Sample records for agricultural sustainability problems

  1. Sustainable agricultural water management across climates

    NASA Astrophysics Data System (ADS)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  2. Agricultural sustainability: concepts, principles and evidence.

    PubMed

    Pretty, Jules

    2008-02-12

    Concerns about sustainability in agricultural systems centre on the need to develop technologies and practices that do not have adverse effects on environmental goods and services, are accessible to and effective for farmers, and lead to improvements in food productivity. Despite great progress in agricultural productivity in the past half-century, with crop and livestock productivity strongly driven by increased use of fertilizers, irrigation water, agricultural machinery, pesticides and land, it would be over-optimistic to assume that these relationships will remain linear in the future. New approaches are needed that will integrate biological and ecological processes into food production, minimize the use of those non-renewable inputs that cause harm to the environment or to the health of farmers and consumers, make productive use of the knowledge and skills of farmers, so substituting human capital for costly external inputs, and make productive use of people's collective capacities to work together to solve common agricultural and natural resource problems, such as for pest, watershed, irrigation, forest and credit management. These principles help to build important capital assets for agricultural systems: natural; social; human; physical; and financial capital. Improving natural capital is a central aim, and dividends can come from making the best use of the genotypes of crops and animals and the ecological conditions under which they are grown or raised. Agricultural sustainability suggests a focus on both genotype improvements through the full range of modern biological approaches and improved understanding of the benefits of ecological and agronomic management, manipulation and redesign. The ecological management of agroecosystems that addresses energy flows, nutrient cycling, population-regulating mechanisms and system resilience can lead to the redesign of agriculture at a landscape scale. Sustainable agriculture outcomes can be positive for food

  3. Sustainable Agriculture: Cover Cropping

    ERIC Educational Resources Information Center

    Webster, Megan

    2018-01-01

    Sustainable agriculture practices are increasingly being used by farmers to maintain soil quality, increase biodiversity, and promote production of food that is environmentally safe. There are several types of sustainable agriculture practices such as organic farming, crop rotation, and aquaculture. This lesson plan focuses on the sustainable…

  4. Sustainable intensification of agriculture for human prosperity and global sustainability.

    PubMed

    Rockström, Johan; Williams, John; Daily, Gretchen; Noble, Andrew; Matthews, Nathanial; Gordon, Line; Wetterstrand, Hanna; DeClerck, Fabrice; Shah, Mihir; Steduto, Pasquale; de Fraiture, Charlotte; Hatibu, Nuhu; Unver, Olcay; Bird, Jeremy; Sibanda, Lindiwe; Smith, Jimmy

    2017-02-01

    There is an ongoing debate on what constitutes sustainable intensification of agriculture (SIA). In this paper, we propose that a paradigm for sustainable intensification can be defined and translated into an operational framework for agricultural development. We argue that this paradigm must now be defined-at all scales-in the context of rapidly rising global environmental changes in the Anthropocene, while focusing on eradicating poverty and hunger and contributing to human wellbeing. The criteria and approach we propose, for a paradigm shift towards sustainable intensification of agriculture, integrates the dual and interdependent goals of using sustainable practices to meet rising human needs while contributing to resilience and sustainability of landscapes, the biosphere, and the Earth system. Both of these, in turn, are required to sustain the future viability of agriculture. This paradigm shift aims at repositioning world agriculture from its current role as the world's single largest driver of global environmental change, to becoming a key contributor of a global transition to a sustainable world within a safe operating space on Earth.

  5. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    PubMed

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  6. Rationale for Research on Including Sustainable Agriculture in the High School Agricultural Education Curriculum.

    ERIC Educational Resources Information Center

    Williams, David L.; Dollisso, Awoke D.

    1998-01-01

    Sustainable agriculture is a multidisciplinary approach to food and fiber problems. Its inclusion in the secondary curriculum would enrich and align it with social concerns. Research is needed in the scholarship functions of discovery, integrative approaches, and teaching. (SK)

  7. A science framework (SF) for agricultural sustainability.

    PubMed

    Ahmed, Ferdous; Al-Amin, Abul Q; Masud, Muhammad M; Kari, Fatimah; Mohamad, Zeeda

    2015-09-01

    The significance of Science Framework (SF) to date is receiving more acceptances all over the world to address agricultural sustainability. The professional views, however, advocate that the SF known as Mega Science Framework (MSF) in the transitional economies is not converging effectively in many ways for the agricultural sustainability. Specially, MSF in transitional economies is mostly incapable to identify barriers in agricultural research, inadequate to frame policy gaps with the goal of strategizing the desired sustainability in agricultural technology and innovation, inconsistent in finding to identify the inequities, and incompleteness to rebuild decisions. Therefore, this study critically evaluates the components of MSF in transitional economies and appraises the significance, dispute and illegitimate issue to achieve successful sustainable development. A sound and an effective MSF can be developed when there is an inter-linkage within principal components such as of (a) national priorities, (b) specific research on agricultural sustainability, (c) adequate agricultural research and innovation, and (d) alternative policy alteration. This maiden piece of research which is first its kind has been conducted in order to outline the policy direction to have an effective science framework for agricultural sustainability.

  8. The Concept of Sustainable Agriculture: Challenges and Prospects

    NASA Astrophysics Data System (ADS)

    Abubakar, M. S.; Attanda, M. L.

    2013-12-01

    Agriculture has changed dramatically, especially since the end of World War II. Food and fibre productivity raised due to new technologies, mechanization, increased chemical use, specialization and government policies that favoured maximizing production. Sustainable agriculture is a subject of great interest and lively debate in many parts of the world. Most agriculturalists agree that the concept of sustainable agriculture is of paramount importance to the sustainability of our biosphere and its ever increasing human population. This paper is an effort to identify the ideas, practices and policies that constitute concept of sustainable agriculture.

  9. A Farming Revolution: Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Klinkenborg, Verlyn

    1995-01-01

    Growing realization of the economic, social, and environmental costs of conventional agriculture has led many U.S. farmers to embrace and become advocates for agricultural practices that limit the need for pesticides and chemical fertilizers, decrease soil erosion, and improve soil health. Some hope that sustainable agriculture can promote smaller…

  10. Toward malaysian sustainable agriculture in 21st century

    NASA Astrophysics Data System (ADS)

    Khorramnia, K.; Shariff, A. R. M.; Rahim, A. Abdul; Mansor, S.

    2014-02-01

    Sustainable agriculture should be able to meet various social goals and objectives so that it can be maintained for an indefinite period without significant negative impacts on environment and natural resources. A wide variety of agricultural activities are running in Malaysia. Maintaining high quality of agricultural products with lower environmental impacts through a sustainable economic viability and life satisfaction of farmers and community are important factors helping to meet sustainable agriculture. Human resources are playing key role in directing the community toward sustainable development. The trend of improving the human development index in Malaysia is highest in the East Asia and the Pacific, high human development countries and the world, since 2000. Precision agriculture is providing strong tools to achieve sustainable agriculture. Different types of sensors, positioning and navigation systems, GIS, software and variable rate technology are well known components of precision agriculture. Drones and robots are promising tools that enabling farmers and managers to collect information or perform particular actions in remote areas or tough conditions. According to a survey, forestry and timber, rubber production and oil palm estates are three main agricultural divisions that precision agriculture may improve the productivity in respect to area of cropland/worker. Main factors affecting the adoption of precision agriculture in Malaysia are: a) Political and legal supports, b) Decision support systems and user interfaces c) Experienced research team works d) National educational policy e) Success in commercialization of precision agriculture system.

  11. INSPIA project: European Index for Sustainable and Productive Agriculture

    NASA Astrophysics Data System (ADS)

    Triviño-Tarradas, Paula; Jesús González-Sánchez, Emilio; Gómez-Ariza, Manuel; Rass, Gerard; Gardette, Sophie; Whitmore, Gavin; Dyson, Jeremy

    2017-04-01

    The concept of sustainable development has evolved from a mere perception for the protection of the environment, to a holistic approach, seeking to preserve not only the environment, but also to achieve sustainability in economics and social wellbeing. Globally, there is a major challenge to face in the agricultural sector: to produce more food, feed and other raw materials to satisfy the increasing demand of a growing population, whilst also contributing to economic prosperity, climate change mitigation / adaptation, social wellbeing and preserving natural capital such as soil, water, biodiversity and other ecosystem services. Nowadays, conventional approaches to agriculture are under threat. A more productive and resource efficient agriculture that integrates natural resource protection into its approach will help to meet all these challenges, enabling us to have more of everything - more food, more feed, more non-food crops, more biodiversity and natural habitats - while also reducing greenhouse gas emissions. In this context, INSPIA is an innovative approach that has worked since 2013 towards demonstration that sustainable productive agriculture is possible thanks to the implementation of a host of best management practices (BMPs) capable of delivering the above achievements. The purpose on INSPIA is to make visible with European decision makers that a sustainable and productive agricultural model exists in a small scale in Europe and that wider dissemination is possible with enabling legislation. INSPIA is demonstrating sustainable agriculture through the implementation of BMPs and the measurement and monitoring of a set of defined indicators (economic, social and environmental ones). INSPIA promotes sustainable practices that protect biodiversity, soils and water and contribute towards maintaining ecosystems services. This holistic sustainable system of productive agriculture is based on the combination of Conservation Agriculture (CA) and Integrated Pest

  12. Opportunities and challenges of sustainable agricultural development in China.

    PubMed

    Zhao, Jingzhu; Luo, Qishan; Deng, Hongbing; Yan, Yan

    2008-02-27

    This paper introduces the concepts and aims of sustainable agriculture in China. Sustainable agricultural development comprises sustainability of agricultural production, sustainability of the rural economy, ecological and environmental sustainability within agricultural systems and sustainability of rural society. China's prime aim is to ensure current and future food security. Based on projections of China's population, its economy, societal factors and agricultural resources and inputs between 2000 and 2050, total grain supply and demand has been predicted and the state of food security analysed. Total and per capita demand for grain will increase continuously. Total demand will reach 648 Mt in 2020 and 700 Mt in 2050, while total grain yield of cultivated land will reach 470 Mt in 2010, 585 Mt in 2030 and 656 Mt in 2050. The per capita grain production will be around 360kg in the period 2000-2030 and reach 470kg in 2050. When productivities of cultivated land and other agricultural resources are all taken into consideration, China's food self-sufficiency ratio will increase from 94.4% in 2000 to 101.3% in 2030, suggesting that China will meet its future demand for food and need for food security. Despite this positive assessment, the country's sustainable agricultural development has encountered many obstacles. These include: agricultural water-use shortage; cultivated land loss; inappropriate usage of fertilizers and pesticides, and environmental degradation.

  13. Challenges for Sustainable Land Management through Climate-Smart Agriculture

    NASA Astrophysics Data System (ADS)

    Dougill, Andrew; Stringer, Lindsay

    2017-04-01

    There are increasing pushes for agricultural land management to be both sustainable and climate-smart (in terms of increasing productivity, building resilience to climate change and enhancing carbon storage). Climate-smart agriculture initiatives include conservation agriculture, based on minimum soil disturbance, permanent soil cover and crop rotation, and agroforestry. Such efforts address key international goals of the United Nations Convention to Combat Desertification (UNCCD) and United Nations Framework Convention on Climate Change (UNFCCC), but as yet have not seen widespread uptake. Based on analyses of different project interventions from across a range of southern African countries, we outline the inter-related challenges that are preventing adoption of climate-smart agriculture initiatives. We then identify routes to building multi-stakeholder partnerships and empowering communities through participatory monitoring with the aim of increasing uptake of such sustainable land management practices. Good practice examples remain largely restricted to local-level project interventions with significant donor (or private-sector) support, aligned to short-term community priorities relating to access to inputs or reduced labour requirements. Scaling-up to district- and national-level initiatives is yet to be widely successful due to problems of: limited policy coherence; a lack of communication between stakeholders at different levels; and limited understanding of long-term benefits associated with changes in agricultural practices. We outline opportunities associated with improved communication of climate information, empowerment of district-level adaptation planning and diversification of agricultural livelihood strategies as key routes to guide farmers towards more sustainable, and climate-smart, land management practices. Recent experiences in Malawi, which has experienced significant floods and an El Niño drought year in the last two years, are used to

  14. Earth Observation for Food Security and Sustainable Agriculture

    NASA Astrophysics Data System (ADS)

    Bach, Heike; Mauser, Wolfram; Gernot, Klepper

    2016-08-01

    The global and regional potentials of Earth Observation (EO) to contribute to food security and sustainable agriculture in the 2050-timeframe were analysed in the ESA study EO4Food, whose outcome will be presented (www.EO4Food.org). Emphasis was put on the global societal, economic, environmental and technological megatrends that will create demand for food and shape the future societies. They will also constitute the background for developments in EO for food security and sustainable agriculture. The capabilities of EO in this respect were critically reviewed with three perspectives 1) the role of EO science for society, 2) observables from space and 3) development of future science missions.It was concluded that EO can be pivotal for the further development of food security and sustainable agriculture. EO allows to support the whole economic and societal value chain from farmers through food industry to insurance and financial industry in satisfying demands and at the same time to support society in governing sustainable agriculture through verifyable rules and regulations. It has the potential to become the global source of environmental information that is assimilated into sophisticated environmental management models and is used to make agriculture sustainable.

  15. Study of agricultural waste treatment in China and Russia-based on the agriculture environment sustainable development

    NASA Astrophysics Data System (ADS)

    Chernyaeva, Victoria A.; Teng, Xiuyi; Sergio

    2017-06-01

    China and Russia are both agriculture countries, agricultural environment sustainable development is very important for them. The paper studies three main agricultural wastes: straw, organic waste and plastic waste, and analyzes their treatments with the view of agricultural sustainable development.

  16. Sustainable intensification in agricultural systems.

    PubMed

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-12-01

    Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms 'sustainable' and 'intensification' is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural-environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and incentives necessary for the wider adoption of

  17. Conventionalization, Civic Engagement, and the Sustainability of Organic Agriculture

    ERIC Educational Resources Information Center

    Goldberger, Jessica R.

    2011-01-01

    It is often assumed that organic farming is synonymous with sustainable agriculture. The broad goals of sustainable agriculture include economic profitability, environmental stewardship, and community vitality. However, the "question of sustainability" (Ikerd, 2008) can be asked of any type of farming, including organic production. One…

  18. Geologic research in support of sustainable agriculture

    USGS Publications Warehouse

    Gough, L.P.; Herring, J.R.

    1993-01-01

    The importance and role of the geosciences in studies of sustainable agriculture include such traditional research areas as, agromineral resource assessments, the mapping and classification of soils and soil amendments, and the evaluation of landscapes for their vulnerability to physical and chemical degradation. Less traditional areas of study, that are increasing in societal importance because of environmental concerns and research into sustainable systems in general, include regional geochemical studies of plant and animal trace element deficiencies and toxicities, broad-scale water quality investigations, agricultural chemicals and the hydrogeologic interface, and minimally processed and ion-exchange agrominerals. We discuss the importance and future of phosphate in the US and world based on human population growth, projected agromineral demands in general, and the unavailability of new, high-quality agricultural lands. We also present examples of studies that relate geochemistry and the hydrogeologic characteristics of a region to the bioavailability and cycling of trace elements important to sustainable agricultural systems. ?? 1993.

  19. Transgenic Crops: Implications for Biodiversity and Sustainable Agriculture

    ERIC Educational Resources Information Center

    Garcia, Maria Alice; Altieri, Miguel A.

    2005-01-01

    The potential for genetically modified (GM) crops to threaten biodiversity conservation and sustainable agriculture is substantial. Megadiverse countries and centers of origin and/or diversity of crop species are particularly vulnerable regions. The future of sustainable agriculture may be irreversibly jeopardized by contamination of in situ…

  20. Methylotrophic bacteria in sustainable agriculture.

    PubMed

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  1. 7 CFR 3430.312 - Emphasis on sustainable agriculture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Emphasis on sustainable agriculture. 3430.312 Section 3430.312 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA FEDERAL ASSISTANCE PROGRAMS-GENERAL...

  2. 7 CFR 3430.312 - Emphasis on sustainable agriculture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Emphasis on sustainable agriculture. 3430.312 Section 3430.312 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA FEDERAL ASSISTANCE PROGRAMS-GENERAL...

  3. 7 CFR 3430.312 - Emphasis on sustainable agriculture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Emphasis on sustainable agriculture. 3430.312 Section 3430.312 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA FEDERAL ASSISTANCE PROGRAMS-GENERAL...

  4. 7 CFR 3430.312 - Emphasis on sustainable agriculture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Emphasis on sustainable agriculture. 3430.312 Section 3430.312 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA FEDERAL ASSISTANCE PROGRAMS-GENERAL...

  5. Policy Perspectives on Social, Agricultural, and Rural Sustainability.

    ERIC Educational Resources Information Center

    Wimberley, Ronald C.

    1993-01-01

    Introduces three types of agricultural policy dealing with the sustainability of society, the agricultural sector, and rural people and places. Outlines sustainability issues and special interest groups related to each policy type, common ground, and the impact on rural policy of the environment, economic change, physical infrastructure, social…

  6. Generalization of Water Pricing Model in Agriculture and Domestic Groundwater for Water Sustainability and Conservation

    NASA Astrophysics Data System (ADS)

    Hek, Tan Kim; Fadzli Ramli, Mohammad; Iryanto; Rohana Goh, Siti; Zaki, Mohd Faiz M.

    2018-03-01

    The water requirement greatly increased due to population growth, increased agricultural areas and industrial development, thus causing high water demand. The complex problems facing by country is water pricing is not designed optimally as a staple of human needs and on the other hand also cannot guarantee the maintenance and distribution of water effectively. The cheap water pricing caused increase of water use and unmanageable water resource. Therefore, the more optimal water pricing as an effective control of water policy is needed for the sake of ensuring water resources conservation and sustainability. This paper presents the review on problems, issues and mathematical modelling of water pricing based on agriculture and domestic groundwater for water sustainability and conservation.

  7. [Problems in development of agriculture-animal husbandry ecotone and its countermeasures].

    PubMed

    Baoyin, Taogetao; Bai, Yongfei

    2004-02-01

    Problems in development of Duolun, a typical agriculture-animal husbandry ecotone, and its countermeasures were discussed in this paper. Economic structure was not rational in Duolun, and it should develop industry and commerce, limit the scope of agriculture and animal husbandry, and actively increase efficiency of agriculture and animal husbandry. The structure of land use was not rational, and the main countermeasures were to increase area of forestland and grassland, and decrease cultivated area. On resources use, the main countermeasures were to exploit water resource rationally and bring into play resource superiority of mutually benefits on agriculture and animal husbandry. The ecological environment construction was the foundation of the national economy for sustainable development in agriculture-animal husbandry ecotone.

  8. How sustainable agriculture can address the environmental and human health harms of industrial agriculture.

    PubMed

    Horrigan, Leo; Lawrence, Robert S; Walker, Polly

    2002-05-01

    The industrial agriculture system consumes fossil fuel, water, and topsoil at unsustainable rates. It contributes to numerous forms of environmental degradation, including air and water pollution, soil depletion, diminishing biodiversity, and fish die-offs. Meat production contributes disproportionately to these problems, in part because feeding grain to livestock to produce meat--instead of feeding it directly to humans--involves a large energy loss, making animal agriculture more resource intensive than other forms of food production. The proliferation of factory-style animal agriculture creates environmental and public health concerns, including pollution from the high concentration of animal wastes and the extensive use of antibiotics, which may compromise their effectiveness in medical use. At the consumption end, animal fat is implicated in many of the chronic degenerative diseases that afflict industrial and newly industrializing societies, particularly cardiovascular disease and some cancers. In terms of human health, both affluent and poor countries could benefit from policies that more equitably distribute high-protein foods. The pesticides used heavily in industrial agriculture are associated with elevated cancer risks for workers and consumers and are coming under greater scrutiny for their links to endocrine disruption and reproductive dysfunction. In this article we outline the environmental and human health problems associated with current food production practices and discuss how these systems could be made more sustainable.

  9. How sustainable agriculture can address the environmental and human health harms of industrial agriculture.

    PubMed Central

    Horrigan, Leo; Lawrence, Robert S; Walker, Polly

    2002-01-01

    The industrial agriculture system consumes fossil fuel, water, and topsoil at unsustainable rates. It contributes to numerous forms of environmental degradation, including air and water pollution, soil depletion, diminishing biodiversity, and fish die-offs. Meat production contributes disproportionately to these problems, in part because feeding grain to livestock to produce meat--instead of feeding it directly to humans--involves a large energy loss, making animal agriculture more resource intensive than other forms of food production. The proliferation of factory-style animal agriculture creates environmental and public health concerns, including pollution from the high concentration of animal wastes and the extensive use of antibiotics, which may compromise their effectiveness in medical use. At the consumption end, animal fat is implicated in many of the chronic degenerative diseases that afflict industrial and newly industrializing societies, particularly cardiovascular disease and some cancers. In terms of human health, both affluent and poor countries could benefit from policies that more equitably distribute high-protein foods. The pesticides used heavily in industrial agriculture are associated with elevated cancer risks for workers and consumers and are coming under greater scrutiny for their links to endocrine disruption and reproductive dysfunction. In this article we outline the environmental and human health problems associated with current food production practices and discuss how these systems could be made more sustainable. PMID:12003747

  10. Sustainability through precision agriculture

    USDA-ARS?s Scientific Manuscript database

    As population and standard of living increase in many parts of the world, so will the need for food and other agriculturally-based products. To be sustainable, these increases in production must occur with minimum impact on the environment and with efficient use of production resources, including la...

  11. A National Scale Sustainable Agriculture Matrix of Indicators to Inform Policy

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Zhang, X.

    2017-12-01

    The ratification of Sustainable Development Goals (SDGs) by all member countries of the United Nations demonstrates the determination of the international community in moving towards a sustainable future. To enable and encourage accountability, independent and transparent measurements of national sustainability efforts are essential. Among all sectors, agriculture is fundamental to all three pillars of sustainability, namely environment, society, and economy. However, the definition of a sustainable agriculture and the feasibility of measuring it remain elusive, in part because it encompasses both biophysical and socio-economic components that are still poorly integrated. Therefore, we have been developing a Sustainable Agriculture Matrix (SAM) on a national scale in order to measure country-level performance in agriculture. First proposed by Swaminathan for agricultural research and policy in 1990s, SAM is a collection of indicators measuring sustainable agriculture from environmental, social, and economic dimensions. The environmental dimension evaluates various impacts of agricultural production on the environment, such as water consumption and nutrient pollution. The economic dimension quantifies the costs and benefits for major stakeholders involved in agricultural production, including government, industry, farmers, and consumers. The social dimension considers three major aspects: 1) social welfare (e.g., hunger and poverty rate, nutritional quality, demography of rural community); 2) equity over sectors, space, and gender (e.g., access to resources/services and opportunities, distribution of income, land ownership and tenure rights); 3) systemic risk (e.g., fragility of the global agricultural production and trade system, resilience of a farm or a country to market and natural shocks). Translating the illustrative concepts into measureable indicators will not only provide an independent and transparent measurement of national performance in the

  12. Is rangeland agriculture sustainable?

    PubMed

    Heitschmidt, R K; Vermeire, L T; Grings, E E

    2004-01-01

    The objective of this paper is to examine the sustainability of rangeland agriculture (i.e., managed grazing) on a world-wide basis, with a focus on North America. Sustainability is addressed on three fronts: 1) ecological, 2) economic, and 3) social acceptance. Based on previous and on-going research, we suggest that employment of science-based rangeland grazing management strategies and tactics can ensure ecological sustainability. The formidable challenge in employing such technology centers around the need to balance efficiency of solar energy capture and subsequent harvest efficiencies across an array of highly spatially and temporally variable vegetation growing conditions using animals that graze selectively. Failure to meet this fundamental challenge often accelerates rangeland desertification processes, and in some instances, enhances rate and extent of the invasion of noxious weeds. We also suggest that the fundamental reason that ecologically sound grazing management technologies are often not employed in the management of grazed ecological systems is because social values drive management decisions more so than ecological science issues. This is true in both well-developed societies with substantial economic resources and in less-developed societies with few economic resources. However, the social issues driving management are often entirely different, ranging from multiple-use issues in developed countries to human day-to-day survival issues in poorly developed countries. We conclude that the long-term sustainability of rangeland agriculture in 1) developed societies depends on the ability of rangeland agriculturalists to continually respond in a dynamic, positive, proactive manner to ever-changing social values and 2) less-developed societies on their ability to address the ecological and social consequences arising from unsustainable human populations before the adoption of science-based sustainable rangeland management technologies.

  13. Sustainable development in agriculture, food and nutrition--a patent analysis.

    PubMed

    Vani, Kohila P; Doble, Mukesh

    2011-05-01

    The paper discusses the patents that have been filed in the areas of sustainable development in agriculture, food and nutrition and use of natural resources in achieving this goal. A large number of patents deal with the production of fertilizers from animal manure, plant sources and other organic wastes, which are more sustainable that the chemical fertilizers that are being currently used. Sustainability in agriculture is achieved in developing processes for the manufacture of biopesticides/insecticides and bioactive agricultural products. Development of novel sustainable agricultural processes has also been the focus of researchers and technologists. Plant derived nutritious food products are sustainable and can cater for the growing population burden. This has been the focus of several patents. Processes for enhancing the nutrition in food also serve the purpose of catering for the under nourished population.

  14. Sustainability of natural attenuation of nitrate in agricultural aquifers

    USGS Publications Warehouse

    Green, Christopher T.; Bekins, Barbara A.

    2010-01-01

    Increased concentrations of nitrate in groundwater in agricultural areas, coinciding with increased use of chemical and organic fertilizers, have raised concern because of risks to environmental and human health. At some sites, these problems are mitigated by natural attenuation of nitrate as a result of microbially mediated reactions. Results from U.S. Geological Survey (USGS) research under the National Water-Quality Assessment (NAWQA) program show that reactions of dissolved nitrate with solid aquifer minerals and organic carbon help lower nitrate concentrations in groundwater beneath agricultural fields. However, increased fluxes of nitrate cause ongoing depletion of the finite pool of solid reactants. Consumption of the solid reactants diminishes the capacity of the aquifer to remove nitrate, calling into question the long-term sustainability of these natural attenuation processes.

  15. [Discussion on agricultural product quality and safety problem from ecological view].

    PubMed

    Xiao, Ming; Dong, Nan; Lyu, Xin

    2015-08-01

    There are many different perspectives about the sustainable agriculture, which had been proposed since the last three decades in the world. While China's ecologists and agronomists proposed a similar concept named 'ecological agriculture'. Although ecological agriculture in China has achieved substantial progress, including theory, models and supporting technologies nearly several decades of practice and development, its application guidance still is not yet clear. The organic agriculture model proposed by European Union is popular, but it is limited in the beneficiary groups and the social and ecological responsibility. In this context, the article based on an ecological point of view, analyzed the shortcomings of ecological imbalance caused by a single mode of agricultural production and the negative impact on the quality of agricultural products, and discussed the core values of ecological agriculture. On this basis, we put forward the concept of sustainable security of agricultural products. Based on this concept, an agricultural platform was established under the healthy ecosysphere environment, and from this agricultural platform, agricultural products could be safely and sustainably obtained. Around the central value of the concept, we designed the agricultural sustainable and security production model. Finally, we compared the responsibility, benefiting groups, agronomic practices selection and other aspects of sustainable agriculture with organic agriculture, and proved the advancement of sustainable agricultural model in agricultural production quality and safety.

  16. Soil nitrogen balance assessment and its application for sustainable agriculture and environment.

    PubMed

    Roy, Rabindra Nath; Misra, Ram Vimal

    2005-12-01

    Soil nitrogen balance assessment (SNBA) serves as an effective tool for estimating the magnitude of nitrogen loss/gain of the agro-eco systems and to appraise their sustainability. SNBA brings forth awareness of soil fertility problems, besides providing information relating to the resultant release of nitrogen into the environment consequent to agricultural practices. Quantitative information relating to nitrogen escape into the environment through such exercises can be gainfully utilized for identification of causative factors, enhancing fertilizer use efficiency and formulating programmes aimed at plugging N leakages. An overview of nitrogen balance approaches and methodologies is presented. A deeper understanding and insight into the agro-eco systems provided by the SNBA exercises can lay the basis for the formulation of effective agronomic interventions and policies aimed at promoting sustainable agriculture and a benign environment.

  17. Soil nitrogen balance assessment and its application for sustainable agriculture and environment.

    PubMed

    Roy, Rabindra Nath; Misra, Ram Vimal

    2005-09-01

    Soil nitrogen balance assessment (SNBA) serves as an effective tool for estimating the magnitude of nitrogen loss/gain of the agro-eco systems and to appraise their sustainability. SNBA brings forth awareness of soil fertility problems, besides providing information relating to the resultant release of nitrogen into the environment consequent to agricultural practices. Quantitative information relating to nitrogen escape into the environment through such exercises can be gainfully utilized for identification of causative factors, enhancing fertilizer use efficiency and formulating programmes aimed at plugging N leakages. An overview of nitrogen balance approaches and methodologies is presented. A deeper understanding and insight into the agro-eco systems provided by the SNBA exercises can lay the basis for the formulation of effective agronomic interventions and policies aimed at promoting sustainable agriculture and a benign environment.

  18. Sustainability of Agricultural Systems: Concept to Application

    EPA Science Inventory

    Agriculture not only feeds the planet, it also is the biggest overall factor affecting the environment. Thus, innovative sustainable farming systems that produce healthy food and protect the environment at the same time are very much needed. We, as agricultural engineers, need ...

  19. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  20. Definition and use of Solution-focused Sustainability Assessment: A novel approach to generate, explore and decide on sustainable solutions for wicked problems.

    PubMed

    Zijp, Michiel C; Posthuma, Leo; Wintersen, Arjen; Devilee, Jeroen; Swartjes, Frank A

    2016-05-01

    This paper introduces Solution-focused Sustainability Assessment (SfSA), provides practical guidance formatted as a versatile process framework, and illustrates its utility for solving a wicked environmental management problem. Society faces complex and increasingly wicked environmental problems for which sustainable solutions are sought. Wicked problems are multi-faceted, and deriving of a management solution requires an approach that is participative, iterative, innovative, and transparent in its definition of sustainability and translation to sustainability metrics. We suggest to add the use of a solution-focused approach. The SfSA framework is collated from elements from risk assessment, risk governance, adaptive management and sustainability assessment frameworks, expanded with the 'solution-focused' paradigm as recently proposed in the context of risk assessment. The main innovation of this approach is the broad exploration of solutions upfront in assessment projects. The case study concerns the sustainable management of slightly contaminated sediments continuously formed in ditches in rural, agricultural areas. This problem is wicked, as disposal of contaminated sediment on adjacent land is potentially hazardous to humans, ecosystems and agricultural products. Non-removal would however reduce drainage capacity followed by increased risks of flooding, while contaminated sediment removal followed by offsite treatment implies high budget costs and soil subsidence. Application of the steps in the SfSA-framework served in solving this problem. Important elements were early exploration of a wide 'solution-space', stakeholder involvement from the onset of the assessment, clear agreements on the risk and sustainability metrics of the problem and on the interpretation and decision procedures, and adaptive management. Application of the key elements of the SfSA approach eventually resulted in adoption of a novel sediment management policy. The stakeholder

  1. North Carolina Cooperative Extension Service Professionals' Attitudes toward Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Minarovic, Rosanne E.; Mueller, J. Paul

    2000-01-01

    Responses from 369 of 500 extension professionals reflected a shared vision for sustainable agriculture and recognition of a need for environmentally sound farming practices. There was less unanimity about endorsing the social aspects of sustainable agriculture, though they agreed on the need for more systems research. (SK)

  2. Sustainable intensification in agricultural systems

    PubMed Central

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-01-01

    Background Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms ‘sustainable’ and ‘intensification’ is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. Scope and Conclusions This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural–environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and

  3. Sustainability of agricultural water use worldwide

    NASA Astrophysics Data System (ADS)

    Tuninetti, M.; Tamea, S.; Dalin, C.

    2017-12-01

    Water is a renewable but limited resource. Most human use of freshwater resources is for agriculture, and global water demand for agriculture is increasing because of the growth in food demand, driven by increasing population and changing diets. Hence, measuring the pressure exerted by agriculture on freshwater sources is a key issue. The sustainability of water use depends on the water source renewability rate: the water use is not sustainable (depleting the water storage) where/when it exceeds the renewable freshwater availability. In this study, we explore the sustainability of rain and irrigation water use for the production of nine major crops, globally at a 5'x5' spatial resolution. We split the crop water use into soil moisture (from rainfall) and irrigation, with, for the first time, separating ground- and surface-water sources, which is a key distinction because the renewability of these two water sources can be very different. In order to physically quantify the extent to which crop water use is sustainable, we measure the severity of the source depletion as the number of years required for the hydrological cycle to replenish the water resource used by the annual crop production, namely the Water Debt. This newly developed indicator allows one to compare the depletion level of the three water sources at a certain location for a specific crop. Hence, we mapped, for each crop, the number of years required to replenish the water withdrawn from soil-, surface- and ground-water resources. Each map identifies the hotspots for each water source, highlighting regions and crops that threaten most the water resource. We found that the water debt with soil moisture is heterogeneous in space but always lower than one year indicating a non-surprising sustainability of rain-fed agriculture. Rice and sugarcane make the largest contribution to global soil moisture depletion. Water debt in surface water is particularly high in areas of intense wheat and cotton production

  4. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  5. College Students' View of Biotechnology Products and Practices in Sustainable Agriculture Systems

    ERIC Educational Resources Information Center

    Anderson, William A.

    2008-01-01

    Sustainable agriculture implies the use of products and practices that sustain production, protect the environment, ensure economic viability, and maintain rural community viability. Disagreement exists as to whether or not the products and practices of modern biotechnological support agricultural sustainability. The purpose of this study was to…

  6. Students' Experiential Learning and Use of Student Farms in Sustainable Agriculture Education

    ERIC Educational Resources Information Center

    Parr, Damian M.; Trexler, Cary J.

    2011-01-01

    Student farms, developed largely out of student efforts, have served as centers for the development of experiential learning and sustainable agriculture and food systems educational activities on land-grant colleges of agriculture well before most formal sustainable agriculture and food systems programs were proposed. This study explored students'…

  7. Teachers' Perceptions toward Sustainable Agriculture in an Ohio Science High School

    ERIC Educational Resources Information Center

    Sameipour, Sharmin

    2017-01-01

    The discussion about the environmental challenges and socio-economic situation connected with conventional agricultural systems in the United States in the 1985s, and sustainable agriculture (SA), has mentioned the role of education in highlighting barriers. Advocates of sustainable agriculture declare that education about SA can present solutions…

  8. Comparative review of multifunctionality and ecosystem services in sustainable agriculture.

    PubMed

    Huang, Jiao; Tichit, Muriel; Poulot, Monique; Darly, Ségolène; Li, Shuangcheng; Petit, Caroline; Aubry, Christine

    2015-02-01

    Two scientific communities with broad interest in sustainable agriculture independently focus on multifunctional agriculture or ecosystem services. These communities have limited interaction and exchange, and each group faces research challenges according to independently operating paradigms. This paper presents a comparative review of published research in multifunctional agriculture and ecosystem services. The motivation for this work is to improve communication, integrate experimental approaches, and propose areas of consensus and dialog for the two communities. This extensive analysis of publication trends, ideologies, and approaches enables formulation of four main conclusions. First, the two communities are closely related through their use of the term "function." However, multifunctional agriculture considers functions as agricultural activity outputs and prefers farm-centred approaches, whereas ecosystem services considers ecosystem functions in the provision of services and prefers service-centred approaches. Second, research approaches to common questions in these two communities share some similarities, and there would be great value in integrating these approaches. Third, the two communities have potential for dialog regarding the bundle of ecosystem services and the spectrum of multifunctional agriculture, or regarding land sharing and land sparing. Fourth, we propose an integrated conceptual framework that distinguishes six groups of ecosystem services and disservices in the agricultural landscape, and combines the concepts of multifunctional agriculture and ecosystem services. This integrated framework improves applications of multifunctional agriculture and ecosystem services for operational use. Future research should examine if the framework can be readily adapted for modelling specific problems in agricultural management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Seeds of Knowledge: The Evolution of the Louis Bromfield Sustainable Agriculture Library.

