments in a Canadian Urban-Agricultural Landscape

    PubMed Central

    Nadya, Stephanie; Delaquis, Pascal; Chen, Jessica; Allen, Kevin; Johnson, Roger P.; Ziebell, Kim; Laing, Chad; Gannon, Victor; Bach, Susan; Topp, Edward

    2016-01-01

    A hydrophobic grid membrane filtration—Shiga toxin immunoblot method was used to examine the prevalence of Shiga toxin-producing Escherichia coli (STEC) in four watersheds located in the Lower Mainland of British Columbia, Canada, a region characterized by rapid urbanization and intensive agricultural activity. STEC were recovered from 21.6, 23.2, 19.5, and 9.2% of surface water samples collected monthly from five sites in each watershed over a period of 1 year. Overall prevalence was subject to seasonal variation however, ranging between 13.3% during fall months and 34.3% during winter months. STEC were also recovered from 23.8% of sediment samples collected in one randomly selected site. One hundred distinct STEC isolates distributed among 29 definitive and 4 ambiguous or indeterminate serotypes were recovered from water and sediments, including isolates from Canadian “priority” serogroups O157 (3), O26 (4), O103 (5), and O111 (7). Forty seven isolates were further characterized by analysis of whole genome sequences to detect Shiga toxin gene (stx 1 and stx 2), intimin gene (eaeA) allelic variants and acquired virulence factors. These analyses collectively showed that surface waters from the region support highly diverse STEC populations that include strains with virulence factors commonly associated with human pathotypes. The present work served to characterize the microbiological hazard implied by STEC to support future assessments of risks to public health arising from non-agricultural and agricultural uses of surface water resources in the region. PMID:27092297

  5. Humans reclaimed lands in NorthEastern Italy and artificial drainage networks: effects of 30 years of Agricultural Surface Water Management

    NASA Astrophysics Data System (ADS)

    Sofia, Giulia; Pizzulli, Federica; Tarolli, Paolo

    2017-04-01

    Agriculture and land-use management has changed drastically in Italy since the end of the Second World War, driven by local but also European agricultural policies. As a result of these changes in farming practices and land use, many drainage networks have changed producing a greater exposure to flooding with a broad range of impacts on society, also because of climate inputs coupling with the human drivers. This study focuses on two main points: which kind of land use and farming changes have been observed in the most recent years ( 30 years)? How do these changes interact with climate and soil conditions? An open challenge to understand how these changes influence the watershed response, is, in fact, to understand if rainfall characteristics and climate have a synergistic effect, if their interaction matters, or to understand what element has the greatest influence on the watershed response connected to agricultural changes. The work is based on a simple model of water infiltration due to soil properties, and a connected evaluation of the distributed surface water storage offered by artificial drainage networks in a study area in Veneto (north-eastern Italy). The analysis shows that economic changes control the development of agro-industrial landscapes, with effects on the hydrological response. However, these changes deeply interact with antecedent soil conditions and climate characteristics. Intense and irregular rainfall events and events with a high recurrence should be expected to be the most critical. The presented outcomes highlight the importance of understanding how agricultural practices can be the driver of or can be used to avoid, or at least mitigate, flooding. The proposed methods can be valuable tools in evaluating the costs and benefits of the management of water in agriculture to inform better policy decision-making. References Sofia G, Tarolli P. 2017. Hydrological Response to 30 years of Agricultural Surface Water Management. Land 6 (1): 3 DOI

  6. Clean Water Act Section 404 and Agriculture

    EPA Pesticide Factsheets

    The U.S. Department of Agriculture (USDA) and EPA have longstanding programs to promote water quality and broader environmental goals identified in both the Agriculture Act of 2014 and the Clean Water Act.

  7. Agricultural chemicals in ground and surface water in a small watershed in Clayton County, Iowa, 1988-91

    USGS Publications Warehouse

    Kalkhoff, S.J.; Schaap, B.D.

    1995-01-01

    Nitrogen was present in all water samples from Deer Creek. Nitrate concentrations ranged from 0.70 to 17 mg/L. Alachlor was detected in 11 percent of the samples, atrazine in 69 percent, cyanazine in 19 percent, and metolachlor in 33 percent. Alachlor concentrations ranged from less than 0.10 to 0.53 ug/L, atrazine ranged from less than 0.10 to 55 ug/L, cyanazine ranged from less than 0.10 to 12 ug/L, and metolachlor ranged from less than 0.10 to 69 ug/L. Herbicide detections occurred most frequently in late spring and early summer during or just following chemical application. Overland flow is an important source of nitrogen and herbicides to Deer Creek. Substantial amounts of agricultural chemicals are transported from the watershed. As much as 4,700 pounds, or 6.7 pounds per acre, of nitrogen were estimated to be transported from the watershed in 1 year. Nitrogen loads transported from the Deer Creek watershed were less during dry years than during years with average or greater than average rainfall.

  8. Factors affecting the fate and transport of glyphosate and AMPA into surface waters of agricultural watersheds in the United States and Europe

    NASA Astrophysics Data System (ADS)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2012-04-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used extensively in almost all agricultural and urban areas of the United States and Europe. Although, glyphosate is used widely throughout the world in the production of many crops, it is predominately used in the United States on soybeans, corn, potatoes, and cotton that have been genetically modified to be tolerant to glyphosate. From 1992 to 2007, the agricultural use of glyphosate has increased from less than 10,000 Mg to more than 80,000 Mg, respectively. The greatest areal use is in the midwestern United States where glyphosate is applied on transgenic corn and soybeans. Because of the difficulty and expense in analyzing for glyphosate and AMPA (aminomethylphosphonic acid, a primary glyphosate degradate) in water, there have been only small scale studies on the fate and transport of glyphosate. The characterization of the transport of glyphosate and AMPA on a watershed scale is lacking. Glyphosate and AMPA were frequently detected in the surface waters of 4 agricultural watersheds in studies conducted by the U.S. Geological Survey in the United States and at the Laboratory of Hydrology and Geochemistry of Strasbourg. Two of these basins were located in the midwestern United States where the major crops are corn and soybean, the third is located the lower Mississippi River Basin where the major crops are soybean, corn, rice, and cotton, and the fourth was located near Strasbourg, France where the use of glyphosate was on a vineyard. The load as a percent of use ranged from 0.009 to 0.86 percent and could be related to 3 factors: source strength, hydrology, and flowpath. Glyphosate use in a watershed results in some occurrence in surface water at the part per billion level; however, those watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  9. The contribution of rice agriculture to methylmercury in surface waters: A review of data from the Sacramento Valley, California

    USGS Publications Warehouse

    Tanner, K. Christy; Windham-Myers, Lisamarie; Fleck, Jacob; Tate, Kenneth W.; McCord, Stephen A.; Linquist, Bruce A.

    2017-01-01

    Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice (Oriza sativa L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L−1, range 0.15–0.23 ng L−1) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L−1, range 0.6–1.6 ng L−1) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.

  10. The Contribution of Rice Agriculture to Methylmercury in Surface Waters: A Review of Data from the Sacramento Valley, California.

    PubMed

    Tanner, K Christy; Windham-Myers, Lisamarie; Fleck, Jacob A; Tate, Kenneth W; McCord, Stephen A; Linquist, Bruce A

    2017-01-01

    Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice ( L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L, range 0.15-0.23 ng L) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L, range 0.6-1.6 ng L) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.

  11. Vineyard weeds control practices impact on surface water transfers: using numerical tracer experiment coupled to a distributed hydrological model to manage agricultural practices spatial arrangements.

    NASA Astrophysics Data System (ADS)

    Colin, F.; Moussa, R.

    2009-04-01

    In rural basins, agricultural landscape management highly influences water and pollutants transfers. Landuse, agricultural practices and their spatial arrangements are at issue. Hydrological model are widely used to explore impacts of anthropogenic influences on experimental catchments. But planning all spatial arrangements leads to a possible cases count which cannot be considered. On the basis of the recent « numerical experiment » approach, we propose a « numerical tracer function » which had to be coupled to a distributed rainfall-runoff model. This function simulate the transfer of a virtual tracer successively spread on each distributed unit inside the catchment. It allows to rank hydrological spatial units according to their hydrological contribution to the surface flows, particularly at the catchment outlet. It was used with the distributed model MHYDAS in an agricultural context. The case study concerns the experimental Roujan vine-growing catchment (1km², south of France) studied since 1992. In this Mediterranean context, we focus on the soil hydraulic conductivity distributed parameter because it highly depends on weed control practices (chemical weeding induces a lot more runoff than mechanical weeding). We checked model sensitivity analysis to soil hydraulic conductivity spatial arrangement on runoff coefficient, peak discharge and catchment lag-time. Results show (i) the use of the tracer function is more efficient than a random approach to improve sensitivity to spatial arrangements from point of view of simulated discharge range, (ii) the first factor explaining hydrological simulations variability was practices area ratio, (iii) variability induced by practices spatial arrangements was significant on runoff coefficient and peak discharge for balanced practices area ratio and on lag-time for low area ratio of chemical weeding practices. From the actual situation on the experimental Roujan catchment (40% of tilled and 60% of non tilled vineyard

  12. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  13. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  14. ArcNEMO, a spatially distributed nutrient emission model developed in Python to quantify losses of nitrogen and phosphorous from agriculture to surface waters

    NASA Astrophysics Data System (ADS)

    Van Opstal, Mattias; Tits, Mia; Beckers, Veronique; Batelaan, Okke; Van Orshoven, Jos; Elsen, Annemie; Diels, Jan; D'heygere, Tom; Van Hoof, Kor

    2014-05-01

    Pollution of surface water bodies with nitrogen (N) and phosphorous (P) from agricultural sources is a major problem in areas with intensive agriculture in Europe. The Flemish Environment Agency requires information on how spatially explicit policy measures on manure and fertilizer use, and changes in land use and soil management affect the N and P concentration in the surface waters in the region of Flanders, Belgium. To assist in this, a new spatially distributed, mechanistic nutrient emission model was developed in the open-source language Python. The model is called ArcNEMO (Nutrient Emission MOdel). The model is fully integrated in ArcGIS, but could be easily adapted to work with open-source GIS software. In Flanders, detailed information is available each year on the delineation of each agricultural parcel and the crops grown on them. Parcels are linked to farms, and for each farm yearly manure and fertilizer use is available. To take full advantage of this information and to be able to simulate nutrient losses to the high-density surface water network, the model makes use of grid cells of 50 by 50m. A fertilizer allocation model was developed to calculate from the yearly parcel and farm data the fertilizer and manure input per grid cell for further use in the ArcNEMO-model. The model architecture was chosen such that the model can be used to simulate spatially explicit monthly discharge and losses of N and P to the surface water for the whole of Flanders (13,500 km²) over periods of 10-20 years. The extended time period is necessary because residence times in groundwater and the rates of organic matter turnover imply that water quality reacts slowly to changes of land use and fertilization practices. Vertical water flow and nutrient transport in the unsaturated zone are described per grid cell using a cascading bucket-type model with daily time steps. Groundwater flow is described by solving the 2D-groundwater flow equation using an explicit numerical

  15. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite & surface observations to support improvements in agricultural water resource management

    USDA-ARS?s Scientific Manuscript database

    In California and other regions vulnerable to water shortages, satellite-derived estimates of key hydrologic parameters can support agricultural producers and water managers in maximizing the benefits of available water supplies. The Satellite Irrigation Management Support (SIMS) project combines N...

  16. Representing Water Scarcity in Future Agricultural Assessments

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Lopez, Jose R.; Ruane, Alexander C.; Young, Charles A.; Scanlon, Bridget R.; Rosenzweig, Cynthia

    2017-01-01

    Globally, irrigated agriculture is both essential for food production and the largest user of water. A major challenge for hydrologic and agricultural research communities is assessing the sustainability of irrigated croplands under climate variability and change. Simulations of irrigated croplands generally lack key interactions between water supply, water distribution, and agricultural water demand. In this article, we explore the critical interface between water resources and agriculture by motivating, developing, and illustrating the application of an integrated modeling framework to advance simulations of irrigated croplands. We motivate the framework by examining historical dynamics of irrigation water withdrawals in the United States and quantitatively reviewing previous modeling studies of irrigated croplands with a focus on representations of water supply, agricultural water demand, and impacts on crop yields when water demand exceeds water supply. We then describe the integrated modeling framework for simulating irrigated croplands, which links trends and scenarios with water supply, water allocation, and agricultural water demand. Finally, we provide examples of efforts that leverage the framework to improve simulations of irrigated croplands as well as identify opportunities for interventions that increase agricultural productivity, resiliency, and sustainability.

  17. Agricultural and water-quality conflicts. Economic dimensions of the problem. Agriculture information bulletin

    SciTech Connect

    Crutchfield, S.; Hansen, L.; Ribaudo, M.

    1993-07-01

    Modern farm production practices, which use agricultural chemicals, benefit consumers through lower prices and increased output. Consequences of agricultural production, however, such as soil erosion, chemical runoff and leaching, and wetlands conversion, may impair surface and ground water quality. These off-farm water-quality effects impose costs on society, including damage to fish and wildlife resources, costs of avoiding potential health hazards and preserving natural environments, and lost recreational opportunities. The report summarizes conflicts between agricultural production and water quality and discusses policies that stress the use of economic and technical assistance incentives to encourage adoption of pollution-reducing farming practices.

  18. Pesticide mitigation strategies for surface water quality

    USDA-ARS?s Scientific Manuscript database

    Pesticide residues are being increasingly detected in surface water in agricultural and urban areas. In some cases water bodies are being listed under the Clean Water Act 303(d) as impaired and Total Maximum Daily Loads are required to address the impairments in agricultural areas. Pesticides in sur...

  19. Internal Surface Water Flows

    USGS Publications Warehouse

    Murray, Mitchell H.

    1999-01-01

    Introduction The South Florida Ecosystem Restoration Program is an intergovernmental effort to reestablish and maintain the ecosystem of south Florida. One element of the restoration effort is the development of a firm scientific basis for resource decision making.The U.S. Geological Survey (USGS) provides scientitic information as part of the South Florida Ecosystem Restoration Program. The USGS began its own project, called the South Florida Ecosystem Project in fiscal year 1995 for the purpose of gathering hydrologic, cartographic, and geologic data that relate to the mainland of south Florida, Florida Bay, and the Florida Keys and Reef ecosystems. Historical changes in water-management practices to accommodate a large and rapidly growing urban population along the Atlantic coast, as well as intensive agricultural activities, have resulted in a highly managed hydrologic system with canals, levees, and pumping stations. These structures have altered the hydology of the Everglades ecosystem on both coastal and interior lands. Surface-water flows in a direction south of Lake Okeechobee have been regulated by an extensive canal network, begun in the 1940's, to provide for drainage, flood control, saltwater intrusion control, agricultural requirements, and various environmental needs. Much of the development and subsequent monitoring of canal and river discharge south of Lake Okeechobee has traditionally emphasized the eastern coastal areas of Florida. Recently, more emphasis has been placed on providing a more accurate water budget for internal canal flows.

  20. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  1. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  2. Sustainable agricultural water management across climates

    NASA Astrophysics Data System (ADS)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  3. The role of dynamic surface water-groundwater exchange on streambed denitrification in a first-order, low-relief agricultural watershed

    USGS Publications Warehouse

    Rahimi Kazerooni, Mina N.; Essaid, Hedeff I.; Wilson, John T.

    2015-01-01

    The role of temporally varying surface water-groundwater (SW-GW) exchange on nitrate removal by streambed denitrification was examined along a reach of Leary Weber Ditch (LWD), Indiana, a small, first-order, low-relief agricultural watershed within the Upper Mississippi River basin, using data collected in 2004 and 2005. Stream stage, GW heads (H), and temperatures (T) were continuously monitored in streambed piezometers and stream bank wells for two transects across LWD accompanied by synoptic measurements of stream stage, H, T, and nitrate (NO3) concentrations along the reach. The H and T data were used to develop and calibrate vertical two-dimensional, models of streambed water flow and heat transport across and along the axis of the stream. Model-estimated SW-GW exchange varied seasonally and in response to high-streamflow events due to dynamic interactions between SW stage and GW H. Comparison of 2004 and 2005 conditions showed that small changes in precipitation amount and intensity, evapotranspiration, and/or nearby GW levels within a low-relief watershed can readily impact SW-GW interactions. The calibrated LWD flow models and observed stream and streambed NO3 concentrations were used to predict temporal variations in streambed NO3 removal in response to dynamic SW-GW exchange. NO3 removal rates underwent slow seasonal changes, but also underwent rapid changes in response to high-flow events. These findings suggest that increased temporal variability of SW-GW exchange in low-order, low-relief watersheds may be a factor contributing their more efficient removal of NO3.

  4. The role of dynamic surface water-groundwater exchange on streambed denitrification in a first-order, low-relief agricultural watershed

    NASA Astrophysics Data System (ADS)

    Rahimi, Mina; Essaid, Hedeff I.; Wilson, John T.

    2015-12-01

    The role of temporally varying surface water-groundwater (SW-GW) exchange on nitrate removal by streambed denitrification was examined along a reach of Leary Weber Ditch (LWD), Indiana, a small, first-order, low-relief agricultural watershed within the Upper Mississippi River basin, using data collected in 2004 and 2005. Stream stage, GW heads (H), and temperatures (T) were continuously monitored in streambed piezometers and stream bank wells for two transects across LWD accompanied by synoptic measurements of stream stage, H, T, and nitrate (NO3) concentrations along the reach. The H and T data were used to develop and calibrate vertical two-dimensional, models of streambed water flow and heat transport across and along the axis of the stream. Model-estimated SW-GW exchange varied seasonally and in response to high-streamflow events due to dynamic interactions between SW stage and GW H. Comparison of 2004 and 2005 conditions showed that small changes in precipitation amount and intensity, evapotranspiration, and/or nearby GW levels within a low-relief watershed can readily impact SW-GW interactions. The calibrated LWD flow models and observed stream and streambed NO3 concentrations were used to predict temporal variations in streambed NO3 removal in response to dynamic SW-GW exchange. NO3 removal rates underwent slow seasonal changes, but also underwent rapid changes in response to high-flow events. These findings suggest that increased temporal variability of SW-GW exchange in low-order, low-relief watersheds may be a factor contributing their more efficient removal of NO3.

  5. Seasonal water demand in Benin's agriculture.

    PubMed

    Gruber, Ina; Kloos, Julia; Schopp, Marion

    2009-01-01

    This paper describes and analyzes agricultural water demands for Benin, West Africa. Official statistical data regarding water quantities as well as knowledge on factors influencing the demand for water are extremely rare and often reveal national trends without considering regional or local differences. Thus policy makers usually work with this estimated and aggregated data, which make it very difficult to adequately address regional and local development goals. In the framework of an interdisciplinary analysis the following paper provides insight into water quantification and detects water problems under seasonal aspects for agriculture according to regional differences. Following the definition of the Food and Agriculture Organization [FAO, 1995. Water Report 7. Irrigation in Africa in Figures. Rome] agriculture is divided into irrigation and livestock watering, which were analyzed using different field methods. The study reveals that although water supply in absolute terms seems to be sufficient in Benin, seasonal water problems occur both in irrigation and in livestock management. Thus arising seasonal water problems are not the consequence of general water scarcity but more linked to three major problems. These problems emerge from difficulties in technical equipment and financial means of farmers, from the specific local conditions influencing the access to water sources and the extraction of groundwater, and third from the overall low organizational structure of water management. Therefore regional differences as well as a general improvement of knowledge on better management structures, technical know how, and access to credits for farmers need to be considered in national strategies in order to improve the agricultural water usage in Benin.

  6. Water for Agriculture: the Convergence of Sustainability and Safety.

    PubMed

    Markland, Sarah M; Ingram, David; Kniel, Kalmia E; Sharma, Manan

    2017-05-01

    Agricultural water is a precious and limited resource. Increasingly more water types and sources are being explored for use in irrigation within the United States and across the globe. As outlined in this chapter, the Produce Safety Rule (PSR) in the Food Safety and Modernization Act (FSMA) provide irrigation water standards for application of water to fruits and vegetables consumed raw. These rules for production and use of water will continue to develop and be required as the world experiences aspects of a changing climate including flooding as well as drought conditions. Research continues to assess the use of agricultural water types. The increased use of reclaimed water in the United States as well as for selected irrigation water needs for specific crops may provide increased water availability. The use of surface water can be used in irrigation as well, but several studies have shown the presence of some enteric bacterial pathogens (enterohemorrhagic E. coli, Salmonella spp. and Listeria monocytogenes) in these waters that may contaminate fruits and vegetables. There have been outbreaks of foodborne illness in the U.S., South America, Europe, and Australia related to the use of contaminated water in fruit and vegetable irrigation or washing. Unreliable water supplies, more stringent microbial water standards, mitigation technologies and expanded uses of reclaimed waters have all increased interest in agricultural water.

  7. Satellite Mapping of Agricultural Water Requirements in California

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Lund, C.; Johnson, L.; Guzman, A.; Hiatt, S.; Post, K.; Adhikari, D.; Rosevelt, C.; Keefauver, S.; Miller, G.; Michaelis, A.; Votava, P.; Temesgen, B.; Frame, K.; Nemani, R. R.

    2013-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide water managers and agricultural producers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. In particular, the timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support in California. The Satellite Irrigation Management Support (SIMS) framework utilizes the NASA Terrestrial Observation and Prediction System to integrate satellite observations and meteorological observations from the California Irrigation Management Information System to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web services. We present the prototype system, including comparisons of estimates of ETcb from the prototype system against estimates of ET from other methods, including surface renewal stations and observations from wireless sensor networks deployed in operational agricultural fields across California. We also summarize results from ongoing studies to quantify the benefits of using satellite data to enhance ET-based irrigation management in terms of total applied water, crop yield, and nitrate leaching.

  8. Balancing Energy-Water-Agriculture Tradeoffs

    NASA Astrophysics Data System (ADS)

    Tidwell, V.; Hightower, M.

    2011-12-01

    In 2005 thermoelectric power production accounted for withdrawals of 201 billion gallons per day (BGD) representing 49% of total withdrawals, making it the largest user of water in the U.S. In terms of freshwater withdrawals thermoelectric power production is the second largest user at 140 BGD just slightly behind freshwater withdrawals for irrigation (USGS 2005). In contrast thermoelectric water consumption is projected at 3.7 BGD or about 3% of total U.S. consumption (NETL 2008). Thermoelectric water consumption is roughly equivalent to that of all other industrial demands and represents one of the fastest growing sectors since 1980. In fact thermoelectric consumption is projected to increase by 42 to 63% between 2005 and 2030 (NETL 2008). Agricultural water consumption has remained relatively constant at roughly 84 BGD or about 84% of total water consumption. While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. Often such expansion targets water rights transfers from irrigated agriculture. To explore evolving tradeoffs an integrated energy-water-agriculture decision support system has been developed. The tool considers alternative expansion scenarios for the future power plant fleet and the related demand for water. The availability of fresh and non-fresh water supplies, subject to local institutional controls is then explored. This paper addresses integrated energy-water-agriculture planning in the western U.S. and Canada involving an open and participatory process comprising decision-makers, regulators, utility and water managers.

  9. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  10. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.

    PubMed

    Grayson, Richard; Kay, Paul; Foulger, Miles

    2008-01-01

    Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern. IWA Publishing 2008.

  11. Influence of Agricultural Practice on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Czajkowski, K.; Ault, T.; Hayase, R.; Benko, T.

    2006-12-01

    Changes in land uses/covers can have a significant effect on the temperature of the Earth's surface. Agricultural fields exhibit a significant change in land cover within a single year and from year to year as different crops are planted. These changes in agricultural practices including tillage practice and crop type influence the energy budget as reflected in differences in surface temperature. In this project, Landsat 5 and 7 imagery were used to investigate the influence of crop type and tillage practice on surface temperature in Iowa and NW Ohio. In particular, the three crop rotation of corn, soybeans and wheat, as well as no-till, conservation tillage and tradition tillage methods, were investigated. Crop type and conservation tillage practices were identified using supervised classification. Student surface temperature observations from the GLOBE program were used to correct for the effects of the atmosphere for some of the satellite thermal observations. Students took surface temperature observations in field sites near there schools using hand- held infrared thermometers.

  12. Water transfers, agriculture, and groundwater management: a dynamic economic analysis.

    PubMed

    Knapp, Keith C; Weinberg, Marca; Howitt, Richard; Posnikoff, Judith F

    2003-04-01

    Water transfers from agricultural to urban and environmental uses will likely become increasingly common worldwide. Many agricultural areas rely heavily on underlying groundwater aquifers. Out-of-basin surface water transfers will increase aquifer withdrawals while reducing recharge, thereby altering the evolution of the agricultural production/groundwater aquifer system over time. An empirical analysis is conducted for a representative region in California. Transfers via involuntary surface water cutbacks tilt the extraction schedule and lower water table levels and net benefits over time. The effects are large for the water table but more modest for the other variables. Break-even prices are calculated for voluntary quantity contract transfers at the district level. These prices differ considerably from what might be calculated under a static analysis which ignores water table dynamics. Canal-lining implies that districts may gain in the short-run but lose over time if all the reduction in conveyance losses is transferred outside the district. Water markets imply an evolving quantity of exported flows over time and a reduction in basin net benefits under common property usage. Most aquifers underlying major agricultural regions are currently unregulated. Out-of-basin surface water transfers increase stress on the aquifer and management benefits can increase substantially in percentage terms but overall continue to remain small. Conversely, we find that economically efficient management can mitigate some of the adverse consequences of transfers, but not in many circumstances or by much. Management significantly reduced the water table impacts of cutbacks but not annual net benefit impacts. Neither the break-even prices nor the canal-lining impacts were altered by much. The most significant difference is that regional water users gain from water markets under efficient management.

  13. Factors Influencing Surface Runoff and Hydrologic Connectivity on an Agricultural Hillslope in Central Pennsylvania

    USDA-ARS?s Scientific Manuscript database

    Improved understanding of surface hydrologic processes is central to the targeted application of agricultural management practices for water quality protection. Factors influencing surface runoff production and hydrologic connectivity were explored at three landscape positions on a single hillslope...

  14. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  15. Virtual water exported from Californian agriculture

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Johansson, E. L.

    2015-12-01

    In an increasingly teleconnected world, international trade drives the exchange of virtual land and water as crops produced in one region are consumed in another. In theory, this can be an optimal use of scarce resources if crops are grown where they can most efficiently be produced. Several recent analyses examine the export of land and water from food production in developing countries where these resources may be more abundant. Here we focus on a developed region and examine the virtual export of land and water from California, the leading agricultural state in the US and the leading global producer of a wide range of fruit, nut, and other specialty crops. As the region faces a serious, ongoing drought, water use is being questioned, and water policy governance re-examined, particularly in the agricultural sector which uses over three-quarters of water appropriations in the state. We look at the blue water embodied in the most widely grown crops in California and use network analysis to examine the trading patterns for flows of virtual land and water. We identify the main crops and export partners representing the majority of water exports. Considered in the context of tradeoffs for land and water resources, we highlight the challenges and opportunities for food production systems to play a sustainable role in meeting human needs while protecting the life-support systems of the planet.

  16. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  17. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  18. Climate policy implications for agricultural water demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  19. In situ application of stir bar sorptive extraction as a passive sampling technique for the monitoring of agricultural pesticides in surface waters.

    PubMed

    Assoumani, Azziz; Lissalde, Sophie; Margoum, Christelle; Mazzella, Nicolas; Coquery, Marina

    2013-10-01

    Grab sampling and automated sampling are not suitable or logistically too constraining for the monitoring of pesticides in dynamic streams located in agricultural watersheds. In this work, we applied stir bar sorptive extraction (SBSE) Twisters® directly in two small rivers of a French vineyard (herein referred to as "passive SBSE"), for periods of one or two weeks during a month, for the passive sampling of 19 agricultural pesticides. We performed qualitative and semi-quantitative comparisons of the performances of passive SBSE firstly to automated sampling coupled to analytical SBSE, and secondly to the polar organic chemical integrative sampler (POCIS), a well-known passive sampler for hydrophilic micropollutants. Applying passive SBSE in river waters allowed the quantification of more pesticides and in greater amounts than analytical SBSE as shown for samples collected concurrently. Also, passive SBSE and POCIS proved to be complementary techniques in terms of detected molecules; but only passive SBSE was able to integrate a concentration peak triggered by a quick flood event that lasted 5 h. Passive SBSE could be an interesting tool for the monitoring of moderately hydrophobic to hydrophobic organic micropollutants in changing hydrosystems. In this purpose, further studies will focus on the accumulation kinetics of target pesticides and the determination of their sampling rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Surface freezing of water.

    PubMed

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  1. Agricultural Virtual Water Flows in the USA

    NASA Astrophysics Data System (ADS)

    Konar, M.; Dang, Q.; Lin, X.

    2014-12-01

    Global virtual water trade is an important research topic that has yielded several interesting insights. In this paper, we present a comprehensive assessment of virtual water flows within the USA, a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intra-national food flow data and it provides insight into how the properties of virtual water flows vary across scales. We find that both the value and volume of food flows within the USA are roughly equivalent to half that of international flows. However, USA food flows are more water intensive than international food trade, due to the higher fraction of water-intensive meat trade within the USA. The USA virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  2. Phosphorus transport by surface and subsurface flow pathways in an upland agricultural watershed

    USDA-ARS?s Scientific Manuscript database

    Improved understanding of phosphorus transport by surface and subsurface flow pathways is critical to protecting water quality in agricultural watersheds. While considerable attention has been devoted to understanding phosphorus losses in overland flow, comparatively limited research has examined ph...

  3. Potential depletion of surface water in the Colorado River and agricultural drains by groundwater pumping in the Parker-Palo Verde-Cibola area, Arizona and California

    USGS Publications Warehouse

    Leake, Stanley A.; Owen-Joyce, Sandra J.; Heilman, Julian A.

    2013-01-01

    Water use along the lower Colorado River is allocated as “consumptive use,” which is defined to be the amount of water diverted from the river minus the amount that returns to the river. Diversions of water from the river include surface water in canals and water removed from the river by pumping wells in the aquifer connected to the river. A complication in accounting for water pumped by wells occurs if the pumping depletes water in drains and reduces measured return flow in those drains. In that case, consumptive use of water pumped by the wells is accounted for in the reduction of measured return flow. A method is needed to understand where groundwater pumping will deplete water in the river and where it will deplete water in drains. To provide a basis for future accounting for pumped groundwater in the Parker-Palo Verde-Cibola area, a superposition model was constructed. The model consists of three layers of finite-difference cells that cover most of the aquifer in the study area. The model was run repeatedly with each run having a pumping well in a different model cell. The source of pumped water that is depletion of the river, expressed as a fraction of the pumping rate, was computed for all active cells in model layer 1, and maps were constructed to understand where groundwater pumping depletes the river and where it depletes drains. The model results indicate that if one or more drains exist between a pumping well location and the river, nearly all of the depletion will be from drains, and little or no depletion will come from the Colorado River. Results also show that if a well pumps on a side of the river with no drains in the immediate area, depletion will come from the Colorado River. Finally, if a well pumps between the river and drains that parallel the river, a fraction of the pumping will come from the river and the rest will come from the drains. Model results presented in this report may be considered in development or refinement of strategies

  4. Surface-water surveillance

    SciTech Connect

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  5. Water surface is acidic

    PubMed Central

    Buch, Victoria; Milet, Anne; Vácha, Robert; Jungwirth, Pavel; Devlin, J. Paul

    2007-01-01

    Water autoionization reaction 2H2O → H3O− + OH− is a textbook process of basic importance, resulting in pH = 7 for pure water. However, pH of pure water surface is shown to be significantly lower, the reduction being caused by proton stabilization at the surface. The evidence presented here includes ab initio and classical molecular dynamics simulations of water slabs with solvated H3O+ and OH− ions, density functional studies of (H2O)48H+ clusters, and spectroscopic isotopic-exchange data for D2O substitutional impurities at the surface and in the interior of ice nanocrystals. Because H3O+ does, but OH− does not, display preference for surface sites, the H2O surface is predicted to be acidic with pH < 4.8. For similar reasons, the strength of some weak acids, such as carbonic acid, is expected to increase at the surface. Enhanced surface acidity can have a significant impact on aqueous surface chemistry, e.g., in the atmosphere. PMID:17452650

  6. Surface Water in Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  7. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  8. [A virtual water analysis for agricultural production and food security].

    PubMed

    Ke, Bing; Liu, Wen-hua; Duan, Guang-ming; Yan, Yan; Deng, Hong-bing; Zhao, Jing-zhu

    2004-03-01

    Water resource demand is increasing with the population growth and economic development. Water resource problem for agriculture and food security have become one of the global focal points because of water resource scarcity. The concept of virtual water is useful to analyze and impair this problem. In this paper, virtual water implication was described, and international study progress about it was briefly reviewed. Furthermore, China's agricultural water scarcity and food security were analyzed. According to the grain import prediction and agricultural production conditions of China, the virtual water equivalents of China in 2010 and 2020 were evaluated, which were 88 x 10(9) m3 in 2010 and 95 x 10(9) m3 in 2020. With the function of virtual water to agricultural water stress, virtual water strategy was suggested to relieve agricultural production pressure from water resource and meet growing food demand as well as to promote water resource sustainability in China.

  9. Agricultural Adaptation and Water Management in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Stone, E.; Hornberger, G. M.

    2014-12-01

    Efficient management of freshwater resources is critical as concerns with water security increase due to changes in climate, population, and land use. Effective water management in agricultural systems is especially important for irrigation and water quality. This research explores the implications of tradeoffs between maximization of crop yield and minimization of nitrogen loss to the environment, primarily to surface water and groundwater, in rice production in Sri Lanka. We run the DeNitrification-DeComposition (DNDC) model under Sri Lankan climate and soil conditions. The model serves as a tool to simulate crop management scenarios with different irrigation and fertilizer practices in two climate regions of the country. Our investigation uses DNDC to compare rice yields, greenhouse gas (GHG) emissions, and nitrogen leaching under different cultivation scenarios. The results will inform best practices for farmers and decision makers in Sri Lanka on the management of water resources and crops.

  10. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  11. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  12. Economic analysis of selected water policy options for the Pacific northwest. Agriculture economic report

    SciTech Connect

    Schaible, G.D.; Gollehon, N.R.; Kramer, M.S.; Aillery, M.P.; Moore, M.R.