    ERIC Educational Resources Information Center

    Miraglia, Laurie L.

    The Louis Bromfield Sustainable Agriculture Library is located in Lucas, Ohio, at Malabar Farm State Park. Established in 1992, the library is jointly maintained by the Ohio State University Sustainable Agriculture Program and the Ohio Department of Agriculture. The library's namesake, Louis Bromfield, was a Pulitzer Prize-winning author and noted…

  10. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives

    PubMed Central

    Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D.

    2017-01-01

    Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture. PMID:28676790

  11. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives.

    PubMed

    Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D

    2017-01-01

    Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

  12. Sustainable agriculture and protection of the environment

    NASA Astrophysics Data System (ADS)

    Siemianowska, Ewa; Wesołowski, Andrzej; Skibniewska, Krystyna A.; Tyburski, Józef; Gurzyński, Marcin

    2017-10-01

    The economic, environmental and social development should not degrade the environment but it should leave it for the next generations in the state that it is presently or even better. The principle of sustainable agriculture is to cover the human needs for food without damage to the environment. The aim of the article was to research the farmers' awareness of the principle of sustainable agriculture and balanced fertilization and their influence on the environment. Among 100 farmers of the Tczew district (Poland) there was done questionnaire research on the determination rates of nitrogen fertilizers and on the regulation of fertilizers usage in Poland. Most of farmers declared a good knowledge of good agricultural practices and of balanced fertilization and the awareness of threats issuing from their activities. At the same time in Poland since the announcement of the Nitrate Directive of the former European Common Market (1992) up till now (2013) the application of nitrogen fertilizers doubled and the yield of wheat increased only by 15%, which means the increase of environmental burden with this chemical element.

  13. Teaching the Nature of Science in a Course in Sustainable Agriculture

    ERIC Educational Resources Information Center

    Cessna, Stephen; Neufeld, Douglas Graber; Horst, S. Jeanne

    2013-01-01

    Claims of the (non-)sustainability of a given agricultural practice generally hinge on scientific evidence and the reliability of that evidence, or at least the perception of its reliability. Advocates of sustainable agriculture may dismiss science as purely subjective, or at the other extreme, may inappropriately elevate scientific findings to…

  14. Empowering Women in Agricultural Education for Sustainable Rural Development.

    ERIC Educational Resources Information Center

    Ugbomeh, George M. M.

    2001-01-01

    Discusses the concepts of agricultural education, women empowerment, and sustainable rural development. Suggests that, because women make up more than half of Nigeria's population, their empowerment would assist the efforts for sustainable rural development. (Contains 48 references.) (JOW)

  15. Nanotechnology Applications and Implications of Agrochemicals toward Sustainable Agriculture and Food Systems.

    PubMed

    Scott, Norman R; Chen, Hongda; Cui, Haixin

    2018-06-08

    The first international conference on Nanotechnology Applications and Implications of Agrochemicals toward Sustainable Agriculture and Food Systems was held in Beijing, China on November 17-18, 2016 to address and exchange latest knowledge and developments in nanotechnology of agrochemicals toward sustainable agriculture and food systems. World-leading scientists gathered to discuss a wide range of relevant topics. The purposes of this paper are to provide: an introduction to the international conference, summarize in brief the contributions of papers that follow within this special issue of Journal of Agricultural and Food Chemistry, provide a synthesis of conference outcomes, suggest future directions including an important role of converging science and technologies to advance sustainable agriculture, food, and natural resource systems.

  16. Agricultural policy and sustainable livestock development.

    PubMed

    Schillhorn van Veen, T W

    1999-01-01

    Future agricultural and rural development is, to a large extent, influenced by the projected food needs of 2.5 billion people expected to swell the world population by 2020. This increase will require more food in general and, in view of recent experience in East Asia, more animal products. To achieve this increase will require judicious use of resources, and trade, especially in those countries where natural resources are insufficient to support food production. Achieving food sufficiency in a sustainable manner is a major challenge for farmers, agro-industries, researchers and governments. The latter play an important role as many of the farmers' choices are, to a large extent, directed by government or supra-government, often through macro- and micro-economic policy. In many countries the economic, environmental, trade and agricultural policies have not been conducive to an agricultural development that is risk-free with respect to the environment, animal welfare or public health. The recent decline of government support in agriculture forced farmers in Western countries to think about more risk adverse agricultural practices and more efficient production systems. On the other hand, many countries in Eastern Europe and the former Soviet Union, as well as other developing countries, are still going through a painful process of adjustment to new market conditions. International banks and development agencies have a mandate to help developing countries, but are somewhat restricted both by needing to work directly with governments and by their perceived dogmatic approach to development. Changing policies do, now and in the future, also affect the development of animal disease control programmes, including the control of parasitic diseases. On the one hand there is an increasing interest in risk-free control practices, and on the other hand a demand for greater regulatory control over the production process. As parasitic diseases of animals are closely linked to the

  17. Problems Inherent to Augmentation of Natural Enemies in Open Agriculture.

    PubMed

    Michaud, J P

    2018-04-01

    Augmentation biological control has successfully replaced a lot of insecticide use in 'closed system' agriculture (e.g., greenhouses). The profitable commercialization of biocontrol agents in greenhouses has created an incentive to expand markets for mass-reared beneficial insects into open agricultural systems, often without sufficient scientific justification. However, the semi-contained nature of greenhouse culture is often critical to the success of augmentation and can serve to mask potential pitfalls and intrinsic limitations of this approach in open systems. Factors contributing to greenhouse successes include the reduced biological diversity of contained agroecosystems, the prevention of agent dispersal, the ability to maintain environmental conditions within a range favorable for the agent, the exclusion of competitors and natural enemies of the agent that might otherwise diminish its efficacy, and the absence of alternative prey/hosts that could divert predation/parasitism from the target pest. There are also problems arising from collection of source material from locally adapted populations, and the inadvertent imposition of artificial selection in the course of laboratory rearing. Besides highlighting these pitfalls, this paper aims to encourage more consideration of conservation approaches prior to investment in augmentation programs which entice farmers into perpetual cycles of 'rear and release.' I argue that although augmentation can benefit agriculture whenever it replaces pesticide applications, it does not constitute an ecologically sustainable solution because it requires continued inputs, and it can distract research attention away from more sustainable objectives. Sustainable biological control is best achieved through modifications to cultural practices that increasingly 'naturalize' agroecosystems, thus facilitating the natural recruitment and persistence of beneficial arthropod fauna, combined with habitat management geared to increasing

  18. An integrated approach to monitoring ecosystem services and agriculture: implications for sustainable agricultural intensification in Rwanda.

    PubMed

    Rosa, Melissa F; Bonham, Curan A; Dempewolf, Jan; Arakwiye, Bernadette

    2017-01-01

    Maintaining the long-term sustainability of human and natural systems across agricultural landscapes requires an integrated, systematic monitoring system that can track crop productivity and the impacts of agricultural intensification on natural resources. This study presents the design and practical implementation of a monitoring framework that combines satellite observations with ground-based biophysical measurements and household surveys to provide metrics on ecosystem services and agricultural production at multiple spatial scales, reaching from individual households and plots owned by smallholder farmers to 100-km 2 landscapes. We developed a set of protocols for monitoring and analyzing ecological and agricultural household parameters within two 10 × 10-km landscapes in Rwanda, including soil fertility, crop yield, water availability, and fuelwood sustainability. Initial results suggest providing households that rely on rainfall for crop irrigation with timely climate information and improved technical inputs pre-harvest could help increase crop productivity in the short term. The value of the monitoring system is discussed as an effective tool for establishing a baseline of ecosystem services and agriculture before further change in land use and climate, identifying limitations in crop production and soil fertility, and evaluating food security, economic development, and environmental sustainability goals set forth by the Rwandan government.

  19. Holistic Sustainability Assessment of Agricultural Rainwater Harvesting

    EPA Science Inventory

    We present a methodology for holistic sustainability assessment of green infrastructure, applied to agricultural rainwater harvesting (RWH) in the Albemarle-Pamlico river basin. It builds upon prior work in the region through the use of detailed, crop-level management information...

  20. Earthworms, pesticides and sustainable agriculture: a review.

    PubMed

    Datta, Shivika; Singh, Joginder; Singh, Sharanpreet; Singh, Jaswinder

    2016-05-01

    The aim of this review is to generate awareness and understand the importance of earthworms in sustainable agriculture and effect of pesticides on their action. The natural resources are finite and highly prone to degradation by the misuse of land and mismanagement of soil. The world is in utter need of a healthy ecosystem that provides with fertile soil, clean water, food and other natural resources. Anthropogenic activities have led to an increased contamination of land. The intensification of industrial and agricultural practices chiefly the utilization of pesticides has in almost every way made our natural resources concave. Earthworms help in a number of tasks that support many ecosystem services that favor agrosystem sustainability but are degraded by exhaustive practices such as the use of pesticides. The present review assesses the response of earthworm toward the pesticides and also evaluates the relationship between earthworm activity and plant growth. We strictly need to refresh and rethink on the policies and norms devised by us on sustainable ecology. In an equivalent way, the natural resources should be utilized and further, essential ways for betterment of present and future livelihood should be sought.

  1. Investigating the Sustainability of Perennial Agriculture

    NASA Astrophysics Data System (ADS)

    Sutherlin, C. E.; Brunsell, N. A.; De Oliveira, G.; Crews, T.; Vico, G.

    2017-12-01

    The changing climate leads to uncertainties concerning the sustainability of certain agricultural resources, and with the additional stresses of an increasing global population, uncertainty in food security will greatly increase. To adhere to future food demands in the face of this changing climate, perennial agriculture has been a proposed solution. However, it is equally important to assure that perennial agriculture is not negatively affecting the climate in exchange for this proposed more robust food source. We chose to examine the interactions between perennial and annual agricultural crops by focusing on the efficiency of exchanges with the atmosphere. This is done using the omega decoupling factor for 4 different sites as a way of quantifying the contributions of radiation and stomatal conductance over the resulting water and carbon cycles. This gives us an indication of how the plant canopy is interacting with, and influencing the local microclimate. Ultimately, this should give us an indication of the ability of perennial crops to aid in the climate mitigation process. We hypothesized that the perennial site chosen would have omega values more similar to the omega values of a natural grassland rather than an annual crop site. Using AmeriFlux towers to determine the canopy values needed to calculate the omega decoupling factor, we focused on the Kernza perennial crops being grown at the Land Institute in Salina, Kansas (KLS), in comparison to a natural grassland in Manhattan, Kansas (KON), a typical land cover model in Lawrence, Kansas (KFS), and an annual crop site in Lamont, Oklahoma (ARM). These results will allow us to move forward in the investigation of perennial crops as a sustainable food source.

  2. ASSESSMENT FOR FUTURE ENVIRONMENTAL PROBLEMS - AGRICULTURAL RESIDUES

    EPA Science Inventory

    This assessment was undertaken to determine whether agricultural burning constitutes an environmental problem in the United States. Preliminary indications are that agricultural burning is not likely to become a national problem. The report summarizes available information on loc...

  3. Visualisation of uncertainty for the trade-off triangle used in sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Harris, Paul; Takahashi, Taro; Lee, Michael

    2017-04-01

    Agriculture at the global-scale is at a critical juncture where competing requirements for maximal production and minimal pollution have led to the concept of sustainable intensification. All farming systems (arable, grasslands, etc.) are part of this debate, where each have particular associated environmental risks such as water and air pollution, greenhouse gas emissions and soil degradation, as well as issues affecting production efficiency, product quality and consumer acceptability, reflected in the development of agricultural sustainability policies. These challenges necessitate multidisciplinary solutions that can only be properly researched, implemented and tested in real-world production systems which are suited to their geographical and climatic production practice. In this respect, various high-profile agricultural data collection experiments have been set up, such as the North Wyke Farm Platform (http://www.rothamsted.ac.uk/farmplatform) to research agricultural productivity and ecosystem responses to different management practices. In this farm-scale grasslands experiment, data on hydrology, emissions, nutrient cycling, biodiversity, productivity and livestock welfare/health are collected, that in turn, are converted to trade-off metrics with respect to: (i) economic profits, (ii) societal benefits and (iii) environmental concerns, under the umbrella of sustainable intensification. Similar agriculture research platforms have similar objectives, where data collections are ultimately synthesised into trade-off metrics. Trade-offs metrics can then be usefully visualized via the usual sustainable triangle, with a new triangle for each key time period (e.g. baseline versus post-baseline). This enables a visual assessment of change in sustainability harmony or discord, according to the remit of the given research experiment. In this paper, we discuss different approaches to calculation of the sustainability trade-off metrics that are required from the farm

  4. Relationships among multiple aspects of agriculture's environmental impact and productivity: a meta-analysis to guide sustainable agriculture.

    PubMed

    German, Richard N; Thompson, Catherine E; Benton, Tim G

    2017-05-01

    Given the pressures on land to produce ever more food, doing it 'sustainably' is growing in importance. However, 'sustainable agriculture' is complex to define, not least because agriculture impacts in many different ways and it is not clear how different aspects of sustainability may be in synergy or trade off against each other. We conducted a meta-analysis to assess the relationships between multiple measures of sustainability using novel analytical methods, based around defining the efficiency frontier in the relationship between variables, as well as using correlation analysis. We define 20 grouped variables of agriculture's impact (e.g. on soil, greenhouse gas, water, biodiversity) and find evidence of both strong positive and negative correlations between them. Analysis based on the efficiency frontier suggests that trade-offs can be 'softened' by exploiting the natural between-study variation that arises from a combination of farming best practice and context. Nonetheless, the literature provides strong evidence of the relationship between yields and the negative externalities created by farming across a range of measures. © 2016 Cambridge Philosophical Society.

  5. Common Ground: Agriculture for a Sustainable Future. Lesson Plans.

    ERIC Educational Resources Information Center

    Selfridge, Deborah J.

    This document contains lesson plans for a four-unit course in agriculture for sustainable development and is accompanied by a video tape and a booklet that discusses existing and future agricultural practices. Each unit of the document contains some or all of the following components: an introduction; objectives and competencies addressed; a list…

  6. Problems of Manpower in Agriculture. OECD Documentation in Food and Agriculture.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    Problems related to rapid reduction of the agricultural labor force were examined in the 21 Organisation for Economic Co-operation and Development countries. The size and changes of the agricultural labor force, economic forces tending towards change, technical requirements for labor in agriculture, and obstacles hindering economic adjustment of…

  7. Identifying the characteristic of SundaParahiyangan landscape for a model of sustainable agricultural landscape

    NASA Astrophysics Data System (ADS)

    Dahlan, M. Z.; Nurhayati, H. S. A.; Mugnisjah, W. Q.

    2017-10-01

    This study was an explorative study of the various forms of traditional ecological knowledge (TEK) of Sundanese people in the context of sustainable agriculture. The qualitative method was used to identify SundaParahiyangan landscape by using Rapid Participatory Rural Appraisal throughsemi-structured interviews, focus group discussions, and field survey. The Landscape Characteristic Assessment and Community Sustainability Assessment were used to analyze the characteristic of landscape to achieve the sustainable agricultural landscape criteria proposed by US Department of Agriculture. The results revealed that the SundaParahiyangan agricultural landscape has a unique characteristic as a result of the long-term adaptation of agricultural society to theirlandscape through a learning process for generations. In general, this character was reflected in the typical of Sundanese’s agroecosystems such as forest garden, mixed garden, paddy field, and home garden. In addition, concept of kabuyutan is one of the TEKs related to understanding and utilization of landscape has been adapted on revitalizing the role of landscape surrounding the agroecosystem as the buffer zone by calculating and designating protected areas. To support the sustainability of production area, integrated practices of agroforestry with low-external-input and sustainable agriculture (LEISA) system can be applied in utilizing and managing agricultural resources.

  8. Facilitating North-South Partnerships for Sustainable Agriculture

    ERIC Educational Resources Information Center

    Termeer, C. J. A. M.; Hilhorst, T.; Oorthuizen, J.

    2010-01-01

    The increased number of development cooperation and sustainable agriculture partnerships brings with it new challenges for professionals who are asked to facilitate these partnering processes. In this article we shed more light on the world of development cooperation and we explore questions that facilitators working with North-South partnerships…

  9. The emerging roles of agricultural insurance and farmers cooperatives on sustainable rice productions in Indonesia

    NASA Astrophysics Data System (ADS)

    Lopulisa, C.; Rismaneswati; Ramlan, A.; Suryani, I.

    2018-05-01

    Rice is the main staple food of most Asian countries including Indonesia. Most of the rice producers are constituted by small individual farmers characterized with mostly landless, have a less farming capitals and less access to pool resources and of course are confronted with various risk. Agriculture is faced with a lot of uncertainly most of which are not within the control of farmers. Global climatic change, climatic disasters, fluctuation of global economic and competitiveness of multinational company make difficulties of farmers to pursue his sustainable farming activity. The challenge and the role of government is to reduce uncertainly and to improve resiliency of the small farmer. Agriculture insurance shall focus on risk factors that are difficult to manage or cannot be managed by small farmers and it is should be viewed as just one aspect of the “holistic” risk management strategy. Technology, market, consumer, behaviour, development will always move forward, and no individual farmers can adapt this change alone, so small farmers need to corporate with each other that can optimized the resources they have. Cooperative could create possibilities, value added, shortening the supplied chain, made a product more effective and efficient, and finally can complete in domestic and global markets. Therefore, agriculture insurance as well a farmer cooperative may play an important role on sustainability of rice production in Indonesia. Nowadays and in the future agriculture sustainability is a not merely of technology problems but also a matter of economic-social-culture and politic issues within local, national, and international context.

  10. Comparative assessment of smallholder sustainability using an agricultural sustainability framework and a yield based index insurance: A case study

    NASA Astrophysics Data System (ADS)

    Moshtaghi, Mehrdad; Adla, Soham; Pande, Saket; Disse, Markus; Savenije, Hubert

    2017-04-01

    The concept of sustainability is central to smallholder agriculture as subsistence farming is constantly impacted by livelihood insecurity and is constrained by access to capital, water technology and alternative employment opportunities. This study compares two approaches which aim at quantifying smallholder sustainability but differ in their underlying principles, methodologies for assessment and reporting, and applications. The yield index based insurance can protect the smallholder agriculture and help it to more economic sustainability because the income of smallholder depends on selling crops and this insurance scheme is based on crop yields. In this research, the trigger of this insurance sets on the basis of yields in previous years. The crop yields are calculated every year through socio-hydrology modeling and smallholder can get indemnity when crop yields are lower than average of previous five years (a crop failure). The FAO Sustainability Assessment of Food and Agriculture (SAFA) is an inclusive and comprehensive framework for sustainability assessment in the food and agricultural sector. It follows the UN definition of the 4 dimensions of sustainability (good governance, environmental integrity, economic resilience and social well-being) and includes 21 themes and 58 sub-themes with a multi-indicator approach. The direct sustainability corresponding to the FAO SAFA economic resilience dimension is compared with the indirect notion of sustainability derived from the yield based index insurance. A semi-synthetic comparison is conducted to understand the differences in the underlying principles, methodologies and application of the two approaches. Both approaches are applied to data from smallholder regions of Marathwada in Maharashtra (India) which experienced a severe rise in farmer suicides in the 2000s which has been attributed to a combination of socio-hydrological factors.

  11. Plant genetics, sustainable agriculture and global food security.

    PubMed

    Ronald, Pamela

    2011-05-01

    The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant-environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts-the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems.

  12. A Professional Development Climate Course for Sustainable Agriculture in Australia

    ERIC Educational Resources Information Center

    George, David; Clewett, Jeff; Birch, Colin; Wright, Anthony; Allen, Wendy

    2009-01-01

    There are few professional development courses in Australia for the rural sector concerned with climate variability, climate change and sustainable agriculture. The lack of educators with a sound technical background in climate science and its applications in agriculture prevents the delivery of courses either stand-alone or embedded in other…

  13. Evaluating strategies for sustainable intensification of U.S. agriculture through the Long-Term Agroecosystem Research network

    USDA-ARS?s Scientific Manuscript database

    Sustainable intensification is an emerging model for agriculture designed to reconcile accelerating global demand for agricultural products with long-term environmental stewardship. Defined here as increasing agricultural production while maintaining or improving environmental quality, sustainable i...

  14. An Index-Based Assessment of Agricultural Water Scarcity for Sustainable Water Resource Management

    NASA Astrophysics Data System (ADS)

    Kim, S. E.; Lee, D. K.; Kim, K. S.; Hyun, S.; Kim, Y.

    2017-12-01

    Global precipitation pattern is changing due to climate change, causing drought and water scarcity all around the world. As water is mandatory to all lives, water availability is becoming essential and so is sustainable water resource management. Especially in agriculture, water resource management is crucial, as it is directly connected to the production. However, many studies about water scarcity show limits by focusing on current situation and overlooking future possibilities of water availability. Also, most of the studies about water scarcity use single index or model. To overcome these shortcomings, we assessed agricultural water scarcity considering future climate, using water scarcity indices. We assessed present and future water scarcity using several indices and compared the results derived from each index. The study area of this research is South Korea, as drought is a prominent problem in agricultural sector. Precipitation in Korea is concentrated in summer, causing severe drought in spring and fall. Rainfall density in Korea is increasing with climate change, and sustainable water resource management is inevitable. In this research, we used irrigational demand along with current and future crop production of 2030 and 2050 as water demand. We projected the future (2020-2100) runoff of dams located in Korea as water demand under future scenarios, RCP 4.5 and 8.5. The result showed severe water scarcity in Southern area of Korea both in the present and the future. It was due to increase of water demand and decrease of precipitation. It indicates that the water scarcity gets more intense in the future, and emphasizes the importance of water resource management of the southern part. This research will be valuable in establishing water resource management in agricultural sector for sustainable water availability in the future.

  15. Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon.

    PubMed

    Galford, Gillian L; Soares-Filho, Britaldo; Cerri, Carlos E P

    2013-06-05

    The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes.

  16. Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon

    PubMed Central

    Galford, Gillian L.; Soares-Filho, Britaldo; Cerri, Carlos E. P.

    2013-01-01

    The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes. PMID:23610175

  17. Agricultural biodiversity, social-ecological systems and sustainable diets.

    PubMed

    Allen, Thomas; Prosperi, Paolo; Cogill, Bruce; Flichman, Guillermo

    2014-11-01

    The stark observation of the co-existence of undernourishment, nutrient deficiencies and overweight and obesity, the triple burden of malnutrition, is inviting us to reconsider health and nutrition as the primary goal and final endpoint of food systems. Agriculture and the food industry have made remarkable advances in the past decades. However, their development has not entirely fulfilled health and nutritional needs, and moreover, they have generated substantial collateral losses in agricultural biodiversity. Simultaneously, several regions are experiencing unprecedented weather events caused by climate change and habitat depletion, in turn putting at risk global food and nutrition security. This coincidence of food crises with increasing environmental degradation suggests an urgent need for novel analyses and new paradigms. The sustainable diets concept proposes a research and policy agenda that strives towards a sustainable use of human and natural resources for food and nutrition security, highlighting the preeminent role of consumers in defining sustainable options and the importance of biodiversity in nutrition. Food systems act as complex social-ecological systems, involving multiple interactions between human and natural components. Nutritional patterns and environment structure are interconnected in a mutual dynamic of changes. The systemic nature of these interactions calls for multidimensional approaches and integrated assessment and simulation tools to guide change. This paper proposes a review and conceptual modelling framework that articulate the synergies and tradeoffs between dietary diversity, widely recognised as key for healthy diets, and agricultural biodiversity and associated ecosystem functions, crucial resilience factors to climate and global changes.

  18. Innovating towards Sustainable Agriculture: A Greek Case Study

    ERIC Educational Resources Information Center

    Koutsouris, Alex

    2008-01-01

    Agronomists (scientists and extensionists), despite the emergence of interactive approaches, still have troubles with (the introduction of) innovations, such as sustainable forms of agriculture. This article critically addresses such difficulties based on the evaluation of a project mainly concerning the introduction of Integrated Crop Management…

  19. Impact of Sustainable Agriculture on Secondary School Agricultural Education Teachers and Programs in the North Central Region.

    ERIC Educational Resources Information Center

    Agbaje, Kehinde Aderemi Ajaiyeoba; Martin, Robert A.; Williams, David L.

    2001-01-01

    Responses from 298 of 600 secondary agriculture teachers in north central United States revealed limited impact of sustainable agriculture. Most teachers had neutral perceptions; a moderate number taught it, but not from a systems perspective. However, related agronomy topics were taught, providing a possible foundation for future inclusion of…

  20. Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems?

    NASA Astrophysics Data System (ADS)

    Wiek, Arnim; Foley, Rider W.; Guston, David H.

    2012-09-01

    Nanotechnology is widely associated with the promise of positively contributing to sustainability. However, this view often focuses on end-of-pipe applications, for instance, for water purification or energy efficiency, and relies on a narrow concept of sustainability. Approaching sustainability problems and solution options from a comprehensive and systemic perspective instead may yield quite different conclusions about the contribution of nanotechnology to sustainability. This study conceptualizes sustainability problems as complex constellations with several potential intervention points and amenable to different solution options. The study presents results from interdisciplinary workshops and literature reviews that appraise the contribution of the selected nanotechnologies to mitigate such problems. The study focuses exemplarily on the urban context to make the appraisals tangible and relevant. The solution potential of nanotechnology is explored not only for well-known urban sustainability problems such as water contamination and energy use but also for less obvious ones such as childhood obesity. Results indicate not only potentials but also limitations of nanotechnology's contribution to sustainability and can inform anticipatory governance of nanotechnology in general, and in the urban context in particular.

  1. Linking knowledge and action through mental models of sustainable agriculture.

    PubMed

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-09-09

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer "mental models" of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems.

  2. Linking knowledge and action through mental models of sustainable agriculture

    PubMed Central

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-01-01

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer “mental models” of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems. PMID:25157158

  3. Sustainable Uses of FGD Gypsum in Agricultural Systems: Introduction.

    PubMed

    Watts, Dexter B; Dick, Warren A

    2014-01-01

    Interest in using gypsum as a management tool to improve crop yields and soil and water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur from combustion gases at coal-fired power plants, in major agricultural producing regions within the last two decades has attributed to this interest. Currently, published data on the long-term sustainability of FGD gypsum use in agricultural systems is limited. This has led to organization of the American Society of Agronomy's Community "By-product Gypsum Uses in Agriculture" and a special collection of nine technical research articles on various issues related to FGD gypsum uses in agricultural systems. A brief review of FGD gypsum, rationale for the special collection, overviews of articles, knowledge gaps, and future research directions are presented in this introductory paper. The nine articles are focused in three general areas: (i) mercury and other trace element impacts, (ii) water quality impacts, and (iii) agronomic responses and soil physical changes. While this is not an exhaustive review of the topic, results indicate that FGD gypsum use in sustainable agricultural production systems is promising. The environmental impacts of FGD gypsum are mostly positive, with only a few negative results observed, even when applied at rates representing cumulative 80-year applications. Thus, FGD gypsum, if properly managed, seems to represent an important potential input into agricultural systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Sustaining the Earth's watersheds, agricultural research data system

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  5. Alternative approaches to the construction of a composite indicator of agricultural sustainability: An application to irrigated agriculture in the Duero basin in Spain.

    PubMed

    Gómez-Limón, José A; Riesgo, Laura

    2009-08-01

    This paper describes a comparative analysis of alternative methods of constructing composite indicators to measure the sustainability of the agricultural sector. The three methods employed were Principal Component Analysis, the Analytic Hierarchy Process and a Multi-Criteria technique. The comparison focused on the irrigated agriculture of the Duero basin in Spain as a case study, using a dataset of indicators previously calculated for various farm types and policy scenarios. The results enabled us to establish a hierarchy of preferred policy scenarios on the basis of the level of sustainability achieved, and show that the most recent CAP reform is the most sustainable agricultural policy scenario. By analyzing the heterogeneity of different farms types in each scenario, we can also determine the main features of the most sustainable farms in each case. The analysis demonstrates that full-time farmers with small to medium-sized farms and sowing profitable crops are the most sustainable farm types in all the policy scenarios. All of this information is useful for the support of agricultural policy design and its implementation, as we attempt to improve the sustainability of this sector.

  6. Building the capacity of Extension educators to address climate change and agricultural sustainability

    NASA Astrophysics Data System (ADS)

    Pathak, T. B.; Doll, J. E.

    2016-12-01

    It is evident that changes in climate will adversely impact various sectors including agriculture and natural resources worldwide. Increased temperatures, longer than normal growing seasons, more frequent extreme weather events, decreased winter snowpack, earlier snowmelt, and vulnerability to pest are some of the examples of changes and impacts documented in the literature. According to the IPCC 2007, mainstreaming` climate change issues into decision-making is an important aspect for sustainability. Due to the lack of locally and regionally focused educational programs, it becomes difficult for people to translate the science into meaningful actions. One of the strengths of the Cooperative Extension system is that it is one of the most trusted sources of science-based information that is locally relevant. In order to utilize strong network of Cooperative Extension system, we implemented a project to provide regionally tailored climate change and sustainable agriculture professional development for Cooperative Extension and Natural Resources Conservation Services (NRCS) educators in 12 states in north central US. We conducted these activities: 1) creation and dissemination of a Climate Change and Sustainable Agriculture Resource Handbook and a curriculum and 2) two climate change and sustainable agriculture workshops. In general, this project resulted in improved ability of Cooperative Extension academics to respond to climate change questions with science-based information. Several workshop attendees also integrated information provided to them through resource handbook and curriculum into their existing programming. In the long-term, we hope these programs will result in educators and farmers making informed choices and recommendations that lead to sustainable agriculture in the face of climate change.

  7. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, Claudia R., E-mail: claudia.binder@geo.uzh.c; Institute for System Science, Innovation and Sustainability Research, University of Graz; Feola, Giuseppe

    This paper develops a framework for evaluating sustainability assessment methods by separately analyzing their normative, systemic and procedural dimensions as suggested by Wiek and Binder [Wiek, A, Binder, C. Solution spaces for decision-making - a sustainability assessment tool for city-regions. Environ Impact Asses Rev 2005, 25: 589-608.]. The framework is then used to characterize indicator-based sustainability assessment methods in agriculture. For a long time, sustainability assessment in agriculture has focused mostly on environmental and technical issues, thus neglecting the economic and, above all, the social aspects of sustainability, the multi-functionality of agriculture and the applicability of the results. In responsemore » to these shortcomings, several integrative sustainability assessment methods have been developed for the agricultural sector. This paper reviews seven of these that represent the diversity of tools developed in this area. The reviewed assessment methods can be categorized into three types: (i) top-down farm assessment methods; (ii) top-down regional assessment methods with some stakeholder participation; (iii) bottom-up, integrated participatory or transdisciplinary methods with stakeholder participation throughout the process. The results readily show the trade-offs encountered when selecting an assessment method. A clear, standardized, top-down procedure allows for potentially benchmarking and comparing results across regions and sites. However, this comes at the cost of system specificity. As the top-down methods often have low stakeholder involvement, the application and implementation of the results might be difficult. Our analysis suggests that to include the aspects mentioned above in agricultural sustainability assessment, the bottom-up, integrated participatory or transdisciplinary methods are the most suitable ones.« less

  8. From subsistence farming towards a multifunctional agriculture: sustainability in the Chinese rural reality.

    PubMed

    Prändl-Zika, Veronika

    2008-04-01

    The rural economic situation in China-with a living standard mostly at subsistence level-lags far behind the prosperous development in the cities and coastal areas. To balance this disequilibrium, comprehensive concepts and endeavors are necessary keeping in view all-not just economic-interests and needs that contribute to lively rural identities. In this context the role of agriculture, where still 50% of the Chinese population are working, will be newly defined, and sustainability concepts can help to find a readjusted position within the Chinese economy focusing on environmental health and food safety as main targets of political and other supporting measures. Within the SUCCESS project, a Concept of Sustainable Agriculture was developed and it drafts one conceivable relation between the exposure to natural resources and economy and tries to find new answers to the broad range of rural challenges in China. It is a qualitative model and, therefore, not always fully applicable, but in the concrete situation of villages, it shows possible directions of sustainability-oriented development by considering the typical local potentials. In the Chinese context that means identifying the different functions of agriculture-the well-known and the hidden-to make them explicit for the Chinese public and therewith to give them new significance. The article is based on a 3-years study within the EU-China Project SUCCESS with field research in four Chinese rural communities. It analyzes the agricultural sustainability potential of these selected villages against the background of massive structural changes within the next 20 years in rural China. Starting from the current agricultural reality, based on a qualitative analysis of the actual situation, local potentials and needs towards sustainable production and marketing are identified, and possible functions of the Chinese agriculture are formulated for the future.

  9. How Cognitive Style and Problem Complexity Affect Preservice Agricultural Education Teachers' Abilities to Solve Problems in Agricultural Mechanics

    ERIC Educational Resources Information Center

    Blackburn, J. Joey; Robinson, J. Shane; Lamm, Alexa J.

    2014-01-01

    The purpose of this experimental study was to determine the effects of cognitive style and problem complexity on Oklahoma State University preservice agriculture teachers' (N = 56) ability to solve problems in small gasoline engines. Time to solution was operationalized as problem solving ability. Kirton's Adaption-Innovation Inventory was…

  10. Sustainability of current agriculture practices, community perception, and implications for ecosystem health: an Indian study.

    PubMed

    Sarkar, Atanu; Patil, Shantagouda; Hugar, Lingappa B; vanLoon, Gary

    2011-12-01

    In order to support agribusiness and to attain food security for ever-increasing populations, most countries in the world have embraced modern agricultural technologies. Ecological consequences of the technocentric approaches, and their sustainability and impacts on human health have, however, not received adequate attention particularly in developing countries. India is one country that has undergone a rapid transformation in the field of agriculture by adopting strategies of the Green Revolution. This article provides a comparative analysis of the effects of older and newer paradigms of agricultural practices on ecosystem and human health within the larger context of sustainability. The study was conducted in three closely situated areas where different agricultural practices were followed: (a) the head-end of a modern canal-irrigated area, (b) an adjacent dryland, and (c) an area (the ancient area) that has been provided with irrigation for some 800 years. Data were collected by in-depth interviews of individual farmers, focus-group discussions, participatory observations, and from secondary sources. The dryland, receiving limited rainfall, continues to practice diverse cropping centered to a large extent on traditional coarse cereals and uses only small amounts of chemical inputs. On the other hand, modern agriculture in the head-end emphasizes continuous cropping of rice supported by extensive and indiscriminate use of agrochemicals. Market forces have, to a significant degree, influenced the ancient area to abandon much of its early practices of organic farming and to take up aspects of modern agricultural practice. Rice cultivation in the irrigated parts has changed the local landscape and vegetation and has augmented the mosquito population, which is a potential vector for malaria, Japanese encephalitis and other diseases. Nevertheless, despite these problems, perceptions of adverse environmental effects are lowest in the heavily irrigated area.

  11. An Interactive Strategy for Solving Multi-Criteria Decision Making of Sustainable Land Revitalization Planning Problem

    NASA Astrophysics Data System (ADS)

    Mayasari, Ruth; Mawengkang, Herman; Gomar Purba, Ronal

    2018-02-01

    Land revitalization refers to comprehensive renovation of farmland, waterways, roads, forest or villages to improve the quality of plantation, raise the productivity of the plantation area and improve agricultural production conditions and the environment. The objective of sustainable land revitalization planning is to facilitate environmentally, socially, and economically viable land use. Therefore it is reasonable to use participatory approach to fullfil the plan. This paper addresses a multicriteria decision aid to model such planning problem, then we develop an interactive approach for solving the problem.

  12. Assessing Agricultural Intensification Strategies with a Sustainable Agriculture Matrix

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Davidson, E. A.

    2017-12-01

    To meet the growing global demand for food and bioenergy, agricultural production must nearly double by 2050, placing additional pressures on the environment and the society. Thus, how to efficiently use limited land, water, and nutrient resources to produce more food with low pollution (MoFoLoPo) is clearly one of the major challenges of this century. The increasingly interconnected global market provides a great opportunity for reallocating crop production to the countries and regions that use natural resources more efficiently. For example, it is estimated that optimizing the allocation of crop production around the world can mitigate 41% of nitrogen lost to the environment. However, higher efficiency in nutrients use does not necessarily lead to higher efficiency in land use or water use. In addition, the increasing share of international trade in food supply may introduce additional systemic risk and affect the resilience of global food system. Using the data/indicator from a Sustainable Agriculture Matrix and an international trade matrix, we developed a simple model to assess the trade-offs of international trade considering resource use efficiencies (including water, land, nitrogen, and phosphorus), economic costs and benefits, and the resilience of food system.

  13. "Development of an interactive crop growth web service architecture to review and forecast agricultural sustainability"

    NASA Astrophysics Data System (ADS)

    Seamon, E.; Gessler, P. E.; Flathers, E.; Walden, V. P.

    2014-12-01

    As climate change and weather variability raise issues regarding agricultural production, agricultural sustainability has become an increasingly important component for farmland management (Fisher, 2005, Akinci, 2013). Yet with changes in soil quality, agricultural practices, weather, topography, land use, and hydrology - accurately modeling such agricultural outcomes has proven difficult (Gassman et al, 2007, Williams et al, 1995). This study examined agricultural sustainability and soil health over a heterogeneous multi-watershed area within the Inland Pacific Northwest of the United States (IPNW) - as part of a five year, USDA funded effort to explore the sustainability of cereal production systems (Regional Approaches to Climate Change for Pacific Northwest Agriculture - award #2011-68002-30191). In particular, crop growth and soil erosion were simulated across a spectrum of variables and time periods - using the CropSyst crop growth model (Stockle et al, 2002) and the Water Erosion Protection Project Model (WEPP - Flanagan and Livingston, 1995), respectively. A preliminary range of historical scenarios were run, using a high-resolution, 4km gridded dataset of surface meteorological variables from 1979-2010 (Abatzoglou, 2012). In addition, Coupled Model Inter-comparison Project (CMIP5) global climate model (GCM) outputs were used as input to run crop growth model and erosion future scenarios (Abatzoglou and Brown, 2011). To facilitate our integrated data analysis efforts, an agricultural sustainability web service architecture (THREDDS/Java/Python based) is under development, to allow for the programmatic uploading, sharing and processing of variable input data, running model simulations, as well as downloading and visualizing output results. The results of this study will assist in better understanding agricultural sustainability and erosion relationships in the IPNW, as well as provide a tangible server-based tool for use by researchers and farmers - for both

  14. Model of Numerical Spatial Classification for Sustainable Agriculture in Badung Regency and Denpasar City, Indonesia

    NASA Astrophysics Data System (ADS)

    Trigunasih, N. M.; Lanya, I.; Subadiyasa, N. N.; Hutauruk, J.

    2018-02-01

    Increasing number and activity of the population to meet the needs of their lives greatly affect the utilization of land resources. Land needs for activities of the population continue to grow, while the availability of land is limited. Therefore, there will be changes in land use. As a result, the problems faced by land degradation and conversion of agricultural land become non-agricultural. The objectives of this research are: (1) to determine parameter of spatial numerical classification of sustainable food agriculture in Badung Regency and Denpasar City (2) to know the projection of food balance in Badung Regency and Denpasar City in 2020, 2030, 2040, and 2050 (3) to specify of function of spatial numerical classification in the making of zonation model of sustainable agricultural land area in Badung regency and Denpasar city (4) to determine the appropriate model of the area to protect sustainable agricultural land in spatial and time scale in Badung and Denpasar regencies. The method used in this research was quantitative method include: survey, soil analysis, spatial data development, geoprocessing analysis (spatial analysis of overlay and proximity analysis), interpolation of raster digital elevation model data, and visualization (cartography). Qualitative methods consisted of literature studies, and interviews. The parameters observed for a total of 11 parameters Badung regency and Denpasar as much as 9 parameters. Numerical classification parameter analysis results used the standard deviation and the mean of the population data and projections relationship rice field in the food balance sheet by modelling. The result of the research showed that, the number of different numerical classification parameters in rural areas (Badung) and urban areas (Denpasar), in urban areas the number of parameters is less than the rural areas. The based on numerical classification weighting and scores generate population distribution parameter analysis results of a standard

  15. Sustainable Agriculture in Print: Current Books. Special Reference Briefs: SRB 95-02.

    ERIC Educational Resources Information Center

    National Agricultural Library, Beltsville, MD.

    Prepared by the Alternative Farming Systems Information Center (AFSIC) staff and volunteers, this annotated bibliography provides a list of 85 recently published books pertaining to sustainable agriculture. AFSIC focuses on alternative farming systems (e.g., sustainable, low-input, regenerative, biodynamic, and organic) that maintain agricultural…

  16. Where the Grass Grows Again: Knowledge Exchange in the Sustainable Agriculture Movement.

    ERIC Educational Resources Information Center

    Hassanein, Neva; Kloppenburg, Jack R., Jr.

    1995-01-01

    Intensive rotational grazing by Wisconsin dairy farmers represents a local expression of the sustainable agriculture movement. Contrary to interpretations that view local knowledge in agriculture as idiosyncratic, these graziers use horizontal forms of organizing and information exchange to overcome the limits of personal experience and share…

  17. Remote sensing applications for sustainable agriculture in South Africa (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jarmain, Caren; Van Niekerk, Adriaan; Goudriaan, Ruben

    2016-10-01

    Agriculture contributes greatly to the economy of South Africa (SA), through job creation and produce exports. SA is classified as a semi-arid country and due to its low rainfall, fierce competition exists for the available water resources. Balancing the need for water resources on the one hand, with the importance of agricultural production on the other, is often challenging. A lot of emphasis is placed on prudent water management and enhanced crop water use efficiency. Suitable information and tools are key in empowering both water resources managers and (crop) producers for sustainable agricultural production. Information and tools available at frequent intervals throughout the production season and at a range of levels - from the field to the catchment and for the entire country - has become essential. The frequency and availability of remote sensing data, developments in algorithms to produce information related to the water cycle and crop growth and hence the actual information sets produced over time, makes for fitting solutions. Though much progress has been made over the past years to integrate these spatial data products into water management and agricultural systems, it is likely still in its infancy. In the paper, some flagship projects related to sustainable agriculture and water management - both research and applied - are showcased.

  18. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negri, M. Cristina; Ssegane, H.

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  19. Ecologically sustainable chemical recommendations for agricultural pest control?

    PubMed

    Thomson, Linda J; Hoffmann, Ary A

    2007-12-01

    Effective pest control remains an essential part of food production, and it is provided both by chemicals and by natural enemies within agricultural ecosystems. These methods of control are often in conflict because of the negative impact of chemicals on natural enemies. There are already well-established approaches such as those provided by the International Organization for Biological and Integrated Control-Pesticides and Beneficial Organisms for testing, collecting, and publishing information on responses of natural enemies to chemicals based on laboratory responses of specific organisms; however, these tests do not assess the cumulative impact of chemical inputs across an entire season or consider impacts on the complex communities of natural enemies that can provide effective pest control on a farm. Here, we explore the potential of different approaches for assessing the impact of chemicals on agricultural ecosystems and we propose a simple metric for sustainable chemical use on farms that minimizes overall impact on beneficial groups. We suggest ways in which the effectiveness of metrics can be extended to include persistence and habitat features. Such metrics can assist farmers in developing targets for sustainable chemical use as demonstrated in the viticultural industry.

  20. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    PubMed Central

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  1. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability.

    PubMed

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N; Singh, Devendra P

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  2. Evaluating strategies for sustainable intensification of US agriculture through the Long-Term Agroecosystem Research network

    NASA Astrophysics Data System (ADS)

    Spiegal, S.; Bestelmeyer, B. T.; Archer, D. W.; Augustine, D. J.; Boughton, E. H.; Boughton, R. K.; Cavigelli, M. A.; Clark, P. E.; Derner, J. D.; Duncan, E. W.; Hapeman, C. J.; Harmel, R. D.; Heilman, P.; Holly, M. A.; Huggins, D. R.; King, K.; Kleinman, P. J. A.; Liebig, M. A.; Locke, M. A.; McCarty, G. W.; Millar, N.; Mirsky, S. B.; Moorman, T. B.; Pierson, F. B.; Rigby, J. R.; Robertson, G. P.; Steiner, J. L.; Strickland, T. C.; Swain, H. M.; Wienhold, B. J.; Wulfhorst, J. D.; Yost, M. A.; Walthall, C. L.

    2018-03-01

    Sustainable intensification is an emerging model for agriculture designed to reconcile accelerating global demand for agricultural products with long-term environmental stewardship. Defined here as increasing agricultural production while maintaining or improving environmental quality, sustainable intensification hinges upon decision-making by agricultural producers, consumers, and policy-makers. The Long-Term Agroecosystem Research (LTAR) network was established to inform these decisions. Here we introduce the LTAR Common Experiment, through which scientists and partnering producers in US croplands, rangelands, and pasturelands are conducting 21 independent but coordinated experiments. Each local effort compares the outcomes of a predominant, conventional production system in the region (‘business as usual’) with a system hypothesized to advance sustainable intensification (‘aspirational’). Following the logic of a conceptual model of interactions between agriculture, economics, society, and the environment, we identified commonalities among the 21 experiments in terms of (a) concerns about business-as-usual production, (b) ‘aspirational outcomes’ motivating research into alternatives, (c) strategies for achieving the outcomes, (d) practices that support the strategies, and (e) relationships between practice outreach and adoption. Network-wide, concerns about business as usual include the costs of inputs, opportunities lost to uniform management approaches, and vulnerability to accelerating environmental changes. Motivated by environmental, economic, and societal outcomes, scientists and partnering producers are investigating 15 practices in aspirational treatments to sustainably intensify agriculture, from crop diversification to ecological restoration. Collectively, the aspirational treatments reveal four general strategies for sustainable intensification: (1) reducing reliance on inputs through ecological intensification, (2) diversifying management

  3. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  4. People of the Corn: Teachings in Hopi Traditional Agriculture, Spirituality, and Sustainability

    ERIC Educational Resources Information Center

    Wall, Dennis; Masayesva, Virgil

    2004-01-01

    This article describes aspects of a unique relationship between an ancient agricultural practice and the culture that it sustains. Hopi agriculture, known as "dry farming" because it relies strictly on precipitation and runoff water (along with hard work and prayer), has kept the Hopi culture intact for nearly a thousand years. But aside from the…

  5. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Educational and Training Opportunities in Sustainable Agriculture. 5th Edition.

    ERIC Educational Resources Information Center

    Gates, Jane Potter

    This directory lists 151 programs in alternative farming systems (systems that aim at maintaining agricultural productivity and profitability, while protecting natural resources, especially sustainable, low-input, regenerative, biodynamic or organic farming and gardening). It includes programs conducted by colleges and universities, research…

  7. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    PubMed Central

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  8. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture

    PubMed Central

    2018-01-01

    Rhizosphere microbiome which has been shown to enhance plant growth and yield are modulated or influenced by a few environmental factors such as soil type, plant cultivar, climate change and anthropogenic activities. In particular, anthropogenic activity, such as the use of nitrogen-based chemical fertilizers, is associated with environmental destruction and this calls for a more ecofriendly strategy to increase nitrogen levels in agricultural land. This feat is attainable by harnessing nitrogen-fixing endophytic and free-living rhizobacteria. Rhizobium, Pseudomonas, Azospirillum and Bacillus, have been found to have positive impacts on crops by enhancing both above and belowground biomass and could therefore play positive roles in achieving sustainable agriculture outcomes. Thus, it is necessary to study this rhizosphere microbiome with more sophisticated culture-independent techniques such as next generation sequencing (NGS) with the prospect of discovering novel bacteria with plant growth promoting traits. This review is therefore aimed at discussing factors that can modulate rhizosphere microbiome with focus on the contributions of nitrogen fixing bacteria towards sustainable agricultural development and the techniques that can be used for their study. PMID:29570619

  9. Assessing the Sustainability of Agricultural and Urban Forests in the United States

    Treesearch

    Guy Robertson; Andy Mason

    2016-01-01

    The Forest Service, an agency of the U.S. Department of Agriculture (USDA), published the National Report on Sustainable Forests-2010 (USDA Forest Service 2011) (hereafter, National Report) several years ago and will be releasing a subsequent version of the report in 2017. Based on the Montreal Process Criteria and Indicators for Forest Sustainability, the National...

  10. The Implementation of the Food Safety Modernization Act and the Strength of the Sustainable Agriculture Movement.

    PubMed

    Wiseman, Samuel R

    2015-01-01

    In the wake of growing public concerns over salmonella outbreaks and other highly publicized food safety issues, Congress passed the FDA Food Safety Modernization Act in 2011, which placed more stringent standards on food growing and packaging operations. In negotiations preceding the Act's passage, farmers of local, sustainable food argued that these rules would unduly burden local agricultural operations or, at the extreme, drive them out of business by creating overly burdensome rules. These objections culminated in the addition of the Tester-Hagan Amendment to the Food Safety Modernization Act, which created certain exemptions for small farms. Proposed Food and Drug Administration (FDA) rules to implement the Act threatened to weaken this victory for small farm groups, however, prompting a loud response from small farmers and local food proponents. The FDA's second set of proposed rules, issued in September 2014 in response to these and other complaints, were, perhaps surprisingly, responsive to small farmers' concerns. Using comments submitted to the FDA, this article explores the responses of the agriculture industry and public health organizations, as well as small farm groups, consumers of local food, and sustainable agriculture interests (which, for simplicity, I alternately describe as comprising the "sustainable agriculture" or "small farm" movement), to three aspects of the FDA's proposed rules--involving manure application, on-farm packing activities, and exemptions for very small farms--to assess the strength of the sustainable agriculture movement. The rules involving manure application and on-farm packing, it turns out, reveal little about the independent political strength of the local food movement, as large industry groups also objected to these provisions. But for the third issue discussed here--exemptions for very small farms--the interests of sustainable agriculture groups were directly opposed to both industry and public health organizations

  11. Soil management: The key to soil quality and sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Basch, Gottlieb; Barão, Lúcia; Soares, Miguel

    2017-04-01

    Today, after the International Year of Soils in 2015 and the proclamation by the International Union of Soil Sciences of the International Decade of Soils 2015-2020, much attention is paid to soil quality. Often used interchangeably, both terms, soil quality and soil health, refer to dynamic soil properties such as soil organic matter or pH, while soil quality also includes inherent soil properties such as texture or mineral composition. However, it is the dynamic or manageable properties that adequate soil management can influence and thus contribute to a well-functioning soil environment capable to deliver the soil-mediated provisioning, regulating and supporting ecosystem services and soil functions. This contribution intends to highlight the key principles of sustainable soil management and provide evidence that they are compliant with a productive, resource efficient and ecologically friendly agriculture. Paradoxically, and despite benefitting from good soil quality, agriculture itself when based on conventional, especially intensive tillage-based soil management practices contributes decisively to soil degradation and to several of the soil threats as identified by the Soil Thematic Strategy, being soil erosion and soil organic matter decline the most notorious ones. To mitigate soil degradation, the European Union's Common Agricultural Policy has introduced conservation measures, mainly through cross-compliance measures supposed to guarantee minimum soil cover, to limit soil erosion and to maintain the levels of soil organic matter. However, it remains unclear to what extent EU member states apply these 'Good Agricultural and Environmental Condition' (GAEC) measures to their utilized agricultural areas. Effective and cost-efficient soil management systems able to conserve or to restore favourable soil conditions, to minimize soil erosion and to invert soil organic matter and soil biodiversity decline and improve soil structure are those capable to mimic as

  12. An inverse problem for a mathematical model of aquaponic agriculture

    NASA Astrophysics Data System (ADS)

    Bobak, Carly; Kunze, Herb

    2017-01-01

    Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.

  13. Evaluation of Agricultural Professionals' Perceptions and Knowledge on Sustainable Agriculture: A Useful Step in the Development of an Online Extension Program

    ERIC Educational Resources Information Center

    Menalled, Fabian D.; Grimberg, Bruna I.; Jones, Clain A.

    2009-01-01

    This study assessed needs, knowledge, and interests of agricultural professionals who were likely to enroll in an online extension course in sustainable agriculture. The objectives of the study were: to (1) describe their demographic characteristics, (2) identify their concerns and interests related to farming, (3) evaluate participants' knowledge…

  14. Engineering crop nutrient efficiency for sustainable agriculture.

    PubMed

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  15. Sustainable Table | Welcome to Sustainable Table

    Science.gov Websites

    celebrates local, sustainable food, educates consumers about the benefits of sustainable agriculture and agriculture from the basics to key issues in depth. Eating Sustainably Find out how to shop for and prepare educate others to help build a sustainable food future! In Focus Sustainable Agriculture - The Basics

  16. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture.

    PubMed

    Blanchard, Julia L; Watson, Reg A; Fulton, Elizabeth A; Cottrell, Richard S; Nash, Kirsty L; Bryndum-Buchholz, Andrea; Büchner, Matthias; Carozza, David A; Cheung, William W L; Elliott, Joshua; Davidson, Lindsay N K; Dulvy, Nicholas K; Dunne, John P; Eddy, Tyler D; Galbraith, Eric; Lotze, Heike K; Maury, Olivier; Müller, Christoph; Tittensor, Derek P; Jennings, Simon

    2017-09-01

    Fisheries and aquaculture make a crucial contribution to global food security, nutrition and livelihoods. However, the UN Sustainable Development Goals separate marine and terrestrial food production sectors and ecosystems. To sustainably meet increasing global demands for fish, the interlinkages among goals within and across fisheries, aquaculture and agriculture sectors must be recognized and addressed along with their changing nature. Here, we assess and highlight development challenges for fisheries-dependent countries based on analyses of interactions and trade-offs between goals focusing on food, biodiversity and climate change. We demonstrate that some countries are likely to face double jeopardies in both fisheries and agriculture sectors under climate change. The strategies to mitigate these risks will be context-dependent, and will need to directly address the trade-offs among Sustainable Development Goals, such as halting biodiversity loss and reducing poverty. Countries with low adaptive capacity but increasing demand for food require greater support and capacity building to transition towards reconciling trade-offs. Necessary actions are context-dependent and include effective governance, improved management and conservation, maximizing societal and environmental benefits from trade, increased equitability of distribution and innovation in food production, including continued development of low input and low impact aquaculture.

  17. Agricultural Education for Sustainable Rural Development: Challenges for Developing Countries in the 21st Century.

    ERIC Educational Resources Information Center

    van Crowder, L.; Lindley, W. I.; Bruening, T. H.; Doron, N.

    1998-01-01

    Agricultural education institutions in developing countries must address immediate production needs as well as food security, sustainable agricultural, and rural development needs. This will mean moving to an interdisciplinary, systems approach that incorporates new topics. (Author/JOW)

  18. Assessment of future crop yield and agricultural sustainable water use in north china plain using multiple crop models

    NASA Astrophysics Data System (ADS)

    Huang, G.

    2016-12-01

    Currently, studying crop-water response mechanism has become an important part in the development of new irrigation technology and optimal water allocation in water-scarce regions, which is of great significance to crop growth guidance, sustainable utilization of agricultural water, as well as the sustainable development of regional agriculture. Using multiple crop models(AquaCrop,SWAP,DNDC), this paper presents the results of simulating crop growth and agricultural water consumption of the winter-wheat and maize cropping system in north china plain. These areas are short of water resources, but generates about 23% of grain production for China. By analyzing the crop yields and the water consumption of the traditional flooding irrigation, the paper demonstrates quantitative evaluation of the potential amount of water use that can be reduced by using high-efficient irrigation approaches, such as drip irrigation. To maintain food supply and conserve water resources, the research concludes sustainable irrigation methods for the three provinces for sustainable utilization of agricultural water.

  19. [Towards a renewable and sustainable agriculture. Biological agriculture: from marginal vanguard to spearhead of the agriculture of the future].

    PubMed

    Diek Van Mansvelt, J

    1992-01-01

    This work seeks to demonstrate how different types of organic agriculture can meet the need for renewable and sustainable agriculture, rural development, and management of the land and water resources. An obstacle to the spread of organic agriculture is the widespread perception that without intensive factors of production, demographic growth will necessarily outstrip the available food resources. Calculation of economic costs and benefits at present carries greater weight in planning than do soil erosion, deforestation, extinction of species, disappearance of habitats, and similar environmental damage. The different types of organic agriculture do not follow rigid rules and are not defined solely by the nonuse of nitrogenous fertilizers and pesticides. One of the main principles or organic agriculture is to respect local soil and climatic conditions. Self-sufficiency regarding external factors of production and an emphasis on recycling and optimal use of natural resources were concept ahead of their time when they initially were introduced in the 1920s. The specialization which restructured agriculture over the past century has seriously damaged the system of mixed agriculture and the chain of food production. The solution will be to seek for each region an appropriate balance linking animals and agricultural production in an organic process. The objective of organic agriculture, also known as autonomous ecosystem management, is to preserve as far as possible the balance between needs for food and fiber on the 1 hand and the potential of local ecosystems on the other. General principles of organic agriculture include mixed exploitation in which both plants and animals have specific functions in the context of their local soil and climatic characteristics. Different types of crop rotation are practiced to optimize mutual interactions between crops, and the varied organic cycles are also optimized within the framework of anorganic management in accord with nature

  20. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  1. Building Better Rural Places: Federal Programs for Sustainable Agriculture, Forestry, Conservation and Community Development.

    ERIC Educational Resources Information Center

    Berton, Valerie; Butler, Jennifer

    This guide is written for those seeking help from federal programs to foster innovative enterprises in agriculture and forestry in the United States. The guide describes program resources in value-added and diversified agriculture and forestry, sustainable land management, and community development. Programs are included based upon whether they…

  2. Agricultural biology in the 3rd millennium: nutritional food security & specialty crops through sustainable agriculture and biotechnology

    USDA-ARS?s Scientific Manuscript database

    Food security and agricultural sustainability are of prime concern in the world today in light of the increasing trends in population growth in most parts of the globe excepting Europe. The need to develop capacity to produce more to feed more people is complicated since the arable land is decreasin...

  3. An agenda for assessing and improving conservation impacts of sustainability standards in tropical agriculture.

    PubMed

    Milder, Jeffrey C; Arbuthnot, Margaret; Blackman, Allen; Brooks, Sharon E; Giovannucci, Daniele; Gross, Lee; Kennedy, Elizabeth T; Komives, Kristin; Lambin, Eric F; Lee, Audrey; Meyer, Daniel; Newton, Peter; Phalan, Ben; Schroth, Götz; Semroc, Bambi; Van Rikxoort, Henk; Zrust, Michal

    2015-04-01

    Sustainability standards and certification serve to differentiate and provide market recognition to goods produced in accordance with social and environmental good practices, typically including practices to protect biodiversity. Such standards have seen rapid growth, including in tropical agricultural commodities such as cocoa, coffee, palm oil, soybeans, and tea. Given the role of sustainability standards in influencing land use in hotspots of biodiversity, deforestation, and agricultural intensification, much could be gained from efforts to evaluate and increase the conservation payoff of these schemes. To this end, we devised a systematic approach for monitoring and evaluating the conservation impacts of agricultural sustainability standards and for using the resulting evidence to improve the effectiveness of such standards over time. The approach is oriented around a set of hypotheses and corresponding research questions about how sustainability standards are predicted to deliver conservation benefits. These questions are addressed through data from multiple sources, including basic common information from certification audits; field monitoring of environmental outcomes at a sample of certified sites; and rigorous impact assessment research based on experimental or quasi-experimental methods. Integration of these sources can generate time-series data that are comparable across sites and regions and provide detailed portraits of the effects of sustainability standards. To implement this approach, we propose new collaborations between the conservation research community and the sustainability standards community to develop common indicators and monitoring protocols, foster data sharing and synthesis, and link research and practice more effectively. As the role of sustainability standards in tropical land-use governance continues to evolve, robust evidence on the factors contributing to effectiveness can help to ensure that such standards are designed and

  4. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture

    PubMed Central

    Alori, Elizabeth T.; Glick, Bernard R.; Babalola, Olubukola O.

    2017-01-01

    The use of excess conventional Phosphorus (P) fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM) is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide. PMID:28626450

  5. Spatial Numeric Classification Model Suitability with Landuse Change in Sustainable Food Agriculture Zone in Kediri Sub-district, Tabanan Regency, Indonesia

    NASA Astrophysics Data System (ADS)

    Trigunasih, N. M.; Lanya, I.; Hutauruk, J.; Arthagama, I. D. M.

    2017-12-01

    The development of rapid population will make the availability and utilization of land resources is increasingly shrinking in number, especially occurs in rice field. Since the last 5 years the numbers of farmland is decrasing by industry, infrastructure development, tourism development and other services. The agricultural problems facing at the moment is the occurrence of a change of use of agricultural land into farming now is not more popular is called over the function of agricultural land into non-farming. According to the Central Bureau of statistics (BPS) of the province of Bali (2013) within a period of 14 years (1999-2013), there has been a change of use of agricultural land be not agriculture/wetland functions over the 4,906 hectares. When averaged over the function flatten paddy fields per year occurred in Bali approximately 350 ha (0.41%). The highest paddy fields over the function during a period of fourteen years there is in Tabanan area of 1,230 ha. To maintain the existence of the rice fields or subak in Bali in particular, need to be done protection against agricultural lands sustainable. Ninth District/Town in Bali today, haven’t had a Perda on protection of agricultural land sustainable food that is mandated by law 41 Year 2009. This will have an impact on food security of the region, and the world’s cultural heritage as the water will lose its existence as a system of irrigation organization in Bali. The purpose of this research was done to (1) determine the numerical classification of spatial parameters of sustainable food farm in Tabanan Regency Kediri Subdistrict, (2) determine the model of the zoning of agricultural land area of sustainable food that fits on Years 2020, 2030, 2040, and in district of Kediri, Tabanan Regency. The method used is the kuantitaif method includes the focus group discussion, the development of spatial data, analysis geoprosessing (spatial analysis and analysis of proximity), and statistical analysis

  6. [Problems of population and agricultural development in Rwanda].

    PubMed

    Sibomana, J M

    1984-01-01

    The primary goal of law 3/81 created by the National Office of Population (l'Office National de la Population--ONAPU) in 1981, is to establish a demographic policy consistent with national realities and designed to ease the problem of overpopulation. ONAPU supports family planning for all of Rwanda as an approach to the population situation. The family planning objective promotes conscientious and wanted procreation. It encourages couples to have children in accordance with a preestablished plan, which takes into account the size of the family and the calendar of procreation. Unmatched population growth with limited economic growth have been major concerns for ONAPU; hence, emphasis on maintaining a level of equilibrium between the 2 is a national priority. In the meantime, increased population growth has been causing agricultural problems. Small amounts of land available for cultivation and rudimentary agricultural technology necessitate a change in the financial organization of this sector. Simultaneously, there is an abundance of agricultural workers and a threat of famine due to population demands outstripping subsistence yields. If the population growth rate of Rwanda remains at 3.79%, the land will be insufficient. To avoid future problems, a financial revolution which involves both the agricultural and nonagricultural sectors must be planned. Economic, social, and cultural reorganization is critical, especially for family planning. The policy of spacing births will not be accepted without amelioration 1st family and community health.

  7. Enabling a sustainable and prosperous future through science and innovation in the bioeconomy at Agriculture and Agri-Food Canada.

    PubMed

    Sarkar, Sara F; Poon, Jacquelyne S; Lepage, Etienne; Bilecki, Lori; Girard, Benoit

    2018-01-25

    Science and innovation are important components underpinning the agricultural and agri-food system in Canada. Canada's vast geographical area presents diverse, regionally specific requirements in addition to the 21st century agricultural challenges facing the overall sector. As the broader needs of the agricultural landscape have evolved and will continue to do so in the next few decades, there is a trend in place to transition towards a sustainable bioeconomy, contributing to reducing greenhouse gas emission and our dependency on non-renewable resources. We highlight some of the key policy drivers on an overarching national scale and those specific to agricultural research and innovation that are critical to fostering a supportive environment for innovation and a sustainable bioeconomy. As well, we delineate some major challenges and opportunities facing agriculture in Canada, including climate change, sustainable agriculture, clean technologies, and agricultural productivity, and some scientific initiatives currently underway to tackle these challenges. The use of various technologies and scientific efforts, such as Next Generation Sequencing, metagenomics analysis, satellite image analysis and mapping of soil moisture, and value-added bioproduct development will accelerate scientific development and innovation and its contribution to a sustainable and prosperous bioeconomy. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  9. The responding relationship between plants and environment is the essential principle for agricultural sustainable development on the globe.

    PubMed

    Zhou, Yi; Shao, Hong-Bo

    2008-04-01

    The mutual-responding relationship between plants and environment is involved in all life processes, which are the essential bases for different types of sustainable development on the globe, particularly the critical basis for agricultural sustainable development. How to regulate the above relationship between plants and the corresponding environment (in particular soil environment) is the key problem to modern sustainable agriculture development under global climate change, which is one of the hot topics in the field of plant biology. Detailed dissection of this responding relationship is also important for conducting global eco-environmental restoration and construction. Although powerful methodology and dataset related to genomics, post-genomics, and metabolomics have provided some insights into this relationship, crop physiological measures are also critical for crop full performance in field. With the increase of tested plants (including model plants) and development of integrated molecular biology, a complete understanding of the relationship at different scales under biotic and abiotic stresses will be accelerated. In the current paper, we will cover some important aspects in combination with the recent work from our laboratory and related advances reflected by international academic journals, as follows: plant physiological function performance under natural condition, plant gene regulatory network system under abiotic stresses, gene regulatory network system and drought resistance improvement, summary of the related work from our laboratory, conclusions, and acknowledgement.

  10. Effects of different agricultural management on a stagnic Luvisol in Lower Saxony, Germany - Factors for sustainable soil protection

    NASA Astrophysics Data System (ADS)

    Lorenz, Marco; Brunotte, Joachim; Ortmeier, Berthold

    2017-04-01

    Regarding increasing pressures by global societal and climate change, for example, the assessment of the impact of land use and land management practices on land productivity, land degradation and the related decrease in sustainable food production and the provision of ecosystem services gains increasing interest. Regarding international research on land use and soil threats, main problems in agricultural land use on global scale are erosion by water and wind, soil organic matter loss, salinization, depletion of nutrients, chemical and physical deterioration, including e.g. soil compaction. When coming to soil sciences, basically soil functions are affected negatively by intensive food production and field traffic. Management based negative changes in soil functions and a suboptimal soil structure have multiple negative effects on physical, biological and chemical soil functions, like a poor water balance, air and water permeability, disturbed soil fauna, impeded root penetration etc. and in consequence on the achievable yields. The presentation deals with the multiple effects of different agricultural machinery and technologies and different agricultural soil tillage (e.g. no-till, conservation tillage, ploughing), on various soil properties of a stagnic Luvisol in Lower Saxony, Germany. These are e.g. bulk density, air capacity, saturated water permeability, changes in pore size distribution and water retention curve as well as crop yields. Furthermore results of a long term study of bulk density and total pore size on more then 20 farms in Lower Saxony since the year 1952 will be presented. Finally, key factors and first recommendations for sustainable agricultural soil protection will be derived from the results.

  11. Technology-Driven and Innovative Training for Sustainable Agriculture in The Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Wishart, D. N.

    2015-12-01

    Innovative training in 'Sustainable Agriculture' for an increasingly STEM-dependent agricultural sector will require a combination of approaches and technologies for global agricultural production to increase while offsetting climate change. Climate change impacts the water resources of nations as normal global weather patterns are altered during El Nino events. Agricultural curricula must incorporate awareness of 'climate change' in order to find novel ways to (1) assure global food security; (2) improve soil productivity and conservation; (3) improve crop yields and irrigation; (4) inexpensively develop site specific principles of crop management based on variable soil and associated hydrological properties; and (5) improve precision farming. In February 2015, Central State University (CSU), Ohio became an 1890 Land-Grant institution vital to the sustainability of Ohio's agricultural sector. Besides agricultural extension, the agriculture curriculum at CSU integrates multidisciplinary courses in science, technology engineering, agriculture, and mathematics (STEAM). The agriculture program could benefit from a technology-driven, interdisciplinary soil science course that promotes climate change education and climate literacy while being offered in both a blended and collaborative learning environment. The course will focus on the dynamics of microscale to mesoscale processes occurring in farming systems, those of which impact climate change or could be impacted by climate change. Elements of this course will include: climate change webinars; soil-climate interactions; carbon cycling; the balance of carbon fluxes between soil storage and atmosphere; microorganisms and soil carbon storage; paleoclimate and soil forming processes; geophysical techniques used in the characterization of soil horizons; impact of climate change on soil fertility; experiments; and demonstrations.

  12. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi.

    PubMed

    Igiehon, Nicholas O; Babalola, Olubukola O

    2017-06-01

    Worldwide agricultural food production has to double in 2050 so as to feed the global increasing population while reducing dependency on conventional chemical fertilizers plus pesticides. To accomplish this objective, there is the need to explore the several mutualistic interactions between plant roots and rhizosphere microbiome. Biofertilization is the process of boosting the abundance of microorganisms such as arbuscular mycorrhizal fungi (AMF) in the natural plant rhizosphere which depicts a beneficial alternative to chemical fertilization practices. Mineral nutrients uptake by AMF are plausible by means of transporters coded for by different genes and example include phosphate transporter. These fungi can be produced industrially using plant host and these, including the possibility of AMF contamination by other microorganism, are factors militating against large scale production of AMF. AMF isolates can be inoculated in the greenhouse or field, and it has been shown that AMF survival and colonization level were enhanced in soybeans grown on land that was previously cultivated with the same plant. Next generation sequencing (NGS) is now used to gain insight into how AMF interact with indigenous AMF and screen for beneficial microbial candidates. Besides application as biofertilizers, novel findings on AMF that could contribute to maintenance of agricultural development include AMF roles in controlling soil erosion, enhancing phytoremediation, and elimination of other organisms that may be harmful to crops through common mycelia network. The combination of these potentials when fully harnessed under agricultural scenario will help to sustain agriculture and boost food security globally.

  13. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Exploring Corn-Ethanol As A Complex Problem To Teach Sustainability Concepts Across The Science-Business-Liberal Arts Curriculum

    NASA Astrophysics Data System (ADS)

    Oches, E. A.; Szymanski, D. W.; Snyder, B.; Gulati, G. J.; Davis, P. T.