    1995-06-01

    Agriculture in the Pacific Northwest (PNW) could use significantly less water with minimal impact on agricultural economic returns. Less water use by agriculture makes more water available for municipal, industrial, and recreational uses; for improved water quality and wildlife habitat; and for Native American water rights claims. Net water savings up to 18.5 percent of current levels of field-crop use can be realized by such actions as reducing Bureau of Reclamation (BoR) surface-water diversion, improving water-use efficiency, and raising the cost of water. Effects on agricultural economic returns for PNW field crops range from a decline of $22 million (1.7 percent) to an increase of $171 million (13.1 percent). Combining different approaches spreads the conservation burden among farmers, water suppliers, and production regions.

  13. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    EPA Science Inventory

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  14. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    EPA Science Inventory

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  15. Microbial quality of agricultural water in Central Florida

    PubMed Central

    Topalcengiz, Zeynal; Strawn, Laura K.

    2017-01-01

    The microbial quality of water that comes into the edible portion of produce is believed to directly relate to the safety of produce, and metrics describing indicator organisms are commonly used to ensure safety. The US FDA Produce Safety Rule (PSR) sets very specific microbiological water quality metrics for agricultural water that contacts the harvestable portion of produce. Validation of these metrics for agricultural water is essential for produce safety. Water samples (500 mL) from six agricultural ponds were collected during the 2012/2013 and 2013/2014 growing seasons (46 and 44 samples respectively, 540 from all ponds). Microbial indicator populations (total coliforms, generic Escherichia coli, and enterococci) were enumerated, environmental variables (temperature, pH, conductivity, redox potential, and turbidity) measured, and pathogen presence evaluated by PCR. Salmonella isolates were serotyped and analyzed by pulsed-field gel electrophoresis. Following rain events, coliforms increased up to 4.2 log MPN/100 mL. Populations of coliforms and enterococci ranged from 2 to 8 and 1 to 5 log MPN/100 mL, respectively. Microbial indicators did not correlate with environmental variables, except pH (P<0.0001). The invA gene (Salmonella) was detected in 26/540 (4.8%) samples, in all ponds and growing seasons, and 14 serotypes detected. Six STEC genes were detected in samples: hly (83.3%), fliC (51.8%), eaeA (17.4%), rfbE (17.4%), stx-I (32.6%), stx-II (9.4%). While all ponds met the PSR requirements, at least one virulence gene from Salmonella (invA-4.8%) or STEC (stx-I-32.6%, stx-II-9.4%) was detected in each pond. Water quality for tested agricultural ponds, below recommended standards, did not guarantee the absence of pathogens. Investigating the relationships among physicochemical attributes, environmental factors, indicator microorganisms, and pathogen presence allows researchers to have a greater understanding of contamination risks from agricultural surface

  16. Microbial quality of agricultural water in Central Florida.

    PubMed

    Topalcengiz, Zeynal; Strawn, Laura K; Danyluk, Michelle D

    2017-01-01

    The microbial quality of water that comes into the edible portion of produce is believed to directly relate to the safety of produce, and metrics describing indicator organisms are commonly used to ensure safety. The US FDA Produce Safety Rule (PSR) sets very specific microbiological water quality metrics for agricultural water that contacts the harvestable portion of produce. Validation of these metrics for agricultural water is essential for produce safety. Water samples (500 mL) from six agricultural ponds were collected during the 2012/2013 and 2013/2014 growing seasons (46 and 44 samples respectively, 540 from all ponds). Microbial indicator populations (total coliforms, generic Escherichia coli, and enterococci) were enumerated, environmental variables (temperature, pH, conductivity, redox potential, and turbidity) measured, and pathogen presence evaluated by PCR. Salmonella isolates were serotyped and analyzed by pulsed-field gel electrophoresis. Following rain events, coliforms increased up to 4.2 log MPN/100 mL. Populations of coliforms and enterococci ranged from 2 to 8 and 1 to 5 log MPN/100 mL, respectively. Microbial indicators did not correlate with environmental variables, except pH (P<0.0001). The invA gene (Salmonella) was detected in 26/540 (4.8%) samples, in all ponds and growing seasons, and 14 serotypes detected. Six STEC genes were detected in samples: hly (83.3%), fliC (51.8%), eaeA (17.4%), rfbE (17.4%), stx-I (32.6%), stx-II (9.4%). While all ponds met the PSR requirements, at least one virulence gene from Salmonella (invA-4.8%) or STEC (stx-I-32.6%, stx-II-9.4%) was detected in each pond. Water quality for tested agricultural ponds, below recommended standards, did not guarantee the absence of pathogens. Investigating the relationships among physicochemical attributes, environmental factors, indicator microorganisms, and pathogen presence allows researchers to have a greater understanding of contamination risks from agricultural surface

  17. 75 FR 16719 - Agricultural Water Enhancement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... qualities. Those groups include African Americans, American Indians or Alaskan natives, Hispanics, Asians... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE... Natural Resources Conservation Service, Department of Agriculture. ACTION: Notice of request for...

  18. Cryptosporidiosis and surface water.

    PubMed Central

    Gallaher, M M; Herndon, J L; Nims, L J; Sterling, C R; Grabowski, D J; Hull, H F

    1989-01-01

    In the period July through October, 1986, 78 laboratory-confirmed cases of cryptosporidiosis were identified in New Mexico. To determine possible risk factors for development of this disease, we conducted a case-control study; 24 case-patients and 46 neighborhood controls were interviewed. Seventeen (71 per cent) of the 24 case-patients were females, seven (29%) were males; their ages ranged from 4 months to 44 years, median 3 years. There was a strong association between drinking surface water and illness: five of the 24 case-patients, but none of the 46 controls drank untreated surface water. Among children, illness was also associated with attending a day care center where other children were ill (odds ratio = 13.1). PMID:2909180

  19. Summary of reported agriculture and irrigation water use in Jefferson County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Jefferson County, Arkansas. The number of withdrawal registrations for Jefferson County was 1,636 (1,227 groundwater and 409 surface water). Water with- drawals reported during the registration process total 5.64 Mgal/day (3.89 Mgal/d groundwater and 1.75 Mgal/d surface water) for agriculture and 197.49 Mgal/d (161.39 Mgal/d groundwater and 36.10 Mgal/d surface water) for irrigation. The regis- tration reports for 1991 indicate that this water was applied to 132,667 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cash grains, cotton, vegetables, and unknown crops as well as for the agricultural uses of animal aquaculture, crawfish, minnows, timber, and ducks. (USGS) {descriptors: *Water use, *Arkansas, *Jefferson County, Selective withdrawal, Groundwater, Surface water

  20. Summary of reported agriculture and irrigation water use in Monroe County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Monroe County, Arkansas. The number of withdrawal registrations for Monroe County was 1,886 (1,677 groundwater and 209 surface water). Water withdrawals reported during the registration process total 8.87 Mgal/d (5.75 Mgal/d groundwater and 3.12 Mgal/d surface water) for agriculture and 210.61 Mgal/d (190.99 Mgal/d groundwater and 19.62 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 127,670 acres of land to irrigate rice, sorghum, soybeans, milo, cash grains, cotton, hay, and unknown crops, as well as for agricultural uses of animal aquaculture, minnows, and ducks. {descriptors: *Water use, *Arkansas, *Monroe County, Selective withdrawal, Groundwater, Surface water

  1. Improving the representation of agricultural management in land surface models

    NASA Astrophysics Data System (ADS)

    Sacks, William J.

    To gain a better understanding of processes affecting crop yield, as well as two-way feedbacks between agricultural management and climate, a number of groups have recently incorporated croplands into regional and global land surface models. However, many aspects of agricultural management are still treated in a rudimentary way in these models. For my doctoral research, I have aimed to improve the representation of two key agricultural processes in land surface models: crop phenology and irrigation. In addition, I have investigated the effects of these processes on both crop yields and climate. First, I assembled a dataset of global crop planting and harvesting dates for nineteen crops. I also investigated climatic and non-climatic factors that drive planting date decisions around the world. Second, I investigated trends and variability in crop planting dates and development progress across the U.S. I showed a trend to earlier planting of corn and soybeans, along with a trend to a longer crop growth period, and particularly a lengthening reproductive period in corn. In addition, I showed that growing degree days are a good predictor of the length of the vegetative period in corn, but less so for the reproductive period. Third, I used these observed trends along with the Agro-IBIS model to explore the implications of changes in crop phenology for both crop yields and fluxes of water and energy. I estimated that the trend to longer-season corn cultivars over the last three decades can account for 26% of the observed yield trend in the U.S. In addition, I found that earlier planting and longer-season cultivars shift the seasonality of water and energy fluxes, and have a small effect on annual-average fluxes. Finally, I investigated the effects of irrigation on climate, finding that this effect is significant in some large regions of the globe. Although the global-average temperature change was small, the large regional changes are important for both crop yields and

  2. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    NASA Astrophysics Data System (ADS)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  3. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  4. Influence of teleconnection on water quality in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  5. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  6. Simulation of effects of climate change on surface water balances of agricultural lands. Final technical report, 30 September 1992-29 September 1994

    SciTech Connect

    Heilman, J.L.; McFarland, M.J.

    1994-12-31

    In this project, the authors used the simulation model ENWATBAL and a stochastic weather generator (WXGEN) to evaluate the impact of climatic change on water balances of cotton and sorghum, major crops in Texas that differ in their response to elevated CO2. Specific objectives were: test the accuracy of the ENWATBAL model for the study of climate change; determine the sensitivities of soil water evaporation and transpiration of cotton and sorghum to single and multifactor changes in climate and CO2; and assess effects of gradual climate change on water balances of cotton and sorghum in west Texas.

  7. Rhamnolipid surface thermodynamic properties and transport in agricultural soil.

    PubMed

    Renfro, Tyler Dillard; Xie, Weijie; Yang, Guang; Chen, Gang

    2014-03-01

    Rhamnolipid is a biosurfactant produced by several Pseudomonas species, which can wet hydrophobic soils by lowering the cohesive and/or adhesive surface tension. Because of its biodegradability, rhamnolipid applications bring minimal adverse impact on the soil and groundwater as compared with that of chemical wetting agents. Subsequently, rhamnolipid applications have more advantages when used to improve irrigation in the agricultural soil, especially under draught conditions. In the presence of rhamnolipid, water surface tension dropped linearly with the increase of rhamnolipid concentration until the rhamnolipid critical micelle concentration (CMC) of 30 mg/L was reached. Below the CMC, rhamnolipid had linear adsorption isotherms on the soil with a partition coefficient of 0.126 L/kg. Rhamnolipid transport breakthrough curves had a broad and diffuse infiltration front, indicating retention of rhamnolipid on the soil increased with time. Rhamnolipid transport was found to be well represented by the advection-dispersion equation based on a local equilibrium assumption. When applied at concentrations above the CMC, the formed rhamnolipid micelles prevented rhamnolipid adsorption (both equilibrium adsorption and kinetic adsorption) in the soil. It was discovered in this research that rhamnolipid surface thermodynamic properties played the key role in controlling rhamnolipid transport. The attractive forces between rhamnolipid molecules contributed to micelle formation and facilitated rhamnolipid transport.

  8. Integrating EPA's agriculture and water grant programs: A comparison of 16 programs that protect the water resource from agricultural contamination

    SciTech Connect

    Not Available

    1992-10-01

    The document provides background information on EPA's Agriculture and Water Integration Project, summarizes and compares specific program elements, and outlines the Agency's plans for grant guidances and programs related to agricultural contamination of the water resource over the next few years.

  9. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    NASA Astrophysics Data System (ADS)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  10. AGRICULTURAL DRAINAGE WELLS: IMPACT ON GROUND WATER

    EPA Science Inventory

    This document discusses agricultural drainage well practices, potential contamination problems that may occur, and possible management practices or regulatory solutions that could be used to alleviate those problems. The document has been written for use by state and Agency deci...

  11. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  12. Reply [to "Comment on `Conjunctive Use of Groundwater and Surface Water for Irrigated Agriculture: Risk Aversion' by John D. Bredehoeft and Robert A. Young"

    NASA Astrophysics Data System (ADS)

    Bredehoeft, John D.; Young, Robert A.

    1985-06-01

    This serves as an introduction for the following sequence of five papers on interactive water resources and environmental management, policy modeling, and model use. We review some important shortcomings of many management and policy models and argue for improved human-computer-model interaction and communication. This interaction can lead to more effective model use which in turn should facilitate the exploration, analysis, and synthesis of alternative designs, plans, and policies by those directly involved in the planning, management, or policy making process. Potential advantages of interactive modeling and model use, as well as some problems and research needs, are discussed.

  13. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  14. Factors affecting leaching in agricultural areas and an assessment of agricultural chemicals in the ground water of Kansas

    USGS Publications Warehouse

    Perry, C.A.; Robbins, F.V.; Barnes, P.L.

    1988-01-01

    As assessment of hydrologic factors and agricultural practices that may affect the leaching of agricultural chemicals to groundwater was conducted to evaluate the extent and severity of chemical contamination of groundwater resources in Kansas. The climate of a particular area determines the length of the growing season and the availability of water, at the surface and in the ground, for the growth of plants. Climate, together with surficial geology, soil, and principal aquifers, determines the types of crops to be planted,types of tillage, conservation and irrigation practices, and affects the quantity and method of application of agricultural chemicals. Examination of groundwater nitrate-nitrogen data collected from 766 wells throughout Kansas during 1976-81 indicated that 13 of 14 geohydrologic regions had wells producing samples that exceeded the 10-mg/L drinking water standard determined by the U.S. Environmental Protection Agency. One or more herbicides were detected in water samples from 11 of 56 wells during 1985-86 located in areas susceptible to agricultural leaching. Atrazine was the most common herbicide that was detected; it was detected in water at 9 of 11 wells. Cyanazine was detected in water at three wells; metolachlor at two wells; and metribuzin, alachlor, simazine, and propazine were detected at one well each. (USGS)

  15. Evaluation of Crop-Water Consumption Simulation to Support Agricultural Water Resource Management using Satellite-based Water Cycle Observations

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Bolten, J. D.; Lakshmi, V.

    2016-12-01

    Water scarcity is one of the main factors limiting agricultural development. Numerical models integrated with remote sensing datasets are increasingly being used operationally as inputs for crop water balance models and agricultural forecasting due to increasing availability of high temporal and spatial resolution datasets. However, the model accuracy in simulating soil water content is affected by the accuracy of the soil hydraulic parameters used in the model, which are used in the governing equations. However, soil databases are known to have a high uncertainty across scales. Also, for agricultural sites, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally. The present study utilizes effective soil hydraulic parameters obtained using a 1-km downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E) using the genetic algorithm inverse method within the Catchment Land Surface Model (CLSM). Secondly, to provide realistic irrigation estimates for agricultural sites, an irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches the threshold, 50% with respect to the maximum available water capacity obtained from the effective soil hydraulic parameters. An additional important criterion utilized is the estimation of crop water consumption based on dynamic root growth and uptake in root zone layer. Model performance is evaluated using MODIS land surface temperature (LST) product. The soil moisture estimates for the root zone are also validated with the in situ field data, for three sites (2- irrigated and 1- rainfed) located at the University of Nebraska Agricultural Research and Development Center near Mead, NE and monitored

  16. Prevalence, antimicrobial resistance and relation to indicator and pathogenic microorganisms of Salmonella enterica isolated from surface waters within an agricultural landscape.

    PubMed

    Economou, Vangelis; Gousia, Panagiota; Kansouzidou, Athina; Sakkas, Hercules; Karanis, Panagiotis; Papadopoulou, Chrissanthy

    2013-07-01

    During a 12 month period (June 2007-May 2008), the prevalence and susceptibility of Salmonella serovars and their relation to specific pathogenic and indicator bacteria in river and coastal waters was investigated. A total of 240 water samples were collected from selected sites in Acheron and Kalamas Rivers and the Ionian Sea coast in north western Greece. The samples were analyzed for Salmonella spp., Listeria spp., Campylobacter spp., Escherichia coli O157, Staphylococci, Pseudomonas spp., Total Coliforms, Fecal Coliforms, Fecal Streptococci, Total Heterotrophic Flora at 20°C and at 37°C, fungi and protozoa (Cryptosporidium, Giardia). Susceptibility tests to nine antimicrobials (ampicillin, amikacin, amoxicillin/clavulavic acid, cefuroxime, ciprofloxacin, cefoxitin, tetracycline, ticarcillin/clavulanic acid, ampicillin/sulbactam) were performed using the disk diffusion method for Salmonella isolates. We isolated 28 serovars of Salmonella spp. identified as Salmonella enteritidis (23), Salmonella thompson (3) and Salmonella virchow (2). Multi-drug resistant Salmonella serovars were isolated from both river and marine waters, with 34.8% of S. enteritidis and 100% of S. virchow being resistant to more than 3 antibiotics. Also we isolated 42 strains of Listeria spp. identified as L. monocytogenes (20), L. innocua (9), L. seeligeri (2) and L. ivanovii (11). All the Listeria isolates were susceptible to the tested antibiotics. No Campylobacter spp., E. coli O157, Cryptosporidium and Giardia were detected. The overall ranges (and average counts) of the indicator bacteria were: Total Coliforms 0-4×10(4)cfu/100ml (3.7×10(3)cfu/100ml), Fecal Coliforms 0-9×10(3)cfu/100ml (9.2×10(2)cfu/100ml), Fecal Streptococci 0-3.5×10(4)cfu/100ml (1.4×10(3)cfu/100ml), Total Heterotrophic Flora at 20°C 0-6×10(3)cfu/ml (10(3)cfu/ml) and at 37°C 0-5×10(3)cfu/ml (4.9×10(2)cfu/ml). Weak or non significant positive Spearman correlations (p<0.05, rs range: 0.13-0.77) were obtained

  17. Simultaneous concentration of bovine viruses and agricultural zoonotic bacteria from water using sodocalcic glass wool filters

    USDA-ARS?s Scientific Manuscript database

    Infiltration and runoff from manured agricultural fields can result in livestock pathogens reaching groundwater and surface waters. Here, we measured the effectiveness of glass wool filters to simultaneously concentrate enteric viruses and bacteria of bovine origin from water. The recovery efficienc...

  18. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds

    USDA-ARS?s Scientific Manuscript database

    Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO3-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO3-N concentrations in seep and stream water were affected by NO3-N processin...

  19. Evaluation of Listeria monocytogenes survival and infectivity in non-traditional agricultural waters

    USDA-ARS?s Scientific Manuscript database

    Introduction: Listeria monocytogenes (Lm) is an enteric bacterium that can be found in environmental reservoirs. Restricted water availability for agriculture has increased interest in surface and reuse water sources which could potentially transmit Lm. Purpose: Persistence and infectivity of Lm re...

  20. Restoring abandoned agricultural lands in cold desert shrublands: Tradeoffs between water availability and invasive species

    Treesearch

    Jeanne C. Chambers; Eric P. Eldredge; Keirith A. Snyder; David I. Board; Tara Forbis de Queiroz; Vada Hubbard

    2014-01-01

    Restoration of abandoned agricultural lands to create resilient ecosystems in arid and semi-arid ecosystems typically requires seeding or transplanting native species, improving plant-soil-water relations, and controlling invasive species. We asked if improving water relations via irrigation or surface mulch would result in negative tradeoffs between native species...

  1. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2006-06-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  2. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2005-11-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  3. Water chemistry responses to hydraulic manipulation of an agricultural wetland

    NASA Astrophysics Data System (ADS)

    Powers, S.; Stanley, E. H.

    2011-12-01

    Small impoundments are often crucial factors for the movement of sediment, organic matter, water-borne nutrients, and toxic materials through river networks. By recent accounting, at least 2.6 million small artificial water bodies exist in the US alone. A large proportion of those structures occur in regions with high intensity of agriculture, such as in the Midwestern grain belt. While small impoundments are aging structures which appear to serve few purposes, some hold ecological and biogeochemical value as artificial wetlands. We documented instantaneous net fluxes of solute (chloride, sulfate, nitrate, ammonium, and soluble reactive phosphorus) through an artificial flow-through wetland in agricultural southern Wisconsin over 6 years which spanned removal of a small dam. Phased dewatering and dam removal ultimately converted the artificial wetland to a canal-like state (increase in mean water velocity from 0.08 to 0.22 m s-1). Mean net flux for chloride across the system averaged nearly 0 g d-1, indicating conservative transport and successful characterization of hydrology. In contrast, net fluxes for other solute forms were altered following loss of the wetland: a persistent net sulfate sink (5-10% of inputs retained), suggestive of sulfate-reducing bacteria, was reduced; seasonal (summer) net sinks for nitrate and ammonium, suggestive of uptake by algae and denitrifying bacteria, were reduced; temporal variability for the net flux of soluble reactive phosphorus was reduced. Overall, loss of the artificial wetland caused by dam removal shifted seasonal and annual net fluxes of biologically available solute toward export. Nutrient retention by artificial wetlands could be important for elemental budgets in regions which have high nutrient loading to surface and ground water.

  4. Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site

    USDA-ARS?s Scientific Manuscript database

    Estimation of surface energy fluxes over irrigated agriculture is needed to monitor crop water use. Estimates are commonly done using well-established techniques such as eddy covariance (EC) and weighing lysimetry, but implementing these to collect spatially distributed observations is complex and c...

  5. Summary of reported agriculture and irrigation water use in Cross County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Cross County, Arkansas. The number of withdrawal registrations for Cross County was 2,506 (2,314 groundwater and 192 surface water). Water withdrawals reported during the registration process total 2.01 Mgal/d (1.85 Mgal/d groundwater and 0.16 Mgal/d surface water) for agriculture and 404.04 Mgal/d (377.08 Mgal/d groundwater and 26.96 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 218,152 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cash grains, cotton, hay, and vegetables as well as for the agricultural use of animal aquaculture and ducks.

  6. Summary of reported agriculture and irrigation water use in Pulaski County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Pulaski County, Arkansas. The number of withdrawal registrations for Pulaski County was 291 (170 groundwater and 121 surface water). Water withdrawals reported during the registration process total 0.91 Mgal/d (0.71 Mgal/d groundwater and 0.20 Mgal/d surface water) for agriculture and 37.42 Mgal/d (28.53 Mgal/d groundwater and 8.89 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 28,088 acres of land to irrigate wheat, rice, sorghum, corn, soybeans, milo, cash grains, cotton, vegetables, and sod, as well as for the agricultural uses of animal aquaculture, timber, and ducks.

  7. Summary of reported agriculture and irrigation water use in Craighead County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Craighead County, Arkansas. The number of withdrawal registrations for Craighead County was 2,384 (2,187 groundwater and 197 surface water). Water withdrawals reported during the registration process total 1.45 Mgal/d (0.50 Mgal/d groundwater and 0.95 Mgal/d surface water) for agriculture and 287.20 Mgal/d (261.52 Mgal/d groundwater and 25.68 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 168,003 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cotton, hay, vegetables, nuts, and sod as well as for the agricultural uses of animal aquaculture and sports clubs.

  8. Summary of reported agriculture and irrigation water use in Lonoke County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lonoke County, Arkansas. The number of withdrawal registrations for Lonoke County was 3,313 (2,587 groundwater and 726 surface water). Water with drawals reported during the registration process total 61.30 Mgal/d (59.50 Mgal/d groundwater and 1.80 Mgal/d surface water) for agriculture and 300.45 Mgal/d (241.86 Mgal/d groundwater and 58.59 Mgal/d surface water) for irrigation. The registra- tion reports for 1991 indicate that this water was applied to 238,457 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cash grains, cotton, and sod as well as for the agricultural uses of animal aquaculture, hatcheries, and ducks.

  9. Summary of reported agriculture and irrigation water use in Lincoln County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lincoln County, Arkansas. The number of withdrawal registrations for Lincoln County was 1,167 (868 groundwater and 299 surface water). Water with- drawals reported during the registration process total 3.88 Mgal/d (3.88 Mgal/d groundwater and none from surface water) for agriculture and 114.31 Mgal/d (98.59 Mgal/d groundwater and 15.72 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 81,477 acres of land to irrigate rice, corn, soybeans, milo, cotton and vegetables as well as for the agricultural use of animal aquaculture.

  10. Summary of reported agriculture and irrigation water use in Poinsett County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office of Poinsett County, Arkansas. The number of withdrawal registrations for Poinsett County was 1,826 (1,644 groundwater and 182 surface water). Water withdrawals reported during the registration process total 15.12 Mgal/d (11.76 Mgal/d groundwater and 3.26 Mgal/d surface water) for agriculture and 443.50 Mgal/d (394.22 Mgal/d groundwater and 49.28 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 244,505 acres of land to irrigate rice, corn, soybeans, milo, cotton, and hay as well as for the agricultural uses of animal aquaculture and ducks.

  11. Summary of reported agriculture and irrigation water use in Lawrence County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lawrence County, Arkansas. The number of withdrawal registra- tions for Lawrence County was 1,674 (1,525 ground- water and 149 surface water). Water withdrawals reported during the registration process total 0.22 Mgal/d (0.22 Mgal/d groundwater and none from surface water) for agriculture and 261.13 Mgal/d (244.35 Mgal/d groundwater and 16.78 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this was applied to 97,320 acres of land to irrigate rice, corn, soybeans, milo, and hay as well as for the agricultural use of animal aquaculture.

  12. Summary of reported agriculture and irrigation water use in Miller County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Miller County, Arkansas. The number of withdrawal registrations for Miller County was 98 (62 groundwater and 36 surface water). Water withdrawals reported during the registration process total 0.06 Mgal/d (0.06 Mgal/d groundwater and none from surface water) for agriculture and 24.74 Mgal/d (5.44 Mgal/d groundwater and 19.30 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 9,872 acres of land to irrigate rice, corn, soybeans, cotton, and sod as well as for the agricultural use of animal aquaculture.

  13. Summary of reported agriculture and irrigation water use in Mississippi County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Mississippi County, Arkansas. The number of withdrawal registrations for Mississippi County was 981 (946 groundwater and 35 surface water). Water withdrawals reported during the registration process total 0.06 Mgal/d (0.01 Mgal/d groundwater and 0.05 Mgal/d surface water) for agriculture and 97.82 Mgal/d (94.16 Mgal/d groundwater and 3.66 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 109,345 acres of land to irrigate rice, corn, soybeans, milo, cotton, hay, vegetables, berries, and sod as well as for the agricultural use of animal aquaculture.

  14. Summary of reported agriculture and irrigation water use in Randolph County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Randolph County, Arkansas. The number of withdrawal registrations for Randolph County was 613 (494 groundwater and 119 surface water). Water withdrawals reported during the registration process total 0.08 Mgal/d (0.08 Mgal/d groundwater and none from surface water) for agriculture and 69.48 Mgal/d (53.60 Mgal/d groundwater and 15.88 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 30,530 acres of land to irrigate rice, corn, soybeans, milo, and hay as well as for the agricultural use of animal aquaculture.

  15. Summary of reported agriculture and irrigation water use in St. Francis County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in St. Francis County, Arkansas. The number of withdrawal registrations for St. Francis County was 1,286 (1,194 groundwater and 92 surface water). Water withdrawals reported during the registration process total 0.14 Mgal/d (0.14 Mgal/d groundwater and none from surface water) for agriculture and 172.48 Mgal/d groundwater and 12.66 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 100,183 acres of land to irrigate rice, soybeans, milo, cotton, and vegetables as well as for the agricultural uses of animal aquaculture and ducks.

  16. Summary of reported agriculture and irrigation water use in west-central Arkansas counties, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Offices in the following west-central Arkansas counties: Conway, Crawford, Faulkner, Franklin, Johnson, Logan, Perry, Pope, Scott, Sebastian, and Yell. The number of withdrawal registrations for west-central Arkansas counties was 307 (90 groundwater and 217 surface water). Water withdrawals reported during the registration process total 1.00 Mgal/d (0.15 Mgal/d groundwater and 0.85 Mgal/d surface water) for agriculture and 32.07 Mgal/d (5.67 Mgal/d groundwater and 26.40 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 22,856 acres of land to irrigate rice, corn, sorghum, soybeans, wheat, cash grains, hay, milo, vegetables, sod, berries, grapes, and fruit trees as well as for the agricultural uses of catfish and ducks.

  17. Summary of reported agriculture and irrigation water use in Crittendon County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1991-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Crittenden County, Arkansas. The number of withdrawal registrations for Crittenden County was 868 (824 groundwater and 44 surface water). Water withdrawals reported during the registration process total 0.67 Mgal/d (0.67 Mgal/d groundwater and none from surface water) for agriculture and 60.29 Mgal/d (59.15 Mgal/d groundwater and 1.14 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water applied to 51,937 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, and hay as well as for the agricultural uses of animal aquaculture.

  18. Summary of reported agriculture and irrigation water use in Drew County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Drew County, Arkansas. The number of withdrawal registrations for Drew County was 505 (342 groundwater and 163 surface water). Water withdrawals reported during the registration process total 0.32 Mgal/d (0.32 Mgal/d groundwater and none from surface water) for agriculture and 43.04 Mgal/d (37.43 Mgal/d groundwater and 5.61 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 23,775 acres of land to irrigate wheat, rice, corn, soybeans, milo, cash grains, cotton, and hay as well as for the agricultural use of animal aquaculture and catfish.

  19. Summary of reported agriculture and irrigation water use in Lee County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lee County, Arkansas. The number of withdrawal registrations for Lee County was 1,582 (1,533 groundwater and 49 surface water). Water withdrawals reported during the registration process total 3.77 Mgal/d (3.39 Mgal/d groundwater and 0.38 Mgal/d surface water) for agriculture and 169.25 Mgal/d (166.79 Mgal/d groundwater and 2.46 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 97,029 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, hay, vegetables, and nuts as well as for the agricultural uses of animal aquaculture and ducks.

  20. Summary of reported agriculture and irrigation water use in Woodruff County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Woodruff County, Arkansas. The number of withdrawal registrations for Woodruff County was 1,930 (1,755 groundwater and 175 surface water). Water withdrawals reported during the registration process total 0.91 Mgal/d (0.91 Mgal/d groundwater and none from surface water) for agriculture and 284.20 Mgal/d (258.13 Mgal/d groundwater and 26.07 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 138,452 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, and vegetables, as well as for the agricultural uses of animal aquaculture and ducks.

  1. Summary of reported agriculture and irrigation water use in northwestern Arkansas counties, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Offices in the following northwestern Arkansas counties: Baxter, Benton, Boone, Carroll, Cleburne, Fulton, Izard, Madison, Marion, Newton, Searcy, Sharp, Stone, Van Buren, and Washington. The number of withdrawal registrations for northwestern Arkansas counties was 106 (16 groundwater and 90 surface water). Water withdrawals reported during the registration process total 41.72 Mgal/d (0.74 Mgal/d groundwater and 40.98 Mgal/d surface water) for agriculture and 3.33 Mgal/d (0.27 Mgal/d groundwater and 3.06 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 3,588 acres of land to irrigate rice, soybeans, cash grains, hay, oats, vegetables, sod, berries, fruit trees, and timber as well as for the agricultural use of animal aquaculture.

  2. Summary of reported agriculture and irrigation water use in Clay County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Clay County, Arkansas. The number of withdrawal registrations for Clay County was 2,025 (1,965 groundwater and 60 surface water). Water withdrawals reported during the registration process total 2.07 Mgal/d (2.01 Mgal/d groundwater and 0.06 Mgal/d surface water) for agriculture and 164.50 Mgal/d (159.64 Mgal/d groundwater and 4.56 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 94,399 acres of land to irrigate rice, corn, soybeans, milo, cotton, vegetables, and unknown crops as well as for the agricultural uses of animal aquaculture.

  3. Summary of reported agriculture and irrigation water use in Lafayette County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lafayette County, Arkansas. The number of withdrawal registrations for Lafayette County was 104 (93 groundwater and 11 surface water). Water withdrawals reported during the registration process total 0.08 Mgal/d (none from groundwater and 0.08 Mgal/d surface water) for agriculture and 6.89 Mgal/d (6.82 Mgal/d groundwater and 0.07 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 5,202 acres of land to irrigate rice, corn, soybeans, milo, cash grains, and cotton as well as for the agricultural use of animal aquaculture.

  4. Summary of reported agriculture and irrigation water use in Desha County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Desha County, Arkansas. The number of withdrawal registrations for Desha County was 1,737 (1,204 groundwater and 533 surface water). Water withdrawals reported during the registration process total 19.34 Mgal/d (10.93 Mgal/d groundwater and 8.41 Mgal/d surface water) for agriculture and 228.35 Mgal/d (169.64 Mgal/d groundwater and 58.71 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 129,067 acres of land to irrigate rice, corn, soybeans, milo, cash grains, cotton, and hay as well as for the agricultural uses of animal aquaculture, timber, and ducks.

  5. Summary of reported agriculture and irrigation water use in Jackson County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Jackson County, Arkansas. The number of withdrawal registrations for Jackson County was 2,450 (2,279 groundwater and 171 surface water). Water withdrawals reported during the registration process total 5.24 Mgal/d (4.81 Mgal/d groundwater and 0.43 Mgal/d surface water) for agriculture and 274.90 Mgal/d (263.59 Mgal/d groundwater and 11.31 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 149,737 acres of land to irrigate rice, corn, soybeans, milo, cash grains, cotton, hay, and vegetables as well as for the agricultural use of animal aquaculture, goldfish, and ducks.

  6. Summary of reported agriculture and irrigation water use in Greene County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Greene County, Arkansas. The number of withdrawal registrations for Greene County was 1,567 (1,510 groundwater and 57 surface water). Water withdrawals reported during the registration process total 26.69 Mgal/d (23.98 Mgal/d groundwater and 2.71 Mgal/d surface water) for agriculture and 92.46 Mgal/d (91.03 Mgal/d groundwater and 1.43 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 70,947 acres of land to irrigate rice, corn, soybeans, milo, cotton, fruit trees, and sod as well as for the agricultural use of animal aquaculture.

  7. Summary of reported agriculture and irrigation water use in Prairie County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Prairie County, Arkansas. The number of withdrawal registrations for Prairie County was 2,187 (1,786 groundwater and 401 surface water). Water with- drawals reported during the registration process total 26.93 Mgal/d (26.84 Mgal/d groundwater and 0.09 Mgal/d surface water) for agriculture and 191.08 Mgal/d (138.79 Mgal/d groundwater and 52.29 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 144,956 acres of land to irrigate rice, corn, soybeans, milo, cash grains, unknown crop, cotton hay, berries, and fruit trees as well as for the agricultural uses of animal aquaculture, minnows, timber, and ducks.

  8. Summary of reported agriculture and irrigation water use in southwestern Arkansas counties, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Offices in the following southwestern Arkansas counties: Bradley, Calhoun, Clark, Cleveland, Columbia, Dallas, Garland, Grant, Hempstead, Hot Spring, Howard, Little River, Montgomery, Nevada, Ouachita, Pike, Polk, Saline, Sevier, and Union. The number of withdrawal registrations for southwestern Arkansas counties was 132 (31 groundwater and 101 surface water). Water withdrawals reported during the registration process total 0.84 Mgal/d (none from groundwater and 0.84 Mgal/d surface water) for agriculture and 14.22 Mgal/d (1.64 Mgal/d groundwater and 12.58 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 8,455 acres of land to irrigate rice, corn, sorghum, soybeans, cotton, cash grains, vegetables, sod, berries, fruit trees, timber, shrubs, and nuts as well as for the agricultural use of animal aquaculture.

  9. Summary of reported agriculture and irrigation water use in Phillips County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Phillips County, Arkansas. The number of withdrawal registrations for Phillips County was 1,109 (1,103 groundwater and 6 surface water). Water withdrawals reported during the registration process total 0.15 Mgal/d (0.15 Mgal/d groundwater and none from surface water) for agriculture and 123.75 Mgal/d (122.66 Mgal/d groundwater and 1.09 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 96,502 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, hay, vegetables, grapes, nuts, fruit trees, and sod, as well as for the agricultural use of animal aquaculture.

  10. Summary of reported agriculture and irrigation water use in White County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in White County, Arkansas. The number of withdrawal registrations for White County was 1,365 (1,146 groundwater and 219 surface water). Water withdrawals reported during the registration process total 1.37 Mgal/d (0.95 Mgal/d groundwater and 0.42 Mgal/d surface water) for agriculture and 69.91 Mgal/d (43.78 Mgal/d groundwater and 26.13 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was supplied to 46,315 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cash grains, hay, vegetables, berries, grapes, fruit trees, sod, and unknown crop as well as for the agricultural uses of animal aquaculture, minnows, ducks, and sport clubs.

  11. Agricultural drainage water management: Potential impact and implementation strategies

    USDA-ARS?s Scientific Manuscript database

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  12. Removal of metal ions from contaminated water using agricultural residues

    Treesearch

    Roger M. Rowell

    2006-01-01

    As the world population grows, there is a growing awareness that our environment is getting more polluted. Clean water is becoming a critical issue for many parts of the world for human, animal and agricultural use. Filtration systems to clean our air and water are a growing industry. There are many approaches to removing contaminates from our water supply ranging from...

  13. CONSTRUCTED WETLANDS IN SUPPORT OF RIPARIAN RESTORATION: WATER QUALITY BENEFITS AND HABITAT RESTORATION IN DELAWARE AGRICULTURAL AREAS

    EPA Science Inventory

    Surface water runoff from agricultural landscapes is one of the major sources of water quality impairment in the United States. With the advent of buffer strips and conservation minded tilling practices the agricultural community has made significant reductions in overland runof...

  14. CONSTRUCTED WETLANDS IN SUPPORT OF RIPARIAN RESTORATION: WATER QUALITY BENEFITS AND HABITAT RESTORATION IN DELAWARE AGRICULTURAL AREAS

    EPA Science Inventory

    Surface water runoff from agricultural landscapes is one of the major sources of water quality impairment in the United States. With the advent of buffer strips and conservation minded tilling practices the agricultural community has made significant reductions in overland runof...

  15. Fragipan controls on nitrogen loss by surface and subsurface flow pathways in an upland agricultural watershed

    USDA-ARS?s Scientific Manuscript database

    Improved understanding of nutrient transport by surface and subsurface flow pathways is critical to protecting water quality in agricultural watersheds. We sought to compare nitrogen loss in overland and subsurface flow on two opposing hillslopes (north versus south facing), each with contrasting so...

  16. Army industrial, landscaping, and agricultural water use

    SciTech Connect

    Stoughton, Kate McMordie; Loper, Susan A.; Boyd, Brian K.

    2014-09-18

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  17. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  18. Sustaining dry surfaces under water.

    PubMed

    Jones, Paul R; Hao, Xiuqing; Cruz-Chu, Eduardo R; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M; Varanasi, Kripa K; Megaridis, Constantine M; Walther, Jens H; Koumoutsakos, Petros; Espinosa, Horacio D; Patankar, Neelesh A

    2015-08-18

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  19. Sustaining dry surfaces under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-08-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  20. Satellite Mapping of Agricultural Water Requirements in California with the Terrestrial Observation and Prediction System

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Lund, C.; Johnson, L.; Michaelis, A.; Pierce, L.; Guzman, A.; Hiatt, S.; Purdy, A. J.; Rosevelt, C.; Brandt, W. T.; Votava, P.; Nemani, R. R.

    2012-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide water managers and agricultural producers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. In particular, the timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support in California. The system utilizes the NASA Terrestrial Observation and Prediction System to integrate satellite observations and meteorological observations to map crop canopy development, basal crop coefficients (Kcb), and evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web services. We present the prototype system, including comparisons of estimates of ETcb from the prototype system against estimates of ET from other methods, including surface renewal stations and observations from wireless sensor networks deployed in operational agricultural fields across California. We discuss the potential for integration of ET from energy balance models to support near real-time mapping of consumptive water use and crop water stress.

  1. Water allocation for agriculture complex terrain under changing climate

    NASA Astrophysics Data System (ADS)

    Putu Santikayasa, I.; Perdinan; Basit, Rizki Abdul

    2017-01-01

    The current water resources management in Indonesia requires the government to pay more attention on sustainable water management. Agriculture as the highest water demand in the country need better water management as the impact of future changing climate. Furthermore, the water managers as well as policy makers may require integrating the climate change assessment into water resources allocation policy and management. Agropolitan in Malang district, East java – Indonesia is an agriculture which is characterized by complex agricultural system and was assigned as a case study. The supply-demand water allocation approach was applied on allocating water to different water users under current and future climatic condition. Both climate and the changing nature of water demand have affected the development and evolution of water allocation. The result shows that the water supply is expected to decrease under future climate comparing with the current condition. Furthermore, it is required to incorporate the future climate information on design the future water policy and management to reduce the adverse impact of changing climate. This study also suggested policy actions as recommendation to better manage current climate variability as well as future uncertainty from climate change impacts on water allocation and resources management.

  2. Remotely Sensed Estimates of Evapotranspiration in Agricultural Areas of Northwestern Nevada: Drought, Reliance, and Water Transfers

    NASA Astrophysics Data System (ADS)

    Bromley, Matthew

    The arid landscape of northwestern Nevada is punctuated by agricultural communities that rely on water primarily supplied by the diversion of surface waters and secondarily by groundwater resources. Annual precipitation in the form of winter snowfall largely determines the amount of surface water that is available for irrigation for the following agricultural growing season. During years of insufficient surface water supplies, particular basins can use groundwater in order to meet irrigation needs. The amount of water used to irrigate agricultural land is influenced by land use changes, such as fallowing, and water right transfers from irrigation to municipal use. To evaluate agricultural water consumption with respect to variations in weather, water supply, and land use changes, monthly estimates of evapotranspiration (ET) were derived from Landsat multispectral optical and thermal imagery over a eleven-year period (2001 to 2011) and compared to variations in weather, water supply, and land use across four hydrographic areas in northwestern Nevada. Monthly ET was estimated using a land surface energy balance model, Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC), using Landsat 5 and Landsat 7 imagery combined with local atmospheric water demand estimates. Estimates of net ET were created by subtracting monthly precipitation from METRIC-derived ET, and seasonal estimates were generated by combining monthly ET for April-October (the regional agricultural growing season). Results highlight that a range of geographic, climatic, hydrographic, and anthropogenic factors influence ET. Hydrographic areas such as Mason Valley have the ability to mitigate deficiencies in surface water supplies by pumping supplemental groundwater, thereby resulting in low annual variability in ET. Conversely, the community of Lovelock has access to limited upstream surface water storage and is restricted by groundwater that is saline and unsuitable for

  3. Water on a Hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  4. Water surface depth instrument

    NASA Technical Reports Server (NTRS)

    Davis, Q. C., IV

    1970-01-01

    Measurement gage provides instant visual indication of water depth based on capillary action and light diffraction in a group of solid, highly polished polymethyl methacrylate rods. Rod lengths are adjustable to measure various water depths in any desired increments.

  5. Conservation potential of agricultural water conservation subsidies

    NASA Astrophysics Data System (ADS)

    Huffaker, Ray

    2008-07-01

    A current policy subsidizes farmers to invest in improved on-farm irrigation efficiency, expecting water to be conserved off farm. Contrary to expectation, water has been increasingly depleted in some regions after such improvements. This paper investigates the policy's failure to conserve water consistently by (1) formulating an economic model of irrigated crop production to determine a profit-maximizing irrigator's range of responses to a subsidy and (2) embedding these responses into hypothetical streamflow diagrams to ascertain their potential to conserve water under various hydrologic regimes. Testable hypotheses are developed to predict the conservation potential of a subsidy in real-world application.

  6. Spatially Explicit Assessment of Agricultural Water Equilibrium in Korea Peninsula

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Lim, C. H.; Lee, W. K.

    2016-12-01

    In agriculture, balance between water retention and water use is an issue handled in most region and crops. This study suggested agricultural water equilibrium (AWE) it a new assessing concept for management of agricultural water in spatially explicit. This concept based on the principle of supply and demand, to the usage of agricultural water, it is possible to define virtual water content of crops (VWC) as the demand, and cropland water budget (CWB) as the supply. For the assessing AWE of the Korean Peninsula, quantified by estimating the CWB based on the natural hydrological cycle and the VWC of rice, a key crop in the Korean Peninsula. Among five factors used to assess AWE, four factors except annual precipitation were estimated by using the GEPIC model, and calculated CWB and VWC at past three decade. AWE results over the past 30 years were computed by deducting VWC showing demands in croplands from CWB meaning water supply that result showed highly vertical difference of South and North Korea. When sorting AWE data by major river basin in the Korean Peninsula, most river basins in North Korea also showed very low level. The cause of making latitudinal change in AWE is the differences of VWC and CWB in terms of latitudinal change. Which can be explained by decoupling of agricultural water demand and supply. Identifying relation with AWE, VWC and CWB in concept of elasticity, elasticity of AWE following VWC was appeared as very low relatively and absolutely. And the elasticity of AWE following CWB is very good relatively and good absolutely. When VWC is inelastic, the relative elasticity of CWB tended to become very high. AWE values presented in the study were not absolute, though these values appeared enough in explaining the latitudinal change, demand and supply of agricultural water, and have been meaningful in establishing the concept of AWE.

  7. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    NASA Astrophysics Data System (ADS)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  8. Sustainable conjunctive water management in irrigated agriculture: Model formulation and application to the Yaqui Valley, Mexico

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit; Addams, C. Lee; Minjares, José Luis; Gorelick, Steven M.

    2006-10-01

    This paper investigates strategies to alleviate the effects of droughts on the profitability and sustainability of irrigated agriculture. These strategies include conjunctive management of surface water and groundwater resources, and engineered improvements such as lining of irrigation canals and addition of regional pumping well capacity. A spatially distributed simulation-optimization model was developed for an irrigated system consisting of multiple surface water reservoirs and an alluvial aquifer. The simulation model consists of an agronomic component and simulators describing the hydrologic system. The physical models account for storage and flow through the reservoirs, routing through the irrigation canals, and regional groundwater flow. The agronomic model describes crop productivity as a function of irrigation quantity and salinity, and determines agricultural profit. A profit maximization problem was formulated and solved using large-scale constrained gradient-based optimization. The model was applied to a real-world conjunctive surface water/groundwater management problem in the Yaqui Valley, an irrigated agricultural region in Sonora, Mexico. The model reproduces recorded reductions in agricultural production during a historical drought. These reductions were caused by a decline in surface water availability and limited installed pumping capacity. Results indicate that the impact of the historical 8-year drought could have been significantly reduced without affecting profit in wet years by better managing surface water and groundwater resources. Namely, groundwater could have been more heavily relied upon and surface water allocation capped at a sustainable level as an operating rule. Lining the irrigation canals would have resulted in water savings of 30% of historical reservoir releases during wet years, which could have been used in subsequent drier years to increase agricultural production. The benefits of a greater reliance on groundwater pumping

  9. Organic matter composition of soil macropore surfaces under different agricultural management practices

    NASA Astrophysics Data System (ADS)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  10. Less water: How will agriculture in Southern Mountain states adapt?

    NASA Astrophysics Data System (ADS)

    Frisvold, George B.; Konyar, Kazim

    2012-05-01

    This study examined how agriculture in six southwestern states might adapt to large reductions in water supplies, using the U.S. Agricultural Resource Model (USARM), a multiregion, multicommodity agricultural sector model. In the simulation, irrigation water supplies were reduced 25% in five Southern Mountain (SM) states and by 5% in California. USARM results were compared to those from a "rationing" model, which assumes no input substitution or changes in water use intensity, relying on land fallowing as the only means of adapting to water scarcity. The rationing model also ignores changes in output prices. Results quantify the importance of economic adjustment mechanisms and changes in output prices. Under the rationing model, SM irrigators lose 65 in net income. Compared to this price exogenous, "land-fallowing only" response, allowing irrigators to change cropping patterns, practice deficit irrigation, and adjust use of other inputs reduced irrigator costs of water shortages to 22 million. Allowing irrigators to pass on price increases to purchasers reduced income losses further, to 15 million. Higher crop prices from reduced production imposed direct losses of 130 million on first purchasers of crops, which include livestock and dairy producers, and cotton gins. SM agriculture, as a whole, was resilient to the water supply shock, with production of high value specialty crops along the Lower Colorado River little affected. Particular crops were vulnerable however. Cotton production and net returns fell substantially, while reductions in water devoted to alfalfa accounted for 57% of regional water reduction.

  11. Precision agriculture and soil and water management in cranberry production

    USDA-ARS?s Scientific Manuscript database

    Recent research on soil and water management of cranberry farms is presented in a special issue in Canadian Journal of Soil Science. The special issue (“Precision Agriculture and Soil Water Management in Cranberry Production”) consists of ten articles that include field, laboratory, and modeling stu...

  12. Surface hardening of cutting elements agricultural machinery vibro arc plasma

    NASA Astrophysics Data System (ADS)

    Sharifullin, S. N.; Adigamov, N. R.; Adigamov, N. N.; Solovev, R. Y.; Arakcheeva, K. S.

    2016-01-01

    At present, the state technical policy aimed at the modernization of worn equipment, including agriculture, based on the use of high-performance technology called nanotechnology. By upgrading worn-out equipment meant restoring it with the achievement of the above parameters passport. The existing traditional technologies are not suitable for the repair of worn-out equipment modernization. This is especially true of imported equipment. Out here alone - is the use of high-performance technologies. In this paper, we consider the use of vibro arc plasma for surface hardening of cutting elements of agricultural machinery.

  13. Agricultural Applications for Remotely Sensed Evapotranspiration Data in Monitoring Water Use, Water Quality, and Water Security

    NASA Astrophysics Data System (ADS)

    Anderson, M. C.; Hain, C.; Gao, F.; Yang, Y.; Sun, L.; Dulaney, W.; Sharifi, A.; Holmes, T. R.; Kustas, W. P.

    2016-12-01

    Across the U.S. and globally there are ever increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers globally, which are being unsustainably depleted due to over-extraction primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water use, water quality and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.

  14. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  15. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    NASA Astrophysics Data System (ADS)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  16. Climate Change Impacts on Water Resources and Irrigated Agriculture in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Winter, J.; Young, C. A.; Azarderakhsh, M.; Ruane, A. C.; Rosenzweig, C.

    2013-12-01

    Agricultural productivity is strongly dependent on the availability of water, necessitating accurate projections of water resources, the allocation of water resources across competing sectors, and the effects of insufficient water resources on crops to assess the impacts of climate change on agricultural productivity. To explore the interface of water and agriculture in California's Central Valley, the Decision Support System for Agrotechnology Transfer (DSSAT) crop model was coupled to the Water Evaluation and Planning System (WEAP) water resources model, deployed over the region, and run using both historical and future climate scenarios. This coupling brings water supply constraints to DSSAT and sophisticated agricultural water use, management, and diagnostics to WEAP. A 30-year simulation of WEAP-DSSAT forced using a spatially interpolated observational dataset was run from 1980-2009. Moderate Resolution Imaging Spectroradiometer Surface Resistance and Evapotranspiration (MOD16) and Terrestrial Observation and Prediction System (TOPS) data were used to evaluate WEAP-DSSAT evapotranspiration calculations. Overall WEAP-DSSAT reasonably captures the seasonal cycle of observed evapotranspiration, but some catchments contain significant biases. Future climate scenarios were constructed by adjusting the spatially interpolated observational dataset with North American Regional Climate Change Assessment Program differences between future (2050-2069) and historical (1980-1999) regional climate model simulations of precipitation and temperature. Generally, within the Central Valley temperatures warm by approximately 2°C, precipitation remains constant, and crop water use efficiency increases. The overall impacts of future climate on irrigated agricultural yields varies across the Central Valley and is highly dependent on crop, water resources demand assumptions, and agricultural management.

  17. Climate change and water availability for vulnerable agriculture

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of

  18. Annual precipitation and effects of runoff-nutrient from agricultural watersheds on water quality

    USDA-ARS?s Scientific Manuscript database

    Declining surface water quality from agricultural nonpoint sources is of great concern across the Platte river basin in Nebraska. Recent changes in the earth climate create abrupt changes in domestic weather (i.e., precipitation, temperature, etc.) which can alter the impact of these nonpoint source...

  19. Comparison of contaminant transport in agricultural drainage water and urban stormwater runoff

    USDA-ARS?s Scientific Manuscript database

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts including hypoxia and harmful algal blooms. The main objective of this long-term study was to quantify and compare contaminant transport from a subsurface-drain...

  20. The influence of legacy P on lake water quality in a Midwestern agricultural watershed

    USDA-ARS?s Scientific Manuscript database

    Decades of fertilizer and manure application have led to a buildup of phosphorus (P) in agricultural soils and stream and lake sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical model...

  1. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    USDA-ARS?s Scientific Manuscript database

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost...

  2. Policy and Ethics In Agricultural and Ecological Water Uses.

    NASA Astrophysics Data System (ADS)

    Appelgren, Bo

    Agricultural water use accounts for about 70 percent of abstracted waters reaching 92 percent of the collective uses of all water resources when rain water is included. Agriculture is the traditional first sector and linked to a wide range of social, economic and cultural issues at local and global level that reach beyond the production of cheap food and industrial fibres. With the dominance in agricultural water uses and linkages with land use and soil conservation the sector is critical to the protection of global and local environmental values especially in sensitive dryland systems. Ethical principles related to development and nature conservation have traditionally been focused on sustainability imperatives building on precaution and preventive action or on indisputable natural systems values, but are by necessity turning more and more towards solidarity-based risk management approaches. Policy and management have in general failed to consider social dimensions with solidarity, consistency and realism for societal acceptance and practical application. As a consequence agriculture and water related land degradation is resulting in accelerated losses in land productivity and biodiversity in dryland and in humid eco- systems. Increasingly faced with the deer social consequences in the form of large man-made hydrological disasters and with pragmatic requirements driven by drastic increases in the related social cost the preferences are moving to short-term risk management approaches with civil protection objectives. Water scarcity assessment combined with crisis diagnoses and overriding statements on demographic growth, poverty and natural resources scarcity and deteriorating food security in developing countries have become common in the last decades. Such studies are increasingly questioned for purpose, ethical integrity and methodology and lack of consideration of interdependencies between society, economy and environment and of society's capacity to adapt to

  3. Surface Water Response Modeling

    EPA Science Inventory

    During response to spills, or for facility planning, the vulnerability of downstream water resources is a major concern. How long and at what concentration do spilled contaminants reach downstream receptors? Models have the potential to answer these questions, but only if they ...

  4. Surface Water Response Modeling

    EPA Science Inventory

    During response to spills, or for facility planning, the vulnerability of downstream water resources is a major concern. How long and at what concentration do spilled contaminants reach downstream receptors? Models have the potential to answer these questions, but only if they ...

  5. Climate, water and agriculture in the Tropics

    SciTech Connect

    Jackson, I.J.

    1989-01-01

    The broad view is established with a functional definition of the tropics to include the area lying within the region of the easterly trade winds and its extension to extratropical regions that are affected by tropical phenomena such as the southwest Indian monsoon and hurricanes. In the first five chapters Jackson discusses atmospheric water largely in physical terms-its origin and transport with relation to general circulation patterns and precipitation characteristics such as frequency, duration, and intensity, which are as important as total rainfall in the consideration of runoff, biological productivity, and land utilization. In the remainder of the book water-soil-plant relationships are discussed generally and specifically for selected crops and regions. Popular emotional appears currently decry the destruction of tropical wet forests. Jackson makes it clear that tropical lands exhibit a rich variation in climates and that problems of exploitation rooted in cultures, economics, politics, and population growth cannot be solved by the simple introduction of temperate zone science and technology. This volume is a hybrid between an intermediate level textbook and a review article for the knowledgeable investigator, planner, or administrator, and the values to be found in it will vary with the background and interests of the reader. A reference list of more than 800 titles, perhaps half of them dated in the present decade, is a major asset, especially when coupled with extensive author and subject indexes.

  6. Water reclamation and intersectoral water transfer between agriculture and cities--a FAO economic wastewater study.

    PubMed

    Heinz, Ingo; Salgot, Miquel; Koo-Oshima, Sasha

    2011-01-01

    Cost-benefit studies on replacing conventional agricultural water resources with reclaimed water in favour of cities are still rare. Some results of a study under auspices of the Food and Agriculture Organisation (FAO) are presented. By means of an illustrative example at Lobregat River basin in Spain, it could be proved that reclaimed water reuse and intersectoral water transfer can result in economic and environmental benefits at the watershed level. The agricultural community faces cost savings in water pumping and fertilising, increases in yields and incomes; the municipality benefits from additional water resources released by farmers. Farmers should be encouraged to participate by implementing adequate economic incentives. Charging farmers with the full cost of water reclamation may discourage farmers from joining water exchange projects. Particularly in regions with water scarcity, investments in reclaimed water reuse and water exchange arrangements usually pay back and are profitable in the long term.

  7. Water in Biomaterials Surface Science

    NASA Astrophysics Data System (ADS)

    Morra, M.

    2001-10-01

    Presents the latest ideas and research on molecular hydration and hydration forces, and how they determine the interaction between water molecules and biomaterials surfaces. Consisting of three sections; theoretical aspects, analytical aspects and practical applications, it begins by placing the properties of water in a proper molecular perspective. The analytical aspects and practical applications offer a complete overview with new insights into the biomaterials/water interface by: - Discussing the latest approaches to the characterisation of water at interfaces and surface modification of biomaterials - Examining the problems related to the understanding and characterisation of interfacial water - Providing new perspectives of the interfacial interactions between materials and the physiological aqueous environment An invaluable resource for researchers in biomaterials surface science and the biotechnology industry.

  8. The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Calzadilla, Alvaro; Rehdanz, Katrin; Tol, Richard S. J.

    2010-04-01

    SummaryAgriculture is the largest consumer of freshwater resources - around 70 percent of all freshwater withdrawals are used for food production. These agricultural products are traded internationally. A full understanding of water use is, therefore, impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) water resources in agriculture and within the context of international trade. We use future projections of allowable water withdrawals for surface water and groundwater to define two alternative water management scenarios. The first scenario explores a deterioration of current trends and policies in the water sector (water crisis scenario). The second scenario assumes an improvement in policies and trends in the water sector and eliminates groundwater overdraft world-wide, increasing water allocation for the environment (sustainable water use scenario). In both scenarios, welfare gains or losses are not only associated with changes in agricultural water consumption. Under the water crisis scenario, welfare not only rises for regions where water consumption increases (China, South East Asia and the USA). Welfare gains are considerable for Japan and South Korea, Southeast Asia and Western Europe as well. These regions benefit from higher levels of irrigated production and lower food prices. Alternatively, under the sustainable water use scenario, welfare losses not only affect regions where overdrafting is occurring. Welfare decreases in other regions as well. These results indicate that, for water use, there is a clear trade-off between economic welfare and environmental sustainability.

  9. Edge-of-field research to quantify the impacts of agricultural practices on water quality in Ohio

    USDA-ARS?s Scientific Manuscript database

    Drainage is needed to sustain agricultural production to meet the demands of a growing global population, but it also transports nutrients from fields to surface water bodies. The State of Ohio is facing the tremendous challenge of maintaining agricultural production while protecting the environment...

  10. Dynamics of Individual and Collective Agricultural Adaptation to Water Scarcity

    NASA Astrophysics Data System (ADS)

    Burchfield, E. K.; Gilligan, J. M.

    2016-12-01

    Drought and water scarcity are challenging agricultural systems around the world. We draw on extensive field-work conducted with paddy farmers in rural Sri Lanka to study adaptations to water scarcity, including switching to less water-intensive crops, farming collectively on shared land, and turning to groundwater by digging wells. We explore how variability in climate affects agricultural decision-making at the community and individual levels using three decision-making heuristics, each characterized by an objective function: risk-averse expected utility, regret-adjusted expected utility, and prospect theory loss-aversion. We also assess how the introduction of individualized access to irrigation water with wells affects long-standing community-based drought mitigation practices. Results suggest that the growth of well-irrigation may produce sudden disruptions to community-based adaptations, but that this depends on the mental models farmers use to think about risk and make decisions under uncertainty.

  11. Ocean Surface Water Sampling Devices.

    DTIC Science & Technology

    1963-10-01

    also parachuted, captures a volume of the water surface by a cookie cutter action and drew it into a 1-liter Thermos bottle for protection from...effective in landing upright on the water. Faster Dewar samplers without the cookie cutter action but with the same intake method proved about 95

  12. Transforming Agricultural Water Management in Support of Ecosystem Restoration

    SciTech Connect

    Hanlon, Edward; Capece, John

    2009-11-20

    Threats to ecosystems are not local; they have to be handled with the global view in mind. Eliminating Florida farms, in order to meet its environmental goals, would simply move the needed agricultural production overseas, where environmentally less sensitive approaches are often used, thus yielding no net ecological benefit. South Florida is uniquely positioned to lead in the creation of sustainable agricultural systems, given its population, technology, and environmental restoration imperative. Florida should therefore aggressively focus on developing sustainable systems that deliver both agricultural production and environmental services. This presentation introduces a new farming concept of dealing with Florida’s agricultural land issues. The state purchases large land areas in order to manage the land easily and with ecosystem services in mind. The proposed new farming concept is an alternative to the current “two sides of the ditch” model, in which on one side are yield-maximizing, input-intensive, commodity price-dependent farms, while on the other side are publicly-financed, nutrient-removing treatment areas and water reservoirs trying to mitigate the externalized costs of food production systems and other human-induced problems. The proposed approach is rental of the land back to agriculture during the restoration transition period in order to increase water storage (allowing for greater water flow-through and/or water storage on farms), preventing issues such as nutrients removal, using flood-tolerant crops and reducing soil subsidence. Since the proposed approach is still being developed, there exist various unknown variables and considerations. However, working towards a long-term sustainable scenario needs to be the way ahead, as the threats are global and balancing the environment and agriculture is a serious global challenge.

  13. Multifunctional systems approaches to water management for agriculture

    USDA-ARS?s Scientific Manuscript database

    The impact of anthropogenic chemicals on water quality, wildlife, and human health has received increasing attention in recent years. One potential source of anthropogenic compounds is land-based recycling programs which apply municipal wastes (biosolids) to large tracts of agricultural land in lie...

  14. Agricultural hydrology and water quality II: Introduction to the featured collection

    USDA-ARS?s Scientific Manuscript database

    Agricultural hydrology and water quality is a multidisciplinary field devoted to understanding the interrelationship between modern agriculture and water resources. This paper summarizes a featured collection of 10 manuscripts emanating from the 2013 American Water Resources Association Specialty Co...

  15. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi

  16. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  17. Land use policy and agricultural water management of the previous half of century in Africa

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-12-01

    This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries' conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.

  18. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  19. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  20. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    USGS Publications Warehouse

    Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L.

    2007-01-01

    [1] Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ???90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (???1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs. Copyright 2007 by the American Geophysical Union.

  1. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  2. Cell-based Metabolomics for Assessing Chemical Exposure and Toxicity of Environmental Surface Waters

    EPA Science Inventory

    Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals/fish to monitor/assess contaminant exposu...

  3. Cell-based metabolomics for assessing chemical exposure and toxicity of environmental surface waters (presentation)

    EPA Science Inventory

    Introduction: Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals (e.g. fish) to monitor/as...

  4. Cell-based Metabolomics for Assessing Chemical Exposure and Toxicity of Environmental Surface Waters

    EPA Science Inventory

    Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals/fish to monitor/assess contaminant exposu...

  5. Cell-based metabolomics for assessing chemical exposure and toxicity of environmental surface waters (presentation)

    EPA Science Inventory

    Introduction: Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals (e.g. fish) to monitor/as...

  6. Spatial Scaling Assessment of Surface Soil Moisture Estimations Using Remotely Sensed Data for Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Hassan Esfahani, L.; Torres-Rua, A. F.; Jensen, A.; McKee, M.

    2014-12-01

    Airborne and Landsat remote sensing are promising technologies for measuring the response of agricultural crops to variations in several agricultural inputs and environmental conditions. Of particular significance to precision agriculture is surface soil moisture, a key component of the soil water balance, which addresses water and energy exchanges at the surface/atmosphere interface and affects vegetation health. Its estimation using the spectral reflectance of agricultural fields could be of value to agricultural management decisions. While top soil moisture can be estimated using radiometric information from aircraft or satellites and data mining techniques, comparison of results from two different aerial platforms might be complicated because of the differences in spatial scales (high resolution of approximately 0.15m versus coarser resolutions of 30m). This paper presents a combined modeling and scale-based approach to evaluate the impact of spatial scaling in the estimation of surface soil moisture content derived from remote sensing data. Data from Landsat 7 ETM+, Landsat 8 OLI and AggieAirTM aerial imagery are utilized. AggieAirTM is an airborne remote sensing platform developed by Utah State University that includes an autonomous Unmanned Aerial System (UAS) which captures radiometric information at visual, near-infrared, and thermal wavebands at spatial resolutions of 0.15 m or smaller for the optical cameras and about 0.6 m or smaller for the thermal infrared camera. Top soil moisture maps for AggieAir and Landsat are developed and statistically compared at different scales to determine the impact in terms of quantitative predictive capability and feasibility of applicability of results in improving in field management.

  7. Denitrification in the shallow ground water of a tile-drained, agricultural watershed

    USGS Publications Warehouse

    Mehnert, E.; Hwang, H.-H.; Johnson, T.M.; Sanford, R.A.; Beaumont, W.C.; Holm, T.R.

    2007-01-01

    Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water. ?? ASA, CSSA, SSSA.

  8. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    USGS Publications Warehouse

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  9. Agricultural practices and irrigation water demand in Uttar Pradesh

    NASA Astrophysics Data System (ADS)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2013-12-01

    Changes in farming practices within Uttar Pradesh, particularly advances in irrigation technology, have led to a significant drop in water tables across the region. While the acquisition of monitoring data in India is a challenge, current water use practices point towards water overdraught. This is exacerbated by government and state policies and practices, including the subsidising of electricity, seeds and fertilizer, and an agreement to buy all crops grown, promoting the over use of water resources. Taking India's predicted population growth, increases in industrialisation and climate change into account, both farmland and the water resources it depends upon will be subject to increased pressures in the future. This research is centred around irrigation demands on water resources within Uttar Pradesh, and in particular, quantifying those demands both spatially and temporally. Two aspects of this will be presented; the quantification of irrigation water applied and the characterisation of the spatial heterogeneity of water use practices. Calculating the volumes of applied irrigation water in the absence of observed data presents a major challenge and is achieved here through the use of crop models. Regional crop yields provided by statistical yearbooks are replicated by the crop models AquaCrop and InfoCrop, and by doing so the amount of irrigation water needed to produce the published yields is quantified. In addition, proxy information, for example electrical consumption for agricultural use, is used to verify the likely volumes of water abstracted from tubewells. Statistical analyses of borehole distribution and the characterisation of the spatial heterogeneity of water use practices, particularly farmer decision making, collected during a field trip are also presented. The evolution of agricultural practices, technological advancement and water use for irrigation is reconstructed through the use of multiple regression and principle component analysis

  10. Global analysis of urban surface water supply vulnerability

    NASA Astrophysics Data System (ADS)

    Padowski, Julie C.; Gorelick, Steven M.

    2014-10-01

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy.

  11. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  12. Agricultural virtual water flows within the United States

    NASA Astrophysics Data System (ADS)

    Dang, Qian; Lin, Xiaowen; Konar, Megan

    2015-02-01

    Trade plays an increasingly important role in the global food system, which is projected to be strained by population growth, economic development, and climate change. For this reason, there has been a surge of interest in the water resources embodied in international trade, referred to as "global virtual water trade." In this paper, we present a comprehensive assessment of virtual water flows within the United States (U.S.), a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intranational food transfer empirical data and it provides insight into how the properties of virtual water transfers vary across scales. We find that the volume of virtual water flows within the U.S. is equivalent to 51% of international flows, which is slightly higher than the U.S. food value and mass shares, due to the fact that water-intensive meat commodities comprise a much larger fraction of food transfers within the U.S.. The U.S. virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  13. Water and energy conservation modeling in Pacific Northwest irrigated agriculture

    SciTech Connect

    Houston, J.E. Jr.

    1984-01-01

    Irrigated agriculture and electrical energy supply in the Pacific Northwest are intricately bound by mutual dependence on Columbia River Basin water. Diversion and instream demands on the water have intensified through recent development in the region. Water conservation opportunities exist in present irrigation that could supplement regional firm hydroelectricity. A two-level mathematical programming model is developed to evaluate irrigator production and regional price responses to water and electricity conservation policies. Stage one emphasizes decision criteria at producer level - irrigable land, water, electricity and labor demand, and water response yields on major crops. Irrigators choose cropping and irrigation mixes and rates at expected commodity prices under resource constraints consistent with regional policy. Stage two employs production and resource use solutions from stage one in a regional allocation and price equilibrium-seeking program. Alfalfa, apple, and potato prices are determined endogenously, and a decomposition-type linkage reiterates production area response to regional equilibrium prices. Baseline irrigated acreage, water electricity, production, and crop prices are estimated for 1982. Water pricing policies reflecting the opportunity value of Columbia River water for hydrogeneration indicate increasing net social benefits, net farm returns, and hydropower potential accruing from conservation in irrigation.