    2012-12-01

    The highly interdisciplinary nature of sustainability presents pedagogic challenges when sustainability concepts are incorporated into traditional disciplinary courses. At Bentley University, where over 90 percent of students major in business disciplines, we have created a multidisciplinary course module centered on corn ethanol that explores a complex social, environmental, and economic problem and develops basic data analysis and analytical thinking skills in several courses spanning the natural, physical, and social sciences within the business curriculum. Through an NSF-CCLI grant, Bentley faculty from several disciplines participated in a summer workshop to define learning objectives, create course modules, and develop an assessment plan to enhance interdisciplinary sustainability teaching. The core instructional outcome was a data-rich exercise for all participating courses in which students plot and analyze multiple parameters of corn planted and harvested for various purposes including food (human), feed (animal), ethanol production, and commodities exchanged for the years 1960 to present. Students then evaluate patterns and trends in the data and hypothesize relationships among the plotted data and environmental, social, and economic drivers, responses, and unintended consequences. After the central data analysis activity, students explore corn ethanol production as it relates to core disciplinary concepts in their individual classes. For example, students in Environmental Chemistry produce ethanol using corn and sugar as feedstocks and compare the efficiency of each process, while learning about enzymes, fermentation, distillation, and other chemical principles. Principles of Geology students examine the effects of agricultural runoff on surface water quality associated with extracting greater agricultural yield from mid-continent croplands. The American Government course examines the role of political institutions, the political process, and various

  15. Sustainable agriculture, renewable energy and rural development: An analysis of bio-energy systems used by small farms in China

    NASA Astrophysics Data System (ADS)

    Zhou, Aiming

    Renewable energy needs to be incorporated into the larger picture of sustainable agriculture and rural development if it is to serve the needs of the 3.25 billion human beings whose livelihoods and based on rural economies and ecologies. For rural communities, increasing agriculture production is key to raising income generation and improving social well-being, but this linkage depends also upon not harming natural resources. This dissertation provides an overview of recent Chinese agriculture history, discusses the role of energy in contemporary's China's agriculture and rural development, and introduces a new approach---the integrated agricultural bio-energy (IAB) system---to address the challenge of sustainable agriculture and rural development. IAB is an innovative design and offers a renewable energy solution for improving agricultural productivity, realizing efficient resource management, and enhancing social well-being for rural development. In order to understand how the IAB system can help to achieve sustainable agricultural and rural development in China, a comprehensive evaluation methodology is developed from health, ecological, energy and economic (HE3) perspectives. With data from surveys of 200 small farm households, a detailed study of IAB and conventional agricultural energy (CAE) system applications (in China's Liaoning and Yunnan Province) is conducted. The HE3 impacts of IAB systems in China's rural areas (compared to existing CAE systems) are quantified. The dissertation analyzes the full life-cycle costs and benefits of IAB systems, including their contributions to energy savings, CO2 emissions reduction, agricultural waste reduction, increased rural incomes, better rural health, and improved ecosystem sustainability. The analysis relies upon qualitative and quantitative modeling in order to produce a comprehensive assessment of IAB system impacts. Finally, the dissertation discusses the barriers to greater diffusion of the IAB systems

  16. Risk identification of agricultural drought for sustainable agroecosystems

    NASA Astrophysics Data System (ADS)

    Dalezios, N. R.; Blanta, A.; Spyropoulos, N. V.; Tarquis, A. M.

    2014-04-01

    Drought is considered as one of the major natural hazards with significant impact to agriculture, environment, society and economy. Droughts affect sustainability of agriculture and may result in environmental degradation of a region, which is one of the factors contributing to the vulnerability of agriculture. This paper addresses agrometeorological or agricultural drought within the risk management framework. Risk management consists of risk assessment, as well as a feedback on the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. This paper deals with risk identification of agricultural drought, which involves drought quantification and monitoring, as well as statistical inference. For the quantitative assessment of agricultural drought, as well as the computation of spatiotemporal features, one of the most reliable and widely used indices is applied, namely the Vegetation Health Index (VHI). The computation of VHI is based on satellite data of temperature and the Normalized Difference Vegetation Index (NDVI). The spatiotemporal features of drought, which are extracted from VHI are: areal extent, onset and end time, duration and severity. In this paper, a 20 year (1981-2001) time series of NOAA/AVHRR satellite data is used, where monthly images of VHI are extracted. Application is implemented in Thessaly, which is the major agricultural drought-prone region of Greece, characterized by vulnerable agriculture. The results show that agricultural drought appears every year during the warm season in the region. The severity of drought is increasing from mild to extreme throughout the warm season with peaks appearing in the summer. Similarly, the areal extent of drought is also increasing during the warm season, whereas the number of extreme drought pixels is much less than those of mild to moderate drought throughout the warm season. Finally, the areas with diachronic

  17. Risk identification of agricultural drought for sustainable Agroecosystems

    NASA Astrophysics Data System (ADS)

    Dalezios, N. R.; Blanta, A.; Spyropoulos, N. V.; Tarquis, A. M.

    2014-09-01

    Drought is considered as one of the major natural hazards with a significant impact on agriculture, environment, society and economy. Droughts affect sustainability of agriculture and may result in environmental degradation of a region, which is one of the factors contributing to the vulnerability of agriculture. This paper addresses agrometeorological or agricultural drought within the risk management framework. Risk management consists of risk assessment, as well as a feedback on the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. This paper deals with risk identification of agricultural drought, which involves drought quantification and monitoring, as well as statistical inference. For the quantitative assessment of agricultural drought, as well as the computation of spatiotemporal features, one of the most reliable and widely used indices is applied, namely the vegetation health index (VHI). The computation of VHI is based on satellite data of temperature and the normalized difference vegetation index (NDVI). The spatiotemporal features of drought, which are extracted from VHI, are areal extent, onset and end time, duration and severity. In this paper, a 20-year (1981-2001) time series of the National Oceanic and Atmospheric Administration/advanced very high resolution radiometer (NOAA/AVHRR) satellite data is used, where monthly images of VHI are extracted. Application is implemented in Thessaly, which is the major agricultural drought-prone region of Greece, characterized by vulnerable agriculture. The results show that agricultural drought appears every year during the warm season in the region. The severity of drought is increasing from mild to extreme throughout the warm season, with peaks appearing in the summer. Similarly, the areal extent of drought is also increasing during the warm season, whereas the number of extreme drought pixels is much less than

  18. Rooftop greenhouses in educational centers: A sustainability assessment of urban agriculture in compact cities.

    PubMed

    Nadal, Ana; Pons, Oriol; Cuerva, Eva; Rieradevall, Joan; Josa, Alejandro

    2018-06-01

    Today, urban agriculture is one of the most widely used sustainability strategies to improve the metabolism of a city. Schools can play an important role in the implementation of sustainability master plans, due their socio-educational activities and their cohesive links with families; all key elements in the development of urban agriculture. Thus, the main objective of this research is to develop a procedure, in compact cities, to assess the potential installation of rooftop greenhouses (RTGs) in schools. The generation of a dynamic assessment tool capable of identifying and prioritizing schools with a high potential for RTGs and their eventual implementation would also represent a significant factor in the environmental, social, and nutritional education of younger generations. The methodology has four-stages (Pre-selection criteria; Selection of necessities; Sustainability analysis; and Sensitivity analysis and selection of the best alternative) in which economic, environmental, social and governance aspects all are considered. It makes use of Multi-Attribute Utility Theory and Multi-Criteria Decision Making, through the Integrated Value Model for Sustainability Assessments and the participation of two panels of multidisciplinary specialists, for the preparation of a unified sustainability index that guarantees the objectivity of the selection process. This methodology has been applied and validated in a case study of 11 schools in Barcelona (Spain). The social perspective of the proposed methodology favored the school in the case-study with the most staff and the largest parent-teacher association (social and governance indicators) that obtained the highest sustainability index (S11); at a considerable distance (45%) from the worst case (S3) with fewer school staff and parental support. Finally, objective decisions may be taken with the assistance of this appropriate, adaptable, and reliable Multi-Criteria Decision-Making tool on the vertical integration and

  19. Integrated Systems Mitigate Land Degradation and Improve Agricultural System Sustainability

    NASA Astrophysics Data System (ADS)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2017-04-01

    Rain-fed agricultural production supported by exogenous inputs is not sustainable because a continuous influx of expensive inputs (fertilizer, chemicals, fossil fuel, labor, tillage, and other) is required. Alternatives to traditional management allow natural occurring dynamic soil processes to provide the necessary microbial activity that supports nutrient cycling in balance with nature. Research designed to investigate the potential for integrated systems to replace expensive inputs has shown that healthy soils rich in soil organic matter (SOM) are the foundation upon which microbial nutrient cycling can reduce and eventually replace expensive fertilizer. No-till seed placement technology effectively replaces multiple-pass cultivation conserving stored soil water in semi-arid farming systems. In multi-crop rotations, cool- and warm-season crops are grown in sequence to meet goals of the integrated farming and ranching system, and each crop in the rotation complements the subsequent crop by supplying a continuous flow of essential SOM for soil nutrient cycling. Grazing animals serve an essential role in the system's sustainability as non-mechanized animal harvesters that reduce fossil fuel consumption and labor, and animal waste contributes soil nutrients to the system. Integrated systems' complementarity has contributed to greater soil nutrient cycling and crop yields, fertilizer reduction or elimination, greater yearling steer grazing net return, reduced cow wintering costs grazing crop residues, increased wildlife sightings, and reduced environmental footprint. Therefore, integrating crop and animal systems can reverse soil quality decline and adopting non-traditional procedures has resulted in a wider array of opportunities for sustainable agriculture and profitability.

  20. Multiple-scale Proximal Sensor and Remote Imagery Technology for Sustaining Agricultural Productivity During Climate Change

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.; Scudiero, E.

    2016-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley. Climate change has impacted water availability, which subsequently has impacted soil salinity levels in the root zone, especially on the west side of the San Joaquin Valley (WSJV). Inventorying and monitoring the extent of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation management strategies that will sustain the agricultural productivity of the WSJV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for the WSJV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Land resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  1. Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape.

    PubMed

    Qiu, Jiangxiao; Carpenter, Stephen R; Booth, Eric G; Motew, Melissa; Zipper, Samuel C; Kucharik, Christopher J; Chen, Xi; Loheide, Steven P; Seifert, Jenny; Turner, Monica G

    2018-01-01

    Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km 2 Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive

  2. The Status of Literacy of Sustainable Agriculture in Iran: A Systematic Review

    ERIC Educational Resources Information Center

    Vaninee, Hassan Sadough; Veisi, Hadi; Gorbani, Shiva; Falsafi, Peyman; Liaghati, Houman

    2016-01-01

    This study analyzes heterogeneous research with a focus on the knowledge, attitude, and behavior of farmers and the components of sustainable agriculture literacy through an interdisciplinary, systematic literature review for the time frame from 1996 to 2013. The major research databases were searched and 170 papers were identified. Paper…

  3. Operational indicators for measuring agricultural sustainability in developing countries.

    PubMed

    Zhen, Lin; Routray, Jayant K

    2003-07-01

    This paper reviews relevant literature on the sustainability indicators theoretically proposed and practically applied by scholars over the past 15 years. Although progress is being made in the development and critical analysis of sustainability indicators, in many cases existing or proposed indicators are not the most sensitive or useful measures in developing countries. Indicator selection needs to meet the following criteria: relative availability of data representing the indicators, sensitivity to stresses on the system, existence of threshold values and guidelines, predictivity, integratability and known response to disturbances, anthropogenic stresses, and changes over time. Based on these criteria, this paper proposes a set of operational indicators for measuring agricultural sustainability in developing countries. These indicators include ecological indicators involving amounts of fertilizers and pesticides used, irrigation water used, soil nutrient content, depth to the groundwater table, water use efficiency, quality of groundwater for irrigation, and nitrate content of both groundwater and crops. Economic indicators include crop productivity, net farm income, benefit-cost ratio of production, and per capita food grain production. Social indicators encompass food self-sufficiency, equality in food and income distribution among farmers, access to resources and support services, and farmers' knowledge and awareness of resource conservation. This article suggests that the selection of indicators representing each aspect of sustainability should be prioritized according to spatial and temporal characteristics under consideration.

  4. A Need for Education in Water Sustainability in the Agricultural Realm

    NASA Astrophysics Data System (ADS)

    Krajewski, J.

    2015-12-01

    This study draws upon the definition of water sustainability from the National Water Research Institute as the continual supply of clean water for human uses and for other living beings without compromising the water welfare of future generations. Currently, the greatest consumer of water resources worldwide is irrigation. The move from small-scale, family farms towards corporately owned and market driven, mass scale operations have drastically increased corn production and large-scale factory hog farming in the American Midwest—and the water quality related costs associated with this shift are well-documented. In the heart of the corn belt, the state of Iowa has dealt with issues over the past two decades ranging from flooding of historic proportions, to yield destroying droughts. Most recently, the state's water quality is intensely scrutinized due to nutrient levels higher than almost anywhere else in the world. While the changed agricultural landscape is ultimately responsible for these environmental costs, they can be mitigated if the farmers adopt practices that support water sustainability. However, many Iowa farmers have yet to embrace these necessary practices because of a lack of proper education in this context. Thus, the purpose of this paper is to explore how water sustainability is being conceptualized within the agricultural realm, and ultimately, how the issues are being communicated and understood within various subgroups in Iowa, such as the farmers, the college students, and the general public.

  5. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    PubMed

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-04-29

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  6. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability.

    PubMed

    Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A

    2016-06-01

    Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nested archetypes of vulnerability in African drylands: where lies potential for sustainable agricultural intensification?

    NASA Astrophysics Data System (ADS)

    Sietz, D.; Ordoñez, J. C.; Kok, M. T. J.; Janssen, P.; Hilderink, H. B. M.; Tittonell, P.; Van Dijk, H.

    2017-09-01

    Food production is key to achieving food security in the drylands of sub-Saharan Africa. Since agricultural productivity is limited, however, due to inherent agro-ecological constraints and land degradation, sustainable agricultural intensification has been widely discussed as an opportunity for improving food security and reducing vulnerability. Yet vulnerability determinants are distributed heterogeneously in the drylands of sub-Saharan Africa and sustainable intensification cannot be achieved everywhere in cost-effective and efficient ways. To better understand the heterogeneity of farming systems’ vulnerability in order to support decision making at regional scales, we present archetypes, i.e. socio-ecological patterns, of farming systems’ vulnerability in the drylands of sub-Saharan Africa and reveal their nestedness. We quantitatively indicated the most relevant farming systems’ properties at a sub-national resolution. These factors included water availability, agro-ecological potential, erosion sensitivity, population pressure, urbanisation, remoteness, governance, income and undernourishment. Cluster analysis revealed eight broad archetypes of vulnerability across all drylands of sub-Saharan Africa. The broad archetype representing better governance and highest remoteness in extremely dry and resource-constrained regions encompassed the largest area share (19%), mainly indicated in western Africa. Moreover, six nested archetypes were identified within those regions with better agropotential and prevalent agricultural livelihoods. Among these patterns, the nested archetype depicting regions with highest erosion sensitivity, severe undernourishment and lower agropotential represented the largest population (30%) and area (28%) share, mainly found in the Sahel region. The nested archetype indicating medium undernourishment, better governance and lowest erosion sensitivity showed particular potential for sustainable agricultural intensification, mainly in

  8. Agro-Forestry system in West Africa: integrating a green solution to cope with soil depletion towards agricultural sustainability

    NASA Astrophysics Data System (ADS)

    Monteiro, Filipa; Vidigal, Patricia; Romeiras, Maria Manuel; Ribeiro, Ana; Abreu, Maria Manuela; Viegas, Wanda; Catarino, Luís

    2017-04-01

    During the last decades, agriculture in West Africa has been marked by dramatic shifts with the coverage of single crops, increasing pressure over the available arable land. Yet, West African countries are still striving to achieve sustainable production at an increased scale for global market needs. Market-driven rapid intensification is often a major cause for cropland area expansion at the expense of deforestation and soil degradation, especially to export commodities in times of high prices. Cashew (Anacardium occidentale L.) is nowadays an important export-oriented crop, being produced under intensive cultivation regimes in several tropical regions. Particularly, among the main cashew production areas, West Africa is the most recent and dynamic in the world, accounting for 45% of the world cashew nuts production in 2015. Considering its global market values, several developing countries rely on cashew nuts as national economy revenues, namely in Guinea-Bissau. Considering the intensive regime of cashew production in Guinea-Bissau, and as widely recognized, intensive agriculture linked with extensification can negatively impact ecosystems, affecting natural resources availability, soil erosion and arability compromised by excessive salinity. Ultimately this will result in the disruption of carbon - nitrogen cycle, important to the agricultural ecosystem sustainability. As such, tree intercropped with legumes as cover crops, offers a sustainable management of the land area, thus creating substantial benefits both economically and environmentally, as it enhances diversification of products outputs and proving to be more sustainable than forestry and/or agricultural monocultures. Soil fertility improvement is a key entry point for achieving food security, and also increment agriculture commodities of the agro-system. Without using inorganic fertilizers, the green solution for improving soil management is to incorporate adapted multi-purpose legumes as cover crops

  9. A DSS for sustainable development and environmental protection of agricultural regions.

    PubMed

    Manos, Basil D; Papathanasiou, Jason; Bournaris, Thomas; Voudouris, Kostas

    2010-05-01

    This paper presents a decision support system (DSS) for sustainable development and environmental protection of agricultural regions developed in the framework of the Interreg-Archimed project entitled WaterMap (development and utilization of vulnerability maps for the monitoring and management of groundwater resources in the ARCHIMED areas). Its aim is to optimize the production plan of an agricultural region taking in account the available resources, the environmental parameters, and the vulnerability map of the region. The DSS is based on an optimization multicriteria model. The spatial integration of vulnerability maps in the DSS enables regional authorities to design policies for optimal agricultural development and groundwater protection from the agricultural land uses. The DSS can further be used to simulate different scenarios and policies by the local stakeholders due to changes on different social, economic, and environmental parameters. In this way, they can achieve alternative production plans and agricultural land uses as well as to estimate economic, social, and environmental impacts of different policies. The DSS is computerized and supported by a set of relational databases. The corresponding software has been developed in a Microsoft Windows XP platform, using Microsoft Visual Basic, Microsoft Access, and the LINDO library. For demonstration reasons, the paper includes an application of the DSS in a region of Northern Greece.

  10. Agriculture: Sustainability

    EPA Pesticide Factsheets

    Sustainability creates and maintains the conditions under which humans and nature can exist in productive harmony, that permit fulfilling the food, feed, and fiber needs of our country and the social, economic and other requirements.

  11. Sustainable Agriculture as a Recruitment Tool for Geoscience Majors

    NASA Astrophysics Data System (ADS)

    Enright, K. P.; Gilbert, L. A.; McGillis, A.

    2014-12-01

    Small-scale agriculture has exploded with popularity in recent years, as teenagers and college students gain interest in local food sources. Outdoor experiences, including gardening and farming, are often among the motivations for students to take their first geoscience courses in college. The methods and theories of small agriculture translate well into geologic research questions, especially in the unique setting of college campus farms and gardens. We propose an activity or assignment to engage student-farmers in thinking about geosciences, and connect them with geoscience departments as a gateway to the major and career field. Furthermore, the activity will encourage a new generation of passionate young farmers to integrate the principles of earth science into their design and implementation of more sustainable food systems. The activity includes mapping, soil sampling, and interviewing professionals in agriculture and geology, and results in the students writing a series of recommendations for their campus or other farm. The activity includes assessment tools for instructors and can be used to give credit for a summer farming internship or as part of a regular course. We believe reaching out to students interested in farming could be an important recruitment tool for geosciences and helps build interdisciplinary and community partnerships.

  12. Productivity ranges of sustainable biomass potentials from non-agricultural land

    NASA Astrophysics Data System (ADS)

    Schueler, Vivian; Fuss, Sabine; Steckel, Jan Christoph; Weddige, Ulf; Beringer, Tim

    2016-07-01

    Land is under pressure from a number of demands, including the need for increased supplies of bioenergy. While bioenergy is an important ingredient in many pathways compatible with reaching the 2 °C target, areas where cultivation of the biomass feedstock would be most productive appear to co-host other important ecosystems services. We categorize global geo-data on land availability into productivity deciles, and provide a geographically explicit assessment of potentials that are concurrent with EU sustainability criteria. The deciles unambiguously classify the global productivity range of potential land currently not in agricultural production for biomass cultivation. Results show that 53 exajoule (EJ) sustainable biomass potential are available from 167 million hectares (Mha) with a productivity above 10 tons of dry matter per hectare and year (tD Mha-1 a-1), while additional 33 EJ are available on 264 Mha with yields between 4 and 10 tD M ha-1 a-1: some regions lose less of their highly productive potentials to sustainability concerns than others and regional contributions to bioenergy potentials shift when less productive land is considered. Challenges to limit developments to the exploitation of sustainable potentials arise in Latin America, Africa and Developing Asia, while new opportunities emerge for Transition Economies and OECD countries to cultivate marginal land.

  13. A sustainable biorefinery to convert agricultural residues into value-added chemicals.

    PubMed

    Liu, Zhiguo; Liao, Wei; Liu, Yan

    2016-01-01

    Animal wastes are of particular environmental concern due to greenhouse gases emissions, odor problem, and potential water contamination. Anaerobic digestion (AD) is an effective and widely used technology to treat them for bioenergy production. However, the sustainability of AD is compromised by two by-products of the nutrient-rich liquid digestate and the fiber-rich solid digestate. To overcome these limitations, this paper demonstrates a biorefinery concept to fully utilize animal wastes and create a new value-added route for animal waste management. The studied biorefinery includes an AD, electrocoagulation (EC) treatment of the liquid digestate, and fungal conversion of the solid fiber into a fine chemical-chitin. Animal wastes were first treated by an AD to produce methane gas for energy generation to power the entire biorefinery. The resulting liquid digestate was treated by EC to reclaim water. Enzymatic hydrolysis and fungal fermentation were then applied on the cellulose-rich solid digestate to produce chitin. EC water was used as the processing water for the fungal fermentation. The results indicate that the studied biorefinery converts 1 kg dry animal wastes into 17 g fungal biomass containing 12 % of chitin (10 % of glucosamine), and generates 1.7 MJ renewable energy and 8.5 kg irrigation water. This study demonstrates an energy positive and freshwater-free biorefinery to simultaneously treat animal wastes and produce a fine chemical-chitin. The sustainable biorefinery concept provides a win-win solution for agricultural waste management and value-added chemical production.

  14. The importance of an alternative for sustainability of agriculture around the periphery of the Amazon rainforest.

    PubMed

    Moura, Emanoel G; Sena, Virley G L; Corrêa, Mariana S; Aguiar, Alana das C F

    2013-04-01

    The unsustainable use of the soil of the deforested area at the Amazonian border is one of the greatest threats to the rainforest, because it is the predominant cause of shifting cultivation in the region. The sustainable management of soils with low natural fertility is a major challenge for smallholder agriculture in the humid tropics. In the periphery of Brazilian Amazonia, agricultural practices that are recommended for the Brazilian savannah, such as saturating soils with soluble nutrients do not ensure the sustainability of agroecosystems. Improvements in the tilled topsoil cannot be maintained if deterioration of the porous soil structure is not prevented and nutrient losses in the root zone are not curtailed. The information gleaned from experiments affirms that in the management of humid tropical agrosystems, the processes resulting from the interaction between climatic factors and indicators of soil quality must be taken into consideration. It must be remembered that these interactions manifest themselves in ways that cannot be predicted from the paradigm established in the other region like the southeast of Brazil, which is based only on improving the chemical indicators of soil quality. The physical indicators play important role in the sustainable management of the agrosystems of the region and for these reasons must be considered. Therefore, alley cropping is a potential substitute for slash and burn agriculture in the humid tropics with both environmental and agronomic advantages, due to its ability to produce a large amount of residues on the soil surface and its effect on the increase of economic crop productivity in the long term. The article presents some promising patents on the importance of an alternative for sustainability of agriculture.

  15. Balancing water scarcity and quality for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  16. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    PubMed

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Agriculture in Africa: strategies to improve and sustain smallholder production systems.

    PubMed

    Jama, Bashir; Pizarro, Gonzalo

    2008-01-01

    Agricultural development lies at the heart of poverty reduction and increased food security of most developing nations. Sub-Saharan Africa (hereafter referred to as Africa) is, however, the only region in the world where per capita agricultural productivity has remained stagnant over the past 40 years. In Asia and Latin America, the use of tailored techniques and technologies has transformed agricultural practice and its productivity, leading to what has been called the "green revolution." The dissemination of uniquely African green revolution technologies has not occurred on the continent. This chapter will argue that the same results in increased productivity and food security can be achieved in Africa if the appropriate investments are made in key interventions: soil fertility improvement, improved seeds, water management, market access, extension services, access to credit, and improvements in weather forecasting. Where these have happened, even partially, the outcome has been remarkable. However, bringing them to scale in ways that sustainably increase agricultural productivity and alleviate poverty requires increased investments and innovative institutional arrangements. Fortunately, several research and development projects on the continent, including the Millennium Villages Project, are providing valuable insights. Finally, this chapter outlines the key remaining challenges.

  18. Upland agricultural and forestry development in the Amazon: sustainability, criticality and resilience

    Treesearch

    Emmanuel Adilson S. Serrao; Daniel Nepstad; Robert Walker

    1996-01-01

    This paper provides an overview of agricultural and forestry development in the Amazon basin, and presents and discusses the main land use systems in evidence today in that region. These are logging, shifting-cultivation and ranching. The issue of sustainability is addressed, and current Amazonian land use is interpreted in light of ecological impacts and long-run...

  19. The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Calzadilla, Alvaro; Rehdanz, Katrin; Tol, Richard S. J.

    2010-04-01

    SummaryAgriculture is the largest consumer of freshwater resources - around 70 percent of all freshwater withdrawals are used for food production. These agricultural products are traded internationally. A full understanding of water use is, therefore, impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) water resources in agriculture and within the context of international trade. We use future projections of allowable water withdrawals for surface water and groundwater to define two alternative water management scenarios. The first scenario explores a deterioration of current trends and policies in the water sector (water crisis scenario). The second scenario assumes an improvement in policies and trends in the water sector and eliminates groundwater overdraft world-wide, increasing water allocation for the environment (sustainable water use scenario). In both scenarios, welfare gains or losses are not only associated with changes in agricultural water consumption. Under the water crisis scenario, welfare not only rises for regions where water consumption increases (China, South East Asia and the USA). Welfare gains are considerable for Japan and South Korea, Southeast Asia and Western Europe as well. These regions benefit from higher levels of irrigated production and lower food prices. Alternatively, under the sustainable water use scenario, welfare losses not only affect regions where overdrafting is occurring. Welfare decreases in other regions as well. These results indicate that, for water use, there is a clear trade-off between economic welfare and environmental sustainability.

  20. Effect of climate change on agriculture sustainability in Jordan

    NASA Astrophysics Data System (ADS)

    Khresat, S.

    2009-04-01

    Jordan is a vulnerable country in terms of climate change impact. In the latest assessment report published by the Intergovernmental Panel on Climate Change. Jordan will suffer from reduced agricultural productivity due to more erratic rainfall patterns, reduced freshwater resources and increased temperatures. The Initial National Communication (INC) to the United Nations Framework Convention to Climate Change (UNFCCC) foresees that over the next three decades, Jordan will witness a rise in temperature, drop in rainfall, reduced ground cover, reduced water availability, heat-waves, and more frequent dust storms. Coupled with the effect of continuing drought incidents, plant cover removal was greatly accelerated. Climate change can impact agricultural sustainability in Jordan in two interrelated ways: first, by diminishing the long-term ability of agroecosystems to provide food and fiber locally; and second, by inducing shifts in agricultural regions that may encroach upon natural habitats, at the expense of floral and faunal diversity. Global warming may encourage the expansion of agricultural activities into regions now occupied by natural ecosystems such as rangelands in the Badia region and forests. Such encroachment will have adverse effects on the fragile ecosystem in those areas (Badia and steppe areas). Primary model test results showed that the reduction of rainfall by 10 to 20% had a negative impact while the increase in rainfall by 10 to 20% had a positive impact on grain yield for both barley and wheat at the different temperature regimes. This is due to the fact that water is the main limiting growth factor for wheat and barley under rainfed agriculture on Jordan. The warming (increase in temperature by 1 to 4˚ C) had negative impact on barley grain yield while it had a positive impact on grain yield of wheat.

  1. Measuring environmental sustainability in agriculture: A composite environmental impact index approach.

    PubMed

    Sabiha, Noor-E; Salim, Ruhul; Rahman, Sanzidur; Rola-Rubzen, Maria Fay

    2016-01-15

    The present study develops a composite environmental impact index (CEII) to evaluate the extent of environmental degradation in agriculture after successfully validating its flexibility, applicability and relevance as a tool. The CEII tool is then applied to empirically measure the extent of environmental impacts of High Yield Variety (HYV) rice cultivation in three districts of north-western Bangladesh for a single crop year (October, 2012-September, 2013). Results reveal that 27 to 69 per cent of the theoretical maximum level of environmental damage is created due to HYV rice cultivation with significant regional variations in the CEII scores, implying that policy interventions are required in environmentally critical areas in order to sustain agriculture in Bangladesh. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Health and sustainability.

    PubMed

    Kjӕrgård, Bente; Land, Birgit; Bransholm Pedersen, Kirsten

    2014-09-01

    In the present article, we explore how sustainable development strategies and health promotion strategies can be bridged. The concept of the 'duality of structure' is taken as our starting point for understanding the linkages between health promotion and sustainable development, and for uncovering the structural properties or conditions which either enable or constrain sustainable public health initiatives. We argue that strategies towards health promotion are not sufficiently integrated with strategies for sustainable development, and thus political strategies aimed at solving health problems or sustainability problems may cause new, undesired and unforeseen environmental or health problems. First, we explore how the relation between health and sustainability is articulated in international policy documents. Next, we develop a model for understanding the relation between health promotion and sustainability. Third, we use examples from agriculture and food production to illustrate that health and sustainability are mutually enabling and constraining. We conclude that while the renewed focus on food security and food inequalities has brought the health and sustainability dimensions of the food system onto the political agenda, the conceptualization of duality between health and sustainability could be a new platform for a critical and theoretical stance towards the market-oriented food system strategy. Thinking along the lines of duality means that the integration of health promotion strategies and sustainable development strategies cannot be based on an approach to integration in which either health or sustainability is given precedence over the other. From a duality perspective, integration means conceiving sustainability from a health perspective and health from a sustainability perspective. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Membrane technology for sustainable treated wastewater reuse: agricultural, environmental and hydrological considerations.

    PubMed

    Oron, Gideon; Gillerman, Leonid; Bick, Amos; Manor, Yossi; Buriakovsky, Nisan; Hagin, Joseph

    2008-01-01

    Field experiments were conducted in agricultural fields in which secondary wastewater of the City of Arad (Israel) is reused for irrigation. For sustainable agricultural production and safe groundwater recharge the secondary effluent is further polished by a combined two-stage membrane pilot system. The pilot membrane system consists of two main in row stages: Ultrafiltration (UF) and Reverse Osmosis (RO). The UF stage is efficient in the removal of the pathogens and suspended organic matter while the successive RO stage provides safe removal of the dissolved solids (salinity). Effluents of various qualities were applied for agricultural irrigation along with continuous monitoring of the membrane system performance. Best agricultural yields were obtained when applying effluent having minimal content of dissolved solids (after the RO stage) as compared with secondary effluent without any further treatment and extended storage. In regions with shallow groundwater reduced soil salinity in the upper productive layers, maintained by extra membrane treatment, will guarantee minimal dissolved solids migration to the aquifers and minimize salinisation processes. (c) IWA Publishing 2008.

  4. Interactions between Niche and Regime: An Analysis of Learning and Innovation Networks for Sustainable Agriculture across Europe

    ERIC Educational Resources Information Center

    Ingram, Julie; Maye, Damian; Kirwan, James; Curry, Nigel; Kubinakova, Katarina

    2015-01-01

    Purpose: This paper aims to reveal, and contribute to an understanding of, the processes that connect learning and innovation networks in sustainable agriculture to elements of the mainstream agricultural regime. Drawing on the innovations and transition literature, the paper frames the analysis around niche-regime interaction using the notion of…

  5. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production.

    PubMed

    Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair

    2017-03-01

    Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.

  6. Declining agricultural production in rapidly urbanizing semi-arid regions: policy tradeoffs and sustainability indicators

    NASA Astrophysics Data System (ADS)

    Dozier, André Q.; Arabi, Mazdak; Wostoupal, Benjamin C.; Goemans, Christopher G.; Zhang, Yao; Paustian, Keith

    2017-08-01

    In rapidly urbanizing semi-arid regions, increasing amounts of historically irrigated cropland lies permanently fallowed due to water court policies as agricultural water rights are voluntarily being sold to growing cities. This study develops an integrative framework for assessing the effects of population growth and land use change on agricultural production and evaluating viability of alternative management strategies, including alternative agricultural transfer methods, regional water ownership restrictions, and urban conservation. A partial equilibrium model of a spatially-diverse regional water rights market is built in application of the framework to an exemplary basin. The model represents agricultural producers as profit-maximizing suppliers and municipalities as cost-minimizing consumers of water rights. Results indicate that selling an agricultural water right today is worth up to two times more than 40 years of continued production. All alternative policies that sustain agricultural cropland and crop production decrease total agricultural profitability by diminishing water rights sales revenue, but in doing so, they also decrease municipal water acquisition costs. Defining good indicators and incorporating adequate spatial and temporal detail are critical to properly analyzing policy impacts. To best improve agricultural profit from production and sale of crops, short-term solutions include alternative agricultural transfer methods while long-term solutions incorporate urban conservation.

  7. Assessment of agricultural groundwater users in Iran: a cultural environmental bias

    NASA Astrophysics Data System (ADS)

    Salehi, Saeid; Chizari, Mohammad; Sadighi, Hassan; Bijani, Masoud

    2018-02-01

    Many environmental problems are rooted in human behavior. This study aimed to explore the causal effect of cultural environmental bias on `sustainable behavior' among agricultural groundwater users in Fars province, Iran, according to Klockner's comprehensive model. A survey-based research project was conducted to gathering data on the paradigm of environmental psychology. The sample included agricultural groundwater users ( n = 296) who were selected at random within a structured sampling regime involving study areas that represent three (higher, medium and lower) bounds of the agricultural-groundwater-vulnerability spectrum. Results showed that the "environment as ductile (EnAD)" variable was a strong determinant of sustainable behavior as it related to groundwater use, and that EnAE had the highest causal effect on the behavior of agricultural groundwater users. The adjusted model explained 41% variance of "groundwater sustainable behavior". Based on the results, the groundwater sustainable behaviors of agricultural groundwater users were found to be affected by personal and subjective norm variables and that they are influenced by casual effects of the "environment as ductile (EnAD)" variable. The conclusions reflect the Fars agricultural groundwater users' attitude or worldview on groundwater as an unrecoverable resource; thus, it is necessary that scientific disciplines like hydrogeology and psycho-sociology be considered together in a comprehensive approach for every groundwater study.

  8. Providing Semantic Metadata to Online Learning Resources on Sustainable Agriculture and Farming: Combining Values and Technical Knowledge

    ERIC Educational Resources Information Center

    Garcia-Barriocanal, Elena; Sicilia, Miguel-Angel; Sanchez-Alonso, Salvador

    2013-01-01

    Sustainable or organic agriculture aims at harmonizing the efficient production of food with the preservation of the environmental conditions for continuing production in a sustained way. As such, it embodies a set of environmental values that are currently taught and learnt worldwide in specific courses or as part of broader programs or…

  9. Do You See What I See? Examining the Epistemic Barriers to Sustainable Agriculture

    ERIC Educational Resources Information Center

    Carolan, Michael S.

    2006-01-01

    This paper examines the epistemic barriers to sustainable agriculture, which are those aspects of food production that are not readily revealed by direct perception: such as decreases in rates of soil and nutrient loss, increases in levels of beneficial soil micro-organisms, and reductions in the amount of chemicals leaching into the water table.…

  10. Hydrological problems of water resources in irrigated agriculture: A management perspective

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2016-10-01

    The development of irrigated agriculture is necessary for fulfilling the rising food requirements of the burgeoning global population. However, the intensification of irrigated agriculture causes the twin menace of waterlogging and soil salinization in arid and semiarid regions where more than 75% of the world's population lives. These problems can be managed by either adopting preventive measures which decrease the inflow of water and salt or by employing remedial measures which increase the outflow. This paper presents an overview of various measures used for the management of waterlogging and salinity problems. The background, processes involved, and severity of waterlogging and salinity problems are provided. The role of drainage systems, conjunctive use of different water sources, use of computer-based mathematical models, and the use of remote sensing and GIS techniques in managing the problems are discussed. Conclusions are provided which could be useful for all the stakeholders.

  11. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.

    PubMed

    Gouda, Sushanto; Kerry, Rout George; Das, Gitishree; Paramithiotis, Spiros; Shin, Han-Seung; Patra, Jayanta Kumar

    2018-01-01

    The progression of life in all forms is not only dependent on agricultural and food security but also on the soil characteristics. The dynamic nature of soil is a direct manifestation of soil microbes, bio-mineralization, and synergistic co-evolution with plants. With the increase in world's population the demand for agriculture yield has increased tremendously and thereby leading to large scale production of chemical fertilizers. Since the use of fertilizers and pesticides in the agricultural fields have caused degradation of soil quality and fertility, thus the expansion of agricultural land with fertile soil is near impossible, hence researchers and scientists have sifted their attention for a safer and productive means of agricultural practices. Plant growth promoting rhizobacteria (PGPR) has been functioning as a co-evolution between plants and microbes showing antagonistic and synergistic interactions with microorganisms and the soil. Microbial revitalization using plant growth promoters had been achieved through direct and indirect approaches like bio-fertilization, invigorating root growth, rhizoremediation, disease resistance etc. Although, there are a wide variety of PGPR and its allies, their role and usages for sustainable agriculture remains controversial and restricted. There is also variability in the performance of PGPR that may be due to various environmental factors that might affect their growth and proliferation in the plants. These gaps and limitations can be addressed through use of modern approaches and techniques such as nano-encapsulation and micro-encapsulation along with exploring multidisciplinary research that combines applications in biotechnology, nanotechnology, agro biotechnology, chemical engineering and material science and bringing together different ecological and functional biological approaches to provide new formulations and opportunities with immense potential. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    NASA Astrophysics Data System (ADS)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  13. Agriculture expansion, wood energy and woody encroachment in the Miombo woodlands: striving towards sustainability in Zambia.

    NASA Astrophysics Data System (ADS)

    Pelletier, J.

    2017-12-01

    Agricultural expansion is mostly done at the expense of forests and woodlands in the tropics. In Sub-Saharan Africa, forests are also critical as providers of wood energy for domestic consumption with a clear majority of households depending on firewood and charcoal as primary source of energy. Using Zambia as a case study, we look at the link between agricultural expansion, wood energy and the sustainability of forest resources. Zambia has been identified as having one of the highest rates of deforestation in the world, but there is large uncertainty in these estimates. The government of Zambia has identified charcoal production as one of the main of drivers of forest cover loss and is targeting this practice in their national strategy for reducing emissions from deforestation and forest degradation (REDD+). Other assessment however indicate that agricultural expansion is by far the main driver of deforestation and charcoal production is sustainable in Zambia. These competing evaluations call for a better understanding of the drivers of change. Using two national-scale vegetation surveys and remote sensing data, we compare and validate historical forest cover loss estimates to improve their accuracy. We attribute the change and their associated emissions to specific drivers of deforestation. The ecological properties of areas under change are compared to stable areas over time. Our results from national permanent plots indicate a woody encroachment process in Zambia, a potential ecological response to rising CO2 levels. We found that despite large emissions from deforestation, forests and woodlands have been acting as a carbon sink. This research addresses directly the potential feedbacks and responses to competing demands on forests coming from different sectors, including for agriculture and energy, to set the baseline on which to evaluate forest sustainability now and in the future given potentially new ecological conditions. It provides policy relevant

  14. Multifunctional Agriculture in Policy and Practice? A Comparative Analysis of Norway and Australia

    ERIC Educational Resources Information Center

    Bjorkhaug, Hilde; Richards, Carol Ann

    2008-01-01

    Ideals of productivist agriculture in the Western world have faded as the unintended consequences of intensive agriculture and pastoralism have contributed to rural decline and environmental problems. In Norway and Australia, there has been an increasing acceptance of the equal importance of social and environmental sustainability as well as…

  15. Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change.

    PubMed

    Kollah, Bharati; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2016-03-01

    This review addresses the perspectives of Azolla as a multifaceted aquatic resource to ensure ecosystem sustainability. Nitrogen fixing potential of cyanobacterial symbiont varies between 30 and 60 kg N ha(-1) which designates Azolla as an important biological N source for agriculture and animal industry. Azolla exhibits high bioremediation potential for Cd, Cr, Cu, and Zn. Azolla mitigates greenhouse gas emission from agriculture. In flooded rice ecosystem, Azolla dual cropping decreased CH4 emission by 40 % than did urea alone and also stimulated CH4 oxidation. This review highlighted integrated approach using Azolla that offers enormous public health, environmental, and cost benefits.

  16. Solution to the Problems of the Sustainable Development Management

    NASA Astrophysics Data System (ADS)

    Rusko, Miroslav; Procházková, Dana

    2011-01-01

    The paper shows that environment is one of the basic public assets of a human system, and it must be therefore specially protected. According to our present knowledge, the sustainability is necessary for all human systems and it is necessary to invoke the sustainable development principles in all human system assets. Sustainable development is understood as a development that does not erode ecological, social or politic systems on which it depends, but it explicitly approves ecological limitation under the economic activity frame and it has full comprehension for support of human needs. The paper summarises the conditions for sustainable development, tools, methods and techniques to solve the environmental problems and the tasks of executive governance in the environmental segment.

  17. Administrative Problems of Technical Assistance to Community Development and Agricultural Extension.

    ERIC Educational Resources Information Center

    Safa-Isfahani, Manouchehr

    An attempt was made to analyze the administrative problems of United States technical assistance to community development and agricultural extension programs in the Philippines, Pakistan, Iran, Thailand, and Nigeria, with emphasis on field problems and on the point of view of local administrators, field technicians, and local people. The concept…

  18. Effective monitoring of agriculture: a response.

    PubMed

    Sachs, Jeffrey D; Remans, Roseline; Smukler, Sean M; Winowiecki, Leigh; Andelman, Sandy J; Cassman, Kenneth G; Castle, David; DeFries, Ruth; Denning, Glenn; Fanzo, Jessica; Jackson, Louise E; Leemans, Rik; Lehmann, Johannes; Milder, Jeffrey C; Naeem, Shahid; Nziguheba, Generose; Palm, Cheryl A; Pingali, Prabhu L; Reganold, John P; Richter, Daniel D; Scherr, Sara J; Sircely, Jason; Sullivan, Clare; Tomich, Thomas P; Sanchez, Pedro A

    2012-03-01

    The development of effective agricultural monitoring networks is essential to track, anticipate and manage changes in the social, economic and environmental aspects of agriculture. We welcome the perspective of Lindenmayer and Likens (J. Environ. Monit., 2011, 13, 1559) as published in the Journal of Environmental Monitoring on our earlier paper, "Monitoring the World's Agriculture" (Sachs et al., Nature, 2010, 466, 558-560). In this response, we address their three main critiques labeled as 'the passive approach', 'the problem with uniform metrics' and 'the problem with composite metrics'. We expand on specific research questions at the core of the network design, on the distinction between key universal and site-specific metrics to detect change over time and across scales, and on the need for composite metrics in decision-making. We believe that simultaneously measuring indicators of the three pillars of sustainability (environmentally sound, social responsible and economically viable) in an effectively integrated monitoring system will ultimately allow scientists and land managers alike to find solutions to the most pressing problems facing global food security. This journal is © The Royal Society of Chemistry 2012

  19. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system.

    PubMed

    Xie, Jian; Hu, Liangliang; Tang, Jianjun; Wu, Xue; Li, Nana; Yuan, Yongge; Yang, Haishui; Zhang, Jiaen; Luo, Shiming; Chen, Xin

    2011-12-13

    For centuries, traditional agricultural systems have contributed to food and livelihood security throughout the world. Recognizing the ecological legacy in the traditional agricultural systems may help us develop novel sustainable agriculture. We examine how rice-fish coculture (RF), which has been designated a "globally important agricultural heritage system," has been maintained for over 1,200 y in south China. A field survey demonstrated that although rice yield and rice-yield stability are similar in RF and rice monoculture (RM), RF requires 68% less pesticide and 24% less chemical fertilizer than RM. A field experiment confirmed this result. We documented that a mutually beneficial relationship between rice and fish develops in RF: Fish reduce rice pests and rice favors fish by moderating the water environment. This positive relationship between rice and fish reduces the need for pesticides in RF. Our results also indicate a complementary use of nitrogen (N) between rice and fish in RF, resulting in low N fertilizer application and low N release into the environment. These findings provide unique insights into how positive interactions and complementary use of resource between species generate emergent ecosystem properties and how modern agricultural systems might be improved by exploiting synergies between species.

  20. [Theories and methodologies of engineering designs on sustainable agricultural land consolidation project--a case study of Xuemeiyang land consolidation project in Changtai County, Fujian Province].

    PubMed

    Ye, Yanmei; Wu, Cifang; Cheng, Chengbiao; Qiu, Lingzhang; Huang, Shengyu; Zheng, Ruihui

    2002-09-01

    The concept and characteristics of engineering designs on sustainable agricultural land consolidation project were discussed in this paper. Principles, basic methods and procedures of engineering designs on agricultural land consolidation project were put forward, which were successfully adopted for designing agricultural land consolidation in Xuemeiyang region of Changtai County, including diversity designs of sustainable land use, engineering designs of soil improvement, roads, ditches, and drains for protecting existent animal environments, and design of ecological shelter-forests in farmland. Moreover, from sustainable economic, ecological and social points, the results of these engineering designs were evaluated based on fouteen important indexes. After carrying out these engineeringdesigns, the eco-environments and agricultural production conditions were significantly improved, and the farm income was increased in planned regions.

  1. Irrigated agriculture and groundwater resources - towards an integrated vision and sustainable relationship.

    PubMed

    Foster, Stephen; Garduño, Héctor

    2013-01-01

    Globally, irrigated agriculture is the largest abstractor, and predominant consumer, of groundwater resources, with large groundwater-dependent agro-economies now having widely evolved especially in Asia. Such use is also causing resource depletion and degradation in more arid and drought-prone regions. In addition crop cultivation practices on irrigated land exert a major influence on groundwater recharge. The interrelationship is such that cross-sector action is required to agree more sustainable land and water management policies, and this paper presents an integrated vision of the challenges in this regard. It is recognised that 'institutional arrangements' are critical to the local implementation of management policies, although the focus here is limited to the conceptual understanding needed for formulation of an integrated policy and some practical interventions required to promote more sustainable groundwater irrigation.

  2. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures.

    PubMed

    Pierart, Antoine; Shahid, Muhammad; Séjalon-Delmas, Nathalie; Dumat, Camille

    2015-05-30

    The increasing interest in urban agriculture highlights the crucial question of crop quality. The main objectives for environmental sustainability are a decrease in chemical inputs, a reduction in the level of pollutants, and an improvement in the soil's biological activity. Among inorganic pollutants emitted by vehicle traffic and some industrial processes in urban areas, antimony (Sb) is observed on a global scale. While this metalloid is known to be potentially toxic, it can transfer from the soil or the atmosphere to plants, and accumulate in their edible parts. Urban agriculture is developing worldwide, and could therefore increasingly expose populations to Sb. The objective of this review was in consequences to gather and interpret actual knowledge of Sb uptake and bioaccumulation by crops, to reveal investigative fields on which to focus. While there is still no legal maximal value for Sb in plants and soils, light has to be shed on its accumulation and the factors affecting it. A relative absence of data exists about the role of soil flora and fauna in the transfer, speciation and compartmentation of Sb in vegetables. Moreover, little information exists on Sb ecotoxicity for terrestrial ecosystems. A human risk assessment has finally been reviewed, with particular focus on Sb bioaccessibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Innovative type of Reproduction of Agriculture of the Komi Republic - the Basis of its Sustainable Development

    NASA Astrophysics Data System (ADS)

    Ponomareva, Anna

    2013-04-01

    The necessity of transition of agriculture to sustainability is complicated by the necessity to increase production of local environmentally safe food, unemployment indigenous growth of living standards of the peasant community, stable and balanced nature management. Due to the difficult economic conditions of natural and agricultural development for the Komi Republic principle of food self-sufficiency is unacceptable, but the production of basic food products, for which favorable there are conditions, is objective necessity in the short term. Priority directions of development of the agricultural and fisheries sectors: the production of socially significant food products - potatoes, vegetables of the local range, milk, fresh meat, eggs, dietary, preservation and development of traditional industries, and collecting wild mushrooms and berries and its processing. Off forecast in the northern agricultural areas three scenarios selected: a base (slow), optimistic and pessimistic. For all versions of the forecast to be considered systemic crisis of the agricultural sector of the North is ongoing. Functioning of on sector under a particular scenario will depend on the factors and conditions that affect the stability of the agricultural enterprises and farms. At the base, especially under unfavorable conditions, negative external factors and conditions will prevail. The baseline scenario of recent years assumes the maintenance of the rate of change indicators of agriculture, of the levels of state industry conditions of interbranch exchange in agriculture, of access to economic entities in the financial markets, of the pricing and taxation policies, of relatively low investment opportunities to upgrade production capacity. In this embodiment the growth of agricultural production and its reduction will occur in suburban (peripheral areas). The optimistic scenario will be characterized by protectionist policies of the state, increase investment to improve soil fertility

  4. [Good agricultural practice (GAP) of Chinese materia medica (CMM) for ten years: achievements, problems and proposals].

    PubMed

    Guo, Lan-Ping; Zhang, Yan; Zhu, Shou-Dong; Wang, Gui-Hua; Wang, Xiu; Zhang, Xiao-Bo; Chen, Mei-Lan; He, Ya-Li; Han, Bang-Xing; Chen, Nai-Fu; Huang, Lu-Qi

    2014-04-01

    This paper aims to summarize the achievements during the implementation process of good agricultural practice (GAP) in Chinese Materia Medica (CMM), and on basis of analyzing the existing problems of GAP, to propose further implementation of GAP in TCM growing. Since the launch of GAP in CMM growing ten years ago, it has acquired great achievements, including: (1) The promulgation of a series of measures for the administration of the GAP approval in the CMM growing; (2) The expanded planting area of CMM; (3) The increased awareness of standardized CMM growing among farmers and enterprises; (4) The establishment of GAP implementation bases for CMM growing; (5) The improvement of theory and methodology for CMM growing; (6) The development of a large group of experts and scholars in GAP approval for CMM production. The problems existing in the production include: (1) A deep understanding of GAP and its certification is still needed; (2) The distribution of the certification base is not reasonable; (3) The geo-economics effect and the backward farming practices are thought to be the bottlenecks in the standardization of CMM growing and the scale production of CMM; (4) Low comparative effectiveness limits the development of the GAP; (5) The base of breeding improved variety is blank; (6) The immature of the cultivation technique lead to the risk of production process; (7) The degradation of soil microbial and the continuous cropping obstacle restrict the sustainable development of the GAP base. To further promote the health and orderly GAP in the CMM growing, the authors propose: (1) To change the mode of production; (2) To establish a sound standard system so as to ensure quality products for fair prices; (3) To fully consider the geo-economic culture and vigorously promote the definite cultivating of traditional Chinese medicinal materials; (4) To strengthen the transformation and generalization of basic researches and achievements, in order to provide technical

  5. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Muth, Jr.; Jared Abodeely; Richard Nelson

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice datamore » required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.« less

  6. [Pesticides in the tropical agricultural economy systems: Evaluation of present knowledge of the problem].

    PubMed

    García, A R

    1976-06-01

    Man is an integral part of the ecosystem and any action of his against the environment has an effect against man himself. An Agro-ecosystem is a unit composed of the total complex of organisms in an area under cultivation, plus the totality of the physical environmental conditions and the modifications introduced by man, who manages the agro-ecosystem for his own benefit. The use of pesticides has been necessary for the agricultural development of some tropical areas. Unfortunately, the inadequate use of this input has caused many problems for himself. These include destruction of natural resources; intoxications; pesticide residues in water and foods; secondary pest outbreaks; increase in illnesses transmitted by certain arthropods; loss of foreign exchange; unemployment; malnutrition; disability; high infant mortality and poverty. A better use of agro-ecosystem management techniques can lead to a rational sustained utilization of land resources. Chemical pesticides can be considered as one of the factors in pest management, and not necessarily the only one available.

  7. Apcocynum Pictum and Sustainable Agriculture Along the Tarim River In Arid Northwest, China

    NASA Astrophysics Data System (ADS)

    Aihemaitijiang, R.

    2014-12-01

    Water scarcity and population increase have been a major limiting factor in oasis development along the Tarim River in Xinjiang, Northwest China which has very continental and dry climate, and all the agriculture and livelihoods depend on glacier melt water from Tarim River. Due to vast land reclamation along the Tarim River to grow cotton, native plant species are facing a severe competition for water, which is essential for their survival. Decreasing river runoff and inefficient water use practices by agriculture and industry has exacerbated already serious situation even worse. In addition, a large influx of migrant famers from Eastern China is being settled in this region to cultivate new agricultural lands that consumed even more water. Under those conditions, the natural riparian vegetation and the irrigation agriculture, especially along the lower reaches, suffers water shortage leading the degradation and economic losses, respectively. Along with the enlargement of irrigation area and periods of water shortage, soil salinization has become a major concern for farmers in the area. Alternative cash crops are much needed to reduce water use, so both native vegetation and human demand for water would be fulfilled. We hypothesized Apocynum Pictum, perennial herb species with multiple uses as potential substitute. Multidisciplinary approach is being used in this study to investigate three related issues to offer a basis for Apocynum's role in sustainable agriculture, such as Biomass production of Apocynum; Water budget of Apocynum; and Economic utilization of Apocynum. A.Pictum is perennial plant distributed in Central Asia and China, which its roots are perennial, while the stems die every year. Thus, A.pictum grow under the arid climate of Central Asia and provide utilization options without irrigation. We initially estimate water requirement for this plant is much less than cotton. In order to validate our hypothesis, we have measured water consumption of the

  8. [Listeriosis in agricultural animals (problems of the epizootiology, pathological anatomy and pathogenesis)].

    PubMed

    Urbanovich, P P

    1975-01-01

    Data are presented on the main problems of epizootology, pathological anatomy and pathogenesis of listeriosis of agricultural animals. It was shown that under natural conditions all species of agricultural animals are susceptible to the condition but ship are affected most often. Various clinico-anatomic forms of the disease are considered: nervous, septicemic, metrogenic, mixed, subclinical and latent. Domestic animals were observed to suffer predominantly from the nervous form of the disease. Basing on literature reports and his own findings, the author elucidates with greater detail problems of pathomorphology and pathogenesis of the nervous form of listeriosis and shows the importance of the neurogenic pathway in the development of listerious encephalomyelitis.

  9. Measuring Florida Extension Faculty's Agricultural Paradigmatic Preferences

    ERIC Educational Resources Information Center

    Warner, Laura A.; Murphrey, Theresa Pesl; Lawver, David E.; Baker, Matt; Lindner, James R.

    2014-01-01

    The demand for sustainable agriculture has increased, and many institutions, including the University of Florida, have adopted agricultural sustainability as a major goal. Extension has been identified as a critical information source, important in disseminating sustainable agricultural growing techniques. However, research has demonstrated that…

  10. Assessing the impact of pluriactivity on sustainable agriculture. A case study in rural areas of Beotia in Greece.

    PubMed

    Giourga, Christina; Loumou, Angeliki

    2006-06-01

    Pluriactivity of farms, or part-time farming, is a common feature of agriculture in all countries regardless of their socioeconomic system and level of development. Currently, pluriactivity is related to the values of sustainable agriculture. The objective of this study is to delineate those specific characteristics of pluriactive farms that contribute to sustainable agriculture. In rural areas of Boetia in Greece, a socioeconomic survey was carried out on 114 farms to determine the types of farming applied. The results demonstrate that pluriactivity is a stable component of the agricultural structure in the rural areas of Boetia. It is widespread in plains, but its presence is more important in mountainous and semimountainous areas. The choice of young farmers is to opt for pluriactivity. Farm size does not differ between pluriactive and full-time farms. Pluriactive and full- time farms use the same level of input and get the same output for the same type of crop. However, pluriactive farmers under the same land-productive conditions are oriented toward a more extensive farming system, managing their land with crops that need less inputs. Considering these findings, it can be claimed that pluriactivity can contribute to diminishing the demand on natural resources in favored (level and irrigated) areas, to continue agricultural production in unfavorable (mountainous and semimountainous) areas, and to help the sustenance of the rural population.

  11. Optimal integrated management of groundwater resources and irrigated agriculture in arid coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, J.; Schütze, N.; Heck, V.

    2014-09-01

    Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.

  12. Contributions to Sustainability by Communities and Individuals: Problems and Prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, D.; Tonn, B.E.

    1998-11-01

    This report examines relationships between a comprehensive set of definitions of and viewpoints on the concept of Sustainability and the abilities of communities and individuals in the United States to meet the behavioral prescriptions inherent in these definitions and viewpoints. This research is timely because sustainability is becoming a cornerstone of national and international environmental strategies designed to simultaneously achieve environmental, economic, and social goals. In the United States, many communities have adopted sustainability principles as the foundation for both their environmental protection efforts and their socioeconomic development initiatives. This research is important because it highlights serious problems communities andmore » inviduals may have in achieving sustainability expectations, and illustrates how much work is needed to help communities and individuals overcome numerous considerable and complex constraints to sustainability.« less

  13. Ethnography of a Sustainable Agriculture Program: A Case Study of a Social Movement's Inception and Growth on a University Campus

    ERIC Educational Resources Information Center

    Triana, Benjamin

    2016-01-01

    This ethnography documents how the message of sustainability was interpreted and communicated through a sustainable agricultural (SAG) program at an American higher education institution. The ethnography documents the evolution of the program as the program tackled obstacles and accomplished its goals during the initial phases of the program's…

  14. Theme: Agricultural Literacy.

    ERIC Educational Resources Information Center

    Deeds, Jacquelyn P.; And Others

    1991-01-01

    Six theme articles attempt to define and advocate agricultural literacy, review the status of K-8 agricultural literacy programs in states, discuss an Oklahoma study of agricultural literacy, clarify the meaning of sustainable agriculture, and describe the Future Farmers of America's Food for America program for elementary students. (SK)

  15. Toward a Sustainable Agriculture

    USDA-ARS?s Scientific Manuscript database

    Future trends in population growth, energy use, climate change, and globalization will challenge agriculturists to develop innovative production systems that are highly productive and environmentally sound. Furthermore, future agricultural production systems must possess an inherent capacity to adap...

  16. Epidemiology of criniviruses: an emerging problem in world agriculture

    PubMed Central

    Tzanetakis, Ioannis E.; Martin, Robert R.; Wintermantel, William M.

    2013-01-01

    The genus Crinivirus includes the whitefly-transmitted members of the family Closteroviridae. Whitefly-transmitted viruses have emerged as a major problem for world agriculture and are responsible for diseases that lead to losses measured in the billions of dollars annually. Criniviruses emerged as a major agricultural threat at the end of the twentieth century with the establishment and naturalization of their whitefly vectors, members of the genera Trialeurodes and Bemisia, in temperate climates around the globe. Several criniviruses cause significant diseases in single infections whereas others remain asymptomatic and only cause disease when found in mixed infections with other viruses. Characterization of the majority of criniviruses has been done in the last 20 years and this article provides a detailed review on the epidemiology of this important group of viruses. PMID:23730300

  17. Sustainable intensification of U.S. agriculture: Aspirations and barriers in the regional agroecosystems of the LTAR network

    USDA-ARS?s Scientific Manuscript database

    The sustainable intensification of agriculture in the United States will require major shifts in producer decision-making, markets, and public policies. The Long-Term Agroecosystem Research (LTAR) network is working to better understand how these shifts may be accomplished. Through a common experime...

  18. The Living Soil: Exploring Soil Science and Sustainable Agriculture with Your Guide, The Earthworm. Unit I.

    ERIC Educational Resources Information Center

    Weber, Eldon C.; And Others

    This instructional packet introduces students to soil biology, ecology, and specific farming practices that promote sustainable agriculture. It helps students to discover the role of earthworms in improving the environment of all other soil-inhabiting organisms and in making the soil more fertile. The activities (classroom as well as outdoor)…

  19. Ecosystem Services in Agricultural Landscapes: A Spatially Explicit Approach to Support Sustainable Soil Management

    PubMed Central

    Crossman, Neville D.; MacEwan, Richard J.; Wallace, D. Dugal; Bennett, Lauren T.

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km2 in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes. PMID:24616632

  20. Ecosystem services in agricultural landscapes: a spatially explicit approach to support sustainable soil management.

    PubMed

    Forouzangohar, Mohsen; Crossman, Neville D; MacEwan, Richard J; Wallace, D Dugal; Bennett, Lauren T

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km(2) in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.

  1. Framing the Future with Bacteriophages in Agriculture

    PubMed Central

    Svircev, Antonet; Roach, Dwayne; Castle, Alan

    2018-01-01

    The ability of agriculture to continually provide food to a growing world population is of crucial importance. Bacterial diseases of plants and animals have continually reduced production since the advent of crop cultivation and animal husbandry practices. Antibiotics have been used extensively to mitigate these losses. The rise of antimicrobial resistant (AMR) bacteria, however, together with consumers’ calls for antibiotic-free products, presents problems that threaten sustainable agriculture. Bacteriophages (phages) are proposed as bacterial population control alternatives to antibiotics. Their unique properties make them highly promising but challenging antimicrobials. The use of phages in agriculture also presents a number of unique challenges. This mini-review summarizes recent development and perspectives of phages used as antimicrobial agents in plant and animal agriculture at the farm level. The main pathogens and their adjoining phage therapies are discussed. PMID:29693561

  2. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century.

    PubMed

    Glaser, Bruno

    2007-02-28

    Terra Preta soils of central Amazonia exhibit approximately three times more soil organic matter, nitrogen and phosphorus and 70 times more charcoal compared to adjacent infertile soils. The Terra Preta soils were generated by pre-Columbian native populations by chance or intentionally adding large amounts of charred residues (charcoal), organic wastes, excrements and bones. In this paper, it is argued that generating new Terra Preta sites ('Terra Preta nova') could be the basis for sustainable agriculture in the twenty-first century to produce food for billions of people, and could lead to attaining three Millennium Development Goals: (i) to combat desertification, (ii) to sequester atmospheric CO2 in the long term, and (iii) to maintain biodiversity hotspots such as tropical rainforests. Therefore, large-scale generation and utilization of Terra Preta soils would decrease the pressure on primary forests that are being extensively cleared for agricultural use with only limited fertility and sustainability and, hence, only providing a limited time for cropping. This would maintain biodiversity while mitigating both land degradation and climate change. However, it should not be overlooked that the infertility of most tropical soils (and associated low population density) is what could have prevented tropical forests undergoing large-scale clearance for agriculture. Increased fertility may increase the populations supported by shifting cultivation, thereby maintaining and increasing pressure on forests.

  3. Participatory approach: from problem identification to setting strategies for increased productivity and sustainability in small scale irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Habtu, Solomon; Ludi, Eva; Jamin, Jean Yves; Oates, Naomi; Fissahaye Yohannes, Degol

    2014-05-01

    Practicing various innovations pertinent to irrigated farming at local field scale is instrumental to increase productivity and yield for small holder farmers in Africa. However the translation of innovations from local scale to the scale of a jointly operated irrigation scheme is far from trivial. It requires insight on the drivers for adoption of local innovations within the wider farmer communities. Participatory methods are expected to improve not only the acceptance of locally developed innovations within the wider farmer communities, but to allow also an estimation to which extend changes will occur within the entire irrigation scheme. On such a base, more realistic scenarios of future water productivity within an irrigation scheme, which is operated by small holder farmers, can be estimated. Initial participatory problem and innovation appraisal was conducted in Gumselassa small scale irrigation scheme, Ethiopia, from Feb 27 to March 3, 2012 as part of the EAU4FOOD project funded by EC. The objective was to identify and appraise problems which hinder sustainable water management to enhance production and productivity and to identify future research strategies. Workshops were conducted both at local (Community of Practices) and regional (Learning Practice Alliance) level. At local levels, intensive collaboration with farmers using participatory methods produced problem trees and a "Photo Safari" documented a range of problems that negatively impact on productive irrigated farming. A range of participatory methods were also used to identify local innovations. At regional level a Learning Platform was established that includes a wide range of stakeholders (technical experts from various government ministries, policy makers, farmers, extension agents, researchers). This stakeholder group did a range of exercise as well to identify major problems related to irrigated smallholder farming and already identified innovations. Both groups identified similar problems

  4. Ecohydrology of the different photosynthetic pathways and implication for sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.; Bartlett, M. S., Jr.; Hartzell, S. R.

    2016-12-01

    We use a recently proposed model that can simulate the different photosynthetic pathways coupled to the soil-plant-atmosphere continuum (SPAC) to discuss their ecohydrological implications in relation to water use and plant water stress in both natural and agricultural ecosystems. Built around the classical C3 photosynthesis core model (light reactions and Calvin cycle), the model includes a simple CO2-pump parameterization for C4 plants and a circadian rhythm and carbon storage components for the CAM (Crassulacean Acid Metabolism) plants. Its architecture takes advantage of the interesting modularity in which photosynthesis evolved in geological times to provide a relatively simple but comprehensive framework to explore the advantages and tradeoffs in water energy and carbon fluxes of the three photosynthetic pathways under fluctuating environmental forcing. We calibrate the model with reference to a series of C3,C4 and CAM plants, and discuss the trade-offs in water use and plan productivity and the related impact on hydrologic fluxes and soil biogeochemistry. We also consider some important crop species to analyze the implications of choosing crops with different photosynthetic pathways to improve sustainability of agriculture and irrigation in semiarid systems.

  5. Determining the Effects of Cognitive Style, Problem Complexity, and Hypothesis Generation on the Problem Solving Ability of School-Based Agricultural Education Students

    ERIC Educational Resources Information Center

    Blackburn, J. Joey; Robinson, J. Shane

    2016-01-01

    The purpose of this experimental study was to assess the effects of cognitive style, problem complexity, and hypothesis generation on the problem solving ability of school-based agricultural education students. Problem solving ability was defined as time to solution. Kirton's Adaption-Innovation Inventory was employed to assess students' cognitive…

  6. Implication of soil C sequestration on sustainable agriculture and environment.

    PubMed

    Mondini, C; Sequi, P

    2008-01-01

    Soil organic matter (SOM) is the largest C stock of the continental biosphere with 1550Pg. The size of C reservoir in the soil and environmental concerns on climate change have recently attracted the attention of scientist and politicians on C sequestration as an effective strategy to tackle greenhouse gas (GHG) emissions. It has been estimated that the potential for C storage in world cropland is relevant (about 0.6-1.2PgCy(-1)). However, there are several constraints of C sequestration that raise concern about its effectiveness as a strategy to offset climate change. C sequestration is finite in quantity and time, reversible, and can be further decreased by socio-economic restrictions. Given these limitations, C sequestration can play only a minor role in the reduction of emissions (2-5% of total GHG emission under the highest emission scenarios). Yet, C sequestration is still attractive for two main reasons: it is likely to be particularly effective in reducing atmospheric CO2 levels in the first 20-30yr of its implementation and presents ancillary benefits for environment and sustainability that make it a real win-win strategy. These beneficial implications are discussed in this paper with emphasis on the need of C sequestration not only to offset climatic changes, but also for the equilibria of the environment and for the sustainability of agriculture and of entire human society.

  7. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review.

    PubMed

    De Luca, Anna Irene; Iofrida, Nathalie; Leskinen, Pekka; Stillitano, Teodora; Falcone, Giacomo; Strano, Alfio; Gulisano, Giovanni

    2017-10-01

    Life cycle (LC) methodologies have attracted a great interest in agricultural sustainability assessments, even if, at the same time, they have sometimes been criticized for making unrealistic assumptions and subjective choices. To cope with these weaknesses, Multi-Criteria Decision Analysis (MCDA) and/or participatory methods can be used to balance and integrate different sustainability dimensions. The purpose of this study is to highlight how life cycle approaches were combined with MCDA and participatory methods to address agricultural sustainability in the published scientific literature. A systematic and critical review was developed, highlighting the following features: which multi-criterial and/or participatory methods have been associated with LC tools; how they have been integrated or complemented (methodological relationships); the intensity of the involvement of stakeholders (degree of participation); and which synergies have been achieved by combining the methods. The main typology of integration was represented by multi-criterial frameworks integrating LC evaluations. LC tools can provide MCDA studies with local and global information on how to reduce negative impacts and avoid burden shifts, while MCDA methods can help LC practitioners deal with subjective assumptions in an objective way, to take into consideration actors' values and to overcome trade-offs among the different dimensions of sustainability. Considerations concerning the further development of Life Cycle Sustainability Assessment (LCSA) have been identified as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of Groundwater Management Model for Sustainable Groundwater Use in the Agricultural Region

    NASA Astrophysics Data System (ADS)

    Park, D.; Bae, G.; Lee, K.

    2010-12-01

    In many agricultural regions, high dependence of irrigation on groundwater has brought about serious concerns about unplanned groundwater developments and over-pumping. Various agricultural activities including fertilization and livestock husbandry usually result in groundwater contamination in those regions. Field works in Icheon, Korea showed that in this region the rice farming still requires a significant amount of water and continuous construction of greenhouse can make the contamination from the fertilization more serious. In this study, a groundwater management model based on the simulation-optimization methodology is developed to achieve sufficient groundwater supply and groundwater quality conservation together on regional-scale. This model can obtain the on-ground contaminant loading mass by integrating an analytical model for 1-D solute transport in unsaturated zone with 3-D groundwater flow and solute transport model, HydroGeosphere. The outputs of the 1-D unsaturated transport model, concentrations of the contaminant leaching on water table, work as contaminant sources in the 3-D solute transport model in saturated zone. This integrated simulation model is linked to genetic algorithm that searches the global optimum for the sustainable groundwater use. And, in order for the design on the contaminant sources to be more effective, it also links the backward transport model useful for evaluating the contamination from contaminant sources to each pumping well. The first objective of the management in this study is to obtain the optimal pumping rates that not only can supply sufficient amount of the groundwater but protect the groundwater from the excessive drawdown and contamination. The second objective is to control the periodic loading of the contaminant by suggesting the allowable contaminant loading mass. For this multi-objective groundwater management, the objective function to maximize both pumping rates and allowable contaminant loading mass and at

  9. Sustainable composites from natural resources

    Treesearch

    R.M. Rowell

    2002-01-01

    In order to insure a continuous supply of natural agricultural resources, management of the agricultural producing land should be under a proactive system of land management whose goal is both sustainable agriculture and the promotion of healthy ecosystems. Ecosystem management is not a euphemism for preservation, which might imply benign neglect. Sustainable...