  14. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  15. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  16. Horse paddocks - an emerging source of agricultural water pollution

    NASA Astrophysics Data System (ADS)

    Masud Parvage, Mohammed; Ulén, Barbro; Kirchmann, Holger

    2015-04-01

    Horse farms occupy about 4% of the total agricultural land in the EU but are not well investigated with regard to their impact on water quality. Horse paddocks commonly hold horses on a limited space and the animal density often exceeds the recommended density. Therefore, paddock soils receive significant amounts of phosphorus (P) and nitrogen (N) through feed residues and deposition of faeces and urine, which can lead to nutrient build-up in the soil and subsequent losses to aquatic systems. This study characterized the potential risk of phosphorus (P) and nitrogen (N) leaching losses from Swedish horse paddocks through three stage examination of soil and water P and N status. The experiment began with a pilot study where surface soil P status and eight years of drainage P data were examined from a paddock catchment and an adjacent arable catchment both receiving similar amount of P and N over years. Results showed that there were no signi?cant differences in water-soluble P (WSP) or total P data in soils but the drainage water P concentrations, being higher in the paddock catchment (0.33 mg P l-1, mainly in dissolved reactive form) than the arable catchment (0.10 mg P l-1). In the second experiment, soil P and N status were examined in different parts of horse paddocks (feeding, grazing, and excretion areas) to identify existence of any potential hotspots for losses within the paddock. In total, seven horse farms, covering different grazing densities and soil textures representative of Swedish horse paddocks were examined. The results showed that concentrations of WSP, plant available P or P-AL (P extracted in ammonium acetate lactate solution at pH 3.75), and total N were highest in feeding and excretion areas within the paddocks. It was also observed that the WSP concentration in the paddocks was strongly correlated with horse density (R2 = 0.80, p < 0.001) and P-AL with years of paddock management (R2 = 0.78, p < 0.001). In the final experiment, topsoil

  17. Dissolved Organic Carbon as a Drinking Water Constituent of Concern in California Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Bachand, P. A.; Deverel, S.; Kendall, C.

    2007-12-01

    Dissolved organic carbon (DOC) from the breakdown of plant and animal material is a concern for drinking water quality in California due to the potential formation of carcinogenic byproducts during disinfection. Agricultural DOC loading to surface water is a significant concern, but the sources and reactivity in agricultural runoff remains poorly understood. Here we present data on DOC dynamics in surface water from the Willow Slough watershed, a 425\\- km2 agricultural catchment in the Sacramento Valley, California. Samples collected weekly during 2006 and 2007 were analyzed for DOC concentration, optical properties (UV absorbance and fluorescence), 13C\\- DOC isotopes, and trihalomethane formation potential (a regulated disinfection byproduct formed during chlorination). DOC concentrations at the watershed mouth ranged from 2 to 4 mg/L during winter and spring, with a clear increase in DOC concentrations to more than 7 mg L following the onset of summer irrigation. The 13C\\- DOC values revealed a large range (-19 to -27 ‰), with lowest values during winter baseflow and higher values during summer and winter storms. Spectral slopes also varied seasonally (0.012 to 0.020), with steeper slopes during winter baseflow. Both isotopic and optical data provide evidence for algal\\- derived DOC during the winter baseflow and terrestrial sources during winter storms and summer irrigation. Total THM formation potential was higher in winter than summer, and is strongly correlated to DOC concentrations in surface waters (r2 = 0.87). In contrast to the total THM formation potential, the specific THM formation potential (e.g., total THM normalized to DOC) decreased during the summer irrigation season, suggesting a change in reactivity related to DOC source or degradation. Additional data from plant leachates and ground water will be discussed, as well as the implications of watershed management on DOC dynamics and reactivity in agriculturally-dominated landscapes.

  18. Evapotranspiration and surface energy balance across an agricultural-urban landscape gradient in Southern California, USA.

    NASA Astrophysics Data System (ADS)

    Shiflett, S. A.; Anderson, R. G.; Jenerette, D.

    2014-12-01

    Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.

  19. Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands

    NASA Astrophysics Data System (ADS)

    Cai, Ximing; Rosegrant, Mark W.

    2004-08-01

    The Yellow River Basin is of the utmost importance for China in terms of food production, natural resources management, and socioeconomic development. Water withdrawals for agriculture, industry, and households in the past decade have seriously depleted environmental and ecological water requirements in the basin. This study presents a modeling scenario analysis of some water development strategies to harmonize water withdrawal demand and ecological water demand in the Yellow River Basin through water savings and interbasin water transfers. A global water and food analysis model including the Yellow River Basin as one of the modeling units is applied for the analysis. The model demonstrates that there is little hope of resolving the conflict between agriculture water demand and ecological water demand in the basin if the current water use practices continue. Trade-offs exist between irrigation water use and ecological water use, and these trade-offs will become more intense in future years with population growth, urbanization, and industrial development as well as growing food demand. Scenario analysis in this study concludes that increasing basin water use efficiency to 0.67 first and then supplementary water availability by interbasin water transfer through the South-North Water Transfer Project may provide a solution to water management of the Yellow River Basin in the next 25 years.

  20. Managing agricultural phosphorus for water quality: lessons from the USA and China.

    PubMed

    Sharpley, Andrew; Wang, Xiaoyan

    2014-09-01

    The accelerated eutrophication of freshwaters and to a lesser extent some coastal waters is primarily driven by phosphorus (P) inputs. While efforts to identify and limit point source inputs of P to surface waters have seen some success, nonpoint sources remain difficult to identify, target, and remediate. As further improvements in wastewater treatment technologies becomes increasingly costly, attention has focused more on nonpoint source reduction, particularly the role of agriculture. This attention was heightened over the last 10 to 20 years by a number of highly visible cases of nutrient-related water quality degradation; including the Lake Taihu, Baltic Sea, Chesapeake Bay, and Gulf of Mexico. Thus, there has been a shift to targeted management of critical sources of P loss. In both the U.S. and China, there has been an intensification of agricultural production systems in certain areas concentrate large amounts of nutrients in excess of local crop and forage needs, which has increased the potential for P loss from these areas. To address this, innovative technologies are emerging that recycle water P back to land as fertilizer. For example, in the watershed of Lake Taihu, China one of the largest surface fresh waters for drinking water supply in China, local governments have encouraged innovation and various technical trials to harvest harmful algal blooms and use them for bio-gas, agricultural fertilizers, and biofuel production. In any country, however, the economics of remediation will remain a key limitation to substantial changes in agricultural production. Copyright © 2014. Published by Elsevier B.V.

  1. Modelling the Impact of Land Use Change on Water Quality in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Johnes, P. J.; Heathwaite, A. L.

    1997-03-01

    Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological pathways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.

  2. Virtual water and water self-sufficiency in agricultural and livestock products in Brazil.

    PubMed

    da Silva, Vicente de Paulo R; de Oliveira, Sonaly D; Braga, Célia C; Brito, José Ivaldo B; de Sousa, Francisco de Assis S; de Holanda, Romildo M; Campos, João Hugo B C; de Souza, Enio P; Braga, Armando César R; Rodrigues Almeida, Rafaela S; de Araújo, Lincoln E

    2016-12-15

    Virtual water trade is often considered a solution for restricted water availability in many regions of the world. Brazil is the world leader in the production and export of various agricultural and livestock products. The country is either a strong net importer or a strong net exporter of these products. The objective of this study is to determine the volume of virtual water contained in agricultural and livestock products imported/exported by Brazil from 1997 to 2012, and to define the water self-sufficiency index of agricultural and livestock products in Brazil. The indexes of water scarcity (WSI), water dependency (WDI) and water self-sufficiency (WSSI) were calculated for each Brazilian state. These indexes and the virtual water balance were calculated following the methodology developed by Chapagain and Hoekstra (2008) and Hoekstra and Hung (2005). The total water exports and imports embedded in agricultural and livestock products were 5.28 × 10(10) and 1.22 × 10(10) Gm(3) yr(-1), respectively, which results in positive virtual water balance of 4.05 × 10(10) Gm(3) yr(-1). Brazil is either a strong net importer or a strong net exporter of agricultural and livestock products among the Mercosur countries. Brazil has a positive virtual water balance of 1.85 × 10(10) Gm(3) yr(-1). The indexes used in this study reveal that Brazil is self-sufficient in food production, except for a few products such as wheat and rice. Horticultural products (tomato, onion, potato, cassava and garlic) make up a unique product group with negative virtual water balance in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    PubMed

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  4. Balancing water scarcity and quality for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  5. Hydrogeology and potential effects of changes in water use, Carson Desert agricultural area, Churchill County, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.; Johnson, Ann K.; Welch, Alan H.

    1996-01-01

    Operating Criteria and Procedures for Newlands Project irrigation and Public Law 101-618 could result in reductions in surface water used for agriculture in the Carson Desert, potentially affecting ground-water supplies from shallow, intermediate, and basalt aquifers. A near-surface zone could exist at the top of the shallow aquifer near the center and eastern parts of the basin where underlying clay beds inhibit vertical flow and could limit the effects of changes in water use. In the basalt aquifer, water levels have declined about 10 feet from pre-pumping levels, and chloride and arsenic concentrations have increased. Conceptual models of the basin suggest that changes in water use in the western part of the basin would probably affect recharge to the shallow, intermediate, and basalt aquifers. Lining canals and removing land from production could cause water-level declines greater than 10 feet in the shallow aquifer up to 2 miles from lined canals. Removing land from production could cause water levels to decline from 4 to 17 feet, depending on the distribution of specific yield in the basin and the amount of water presently applied to irrigated fields. Where wells pump from a near-surface zone of the shallow aquifer, water level declines might not greatly affect pumping wells where the thickness of the zone is greatest, but could cause wells to go dry where the zone is thin.

  6. Agriculture

    EPA Pesticide Factsheets

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  7. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    PubMed

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability.

  8. Indicator of risk of water contamination by phosphorus from Canadian agricultural land.

    PubMed

    van Bochove, E; Thériault, G; Dechmi, F; Rousseau, A N; Quilbé, R; Leclerc, M L; Goussard, N

    2006-01-01

    The indicator of risk of water contamination by phosphorus (IROWC_P) is designed to estimate where the risk of water P contamination by agriculture is high, and how this risk is changing over time based on the five-year period of data Census frequency. Firstly developed for the province of Quebec (2000), this paper presents an improved version of IROWC_P (intended to be released in 2008), which will be extended to all watersheds and Soil Landscape of Canada (SLC) polygons (scale 1:1, 000, 000) with more than 5% of agriculture. There are three objectives: (i) create a soil phosphorus saturation database for dominant and subdominant soil series of SLC polygons--the soil P saturation values are estimated by the ratio of soil test P to soil P sorption capacity; (ii) calculate an annual P balance considering crop residue P, manure P, and inorganic fertilizer P--agricultural and manure management practices will also be considered; and (iii) develop a transport-hydrology component including P transport estimation by runoff mechanisms (water balance factor, topographic index) and soil erosion, and the area connectivity to water (artificial drainage, soil macropores, and surface water bodies).

  9. Sustainability of Italian Agriculture: A Methodological Approach for Assessing Crop Water Footprint at Local Scale

    NASA Astrophysics Data System (ADS)

    Altobelli, F.; Dalla Marta, A.; Cimino, O.; Orlandini, S.; Natali, F.

    2014-12-01

    In a world where population is rapidly growing and where several planetary boundaries (i.e. climate change, biodiversity loss and nitrogen cycle) have already been crossed, agriculture is called to respond to the needs of food security through a sustainable use of natural resources. In particular, water is one of the main elements of fertility so the agricultural activity, and the whole agro-food chain, is one of the productive sectors more dependent on water resource and it is able to affect, at regional level, its availability for all the other sectors. In this study, we proposed a methodology for assessing the green and blue water footprint of the main Italian crops typical of the different geographical areas (northwest, northeast, center, and south) based on data extracted from Italian Farm Accountancy Data Network (FADN). FADN is an instrument for evaluating the income of agricultural holdings and the impacts of the Common Agricultural Policy. Crops were selected based on incidence of cultivated area on the total arable land of FADN farms net. Among others, the database contains data on irrigation management (irrigated surface, length of irrigation season, volumes of water, etc.), and crop production. Meteorological data series were obtained by a combination of local weather stations and ECAD E-obs spatialized database. Crop water footprints were evaluated against water availability and risk of desertification maps of Italy. Further, we compared the crop water footprints obtained with our methodology with already existing data from similar studies in order to highlight the effects of spatial scale and level of detail of available data.

  10. Water resource management for sustainable agriculture in Punjab, India.

    PubMed

    Aggarwal, Rajan; Kaushal, Mohinder; Kaur, Samanpreet; Farmaha, Bhupinder

    2009-01-01

    The state of Punjab comprising 1.5% area of the country has been contributing 40-50% rice and 60-65% wheat to the central pool since last three decades. During last 35 years The area under foodgrains has increased from 39,200 sq km ha to 63,400 sq km and the production of rice and wheat has increased from 0.18 to 0.32 kg/m2 and 0.22 to 0.43 kg/m2 respectively. This change in cropping pattern has increased irrigation water requirement tremendously and the irrigated area has increased from 71 to 95% in the state. Also the number of tube wells has increased from 0.192 to 1.165 million in the last 35 years. The excessive indiscriminate exploitation of ground water has created a declining water table situation in the state. The problem is most critical in central Punjab. The average rate of decline over the last few years has been 55 cm per year. The worst affected districts are Moga, Sangrur, Nawanshahar, Ludhiana and Jalandhar. This has resulted in extra power consumption, affects the socio-economic conditions of the small farmers, destroy the ecological balance and adversely affect the sustainable agricultural production and economy of the state. Therefore, in this paper attempt has been made to analyse the problem of declining water table, possible factors responsible for this and suggest suitable strategies for arresting declining water table for sustainable agriculture in Punjab. The strategies include shift of cropping pattern, delay in paddy transplantation, precision irrigation and rainwater harvesting for artificial groundwater recharge.

  11. Evaluation of nitrate removal in buffer zone supply by water from agricultural drained catchment

    NASA Astrophysics Data System (ADS)

    Fesneau, Corinne; Tournebize, Julien; Chaumont, Cedric; Guenne, Angeline

    2010-05-01

    The European Directive 2000/60/CE states objectives of a good ecological and chemical status from water body until 2015. The Cemagref project focuses on the constructed wetlands (CW) which can be used as buffer zones to lower the impact of agricultural practices on hydrosystems and decrease or even stop the transfer of contaminants via the surface waters. The experiments are carried out on a drained area where the runoff is limited and waters from the soil profile are concentrated at the drain pipes outlet. The constructed wetland studied is located at Aulnoy (77) at 70 km north-east of Paris, within the Orgeval catchment (France). Our aim is to assess the efficiency of constructed wetlands on the removal of agricultural nitrates. We are also interested in the hydrological balance of CW and agricultural catchment. The buffer zone is connected to a drained agricultural catchment of 35 hectares. The crops in the agricultural plots mainly consist in cereals (corn, maize), vegetables (horse bean, pea), sugar beet and rape. Nitrogen fertilizers are applied following normal agricultural practices. The site is monitored since 2005 for discharge and nitrate concentration in order to infer water and nitrate budgets. The buffer zone includes a pond (860m2) and a reservoir (3305 m2). The storage volume is estimated to 8000m3 which corresponds to about 10% of drainage runoff. Our study reveals potential nitrate removal because a decrease of nitrate average contents has been documented between inlet and outlet CW over a measurement period of 4 years. Average values of 57 mg/l, 40 mg/l and 27 mg/l are respectively measured at the main drain, in the pond mean and in the reservoir; that is a reduction close to 50% of nitrate fluxes. The semi-potential denitrification experiments confirm the denitrification capacity of buffer zone sediments. This constructed wetland allows the treatment of waters from agricultural drainage and provides results in line with the expectations of "good

  12. Ecosystem Services Mapping for Sustainable Agricultural Water Management in California's Central Valley.

    PubMed

    Matios, Edward; Burney, Jennifer

    2017-02-24

    Accurate information on agricultural water needs and withdrawals at appropriate spatial and temporal scales remains a key limitation to joint water and land management decision-making. We use InVEST ecosystem service mapping to estimate water yield and water consumption as functions of land use in Fresno County, a key farming region in California's Central Valley. Our calculations show that in recent years (2010-2015), the total annual water yield for the county has varied dramatically from ∼0.97 to 5.37 km(3) (all ±17%; 1 MAF ≈ 1.233 km(3)), while total annual water consumption has changed over a smaller range, from ∼3.37 to ∼3.98 km(3) (±20%). Almost all of the county's water consumption (∼96% of total use) takes place in Fresno's croplands, with discrepancy between local annual surface water yields and crop needs met by surface water allocations from outside the county and, to a much greater extent, private groundwater irrigation. Our estimates thus bound the amount of groundwater needed to supplement consumption each year (∼1.76 km(3) on average). These results, combined with trends away from field crops and toward orchards and vineyards, suggest that Fresno's land and water management have become increasingly disconnected in recent years, with the harvested area being less available as an adaptive margin to hydrological stress.

  13. Water resources program of the U.S. Geological Survey related to agriculture in Louisiana

    USGS Publications Warehouse

    Huntzinger, T.L.

    1982-01-01

    Surveillance activities of the U.S. Geological Survey Louisiana District include long-term, hydrologic-data-collection sites that serve a current-purpose, management function and (or) that furnish a data base for interpretative studies. The proposed program for 1982 includes a network of 69 surface-water data sites (continuous gaging stations), 250 flood-data sites (crest-stage stations), 679 ground-water wells (water-level observation and water-quality monitor wells), and 138 water-quality sites. The geographic distribution of the data sites is shown in the report. Interpretive studies have objectives that are oriented toward a particular geographic area , to a particular set of hydrologic phenomena, or to obtain information for use in solving specific problems. Current studies of interest to agriculture include the following: (1) Flood hydraulics and hydrology, (2) Low-flow or base-flow of streams in Louisiana, (3) Hydrologic studies in southwestern Louisiana, (4) Hydrologic impacts of surface mining in northern Louisiana, (5) Sparta aquifer study, and (6) Limnology of freshwater lakes. A network of partial record sites is also maintained to monitor specific flows. Peak stages (crest stage) are only recorded at sites where flood information is of interest. At other sites, only the low-flow or base-flow recession is obtained for use in determining relations between ground water and surface water, to assess water supply, and for effluent studies. (USGS)

  14. Improvements in agricultural water decision support using remote sensing

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of

  15. Assessment of Crop Water Requirement Methods for Annual Agricultural Water Allocation Planning

    NASA Astrophysics Data System (ADS)

    Aghdasi, F.; Sharifi, M. A.; van der Tol, C.

    2010-05-01

    The potential use of remote sensing in water resource and in particular in irrigation management has been widely acknowledged. However, in reality, operational applications of remote sensing in irrigation management are few. In this study, the applicability of the main available remote sensing based techniques of irrigation management is evaluated in a pilot area in Iran. The evaluated techniques include so called Crop Water Requirement "CWR" methods for the planning of annual water allocation in irrigated agriculture. A total of 40 years of historical weather data were classified into wet, normal, and dry years using a Standardised Precipitation Index (SPI). For each of these three classes the average CWR was calculated. Next, by applying Markov Chain Process to the time series of precipitation, the expected CWR for the forthcoming planning year was estimated. Using proper interpolation techniques the expected CWR at each station was converted to CWR map of the area, which was then used for annual water allocation planning. To estimate the crop water requirement, methods developed for the DEMETER project (DEMonstration of Earth observation Technologies in Routine irrigation advisory services) and Surface Energy Balance System "SEBS" algorithm were used, and their results were compared with conventional methods, including FAO-56 and lysimeter data amongst others. Use was made of both ASTER and MODIS images to determine crop water requirement at local and regional scales. Four methods of estimating crop coefficients were used: DEMETER Kc-NDVI, DEMETER Kc-analytical, FAO-56 and SEBS algorithm. Results showed that DEMETER (analytical approach) and FAO methods with lowest RMSE are more suitable methods for determination of crop coefficient than SEBS, which gives actual rather than potential evapotranspiration. The use of ASTER and MODIS images did not result in significantly different crop coefficients in the pilot area for the DEMETER analytical approach (α=0

  16. Partitioning of Evapotranspiration Using a Stable Water Isotope Technique in a High Temperature Agricultural Production System

    NASA Astrophysics Data System (ADS)

    Lu, X.; Liang, L.; Wang, L.; Jenerette, D.; Grantz, D. A.

    2015-12-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent the irrigation water is transpired by crops relative to being lost through evaporation will contribute to better management of increasingly limited agricultural water resources. In this study, we examined the evapotranspiration (ET) partitioning over a field of forage sorghum (S. bicolor) during a growing season with several irrigation cycles. In several field campaigns we used continuous measurements of near-surface variations in the stable isotopic composition of water vapor (δ2H). We employed custom built transparent chambers coupled with a laser-based isotope analyzer and used Keeling plot and mass balance methods for surface flux partitioning. The preliminary results show that δT is more enriched than δE in the early growing season, and becomes less enriched than δE later in the season as canopy cover increases. There is an increase in the contribution of transpiration to ET as (1) leaf area index increases, and (2) as soil surface moisture declines. These results are consistent with theory, and extend these measurements to an environment that experiences extreme soil surface temperatures. The data further support the use of chamber based methods with stable isotopic analysis for characterization of ET partitioning in challenging field environments.

  17. Sulfate deposition to surface waters

    SciTech Connect

    Henriksen, A.; Brakke, D.F.

    1988-01-01

    Critical loads are the highest deposition of strong acid anions in surface waters that will not cause harmful biological effects on populations, such as declines in or extinctions of fish. Our analysis focuses on sulfate deposition because in glaciated regions sulfate is conservative in soils, whereas nitrate in biologically cycled. Sulfate also is the dominant anion in acidic deposition and in most acidic lakes. This analysis, represents the first evaluation of certain data available from Norway and the eastern United States, with an emphasis on the data from Scandinavia. The concept of dose-response is widely used in connection with water pollution. Any lake system subjected to an external dose of pollutants will have an internal resistance (or buffer capacity) to the change. The response of the lake system will depend on the relative magnitudes of the dose and the resistance parameters.

  18. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  19. Fresh water production from municipal waste water with RO membrane technology and its application for agriculture and industry in arid area

    NASA Astrophysics Data System (ADS)

    Yokoyama, F.

    2015-04-01

    One of the biggest problems of the 21st century is the global water shortage. Therefore it is difficult to increase the quantity of conventional water resources such as surface water and groundwater for agriculture and industry in arid area. Technical advancement in water treatment membrane technology including RO membrane has been remarkable especially in recent years. As the pore size of RO membrane is less than one nanometer, it is possible to produce the fresh water, which satisfies the drinking water quality standards, with utilizing RO membrane. In this report a new fresh water resource from municipal waste water is studied to apply to the plant factory which is the water saving type agriculture and industry in arid area.

  20. Interactions between ground water and surface water in the Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; DeHan, R.S.; Hirten, J.J.; Catches, J.S.

    1997-01-01

    Ground water and surface water constitute a single dynamic system in roost parts of the Suwannee River basin due to the presence of karat features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.

  1. EnviroAtlas - Agricultural Water Demand by 12-Digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    The national agricultural water demand metric provides insight into the amount of water currently used for agricultural irrigation in the contiguous United States. The values are based on 2005 irrigation water use; combined 2010 crop, 2006 land use, and 2001 remotely sensed irrigation location estimates; and have been summarized by watershed or 12-digit hydrologic unit code (HUC). Agricultural irrigation water use, as defined in this case, meets a variety of needs before, during, and after growing seasons (e.g., dust suppression, field preparation, chemical application, weed control, salt removal from root zones, frost protection, crop cooling, and harvesting). Estimates include self-supplied surface and groundwater, as well as supplies from irrigation-specific organizations (e.g., companies, districts, cooperatives, government). This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. Water molecules orientation in surface layer

    NASA Astrophysics Data System (ADS)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  3. Network for Monitoring Agricultural Water Quantity and Water Quality in Arkansas

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Daniels, M.; Chen, Y.; Sharpley, A.; Teague, T. G.; Bouldin, J.

    2012-12-01

    A network of agricultural monitoring sites was established in 2010 in Arkansas. The state of Arkansas produces the most rice of any state in the US, the 3rd most cotton and the 3rd most broilers. By 2050, agriculture will be asked to produce food, feed, and fiber for the increasing world population. Arkansas agriculture is challenged with reduced water availability from groundwater decline and the associated increase in pumping costs. Excess nutrients, associated in part to agriculture, influence the hypoxic condition in the Gulf of Mexico. All sites in the network are located at the edge-of-field in an effort to relate management to water quantity and water quality. The objective of the network is to collect scientifically sound data at field scales under typical and innovative management for the region. Innovative management for the network includes, but is not limited to, variable rate fertilizer, cover crops, buffer strips, irrigation water management, irrigation planning, pumping plant monitoring and seasonal shallow water storage. Data collection at the sites includes quantifying water inputs and losses, and water quality. Measured water quality parameters include sediment and dissolved nitrate, nitrite and orthophosphate. The measurements at the edge-of-field will be incorporated into the monitoring of field ditches and larger drainage systems to result in a 3-tiered monitoring effort. Partners in the creation of this network include USDA-ARS, Arkansas State University, University of Arkansas, University of Arkansas at Pine Bluff, USDA-NRCS and agricultural producers representing the major commodities of the state of Arkansas. The network is described in detail with preliminary results presented.

  4. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances

  5. Modeling the impacts of climate change and agricultural management practices on surface erosion in a dryland agricultural basin

    NASA Astrophysics Data System (ADS)

    Ottenbreit, E.; Adam, J. C.; Barber, M. E.

    2010-12-01

    The objective of this study is to investigate the effects of climate change and agricultural management practices on suspended sediment concentrations in the Potlach River basin in northwestern Idaho. Suspended sediment is a pollutant in many water systems and contributes to the impairment of streams. Conventional tillage practices and rain-on-snow events in the Palouse region of northern Idaho and eastern Washington can produce some of the highest sediment losses per acre in the United States. Climate change may lead to further problems as more frequent and intense winter storm events are predicted to occur. Many hydrological models have been developed which examine suspended sediment in river systems. The Potlatch River basin near Julietta, ID was examined using the Distributed Hydrology Soil Vegetation Model (DHSVM), which has a sediment module that includes surface erosion and channel sediment transport. DHSVM was calibrated and evaluated over the historical period of streamflow observations and was used to predict soil erosion rates and suspended sediment concentrations using a range of downscaled Global Climate Models (GCMs) emissions scenarios for the year 2045. Furthermore, the sensitivity of suspended sediment concentrations to conventional versus convservative tillage practices was explored. The results show that as the projected climate-driven intensity of storms increase, more sediment is predicted in the Potlatch River. Suspended sediment and streamflow are predicted to increase during the late fall through the early spring. This increase occurs during times of heightened runoff when suspended sediment concentration in the river is highest. Three tillage scenarios were incorporated into DHSVM for winter wheat: conventional till, reduced till, and no till. Erosion and suspended sediment were higher during storm events under conventional agricultural tillage scenarios. In the long-term, this research can lead to examination of the effects of climate

  6. A Modeling Framework for Improved Agricultural Water Supply Forecasting

    NASA Astrophysics Data System (ADS)

    Leavesley, G. H.; David, O.; Garen, D. C.; Lea, J.; Marron, J. K.; Pagano, T. C.; Perkins, T. R.; Strobel, M. L.

    2008-12-01

    The National Water and Climate Center (NWCC) of the USDA Natural Resources Conservation Service is moving to augment seasonal, regression-equation based water supply forecasts with distributed-parameter, physical process models enabling daily, weekly, and seasonal forecasting using an Ensemble Streamflow Prediction (ESP) methodology. This effort involves the development and implementation of a modeling framework, and associated models and tools, to provide timely forecasts for use by the agricultural community in the western United States where snowmelt is a major source of water supply. The framework selected to support this integration is the USDA Object Modeling System (OMS). OMS is a Java-based modular modeling framework for model development, testing, and deployment. It consists of a library of stand-alone science, control, and database components (modules), and a means to assemble selected components into a modeling package that is customized to the problem, data constraints, and scale of application. The framework is supported by utility modules that provide a variety of data management, land unit delineation and parameterization, sensitivity analysis, calibration, statistical analysis, and visualization capabilities. OMS uses an open source software approach to enable all members of the scientific community to collaboratively work on addressing the many complex issues associated with the design, development, and application of distributed hydrological and environmental models. A long-term goal in the development of these water-supply forecasting capabilities is the implementation of an ensemble modeling approach. This would provide forecasts using the results of multiple hydrologic models run on each basin.

  7. Patterns and controls of nitrous oxide emissions from waters draining a subtropical agricultural valley

    NASA Astrophysics Data System (ADS)

    Harrison, John; Matson, Pamela

    2003-09-01

    Although nitrous oxide (N2O) emission from agricultural runoff is thought to constitute a globally important source of this greenhouse gas, N2O flux from polluted aquatic systems is poorly understood and scarcely reported, especially in low-latitude (0°-30°) regions where rapid agricultural intensification is occurring. We measured N2O emissions, dissolved N2O concentrations, and factors likely to control rates of N2O production in drainage canals receiving agricultural and mixed agricultural/urban inputs from the intensively farmed Yaqui Valley of Sonora, Mexico. Average per-area N2O flux in both purely agricultural and mixed urban/agricultural drainage systems (16.5 ng N2O-N cm-2 hr-1) was high compared to other fresh water fluxes, and extreme values ranged up to 244.6 ng N2O-N cm-2 hr-1. These extremely high N2O fluxes occurred during green algae blooms, when organic carbon, nitrogen, and oxygen concentrations were high, and only in canals receiving pig-farm and urban inputs, suggesting an important link between land-use and N2O emissions. N2O concentrations and fluxes correlated significantly with water column concentrations of nitrate, particulate organic carbon and nitrogen, ammonium, and chlorophyll a, and a multiple linear regression model including ammonium, dissolved organic carbon, and particulate organic carbon was the best predictor of [N2O] (r2 = 52%). Despite high per-area N2O fluxes, our estimate of regional N2O emission from surface drainage (20,869 kg N2O-N yr-1; 0.046% of N-fertilizer inputs) was low compared to values predicted by algorithms used in global budgets.

  8. Overview of advances in water management in agricultural production:Sensor based irrigation management

    USDA-ARS?s Scientific Manuscript database

    Technological advances in irrigated agriculture are crucial to meeting the challenge of increasing demand for agricultural products given limited quality and quantity of water resources for irrigation, impacts of climate variability, and the need to reduce environmental impacts. Multidisciplinary ap...

  9. Occurrence of pesticides and contaminants of emerging concern in surface waters: Influence of surrounding land use and evaluation of sampling methods

    USDA-ARS?s Scientific Manuscript database

    Biologically active compounds originating from agricultural, residential, and industrial sources have been detected in surface waters, which have invoked concern of their potential ecological and human health effects. Automated and grab surface water samples, passive water samples - Polar Organic Co...

  10. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  11. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework.

    PubMed

    Xinchun, Cao; Mengyang, Wu; Xiangping, Guo; Yalian, Zheng; Yan, Gong; Nan, Wu; Weiguang, Wang

    2017-12-31

    An indicator, agricultural water stress index (AWSI), was established based blue-green water resources and water footprint framework for regional water scarcity in agricultural production industry evaluation. AWSI is defined as the ratio of the total agricultural water footprint (AWF) to water resources availability (AWR) in a single year. Then, the temporal and spatial patterns of AWSI in China during 1999-2014 were analyzed based on the provincial AWR and AWF quantification. The results show that the annual AWR in China has been maintained at approximately 2540Gm(3), of which blue water accounted for >70%. The national annual AWF was approximately 1040Gm(3) during the study period and comprised 65.6% green, 12.7% blue and 21.7% grey WFs The space difference in both the AWF for per unit arable land (AWFI) and its composition was significant. National AWSI was calculated as 0.413 and showed an increasing trend in the observed period. This index increased from 0.320 (mid-water stress level) in 2000 to 0.490 (high water stress level) in the present due to the expansion of the agricultural production scale. The Northern provinces, autonomous regions and municipalities (PAMs) have been facing high water stress, particularly the Huang-Huai-Hai Plain, which was at a very high water stress level (AWSI>0.800). Humid South China faces increasingly severe water scarcity, and most of the PAMs in the region have converted from low water stress level (AWSI=0.100-0.200) to mid water stress level (AWSI=0.200-0.400). The AWSI is more appropriate for reflecting the regional water scarcity than the existing water stress index (WSI) or the blue water scarcity (BWS) indicator, particularly for the arid agricultural production regions due to the revealed environmental impacts of agricultural production. China should guarantee the sustainable use of agricultural water resources by reducing its crop water footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Near Surface Water on Europa?

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Gooch, B. T.; Patterson, G.; Blankenship, D. D.

    2016-12-01

    Europa's chaos terrains are generally agreed upon to have formed through disruption of the ice shell and interaction with water, but the exact details are debated. Thrace Macula, one of the largest chaos features, was initially considered to be an extrusive flow due its dark coloration and raised topography. Upon closer inspection, the volcanic interpretation was dismissed, in favor of suggestions that motion of brines through the ice, akin to brine drainage in sea ice, would explain the dark coloration. However no model has clearly explained how both the color and topography of the feature are produced, nor the large ice rafts at its center. In this presentation, we will show that disruption of the surface ice after emplacement of a subsurface water lense can reproduce all of the observations of Thrace Macula if the ice in the upper few kilometers is highly fractured or porous. We will demonstrate with simple hydrologic models that hydraulic gradients within the surrounding ice are sufficient to produce a shallow brine zone that migrates through the ice and creates a distributed network of brine-soaked and refrozen ice. These results suggest that liquid water was still present at Thrace Macula at the time of Galileo, and that future observations of this region may reveal significant changes. Such observations have important implications for crustal recycling, material transport and the long-term habitability of Europa's subsurface and ocean.

  13. Agricultural Drainage Water Management in the Upper Mississippi River Basin: Potential Impact and Implementation Strategies

    USDA-ARS?s Scientific Manuscript database

    The unique soil and climate of the Upper Mississippi River Basin area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Drainage practices alter the ...

  14. Water-quality, water-level, and discharge data associated with the Mississippi embayment agricultural chemical-transport study, 2006-2008

    USGS Publications Warehouse

    Dalton, Melinda S.; Rose, Claire E.; Coupe, Richard H.