  10. Where Are the Gardens in the Garden State? Middle School Lessons on Sustainable Agriculture and Farmland Preservation.

    ERIC Educational Resources Information Center

    Chen, Loris

    This unit helps middle school students explore the local face of a global challenge: vanishing farmland and the need for sustainable agriculture. With an eye on the National Geography Standards and five areas of the New Jersey core curriculum standards, this unit also develops the skills needed to contribute toward creative solutions for such…

  11. Linking ecology and aesthetics in sustainable agricultural landscapes: Lessons from the Palouse region of Washington, U.S.A

    Treesearch

    Linda R. Klein; William G. Hendrix; Virginia I. Lohr; Jolie B. Kaytes; Rodney D. Sayler; Mark E. Swanson; William J. Elliot; John P. Reganold

    2015-01-01

    Inspired by international escalation in agricultural sustainability debates, we explored the promise of landscape-scale conservation buffers to mitigate environmental damage, improve ecological function, and enhance scenic quality. Although the ecological benefits of buffer vegetation are well established by plot- and field-scale research, buffer adoption by farmers is...

  12. A Delphi Study of Agriculture Teacher Perceptions of Problems in Student Retention.

    ERIC Educational Resources Information Center

    Dyer, James E.; Breja, Lisa M.; Ball, Anna L.

    2003-01-01

    A four-round Delphi study of secondary agriculture teachers (17, 17, 22, and 21 responses) identified and rated student retention problems. Consensus was reached on these items: scheduling difficulties, lack of counselor support, image, increased graduation requirements, college entrance requirements, competition from other activities, block…

  13. Behavior Problems in Relation to Sustained Selective Attention Skills of Moderately Preterm Children.

    PubMed

    Bul, Kim C M; van Baar, Anneloes L

    2012-04-01

    Attention skills may form an important developmental mechanism. A mediation model was examined in which behavioral problems of moderately preterm and term children at school age are explained by attention performance. Parents and teachers completed behavioral assessments of 348 moderately preterm children and 182 term children at 8 years of age. Children were administered a test of sustained selective attention. Preterm birth was associated with more behavioral and attention difficulties. Gestational age, prenatal maternal smoking, and gender were associated with mothers', fathers', and teachers' reports of children's problem behavior. Sustained selective attention partially mediated the relationship between birth status and problem behavior. Development of attention skills should be an important focus for future research in moderately preterm children.

  14. Avoid, Control, Succumb, or Balance: Engineering Students' Approaches to a Wicked Sustainability Problem

    ERIC Educational Resources Information Center

    Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena

    2017-01-01

    Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to…

  15. Potential of extensification of European agriculture for a more sustainable food system, focusing on nitrogen

    NASA Astrophysics Data System (ADS)

    van Grinsven, Hans J. M.; Willem Erisman, Jan; de Vries, Wim; Westhoek, Henk

    2015-02-01

    Most global strategies for future food security focus on sustainable intensification of production of food and involve increased use of nitrogen fertilizer and manure. The external costs of current high nitrogen (N) losses from agriculture in the European Union, are 0.3-1.9% of gross domestic product (GDP) in 2008. We explore the potential of sustainable extensification for agriculture in the EU and The Netherlands by analysing cases and scenario studies focusing on reducing N inputs and livestock densities. Benefits of extensification are higher local biodiversity and less environmental pollution and therefore less external costs for society. Extensification also has risks such as a reduction of yields and therewith a decrease of the GDP and farm income and a smaller contribution to the global food production, and potentially an i0ncrease of global demand for land. We demonstrate favourable examples of extensification. Reducing the N fertilization rate for winter wheat in Northwest Europe to 25-30% below current N recommendations accounts for the external N cost, but requires action to compensate for a reduction in crop yield by 10-20%. Dutch dairy and pig farmers changing to less intensive production maintain or even improve farm income by price premiums on their products, and/or by savings on external inputs. A scenario reducing the Dutch pig and poultry sector by 50%, the dairy sector by 20% and synthetic N fertilizer use by 40% lowers annual N pollution costs by 0.2-2.2 billion euro (40%). This benefit compensates for the loss of GDP in the primary sector but not in the supply and processing chain. A 2030 scenario for the EU27 reducing consumption and production of animal products by 50% (demitarean diet) reduces N pollution by 10% and benefits human health. This diet allows the EU27 to become a food exporter, while reducing land demand outside Europe in 2030 by more than 100 million hectares (2%), which more than compensates increased land demand when

  16. Teachers' Use of Agricultural Laboratories in Secondary Agricultural Education

    ERIC Educational Resources Information Center

    Shoulders, Catherine W.; Myers, Brian E.

    2012-01-01

    Trends in the agriculture industry require students to have the ability to solve problems associated with scientific content. Agricultural laboratories are considered a main component of secondary agricultural education, and are well suited to provide students with opportunities to develop problem-solving skills through experiential learning. This…

  17. Recycling biosolids and lake-dredged materials to pasture-based animal agriculture: Alternative nutrient sources for forage productivity and sustainability

    USDA-ARS?s Scientific Manuscript database

    Domestic sewage sludge or biosolids and lake-dredged materials are examples of materials that can be used to cut fertilizer costs in pasture-based animal agriculture. Sustainable biosolids and lake-dredged materials management is based upon controlling and influencing the quantity, quality and chara...

  18. Remotely Sensed Hydrometeorological and Agrometeorological Drought Risk Identification for Sustainable Agriculture.

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas R.; Blanta, Anna; Spyropoulos, Nicos

    2013-04-01

    Drought is considered as one of the major environmental hazards with significant impacts to agriculture, environment, economy and society. This paper addresses drought as a hazard within the risk management framework. Indeed, hazards may be defined as a potential threat to humans and their welfare and risk (or consequence) as the probability of a hazard occurring and creating loss. Besides, risk management consists of risk assessment and feedback of the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. In order to ensure sustainability in agricultural production a better understanding of the natural disasters, in particular droughts, that impact agriculture is essential. Droughts may result in environmental degradation of an area, which is one of the factors contributing to the vulnerability of agriculture, because it directly magnifies the risk of natural disasters. This paper deals with drought risk identification, which involves hazard quantification, event monitoring including early warning systems and statistical inference. For drought quantification the Reconnaissance Drought Index (RDI) combined with Vegetation Health Index (VHI) is employed. RDI is a new index based on hydrometeorological parameters, and in particular precipitation and potential evapotranspiration, which has been recently modified to incorporate monthly satellite (NOAA/AVHAA) data for a period of 20 years (1981-2001). VHI is based on NDVI. The study area is Thessaly in central Greece, which is one of the major agricultural areas of the country occasionally facing droughts. Drought monitoring is conducted by monthly remotely sensed RID and VHI images and several drought features are extracted such as severity, duration, areal extent, onset and end time. Drought early warning is developed using empirical relationships of the above mentioned features. In particular, two second-order polynomials

  19. Biophysical constraints to sustainable agricultural intensification in West African drylands: an example of the WASCAL Research Action Plan (WRAP 2.0) Flagship Strategy

    NASA Astrophysics Data System (ADS)

    Tondoh, E. J.; Forkuor, G.; Adegoke, J. O.

    2017-12-01

    The West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL) is an intergovernmental research organization established in 2012 as result of multilateral collaborations between the Republic of Germany and Governments of 10 West African countries. Its new research program termed WASCAL Research Action Plan (WRAP 2.0) aims to deploy first-class, demand-driven, and impact-oriented research to achieve development outcomes and deliver key science-based climate and environmental services. It's therefore structured around key flagships, including "Sustainable Agriculture and Food Security" with a focus on enhancing the adaptive capacity of socio-ecological landscapes through increased agricultural productivity. However, as land degradation is one of the major obstacles to sustainable agricultural production and food security in sub Saharan African, it's imperative to mitigate this complex multifaceted process which is particularly acute in West African drylands. This case study aims to diagnose the main constraints to sustainable agricultural intensification at landscape scale and derive best bet soil management practices. The methodological approach is built around biophysical survey at sites of 100 km2 organized around 16 clusters each composed of 10 georeferenced sampling plots in three semi-arid agro-ecological landscapes located in upper-west region of Ghana (Lambussie), southwestern Burkina Faso (Bondigui) and southwestern Mali (Finkolo). Soil samples were collected in both the topsoil (0-20cm) and subsoil (20-50) and key soil physical constraints were measured at each sampling point. Remote Sensing (RS) variables representing biomass, climate and topography were correlated with soil organic carbon (SOC) to determine the influence of these variables on soil health. Results revealed within and between site variations in SOC concentration, soil pH, soil fertility index (SFI), erosion prevalence and root depth restriction. Different RS

  20. Biofuels, bioenergy, and bioproducts from sustainable agricultural and forest crops: proceedings of the short rotation crops international conference

    Treesearch

    Ronald S., Jr. Zalesny; Rob Mitchell; Jim, eds. Richardson

    2008-01-01

    The goal of this conference was to initiate and provide opportunities for an international forum on the science and application of producing both agricultural and forest crops for biofuels, bioenergy, and bioproducts. There is a substantial global need for development of such systems and technologies that can economically and sustainably produce short rotation crops...

  1. Effects of Teaching Approach on Problem Solving Ability of Agricultural Education Students with Varying Learning Styles.

    ERIC Educational Resources Information Center

    Dyer, James E.; Osborne, Edward W.

    1996-01-01

    One group of Illinois secondary agriculture students was taught using a problem-solving approach (PSA), the other with a subject-matter approach (SMA). A problem-solving posttest and Group Embedded Figures Test showed significantly higher problem-solving ability in the PSA group. Field independent learners in the PSA group significantly increased…

  2. Nanotechnology: The new perspective in precision agriculture.

    PubMed

    Duhan, Joginder Singh; Kumar, Ravinder; Kumar, Naresh; Kaur, Pawan; Nehra, Kiran; Duhan, Surekha

    2017-09-01

    Nanotechnology is an interdisciplinary research field. In recent past efforts have been made to improve agricultural yield through exhaustive research in nanotechnology. The green revolution resulted in blind usage of pesticides and chemical fertilizers which caused loss of soil biodiversity and developed resistance against pathogens and pests as well. Nanoparticle-mediated material delivery to plants and advanced biosensors for precision farming are possible only by nanoparticles or nanochips. Nanoencapsulated conventional fertilizers, pesticides and herbicides helps in slow and sustained release of nutrients and agrochemicals resulting in precise dosage to the plants. Nanotechnology based plant viral disease detection kits are also becoming popular and are useful in speedy and early detection of viral diseases. In this article, the potential uses and benefits of nanotechnology in precision agriculture are discussed. The modern nanotechnology based tools and techniques have the potential to address the various problems of conventional agriculture and can revolutionize this sector.

  3. Avoid, Control, Succumb, or Balance: Engineering Students' Approaches to a Wicked Sustainability Problem

    NASA Astrophysics Data System (ADS)

    Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena

    2017-08-01

    Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to students' abilities to address WSPs. Specifically, we aim to (I) describe key constituents of engineering students' approaches to a WSP, (II) evaluate these approaches in relation to the normative context of education for sustainable development (ESD), and (III) identify relevant aspects of learning related to WSPs. Aim I is addressed through a phenomenographic study, while aims II and III are addressed by relating the results to research literature about human problem solving, sustainable development, and ESD. We describe four qualitatively different ways of approaching a specific WSP, as the outcome of the phenomenographic study: A. Simplify and avoid, B. Divide and control, C. Isolate and succumb, and D. Integrate and balance. We identify approach D as the most appropriate approach in the context of ESD, while A and C are not. On this basis, we identify three learning objectives related to students' abilities to address WSPs: learn to use a fully integrative approach, distinguish WSPs from tame and well-structured problems, and understand and consider the normative context of SD. Finally, we provide recommendations for how these learning objectives can be used to guide the design of science and engineering educational activities.

  4. A combined remote sensing and modeling based approach to identify sustainable pathways for urban and peri-urban agriculture in China

    NASA Astrophysics Data System (ADS)

    Wattenbach, M.; Delgado, J. M.; Roessner, S.; Bochow, M.; Güntner, A.; Kropp, J.; Cantu Ros, A. G.; Hattermann, F.; Kolbe, T.; Sodoudi, S.; Cubasch, U. Ulrich; Zeitz, J.; Ross, L.; Böckel, K.; Fang, C.; Bo, L.; Pan, G.

    2012-04-01

    As the world's biggest economy, China is becoming the biggest consumer of resources globally. Given this trend, the over-proportional fast increase in urbanization presents China with fundamental problems. Among the most urgent ones is the increasing loss of agricultural land as urbanization takes place in the most productive regions along the coast. The latter is being responsible for a shift in agriculture production towards climatically less favorable areas. At the same time, the loss of green areas in and around growing cities is increasing the effect of the urban heat island. The perception of the potential risks related to this phenomenon, in the context of climate change, has led the Shanghai city administration to increase its urban-greening efforts, expanding the per capita area of green from 1m2 in 1990 to 12.5m2 in 2008. In this context, this paper aims at identifying the influence of urban and peri-urban agriculture (UPA) on the sustainability of the urban regions of Shanghai and Nanjing. In particular, it focuses on the effects of UPA on the greenhouse gas (GHG) emissions, soil nutrients and water balances, local climate and the structure and functions of the urbanized areas. We propose an interdisciplinary framework combining remote sensing, model simulations and GHG field observations and targeted at identifying "win-win" strategies for sustainable planning pathways showing high potentials for UPA. The framework is based on spatial scenario modeling, automatic classification of urban structure types and on a prototype of a high-quality spatial database consisting of a 3D city model. Dynamic boundary conditions for climate and urban development are provided by state of the art models. These approaches meet the needs of stakeholders and planners in China. A special emphasis is put on interdependencies between small holder farming in the urban and peri-urban zone and climate change adaptation and mitigation strategies focusing on improved management of

  5. Agricultural use of wetlands: opportunities and limitations

    PubMed Central

    Verhoeven, Jos T. A.; Setter, Tim L.

    2010-01-01

    Background Wetlands are species-rich habitats performing valuable ecosystem services such as flood protection, water quality enhancement, food chain support and carbon sequestration. Worldwide, wetlands have been drained to convert them into agricultural land or industrial and urban areas. A realistic estimate is that 50 % of the world's wetlands have been lost. Scope This paper reviews the relationship between wetlands and agriculture with the aim to identify the successes and failures of agricultural use in different types of wetlands, with reference to short-term and long-term benefits and issues of sustainability. It also addresses a number of recent developments which will lead to pressure to reclaim and destroy natural wetlands, i.e. the continuous need for higher production to feed an increasing world population and the increasing cultivation of energy crops. Finally, attention is paid to the development of more flood-tolerant crop cultivars. Conclusions Agriculture has been carried out in several types of (former) wetlands for millennia, with crop fields on river floodplain soils and rice fields as major examples. However, intensive agricultural use of drained/reclaimed peatlands has been shown to lead to major problems because of the oxidation and subsidence of the peat soil. This does not only lead to severe carbon dioxide emissions, but also results in low-lying land which needs to be protected against flooding. Developments in South-East Asia, where vast areas of tropical peatlands are being converted into oil palm plantations, are of great concern in this respect. Although more flood-tolerant cultivars of commercial crop species are being developed, these are certainly not suitable for cultivation in wetlands with prolonged flooding periods, but rather will survive relatively short periods of waterlogging in normally improved agricultural soils. From a sustainability perspective, reclamation of peatlands for agriculture should be strongly discouraged

  6. Challenges and Alternatives to Sustainable Management of Agriculture and Pastoral Ecosystems in Asian Drylands

    NASA Astrophysics Data System (ADS)

    Qi, J.

    2015-12-01

    There is no question that human must produce additional 70% food to feed the new 2.2 billion of people on the planet by 2050, but the question is where to grow the additional food. The demand for the additional food lies not only in producing the basic resources needed to sustain a healthy lifestyle, but also from a changing diet, especially in rapidly developing countries in the dryland regions around the world. It is forecast that this demand for meat will require an additional 0.2 billion tons per year by 2050, which is almost a doubling of present meat consumption. These new demands create mounting pressures on agriculture and pastoral ecosystems and the reported trajectory of warmer and drier climate in the future increases uncertainties in food security, adding further stresses to the already stressed nations in the Asian dryland belt. Different approaches are being either proposed or practiced in the region but the question is whether or not the current practices are sustainable or optimal in addressing the emerging issues. Given the complexity and interplay among the food, water and energy, what are alternatives to ensure a sustainable trajectory of regional development to meet the new food demand? This presentation reviews existing practices and proposes alternative solutions, by specifically examining the trade-offs between different ecosystem services that drylands in Asian may provide. Preliminary analysis suggested that the current trajectory of meat and milk production is likely not on a sustainable pathway.

  7. Transforming Agricultural Water Management in Support of Ecosystem Restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanlon, Edward; Capece, John

    Threats to ecosystems are not local; they have to be handled with the global view in mind. Eliminating Florida farms, in order to meet its environmental goals, would simply move the needed agricultural production overseas, where environmentally less sensitive approaches are often used, thus yielding no net ecological benefit. South Florida is uniquely positioned to lead in the creation of sustainable agricultural systems, given its population, technology, and environmental restoration imperative. Florida should therefore aggressively focus on developing sustainable systems that deliver both agricultural production and environmental services. This presentation introduces a new farming concept of dealing with Florida’s agriculturalmore » land issues. The state purchases large land areas in order to manage the land easily and with ecosystem services in mind. The proposed new farming concept is an alternative to the current “two sides of the ditch” model, in which on one side are yield-maximizing, input-intensive, commodity price-dependent farms, while on the other side are publicly-financed, nutrient-removing treatment areas and water reservoirs trying to mitigate the externalized costs of food production systems and other human-induced problems. The proposed approach is rental of the land back to agriculture during the restoration transition period in order to increase water storage (allowing for greater water flow-through and/or water storage on farms), preventing issues such as nutrients removal, using flood-tolerant crops and reducing soil subsidence. Since the proposed approach is still being developed, there exist various unknown variables and considerations. However, working towards a long-term sustainable scenario needs to be the way ahead, as the threats are global and balancing the environment and agriculture is a serious global challenge.« less

  8. Applications of satellite 'hyper-sensing' in Chinese agriculture: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Onojeghuo, Alex Okiemute; Blackburn, George Alan; Huang, Jingfeng; Kindred, Daniel; Huang, Wenjiang

    2018-02-01

    Ensuring adequate food supplies to a large and increasing population continues to be the key challenge for China. Given the increasing integration of China within global markets for agricultural products, this issue is of considerable significance for global food security. Over the last 50 years, China has increased the production of its staple crops mainly by increasing yield per unit land area. However, this has largely been achieved through inappropriate agricultural practices, which have caused environmental degradation, with deleterious consequences for future agricultural productivity. Hence, there is now a pressing need to intensify agriculture in China using practices that are environmentally and economically sustainable. Given the dynamic nature of crops over space and time, the use of remote sensing technology has proven to be a valuable asset providing end-users in many countries with information to guide sustainable agricultural practices. Recently, the field has experienced considerable technological advancements reflected in the availability of 'hyper-sensing' (high spectral, spatial and temporal) satellite imagery useful for monitoring, modelling and mapping of agricultural crops. However, there still remains a significant challenge in fully exploiting such technologies for addressing agricultural problems in China. This review paper evaluates the potential contributions of satellite 'hyper-sensing' to agriculture in China and identifies the opportunities and challenges for future work. We perform a critical evaluation of current capabilities in satellite 'hyper-sensing' in agriculture with an emphasis on Chinese sensors. Our analysis draws on a series of in-depth examples based on recent and on-going projects in China that are developing 'hyper-sensing' approaches for (i) measuring crop phenology parameters and predicting yields; (ii) specifying crop fertiliser requirements; (iii) optimising management responses to abiotic and biotic stress in crops

  9. Chemodynamics of Methyl Parathion and Ethyl Parathion: Adsorption Models for Sustainable Agriculture

    PubMed Central

    Rafique, Uzaira; Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2014-01-01

    The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue. PMID:24689059

  10. Traditional Agriculture and Permaculture.

    ERIC Educational Resources Information Center

    Pierce, Dick

    1997-01-01

    Discusses benefits of combining traditional agricultural techniques with the concepts of "permaculture," a framework for revitalizing traditions, culture, and spirituality. Describes school, college, and community projects that have assisted American Indian communities in revitalizing sustainable agricultural practices that incorporate…

  11. Implications for sustainability of a changing agricultural mosaic in the Sacramento-San Joaquin Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Lucero, C. E.; Deverel, S. J.; Jacobs, P.; Kelsey, R.

    2015-12-01

    Transformed from the largest wetland system on the west coast of the United States to agriculture, the Sacramento-San Joaquin Delta is an extreme teaching example of anthropogenic threats to sustainability. For over 6,000 years, over 280,000 ha of intertidal freshwater marsh accreted due to seal level rise and sediment deposition. Farming of organic soils since 1850 resulted in land subsidence caused primarily by oxidation. Over 2 billion cubic meters of soil were lost resulting in elevations on Delta islands ranging from -1 to -8 m and increased risk of levee failures and water supply disruption. Alteration of water flows and habitat caused dramatic declines in aquatic species. A cycle in which oxidation of organic soils leads to deepening of drainage ditches to maintain an aerated root zone which in turn results in sustained oxidation and subsidence is perpetuated by the momentum of the status quo despite evidence that agricultural practices are increasingly unsustainable. Flooding of the soils breaks the oxidation/subsidence cycle. We assessed alternate land uses and the carbon market as a potential impetus for change. Using the peer-reviewed and locally calibrated SUBCALC model, we estimated net global warming potential for a range of scenarios for a representative island, from status quo to incorporating significant proportions of subsidence-mitigating land use. We analyzed economic implications by determining profit losses or gains when a simulated GHG offset market is available for wetlands using a regional agricultural production and economic optimization model, We estimated baseline GHG emissions at about 60,000 tons CO2-e per year. In contrast, modeled implementation of rice and wetlands resulted in substantial emissions reductions to the island being a net GHG sink. Subsidence would be arrested or reversed where these land uses are implemented. Results of economic modeling reveal that conversion to wetlands can have significant negative farm financial

  12. Theme: In-Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Elliot, Jack, Ed.; And Others

    1991-01-01

    Seven theme articles review the history and philosophy of vocational agriculture, its relationship to the national goals for education, the place of sustainable agriculture and supervised experience in the curriculum, diversifying the curriculum, and fisheries education programs in Alaska. (SK)

  13. Developing sustainable food supply chains.

    PubMed

    Smith, B Gail

    2008-02-27

    This paper reviews the opportunities available for food businesses to encourage consumers to eat healthier and more nutritious diets, to invest in more sustainable manufacturing and distribution systems and to develop procurement systems based on more sustainable forms of agriculture. The important factors in developing more sustainable supply chains are identified as the type of supply chain involved and the individual business attitude to extending responsibility for product quality into social and environmental performance within their own supply chains. Interpersonal trust and working to standards are both important to build more sustainable local and many conserved food supply chains, but inadequate to transform mainstream agriculture and raw material supplies to the manufactured and commodity food markets. Cooperation among food manufacturers, retailers, NGOs, governmental and farmers' organizations is vital in order to raise standards for some supply chains and to enable farmers to adopt more sustainable agricultural practices.

  14. GIS based evaluation of crop suitability for agricultural sustainability around Kolaghat thermal power plant, India.

    PubMed

    Adak, Subhas; Adhikari, Kalyan; Brahmachari, Koushik

    2016-09-01

    Fly ash exhaust from Kolaghat thermal power plant, West Bengal, India,?? affects the areas within the radius of 3 - 4 km. Land information system indicated that surface texture within 4 km was silty loam and clay content increased with increase of distance. Soil pH was alkaline (7.58-8.01) in affected circles, whereas soil was acidic (5.95-6.41) in rest of block. Organic carbon (OC) is roving from 0.36 to 0.64% in the nearer circles which is lesser from others. The present Crop suitability analysis revealed that 96.98 % area was suitable (S1) for maize, sesame, jute, whereas these were cultivated in less than 1% of land. Flowers are the best suitable (S1) in 88.9 % but it was grown in 6.02 % area.? The present rice area within 4 km of KTPP is showing moderately suitable (S2) and S1 for the rest. Wheat is moderately suitable (S2) in the almost all the circles.? Cultivation of vegetable crops is limited in the affected circles while the highly suitable (S1) comprises 67.49 % for the remaining areas though it covered only 6.01 % of the block.? This evaluation precisely improves more than 300% from the earlier cropping intensity of 177.95 %. Suitability based land use allocation serves as stepping stone to promote agricultural sustainability. Geographic information system (GIS) model has been developed to assess site specific crop suitability for sustainable agricultural planning.

  15. Achieving resource sustainability and enhancing economic development through biomass utilization

    Treesearch

    Jerrold E. Winandy

    2005-01-01

    As the problems associated with sustaining and enhancing the world's forest and agricultural resources compete with the needs of a rapidly increasing and affluent population, the management of our land becomes a much more complex and important issue. One of the most important environmental features of wood and other woody-like fibers is that they are renewable and...

  16. Building agribusiness model of LEISA to achieve sustainable agriculture in Surian Subdistrict of Sumedang Regency West Java Indonesia

    NASA Astrophysics Data System (ADS)

    Djuwendah, E.; Priyatna, T.; Kusno, K.; Deliana, Y.; Wulandari, E.

    2018-03-01

    Building agribusiness model of LEISA is needed as a prototype of sustainable regional and economic development (SRRED) in the watersheds (DAS) of West Java Province. Agribusiness model of LEISA is a sustainable agribusiness system applying low external input. The system was developed in the framework of optimizing local-based productive resources including soil, water, vegetation, microclimate, renewable energy, appropriate technology, social capital, environment and human resources by combining various subsystems including integrated production subsystems of crops, livestock and fish to provide a maximum synergy effect, post-harvest subsystem and processing of results, marketing subsystems and supporting subsystems. In this study, the ecological boundary of Cipunegara sub-watershed ecosystem, administrative boundaries are Surian Subdistricts in Sumedang. The purpose of this study are to identify the potency of natural resources and local agricultural technologies that could support the LEISA model in Surian and to identify the potency of internal and external inputs in the LEISA model. The research used qualitative descriptive method and technical action research. Data were obtained through interviews, documentation, and observation. The results showed that natural resources in the form of agricultural land, water resources, livestock resources, and human labor are sufficient to support agribusiness model of LEISA. LEISA agribusiness model that has been applied in the research location is the integration of beef cattle, agroforestry, and agrosilvopasture. By building LEISA model, agribusiness can optimize the utilization of locally based productive resources, reduce dependence on external resources, and support sustainable food security.

  17. [Spatial-temporal pattern of sustainable intensification of agricultural land-use in Shandong Province, China.

    PubMed

    Niu, Shan Dong; Lyu, Xiao; Shi, Yang Yang

    2018-02-01

    Under the theoretical framework of sustainable intensification of agricultural land-use (SIALU), We used material flow analysis (MFA) method to establish evaluation index system for SIALU by utilizing data in 2000, 2005, 2010 and 2015 to quantify the level of SIALU of 17 cities in Shandong Province, and analyzed the variation in input-output of resources factors of agricultural land, spatial distribution of resource productivity and environmental economic efficiency, in order to reveal spatial-temporal differentiation of SIALU. Results showed that the direct material input to agricultural lands decreased, whereas hidden flow, stock and pollutant emissions increased gradually from 2000 to 2015. The material productivity of all cities in the province showed that the coastal areas in the peninsula were relatively lower than the southern region, and the level of material productivity in the northwest region was relatively higher. Environmental economic efficiency was gradually enhanced, and the western region was relatively higher than coastal area of the peninsula. During the period examined here, the spatial pattern of SIALU of various cities showed clustered distribution change, with the western region tending to gradually increase and the eastern region tending to gradually reduce. The dynamics of SIALU among different regions were divided into six grades: Northwestern Shandong > Northern Shandong > Southwestern Shandong > Southern Shandong > Central Shandong > Coastal areas of Shandong Peninsula.

  18. Farming with Grass: Achieving Sustainable Mixed Agricultural Landscapes

    USDA-ARS?s Scientific Manuscript database

    Agriculture in grassland environments is facing multiple stresses from shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Grassla...

  19. Identifying, monitoring and implementing "sustainable" agricultural practices for smallholder farmers over large geographic areas in India and Vietnam

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Ahuja, R.; Nair, D.; Esteves, T.; Rudek, J.; Thu Ha, T.

    2015-12-01

    Industrial agriculture systems, mostly in developed and some emerging economies, are far different from the small-holder farms (size <1 acre) in Asia and Africa. Along with our partners from non-governmental, corporate, academic and government sectors and tens of thousands of farming families, we have worked actively in five states in India and two provinces in Vietnam for the last five years to understand how sustainable and climate smart farming practices can be monitored at small-holder farms. Here, any approach to monitor farming must begin by accounting for the tremendous management variability from farm to farm and also the current inability to ground-truth remote sensing data due to lack of relaible basic parameters (e.g., yields, N use, farm boundaries) which are necessary for calibrating empirical/biogeochemical models. While we continue to learn from new research, we have found that it is crucial to follow some steps if sustainable farming programs are to succeed at small-holder farms Demographic data collection and GPS plot demarcation to establish farm size and ownership Baseline nutrient, water & energy use and crop yield determination via surveys and self-reporting which are verifiable through farmer networks given the importance of peer to peer learning in the dissemination of new techniques in such landscapes "Sustainable" practice determination in consultation with local universities/NGO experts Measurements on representative plots for 3-4 years to help calibrate biogeochemical models and/or empirical equations and establish which practices are truly "sustainable" (e.g., GHG emission reduction varies from 0-7 tCO2e/acre for different sustainable practices). Propagation of sustainable practices across the landscape via local NGOs/governments after analyzing the replicability of identified farming practices in the light of local financial, cultural or socio-political barriers. We will present results from representative plots (including soil and

  20. Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Olga; Zeyliger, Anatoly

    2017-04-01

    Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support

  1. Aligning land use with land potential: The role of integrated agriculture

    USDA-ARS?s Scientific Manuscript database

    Contemporary agricultural land use is dominated by an emphasis on provisioning services by applying energy-intensive inputs through relatively uniform production systems across variable landscapes. This approach to agricultural land use is not sustainable. Achieving sustainable use of agricultural...

  2. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production. © The Author(s) 2016.

  3. Are sustainable water resources possible in northwestern India?

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Devineni, N.; Perveen, S.; Robertson, A. W.; Lall, U.

    2012-12-01

    Sustainable water resources can have many definitions with the simplest as a supply-demand problem, with climate dictating the supply of water and human water use the demand. One sign of a system that is not sustainable would be falling groundwater tables, as is the case in northwest India. This region serves as the country's breadbasket, and irrigated agriculture is ubiquitous. The state of Punjab alone produces 22% of the country's wheat and 13% of all the country's grains while only accounting for 1.5% of the country's area. Although the region receives an average precipitation of 600mm per year, it is dominated by monsoonal rainfall with streamflow augmented by upstream snowmelt and glacial melt in spring and summer that is released from a large dam into canals. Large agricultural water demands occur both during the rainy season as well as during the drier winter season. Water and food security are inextricably linked here, and when considering how to manage water sustainably, the consequences on agriculture must also be considered. In this study, we evaluate what a sustainable water resources system would look like in this region, accounting for current climate, crop water demands, and available reservoir storage. The effects of multiple water-saving scenarios are considered, such as crop choice, cropped area, and the use of forecasts in irrigation scheduling. We find that the current system is untenable and hard decisions will have to be made by policymakers in order to halt the depletion of groundwater and manage the region's water resources in a sustainable, effective manner. This work serves as a prototype for evaluating water resources in other regions with high seasonal variability in rainfall and streamflow and large irrigation demands.

  4. Efficient nitrogen recycling through sustainable use of organic wastes in agriculture - an Australian case study

    NASA Astrophysics Data System (ADS)

    Rigby, Hannah; Landman, Michael; Collins, David; Walton, Katrina; Penney, Nancy; Pritchard, Deborah

    2014-05-01

    to nutrient losses to air and water. This paper discusses the sustainable recycling N resources in biosolids and biowastes in agriculture in Australia using specific recent research examples from Western Australia, including lime amended biosolids, alum sludge and dewatered biosolids cake, and from Tasmania, papermill sludge. The primary focus is the N fertiliser replacement value of different biosolids and biowaste types under different environmental conditions, and management issues relating to the sustainable recycling of N. Experimental work included field trials and soil incubation studies. The findings are compared with research findings conducted in different climatic regions and soil types across Australia (Queensland, Victoria, New South Wales) and internationally.

  5. Biofertilizers: a potential approach for sustainable agriculture development.

    PubMed

    Mahanty, Trishna; Bhattacharjee, Surajit; Goswami, Madhurankhi; Bhattacharyya, Purnita; Das, Bannhi; Ghosh, Abhrajyoti; Tribedi, Prosun

    2017-02-01

    The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.

  6. Results of an Assessment to Identify Potential Barriers to Sustainable Agriculture on American Indian Reservations in the Western United States

    ERIC Educational Resources Information Center

    Singletary, Loretta; Emm, Staci; Brummer, Fara Ann; Hill, George C.; Lewis, Steve; Hebb, Vicki

    2016-01-01

    Purpose: This paper reports the results of survey research conducted with tribal producers between 2011 and 2012 on 19 of the largest American Indian reservations in Idaho, Nevada, North Dakota, Oregon, South Dakota, and Washington. The purpose of the research was to identify potential barriers to sustainable agriculture on reservation lands. This…

  7. Agricultural Business and Management Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains 5 teaching units for 44 agricultural business and management cluster problem areas. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. The five units are as follows: (1) agribusiness operation and…

  8. Analytical conceptual plan to reforest central Himalaya for sustainable development

    NASA Astrophysics Data System (ADS)

    Singh, Surendra P.; Singh, Jamuna S.

    1991-05-01

    The Central Himalayan region is suffering from severe ecological problems as a consequence of deforestation and that threatens the subsistence population of the region. We analyze this problem and propose a plan for ecologically sustainable development for the region based on an analysis of the interrelationships of various ecosystems, particularly cropland and forest ecosystems, around which most human activities are concentrated. Each energy unit of agronomic yield leads to expenditure of about 12 energy units of forest/grazing land energy. Because with rapidly declining forest area, this form of agriculture is no longer sustainable and cannot be converted into a fossil fuel-based agriculture, we propose that agriculture in the mountain region has to be largely replaced with farm forests to revitalize the environment and to generate the basic needs of the subsistence economy of the hill population whose food grain needs can be met from the plains. We conclude by describing the advantages that are likely to accrue to the people for their long-term future. In terms of both energy and money, the value of resources collected from the forest to support agriculture in the present systems far exceeds the value of food grain that would be required to enable the proposed farm forest-based systems to function. At regional level, the proposed system would generate more energy than the existing systems, not only because the productivity of forest is about tenfold greater than that of cropland, but also because the proposed plan promotes recovery of various ecosystems.

  9. Sustainability of Italian Agriculture: A Methodological Approach for Assessing Crop Water Footprint at Local Scale

    NASA Astrophysics Data System (ADS)

    Altobelli, F.; Dalla Marta, A.; Cimino, O.; Orlandini, S.; Natali, F.