    2010-01-01

    In 2006, the Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT) of the U.S. Geological Survey National Water-Quality Assessment Program began a study in northwestern Mississippi to evaluate the influence of surface-water recharge on the occurrence of agriculturally related nutrients and pesticides in the Mississippi River Valley alluvial aquifer. The ACT study was composed in the Bogue Phalia Basin, an indicator watershed within the National Water-Quality Assessment Program Mississippi Embayment Study Unit and utilized several small, subbasins within the Bogue Phalia to evaluate surface and groundwater interaction and chemical transport in the Basin. Data collected as part of this ACT study include water-quality data from routine and incident-driven water samples evaluated for major ions, nutrients, organic carbon, physical properties, and commonly used pesticides in the area; discharge, gage height and water-level data for surface-water sites, the shallow alluvial aquifer, and hyporheic zone; additionally, agricultural data and detailed management activities were reported by land managers for farms within two subbasins of the Bogue Phalia Basin—Tommie Bayou at Pace, MS, and an unnamed tributary to Clear Creek near Napanee, MS.

  15. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    NASA Astrophysics Data System (ADS)

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2014-05-01

    Climate change has already a large impact on the availability of water resources. Many regions in South-East Asia are assumed to receive less water in the future, dramatically impacting the production of the most important staple food: rice (Oryza sativa L.). Rice is the primary food source for nearly half of the World's population, and is the only cereal that can grow under wetland conditions. Especially anaerobic (flooded) rice fields require high amounts of water but also have higher yields than aerobic produced rice. In the past different methods were developed to reduce the water use in rice paddies, like alternative wetting and drying or the use of mixed cropping systems with aerobic (non-flooded) rice and alternative crops such as maize. A more detailed understanding of water and nutrient cycling in rice-based cropping systems is needed to reduce water use, and requires the investigation of hydrological and biochemical processes as well as transport dynamics at the field scale. New developments in analytical devices permit monitoring parameters at high temporal resolutions and at acceptable costs without much necessary maintenance or analysis over longer periods. Here we present a new type of automatic sampling set-up that facilitates in situ analysis of hydrometric information, stable water isotopes and nitrate concentrations in spatially differentiated agricultural fields. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer for monitoring nitrate content and various water level sensors for hydrometric information. The whole system is maintained with special developed software for remote control of the system via internet. We

  16. Modelling Approach to Assess Future Agricultural Water Demand

    NASA Astrophysics Data System (ADS)

    Spano, D.; Mancosu, N.; Orang, M.; Sarreshteh, S.; Snyder, R. L.

    2013-12-01

    The combination of long-term climate changes (e.g., warmer average temperatures) and extremes events (e.g., droughts) can have decisive impacts on water demand, with further implications on the ecosystems. In countries already affected by water scarcity, water management problems are becoming increasingly serious. The sustainable management of available water resources at the global, regional, and site-specific level is necessary. In agriculture, the first step is to compute how much water is needed by crops in regards to climate conditions. Modelling approach can be a way to compute crop water requirement (CWR). In this study, the improved version of the SIMETAW model was used. The model is a user friendly soil water balance model, developed by the University of California, Davis, the California Department of Water Resource, and the University of Sassari. The SIMETAW# model assesses CWR and generates hypothetical irrigation scheduling for a wide range of irrigated crops experiencing full, deficit, or no irrigation. The model computes the evapotranspiration of the applied water (ETaw), which is the sum of the net amount of irrigation water needed to match losses due to the crop evapotranspiration (ETc). ETaw is determined by first computing reference evapotranspiration (ETo) using the daily standardized Reference Evapotranspiration equation. ETaw is computed as ETaw = CETc - CEr, where CETc and CE are the cumulative total crop ET and effective rainfall values, respectively. Crop evapotranspiration is estimated as ETc = ETo x Kc, where Kc is the corrected midseason tabular crop coefficient, adjusted for climate conditions. The net irrigation amounts are determined from a daily soil water balance, using an integrated approach that considers soil and crop management information, and the daily ETc estimates. Using input information on irrigation system distribution uniformity and runoff, when appropriate, the model estimates the applied water to the low quarter of the

  17. Agricultural Green And Blue Water Uses And Their Impact on the Water System in China

    NASA Astrophysics Data System (ADS)

    Mu, M.; Tang, Q.; Cai, X.

    2016-12-01

    Both agricultural green and blue water uses in China were estimated using the H08 global hydrological model. The blue water use here refers to the water withdrawn for irrigation in irrigated croplands from rivers, reservoirs and aquifers. The green water use refers to precipitation directly supplied to croplands and natural ecosystems. The H08 model was used to trace water sources of crop water use. Total evapotranspiration of varied crops, namely barley, corn, rice, soy, and wheat, was divided into blue and green water resources based on their origins. Model results indicated that in southern China, green water, representing 78% of crop water use, was found to be a dominant component in the total crop water use, whereas in northern China, blue water occupied about half (52%) of total crop water use. The Mann-Kendall test was utilized to analyze the trends of water uses. At the national level, green water use experienced a significant decrease during 1981-2000 and then a significant increase in 2001-2010, while blue water use experienced a slight increase during 1981-2000 and then a significant decrease in 2001-2010. Monthly mean green and blue water uses at the national level showed that the demand for blue water reached peak during May, although the peak came earlier or later in some individual basins. Some variables including green and blue water uses were mapped to observe nonnegligible spatial heterogeneity. Impact analysis showed that almost one third of runoff volumes was withdrawn as agricultural blue water in most arid and semi-arid river basins during crop growing season (generally from March to August in China), suggesting that water demand for food production has imposed great pressure on blue water resources in these regions. The situation got worse if the study period was narrowed to one certain month, when river channels in some basins, e.g. Hai River basin, would run dry if the demand for irrigation was fully satisfied. Our research provides insight

  18. Evolution of agricultural water use in India: a systems approach

    NASA Astrophysics Data System (ADS)

    Hora, T.; Basu, N. B.

    2016-12-01

    Groundwater plays an important role in improving the resilience of agriculture practices by mitigating the risk associated with unreliable and seasonal rainfalls. This has been an important driver in satisfying the food demand for an ever increasing population across the world. However, the inability to manage this large but limited freshwater reserve has resulted in a sharp decline in water table levels, with India being at the forefront of this problem. This study looks at the temporal trajectory of groundwater extraction in India over a 40 year time span during which well irrigation has evolved to become a central component of agriculture there. Using a systems approach, we identify the regional hot-spots of unsustainable groundwater extraction and then analyze its relationship with the environmental, economic and social components of the region. Early results indicate that the state of Punjab has been overexploiting its groundwater resources since the early 1980's with a 22% jump in groundwater extraction after the introduction of a free electricity policy, with a concomitant reduction in the number of marginal farmers by 36%. This is in contrast with the state of Tamil Nadu, in which groundwater extraction is less severe, but the number of marginal farmers has increased.

  19. On-farm bioremediation of dimethazone and trifluralin residues in runoff water from an agricultural field.

    PubMed

    Antonious, George F

    2012-01-01

    Bioremediation is the use of living organisms, primarily microorganisms, to degrade environmental contaminants into less toxic forms. Nine biobeds (ground cavity filled with a mixture of composted organic matter, topsoil, and a surface grass) were established at Kentucky State University research farm (Franklin County, KY) to study the impact of this practice on reducing surface runoff water contamination by residues of dimethazone and trifluralin herbicides arising from an agricultural field. Biobed (biofilter) systems were installed at the bottom of the slope of specially designed runoff plots to examine herbicides retention and degradation before entering streams and rivers. In addition to biobed systems, three soil management practices: municipal sewage sludge (SS), SS mixed with yard waste compost (SS + YW), and no-mulch rototilled bare soil (NM used for comparison purposes) were used to monitor the impact of soil amendments on herbicide residues in soil following natural rainfall events. Organic amendments increased soil organic matter content and herbicide residues retained in soil following rainfall events. Biobeds installed in NM soil reduced dimethazone and trifluralin by 84 and 82%, respectively in runoff water that would have been transported down the land slope of agricultural fields and contaminated natural water resources. Biobeds installed in SS and SS+YW treatments reduced dimethazone by 65 and 46% and trifluralin by 52 and 79%, respectively. These findings indicated that biobeds are effective for treating dimethazone and trifluralin residues in runoff water.

  20. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  1. Surface water discharges from onshore stripper wells.

    SciTech Connect

    Veil, J. A.

    1998-01-16

    Under current US Environmental Protection Agency (EPA) rules, small onshore oil producers are allowed to discharge produced water to surface waters with approval from state agencies; but small onshore gas producers, however, are prohibited from discharging produced water to surface waters. The purpose of this report is to identify those states that allow surface water discharges from small onshore oil operations and to summarize the types of permitting controls they use. It is intended that the findings of this report will serve as a rationale to encourage the EPA to revise its rules and to remove the prohibition on surface water discharges from small gas operations.

  2. Nonstationary time series analysis of surface water microbial pathogen population dynamics using cointegration methods

    EPA Science Inventory

    Background/Question/Methods Bacterial pathogens in surface water present disease risks to aquatic communities and for human recreational activities. Sources of these pathogens include runoff from urban, suburban, and agricultural point and non-point sources, but hazardous micr...

  3. Nonstationary time series analysis of surface water microbial pathogen population dynamics using cointegration methods

    EPA Science Inventory

    Background/Question/Methods Bacterial pathogens in surface water present disease risks to aquatic communities and for human recreational activities. Sources of these pathogens include runoff from urban, suburban, and agricultural point and non-point sources, but hazardous micr...

  4. Cell-based Metabolomics for Monitoring Ecological Impacts of Environmental Surface Waters

    EPA Science Inventory

    Numerous surface waters are adversely impacted by contaminants released from sources such as WWfPs, CAFOs, mining activities, and agricultural operations. Ideally, an assessment strategy for these applications would include both chemical identification and effects-based monitorin...

  5. Cell-based Metabolomics for Monitoring Ecological Impacts of Environmental Surface Waters

    EPA Science Inventory

    Numerous surface waters are adversely impacted by contaminants released from sources such as WWfPs, CAFOs, mining activities, and agricultural operations. Ideally, an assessment strategy for these applications would include both chemical identification and effects-based monitorin...

  6. Water quality and agricultural practices: the case study of southern Massaciuccoli reclaimed land (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Baneschi, Ilaria; Basile, Paolo; Cannavò, Silvia; Guidi, Massimo; Risaliti, Rosalba; Rossetto, Rudy; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    Owing to increasing anthropogenic impacts, lagoons and wetlands are being exposed to environmental degradation. Therefore, the sustainable management of these environmental resources is a fundamental issue to maintain either the ecosystems and the human activity. The Massaciuccoli Lake is a coastal lake of fresh to brackish water surrounded by a marsh, which drains a total catchment of about 114 km2. Large part of the basin has been reclaimed since 1930 by means of pumping stations forcing water from the drained areas into the lake. The system is characterized by: high complexity of the hydrological setting; subsidence of the peaty soils in the reclaimed area (2 to 3 m in 70 years), that left the lake perched; reclaimed land currently devoted mainly to conventional agriculture (e.g.: maize monoculture) along with some industrial sites, two sewage treatment plants and some relevant urban settlements; social conflicts among different land users because of the impact on water quality and quantity. The interaction between such a fragile natural system and human activities leads to an altered ecological status mainly due to eutrophication and water salinisation. Hence, the present work aims at identifying and assessing the sources of nutrients (phosphorous in particular) into the lake, and characterising land use and some socio-economic aspects focusing on agricultural systems, in order to set up suitable mitigation measures. Water quantity and quality in the most intensively cultivated sub-catchment, placed 0.5 to 3 m under m.s.l. were monitored in order to underlain the interaction between water and its nutrient load. Questionnaires and interviews to farmers were conducted to obtain information about agricultural practices, farm management, risks and constraints for farming activities. The available information about the natural system and land use were collected and organised in a GIS system: a conceptual model of surface water hydrodinamics was build up and 14

  7. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  8. The influence of South-North Water Diversion Middle-Line Project on agricultural water in Jingmen and countermeasures

    NASA Astrophysics Data System (ADS)

    Jiang, Li

    2017-08-01

    Based on the investigation, the author puts forward a variety of adverse impacts of South-North Water Diversion Middle-Line Project on agricultural water in Jingmen. For examples, the land resource utilization is reduced; the farmland irrigation water cannot be guaranteed; the pollution of agricultural water is very serious. Combining the characteristics of South - North Water Diversion Project with the agricultural development in Jingmen, some countermeasures are provided in this paper, such as enhancing soil-water protection relying on related laws and policies, developing water resources and optimizing the use of water sources, adjusting the planting structure by adopting water-saving irrigation projects, developing dry farming and water-saving agriculture, controlling water pollution, and so on.

  9. A statewide network for monitoring agricultural water quality and water quantity in Arkansas

    USDA-ARS?s Scientific Manuscript database

    Arkansas produces the most rice, 3rd most cotton and 2nd most broilers of any state in the US. By 2050, agriculture will be asked to produce twice as much food, feed, and fiber for the projected world population, while challenged with reduced water availability from groundwater decline and increase...

  10. Perfluorinated surfactants in surface and drinking waters.

    PubMed

    Skutlarek, Dirk; Exner, Martin; Färber, Harald

    2006-09-01

    the Ruhr river and the Moehne river (tributary of the Ruhr) (Ruhr: up to 446 ng/L, Moehne: up to 4385 ng/L). The maximum concentration of all drinking water samples taken in the Rhine-Ruhr area was determined at 598 ng/L with the major component PFOA (519 ng/L). The surface water contaminations most likely stem from contaminated inorganic and organic waste materials (so-called 'Abfallgemisch'). This waste material was legally applied to several agricultural areas on the upper reaches of the Moehne. Perfluorinated surfactants could be detected in some suchlike soil samples. They contaminated the river and the reservoir belonging to it, likely by superficial run-off over several months or probably years. Downstream, dilution effects are held responsible for decreasing concentrations of PS in surface waters of the Moehne and the Ruhr river. In analogy to the surface water samples, PS (major component PFOA) can be determined in many drinking water samples of the Rhine-Ruhr area where the water supplies are mainly based on bank filtration and artificial recharge. The concentrations found in drinking waters decreased with the concentrations of the corresponding raw water samples along the flow direction of the Ruhr river (from east to west) and were not significantly different from surface water concentrations. This indicates that perfluorinated surfactants are at present not successfully removed by water treatment steps. Because of their different problematic properties (persistence, mobility, toxicity, bioaccumulation), the concentrations of specific perfluorinated surfactants and their precursors in drinking waters and food have to be minimised. Therefore, it is of utmost importance to take the initiative to establish suitable legal regulations (limitations/ban) concerning the production and use of these surfactants and their precursors. Furthermore, it is indispensable to protect water resources from these compounds. A discussion on appropriate limit values in drinking

  11. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data

    NASA Astrophysics Data System (ADS)

    Son, N. T.; Chen, C. F.; Chen, C. R.; Chang, L. Y.; Minh, V. Q.

    2012-08-01

    Drought is a complex natural phenomenon, and its impacts on agriculture are enormous. Drought has been a prevalent concern for farmers in the Lower Mekong Basin (LMB) over the last decades; thus, monitoring drought is important for water planning and management to mitigate impacts on agriculture in the region. This study explored the applicability of monthly MODIS normalized difference vegetation index (NDVI) and land surface temperature (LST) data for agricultural drought monitoring in LMB in the dry season from November 2001 to April 2010. The data were processed using the temperature vegetation dryness index (TVDI), calculated by parameterizing the relationship between the MODIS NDVI and LST data. The daily volumetric surface soil moisture from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and monthly precipitation from the Tropical Rainfall Measuring Mission (TRMM) were collected and used for verification of the results. In addition, we compared the efficiency of TVDI with a commonly used drought index, the crop water stress index (CWSI), derived from the MODIS LST alone. The results achieved from comparisons between TVDI and AMSR-E soil moisture data indicated acceptable correlations between the two datasets in most cases. There was close agreement between TVDI and TRMM precipitation data through the season, indicating that TVDI was sensitive to precipitation. The TVDI compared to CWSI also yielded close correlations between both datasets. The TVDI was, however, more sensitive to soil moisture stress than CWSI. The results archived by analysis of TVDI indicated that the moderate and severe droughts were spatially scattered over the region from November to March, but more extensive in northeast Thailand and Cambodia. The larger area of severe drought was especially observed for the 2003-2006 dry seasons compared to other years. The results achieved from this study could be important for drought warnings and irrigation scheduling.

  12. Conceptualizations of water security in the agricultural sector: Perceptions, practices, and paradigms

    NASA Astrophysics Data System (ADS)

    Malekian, Atefe; Hayati, Dariush; Aarts, Noelle

    2017-01-01

    Conceptions of agricultural water security are conditioned by larger understandings of being and reality. It is still unclear what such understandings mean for perspectives on water security in general and on causes and solutions related to perceived water security risks and problems in agricultural sector in particular. Based on a systematic literature review, three conceptualizations of water security, related to different paradigms, are presented. Also the consequences of such conceptualizations for determining research objectives, research activities, and research outcomes on agricultural water security are discussed. The results showed that agricultural water security from a positivist paradigm referred to tangible and measurable water-related hazards and threats, such as floods and droughts, pollution, and so forth. A constructivist approach to agricultural water security, constituted by a process of interaction and negotiation, pointed at perceptions of water security of farmers and other stakeholders involved in agricultural sector. A critical approach to agricultural water security focused on the processes of securing vulnerable farmers and others from wider political, social, and natural impediments to sufficient water supplies. The conclusions of the study suggest that paradigms, underlying approaches should be expressed, clarified, and related to one another in order to find optimal and complementary ways to study water security issues in agricultural sector.

  13. Using Perceived Differences in Views of Agricultural Water Use to Inform Practice

    ERIC Educational Resources Information Center

    Lamm, Alexa J.; Taylor, Melissa R.; Lamm, Kevan W.

    2016-01-01

    Water use has become increasingly contentious as the population grows and water resources become scarcer. Recent media coverage of agricultural water use has brought negative attention potentially influencing public and decision makers' attitudes towards agriculture. Negative perceptions could result in uninformed decisions being made that impact…

  14. Using Perceived Differences in Views of Agricultural Water Use to Inform Practice

    ERIC Educational Resources Information Center

    Lamm, Alexa J.; Taylor, Melissa R.; Lamm, Kevan W.

    2016-01-01

    Water use has become increasingly contentious as the population grows and water resources become scarcer. Recent media coverage of agricultural water use has brought negative attention potentially influencing public and decision makers' attitudes towards agriculture. Negative perceptions could result in uninformed decisions being made that impact…

  15. Pesticides in surface waters: distribution, trends, and governing factors

    USGS Publications Warehouse

    Larson, Steven J.; Capel, Paul D.; Majewski, Michael

    1997-01-01

    Pesticde use in agriculture and non-agriculture settings has increased dramatically over the last several decades. Concern about adverse effects on the environment and human health has spurred an enormous amount of research into their environmental behavior and fate. Pesticides in Surface Waters presents a comprehensive summary of this research. This book evaluates published studies that focus on measuring pesticide concentration. The studies chosen include peer reviewed scientific literature, government reports, laboratory studies, and those using microcosms and artificial streams and ponds. The authors used this information to develop their overview of pesticide contamination of surface waters. The exhaustive compilation of data along with the fundamental science make this book essential for those involved in pesticide use, environmental protection, water quality, and human or ecological risk assessment. Pesticides in Surface Waters covers the results of actual studies, sources of pesticides to surface water, fate and transport, and environmental significance. Hundreds of data-packed tables, maps, charts, and drawings illustrate the key points, making research and application easy and cost effective.

  16. Agricultural interventions for water saving and crop yield improvement, in a Mediterranean area - an experimental design

    NASA Astrophysics Data System (ADS)

    Morianou, Giasemi; Kourgialas, Nektarios; Psarras, George; Koubouris, George; Arampatzis, George; Karatzas, George; Pavlidou, Elisavet

    2017-04-01

    This work is a part of LIFE+ AGROCLIMAWATER project and the aim is to improve the water efficiency, increase the adaptive capacity of tree corps and save water, in a Mediterranean area, under different climatic conditions and agricultural practices. The experimental design as well as preliminary results at farm and river basin scales are presented in this work. Specifically, ten (10) pilot farms, both organic and conventional ones have been selected in the sub-basin of Platanias in western Crete - Greece. These ten pilot farms were selected representing the most typical crops in Platanias area (olive trees and citrus trees), as well as the typical soil, landscape and agricultural practices differentiation for each crop (field slope, water availability, soil type, management regime). From the ten pilot farms, eight were olive farms and the rest two citrus. This proportion correspond adequacy to the presentence of olive and citrus crops in the extended area of Platanias prefecture. Each of the ten pilot farm has been divided in two parts, the first one will be used as a control part, while the other one as the demonstration part where the interventions will be applied. The action plans for each selected farm are based on the following groups of possible interventions: a) reduction of water evaporation losses from soil surface, b) reduction of transpiration water losses through winter pruning and summer pruning, c) reduction of deep percolation water and nutrient losses, d) reduction of surface runoff, e) measures in order to maximize the efficiency of irrigation and f) rationalization of fertilizers and agrochemicals utilized. Preliminary results indicate that water saving and crop yield can be significantly improved based on the above innervations both at farm and river basin scale.

  17. Embedding an evolving agricultural system within a water resources planning model

    NASA Astrophysics Data System (ADS)

    Young, C.; Joyce, B.; Purkey, D.; Dale, L.; Mehta, V.

    2008-12-01

    The Water Evaluation and Planning (WEAP) system is a comprehensive, fully integrated water basin analysis tool. It is a simulation model that includes a robust and flexible representation of water demands from all sectors and flexible, programmable operating rules for infrastructure elements such as reservoirs, canals, and hydropower projects. Additionally, it has watershed rainfall-runoff modeling capabilities that allow all portions of the water infrastructure and demand to be dynamically nested within the underlying hydrological processes. WEAP also allows for linking with other models to provide feedback mechanisms whereby the management regime can be altered to respond to changing water supply conditions. This study presents an application wherein the year-to-year cropping decisions of farmers in California's Central Valley are reactive to changes in water supply conditions. To capture this dynamic, we have included in WEAP a link to an agricultural economics model (the Central Valley Production Model) that relates cropping decisions to water supply conditions (surface water allocations and depth to groundwater) and economic considerations (cost of electricity) at the time of planting. This linked model was used to evaluate changes in water supply and demand in the context of projected climate change over the next century.

  18. Improving water use in agriculture. Experiences in the Middle East and North Africa

    SciTech Connect

    Tuijl, W.V.

    1993-08-01

    As water becomes more scarce, many countries are under pressure to conserve water, especially in the agricultural sector. This paper examines strategies that save water in river basins, irrigation projects, and on farms throughout the Middle East and North Africa. Countries elsewhere can use these suggestions in their own water conservation strategies. Improved surface irrigation techniques and micro-irrigation systems are evaluated. These systems use sprinkler, drip/trickle, or micro-spray methods. The author reviews the preliminary work that is needed to install modern irrigation technologies. He describes the role that governments must play to improve the infrastructure and institutions that affect water use. He also provides detailed case studies of efficient irrigation practices in Cyprus, Israel, and Jordan. These case studies describe the conditions that made better irrigation technology a necessity. They look at ways to plan for development, management, and utilization of water in the face of growing demand. Key topics include how to oversee water rights, adopt essential land reforms, and install a graduated system of water pricing and allocation. The study also recommends projects in water conservation and research.

  19. Estimation of groundwater pumping as closure to the water balance of a semi-arid, irrigated agricultural basin

    NASA Astrophysics Data System (ADS)

    Ruud, Nels; Harter, Thomas; Naugle, Alec

    2004-09-01

    Groundwater pumping is frequently the least measured water balance component in semi-arid basins with significant agricultural production. In this article, we develop a GIS-based water balance model for estimating basin-scale monthly and annual groundwater pumping and apply it to a 2300 km 2 semi-arid, irrigated agricultural area in the southern San Joaquin Valley, California. Both, annual groundwater storage changes and pumping are estimated as closure terms. The local hydrology is dominated by distributed surface water supplies, limited precipitation, and large crop water uses; whereas basin-scale runoff generation and groundwater-to-surface water discharges are negligible. Groundwater represents a terminal long-term storage reservoir with distributed inputs and outputs. To capture the spatio-temporal variability in water management and water use, the study area is delineated into 26 water service areas and 9611 individual fields or land units. The model computes conveyance seepage losses external to districts; seepage losses within districts; and net applied surface water of each district. For each land unit, the model calculates the applied water demand; its allotment of delivered surface water; the groundwater pumping required to meet the balance of its applied water demand; and aquifer recharge resulting from deep percolation of applied water and precipitation. These spatially distributed components are aggregated to the basin scale. Estimated annual groundwater storage changes compared well to those computed by the water-table fluctuation method over the 30-year study period, providing an independent verification of the consumptive use estimation. Pumping accounted for as much as 80% of the total applied water in 'Critical' water years and as little as 30% in 'Wet' years. Pumping estimates are most sensitive to estimation uncertainty of soil available water. They show little sensitivity to estimation errors in effective root depth, irrigation efficiencies

  20. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water.

    PubMed

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management.

  1. Water surface capturing by image processing

    USDA-ARS?s Scientific Manuscript database

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  2. Alternative agriculture adoption: Effects of ground water contamination and other factors

    SciTech Connect

    Cyphers, D.; D'Souza, G. )

    1992-12-01

    The factors influencing adoption of alternative agriculture are quantified using a logit model and survey data. The likelihood of adoption of alternative agriculture is affected most by the environmental characteristic of whether or not ground water contamination exists. This creates an awareness effect' upon which to formulate policies leading to a sustainable agriculture.

  3. Food vs. water: the magnitude and range of global tradeoffs in agricultural production and impact

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Flörke, M.; Mueller, N. D.; Foley, J. A.

    2013-12-01

    Water is integral to agricultural production, and agriculture is by far the largest human use of water, so food security and water sustainability are inexorably linked. When water goes to food production, however, the benefits and costs are not uniformly distributed across the globe. We quantify the magnitude and global range of the multidimensional tradeoffs among food production, water consumption, and water quality impairment. To evaluate the productivity of water consumption in agriculture, we quantified the magnitude and global range of crop water productivity, the amount of food produced per unit of water consumed, for 16 major food crops (Brauman et al., 2013). We now expand on this, contextualizing the impact of high or low water productivity with information about water availability. Using outputs from the WaterGAP3 model (Flörke et al., 2013, Verzano et al. 2012), we map the burden of agricultural water consumption on total water availability. To incorporate impacts of agriculture on water quality, we include areas of excess nutrient application (Mueller et al., 2012). The integrated information about yield, water consumption, water availability, and nutrient application shows that benefits and impacts to water quantity and quality are not evenly distributed. Analogous to previous investigations of 'yield gaps,' which identified areas where biophysical conditions are sufficient for achieving yields higher than those that are attained (Licker et al., 2010), we show that in many places, for the given impacts to water, food production could be increased.

  4. Energy versus Water balance in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Broer, Martine; Hogan, Patrick; Foken, Thomas; Blöschl, Günter

    2013-04-01

    Evapotranspiration (ET) is an important process between vegetation, soil and the atmosphere and also the link between the surface energy balance and water balance. In the64 ha. HOAL experimental catchment at Petzenkirchen all the parameters of both the water and energy balance are measured. Discharge is measured along the small stream at all the incoming tributaries(springs, drainages and small tributaries) and at the catchment outlet. Throughout the catchment four precipitation scales are installed. Groundwater levels are measured in a transect perpendicular to the stream, which will give an indication of the storage change in the catchment. In the middle of the catchment a fully equipped Eddy-Flux station with radiation balance and soil heat flux measurement devices and a surface layer scintillometer are present in the catchment. This unique measurement setup enables us to compare the measured ET from the Eddy-Flux station with the residual of the water balance for the summer of 2012. Because the catchment and therefore the footprint of the Eddy-Flux measurements is very heterogeneous, the influence of the wind direction on the energy balance closure will also be investigated. By comparing the measured ET with the calculated ET from the water balance an estimate can be made of how representative the footprint is for the entire catchment. The surface layer scintillometer and the Eddy-Flux station both measure sensible heat flux and the latent heat flux can also be calculated from the scintillometer data. Therefore both sets of turbulent fluxes can be compared to give insight into the differences between both measurement devices. In addition more insight on the influence of the different shapes of both footprints(drop like from the Eddy-Flux station and oval for the scintillometer)in different wind directions can be gained. This study focuses on integrating measured data from different measurement stations in our catchment and is the first step in a broader

  5. Estimation of real-time N load in surface water using dynamic data driven application system

    Treesearch

    Y. Ouyang; S.M. Luo; L.H. Cui; Q. Wang; J.E. Zhang

    2011-01-01

    Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort has been devoted to monitoring real-time variations...

  6. Ground water and surface water; a single resource

    USGS Publications Warehouse

    Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

    1998-01-01

    The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

  7. Water quality monitoring of an agricultural watershed lake: the effectiveness of agricultural best management practices

    USDA-ARS?s Scientific Manuscript database

    Beasley Lake is an oxbow lake located in the Lower Mississippi Alluvial Plain (the Delta), a region of intensive agricultural activity. Due to intensive row-crop agricultural practices, the 915 ha watershed was sediment impaired when monitoring began in 1995 and was a candidate to assess the effect...

  8. Surface Water Treatment Rules State Implementation Guidance

    EPA Pesticide Factsheets

    These documents provide guidance to states, tribes and U.S. EPA Regions exercising primary enforcement responsibility under the Safe Drinking Water Act. The documents contain EPA’s recommendations for implementation of the Surface Water Treatment Rules.

  9. Hydrology: The dynamics of Earth's surface water

    NASA Astrophysics Data System (ADS)

    Yamazaki, Dai; Trigg, Mark A.

    2016-12-01

    High-resolution satellite mapping of Earth's surface water during the past 32 years reveals changes in the planet's water systems, including the influence of natural cycles and human activities. See Letter p.418

  10. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production

    NASA Astrophysics Data System (ADS)

    Teshager, Awoke D.; Gassman, Philip W.; Schoof, Justin T.; Secchi, Silvia

    2016-08-01

    Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the soil and water assessment tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere-ocean general circulation models (AOGCMs). These scenarios were implemented in a well-calibrated SWAT model for the intensively farmed and tiled Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early century, mid-century and late century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid- and late 21st century.

  11. Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Miller-Robbie, Leslie; Ramaswami, Anu; Amerasinghe, Priyanie

    2017-07-01

    Nutrients and water found in domestic treated wastewater are valuable and can be reutilized in urban agriculture as a potential strategy to provide communities with access to fresh produce. In this paper, this proposition is examined by conducting a field study in the rapidly developing city of Hyderabad, India. Urban agriculture trade-offs in water use, energy use and GHG emissions, nutrient uptake, and crop pathogen quality are evaluated, and irrigation waters of varying qualities (treated wastewater, versus untreated water and groundwater) are compared. The results are counter-intuitive, and illustrate potential synergies and key constraints relating to the food-energy-water-health (FEW-health) nexus in developing cities. First, when the impact of GHG emissions from untreated wastewater diluted in surface streams is compared with the life cycle assessment of wastewater treatment with reuse in agriculture, the treatment-plus-reuse case yields a 33% reduction in life cycle system-wide GHG emissions. Second, despite water cycling benefits in urban agriculture, only <1% of the nutrients are able to be captured in urban agriculture, limited by the small proportion of effluent divertible to urban agriculture due to land constraints. Thus, water treatment plus reuse in urban farms can enhance GHG mitigation and also directly save groundwater; however, very large amounts of land are needed to extract nutrients from dilute effluents. Third, although energy use for wastewater treatment results in pathogen indicator organism concentrations in irrigation water to be reduced by 99.9% (three orders of magnitude) compared to the untreated case, crop pathogen content was reduced by much less, largely due to environmental contamination and farmer behavior and harvesting practices. The study uncovers key physical, environmental, and behavioral factors that constrain benefits achievable at the FEW-health nexus in urban areas.

  12. Estimating economic value of agricultural water under changing conditions and the effects of spatial aggregation.

    PubMed

    Medellín-Azuara, Josué; Harou, Julien J; Howitt, Richard E

    2010-11-01

    Given the high proportion of water used for agriculture in certain regions, the economic value of agricultural water can be an important tool for water management and policy development. This value is quantified using economic demand curves for irrigation water. Such demand functions show the incremental contribution of water to agricultural production. Water demand curves are estimated using econometric or optimisation techniques. Calibrated agricultural optimisation models allow the derivation of demand curves using smaller datasets than econometric models. This paper introduces these subject areas then explores the effect of spatial aggregation (upscaling) on the valuation of water for irrigated agriculture. A case study from the Rio Grande-Rio Bravo Basin in North Mexico investigates differences in valuation at farm and regional aggregated levels under four scenarios: technological change, warm-dry climate change, changes in agricultural commodity prices, and water costs for agriculture. The scenarios consider changes due to external shocks or new policies. Positive mathematical programming (PMP), a calibrated optimisation method, is the deductive valuation method used. An exponential cost function is compared to the quadratic cost functions typically used in PMP. Results indicate that the economic value of water at the farm level and the regionally aggregated level are similar, but that the variability and distributional effects of each scenario are affected by aggregation. Moderately aggregated agricultural production models are effective at capturing average-farm adaptation to policy changes and external shocks. Farm-level models best reveal the distribution of scenario impacts.

  13. Veterinary pharmaceutical contamination in mixed land use watersheds: from agricultural headwater to water monitoring watershed.

    PubMed

    Jaffrézic, A; Jardé, E; Soulier, A; Carrera, L; Marengue, E; Cailleau, A; Le Bot, B

    2017-12-31

    Veterinary pharmaceuticals, widely used in intensive livestock production, may contaminate surface waters. Identifying their sources and pathways in watersheds is difficult because i) most veterinary pharmaceuticals are used in human medicine as well and ii) septic or sewer wastewater treatment plants (WWTP) can release pharmaceuticals into surface water, even in agricultural headwater watersheds. This study aimed to analyze the spatiotemporal variability of animal-specific, mixed-use, and human-specific pharmaceuticals, from agricultural headwaters with intensive livestock production and a WWTP to a watershed used for Water Framework Directive monitoring. Grab sampling was performed during one hydrological year upstream and downstream from a WWTP and at three dates in seven nested watersheds with areas of 1.9-84.1km(2). Twenty pharmaceuticals were analyzed. Animal-specific pharmaceuticals were detected at all sampling dates upstream and downstream from the WWTP and at concentrations higher than those of human-specific pharmaceuticals. The predominance of animal-specific and mixed-use pharmaceuticals vs. human-specific pharmaceuticals observed at these sampling points was confirmed at the other sampling points. Animal-specific pharmaceuticals were detected mainly during runoff events and periods of manure spreading. A large percentage of mixed-use pharmaceuticals could come from animal sources, but it was difficult to determine. Mixed-use and human-specific pharmaceuticals predominated in the largest watersheds when runoff decreased. In areas of intensive livestock production, mitigation actions should focus on agricultural headwater watersheds to decrease the number of pathways and the transfer volume of veterinary pharmaceuticals, which can be the main contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Phosphate removal from agricultural drainage water using an iron oxyhydroxide filter material

    USDA-ARS?s Scientific Manuscript database

    Phosphate discharged with agricultural drainage causes water quality degradation on local, regional, and national scales. Iron oxyhydroxide filter materials can potentially remove the soluble phosphate present in drainage waters. Laboratory saturated column experiments and preliminary small-scale ...