    2014-12-01

    In a world where population is rapidly growing and where several planetary boundaries (i.e. climate change, biodiversity loss and nitrogen cycle) have already been crossed, agriculture is called to respond to the needs of food security through a sustainable use of natural resources. In particular, water is one of the main elements of fertility so the agricultural activity, and the whole agro-food chain, is one of the productive sectors more dependent on water resource and it is able to affect, at regional level, its availability for all the other sectors. In this study, we proposed a methodology for assessing the green and blue water footprint of the main Italian crops typical of the different geographical areas (northwest, northeast, center, and south) based on data extracted from Italian Farm Accountancy Data Network (FADN). FADN is an instrument for evaluating the income of agricultural holdings and the impacts of the Common Agricultural Policy. Crops were selected based on incidence of cultivated area on the total arable land of FADN farms net. Among others, the database contains data on irrigation management (irrigated surface, length of irrigation season, volumes of water, etc.), and crop production. Meteorological data series were obtained by a combination of local weather stations and ECAD E-obs spatialized database. Crop water footprints were evaluated against water availability and risk of desertification maps of Italy. Further, we compared the crop water footprints obtained with our methodology with already existing data from similar studies in order to highlight the effects of spatial scale and level of detail of available data.

  10. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers.

    PubMed

    Ali, Akbar; Ahmed, Shakeel

    2018-06-26

    The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.

  11. Valuing tradeoffs between agricultural production and ecosystem services in the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Li, Z.; Deng, X.; Wu, F.

    2017-12-01

    Ecosystem services are faced with multiple stress from complex driving factors, such as climate change and human interventions. The Heihe River Basin (HRB), as the second largest inland river basin in China, is a typical semi-arid and arid region with fragile and sensitive ecological environment. For the past decades, agricultural production activities in the basin has affected ecosystem services in different degrees, leading to complex relations among "water-land-climate-ecology-human", in which hydrological process and water resource management is the key. In this context, managing trade-offs among water uses in the river basin to sustain multiple ecosystem services is crucial for healthy ecosystem and sustainable socioeconomic development. In this study, we analyze the trade-offs between different water uses in agricultural production and key ecosystem services in the HRB by applying production frontier analysis, with the aim to explore the potential for managing them. This method traces out joint production frontiers showing the combinations of ecosystem services and agricultural production that can be generated in a given area, and it deals with the economic problem of the allocation of scarce water resources under presumed objective, which aims to highlight synergies and reduce trade-offs between alternative water uses. Thus, management schemes that targets to both sustain agricultural production and increase the provision of key ecosystem services have to consider not only the technological or biological nature of interrelationships, but also the economic interdependencies among them.

  12. Odor compounds in waste gas emissions from agricultural operations and food industries.

    PubMed

    Rappert, S; Müller, R

    2005-01-01

    In the last decades, large-scale agricultural operations and food industries have increased. These operations generate numerous types of odors. The reduction of land areas available for isolation of agricultural and food processing industrial operations from the public area and the increase in sensitivity and demand of the general public for a clean and pleasant environment have forced all of these industries to control odor emissions and toxic air pollutants. To develop environmentally sound, sustainable agricultural and food industrial operations, it is necessary to integrate research that focuses on modern analytical techniques and latest sensory technology of measurement and evaluation of odor and pollution, together with a fundamental knowledge of factors that are the basic units contributing to the production of odor and pollutants. Without a clear understanding of what odor is, how to measure it, and where it originates, it will be difficult to control the odor. The present paper reviews the available information regarding odor emissions from agricultural operations and food industries by giving an overview about odor problems, odor detection and quantification, and identifying the sources and the mechanisms that contribute to the odor emissions. Finally, ways of reducing or controlling the odor problem are discussed.

  13. A chaotic model of sustaining attention problem in attention deficit disorder

    NASA Astrophysics Data System (ADS)

    Baghdadi, G.; Jafari, S.; Sprott, J. C.; Towhidkhah, F.; Hashemi Golpayegani, M. R.

    2015-01-01

    The problem of keeping an attention level is one of the common symptoms of attention deficit disorder. Dopamine deficiency is introduced as one of the causes of this disorder. Based on some physiological facts about the attention control mechanism and chaos intermittency, a behavioral model is presented in this paper. This model represents the problem of undesired alternation of attention level, and can also suggest different valuable predictions about a possible cause of attention deficit disorder. The proposed model reveals that there is a possible interaction between different neurotransmitters which help the individual to adaptively inhibit the attention switching over time. The result of this study can be used to examine and develop a new practical and more appropriate treatment for the problem of sustaining attention.

  14. ASIT--A Problem Solving Strategy for Education and Eco-Friendly Sustainable Design

    ERIC Educational Resources Information Center

    Turner, Steve

    2009-01-01

    There is growing recognition of the role teaching and learning experiences in technology education can contribute to Education for Sustainable Development. It appears, however, that in the Technology Education classroom little or no change has been achieved to the practice of designing and problem solving strategies oriented towards sustainable…

  15. The Use of the Persian Translation of the Learning Transfer System Inventory in the Context of Agricultural Sustainability Learning in Iran

    ERIC Educational Resources Information Center

    Zamani, Naser; Ataei, Pouria; Bates, Reid

    2016-01-01

    The Learning Transfer System Inventory considers 16 factors likely to influence the transfer of training to the workplace. This study uses the Persian translation of the inventory and applies it to agricultural sustainability learning in Iran. The aim is to examine the internal structure and predictive ability of the inventory as translated into…

  16. Novel Fabrication of Biodegradable Superabsorbent Microspheres with Diffusion Barrier through Thermo-Chemical Modification and Their Potential Agriculture Applications for Water Holding and Sustained Release of Fertilizer.

    PubMed

    Feng, Diejing; Bai, Bo; Wang, Honglun; Suo, Yourui

    2017-07-26

    Synergistic utilization of water and fertilizer has vital contribution to the modern production of agriculture. This work reports on a simple and facile strategy to prepare biodegradable yeast/sodium alginate/poly(vinyl alcohol) superabsorbent microspheres with a diffusion barrier merit by thermo-chemical modification route. The integrated performances, including water absorbency, water retention, water evaporation ratio, leaching loss control, sustained-release behaviors, and degradation in soil, were systematically investigated. The results revealed that the modified microspheres were a triumphant water and fertilizer manager to effectively hold water and control the unexpected leakage of fertilizer for sustained release. Therefore, this work provides a promising approach to ameliorate the utilization efficiency of water and fertilizer in potential agriculture applications.

  17. Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators

    PubMed Central

    Springer, Nathaniel P.; Garbach, Kelly; Guillozet, Kathleen; Haden, Van R.; Hedao, Prashant; Hollander, Allan D.; Huber, Patrick R.; Ingersoll, Christina; Langner, Megan; Lipari, Genevieve; Mohammadi, Yaser; Musker, Ruthie; Piatto, Marina; Riggle, Courtney; Schweisguth, Melissa; Sin, Emily; Snider, Sara; Vidic, Nataša; White, Aubrey; Brodt, Sonja; Quinn, James F.; Tomich, Thomas P.

    2015-01-01

    Understanding how to source agricultural raw materials sustainably is challenging in today’s globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly—depending largely on the stakeholder perspective—as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 “integrated” issues—24 impact issues and 36 vulnerability issues —that are composed of 318 “component” issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent them

  18. Problems and agricultural solutions in olive groves

    NASA Astrophysics Data System (ADS)

    Lozano-García, Beatriz; Parras-Alcántara, Luis

    2017-04-01

    The most important and extensive crops in the Mediterranean area are olive groves. Within the last 50 years, the surface occupied by olive groves has progressively increased in Spain including more complex topographies, poorer soils and worse climatic conditions. This situation has caused serious problems based on the losses of soil, nutrients and soil quality among others (Lozano-García and Parras-Alcántara, 2014). Therefore, alternative practices that avoid soil erosion and soil degradation must be considered. As a consequence, farmers together with scientist are innovating by the development of different practices in olive groves in order to avoid these problems and to improve soil conditions. There is a huge range of new practices. Some of them are: i. alternative management techniques such as organic farming, no tillage and minimum tillage. These techniques have a positive impact in soils (Parras-Alcántara and Lozano-García, 2014; Fernández-Romero et al., 2016). ii. the addition of different substances on the soil. For example, oil mill by-products that are thus potentially useful as soil amendments since they are effective sources of organic matter and nitrogen, improve soil quality and alleviate the environmental and agronomic limitations of Mediterranean agricultural soils, even those under using conventional tillage (Lozano-García et al., 2011; Lozano-García and Parras-Alcántara, 2013). iii. the use of covers as secondary crops inside the olive grove. These offer secondary benefits derived from alternative crops and soil protection due to fact that in olive groves the main problem is the high quantity of bare surface. With this contribution we want to show the current situation in olive groves and how better results could be obtained when both trustworthy information is available and farmers and scientist work together. REFERENCES Fernández-Romero, M.L., Parras-Alcántara, L., Lozano-García, B., Clark, J.M., Collins, C.D. 2016. Soil quality

  19. Novel Agricultural Conservation System with Sustained Yield and Decreased Water, Nutrient, Energy, and Carbon Footprints

    NASA Astrophysics Data System (ADS)

    Hansen, K.; Shukla, S.; Holt, N.; Hendricks, G.; Sishodia, R. P.

    2017-12-01

    Fresh fruits and vegetables are conventionally grown in raised bed plasticulture (RBP), a high intensity, high input, and high output production system. In 2016, the fresh market plasticulture industry covered 680,000 ha in the US, producing crops (e.g. tomato, peppers, melons, and strawberries) valued at ten billion dollars. To meet the increasing future demand for fresh fruits and vegetables and sustain the production potential of croplands, a transformation of the conventional food-water-energy nexus is essential. A novel agricultural conservation system, compact bed geometry, has been proposed to shift the paradigm in RBP, sustaining yield and decreasing inputs (e.g. water, nutrients, energy, and carbon). Compact bed geometries fit the shape of the wetting front created when water is applied through drip irrigation on the production soil, creating a taller (23-30 cm) and thinner bed (66-41 cm). Two seasons of tomato (single row) and pepper (double row) production, in the environmentally fragile watershed of the Florida Everglades, highlight the potential impact of compact bed geometry on environmental sustainability in agricultural production. No difference in plant growth or yield was detected, with a reduction of 5-50% in irrigation water, up to 20% less N application, 12% less P, 20% less K, and 5-15% less carbon dioxide emissions. The hydrologic benefits of compact bed geometry include 26% less runoff generation, decreased need for active drainage pumping, and increased residence time for irrigation water within the bed, overall decreasing instances of nutrient leaching. A water related co-benefit observed was a reduction in the occurrences of Phytophthora capsici in pepper, which has the potential to reduce yield by as much as 70%. Non-water co-benefits include up to a 250/ ha reduction in production cost, with the potential to save the industry 200 million dollars annually. This economic benefit has led to rapid industry adoption, with more than 20

  20. Evaluation of current state of agricultural land using problem-oriented fuzzy indicators in GIS environment

    USDA-ARS?s Scientific Manuscript database

    Current state of agricultural lands is defined under influence of processes in soil, plants and atmosphere and is described by observation data, complicated models and subjective opinion of experts. Problem-oriented indicators summarize this information in useful form for decision of the same specif...

  1. Sustained Attention at Age 5 Predicts Attention-Related Problems at Age 9

    ERIC Educational Resources Information Center

    Martin, Anne; Razza, Rachel A.; Brooks-Gunn, Jeanne

    2012-01-01

    This study tested whether two aspects of sustained attention (focused attention and lack of impulsivity) measured at child age 5 predicted attention problems reported by mothers and teachers at age 9. Because lack of impulsivity reflects the executive control network, and ADHD is commonly characterized as a deficit in executive function, it was…

  2. Research Impact Assessment in Agriculture--A Review of Approaches and Impact Areas

    ERIC Educational Resources Information Center

    Weißhuhn, Peter; Helming, Katharina; Ferretti, Johanna

    2018-01-01

    Research has a role to play in society's endeavour for sustainable development. This is particularly true for agricultural research, since agriculture is at the nexus between numerous sustainable development goals. Yet, generally accepted methods for linking research outcomes to sustainability impacts are missing. We conducted a review of…

  3. Development of anti-slip sustainable tiles from agricultural waste

    NASA Astrophysics Data System (ADS)

    Zulkefli, Zainordin Firdaus; Zainol, Mohd Remy Rozainy Mohd Arif; Osman, Norhayati

    2017-04-01

    In general of 80% the human activities is located in the building. Buildings constructed should be in line with full functions and optimum safety features. Aspects to be emphasized is the slip on the floor of the building. The selection of tiles must have anti-slip characteristics and achieve standard strength stress. This study is conducted to develop anti-slip tiles modification using agricultural waste. The material used is agricultural waste such rice husks, palm fibre and saw dusk mixed into the clay and then baked at a temperature of 900-1185 C °. Agricultural waste mixture ratio is 5%, 10% and 15%. The samples of tiles are produced for experiments. The results of agricultural waste tiles show that the strength is higher than standard strength, the water absorption less than standard tiles and pendulum value test is exceeds 36.

  4. Sustainable nanomaterials using waste agricultural residues

    EPA Science Inventory

    Sustainable synthetic processes developed during the past two decades involving the use of alternate energy inputs and greener reaction media are summarized. Learning from nature, one can produce a wide variety of nanoparticles using completely safe and benign materials such as ...

  5. The problem of epistemic jurisdiction in global governance: The case of sustainability standards for biofuels.

    PubMed

    Winickoff, David E; Mondou, Matthieu

    2017-02-01

    While there is ample scholarly work on regulatory science within the state, or single-sited global institutions, there is less on its operation within complex modes of global governance that are decentered, overlapping, multi-sectorial and multi-leveled. Using a co-productionist framework, this study identifies 'epistemic jurisdiction' - the power to produce or warrant technical knowledge for a given political community, topical arena or geographical territory - as a central problem for regulatory science in complex governance. We explore these dynamics in the arena of global sustainability standards for biofuels. We select three institutional fora as sites of inquiry: the European Union's Renewable Energy Directive, the Roundtable on Sustainable Biomaterials, and the International Organization for Standardization. These cases allow us to analyze how the co-production of sustainability science responds to problems of epistemic jurisdiction in the global regulatory order. First, different problems of epistemic jurisdiction beset different standard-setting bodies, and these problems shape both the content of regulatory science and the procedures designed to make it authoritative. Second, in order to produce global regulatory science, technical bodies must manage an array of conflicting imperatives - including scientific virtue, due process and the need to recruit adoptees to perpetuate the standard. At different levels of governance, standard drafters struggle to balance loyalties to country, to company or constituency and to the larger project of internationalization. Confronted with these sometimes conflicting pressures, actors across the standards system quite self-consciously maneuver to build or retain authority for their forum through a combination of scientific adjustment and political negotiation. Third, the evidentiary demands of regulatory science in global administrative spaces are deeply affected by 1) a market for standards, in which firms and states can

  6. Promoting Sustainable Agricultural Practices Through Remote Sensing Education and Outreach

    NASA Astrophysics Data System (ADS)

    Driese, K. L.; Sivanpillai, R.

    2007-12-01

    Ever increasing demand for food and fiber calls for farm management strategies such as effective use of chemicals and efficient water use that will maximize productivity while reducing adverse impacts on the environment. Remotely sensed data collected by satellites are a valuable resource for farmers and ranchers for gaining insights about farm and ranch productivity. While researchers in universities and agencies have made tremendous advances, technology transfer to end-users has lagged, preventing the farmers from taking advantage of this valuable resource. To overcome this barrier, the Upper Midwest Aerospace Consortium (UMAC), a NASA funded program headed by the University of North Dakota, has been working with end-users to promote the use of remote sensing technology for sustainable agricultural practices. We will highlight the UMAC activities in Wyoming aimed at promoting this technology to sugar-beet farmers in the Big Horn Basin. To assist farmers who might not have a computer at home, we provide them to local county Cooperative Extension Offices pre-loaded with relevant imagery. Our targeted outreach activities have resulted in farmers requesting and using new and old Landsat images to identify growth anomalies and trends which have enabled them to develop management zones within their croplands.

  7. Theme: Is Problem-Solving Teaching and SAE Needed in Agricultural Education in the 21st Century?

    ERIC Educational Resources Information Center

    Wardlow, George, Ed.

    1999-01-01

    Nine articles in this theme issue address problem-solving teaching and supervised agricultural experience. Topics covered include systems approaches to SAE, SAE for Y2K, SAE for science, applied SAE, types of SAE, and examples of activities. (JOW)

  8. Agriculture, food, and nutrition interventions that facilitate sustainable food production and impact health: an overview of systematic reviews.

    PubMed

    Haby, Michelle M; Chapman, Evelina; Clark, Rachel; Galvão, Luiz A C

    2016-08-01

    Objectives To identify the agriculture, food, and nutrition security interventions that facilitate sustainable food production and have a positive impact on health. Methods Systematic review methods were used to synthesize evidence from multiple systematic reviews and economic evaluations through a comprehensive search of 17 databases and 10 websites. The search employed a pre-defined protocol with clear inclusion criteria. Both grey and peer-reviewed literature published in English, Spanish, and Portuguese between 1 January 1997 and November 2013 were included. To classify as "sustainable," interventions needed to aim to positively impact at least two dimensions of the integrated framework for sustainable development and include measures of health impact. Results Fifteen systematic reviews and seven economic evaluations met the inclusion criteria. All interventions had some impact on health or on risk factors for health outcomes, except those related to genetically modified foods. Impact on health inequalities was rarely measured. All interventions with economic evaluations were very cost-effective, had cost savings, or net benefits. In addition to impacting health (inclusive social development), all interventions had the potential to impact on inclusive economic development, and some, on environmental sustainability, though these effects were rarely assessed. Conclusions What is needed now is careful implementation of interventions with expected positive health impacts but with concurrent, rigorous evaluation. Possible impact on health inequalities needs to be considered and measured by future primary studies and systematic reviews, as does impact of interventions on all dimensions of sustainable development.

  9. Integrating Problem- and Project-Based Learning Opportunities: Assessing Outcomes of a Field Course in Environment and Sustainability

    ERIC Educational Resources Information Center

    Kricsfalusy, Vladimir; George, Colleen; Reed, Maureen G.

    2018-01-01

    Improving student competencies to address sustainability challenges has been a subject of significant debate in higher education. Problem- and project-based learning have been widely celebrated as course models that support the development of sustainability competencies. This paper describes a course developed for a professional Master's program…

  10. Circles of live buffer strips in a center pivot to improve multiple ecosystem services and sustainability of irrigated agriculture in the southern great plains

    USDA-ARS?s Scientific Manuscript database

    Declining Ogallala Aquifer has threatened sustainability of highly productive irrigated agriculture in the region. The region, known for the dust bowl of thirties, is scared of its return. Lower well outputs and increasing pumping costs have compelled farmers to adapt alternative conservation strate...

  11. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  12. "The Only Thing that Isn't Sustainable... Is the Farmer": Social Sustainability and the Politics of Class among Pacific Northwest Farmers Engaged in Sustainable Farming

    ERIC Educational Resources Information Center

    Pilgeram, Ryanne

    2011-01-01

    Using interviews and participant observation at Pacific Northwest sustainable farming operations, this article analyzes the complex ways that class privileges and labor practices impact the social sustainability of sustainable agriculture. While the farmers in this study were highly aware of and reflexive about the class politics of sustainable…

  13. Nanotechnology for sustainable wastewater treatment and use for agricultural production: A comparative long-term study.

    PubMed

    De La Cueva Bueno, Patricia; Gillerman, Leonid; Gehr, Ronald; Oron, Gideon

    2017-03-01

    Nanotechnology applications can be used for filtering low quality waters, allowing under given conditions, the removal of salts and other micropollutants from these waters. A long-term field experiment, implementing nanotechnology in the form of UltraFiltration (UF) and Reverse Osmosis (RO) for salt removal from treated wastewater, was conducted with secondary effluents, aiming to prove the sustainability of agricultural production using irrigation with treated wastewater. Six outdoor field treatments, each under four replications, were conducted for examining the salt accumulation effects on the soil and the crops. The field experiments proved that crop development is correlated with the water quality as achieved from the wastewater filtration capability of the hybrid nanotechnology system. The key goal was to maintain sustainable food production, despite the low quality of the waters. Of the six treatment methods tested, irrigation with RO-treated effluent produced the best results in terms of its effect on soil salinity and crop yield. Nevertheless, it must be kept in mind that this process is not only costly, but it also removes all organic matter content from the irrigation water, requiring the addition of fertilizers to the effluent. Copyright © 2016. Published by Elsevier Ltd.

  14. Smallholder Farms and the Potential for Sustainable Intensification

    PubMed Central

    Mungai, Leah M.; Snapp, Sieglinde; Messina, Joseph P.; Chikowo, Regis; Smith, Alex; Anders, Erin; Richardson, Robert B.; Li, Guiying

    2016-01-01

    The sustainable intensification of African agriculture is gaining momentum with the compelling need to increase food and agricultural production. In Southern Africa, smallholder farming systems are predominately maize-based and subject to erratic climatic conditions. Farmer crop and soil management decisions are influenced by a plethora of complex factors such as market access resource availability, social relations, environment, and various messages on sustainable farming practices. Such factors pose barriers to increasing sustainable intensification in Africa. This paper characterizes smallholder farming practices in Central Malawi, at Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project sites. We present findings from a survey of 324 farmers, located within four Africa RISING sites selected in a stratified random manner to represent (1) low agricultural potential (high evapotranspiration, variable rainfall), (2) medium agricultural potential (two sites), and (3) high agricultural potential (well-distributed rainfall). Soil fertility was low overall, and certain farming practices appeared to limit the sustainability of agricultural production. Nearly half of farmers did not value legume residues as a high nutrient value resource for soil amelioration, as legume residues were removed (17.9%) or burned (21.4%). Conversely, maize residues were rarely removed (4.5%) or burned (10.4%). We found that farmers do not allocate soil amendment resources to legume fields (zero instances of mineral fertilizer or manure application to legumes compared to 88 and 22% of maize systems, respectively). Policy makers in Malawi have led initiatives to intensify agricultural systems through subsidizing farmer access to mineral fertilizer as well as maize hybrid seed, and only rarely to improved legume seed. In this survey, farmers allocate mineral fertilizer to maize systems and not legume systems. There is urgent need to invest in education

  15. Smallholder Farms and the Potential for Sustainable Intensification.

    PubMed

    Mungai, Leah M; Snapp, Sieglinde; Messina, Joseph P; Chikowo, Regis; Smith, Alex; Anders, Erin; Richardson, Robert B; Li, Guiying

    2016-01-01

    The sustainable intensification of African agriculture is gaining momentum with the compelling need to increase food and agricultural production. In Southern Africa, smallholder farming systems are predominately maize-based and subject to erratic climatic conditions. Farmer crop and soil management decisions are influenced by a plethora of complex factors such as market access resource availability, social relations, environment, and various messages on sustainable farming practices. Such factors pose barriers to increasing sustainable intensification in Africa. This paper characterizes smallholder farming practices in Central Malawi, at Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project sites. We present findings from a survey of 324 farmers, located within four Africa RISING sites selected in a stratified random manner to represent (1) low agricultural potential (high evapotranspiration, variable rainfall), (2) medium agricultural potential (two sites), and (3) high agricultural potential (well-distributed rainfall). Soil fertility was low overall, and certain farming practices appeared to limit the sustainability of agricultural production. Nearly half of farmers did not value legume residues as a high nutrient value resource for soil amelioration, as legume residues were removed (17.9%) or burned (21.4%). Conversely, maize residues were rarely removed (4.5%) or burned (10.4%). We found that farmers do not allocate soil amendment resources to legume fields (zero instances of mineral fertilizer or manure application to legumes compared to 88 and 22% of maize systems, respectively). Policy makers in Malawi have led initiatives to intensify agricultural systems through subsidizing farmer access to mineral fertilizer as well as maize hybrid seed, and only rarely to improved legume seed. In this survey, farmers allocate mineral fertilizer to maize systems and not legume systems. There is urgent need to invest in education

  16. Trash-polluted irrigation: characteristics and impact on agriculture

    NASA Astrophysics Data System (ADS)

    Sulaeman, D.; Arif, SS; Sudarmadji

    2018-04-01

    Trash pollution has been a problem in sustainable water resources management. Trash pollutes not only rivers, lakes and seas, but also irrigation canals and rice fields. This study aimed to identify the characteristics of solid waste (type, time of occurrence and sources of trash) and its impact on agriculture. The study was conducted in four irrigation areas, namely Gamping, Merdiko, Nglaren and Karangploso in Bantul District, Yogyakarta Special Region. We applied the Irrigation Rapid Trash Assessment (IRTA) as our field survey instrument. The results showed that trash was found throughout irrigation canals and rice fields, and the occurrence was influenced by water flow, time and farmer activities. The irrigation was dominantly polluted by plastic trash (52.2%), biodegradable waste (17.91%) and miscellaneous trash (12.3%). The IRTA score showed that Gamping Irrigation Area was at marginal condition, bearing a high risk of disturbing the operation and maintenance of the irrigation canals as well as farmers’ health. Trash in irrigation also generated technical impact of the irrigation operation and maintenance, environmental quality, and social life. This research also offered environmental policy integration approach and water-garbage governance approach as an alternative solution to manage water resources and agriculture in a sustainable manner, under the pressure of increasing amount of trash.

  17. Review: Balancing Limiting Factors and Economic Drivers to Achieve Sustainable Midwestern US Agricultural Residue Feedstock Supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wally W. Wilhelm; J. Richard Hess; Douglas L. Karlen

    2010-10-01

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading soil resources. This review examines six agronomic factors that collectively define many of the limits and opportunities for harvesting crop residue for biofuel feedstock. These six “limiting factors” are discussed in relationship to economic drivers associated with harvesting corn (Zea mays L.) stover as a potential cellulosic feedstock. The limiting factors include soil organic carbon, wind and water erosion, plant nutrient balance, soilmore » water and temperature dynamics, soil compaction, and off-site environmental impacts. Initial evaluations using the Revised Universal Soil Loss Equation 2.0 (RUSLE2) show that a single factor analysis based on simply meeting tolerable soil loss might indicate stover could be harvested sustainably, but the same analysis based on maintaining soil organic carbon shows the practice to be non-sustainable. Modifying agricultural management to include either annual or perennial cover crops is shown to meet both soil erosion and soil carbon requirements. The importance of achieving high yields and planning in a holistic manner at the landscape scale are also shown to be crucial for balancing limitations and drivers associated with renewable bioenergy production.« less

  18. Agricultural ecosystems - The world is watching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madison, M.F.; Licht, L.A.

    1990-02-01

    Environmental degradation is displacing nuclear war as the overriding concern of the world's people. An accusing finger is rightfully pointed at agricultural practices - for degrading water, air, food, and societal quality. As reported in the popular and technical press, there is a clamor for farming technology that is both productive and ecological. We cannot survive without a productive agriculture. Yet, the eroding soil, the degrading water quality, the decrease in farm profitability, the reductions in wildlife populations, and the closing store fronts in rural America point to a need for new management approaches. The word sustainable continues to bemore » mentioned as an underlying theme for future management techniques. Soil, air, and water form a seamless whole - the thin envelope we call the biosphere. The term sustainable agriculture implies a nourishing stewardship of the biosphere when used by farmers in pursuit of their livelihood. This biosphere simultaneously produces and sustains a multitude of products, including ourselves. It is all we have to create both our present and our future.« less

  19. Ask a Question | National Agricultural Library

    Science.gov Websites

    Nutrition Invasive Species Marketing and Trade Natural Resources and Environment Plants and Crops Research Animal Welfare Food and Nutrition General Collections Quarterly Review Pasture, Forage and Rangeland Farmers Sustainable Agriculture Veterans in Agriculture Food and Human Nutrition Dietary Guidelines and

  20. Giving sustainable agriculture really good odds through innovative rainfall index insurance

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, C. P.; Muneepeerakul, R.

    2017-12-01

    Population growth, increasing demands for food, and increasingly uncertain and limited water availability amidst competing demands for water by other users and the environment call for a novel approach to manage water in food production systems to be developed now. Tapping into broad popularity of crop insurance as a risk management intervention, we propose an innovative rainfall index insurance program as a novel systems approach that addresses water conservation in food production systems by exploiting two common currencies that tie the food production systems and others together, namely water and money. Our novel methodology allows for optimizing diverse farm and financial strategies together, revealing strategy portfolios that result in greater water use efficiency and higher incomes at a lower level of water use. Furthermore, it allows targeted interventions to achieve reduction in irrigation water, while providing financial protection to farmers against the increasing uncertainty in water availability. Not only would such a tool result in efficiently less use of water, it would also encourage diversification in farm practices, which reduces the farm's vulnerability against crop price volatility and pest or disease outbreaks and contributes to more sustainable agriculture.

  1. Tropical grasslands: A pivotal place for a more multi-functional agriculture.

    PubMed

    Boval, Maryline; Angeon, Valérie; Rudel, Tom

    2017-02-01

    Tropical grasslands represent a pivotal arena for the sustainable intensification of agriculture in the coming decades. The abundant ecosystem services provided by the grasslands, coupled with the aversion to further forest destruction, makes sustainable intensification of tropical grasslands a high policy priority. In this article, we provide an inventory of agricultural initiatives that would contribute to the sustainable intensification of the tropical grassland agro-ecosystem, and we recommend a shift in the scientific priorities of animal scientists that would contribute to realization of a more agro-ecological and multi-functional agriculture in the world's tropical grasslands.

  2. Parent-Reported Homework Problems in the MTA Study: Evidence for Sustained Improvement with Behavioral Treatment

    PubMed Central

    Langberg, Joshua M.; Arnold, L. Eugene; Flowers, Amanda M.; Epstein, Jeffery N.; Altaye, Mekibib; Hinshaw, Stephen P.; Swanson, James M.; Kotkin, Ronald; Simpson, Stephen; Molina, Brooke S.G.; Jensen, Peter S.; Abikoff, Howard; Pelham, William E.; Vitiello, Benedetto; Wells, Karen C.; Hechtman, Lily

    2011-01-01

    Parent-report of child homework problems was examined as a treatment outcome variable in the MTA - Multimodal Treatment Study of Children with Attention-Deficit/Hyperactivity Disorder (ADHD). Five hundred seventy-nine children ages 7.0–9.9 were randomly assigned to either medication management, behavioral treatment, combination treatment, or routine community care. Results showed that only participants who received behavioral treatment (behavioral and combined treatment) demonstrated sustained improvements in homework problems in comparison to routine community care. The magnitude of the sustained effect at the 24-month assessment was small to moderate for combined and behavioral treatment over routine community care (d = .37; .40, respectively). Parent ratings of initial ADHD symptom severity was the only variable found to moderate these effects. PMID:20390813

  3. Representing Water Scarcity in Future Agricultural Assessments

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Lopez, Jose R.; Ruane, Alexander C.; Young, Charles A.; Scanlon, Bridget R.; Rosenzweig, Cynthia

    2017-01-01

    Globally, irrigated agriculture is both essential for food production and the largest user of water. A major challenge for hydrologic and agricultural research communities is assessing the sustainability of irrigated croplands under climate variability and change. Simulations of irrigated croplands generally lack key interactions between water supply, water distribution, and agricultural water demand. In this article, we explore the critical interface between water resources and agriculture by motivating, developing, and illustrating the application of an integrated modeling framework to advance simulations of irrigated croplands. We motivate the framework by examining historical dynamics of irrigation water withdrawals in the United States and quantitatively reviewing previous modeling studies of irrigated croplands with a focus on representations of water supply, agricultural water demand, and impacts on crop yields when water demand exceeds water supply. We then describe the integrated modeling framework for simulating irrigated croplands, which links trends and scenarios with water supply, water allocation, and agricultural water demand. Finally, we provide examples of efforts that leverage the framework to improve simulations of irrigated croplands as well as identify opportunities for interventions that increase agricultural productivity, resiliency, and sustainability.

  4. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments.

    PubMed

    Saini, Jitendra Kumar; Saini, Reetu; Tewari, Lakshmi

    2015-08-01

    Production of liquid biofuels, such as bioethanol, has been advocated as a sustainable option to tackle the problems associated with rising crude oil prices, global warming and diminishing petroleum reserves. Second-generation bioethanol is produced from lignocellulosic feedstock by its saccharification, followed by microbial fermentation and product recovery. Agricultural residues generated as wastes during or after processing of agricultural crops are one of such renewable and lignocellulose-rich biomass resources available in huge amounts for bioethanol production. These agricultural residues are converted to bioethanol in several steps which are described here. This review enlightens various steps involved in production of the second-generation bioethanol. Mechanisms and recent advances in pretreatment, cellulases production and second-generation ethanol production processes are described here.

  5. Research and development portfolio of the sustainability science team national sustainable operations USDA Forest Service

    Treesearch

    Trista Patterson; David Nicholls; Jonathan Long

    2015-01-01

    The Sustainability Science Team (SST) of the U.S. Department of Agriculture (USDA) Forest Service Sustainable Operations Initiative is a 18-member virtual research and development team, located across five regions and four research stations of the USDA Forest Service. The team provides research, publication, systems analysis, and decision support to the Sustainable...

  6. Beyond conservation agriculture.

    PubMed

    Giller, Ken E; Andersson, Jens A; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  7. Beyond conservation agriculture

    PubMed Central

    Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  8. The Development of a National Agricultural Extension Policy in Bangladesh.

    ERIC Educational Resources Information Center

    Walker, M.; Sarkar, A. A.

    1996-01-01

    The background of agriculture in Bangladesh and the process of developing a national agricultural extension policy focused on sustainable development are described. The policy explicates the meaning of agricultural extension, use of agricultural knowledge and information systems, and 11 core principles. (SK)

  9. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    PubMed

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All

  10. Irrigation Dynamics and Tactics - Developing a Sustainable and Profitable Irrigation Strategy for Agricultural Areas

    NASA Astrophysics Data System (ADS)

    Van Opstal, J.; Neale, C. M. U.; Lecina, S.