  15. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  16. Impact of intensive agricultural practices on drinking water quality in the Evros region (NE Greece) by GIS analysis.

    PubMed

    Nikolaidis, C; Mandalos, P; Vantarakis, A

    2008-08-01

    Chemical fertilizers are used extensively in modern agriculture, in order to improve yield and productivity of agricultural products. However, nutrient leaching from agricultural soil into groundwater resources poses a major environmental and public health concern. The Evros region is one of the largest agricultural areas in Northern Greece, extending over 1.5 million acres of cultivated land. Many of its drinking water resources are of groundwater origin and lie within agricultural areas. In order to assess the impact of agricultural fertilizers on drinking water quality in this region, tap-water samples from 64 different locations were collected and analyzed for the presence of nitrates (NO(3)(-)), nitrites (NO(2)(-)), ammonium (NH(4)(+)), sulfate (SO(4)(-2)) and phosphate (PO(4)(-3)). These chemicals were selected based on the information that ammonium nitrate, ammonium sulfate and inorganic phosphate were the primary fertilizers used in local crop production. NO(3)(-), SO(4)(-2) and PO(4)(-3) levels exceeding accepted values were recorded in 6.25, 4.70 and 9.38% of all sampling points, respectively. NO(2)(-) and NH(4)(+) concentrations, on the other hand, were inside the permitted range. The data generated were introduced into a geographic information system (GIS) program for computer analysis and projection maps representing afflicted areas were created. Our results indicate a profound geographic correlation in the surface distribution of primary contaminants in areas of intensified agricultural production. Thus, drinking water pollution in these areas can be attributed to excessive fertilizer use from agricultural sources.

  17. New technological methods for protecting underground waters from agricultural pollution

    NASA Astrophysics Data System (ADS)

    Mavlyanov, Gani

    2015-04-01

    The agricultural production on the irrigated grounds can not carry on without mineral fertilizers, pesticides and herbicides. Especially it is shown in Uzbekistan, in cultivation of cotton. There is an increase in mineralization, rigidity, quantity of heavy metals, phenols and other pollutions in the cotton fields. Thus there is an exhaustion of stocks of fresh underground waters. In the year 2003 we were offered to create the ecological board to prevent pollution to get up to a level of subsoil waters in the top 30 centimeter layer of the ground. We carried out an accumulation and pollution processing. This layer possesses a high adsorbing ability for heavy metals, mineral oil, mineral fertilizers remnants, defoliants and pesticides. In order to remediate a biological pollution treatment processing should be take into account. The idea is consisted in the following. The adsorption properties of coal is all well-known that the Angren coal washing factories in Tashkent area have collected more than 10 million tons of the coal dust to mix with clays. We have picked up association of anaerobic microorganisms which, using for development, destroys nutrients of coal waste pollutions to a harmless content for people. Coal waste inoculation also are scattered by these microorganisms on the field before plowing. Deep (up to 30 cm) plowing brings them on depth from 5 up to 30 cm. Is created by a plough a layer with necessary protective properties. The norm of entering depends on the structure of ground and the intensity of pollutions. Laboratory experiments have shown that 50% of pollutions can be treated by the ecological board and are processed up to safe limit.

  18. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  19. Multistate Evaluation of Microbial Water and Sediment Quality from Agricultural Recovery Basins.

    PubMed

    Partyka, Melissa L; Bond, Ronald F; Chase, Jennifer A; Kiger, Luana; Atwill, Edward R

    2016-03-01

    Agricultural recovery basins are an important conservation practice designed to provide temporary storage of sediment and water on farms before low-volume discharge. However, food safety concerns have been raised regarding redistribution of captured sediment and water to fields used for human food production. The purpose of this study was to examine the potential microbiological risk that recovery basins may contribute to nearby produce fields and to evaluate characteristics that may influence or mitigate those risks. Water and sediment samples were collected from participating farms in three states and evaluated for bacterial indicators and pathogens over several months. Overall, 45% ( = 48) of water samples and less than 15% ( = 13) of sediment samples were positive for spp. In water samples, the occurrence of was positively associated with the use of surface water as a source of irrigation compared with groundwater as well as log-scale increases in concentration. In sediment samples, was associated with basin location (region) and basin fill levels. Sediment exposed to drying during dewatering had lower concentrations of indicator and a lower proportion of positives than submerged sediment from the same pond. Surrounding landscape characteristics, including vegetative coverage, proximity to livestock operations, and evidence of wildlife, were not correlated with pathogen occurrence in either sediment or water samples, suggesting that although habitat surrounding ponds may be an attractant to wildlife, those features may not contribute to increased pathogen occurrence in agricultural recovery basins. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Set up of an automatic water quality sampling system in irrigation agriculture.

    PubMed

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2013-12-23

    We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season.

  1. The impact of agricultural activities on water quality in oxbow lakes in the Mississippi Delta

    USDA-ARS?s Scientific Manuscript database

    In the Mississippi Delta, agricultural activity is a major source of nonpoint source (NPS) pollutants. Sediment, nutrients and pesticides have been considered as priority NPS pollutants and greatly affect the water quality in this area. The impacts of agricultural activities on water quality in oxbo...

  2. Climate change, water rights, and agriculture: A case study in Idaho

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-05-01

    Water supply is important to agriculture and other consumptive uses in the arid and semiarid climate zones, but it has become increasingly uncertain under a changing climate. More important, how agricultural output will be affected may depend on how water resources are allocated based on the dominant sharing rule, according to Xu et al., who conducted a case study in Idaho.

  3. Interaction between water and defective silica surfaces

    SciTech Connect

    Chen Yunwen; Cheng Haiping

    2011-03-21

    We use the density functional theory method to study dry (1 x 1) {alpha}-quartz (0001) surfaces that have Frenkel-like defects such as oxygen vacancy and oxygen displacement. These defects have distinctively different effects on the water-silica interface depending on whether the adsorbent is a single water molecule, a cluster, or a thin film. The adsorption energies, bonding energies, and charge transfer or redistributions are analyzed, from which we find that the existence of a defect enhances the water molecule and cluster surface interaction by a large amount, but has little or even negative effect on water thin film-silica surface interaction. The origin of the weakening in film-surface systems is the collective hydrogen bonding that compromises the water-surface interaction in the process of optimizing the total energy. For clusters on surfaces, the lowest total energy states lower both the bonding energy and the adsorption energy.

  4. Selected veterinary pharmaceuticals in agricultural water and soil from land application of animal manure.

    PubMed

    Song, Wenlu; Ding, Yunjie; Chiou, Cary T; Li, Hui

    2010-01-01

    Veterinary pharmaceuticals are commonly administered to animals for disease control, and added into feeds at subtherapeutic levels to improve feeding efficiency. As a result of these practices, a certain fraction of the pharmaceuticals are excreted into animal manures. Land application of these manures contaminates soils with the veterinary pharmaceuticals, which can subsequently lead to contamination of surface and groundwaters. Information on the occurrence and fate of pharmaceuticals in soil and water is needed to assess the potential for exposure of at-risk populations and the impacts on agricultural ecosystems. In this study, we investigated the occurrence and fate of four commonly used veterinary pharmaceuticals (amprolium, carbadox, monensin, and tylosin) in a farm in Michigan. Amprolium and monensin were frequently detected in nearby surface water, with concentrations ranging from several to hundreds of nanograms per liter, whereas tylosin or carbadox was rarely found. These pharmaceuticals were more frequently detected in surface runoff during nongrowing season (October to April) than during growing season (May to September). Pharmaceuticals resulting from postharvest manure application appeared to be more persistent than those from spring application. High concentrations of pharmaceuticals in soils were generally observed at the sites where the respective concentrations in surface water were also high. For monensin, the ratios of soil-sorbed to aqueous concentrations obtained from field samples were within the order of the distribution coefficients obtained from laboratory studies. These results suggest that soil is a reservoir for veterinary pharmaceuticals that can be disseminated to nearby surface water via desorption from soil, surface runoff, and soil erosion.

  5. Hydrogeology and potential effects of changes in water use, Carson Desert agricultural area, Churchill County, Nevada

    USGS Publications Warehouse

    Maurer, D.K.; Johnson, A.K.; Welch, A.H.

    1994-01-01

    Implementation of Operating Criteria and Procedures for Newlands Project irrigation and Public Law 101-618 could result in significant reductions of surface water used for agriculture in the Carson Desert, Nevada and thereby could affect recharge through the aquifer system and local groundwater supply. This report summarizes previous studies on how the aquifers are recharged and what controls groundwater flow and quality. A near-surface saturated zone could exist at the top of the shallow aquifer near the central and eastern parts of the basin, where underlying clay beds impede vertical flow. In the basalt aquifer, water levels have declined about 10 ft from pre-pumping levels, and chloride and arsenic concentrations have increased. Conceptual models of the basin suggest that changes in water use in the western part of the basin would probably affect recharge to the shallow, inter- mediate, and basalt aquifers. Installing impermeable lining in canals and removing adjacent land from production could cause water-level declines more than 10 ft in the shallow aquifer as far as 2 mi from lined canals. Reducing recharge to the shallow aquifer by 25,000-50,000 acre-ft/yr beneath 30,000 acres could cause water levels to decline from 4 to 17 ft, depending on the distri- bution of specific yield in the basin. Where water is pumped from a near-surface zone of the shallow aquifer, lower water levels might not greatly affect pumping wells where the zone is thickest, but could cause wells to go dry where the zone is thin.

  6. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  8. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  9. Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas.

    PubMed

    Fujiwara, T

    2012-01-01

    Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources.

  10. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2007-12-01

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost filter materials have the potential to remove nutrient and pesticide contaminants from agricultural drainage waters before these waters are released from the farm site. Batch tests were conducted to find filter materials potentially capable of removing nutrient (nitrate and phosphate) and pesticide (atrazine) contaminants from subsurface drainage waters. For each batch test, stock solution (40 g) and filter material (5 g) were combined in 50 mL Teflon centrifuge tubes and mixed with a rotator for 24 hours. The stock solution contained 50 mg/L nitrate-N, 0.25 mg/L phosphate-P, 0.4 mg/L atrazine, 570 mg/L calcium sulfate, and 140 mg/L potassium chloride. Calcium sulfate and potassium chloride were added so that the stock solution would contain anions and cations normally found in agricultural drainage waters. There were six replicate batch tests for each filter material. At the completion of each test, solution was removed from the centrifuge tube and analyzed for nitrate-N, phosphate-P, and atrazine. A total of 38 filter materials were tested, which were divided into five classes; high carbon content substances, high iron content substances, high aluminum content substances, surfactant modified clay/zeolite, and coal combustion products. Batch test results generally indicate, that with regard to the five classes of filter materials; high carbon content substances adsorbed atrazine very effectively; high iron content substances worked especially well removing almost all of the phosphate present; high aluminum content substances lowered phosphate levels; surfactant modified clay/zeolite substantially reduced both nitrate and atrazine; and coal combustion products

  11. A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia?

    NASA Astrophysics Data System (ADS)

    Lathuillière, Michael J.; Coe, Michael T.; Johnson, Mark S.

    2016-06-01

    The Amazon Basin is a region of global importance for the carbon and hydrological cycles, a biodiversity hotspot, and a potential centre for future economic development. The region is also a major source of water vapour recycled into continental precipitation through evapotranspiration processes. This review applies an ecohydrological approach to Amazonia's water cycle by looking at contributions of water resources in the context of future agricultural production. At present, agriculture in the region is primarily rain-fed and relies almost exclusively on green-water resources (soil moisture regenerated by precipitation). Future agricultural development, however, will likely follow pathways that include irrigation from blue-water sources (surface water and groundwater) as insurance from variability in precipitation. In this review, we first provide an updated summary of the green-blue ecohydrological framework before describing past trends in Amazonia's water resources within the context of land use and land cover change. We then describe green- and blue-water trade-offs in light of future agricultural production and potential irrigation to assess costs and benefits to terrestrial ecosystems, particularly land and biodiversity protection, and regional precipitation recycling. Management of green water is needed, particularly at the agricultural frontier located in the headwaters of major tributaries to the Amazon River, and home to key downstream blue-water users and ecosystem services, including domestic and industrial users, as well as aquatic ecosystems.

  12. Presence of pesticides in surface water from four sub-basins in Argentina.

    PubMed

    De Gerónimo, Eduardo; Aparicio, Virginia C; Bárbaro, Sebastián; Portocarrero, Rocío; Jaime, Sebastián; Costa, José L

    2014-07-01

    Argentina has 31 million hectares given over to agriculture comprising 2.2% of the world's total area under cultivation (Stock Exchange of Rosario, Argentina). Despite the intensity of this agricultural activity, data on pesticide pollution in surface water are rather scarce. In this sense, the aim of this work is to determine the presence of pesticides in surface water of four agricultural sub-basins of Argentine. An environmental monitoring was carried out to determine the impact of twenty-nine pesticides used in agricultural activities on the surface water quality of agricultural areas within the San Vicente, Azul, Buenos Aires southeast and Mista stream sub-basins. The samples were analyzed by solid-phase extraction (SPE) using OASIS HLB 60 mg cartridges and ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC/MSMS) that provided good analytical quality parameters. The southeast of Buenos Aires was the site with the highest frequency of pesticides detection, followed by Azul and San Vicente microbasins. The most detected pesticides, considering all surface water samples, were atrazine, tebuconazole and diethyltoluamide with maximum concentration levels of 1.4, 0.035, and 0.701 μg L(-1), respectively. The results obtained for all basins studied show the presence of residual pesticides in surface waters according the different agricultural activities developed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Multimodeling Framework for Predicting Water Quality in Fragmented Agriculture-Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Rose, J. B.; Guber, A.; Porter, W. F.; Williams, D.; Tamrakar, S.; Dechen Quinn, A.

    2012-12-01

    Both livestock and wildlife are major contributors of nonpoint pollution of surface water bodies. The interactions among them can substantially increase the chance of contamination especially in fragmented agriculture-forest landscapes, where wildlife (e.g. white tailed deer) can transmit diseases between remote farms. Unfortunately, models currently available for predicting fate and transport of microorganisms in these ecosystems do not account for such interactions. The objectives of this study are to develop and test a multimodeling framework that assesses the risk of microbial contamination of surface water caused by wildlife-livestock interactions in fragmented agriculture-forest ecosystems. The framework consists of a modified Soil Water Assessment Tool (SWAT), KINematic Runoff and EROSion model (KINEROS2) with the add-on module STWIR (Microorganism Transport with Infiltration and Runoff), RAMAS GIS, SIR compartmental model and Quantitative Microbial Risk Assessment model (QMRA). The watershed-scale model SWAT simulates plant biomass growth, wash-off of microorganisms from foliage and soil, overland and in-stream microbial transport, microbial growth, and die-off in foliage and soil. RAMAS GIS model predicts the most probable habitat and subsequent population of white-tailed deer based on land use and crop biomass. KINEROS-STWIR simulates overland transport of microorganisms released from soil, surface applied manure, and fecal deposits during runoff events at high temporal and special resolutions. KINEROS-STWIR and RAMAS GIS provide input for an SIR compartmental model which simulates disease transmission within and between deer groups. This information is used in SWAT model to account for transmission and deposition of pathogens by white tailed deer in stream water, foliage and soil. The QMRA approach extends to microorganisms inactivated in forage and water consumed by deer. Probabilities of deer infections and numbers of infected animals are computed

  14. Surface-Water and Ground-Water Resources of Kendall County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Hogan, Jennifer L.; Arnold, Terri L.

    2005-01-01

    Water-supply needs in Kendall County, in northern Illinois, are met exclusively from ground water derived from glacial drift aquifers and bedrock aquifers open to Silurian, Ordovician, and Cambrian System units. As a result of population growth in Kendall County and the surrounding area, water use has increased from about 1.2 million gallons per day in 1957 to more than 5 million gallons per day in 2000. The purpose of this report is to characterize the surface-water and ground-water resources of Kendall County. The report presents a compilation of available information on geology, surface-water and ground-water hydrology, water quality, and water use. The Fox River is the primary surface-water body in Kendall County and is used for both wastewater disposal and as a drinking-water supply upstream of the county. Water from the Fox River requires pretreatment for use as drinking water, but the river is a potentially viable additional source of water for the county. Glacial drift aquifers capable of yielding sufficient water for municipal supply are expected to be present in northern Kendall County, along the Fox River, and in the Newark Valley and its tributaries. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, with the exception of the southeastern portion. Volatile organic compounds and select trace metals and pesticides have been detected at low concentrations in glacial drift aquifers near waste-disposal sites. Agricultural-related constituents have been detected infrequently in glacial drift aquifers near agricultural areas. However, on the basis of the available data, widespread, consistent problems with water quality are not apparent in these aquifers. These aquifers are a viable source for additional water supply, but would require further characterization prior to full development. The shallow bedrock aquifer is composed of the sandstone units of the Ancell Group, the Prairie du Chien

  15. Evaluation of surface renewal and flux-variance methods above agricultural and forest surfaces

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Katul, G. G.; Noormets, A.; Poznikova, G.; Domec, J. C.; Trnka, M.; King, J. S.

    2016-12-01

    Measurements of turbulent surface energy fluxes are of high interest in agriculture and forest research. During last decades, eddy covariance (EC), has been adopted as the most commonly used micrometeorological method for measuring fluxes of greenhouse gases, energy and other scalars at the surface-atmosphere interface. Despite its robustness and accuracy, the costs of EC hinder its deployment at some research experiments and in practice like e.g. for irrigation scheduling. Therefore, testing and development of other cost-effective methods is of high interest. In our study, we tested performance of surface renewal (SR) and flux variance method (FV) for estimates of sensible heat flux density. Surface renewal method is based on the concept of non-random transport of scalars via so-called coherent structures which if accurately identified can be used for the computing of associated flux. Flux variance method predicts the flux from the scalar variance following the surface-layer similarity theory. We tested SR and FV against EC in three types of ecosystem with very distinct aerodynamic properties. First site was represented by agricultural wheat field in the Czech Republic. The second site was a 20-m tall mixed deciduous wetland forest on the coast of North Carolina, USA. The third site was represented by pine-switchgrass intercropping agro-forestry system located in coastal plain of North Carolina, USA. Apart from solving the coherent structures in a SR framework from the structure functions (representing the most common approach), we applied ramp wavelet detection scheme to test the hypothesis that the duration and amplitudes of the coherent structures are normally distributed within the particular 30-minutes time intervals and so just the estimates of their averages is sufficient for the accurate flux determination. Further, we tested whether the orthonormal wavelet thresholding can be used for isolating of the coherent structure scales which are associated with

  16. Determination of antibiotic residues in manure, soil, and surface waters

    USGS Publications Warehouse

    Christian, T.; Schneider, R.J.; Farber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E.

    2003-01-01

    In the last years more and more often detections of antimicrobially active compounds ("antibiotics") in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run-off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1...2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 ??g/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.

  17. Streaks Of Colored Water Indicate Surface Airflows

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1994-01-01

    Response faster and contamination less than in oil-flow technique. Flowing colored water provides accurate and clean way to reveal flows of air on surfaces of models in wind tunnels. Colored water flows from small orifices in model, forming streak lines under influence of air streaming over surface of model.

  18. Streaks Of Colored Water Indicate Surface Airflows

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1994-01-01

    Response faster and contamination less than in oil-flow technique. Flowing colored water provides accurate and clean way to reveal flows of air on surfaces of models in wind tunnels. Colored water flows from small orifices in model, forming streak lines under influence of air streaming over surface of model.

  19. Driving force analysis of the agricultural water footprint in China based on the LMDI method.

    PubMed

    Zhao, Chunfu; Chen, Bin

    2014-11-04

    China's water scarcity problems have become more severe because of the unprecedented economic development and population explosion. Considering agriculture's large share of water consumption, obtaining a clear understanding of Chinese agricultural consumptive water use plays a key role in addressing China's water resource stress and providing appropriate water mitigation policies. We account for the Chinese agricultural water footprint from 1990 to 2009 based on bottom up approach. Then, the underlying driving forces are decomposed into diet structure effect, efficiency effect, economic activity effect, and population effect, and analyzed by applying a log-mean Divisia index (LMDI) model. The results reveal that the Chinese agricultural water footprint has risen from the 94.1 Gm3 in 1990 to 141 Gm3 in 2009. The economic activity effect is the largest positive contributor to promoting the water footprint growth, followed by the population effect and diet structure effect. Although water efficiency improvement as a significant negative effect has reduced overall water footprint, the water footprint decline from water efficiency improvement cannot compensate for the huge increase from the three positive driving factors. The combination of water efficiency improvement and dietary structure adjustment is the most effective approach for controlling the Chinese agricultural water footprint's further growth.

  20. Black water sludge reuse in agriculture: are heavy metals a problem?

    PubMed

    Tervahauta, Taina; Rani, Sonia; Hernández Leal, Lucía; Buisman, Cees J N; Zeeman, Grietje

    2014-06-15

    Heavy metal content of sewage sludge is currently the most significant factor limiting its reuse in agriculture within the European Union. In the Netherlands most of the produced sewage sludge is incinerated, mineralizing the organic carbon into the atmosphere rather than returning it back to the soil. Source-separation of black water (toilet water) excludes external heavy metal inputs, such as industrial effluents and surface run-offs, producing sludge with reduced heavy metal content that is a more favorable source for resource recovery. The results presented in this paper show that feces is the main contributor to the heavy metal loading of vacuum collected black water (52-84%), while in sewage the contribution of feces is less than 10%. To distinguish black water from sewage in the sludge reuse regulation, a control parameter should be implemented, such as the Hg and Pb content that is significantly higher in sewage sludge compared to black water sludge (from 50- to 200-fold). The heavy metals in feces and urine are primarily from dietary sources, and promotion of the soil application of black water sludge over livestock manure and artificial fertilizers could further reduce the heavy metal content in the soil/food cycle.

  1. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff

    PubMed Central

    Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684

  2. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    PubMed

    Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  3. Water quality response to riparian restoration in an agricultural watershed in Vermont, USA.

    PubMed

    Meals, D W

    2001-01-01

    Achievement of management goals for Lake Champlain (Vermont/New York, USA and Quebec, Canada) will require reduction of agricultural phosphorus loads, the dominant nonpoint source in the Basin. Cost-effective phosphorus reduction strategies need reliable treatment techniques beyond basic cropland and waste management practices. The Lake Champlain Basin Agricultural Watersheds National Monitoring Program (NMP) Project evaluates the effectiveness of livestock exclusion, streambank protection, and riparian restoration practices in reducing concentrations and loads of nutrients, sediment, and bacteria in surface waters. Treatment and control watersheds in northwestern Vermont have been monitored since 1994 according to a paired-watershed design. Monitoring consists of continuous stream discharge recording, flow-proportional sampling for total P, total Kjeldahl N, and total suspended solids, grab sampling for indicator bacterial, and land use/agricultural monitoring. Strong statistical calibration between the control and treatment watersheds has been achieved. Installation of riparian fencing, protected stream crossings, and streambank bioengineering was completed in 1997. Early post-treatment data suggest significant reduction in P concentrations and loads and in bacteria counts in the treated watershed. Monitoring is scheduled to continue through 2000.

  4. Autohydrolysis of tropical agricultural residues by compressed liquid hot water pretreatment.

    PubMed

    Imman, Saksit; Arnthong, Jantima; Burapatana, Vorakan; Laosiripojana, Navadol; Champreda, Verawat

    2013-08-01

    Pretreatment is an essential step in biorefineries for improving digestibility of recalcitrant agricultural feedstocks prior to enzymatic hydrolysis to composite sugars, which can be further converted to fuels and chemicals. In this study, autohydrolysis by compressed liquid hot water (LHW) pretreatment of various tropical agricultural residues including sugarcane bagasse (BG), rice straw (RS), corn stover (CS), and empty palm fruit bunch (EPFB) was investigated. It was found that LHW pretreatment at 200 °C for 5-20 min resulted in high levels of hemicellulose solubilization into the liquid phase and marked improvement on enzymatic digestibility of the solid cellulose-enriched residues. The maximal yields of glucose and pentose were 409.8-482.7 mg/g and 81.1-174.0 mg/g of pretreated substrates, respectively. Comparative analysis based on severity factor showed varying susceptibility of biomass to LHW in the order of BG> RS> CS> EPFB. Structural analysis revealed surface modification of the pretreated biomass along with an increase in crystallinity index. Overall, 75.7-82.3 % yield of glucose and 27.4-42.4 % yield of pentose from the dried native biomass was recovered in the pretreated solid residues, while 18.3-29.7 % of pentoses were recovered in the liquid phase with dehydration by-product concentration under the threshold for ethanologens. The results suggest the potential of LHW as an efficient pretreatment strategy for implementation in biorefineries operated using various seasonal agricultural feedstocks.

  5. Gray solitons on the surface of water.

    PubMed

    Chabchoub, A; Kimmoun, O; Branger, H; Kharif, C; Hoffmann, N; Onorato, M; Akhmediev, N

    2014-01-01

    The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrödinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons.

  6. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in

  7. Multi objectives model to optimise the economical value of agriculture water use in Gaza Strip

    NASA Astrophysics Data System (ADS)

    Ouda, O.; Bardossy, A.

    2003-04-01

    Multi objectives model to optimise the economical value of agriculture water use in Gaza Strip. O. Ouda (1), A. Bárdossy (1) (1) Institut fuer Wasserbau, Universitaet Stuttgart Fax: +49-(0)711-685-4746/ e-mail: omar.ouda@iws.uni-stuttgart.de Key words: Multi objectives model, agriculture water use, and Gaza Strip. ============================================================================ Abstract The Gaza Strip faces a serious water shortage problem, with a present water shortage of about 61 Mm3/year. The problem is projected to become even larger in the future due to a high population growth of about 3.2%. The water deficit is presently covered by abstraction of the groundwater beyond the sustainable yield, where groundwater is the only natural source in Gaza strip. Irrigated agriculture consumed about 60% (90 Mm3/year) of water in Gaza strip. The economical value of water used for agriculture propose is very low in comparison with water opportunity cost of 1 US/m3 , ( seawater desalination cost). A Multi objective optimisation model (MOM) based on mathematical programming techniques aimed to optimise the economical return value of agriculture water use has been formulated, where 20 crops distributed over 16 zones have been considered. The available agriculture area, Available treated wastewater, Local agriculture products demand were considered as constrains. Irrigation water demand for each crop for three meteorological conditions dry, wet and average year, and Average product prices were considered as variables. A modification of the MOM models has been made toward equitable profit distribution (US/hectare) among the different 16 zones, where additional constrain of minimum profit per hectare in each zone has been implemented. Finally a sensitivity analysis for the effect of water price, crop price and crop products demand on the model output has been made. The MOM presents a good analytical basis for policy makers toward optimising the economical return of

  8. The Contribution of Agricultural Trade for Saving Blue Water in Arid Regions

    NASA Astrophysics Data System (ADS)

    Rolinski, S.; Biewald, A.; Hoff, H.; Lotze-Campen, H.

    2011-12-01

    Trade can mitigate local water scarcity in water scarce regions, but does not always do so because of economic or other pressures to export water intensive products. To assess impacts of trade on blue and green water use in agriculture, we apply two dynamic, global and spatially explicit models. The vegetation and crop model LPJmL calculates water use and crop productivity. Based on the potential agricultural yield of LPJmL, the economic model MAgPIE_trade produces landuse pattern for the most important agricultural production in 10 economic world regions; bilateral trade is controlled by transport costs and trade barriers. We quantify the trade effect by comparing scenarios with and without trade for current and predicted future climatic conditions. The resulting differences in the spatial patterns (0.5° resolution) of agricultural production from MAgPIE_trade enables the quantification of the amount of goods produced for export. Using the consumptive green and blue water fluxes from LPJmL for each agricultural product, the export of virtual water uses are calculated so that water saving or consumption due to trade can be quantified. Although an interesting result in itself, an estimate for relaxation or intensification of water scarcity by trade is still missing. Here, the water shadow price from MAgPIE_trade as an indicator for water scarcity is related to the actual change in blue water usage. This relation is then taken as an indicator for the efficiency of trade on the local savings of blue water.

  9. Desert agricultural terrace systems at EBA Jawa (Jordan) - Layout, water availability and efficiency

    NASA Astrophysics Data System (ADS)

    Meister, Julia; Krause, Jan; Müller-Neuhof, Bernd; Portillo, Marta; Reimann, Tony; Schütt, Brigitta

    2016-04-01

    Located in the arid basalt desert of northeastern Jordan, the Early Bronze Age (EBA) settlement of Jawa is by far the largest and best preserved archaeological EBA site in the region. Recent surveys in the close vicinity revealed well-preserved remains of three abandoned agricultural terrace systems. In the presented study these archaeological features are documented by detailed mapping and the analysis of the sediment records in a multi-proxy approach. To study the chronology of the terrace systems optically stimulated luminescence (OSL) is used. In order to evaluate the efficiency of the water management techniques and its impact on harvest yields, a crop simulation model (CropSyst) under today's climatic conditions is applied, simulating crop yields with and without (runoff) irrigation. In order to do so, a runoff time series for each agricultural terrace system and its catchment is generated, applying the SCS runoff curve number method (CN) based on rainfall and soil data. Covering a total area of 38 ha, irrigated terrace agriculture was practiced on slopes, small plateaus, and valleys in the close vicinity of Jawa. Floodwater from nearby wadis or runoff from adjacent slopes was collected and diverted via surface canals. The terraced fields were arranged in cascades, allowing effective water exploitation through a system of risers, canals and spillways. The examined terrace profiles show similar stratigraphic sequences of mixed unstratified fine sediments that are composed of small-scale relocated sediments with local origin. The accumulation of these fines is associated with the construction of agricultural terraces, forcing infiltration and storage of the water within the terraces. Two OSL ages of terrace fills indicate that the construction of these terrace systems started as early as 5300 ± 300 a, which fits well to the beginning of the occupation phase of Jawa at around 3.500 calBC, thus making them to the oldest examples of its kind in the Middle East

  10. Virtual water flows related to land use in an intensive agriculture in the Fergana Valley, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Klipstein, A.; Schneider, K.; Breuer, L.; Frede, H. G.

    2009-04-01

    Due to low annual precipitation, agricultural production in Uzbekistan is depending on irrigation from the Syrdarya and Amudarya rivers to a great deal. One of the most important cash crops of the country is cotton. Current irrigation management leads to elevated groundwater levels, salinization of soils and to a degradation of soil and water resources. Through export of cotton and other crops, the problems related to water consumption and water management are transported beyond the producing country. The amount of water transported through production and export is referred to as virtual water. To distinguish between productive and unproductive partitioning of water flows, the terms green and blue water have been introduced. Information on virtual water flows due to crop production usually only exist on country level. To reduce uncertainties related to generalization, the effect of land management and environmental factors on the partitioning of water flows needs to be studied on smaller scales. The presented study analyzes water fluxes in an intensively used agricultural area in the Fergana Valley, Uzbekistan. The study aims to a) quantify crop specific water consumption in agricultural production under current management and b) analyze water use efficiency as subject to land use and irrigation management. Based on crop production, irrigation management and environmental conditions in the study area, virtual water flows will be calculated on the level of agricultural collectives (Water Users Associations). In a further step, the partitioning of green and blue water fluxes will be quantified. Alternative scenarios for improved water management will be analyzed in a model study.

  11. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  12. Modelling the water-agricultural sector in Rosetta, Egypt: exploring the interaction between water and food

    NASA Astrophysics Data System (ADS)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia; Savic, Dragan; Kapelan, Zoran

    2014-05-01

    An integrated System Dynamics Model for the Rosetta region, Egypt, assessing local water balance and agricultural yield to 2050, is presented. Fifty-seven simulations are analysed to better understand potential impacts on water and food security resulting from climate and social change and local/regional policy decisions related to the agricultural sector. Water limitation is a national issue: Egypt relies on the Nile for >95% of supply, and the flow of which is regulated by the Aswan High Dam. Egypt's share water of Aswan water is limited to 55 x 19 m3 yr-1. Any reduction in supply to the reservoir or increase in demand (e.g. from an expanding agricultural sector), has the potential to lead to a serious food and water supply situation. Results show current water resource over-exploitation. The remaining suite of 56 simulations, divided into seven scenarios, also mostly show resource overexploitation. Only under significant increases to Nile flow volumes was the trend reversed. Despite this, by threading together multiple local policies to reduce demand and improve/maintain supply, water resource exploitation can be mitigated while allowing for agricultural development. By changing cropping patterns, it is possible to improve yield and revenue, while using up to 21% less water in 2050 when compared with today. The results are useful in highlighting pathways to improving future water resource availability. Many policies should be considered in parallel, introducing redundancy into the policy framework. We do not suggest actual policy measures; this was beyond the scope of the work. This work highlights the utility of systems modelling of complex systems such as the water-food nexus, with the potential to extend the methodology to other studies and scales. In particular, the benefit of being able to easily modify and extend existing models in light of results from initial modelling efforts is cited. Analysis of initial results led to the hypothesis that by producing

  13. Water repellency, plants, agriculture abandonment and fire in citrus plantations. The Canyoles river watershed study site

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Jordán, Antonio; Doerr, Stefan Helmut

    2017-04-01

    Soil water repellency (SWR) is a key soil property that determine the soil and water losses, soil fertility and plant development. Although until the 90's the soil water repellency was seeing as an uncommon soil characteristic, now is considered a key soil property to understand the soil hydrology (Alanís et al., 2016; Hewelke et al., 2016; Keesstra et al., 2016; Jiménez-Morillo et al., 2016). The inspiring research of Leonard DeBano and Stefan H Doerr changed the fate of the science (DeBano, 2000; Doerr et al. 2000). Soil water repellency was associated to forest fire affected land due to the pioneer contribution of professor DeBano in the 70's and Professor Doerr in the 90's. The research during the last two decades demonstrate that fire affects the reallocation of the hydrophobic substances and can reduce or increase the severity of the soil water repellence at different soil depths and horizons. The SWR is usually measured by sampling to show the influence of key soil properties (texture, structure, plant cover, litter, season…) on the degree of soil water repellency. The sampling is applied usually with a few drops when the Water Drop Penetration Time method is applied, and this inform of the time of penetration, but few researches focussed in the spatial distribution of the water repellency, which is a key factor of the runoff generation, the water infiltration and the water redistribution such as demonstrate the wetting fronts. Our approach research the spatial distribution of the water repellency by means of an intense sampling of soil surface water repellency. One thousand drops were distributed in a square meter (100 lines separated 1 cm and 100 drops per each line of 100 cm, with a total od 1000 drops in 1m2) on 10 sampling points on 4 land managements: ploughing and herbicide agriculture fields treatment), abandoned 10 years, and burnt. The research was carried out in citrus plantations of the Canyoles river watershed. The results show that the

  14. The Role of Windbreaks in Reducing Water Resources Use in Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; de Vries, T. T.

    2014-12-01

    Windbreaks are common features in flat agricultural landscapes around the world. The reduction in wind speed afforded by windbreaks is dictated by their porosity, location, height, and distance from the windbreak. The reduction in wind speeds not only reduces potential wind erosion; it also reduces crop evapotranspiration (ET) and provides shelter for livestock and crops. In the Canterbury plains of New Zealand there are over 300,000 km of windbreaks which were first implemented as a soil conservation strategy to reduce wind erosion of prime agricultural land. Agriculture in the region has since changed to irrigated pasture cultivation for dairy production and windbreaks are being cut down or reduced to heights of 2 m to allow for large scale centre-pivot irrigation schemes. Although soil erosion is no longer a major concern due to permanent pasture cover, irrigation water is sourced from limited supplies of ground and surface water and thus the effects of wind on irrigation losses due to spray drift and increased ET are of significant concern. The impact of reducing windbreaks needs to be understood in terms of water resources use. Experimental and theoretical work was conducted to quantify the reduction in wind speeds by windbreaks and in spray evaporation losses. A temporal and spatial model was also developed and validated to quantify the impact of single and multiple windbreaks on irrigation water losses. Initial modelling results show that for hot windy dry conditions in Canterbury, ET can increase by up to 1.4 mm/day when windbreaks are reduced to 2 m in height and on average wind days ET can increase by up to 0.5 mm/day. ET can be reduced by up to 30% in the windbreak leeward zone relative to ET in areas not protected by windbreaks. Wind speed, air temperature and relative humidity all had a considerable impact on spray evaporation losses, but the extent is determined by the droplet size. Estimated losses range from only 0.07% to 67% for 5 and 0.2 mm

  15. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  16. Short-term Effects of Great Cormorant Droppings on Water Quality and Microbial Community of an Artificial Agricultural Reservoir.

    PubMed

    Han, Il; Yoo, Keunje; Wee, Gui Nam; No, Jee Hyun; Park, Jungwon; Min, So Jin; Kim, Seong Heon; Leea, Tae Kwon

    2017-03-01

    Agricultural reservoirs are established to improve the management of water resources. Waterbirds in protected waters have become a nuisance, however, as nutrients from fecal deposits transported by the waterbirds have served to severely deteriorate water quality. Despite the importance of clean water resources, the microecology of small agricultural reservoirs regularly colonized by transitory waterbirds are seldom reviewed. To improve our understanding of the influence of waterbirds on small bodies of water, a microcosm study was conducted using water and sediment from an agricultural reservoir inhabited by 300 to 500 great cormorants. Temporal changes in total nitrogen, total phosphorous, chemical oxygen demand, NH-N, PO-P, and chlorophyll-a concentrations, in addition to the microbial community, were evaluated for microcosms containing 0, 0.5, 1.0, and 5.0 g of feces collected from a great cormorant colony. Chemical analysis of the water microcosm revealed that all microcosms showed both immediate and prolonged increases in nutrients due to the addition of feces. Additionally, a mere 0.5 g of feces doubled the concentration of chlorophyll-a from 2.1 ± 0.99 to 5.2 ± 1.1 μg L within 1 mo. Nonmetric multidimensional scaling of the microbial community structure revealed disturbances in both water and sediment microcosms. Disturbances to the microbial community in the water microcosm were significant only when 5.0 g of feces was added; however, disturbances to sediment microbial communities were induced by a smaller mass of feces. These results confirm the short-term water quality impairment and shift in microbial community structure caused by waterbird droppings and bird colony surface runoff in an agricultural reservoir.

  17. Irrigated agriculture in Italy and water regulation under the European Union water framework directive

    NASA Astrophysics Data System (ADS)

    Bazzani, G. M.; di Pasquale, S.; Gallerani, V.; Viaggi, D.

    2004-07-01

    The legal framework in the EU is faced today with the new water framework directive (WFD) (60/2000) that sets up new criteria for water management, regulation, and pricing. The aim of this paper is to analyze the problem of water regulation in agriculture in connection to the WFD. This is done by setting up and testing a simulation model based on the integration of a mathematical programming model at farm level and an optimal regulation model at the level of irrigation boards. The model allows quantifying water demand and optimal regulation from the policy maker's point of view. When implementing both full cost recovery and the polluter pays principle, the results show likely major impacts of water pricing on farm income and employment. The optimal policy is a combination of pricing instruments related at the same time to crop mix, water consumption, and pollution. Transaction costs connected to policy implementation have to be weighted against the incentive benefits of volumetric pricing. Altogether, economic, social, and environmental issues have to be carefully considered in order to design suitable water policies.

  18. Reconnaissance of water quality in the High Plains Aquifer beneath agricultural lands, south-central Kansas

    USGS Publications Warehouse

    Stullken, L.E.; Stamer, J.K.; Carr, J.E.

    1987-01-01

    The High Plains of western Kansas was one of 14 areas selected for preliminary groundwater quality reconnaissance by the U.S. Geological Survey 's Toxic Waste--Groundwater Contamination Program. The specific objective was to evaluate the effects of land used for agriculture (irrigated cropland and non-irrigated rangeland) on the water in the High Plains aquifer. Conceptual inferences, based on the information available, would lead one to expect groundwater beneath irrigated cropland to contain larger concentrations of sodium, sulfate, chloride, nitrite plus nitrate, and some water soluble pesticides than water beneath non-irrigated land (range-land) The central part of the Great Bend Prairie, an area of about 1,800 sq mi overlying the High Plains aquifer in south-central Kansas, was selected for the study of agricultural land use because it has sand soils, a shallow water table, relatively large annual precipitation, and includes large areas that are exclusively irrigated cropland or non-irrigated rangeland. As determined by a two-tailed Wilcoxon rank-sum test, concentrations of sodium and alkalinity were significantly larger at the 95% confidence level for water samples from beneath irrigated cropland than from beneath rangeland. No statistically significant difference in concentrations of sulfate, chloride, nitrite plus nitrate, and ammonia, was detected. Concentrations of 2,4-D found in water samples from beneath the rangeland were larger at the 99% confidence level as compared to concentrations of 2,4-D in samples from beneath irrigated cropland. Larger concentrations of sodium and alkalinity were found in water beneath irrigated cropland, and the largest concentration of the pesticide atrazine (triazines were found in three samples) was found in water from the only irrigation well sampled. The sodium and atrazine concentrations found in water from the irrigation well support the premise that water-level drawdown develops under irrigated fields. This diverts

  19. Agricultural land use and N losses to water: the case study of a fluvial park in northern Italy.

    PubMed

    Morari, F; Lugato, E; Borin, M

    2003-01-01

    An integrated water resource management programme has been under way since 1999 to reduce agricultural water pollution in the River Mincio fluvial park. The experimental part of the programme consisted of: a) a monitoring phase to evaluate the impact of conventional and environmentally sound techniques (Best Management Practices, BMPs) on water quality; this was done on four representative landscape units, where twelve fields were instrumented to monitor the soil, surface and subsurface water quality; b) a modelling phase to extend the results obtained at field scale to the whole territory of the Mincio watershed. For this purpose a GIS developed in the Arc/Info environment was integrated into the CropSyst model. The model had previously been calibrated to test its ability to describe the complexity of the agricultural systems. The first results showed a variable efficiency of the BMPs depending on the interaction between management and pedo-climatic conditions. In general though, the BMPs had positive effects in improving the surface and subsurface water quality. The CropSyst model was able to describe the agricultural systems monitored and its linking with the GIS represented a valuable tool for identifying the vulnerable areas within the watershed.

  20. Surface water pesticide modelling for decision support in drinking water production

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Dams, Jef; Bronders, Jan; Peleman, Gisèle; Verdickt, Liesbeth

    2015-04-01

    The occurrence of pesticides and other contaminants in river systems may compromise the use of surface water for drinking water production. To reduce the cost of removal of pesticides from the raw water, drinking water companies can: search for other raw water sources, invest in water storage capacity to overcome periods with high pesticide concentrations (often related to the application period), or impose measures to reduce the emission of pesticides to surface water (i.e. sustainable application strategies or use restrictions). To select the most appropriate water management options, the costs and effects of the aforementioned actions need to be evaluated. This evaluation requires knowledge on the concentrations and loads of pesticides at the point of drinking water abstraction, as well as insight in the contribution and the temporal variability of different sources or subbasins. In such a case, a modelling approach can assist in generating measurement-based datasets and to compare different scenarios for water management. We illustrate how a modelling approach can provide decision support for water management related to drinking water abstraction from surface water in a catchment that suffers from elevated pesticide concentrations. The study area is a water production center (WPC) located in northwestern Belgium. The WPC abstracts raw water from the river IJzer or from a natural pond and its connected streams. The available quantities as well as the quality of the water vary throughout the year. The WPC uses a reservoir of 3 million m³ to capture and store raw water to overcome periods with limited water availability and/or poor water quality. However, the pressure on water increases and in the future this buffering capacity might be no longer sufficient to fulfill the drinking water production demand. A surface water quality model for the area is set up using InfoWorks RS. The model is applied to obtain insight in the concentrations and loads at the different

  1. Risk-Cost-Benefit Analysis Of Atrazine In Drinking Water From Agricultural Activities

    NASA Astrophysics Data System (ADS)

    Aklilu, T. A.; Jagath, K. J.; Arthur, C. J.

    2004-12-01

    This study provides a new methodology for investigating the trade-offs between the health risks and economic benefits of using atrazine in the agricultural sector and a more holistic insight to pesticide management issues. Regression models are developed to predict the stream atrazine concentrations and finished water atrazine concentration at high-risk community water supplies in the US using surface water. The predicted finished water atrazine concentrations are then used in health risk assessment. The computed health risks are compared with the total surplus in the US corn market for different atrazine application rates using the demand and supply functions developed in this work. Analysis of different scenarios with consumer price premiums (preferences) for chemical-free to reduced chemical corn provided interesting results on the potential for future pesticide and land use management. This is an interdisciplinary work that has attempted to integrate and consider the interaction between weed sciences, economics, water quality, human health risk and human reaction to changes in different pesticide use scenarios. The results showed that this methodology provides a scientific framework for future decision-making and policy evaluation in pesticide management, especially when better regional and national data are available.

  2. A Review of Surface Water Quality Models

    PubMed Central

    Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

  3. A review of surface water quality models.

    PubMed

    Wang, Qinggai; Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries.

  4. Evaluating the Impacts of an Agricultural Water Market in the Guadalupe River Basin, Texas: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.

    2014-12-01

    Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.

  5. Post-processing GCM daily rainfall and temperature forecasts for applications in water management and agriculture

    NASA Astrophysics Data System (ADS)

    Schepen, Andrew; Wang, Qj; Everingham, Yvette; Zhao, Tongtiegang

    2017-04-01

    Ensemble time series forecasts of rainfall and temperature up to six months ahead are sought for applications in water management and agricultural production. Raw GCM forecasts are generally not suitable for direct use in hydrological models or agricultural production simulators and must be post-processed first, to ensure they are reliable, as skilful as possible, and have realistic temporal patterns. In this study, we test two post-processing approaches to produce daily forecasts for cropping regions and water supply catchments in Australia. In the first approach, we apply the calibration, bridging and merging (CBaM) method to produce statistically reliable monthly forecasts based on GCM outputs of rainfall, temperature and sea surface temperatures. We then disaggregate the monthly forecasts to obtain realistic daily time series forecasts that can be used as inputs to crop and hydrological models. In the second approach, we develop a method for directly post-processing daily GCM forecasts using a Bayesian joint probability (BJP) model. We demonstrate and evaluate the two approaches through a case study for the Tully sugar region in north-eastern Australia. The daily post-processed forecasts will benefit applications in streamflow forecasting and crop yield forecasting.

  6. Selenium stable isotope ratios in California agricultural drainage water management systems

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Tanji, K.K.; Gao, S.; Bullen, T.D.

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%o) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(O), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%o) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%o) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  7. Selenium stable isotope ratios in California agricultural drainage water management systems.

    PubMed

    Herbel, Mitchell J; Johnson, Thomas M; Tanji, Kenneth K; Gao, Suduan; Bullen, Thomas D

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(0), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  8. Surface water retention systems for cattail production as a biofuel.

    PubMed

    Berry, Pamela; Yassin, Fuad; Grosshans, Richard; Lindenschmidt, Karl-Erich

    2017-12-01

    Surface water retention systems act to reduce nutrient pollution by collecting excess nutrients within a watershed via runoff. Harvesting aquatic biomass, such as the invasive cattail, from retention systems removes nutrients absorbed by the plant from the ecosystem permanently. Harvested biomass can be used as a renewable energy source in place of fossil fuels, offsetting carbon emissions. The purpose of this research was to simulate cattail harvest from surface water retention systems to determine their ability to provide suitable growing conditions with annual fluctuations in water availability. The economic and environmental benefits associated with nutrient removal and carbon offsets were also calculated and monetized. A proposed upstream and existing downstream water retention system in southern Manitoba were modelled using a system dynamics model with streamflow inputs provided by a physical hydrologic model, Modélisation Environmentale Communautaire - Surface and Hydrology (MESH). Harvesting cattail and other unconventional feedstocks, such as reeds, sedges, and grasses, from retention systems provided a viable revenue stream for landowners over a ten-year period. This practice generates income for landowners via biomass and carbon credit production on otherwise underutilized marginal cropland invaded with cattail. The economic benefits promote wetland habitat restoration while managing cattail growth to maintain biodiversity. Excess nitrogen and phosphorus are also removed from the ecosystem, reducing downstream nutrient loading. Utilizing surface water retention systems for cattail harvest is a best management strategy for nutrient retention on the landscape and improving agricultural resilience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality.

    PubMed

    Udeigwe, Theophilus K; Eze, Peter N; Teboh, Jasper M; Stietiya, Mohammed H

    2011-01-01

    Contaminants such as nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), arsenic (As), heavy metals, and infectious pathogens are often associated with agricultural systems. Various soil and water remediation techniques including the use of chemical amendments have been employed to reduce the risks associated with these contaminants. This paper reviews the use of chemical amendments for immobilizing principal agricultural contaminants, the chemistry of contaminant immobilization, and the environmental consequences associated with the use of these chemical products. The commonly used chemical amendments were grouped into aluminum-, calcium-, and iron-containing products. Other products of interest include phosphorus-containing compounds and silicate clays. Mechanisms of contaminant immobilization could include one or a combination of the following: surface precipitation, adsorption to mineral surfaces (ion exchange and formation of stable complexes), precipitation as salts, and co-precipitation. The reaction pH, redox potential, clay minerals, and organic matter are potential factors that could control contaminant-immobilization processes. Reviews of potential environmental implications revealed that undesirable substances such as trace elements, fluoride, sulfate, total dissolved solids, as well as radioactive materials associated with some industrial wastes used as amendment could be leached to ground water or lost through runoff to receiving water bodies. The acidity or alkalinity associated with some of the industrial-waste amendments could also constitute a substantial environmental hazard. Chemical amendments could introduce elements capable of inducing or affecting the activities of certain lithotrophic microbes that could influence vital geochemical processes such as mineral dissolution and formation, weathering, and organic matter mineralization. Published by Elsevier Ltd.

  10. Analysis of national water-pollution-control policies. 2. Agricultural sediment control

    SciTech Connect

    Gianessi, L.P.; Peskin, H.M.

    1981-08-01

    A national water network model is used to analyze the likely effects of agricultural sediment-control policies on the quality of the nation's waters. This analysis is believed superior to previous assessments based mainly on erosion estimates without accounting for the characteristics of the receiving water or the contribution of pollutants from nonagricultural activities. Specifically, while the earlier assessments concluded that agriculture-related pollution problems are widespread and ubiquitous, this analysis concludes that it is probably more efficient to focus sediment-related pollution-control policies on about one third of the nation's agricultural regions. 30 references, 5 figures, 11 tables.

  11. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching).

    NASA Astrophysics Data System (ADS)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin

    2014-05-01

    Despite best management practices, agriculture is still facing major challenges to reduce nutrients leaching to the aquatic environment. In deltas, most of total nutrient losses from artificially drained agricultural soils are discharged via drains. Controlled drainage is a promising measure to prevent drainage of valuable nutrients, improve water quality and agricultural yield and adapt to climate change (reduce peak runoff, manage water scarcity and drought). In The Netherlands, this technique has attracted much attention by water managers and farmers alike, yet field studies to determine the expected (positive) effects for Dutch conditions were scarce. Recently, a field experiment was set up on clay soils. Research questions were: how does controlled, subsurface drainage perform on clay soils? Will deeper tile drains function just as well? What are the effects on drain water quality (especially with respect to nitrogen and salt) and crop yield? An agricultural field on clay soils was used to test different tile drainage configurations. Four types of tile drainage systems were installed, all in duplicate: eight plots in total. Each plot has its own outlet to a control box, where equipment was installed to control drain discharge and to measure the flow, concentrations of macro-ions, pH, nitrogen, N-isotopes and heavy metals. In each plot, groundwater observation wells and suction cups are installed in the saturated and vadose zones, at different depths, and crop yield is determined. Four plots discharge into a hydrologic isolated ditch, enabling the determination of water- and nutrient balances. Automatic drain water samplers and innovative nitrate sensors were installed in four plots. These enable identification and unravelling so-called first flush effects (changes in concentrations after a storm event). Water-, chloride- and nitrogen balances have been set up, and the interaction between groundwater and surface water has been quantified. The hydrological

  12. Water vapor retrieval over many surface types

    SciTech Connect

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  13. Using land-cover change as dynamic variables in surface-water and water-quality models

    USGS Publications Warehouse

    Karstensen, Krista A.; Warner, Kelly L.; Kuhn, Anne

    2010-01-01

    Land-cover data are typically used in hydrologic modeling to establish or describe land surface dynamics. This project is designed to demonstrate the use of land-cover change data in surface-water and water-quality models by incorporating land-cover as a variable condition. The project incorporates three different scenarios that vary hydrologically and geographically: 1) Agriculture in the Plains, 2) Loon habitat in New England, and 3) Forestry in the Ozarks.

  14. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  15. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  16. Shallow water sound propagation with surface waves.

    PubMed

    Tindle, Chris T; Deane, Grant B

    2005-05-01

    The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.

  17. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  18. Modeling spatial surface energy fluxes of agricultural and riparian vegetation using remote sensing

    NASA Astrophysics Data System (ADS)

    Geli, Hatim Mohammed Eisa

    Modeling of surface energy fluxes and evapotranspiration (ET ) requires the understanding of the interaction between land and atmosphere as well as the appropriate representation of the associated spatial and temporal variability and heterogeneity. This dissertation provides new methodology showing how to rationally and properly incorporate surface features characteristics/properties, including the leaf area index, fraction of cover, vegetation height, and temperature, using different representations as well as identify the related effects on energy balance flux estimates including ET. The main research objectives were addressed in Chapters 2 through 4 with each presented in a separate paper format with Chapter 1 presenting an introduction and Chapter 5 providing summary and recommendations. Chapter 2 discusses a new approach of incorporating temporal and spatial variability of surface features. We coupled a remote sensing-based energy balance model with a traditional water balance method to provide improved estimates of ET. This approach was tested over rainfed agricultural fields ˜ 10 km by 30 km in Ames, Iowa. Before coupling, we modified the water balance method by incorporating a remote sensing-based estimate for one of its parameters to ameliorate its performance on a spatial basis. Promising results were obtained with indications of improved estimates of ET and soil moisture in the root zone. The effects of surface features heterogeneity on measurements of turbulence were investigated in Chapter 3. Scintillometer-based measurements/estimates of sensible heat flux (H) were obtained over the riparian zone of the Cibola National Wildlife Refuge (CNWR), California. Surface roughness including canopy height (hc), roughness length, and zero-plane displacement height were incorporated in different ways, to improve estimates of H. High resolution, 1-m maps of ground surface digital elevation model and canopy height, hc, were derived from airborne LiDAR sensor data

  19. Enhanced removal of nitrate from water using amine-grafted agricultural wastes.

    PubMed

    Kalaruban, Mahatheva; Loganathan, Paripurnanda; Shim, W G; Kandasamy, Jaya; Ngo, H H; Vigneswaran, Saravanamuthu

    2016-09-15

    Adsorption using low-cost adsorbents is a favourable water treatment method for the removal of water contaminants. In this study the enhanced removal of nitrate, a contaminant at elevated concentration affecting human health and causing eutrophication of water, was tested using chemically modified agricultural wastes as adsorbents. Batch and fixed-bed adsorption studies were performed on corn cob and coconut copra that were surface modified by amine-grafting to increase the surface positive charges. The Langmuir nitrate adsorption capacities (mgN/g) were 49.9 and 59.0 for the amine-grafted (AG) corn cob and coconut copra, respectively at pH6.5 and ionic strength 1×10(-3)M NaCl. These values are higher than those of many commercially available anion exchange resins. Fixed-bed (15-cm height) adsorption capacities (mgN/g) calculated from the breakthrough curves were 15.3 and 18.6 for AG corn cob and AG coconut copra, respectively, for an influent nitrate concentration 20mg N/L at a flow velocity 5m/h. Nitrate adsorption decreased in the presence of sulphate, phosphate and chloride, with sulphate being the most competitive anion. The Thomas model fitted well to the fixed-bed adsorption data from four repeated adsorption/desorption cycles. Plug-flow model fitted well to the data from only the first cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Use of Unmanned Aerial Vehicles for Improving Farm Scale Agricultural Water Management in Agriculture at a Farm Scale. A case study for field crops in the California's Central Valley

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, J.; Morande, J. A.; Jin, Y.; Chen, Y.; Paw U, K. T.; Viers, J. H.

    2016-12-01

    Traditional methods for estimating consumptive water use as evapotranspiration (ET) for agriculture in areas with water limitations such as California have always been a challenge for farmers, water managers, researchers and government agencies. Direct measurement of evapotranspiration (ET) and crop water stress in agriculture can be a cumbersome and costly task. Furthermore, spatial variability of applied water and irrigation and stress level in crops, due to inherent heterogeneity in soil conditions, topography, management practices, and lack of uniformity in water applications may affect estimates water use efficiency and water balances. This situation difficult long-term management of agroecosystems. This paper presents a case study for various areas in California's Central Valley using Unmanned Aerial Vehicles (UAVs) for a late portion of the 2016 irrigation season These estimates are compared those obtained by direct measurement (from previously deployed stations), and energy balance approaches with remotely sensed data in a selection of field crop parcels. This research improves information on water use and site conditions in agriculture by enhancing remote sensing-based estimations through the use of higher resolution multi-spectral and thermal imagery captured by UAV. We assess whether more frequent information at higher spatial resolution from UAVs can improve estimations of overall ET through energy balance and imagery. Stress levels and ET are characterized spatially to examine irrigation practices and their performance to improve water use in the agroecosystem. Ground based data such as air and crop temperature and stem water potential is collected to validate UAV aerial measurements. Preliminary results show the potential of UAV technology to improve timing, resolution and accuracy in the ET estimation and assessment of crop stress at a farm scales. Side to side comparison with ground level stations employing surface renewal, eddy covariance and

  1. Assessing water pollution level and gray water footprint of anthropogenic nitrogen in agricultural system

    NASA Astrophysics Data System (ADS)

    Huang, Guorui; Chen, Han; Yu, Chaoqing

    2017-04-01

    Water pollution has become a global problem which is one of the most critical issues of today's water treatment. At a spatial resolution of 10km, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for major cropping systems from 1955 to 2014, estimate the anthropogenic nitrogen loads to fresh, and calculate the resultant grey water footprints and N-related water pollution level in China. The accumulated annual Nitrogen loads to fresh from agricultural system is 0.38Tg in 1955 and 4.42Tg in 2014, while the grey water footprints vary from 1.53 billion m3 to 17.67 billion m3, respectively. N loads in north of China contributes much more on the N leaching because of the high fertilizer but in south of China, it is mainly focused on the N runoff because of the heavy rain. There are more than 25% of grids with WPL>1 (exceed the water capacity of assimilation), which is mainly located on the North China Plain.

  2. Water movement within the unsaturated zone in four agricultural areas of the United States

    USGS Publications Warehouse

    Fisher, L.H.; Healy, R.W.

    2008-01-01

    Millions of tons of agricultural fertilizer and pesticides are applied annually in the USA. Due to the potential for these chemicals to migrate to groundwater, a study was conducted in 2004 using field data to calculate water budgets, rates of groundwater recharge and times of water travel through the unsaturated zone and to identify factors that influence these phenomena. Precipitation was the only water input at sites in Indiana and Maryland; irrigation accounted for about 80% of total water input at sites in California and Washington. Recharge at the Indiana site (47.5 cm) and at the Maryland site (31.5 cm) were equivalent to 51 and 32%, respectively, of annual precipitation and occurred between growing seasons. Recharge at the California site (42.3 cm) and Washington site (11.9 cm) occurred in response to irrigation events and was about 29 and 13% of total water input, respectively. Average residence time of water in the unsaturated zone, calculated using a piston-flow approach, ranged from less than 1 yr at the Indiana site to more than 8 yr at the Washington site. Results of bromide tracer tests indicate that at three of the four sites, a fraction of the water applied at land surface may have traveled to the water table in less than 1 yr. The timing and intensity of precipitation and irrigation were the dominant factors controlling recharge, suggesting that the time of the year at which chemicals are applied may be important for chemical transport through the unsaturated zone. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. Contrasting effects of urbanization and agriculture on surface temperature in eastern China

    Treesearch

    Decheng Zhou; Dan Li; Ge Sun; Liangxia Zhang; Yongqiang Liu; Lu Hao

    2016-01-01

    The combined effect of urbanization and agriculture, two most pervasive land use activities, on the surface climate remains poorly understood. Using Moderate Resolution Imaging Spectroradiometer data over 2010–2015 and forests as reference, we showed that urbanization warmed the land surface temperature (LST), especially during the daytime and in growing seasons (...

  4. Carbon Sequestration Potential in Irrigated Agriculture: Greenhouse Gas Emissions and the Contribution of Water.

    NASA Astrophysics Data System (ADS)

    Rolston, D. E.; Hopmans, J. W.; van Kessel, C.; Six, J.; Paw U, K.; Plant, R.; Lee, J.; Kochendorfer, J.; Ideris, A. J.; MacIntyre, J.; Louie, D.; Matista, T.; Evatt, J.; Poch, R.; King, A. P.

    2006-12-01

    This study aimed to quantify CO2 and N2O release from an irrigated field in California's Sacramento Valley in an effort to determine greenhouse gas mitigation potentials through minimum tillage (MT) practices. Surface CO2 and N2O flux were monitored on the 30 ha, laser-leveled field site from September 2003 through August 2006. Additional field-representative flux data was collected from eddy-covariance masts and continuously sampling auto-chambers. Irrigation and run-off waters were collected and analyzed for total suspended solids (TSS), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), nitrate-N, ammonium-N, total C and total N in the sediment. Overall, we found very little difference in CO2 flux, water composition, or sediment composition between the two tillage treatments. N2O flux was negligible in both systems until a fertilization and irrigation event occurred in each growing season, at which point the MT treatment showed slightly higher fluxes. NO3-N levels in the run-off exceeded drinking water quality standards only in irrigation events following fertilizer application. Collected CO2 and N2O data from this site will enable us to predict greenhouse gas emissions from similar agricultural systems in the California landscape. Our results indicate that the role of irrigation water in C budgets of agricultural systems is a significant factor in determining total C sequestration potential, but that short-term MT may not significantly decrease the contribution to global warming by irrigated agroecosystems and thus may not be a beneficial strategy for greenhouse gas mitigation.

  5. Climate change impacts on municipal, mining, and agricultural water supplies in Chile

    Treesearch

    Daniel G. Neary; Pablo Garcia-Chevesich

    2008-01-01

    Agricultural and municipal water supply interests in Chile rely heavily on streams which flow from the Andes Mountains. The highly productive Copiapo agricultural region, on the southern edge of the Atacama Desert, is a major supplier of fruit and other crops for the Northern American market during winter. This region relies entirely on snow and icemelt streams to...

  6. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  7. Clean Air Markets - Monitoring Surface Water Chemistry

    EPA Pesticide Factsheets

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  8. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  9. Surface processing using water cluster ion beams

    NASA Astrophysics Data System (ADS)

    Takaoka, Gikan H.; Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku

    2013-07-01

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO2, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  10. An integrated analysis of agricultural water-use efficiency: A case study in the Heihe River Basin in Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Guofeng; Chen, Jiancheng; Wu, Feng; Li, Zhihui

    The water-use efficiency has direct impacts on the water consumption of agriculture production and is vital to water conservation at both local and regional extent. The agricultural water-use efficiency is a critical indicator that reflects the effective water allocation and water productivity improvement among different agricultural sectors. Taking the Heihe River Basin as the case study area, this study explores the changing trajectories of agricultural water use based on the input-output data of 2003-2012, and estimates the water-use efficiency with Data Envelopment Analysis, Malmquist Total Productivity Index and the decomposition of total factor productivity. Further, the influence of driving factors on the water-use efficiency is analyzed with the Tobit model. The research results indicate that the average agricultural water-use efficiency in different counties is all lower than 1 during 2003-2012, indicating that there is still improvement space in the agricultural water-use efficiency. In addition, there is obvious heterogeneity in the agricultural water-use efficiency among different counties, especially prior to 2009. The research results from the Tobit model indicate that agricultural investment and production, economic growth, industrial restructuring and agricultural plants structural adjustment have significant influence on the agricultural water-use efficiency. The research results can provide significant references for agricultural water-use management in the middle reaches of the Heihe River Basin and other similar regions in Northwest China.

  11. The many faces and facets of water in agriculture

    USDA-ARS?s Scientific Manuscript database

    The many forms of water (i.e., water vapor, fog, rain, snow, hail and ice) are essential, but can be detrimental, for maintaining an adequate food supply and a productive and healthy environment for all forms of life. Greater limitations on water availability and quality call for research on water c...

  12. Agricultural water requirements for commercial production of cranberries

    USDA-ARS?s Scientific Manuscript database

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  13. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of

  14. The Dynamic Surface Tension of Water

    PubMed Central

    2017-01-01

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments. PMID:28301160

  15. The Dynamic Surface Tension of Water.

    PubMed

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-03-23

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m(-1)) than under equilibrium conditions (∼72 mN m(-1)) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  16. Agricultural Drainage Water Management: Potential Impact and Implementation Strategies for Ohio

    USDA-ARS?s Scientific Manuscript database

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  17. Water desorption from nanostructured graphite surfaces.

    PubMed

    Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule.

  18. Agricultural production and water use scenarios in Cyprus under global change

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  19. A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala Formation, Central High Plains Aquifer

    USGS Publications Warehouse

    McMahon, Peter B.

    2000-01-01

    In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains. Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone. However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer. The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in the Ogallala Formation is separated from

  20. Simultaneous Concentration of Bovine Viruses and Agricultural Zoonotic Bacteria from Water Using Sodocalcic Glass Wool Filters.

    PubMed

    Abd-Elmaksoud, Sherif; Spencer, Susan K; Gerba, Charles P; Tamimi, Akrum H; Jokela, William E; Borchardt, Mark A

    2014-12-01

    Infiltration and runoff from manured agricultural fields can result in livestock pathogens reaching groundwater and surface waters. Here, we measured the effectiveness of glass wool filters to simultaneously concentrate enteric viruses and bacteria of bovine origin from water. The recovery efficiencies were determined for bovine viral diarrhea virus types 1 and 2, bovine rotavirus group A, bovine coronavirus, poliovirus Sabin III, toxigenic Escherichia coli ,and Campylobacter jejuni seeded into water with three different turbidity levels (0.5, 215, and 447 NTU). Twenty liters of dechlorinated tap water (pH 7) were seeded with the test organisms, and then passed through a glass wool filter using a peristaltic pump (flow rate = 1 liter min(-1)). Retained organisms were eluted from the filters by passing beef extract-glycine buffer (pH 9.5) in the direction opposite of sample flow. Recovered organisms were enumerated by qPCR except for C. jejuni, which was quantified by culture. Mean recovery efficiencies ranged from 55 to 33% for the bacteria and 58 to 16% for the viruses. Using bootstrapping techniques combined with Analysis of Variance, recovery efficiencies were found to differ among the pathogen types tested at the two lowest turbidity levels; however, for a given pathogen type turbidity did not affect recovery except for C. jejuni. Glass wool filtration is a cost-effective method for concentrating several waterborne pathogens of bovine origin simultaneously, although recovery may be low for some specific taxa such as bovine viral diarrhea virus 1.

  1. Hydrologic and biogeochemical controls of river subsurface solutes under agriculturally enhanced ground water flow

    USGS Publications Warehouse

    Wildman, R.A.; Domagalski, J.L.; Hering, J.G.

    2009-01-01

    The relative influences of hydrologic processes and biogeochemistry on the transport and retention of minor solutes were compared in the riverbed of the lower Merced River (California, USA). The subsurface of this reach receives ground water discharge and surface water infiltration due to an altered hydraulic setting resulting from agricultural irrigation. Filtered ground water samples were collected from 30 drive point locations in March, June, and October 2004. Hydrologic processes, described previously, were verified by observations of bromine concentrations; manganese was used to indicate redox conditions. The separate responses of the minor solutes strontium, barium, uranium, and phosphorus to these influences were examined. Correlation and principal component analyses indicate that hydrologic processes dominate the distribution of trace elements in the ground water. Redox conditions appear to be independent of hydrologic processes and account for most of the remaining data variability. With some variability, major processes are consistent in two sampling transects separated by 100 m. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  2. Blue water scarcity and the economic impacts of future agricultural trade and demand

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph; Lotze-Campen, Hermann; Gerten, Dieter; Dietrich, Jan Philipp; Bodirsky, Benjamin; Biewald, Anne; Popp, Alexander

    2013-06-01

    An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.

  3. Current Water Deficit Stress Simulations in Selected Agricultural System Simulation Models

    USDA-ARS?s Scientific Manuscript database

    System models, which adequately simulate plant water stress effects, are valuable tools for developing management practices with improved water use efficiency in agriculture. Plants experience water stress when its supply in the soil fails to meet the demand. Although it is easy to define the conc...

  4. Mars water vapor, near-surface

    NASA Technical Reports Server (NTRS)

    Ryan, J. A.; Sharman, R. D.; Lucich, R. D.

    1982-01-01

    In a previous paper we concluded that the temperature sensors aboard the Viking landers (VL-1 and VL-2) were detecting the water vapor frost point. Analysis of one Mars year of data at both lander sites substantiates this conclusion. At VL-1 it is found that the water vapor mixing ratio is constant with height through the bulk of the atmosphere, most of the time. Exceptions are during the onset phases of the two major dust storms when temporary enhancement of near-surface vapor occurs (the same phenomenon is observed at VL-2), and some depletion of near-surface vapor during the decay phase of the first storm, possibly the second storm as well. The former suggests near-surface, northward transport of water vapor with the storms. The latter suggests adsorption of vapor on dust particles followed by surface deposition. At VL-2, severe near-surface depletion of water vapor occurs during northern autumn and winter. The residual vapor is in equilibrium with the surface condensate observed at the site during this period, indicating that the source region for the condensate must be aloft with downward transport by dust fall-out. Since the near-surface water vapor mixing ratio and concentration at VL-1 generally parallels the column abundance over VL-1 obtained by the orbiters, this suggests that VL-1 can be used to give a measure of column abundance for as long as the temperature sensors remain operational.

  5. Mars water vapor, near-surface

    NASA Technical Reports Server (NTRS)

    Ryan, J. A.; Sharman, R. D.; Lucich, R. D.

    1982-01-01

    In a previous paper we concluded that the temperature sensors aboard the Viking landers (VL-1 and VL-2) were detecting the water vapor frost point. Analysis of one Mars year of data at both lander sites substantiates this conclusion. At VL-1 it is found that the water vapor mixing ratio is constant with height through the bulk of the atmosphere, most of the time. Exceptions are during the onset phases of the two major dust storms when temporary enhancement of near-surface vapor occurs (the same phenomenon is observed at VL-2), and some depletion of near-surface vapor during the decay phase of the first storm, possibly the second storm as well. The former suggests near-surface, northward transport of water vapor with the storms. The latter suggests adsorption of vapor on dust particles followed by surface deposition. At VL-2, severe near-surface depletion of water vapor occurs during northern autumn and winter. The residual vapor is in equilibrium with the surface condensate observed at the site during this period, indicating that the source region for the condensate must be aloft with downward transport by dust fall-out. Since the near-surface water vapor mixing ratio and concentration at VL-1 generally parallels the column abundance over VL-1 obtained by the orbiters, this suggests that VL-1 can be used to give a measure of column abundance for as long as the temperature sensors remain operational.

  6. Efficiency and acceptance of new water allocation rules - The case of an agricultural water users association.

    PubMed

    Goetz, Renan U; Martínez, Yolanda; Xabadia, Àngels

    2017-12-01

    Water scarcity is one of the major environmental problems in Southern Europe. High levels of water stress and increasing frequency of droughts, along with a greater environmental protection, make it necessary to design water management strategies that are allocative efficient and balance supply and demand. When functioning markets cannot be developed, the allocation rules proposed in the literature of social choice have been recognized as a suitable alternative. However, the application of new water allocation rules can be impaired by a lack of acceptance and implementation problems. This paper examines these obstacles for the case of an agricultural water users association (WUA), situated in the basin of the River Ebro, in relation to the governance structure and collective decision rule of the WUA. It analyzes the extent to which the gains and losses of the farmers affect their acceptance, and examines conditions for building agreements with side payments that provide incentives for the majority of the farmers to form part of a possible agreement. The results show that the uniform and sequential rules improve the allocative efficiency under normal conditions compared to the status quo and the sequential rule even in the case of droughts. In the presence of side payments this rule is likely to be accepted and has only an insignificant impact on distributional inequality. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Goor, Q.; Pinte, D.

    2009-07-01

    This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water, which remains to a large extent independent of the availability of water in the basin. The opportunity cost (forgone benefits) of this static management approach may be important in river basins where large irrigation areas are present in the upstream reaches. Continuously adjusting allocation decisions based on the hydrologic status of the system will lead to the temporary reallocation of some (or all) of the irrigation water downstream to consumptive and/or non-consumptive users. Such a dynamic allocation process will increase the social benefits if the sum of the downstream productivities exceeds those of the upstream farmers whose entitlements are curtailed. However, this process will be socially acceptable if upstream farmers are compensated for increasing the availability of water downstream. This paper also presents a methodology to derive the individual contribution of downstream non-consumptive users, i.e. hydropower plants, to the financial compensation of upstream farmers. This dynamic management approach is illustrated with a cascade of multipurpose reservoirs in the Euphrates river basin. The analysis of simulation results reveals that, on average, the annual benefits obtained with the dynamic allocation process are 6% higher that those derived from a static allocation.

  8. 78 FR 71724 - Recordations, Water Carrier Tariffs, and Agricultural Contract Summaries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ...Pursuant to the Paperwork Reduction Act, 44 U.S.C. 3501-3519 (PRA) and Office of Management and Budget (OMB) regulations at 5 CFR 1320.10, the Surface Transportation Board has obtained OMB approval for the information collections listed below with assigned OMB control numbers and the dates on which these approvals will expire if not renewed. (1) Recordations, Control Number 2140-0025 (2) Water Carrier Tariffs, Control Number 2140-26 (3) Agricultural Contract Summaries, Control Number 2140-0024 See 78 FR 18675-01 (Mar. 27, 2013). Unless renewed, OMB approval for each of these collections expires on August 31, 2016. The display of a currently valid OMB control number for this collection is required by law. Under the PRA and 5 CFR 1320.8, an agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless the collection displays a currently valid OMB control number.

  9. Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology.

    PubMed

    Ebadipour, N; Lotfabad, T Bagheri; Yaghmaei, S; RoostaAzad, R

    2016-01-01

    Biosurfactants are surface-active compounds capable of reducing surface tension and interfacial tension. Biosurfactants are produced by various microorganisms. They are promising replacements for chemical surfactants because of biodegradability, nontoxicity, and their ability to be produced from renewable sources. However, a major obstacle in producing biosurfactants at the industrial level is the lack of cost-effectiveness. In the present study, by using corn steep liquor (CSL) as a low-cost agricultural waste, not only is the production cost reduced but a higher production yield is also achieved. Moreover, a response surface methodology (RSM) approach through the Box-Behnken method was applied to optimize the biosurfactant production level. The results found that biosurfactant production was improved around 2.3 times at optimum condition when the CSL was at a concentration of 1.88 mL/L and yeast extract was reduced to 25 times less than what was used in a basic soybean oil medium (SOM). The predicted and experimental values of responses were in reasonable agreement with each other (Pred-R(2) = 0.86 and adj-R(2) = 0.94). Optimization led to a drop in raw material price per unit of biosurfactant from $47 to $12/kg. Moreover, the biosurfactant product at a concentration of 84 mg/L could lower the surface tension of twice-distilled water from 72 mN/m to less than 28 mN/m and emulsify an equal volume of kerosene by an emulsification index of (E24) 68% in a two-phase mixture. These capabilities made these biosurfactants applicable in microbial enhanced oil recovery (MEOR), hydrocarbon remediation, and all other petroleum industry surfactant applications.

  10. Water drop friction on superhydrophobic surfaces.

    PubMed

    Olin, Pontus; Lindström, Stefan B; Pettersson, Torbjörn; Wågberg, Lars

    2013-07-23

    To investigate water drop friction on superhydrophobic surfaces, the motion of water drops on three different superhydrophobic surfaces has been studied by allowing drops to slide down an incline and capturing their motion using high-speed video. Two surfaces were prepared using crystallization of an alkyl ketene dimer (AKD) wax, and the third surface was the leaf of a Lotus (Nelumbo Nucifera). The acceleration of the water droplets on these superhydrophobic surfaces was measured as a function of droplet size and inclination of the surface. For small capillary numbers, we propose that the energy dissipation is dominated by intermittent pinning-depinning transitions at microscopic pinning sites along the trailing contact line of the drop, while at capillary numbers exceeding a critical value, energy dissipation is dominated by circulatory flow in the vicinity of the contacting disc between the droplet and the surface. By combining the results of the droplet acceleration with a theoretical model based on energy dissipation, we have introduced a material-specific coefficient called the superhydrophobic sliding resistance, b(sh). Once determined, this parameter is sufficient for predicting the motion of water drops on superhydrophobic surfaces of a general macroscopic topography. This theory also infers the existence of an equilibrium sliding angle, β(eq), at which the drop acceleration is zero. This angle is decreasing with the radius of the drop and is in quantitative agreement with the measured tilt angles required for a stationary drop to start sliding down an incline.

  11. Surface, Water and Air Biocharacterization (SWAB)

    NASA Image and Video Library

    2009-08-18

    ISS020-E-031558 (18 Aug. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.

  12. Surface water risk assessment of pesticides in Ethiopia.

    PubMed

    Teklu, Berhan M; Adriaanse, Paulien I; Ter Horst, Mechteld M S; Deneer, John W; Van den Brink, Paul J

    2015-03-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small stream and for two types of small ponds. Seven selected pesticides were selected since they were estimated to bear the highest risk to humans on the basis of volume of use, application rate and acute and chronic human toxicity, assuming exposure as a result of the consumption of surface water. Potential ecotoxicological risks were not considered as a selection criterion at this stage. Estimates of exposure concentrations in surface water were established using modelling software also applied in the EU registration procedure (PRZM and TOXSWA). Input variables included physico-chemical properties, and data such as crop calendars, irrigation schedules, meteorological information and detailed application data which were specifically tailored to the Ethiopian situation. The results indicate that for all the pesticides investigated the acute human risk resulting from the consumption of surface water is low to negligible, whereas agricultural use of chlorothalonil, deltamethrin, endosulfan and malathion in some crops may result in medium to high risk to aquatic species. The predicted environmental concentration estimates are based on procedures similar to procedures used at the EU level and in the USA. Addition of aquatic macrophytes as an ecotoxicological endpoint may constitute a welcome future addition to the risk assessment procedure. Implementation of the methods used for risk characterization constitutes a good step forward in the pesticide registration procedure in Ethiopia. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: long-term water quality database

    USDA-ARS?s Scientific Manuscript database

    The U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Pasture Systems and Watershed Management Research Unit (PSWMRU) has developed a long-term water quality database to support water quality research within the 7.3 km**2 WE-38 experimental watershed in east-central Pennsyl...

  14. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer.

    PubMed

    Smidt, Samuel J; Haacker, Erin M K; Kendall, Anthony D; Deines, Jillian M; Pei, Lisi; Cotterman, Kayla A; Li, Haoyang; Liu, Xiao; Basso, Bruno; Hyndman, David W

    2016-10-01

    In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania : characterization of surface-runoff and ground-water quantity and quality in a small carbonate basin near Churchtown, Pennsylvania, prior to terracing and implementation of nutrient management : water-quality study of the Conestoga River headwaters, Pennsylvania

    USGS Publications Warehouse

    Leitman, Patricia L.; Hall, D.W.; Langland, M.J.; Chichester, D.C.; Ward, J.R.

    1996-01-01

    Surface-runoff and ground-water quantity and quality of a 22.1-acre field site were characterized from January 1983 through September 1984, before implementation of terracing and nutrient-management practices. The site, underlain by carbonate rock, was cropland used primarily for the production of corn and alfalfa. Average annual application of nutrients to the 14.4 acres of cornfields was 410 pounds of nitrogen and 110 pounds of phosphorus. About three times more nutrients were applied during the 1984 water year than during the 1983 water year. During the investigation, 714,000 cubic feet of runoff transported 244 tons of suspended sediment, 300 pounds of nitrogen, and 170 pounds of phosphorus during the 1984 water year. Runoff from storms on frozen ground produced the highest loads of nitrogen. Regression analyses indicate that runoff rates and quantities were controlled by precipitation intensities of quantities and the amount of crop cover, and that mean concentrations of nitrogen for runoff events increased with increased surface-nitrogen applications made prior to runoff. Ground-water levels responded quickly to recharge, with peaks occurring several hours to a day after precipitation. Median concentrations of dissolved nitrate in ground water ranged from 9.2 to 13 milligrams per liter as nitrogen. A lag time of 1 to 3 months was observed between the time that nitrogen was applied to the land surface and local maximums in nitrate concentrations were detected in ground water unaffected by recharge events. About 3 million cubic feet of ground water and an associated 2,200 pounds of nitrate-nitrogen discharged from the site during the study period. For the study period, 42 percent of the precipitation recharged to ground water, 10 percent became runoff, and 48 percent evapotranspired. Inputs of nitrogen to the study area were estimated to be 93 percent from manure, 5 percent from commercial fertilizer, and 2 percent from precipitation. Nitrogen outputs from the

  16. Variability of surface temperature in agricultural fields of central California

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Millard, J. P.; Goettelman, R. C.

    1982-01-01

    In an attempt to evaluate the relationship between hand-held infrared thermometers and aircraft thermal scanners in near-level terrain and to quantify the variability of surface temperatures within individual fields, ground-based and aircraft thermal sensor measurements were made along a 50-km transect on 3 May 1979 and a 20-km transect on 7 August 1980. These comparisons were made on fields near Davis, California. Agreement was within 1 C for fields covered with vegetation and 3.6 C for bare, dry fields. The variability within fields was larger for bare, dry fields than for vegetatively covered fields. In 1980, with improvements in the collection of ground truth data, the agreement was within 1 C for a variety of fields.

  17. U.S. Biofuel Policies and Domestic Shifts in Agricultural Land Use and Water Balances

    NASA Astrophysics Data System (ADS)

    Teter, J.; Yeh, S.; Mishra, G. S.

    2014-12-01

    Policies promoting domestic biofuels production could lead to significant changes in cropping patterns. Types of direct and indirect land use change include: switching among crops (displacement), expanding cropped area (extensification), and altering water/soil management practices (e.g. irrigation, tillage) (intensification). Most studies of biofuels water use impacts calculate the water intensity of biofuels in liters of irrigated/total evapotranspired water per unit energy of biofuels. But estimates based on this approach are sensitive to assumptions (e.g. co-product allocation, system boundaries), and do not convey policy-relevant information, as highlighted by the issue of land use change. We address these shortcomings by adopting a scenario-based approach that combines economic modeling with crop-water modeling of major crops and biofuel feedstocks. This allows us to holistically compare differences in water balances across policy scenarios in an integrated economic/agricultural system. We compare high spatial resolution water balance estimates under three hypothetical policy scenarios: 1) a counterfactual no-policy scenario, 2) modified Renewable Fuels Standard mandates (M-RFS2), & 3) a national Low Carbon Fuel Standard plus a modified RFS2 scenario (LCFS+RFS2). Differences between scenarios in crop water balances (i.e. transpiration, evaporation, runoff, groundwater infiltration, & irrigation) are regional and are a function of changes in land use patterns (i.e. displacement, intensification, & extensification), plus variation in crop water-use characteristics. Cropped land area increases 6.2% and 1.6% under M-RFS2 and LCFS+RFS2 scenarios, respectively, by 2030. Both policy scenarios lead to reductions in net irrigation volumes nationally compared to the no-policy scenario, though more irrigation occurs in regions of the Midwest and West. The LCFS+RFS2 reduces net irrigation water use by 3.5 times more than M-RFS2. However, both policies drive

  18. Surface-water hydrologic data for the Houston metropolitan area, Texas, water years 1990?95

    USGS Publications Warehouse

    Sneck-Fahrer, Debra A.; Liscum, Fred; East, Jeffrey W.

    2003-01-01

    Most of the Sacramento-San Joaquin Delta was leveed, drained, and converted to agricultural use by the 1930s. Land-surface elevations have since subsided by more than 20 feet in some areas. Subsidence increases the likelihood of levee failure and flooding, which, in turn, jeopardizes water delivery and water quality in the Delta. This is of major concern because the Delta supplies water to two-thirds of California. Previous research has shown that oxidation of peat soils is the primary cause of subsidence in the Delta. Therefore, a possible strategy for remedying this situation is to convert drained agricultural fields back to wetlands, which are flooded at least part of the year. Rehabilitation of wetlands would promote the growth of peat, thereby mitigating and possibly reversing subsidence. This report describes a study that evaluated this strategy. In three experimental enclosures or ponds, carbon inputs were measured in the form of plant biomass and outputs in the form of carbon dioxide (CO2) and methane (CH4) fluxes. Each of the ponds received one of the following water treatments: seasonally flooded, seasonally flooded and irrigated, or permanently flooded. Land-surface elevation, ground-water levels, and soil and air temperature also were measured. This report presents the data collected during the initial phase of the study, which ran from November 1992 through September 1995.

  19. Site-specific profiles of estrogenic activity in agricultural areas of California's inland waters.

    PubMed

    Lavado, Ramon; Loyo-Rosales, Jorge E; Floyd, Emily; Kolodziej, Edward P; Snyder, Shane A; Sedlak, David L; Schlenk, Daniel

    2009-12-15

    To evaluate the occurrence and sources of compounds capable of feminizing fish in agriculturally impacted waterways of the Central Valley of California, water samples were extracted and subjected to chemical analyses as well as in vitro and in vivo measurements of vitellogenin in juvenile rainbow trout (Oncorhynchus mykiss). Among the 16 sites sampled, 6 locations frequently exhibited elevated concentrations of estrogenic substances with 17beta-estradiol equivalents up to 242 ng/L in vitro and 12 microg/kg in vivo. The patterns of activity varied among sites, with two sites showing elevated activity only in vitro, two showing elevated activity only in vivo, and two showing elevated activity in both assays. Sequential elution of solid-phase extraction (SPE) disks followed by bioassay-guided fractionation was used to characterize water samples from the two locations where activity was observed in both bioassays. The highest estrogenic activity was observed in the most nonpolar fractions (80-100% methanol eluent) from the Napa River, while most of the activity in the Sacramento River Delta eluted in the 60% methanol eluent. Quantitative analyses of SPE extracts and additional HPLC fractionation of the SPE extracts by GC-MS/MS and LC-MS/MS indicated concentrations of steroid hormones, alkylphenol polyethoxylates, and herbicides that were at least 1-3 orders of magnitude below bioassay 17beta-estradiol equivalent calculations. Given the different patterns of activity and chemical properties of the estrogenic compounds, it appears that estrogenic activity in these agriculturally impacted surface waters is attributable to multiple compounds. Further investigation is needed to identify the compounds causing the estrogenic activity and to determine the potential impacts of these compounds on feral fish.

  20. Contribution by urban and agricultural pesticide uses to water contamination at the scale of the Marne watershed.

    PubMed

    Blanchoud, H; Moreau-Guigon, E; Farrugia, F; Chevreuil, M; Mouchel, J M

    2007-04-01

    This study establishes an annual watershed (12,762 km(2)) budget of pesticide contamination in the Marne River based on detailed enquiries from farmers' organizations, public services and residents and pesticide usage. Results showed that urban uses were considerably lower (47 tons/yr) than agricultural ones (4300 tons/yr). However, the proportion of the amounts used transferred to surface water, differs considerably between urban and agricultural environments. Transfer from urban uses was estimated from runoff experiments with different surfaces, including concrete, tarmac, sand and gravel, and grass. Transfer coefficients from agricultural uses were derived from the calibrated value previously obtained from a detailed budget established for atrazine, taking into account the specific adsorption capacity (Koc) and half-life time of each substance used. The calculated annual budget shows a similar contribution by urban pesticides in the Marne River due to runoff over impervious surfaces as compared to agricultural pesticides used on cultivated soils (about 11 tons/yr in both cases). These estimates are consistent with data available from analytical surveys concerning pesticide occurrence in the rivers of the Paris region.

  1. Improving Agricultural Drought Monitoring in East Africa with Unbiased Rainfall Fields and Detailed Land Surface Physics

    NASA Astrophysics Data System (ADS)

    McNally, A.; Yatheendradas, S.; Peters-Lidard, C. D.; Michaelsen, J.

    2010-12-01

    Monitoring drought is particularly challenging within rainfed agricultural and pastoral systems, where it can serve the greatest need. Such locations often have sparse or non-existent ground based measurements of precipitation, evapotranspiration (ET), and soil moisture. For more effective drought monitoring with limited hydroclimate observations, we simulate land surface states using the Community Noah Land Surface Model forced with different merged rainfall products inside a Land Information System (LIS). Using model outputs we will answer the questions: How sensitive are soil moisture and ET fields to differences in rainfall forcing and model physics? What are acceptable drought-specific tradeoffs between near-real time availability and skill of rainfall data? Preliminary results with the African Rainfall Estimation Algorithm Version 2 (RFE2.0) outperformed global products, suggesting that sub-global rainfall estimates are the way forward for regional drought monitoring. Specifically, the Noah model forced with RFE2.0 better resolved the heterogeneous patterns in crop stress than the Famine Early Warning System Network (FEWS NET) operational Water Requirement Satisfaction Index (WRSI) model. To further investigate the improvement in drought monitoring while maintaining timeliness, we unbias (using Africa specific climatology) the precipitation products from CPC Merged Analysis of Precipitation (CMAP), Tropical Rainfall Measurement Mission (TRMM), and RFE2.0. The skill (relative accuracy) and reliability (average agreement) of the unbiased rainfall are calculated against an unbiased precipitation product augmented with station data from Ethiopia and Kenya. Soil moisture and ET fields from Noah are compared to the operational FEWS NET WRSI, soil water anomaly index, and the World Food Program’s Crop and Food Security Assessment Mission reports. We anticipate that the unbiased rainfall fields will improve the accuracy, spatio-temporal resolution, and

  2. Distribution of tritium in precipitation and surface water in California

    NASA Astrophysics Data System (ADS)

    Harms, Patrick A.; Visser, Ate; Moran, Jean E.; Esser, Brad K.

    2016-03-01

    The tritium concentration in the surface hydrosphere throughout California was characterized to examine the reasons for spatial variability and to enhance the applicability of tritium in hydrological investigations. Eighteen precipitation samples were analyzed and 148 samples were collected from surface waters across California in the Summer and Fall of 2013, with repeat samples from some locations collected in Winter and Spring of 2014 to examine seasonal variation. The concentration of tritium in present day precipitation varied from 4.0 pCi/L near the California coast to 17.8 pCi/L in the Sierra Nevada Mountains. Concentrations in precipitation increase in spring due to the 'Spring Leak' phenomenon. The average coastal concentration (6.3 ± 1.2 pCi/L) in precipitation matches estimated pre-nuclear levels. Surface water samples show a trend of increasing tritium with inland distance. Superimposed on that trend, elevated tritium concentrations are found in the San Francisco Bay area compared to other coastal areas, resulting from municipal water imported from inland mountain sources and local anthropogenic sources. Tritium concentrations in most surface waters decreased between Summer/Fall 2013 and Winter/Spring 2014 likely due to an increased groundwater signal as a result of drought conditions in 2014. A relationship between tritium and electrical conductivity in surface water was found to be indicative of water provenance and anthropogenic influences such as agricultural runoff. Despite low initial concentrations in precipitation, tritium continues to be a valuable tracer in a post nuclear bomb pulse world.

  3. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices

  4. Bulk water freezing dynamics on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm < Lc < 6 mm) using carefully designed freezing experiments in a temperature-controlled, zero-humidity environment on thin water slabs. To probe the effect of surface wettability, we investigated the total time for room temperature water to completely freeze into ice on superhydrophilic ( θaapp→ 0°), hydrophilic (0° < θa < 90°), hydrophobic (90° < θa < 125°), and superhydrophobic ( θaapp→ 180°) surfaces. Our results show that at macroscopic length scales, heat conduction through the bulk water/ice layer dominates the freezing process when compared to heat conduction through the functional coatings or nanoscale gaps at the superhydrophobic substrate-water/ice interface. In order to verify our findings, and to determine when the surface structure thermal resistance approaches the water/ice resistance, we fabricated and tested the additional substrates coated with commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  5. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    PubMed

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  6. Virtual water flows in the international trade of agricultural products of China.

    PubMed

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation

    NASA Astrophysics Data System (ADS)

    Anderson, Ray G.; Lo, Min-Hui; Famiglietti, James S.

    2012-08-01

    Estimates of consumptive use of surface water by agriculture are vital for assessing food security, managing water rights, and evaluating anthropogenic impacts on regional hydrology. However, reliable, current, and public data on consumptive use can be difficult to obtain, particularly in international and less developed basins. We combine remotely-sensed precipitation and satellite observations of evapotranspiration and groundwater depletion to estimate surface water consumption by irrigated agriculture in California's Central Valley for the 2004-09 water years. We validated our technique against measured consumption data determined from streamflow observations and water export data in the Central Valley. Mean satellite-derived surface water consumption was 291.0 ± 32.4 mm/year while measured surface water consumption was 308.1 ± 6.5 mm/year. The results show the potential for remotely-sensed hydrologic data to independently observe irrigated agriculture's surface water consumption in contested or unmonitored basins. Improvements in the precision and spatial resolution of satellite precipitation, evapotranspiration and gravimetric groundwater observations are needed to reduce the uncertainty in this method and to allow its use on smaller basins and at shorter time scales.

  8. How intensive agriculture affects surface-atmosphere exchange of nitrogen and carbon compounds over peatland

    NASA Astrophysics Data System (ADS)

    Bruemmer, C.; Richter, U.; Schrader, F.; Hurkuck, M.; Kutsch, W. L.

    2016-12-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (∑Nr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ∑Nr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ∑Nr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  9. Improving soil moisture simulation to support Agricultural Water Resource Management using Satellite-based water cycle observations

    NASA Astrophysics Data System (ADS)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2016-04-01

    Efficient and sustainable irrigation systems require optimization of operational parameters such as irrigation amount which are dependent on the soil hydraulic parameters that affect the model's accuracy in simulating soil water content. However, it is a scientific challenge to provide reliable estimates of soil hydraulic parameters and irrigation estimates, given the absence of continuously operating soil moisture and rain gauge network. For agricultural water resource management, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally (Wang and Qu 2009). In the current study, flood irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches below a threshold of 25%, 50% and 75% with respect to the maximum available water capacity (difference between field capacity and wilting point) and applied until the top layer is saturated. An additional important criterion needed to activate the irrigation scheme is to ensure that it is irrigation season by assuming that the greenness vegetation fraction (GVF) of the pixel exceed 0.40 of the climatological annual range of GVF (Ozdogan et al. 2010). The main hypothesis used in this study is that near-surface remote sensing soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately inverted, it would provide field capacity and wilting point soil moisture, which may be representative of that basin. Thus, genetic algorithm inverse method is employed to derive the effective parameters and derive the soil moisture deficit for the root zone by coupling of AMSR-E soil moisture with the physically based hydrological model. Model performance is evaluated using MODIS

  10. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    USGS Publications Warehouse

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  11. Radiolysis of water with aluminum oxide surfaces

    NASA Astrophysics Data System (ADS)

    Reiff, Sarah C.; LaVerne, Jay A.

    2017-02-01

    Aluminum oxide, Al2O3, nanoparticles with water were irradiated with γ-rays and 5 MeV He ions followed by the determination of the production of molecular hydrogen, H2, and characterization of changes in the particle surface. Surface analysis techniques included: diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer - Emmett - Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Production of H2 by γ-ray radiolysis was determined for samples with adsorbed water and for Al2O3 - water slurries. For Al2O3 samples with adsorbed water, the radiation chemical yield of H2 was measured as 80±20 molecules/100 eV (1 molecule/100 eV=1.04×10-7 mol/J). The yield of H2 was observed to decrease as the amount of water present in the Al2O3 - water slurries increased. Surface studies indicated that the α-phase Al2O3 samples changed phase following irradiation by He ions, and that the oxyhydroxide layer, present on the pristine sample, is removed by γ-ray and He ion irradiation.

  12. Water vapor interactions with polycrystalline titanium surfaces

    NASA Astrophysics Data System (ADS)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  13. Polarimetric thermal emission from periodic water surfaces

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Wilson, W. J.; Li, F. K.; Johnson, J. T.; Kong, J. A.

    1993-01-01

    Experimental results and theoretical calculations are presented to study the polarimetric emission from water surfaces with directional features. For our ground-based Ku-band radiometer measurements, a water pool was constructed on the roof of a building in the Jet Propulsion Laboratory, and a fiberglass surface with periodic corrugations in one direction was impressed on the top of the water surface to create a stationary water surface underneath it. It is observed that the measured Stokes parameters of corrugated fiberglass-covered water surfaces are functions of azimuth angles and agree very well with the theoretical calculations. The theory, after being verified by the experimental data, was then used to calculate the Stokes parameters of periodic surfaces without fiberglass surface layer and with rms height of the order of wind-generated water ripples. The magnitudes of the azimuthal variation of the calculated emissivities at horizontal and vertical polarizations corresponding to the first two Stokes parameters are found to be comparable to the values measured by airborne radiometers and SSM/I. In addition, the third Stokes parameter not shown in the literature is seen to have approximately twice the magnitude of the azimuth variation of either T(sub h) or T(sub v), which may make it more sensitive to the row direction, while less susceptive to noises because the atmospheric and system noises tend to be unpolarized and are expected to be cancelled out when the third Stokes parameter is derived as the difference of two or three power measurements, as indicated by another experiment carried out at a swimming pool with complicated surroundings. The results indicate that passive polarimetry is a potential technology in the remote sensing of ocean wind vector which is a crucial component in the understanding of global climate change. Issues related to the application of microwave passive polarimetry to ocean wind are also discussed.

  14. Polarimetric thermal emission from periodic water surfaces

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Wilson, W. J.; Li, F. K.; Johnson, J. T.; Kong, J. A.

    1993-01-01

    Experimental results and theoretical calculations are presented to study the polarimetric emission from water surfaces with directional features. For our ground-based Ku-band radiometer measurements, a water pool was constructed on the roof of a building in the Jet Propulsion Laboratory, and a fiberglass surface with periodic corrugations in one direction was impressed on the top of the water surface to create a stationary water surface underneath it. It is observed that the measured Stokes parameters of corrugated fiberglass-covered water surfaces are functions of azimuth angles and agree very well with the theoretical calculations. The theory, after being verified by the experimental data, was then used to calculate the Stokes parameters of periodic surfaces without fiberglass surface layer and with rms height of the order of wind-generated water ripples. The magnitudes of the azimuthal variation of the calculated emissivities at horizontal and vertical polarizations corresponding to the first two Stokes parameters are found to be comparable to the values measured by airborne radiometers and SSM/I. In addition, the third Stokes parameter not shown in the literature is seen to have approximately twice the magnitude of the azimuth variation of either T(sub h) or T(sub v), which may make it more sensitive to the row direction, while less susceptive to noises because the atmospheric and system noises tend to be unpolarized and are expected to be cancelled out when the third Stokes parameter is derived as the difference of two or three power measurements, as indicated by another experiment carried out at a swimming pool with complicated surroundings. The results indicate that passive polarimetry is a potential technology in the remote sensing of ocean wind vector which is a crucial component in the understanding of global climate change. Issues related to the application of microwave passive polarimetry to ocean wind are also discussed.

  15. Water surface locomotion in tropical canopy ants.

    PubMed

    Yanoviak, S P; Frederick, D N

    2014-06-15

    Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s(-1), with some swimming at absolute speeds >10 cm s(-1). Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondyla spp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants. © 2014. Published by The Company of Biologists Ltd.

  16. Water Quality and Supply Issues of Irrigated Agricultural Regions - Lessons from the San Joaquin Valley of California

    NASA Astrophysics Data System (ADS)

    Suen, C. J.; Wang, D.

    2014-12-01

    The San Joaquin Valley of California covers 4 million hectares of farmland and produces $25 billion of agricultural products annually, but its average annual rainfall ranges from only 130 mm in the south to 330 mm in the north and nearly all occur in the winter. On the east side of the valley, irrigation water is mostly derived from the Sierra snow melt. On the west side, water is imported from the northern part of the state through the Sacramento Delta and a network of canals and aqueducts. Ground water is also used for both east and west sides of the valley to supplement surface water sources, especially during droughts. After years of intense irrigation, a number of water supply and water quality issues have emerged. They include groundwater overdraft, land subsidence, water contamination by agricultural drainage laden with selenium, salinity buildup in soil and water, nutrients contamination from fertilizers and livestock production, competition for water with megalopolis and environmental use and restoration. All these problems are intensified by the effect of climate change that has already taken place and other geological hazards, such as earthquakes that can bring the water supply system to a complete halt. In addition to scientific and technical considerations, solutions for these complex issues necessarily involve management planning, public policy and actions. Currently, they include furloughing marginally productive lands, groundwater recharge and banking, water reuse and recycle, salinity and nutrient management, integrated regional water management planning, and public education and outreach. New laws have been enacted to better monitor groundwater elevations, and new bond measures to improve storage, infrastructures, and reliability, have been placed on the public ballot. The presentation will discuss these complex water issues.

  17. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  18. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  19. Spatial probability of soil water repellency in an abandoned agricultural field in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Misiūnė, Ieva

    2015-04-01

    identified the high SWR probabilities in the northeast and central part of the plot, while OK observed mainly in the south-western part of the plot. In conclusion, before predict the spatial probability of SWR it is important to test several methods in order to identify the most accurate. Acknowledgments COST action ES1306 (Connecting European connectivity research). References Blanco-Canqui, H., Lal, R. (2009) Extend of water repellency under long-term no-till soils. Geoderma, 149, 171-180. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. (2000) Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33-65. Gonzalez-Penaloza, F.A., Cerda, A., Zavala, L.M., Jordan, A., Gimenez-Morera, A., Arcenegui, V. (2012) Do conservative agriculture practices increase soil water repellency? A case study in citrus-croped soils. Soil and Tillage Research, 124, 233-239. Pereira, P., Oliva, M. (2013) Modelling soil water repellency in an abandoned agricultural field, Visnyk Geology, Visnyk Geology 4, 77-80. Wessel, A.T. (1988) On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils. Earth Surface Process and Landforms, 13,