    2014-12-01

    Irrigation management is a dynamic process that adapts according to weather conditions and water availability, as well as socio-economic influences. The goal of water users is to adapt their management to achieve maximum profits. However, these decisions should take into account the environmental impact on the surroundings. Agricultural irrigation systems need to be viewed as a system that is an integral part of a watershed. Therefore changes in the infrastructure, operation and management of an irrigated area, has an impact on the water quantity and quality available for other water users. A strategy can be developed for decision-makers using an irrigation system modelling tool. Such a tool can simulate the impact of the infrastructure, operation and management of an irrigation area on its hydrology and agricultural productivity. This combination of factors is successfully simulated with the Ador model, which is able to reproduce on-farm irrigation and water delivery by a canal system. Model simulations for this study are supported with spatial analysis tools using GIS and remote sensing. Continuous measurements of drainage water will be added to indicate the water quality aspects. The Bear River Canal Company located in Northern Utah (U.S.A.) is used as a case study for this research. The irrigation area encompasses 26,000 ha and grows mainly alfalfa, grains, corn and onions. The model allows the simulation of different strategies related to water delivery, on-farm water use, crop rotations, and reservoirs and networks capacities under different weather and water availability conditions. Such changes in the irrigation area will have consequences for farmers in the study area regarding crop production, and for downstream users concerning both the quantity and quality of outflows. The findings from this study give insight to decision-makers and water users for changing irrigation water delivery strategies to improve the sustainability and profitability of

  11. Sustainable management of agriculture activity on areas with soil vulnerability to compaction trough a developed decision support system (DSS)

    NASA Astrophysics Data System (ADS)

    Moretto, Johnny; Fantinato, Luciano; Rasera, Roberto

    2017-04-01

    One of the main environmental effects of agriculture is the negative impacts on areas with soil vulnerability to compaction and undersurface water derived from inputs and treatment distributions. A solution may represented from the "Precision Farming". Precision Farming refers to a management concept focusing on (near-real time) observation, measurement and responses to inter- and intra-variability in crops, fields and animals. Potential benefits may include increasing crop yields and animal performance, cost and labour reduction and optimisation of process inputs, all of which would increase profitability. At the same time, Precision Farming should increase work safety and reduce the environmental impacts of agriculture and farming practices, thus contributing to the sustainability of agricultural production. The concept has been made possible by the rapid development of ICT-based sensor technologies and procedures along with dedicated software that, in the case of arable farming, provides the link between spatially-distributed variables and appropriate farming practices such as tillage, seeding, fertilisation, herbicide and pesticide application, and harvesting. Much progress has been made in terms of technical solutions, but major steps are still required for the introduction of this approach over the common agricultural practices. There are currently a large number of sensors capable of collecting data for various applications (e.g. Index of vegetation vigor, soil moisture, Digital Elevation Models, meteorology, etc.). The resulting large volumes of data need to be standardised, processed and integrated using metadata analysis of spatial information, to generate useful input for decision-support systems. In this context, a user-friendly IT applications has been developed, for organizing and processing large volumes of data from different types of remote sensing and meteorological sensors, and for integrating these data into user-friendly farm management support

  12. Sustainability partnerships and viticulture management in California.

    PubMed

    Hillis, Vicken; Lubell, Mark; Hoffman, Matthew

    2018-07-01

    Agricultural regions in the United States are experimenting with sustainability partnerships that, among other goals, seek to improve growers' ability to manage their vineyards sustainably. In this paper, we analyze the association between winegrape grower participation in sustainability partnership activities and practice adoption in three winegrowing regions of California. Using data gathered from a survey of 822 winegrape growers, we find a positive association between participation and adoption of sustainable practices, which holds most strongly for practices in which the perceived private benefits outweigh the costs, and for growers with relatively dense social networks. We highlight the mechanisms by which partnerships may catalyze sustainable farm management, and discuss the implications of these findings for improving sustainability partnerships. Taken together, we provide one of the most comprehensive quantitative analyses to date regarding the effectiveness of agricultural sustainability partnerships for improving farm management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. [Ecological agriculture: future of agriculture for Chinese material medica].

    PubMed

    Guo, Lan-Ping; Wang, Tie-Lin; Yang, Wan-Zhen; Zhou, Liang-Yun; Chen, Nai-Fu; Han, Bang-Xing; Huang, Lu-Qi

    2017-01-01

    The ecological agriculture of traditional Chinese medicine (TCM) is generally acknowledged as the most advanced agricultural mode. However, it's still a doubt whether ecological agriculture could be widely applied in TCM agriculture. In this study, we first analyze both the differences and relationships between ecological and organic agriculture, which suggesting that ecological agriculture does not need all the inputs as traditional agriculture. After introducing the situation of ecological agriculture from all across the world, we analyze the differences and characteristics between ecological and chemical agricultures. Considered with the big challenge caused by chemical agriculture, we pointed out that ecological agriculture could definitely replace chemical agriculture. Last but not the least, combined with the situation and problems of Chinese agriculture, we analyze the distinctive advantages of TCM ecological agriculture from 3 aspects as its unique quality characteristics, its unique habitat requirements in production and its unique application and market characteristics, respectively. In conclusion, ecological agriculture is the straight way of TCM agriculture. Copyright© by the Chinese Pharmaceutical Association.

  14. Bioenergy Sustainability in China: Potential and Impacts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jie; Gentry, Randall W.; Yu, Gui-Rui; Sayler, Gary S.; Bickham, John W.

    2010-10-01

    The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability requirements of the environment, economy, and society. This article serves as a brief overview of China’s bioenergy development and as an introduction to this special issue on the impacts of bioenergy development in China. The eleven articles in this special issue present a range of perspectives and scenario analyses on bioenergy production and its impacts as well as potential barriers to its development. Five general themes are covered: status and goals, biomass resources, energy plants, environmental impacts, and economic and social impacts. The potential for bioenergy production in China is huge, particularly in the central north and northwest. China plans to develop a bioenergy capacity of 30GW by 2020. However, realization of this goal will require breakthroughs in bioenergy landscape design, energy plant biotechnology, legislation, incentive policy, and conversion facilities. Our analyses suggest that (1) the linkage between bioenergy, environment, and economy are often circular rather than linear in nature; (2) sustainability is a core concept in bioenergy design and the ultimate goal of bioenergy development; and (3) each bioenergy development scheme must be region-specific and designed to solve local environmental and agricultural problems.

  15. Field-scale monitoring of the long-term impact and sustainability of drainage water reuse using ECa-directed soil sampling

    USDA-ARS?s Scientific Manuscript database

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. Drainage water from tile-drained, irrigated agricultural land is degraded water that is often in large supply, but the long-term impact and sustainability of it...

  16. Sustainability of organic food production: challenges and innovations.

    PubMed

    Niggli, Urs

    2015-02-01

    The greatest challenge for agriculture is to reduce the trade-offs between productivity and long-term sustainability. Therefore, it is interesting to analyse organic agriculture which is a given set of farm practices that emphasise ecological sustainability. Organic agriculture can be characterised as being less driven by off-farm inputs and being better embedded in ecosystem functions. The literature on public goods and non-commodity outputs of organic farms is overwhelming. Most publications address the positive effects of organic farming on soil fertility, biodiversity maintenance and protection of the natural resources of soil, water and air. As a consequence of focusing on public goods, organic agriculture is less productive. Meta-analyses show that organic agriculture yields range between 0·75 and 0·8 of conventional agriculture. Best practice examples from disadvantaged sites and climate conditions show equal or, in the case of subsistence farming in Sub-Saharan Africa, higher productivity of organic agriculture. Hence, organic agriculture is likely to be a good model for productive and sustainable food production. Underfunding in R&D addressing specific bottlenecks of organic agriculture are the main cause for both crop and livestock yield gaps. Therefore, the potential for improving the performance of organic agriculture through agricultural research is huge. Although organic farming is a niche in most countries, it is at the verge of becoming mainstream in leading European countries. Consumer demand has grown over the past two decades and does not seem to be a limiting factor for the future development of organic agriculture.

  17. Community supported agriculture membership in Arizona. An exploratory study of food and sustainability behaviours.

    PubMed

    MacMillan Uribe, Alexandra L; Winham, Donna M; Wharton, Christopher M

    2012-10-01

    Community supported agriculture (CSA) programs have become a viable source of locally produced foods and represent a new way to increase fruit and vegetable consumption among individuals. Because CSAs represent a way for consumers to acquire healthy foods while providing financial support to local farmers, CSA involvement could reflect, and be related to, greater concern with both health and environmental impact of food choice. As such, the aim of this study was to examine whether ecological attitudes of CSA members could predict food- and sustainability-related behaviours. Using an online survey, respondents answered questions about attitudes towards the environment, as well behaviours related to food purchases, family food preparation, composting, recycling and minimising food-packaging waste. A total of 115 CSA member responses were collected. Ordinary least squares (OLS) multivariate regression analysis was used to investigate the predictive validity of environmental attitudes on measures of behaviours. A large portion of participants reported the amount and variety of fruits and vegetables their households ate increased as a result of joining a CSA program. Ecological sensitivity was a significant predictor of sustainability-related behaviours as well as money spent eating out and times eaten away from home per week. However, it was not predictive of family involvement in home food preparation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. a Study on the Document Information Service of the National Agricultural Library for Agricultural Sci-Tech Innovation in China

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Meng, Xianxue

    This paper presents the significant function of the Chinese National Agricultural Library (CNAL) in the agricultural sci-tech innovation system in China, analyses the development of collection and service in the CNAL, explores the challenge towards sustain and develop information services for the agricultural sci-tech research and innovation, at last proposes the strategy for sci-tech document information service development.

  19. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  20. Pedagogy for Addressing the Worldview Challenge in Sustainable Development of Agriculture

    ERIC Educational Resources Information Center

    Jordan, Nicholas R.; Bawden, Richard J.; Bergmann, Luke

    2008-01-01

    Agriculture is offering new forms of support to society, as evidenced by rapid development of an agricultural "bio-economy," and increasing emphasis on production of ecological services in farmed landscapes. The advent of these innovations will engage agricultural professionals in critical civic debates about matters that are complex and…

  1. BIG DATA ANALYTICS AND PRECISION ANIMAL AGRICULTURE SYMPOSIUM: Machine learning and data mining advance predictive big data analysis in precision animal agriculture.

    PubMed

    Morota, Gota; Ventura, Ricardo V; Silva, Fabyano F; Koyama, Masanori; Fernando, Samodha C

    2018-04-14

    Precision animal agriculture is poised to rise to prominence in the livestock enterprise in the domains of management, production, welfare, sustainability, health surveillance, and environmental footprint. Considerable progress has been made in the use of tools to routinely monitor and collect information from animals and farms in a less laborious manner than before. These efforts have enabled the animal sciences to embark on information technology-driven discoveries to improve animal agriculture. However, the growing amount and complexity of data generated by fully automated, high-throughput data recording or phenotyping platforms, including digital images, sensor and sound data, unmanned systems, and information obtained from real-time noninvasive computer vision, pose challenges to the successful implementation of precision animal agriculture. The emerging fields of machine learning and data mining are expected to be instrumental in helping meet the daunting challenges facing global agriculture. Yet, their impact and potential in "big data" analysis have not been adequately appreciated in the animal science community, where this recognition has remained only fragmentary. To address such knowledge gaps, this article outlines a framework for machine learning and data mining and offers a glimpse into how they can be applied to solve pressing problems in animal sciences.

  2. Sustainable development: a regional perspective.

    PubMed

    Icamina, P

    1988-12-01

    This article discusses sustainable development in Asia and current environmental problems in this region. Droughts and rainy seasons pose a major concern indicating environmental limitations: India's 1987 drought halted world grain production and China suffered US $435 million in flooding damage. Deforestation and land degradation are consequences of a rising population's demand for agriculture, fuelwood, irrigation, and hydroelectric projects; 1815 million hectares of forest are cleared/year and 40% of the land could possible be subjected to soil erosion. Although population growth is declining in some Asian countries, the continent inhabits the greatest proportion of world population; 300 million are underfed. Food production remains a problem for this region because of bad weather, highly populated areas, less cropland, soil erosion, and limited water supply. Efforts currently employed to conserve natural resources include community reforestation, providing available drinking water, substituting firewood for fuelwood, and delivering primary health care.

  3. The use of GMOs (genetically modified organisms): agricultural biotechnology or agricultural biopolitics?

    PubMed

    Nuti, Marco; Felici, Cristiana; Agnolucci, Monica

    2007-01-01

    Agricultural biotechnologies embrace a large array of conventional and modern technologies, spanning from composting organic by-products of agriculture to innovative improvement of quality traits of about twenty out of the mostly cultivated plants. In EU a rather restrictive legislative framework has been installed for GMOs, requiring a risk assessment disproportionate with respect to conventional agriculture and organic farming products. The latter are far from being proved safe for human and animal health, and for the environment. Biotechnology of GMOs has been overtaken by biopolitics. On one side there are biotechnological challenges to be tackled, on another side there is plenty of ground for biopolitical decisions about GMOs. Perhaps the era of harsh confrontation could be fruitfully replaced by sensible cooperation, in order to get a sustainable agricultural development.

  4. Foreword to farming with grass: Achieving sustainable mixed agricultural landscapes

    USDA-ARS?s Scientific Manuscript database

    The Farming with Grass conference was developed to bring together diverse stakeholders in grassland environments to (a) help assess the current condition of agriculture, (b) consider alternative production scenarios for grassland agricultural ecosystems, (c) identify key issues hindering the develop...

  5. Comparative Assessment of Agricultural Literacy in Selected K-5 Classrooms Employing Agriculture in the Classroom Methodologies: A Solomon Four-Group Analysis

    ERIC Educational Resources Information Center

    Fischer, Mary Margaret

    2017-01-01

    The significance of agriculture to future generations is unparalleled. The United Nations projects the global population to swell to 9.75 billion people by 2050, and to proliferate to 11.2 billion by 2100. The non-agricultural population has little to no understanding or comprehension of the complexities of sustaining a viable agricultural system.…

  6. The Land Use Change From Agricultural to Non-Agricultural in Bungo Regency, Jambi Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Dolly, Fajar Ifan; Kismartini, Kismartini; Purnaweni, Hartuti

    2018-02-01

    This study aimed at observing the development of agricultural land use in Bungo Regency, Jambi Province, for other purposes, such as plantation, mining, and other commercial buildings. According to the sustainable agriculture supposed by the government, a change in land use has become an important issue to be taken into account as such that the change does not tend to damage the environment. The research findings from Bungo Regency demonstrated the change in agricultural land into copra and rubber plantation areas. Local people had changed their mindset towards reluctance to become farmers, which caused the loss of farmer regeneration and weakened the farmer exchange rate towards the agricultural commodities.

  7. [Engineering issues of microbial ecology in space agriculture].

    PubMed

    Yamashita, Masamichi; Ishikawa, Yoji; Oshima, Tairo

    2005-03-01

    how to conduct preventive maintenance for keeping cultivating soil healthy and productive. 3) Does microbial ecology contribute to building sustainable and expandable human habitation by utilizing the on site extraterrestrial resources? We are assessing technical feasibility of converting regolith to farming soil and structural materials for space agriculture. In the case of Mars habitation, carbon dioxide and a trace amount of nitrogen in atmosphere, and potassium and phosphor in minerals are the sources we consider. Excess oxygen can be accumulated by woods cultivation and their use for lumber. 4) Is the operation of space agriculture robust and safe, if it adopts hyper-thermophilic aerobic microbial ecology? Any ecological system is complex and non-linear, and shows latency and memory effects in its response. It is highly important to understand those features to design and operate space agriculture without falling into the fatal failure. Assessment should be made on the microbial safety and preparation of the preventive measures to eliminate negative elements that would either retard agricultural production or harm the healthy environment. It is worth to mention that such space agriculture would be an effective engineering testbed to solve the global problem on energy and environment. Mars and Moon exploration itself is a good advocate of healthy curiosity expressed by the sustainable civilization of our humankind. We propose to work together towards Mars and Moon with microbial ecology to assure pleasant habitation there.

  8. Predicting soil properties for sustainable agriculture using vis-NIR spectroscopy: a case study in northern Greece

    NASA Astrophysics Data System (ADS)

    Tsakiridis, Nikolaos L.; Tziolas, Nikolaos; Dimitrakos, Agathoklis; Galanis, Georgios; Ntonou, Eleftheria; Tsirika, Anastasia; Terzopoulou, Evangelia; Kalopesa, Eleni; Zalidis, George C.

    2017-09-01

    Soil Spectral Libraries facilitate agricultural production taking into account the principles of a low-input sustainable agriculture and provide more valuable knowledge to environmental policy makers, enabling improved decision making and effective management of natural resources in the region. In this paper, a comparison in the predictive performance of two state of the art algorithms, one linear (Partial Least Squares Regression) and one non-linear (Cubist), employed in soil spectroscopy is conducted. The comparison was carried out in a regional Soil Spectral Library developed in the Eastern Macedonia and Thrace region of Northern Greece, comprised of roughly 450 Entisol soil samples from soil horizons A (0-30 cm) and B (30-60 cm). The soil spectra were acquired in the visible - Near Infrared Red region (vis- NIR, 350nm-2500nm) using a standard protocol in the laboratory. Three soil properties, which are essential for agriculture, were analyzed and taken into account for the comparison. These were the Organic Matter, the Clay content and the concentration of nitrate-N. Additionally, three different spectral pre-processing techniques were utilized, namely the continuum removal, the absorbance transformation, and the first derivative. Following the removal of outliers using the Mahalanobis distance in the first 5 principal components of the spectra (accounting for 99.8% of the variance), a five-fold cross-validation experiment was considered for all 12 datasets. Statistical comparisons were conducted on the results, which indicate that the Cubist algorithm outperforms PLSR, while the most informative transformation is the first derivative.

  9. Towards sustainable and multifunctional agriculture in farmland landscapes: Lessons from the integrative approach of a French LTSER platform.

    PubMed

    Bretagnolle, Vincent; Berthet, Elsa; Gross, Nicolas; Gauffre, Bertrand; Plumejeaud, Christine; Houte, Sylvie; Badenhausser, Isabelle; Monceau, Karine; Allier, Fabrice; Monestiez, Pascal; Gaba, Sabrina

    2018-06-15

    Agriculture is currently facing unprecedented challenges: ensuring food, fiber and energy production in the face of global change, maintaining the economic performance of farmers and preserving natural resources such as biodiversity and associated key ecosystem services for sustainable agriculture. Addressing these challenges requires innovative landscape scale farming systems that account for changing economic and environmental targets. These novel agricultural systems need to be recognized, accepted and promoted by all stakeholders, including local residents, and supported by public policies. Agroecosystems should be considered as socio-ecological systems and alternative farming systems should be based on ecological principles while taking societal needs into account. This requires an in-depth knowledge of the multiple interactions between sociological and ecological dynamics. Long Term Socio-Ecological Research platforms (LTSER) are ideal for acquiring this knowledge as they (i) are not constrained by traditional disciplinary boundaries, (ii) operate at a large spatial scale involving all stakeholders, and (iii) use systemic approaches to investigate biodiversity and ecosystem services. This study presents the socio-ecological research strategy from the LTSER "Zone Atelier Plaine & Val de Sèvre" (ZA PVS), a large study area where data has been sampled since 1994. Its global aim is to identify effective solutions for agricultural development and the conservation of biodiversity in farmlands. Three main objectives are targeted by the ZAPVS. The first objective is intensive monitoring of landscape features, the main taxa present and agricultural practices. The second objective is the experimental investigation, in real fields with local farmers, of important ecosystem functions and services, in relation to pesticide use, crop production and farming socio-economic value. The third aim is to involve stakeholders through participatory research, citizen science and

  10. Agricultural biotechnology and its contribution to the global knowledge economy.

    PubMed

    Aerni, Philipp

    2007-01-01

    The theory of neoclassical welfare economics largely shaped international and national agricultural policies during the Cold War period. It treated technology as an exogenous factor that could boost agricultural productivity but not necessarily sustainable agriculture. New growth theory, the economic theory of the new knowledge economy, treats technological change as endogenous and argues that intangible assets such as human capital and knowledge are the drivers of sustainable economic development. In this context, the combined use of agricultural biotechnology and information technology has a great potential, not just to boost economic growth but also to empower people in developing countries and improve the sustainable management of natural resources. This article outlines the major ideas behind new growth theory and explains why agricultural economists and agricultural policy-makers still tend to stick to old welfare economics. Finally, the article uses the case of the Cassava Biotechnology Network (CBN) to illustrate an example of how new growth theory can be applied in the fight against poverty. CBN is a successful interdisciplinary crop research network that makes use of the new knowledge economy to produce new goods that empower the poor and improve the productivity and nutritional quality of cassava. It shows that the potential benefits of agricultural biotechnology go far beyond the already known productivity increases and pesticide use reductions of existing GM crops.

  11. Patterns of land use, extensification, and intensification of Brazilian agriculture.

    PubMed

    Dias, Lívia C P; Pimenta, Fernando M; Santos, Ana B; Costa, Marcos H; Ladle, Richard J

    2016-08-01

    Sustainable intensification of agriculture is one of the main strategies to provide global food security. However, its implementation raises enormous political, technological, and social challenges. Meeting these challenges will require, among other things, accurate information on the spatial and temporal patterns of agricultural land use and yield. Here, we investigate historical patterns of agricultural land use (1940-2012) and productivity (1990-2012) in Brazil using a new high-resolution (approximately 1 km(2) ) spatially explicit reconstruction. Although Brazilian agriculture has been historically known for its extensification over natural vegetation (Amazon and Cerrado), data from recent years indicate that extensification has slowed down and was replaced by a strong trend of intensification. Our results provide the first comprehensive historical overview of agricultural land use and productivity in Brazil, providing clear insights to guide future territorial planning, sustainable agriculture, policy, and decision-making. © 2016 John Wiley & Sons Ltd.

  12. Resolving Conflicts between Agriculture and the Natural Environment.

    PubMed

    Tanentzap, Andrew J; Lamb, Anthony; Walker, Susan; Farmer, Andrew

    2015-01-01

    Agriculture dominates the planet. Yet it has many environmental costs that are unsustainable, especially as global food demand rises. Here, we evaluate ways in which different parts of the world are succeeding in their attempts to resolve conflict between agriculture and wild nature. We envision that coordinated global action in conserving land most sensitive to agricultural activities and policies that internalise the environmental costs of agriculture are needed to deliver a more sustainable future.

  13. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    PubMed

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of

  14. Information for Agricultural Development.

    ERIC Educational Resources Information Center

    Kaungamno, E. E.

    This paper describes the major international agricultural information services, sources, and systems; outlines the existing information situation in Tanzania as it relates to problems of agricultural development; and reviews the improvements in information provision resources required to support the process of agricultural development in Tanzania.…

  15. American Farm Bureau Foundation for Agriculture - Homepage

    Science.gov Websites

    Literacy? What We Do Resources Sustainable Agriculture Food and Farm Facts Free Resources & Lesson Agriculture Food and Farm Facts Free Resources & Lesson Plans Bringing Biotech to Life Learn About Beef Farm For Teachers Free Resources Outreach Team Grow your Ag Literacy Impact Career Spotlight

  16. Stimulating the Imaginative Capacities of Agricultural Extension Students

    ERIC Educational Resources Information Center

    Liang, Chaoyun; Chang, Wen-Shan; Yao, Shu-Nung; King, Jung-Tai; Chen, Shi-An

    2016-01-01

    Purpose: To address the dynamic challenges associated with developing a globally sustainable society, numerous scholars have stressed the need to cultivate the imagination of agricultural students. This study aimed to explore how pictorial representations stimulate the imaginative capacities of agricultural extension students.…

  17. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  18. The potential and sustainability of agricultural land use in a changing ecosystem in southern Greenland

    NASA Astrophysics Data System (ADS)

    Hunziker, Matthias; Caviezel, Chatrina; Kuhn, Nikolaus J.

    2015-04-01

    Southern Greenland currently experiences an increase in summer temperatures and a prolonged growing season (Masson-Delmotte et al. 2012), resulting in an increased potential regarding agricultural land use. Subsequently, the agricultural sector is expected to grow. Thereby, a higher hay production and grazing capacity is pursued by applying more efficient farming practices (Greenland Agriculture Advisory Board 2009). However, agricultural potential at borderline ecotones is not only influenced by factors like temperature and growing season but also by other ecologic parameters. In addition, the intensification of land use in the fragile boreal - tundra border ecotone has various environmental impacts (Perren et al. 2012; Normand et al. 2013). Already the Norse settlers practiced animal husbandry in southern Greenland between 986-1450 AD. Several authors mention the unadapted land use as main reason for the demise of the Norse in Greenland, as grazing pressure exceeded the resilience of the landscape and pasture economy failed (Fredskild 1988; Perren et al. 2012). During the field work in summer 2014, we compared the pedologic properties of already used hay fields, grazed land, birch woodland and barren, unused land around Igaliku (South Greenland), in order to estimate the potential and the sustainability of the land use in southern Greenland. Beside physical soil properties, nutrient condition of the different land use types, the shrub woodland and barren areas was analyzed. The results of the study show that the most suitable areas for intensive agricultural activity are mostly occupied. Further on, the fields, which were used by the Norse, seem to be the most productive sites nowadays. Less productive hay fields are characterized by a higher coarse fraction, leading to a reduced ability to store water and to an unfavorable nutrient status. An intensification of the agricultural land use by applying fertilizer would lead to an increased environmental impact

  19. Agricultural nematology in East and Southern Africa: problems, management strategies and stakeholder linkages.

    PubMed

    Talwana, Herbert; Sibanda, Zibusiso; Wanjohi, Waceke; Kimenju, Wangai; Luambano-Nyoni, Nessie; Massawe, Cornel; Manzanilla-López, Rosa H; Davies, Keith G; Hunt, David J; Sikora, Richard A; Coyne, Danny L; Gowen, Simon R; Kerry, Brian R

    2016-02-01

    By 2050, Africa's population is projected to exceed 2 billion. Africa will have to increase food production more than 50% in the coming 50 years to meet the nutritional requirements of its growing population. Nowhere is the need to increase agricultural productivity more pertinent than in much of Sub-Saharan Africa, where it is currently static or declining. Optimal pest management will be essential, because intensification of any system creates heightened selection pressures for pests. Plant-parasitic nematodes and their damage potential are intertwined with intensified systems and can be an indicator of unsustainable practices. As soil pests, nematodes are commonly overlooked or misdiagnosed, particularly where appropriate expertise and knowledge transfer systems are meager or inadequately funded. Nematode damage to roots results in less efficient root systems that are less able to access nutrients and water, which can produce symptoms typical of water or nutrient deficiency, leading to misdiagnosis of the underlying cause. Damage in subsistence agriculture is exacerbated by growing crops on degraded soils and in areas of low water retention where strong root growth is vital. This review focuses on the current knowledge of economically important nematode pests affecting key crops, nematode control methods and the research and development needs for sustainable management, stakeholder involvement and capacity building in the context of crop security in East and Southern Africa, especially Kenya, Tanzania, Uganda and Zimbabwe. © 2015 Society of Chemical Industry.

  20. Establishing sustainable GHG inventory systems in African countries for Agriculture and Land Use, Land-use Change and Forestry (LULUCF)

    NASA Astrophysics Data System (ADS)

    Wirth, T. C.; Troxler, T.

    2015-12-01

    As signatories to the United Nations Framework Convention on Climate Change (UNFCCC), developing countries are required to produce greenhouse gas (GHG) inventories every two years. For many developing countries, including many of those in Africa, this is a significant challenge as it requires establishing a robust and sustainable GHG inventory system. In order to help support these efforts, the U.S. Environmental Protection Agency (EPA) has worked in collaboration with the UNFCCC to assist African countries in establishing sustainable GHG inventory systems and generating high-quality inventories on a regular basis. The sectors we have focused on for these GHG inventory capacity building efforts in Africa are Agriculture and Land Use, Land-use Change and Forestry (LULUCF) as these tend to represent a significant portion of their GHG emissions profile and the data requirements and methodologies are often more complex than for other sectors. To support these efforts, the U.S. EPA has provided technical assistance in understanding the methods in the IPCC Guidelines, assembling activity data and emission factors, including developing land-use maps for representing a country's land base, and implementing the calculations. EPA has also supported development of various tools such as a Template Workbook that helps the country build the institutional arrangement and strong documentation that are necessary for generating GHG inventories on a regular basis, as well as performing other procedures as identified by IPCC Good Practice Guidance such as quality assurance/quality control, key category analysis and archiving. Another tool used in these projects and helps country's implement the methods from the IPCC Guidelines for the Agriculture and LULUCF sectors is the Agriculture and Land Use (ALU) tool. This tool helps countries assemble the activity data and emission factors, including supporting the import of GIS maps, and applying the equations from the IPPC Guidelines to

  1. Resolving Conflicts between Agriculture and the Natural Environment

    PubMed Central

    Tanentzap, Andrew J.; Lamb, Anthony; Walker, Susan; Farmer, Andrew

    2015-01-01

    Agriculture dominates the planet. Yet it has many environmental costs that are unsustainable, especially as global food demand rises. Here, we evaluate ways in which different parts of the world are succeeding in their attempts to resolve conflict between agriculture and wild nature. We envision that coordinated global action in conserving land most sensitive to agricultural activities and policies that internalise the environmental costs of agriculture are needed to deliver a more sustainable future. PMID:26351851

  2. Smallholder farmers' behavioural intentions towards sustainable agricultural practices.

    PubMed

    Zeweld, Woldegebrial; Van Huylenbroeck, Guido; Tesfay, Girmay; Speelman, Stijn

    2017-02-01

    The introduction of sustainable practices is considered a win-win strategy for low-income countries because of its potential to simultaneously improve food security and address environmental issues. Despite the numerous studies that focus on the adoption of technological innovations, little work has been done on the socio-psychological behaviour of farmers with regard to sustainable practices. This study investigates smallholder farmers' intentions towards two practices: minimum tillage and row planting. The decomposed theory of planned behaviour is used as a theoretical framework to analyse the intentions. The findings reveal that attitudes and normative issues positively explain farmers' intentions to adopt both practices. Perceived control also has a positive significant effect on the intention to apply minimum tillage. When the intention is formed, farmers are expected to carry out their intention when opportunities arise. Moreover, perceived usefulness, social capital, and perceived ease of operation are also significant predictors of farmers' attitudes. Furthermore, social capital and training are factors that positively affect the normative issue, which in turn also positively mediates the relationship between training, social capital and intention. Finally, it is shown that neither the perceived resources nor information from the media significantly affect farmers' intentions. This paper thus confirms that social capital, personal efficacy, training and perceived usefulness play significant roles in the decision to adopt sustainable practices. In addition, willingness to adopt seems to be limited by negative attitudes and by weak normative issues. Therefore, to improve adoption of sustainable practices by smallholder farmers, attention should be given to socio-psychological issues. This could lead to improvements in farm productivity and enhance the livelihoods of smallholders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Using Multispectral Analysis in GIS to Model the Potential for Urban Agriculture in Philadelphia

    NASA Astrophysics Data System (ADS)

    Dmochowski, J. E.; Cooper, W. P.

    2010-12-01

    In the context of growing concerns about the international food system’s dependence on fossil fuels, soil degradation, climate change, and other diverse issues, a number of initiatives have arisen to develop and implement sustainable agricultural practices. Many seeking to reform the food system look to urban agriculture as a means to create localized, sustainable agricultural production, while simultaneously providing a locus for community building, encouraging better nutrition, and promoting the rebirth of depressed urban areas. The actual impact of such system, however, is not well understood, and many critics of urban agriculture regard its implementation as impractical and unrealistic. This project uses multispectral imagery from United States Department of Agriculture’s National Agricultural Imagery Program with a one-meter resolution to quantify the potential for increasing urban agriculture in an effort to create a sustainable food system in Philadelphia. Color infrared images are classified with a minimum distance algorithm in ArcGIS to generate baseline data on vegetative cover in Philadelphia. These data, in addition to mapping on the ground, form the basis of a model of land suitable for conversion to agriculture in Philadelphia, which will help address questions related to potential yields, workforce, and energy requirements. This research will help city planners, entrepreneurs, community leaders, and citizens understand how urban agriculture can contribute to creating a sustainable food system in a major North American city.

  4. Knowledge, attitudes, and practices of women farmers concerning tobacco agriculture in a municipality in Southern Brazil.

    PubMed

    Reis, Marcelo Moreno Dos; Oliveira, Ana Paula Natividade de; Turci, Silvana Rubano Barretto; Dantas, Renato Maciel; Silva, Valéria Dos Santos Pinto da; Gross, Cátia; Jensen, Teresinha; Silva, Vera Luiza da Costa E

    2017-09-21

    The study aimed to explore the knowledge, attitudes, and practices of women farmers working in tobacco production concerning the social, environmental, and health impacts of this economic activity. Focus groups were used in this qualitative study, and themes were explored until reaching saturation. The study was conducted in a municipality (county) in southern Brazil in 2013 and included 64 women farmers. The discussions revealed participants' familiarity with health problems associated with workloads in tobacco production: green tobacco sickness, pesticide poisoning, musculoskeletal disorders, and others. The discussions also revealed a concern with the negative impacts of tobacco agriculture on the environment. They also revealed apprehension concerning decisions on switching to alternatives for sustainable agricultural production, emphasizing that on-going and systematic government support would be necessary for such a transition. Women farmers identified various factors that contribute to the persistence of tobacco farming: small holdings for cultivation, lack of guarantees for marketing crops, and indebtedness to tobacco companies. The study showed that an integrated approach is needed to deal with tobacco farmers' problems, considering a balance between farmers' beliefs and government decisions. This approach, in keeping with the recommendations of the WHO Framework Convention on Tobacco Control, may help strengthen policies and measures to promote health and sustainable local development.

  5. A new framework proposal, towards a common EU agricultural policy, with the best sustainable practices for the re-use of olive mill wastewater.

    PubMed

    Koutsos, T M; Chatzistathis, T; Balampekou, E I

    2018-05-01

    The disposal of olive mill wastewater (OMW) is a serious environmental issue for the Mediterranean countries. However, there is still no common European legislation on the management and the re-use of OMW in agriculture, in the frame of sustainable crop management and the standards for the safe OMW disposal and re-use are left to be set by each EU country, individually. This review paper presents the most effective and sustainable practices for OMW, (treatment, application and management), which can maximize the benefits of OMW on crops and soils, while minimizing the potential hazards for public health, thus promoting environmental sustainability. The findings of this synthetic work suggest that there is enough information and proven sustainable practices to go ahead with the initial formulation of a new consensual framework, environmentally acceptable, socially bearable and economically viable, that could hopefully help to set the standards for the re-use of olive mil wastewater and can lead to a common EU policy on the management and re-use of OMW. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Organic agriculture in the twenty-first century.

    PubMed

    Reganold, John P; Wachter, Jonathan M

    2016-02-03

    Organic agriculture has a history of being contentious and is considered by some as an inefficient approach to food production. Yet organic foods and beverages are a rapidly growing market segment in the global food industry. Here, we examine the performance of organic farming in light of four key sustainability metrics: productivity, environmental impact, economic viability and social wellbeing. Organic farming systems produce lower yields compared with conventional agriculture. However, they are more profitable and environmentally friendly, and deliver equally or more nutritious foods that contain less (or no) pesticide residues, compared with conventional farming. Moreover, initial evidence indicates that organic agricultural systems deliver greater ecosystem services and social benefits. Although organic agriculture has an untapped role to play when it comes to the establishment of sustainable farming systems, no single approach will safely feed the planet. Rather, a blend of organic and other innovative farming systems is needed. Significant barriers exist to adopting these systems, however, and a diversity of policy instruments will be required to facilitate their development and implementation.

  7. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambon, Ilaria, E-mail: ilaria.zambon@unitus.it; Colantoni, Andrea; Carlucci, Margherita

    Land Degradation (LD) in socio-environmental systems negatively impacts sustainable development paths. This study proposes a framework to LD evaluation based on indicators of diversification in the spatial distribution of sensitive land. We hypothesize that conditions for spatial heterogeneity in a composite index of land sensitivity are more frequently associated to areas prone to LD than spatial homogeneity. Spatial heterogeneity is supposed to be associated with degraded areas that act as hotspots for future degradation processes. A diachronic analysis (1960–2010) was performed at the Italian agricultural district scale to identify environmental factors associated with spatial heterogeneity in the degree of landmore » sensitivity to degradation based on the Environmentally Sensitive Area Index (ESAI). In 1960, diversification in the level of land sensitivity measured using two common indexes of entropy (Shannon's diversity and Pielou's evenness) increased significantly with the ESAI, indicating a high level of land sensitivity to degradation. In 2010, surface area classified as “critical” to LD was the highest in districts with diversification in the spatial distribution of ESAI values, confirming the hypothesis formulated above. Entropy indexes, based on observed alignment with the concept of LD, constitute a valuable base to inform mitigation strategies against desertification. - Highlights: • Spatial heterogeneity is supposed to be associated with degraded areas. • Entropy indexes can inform mitigation strategies against desertification. • Assessing spatial diversification in the degree of land sensitivity to degradation. • Mediterranean rural areas have an evident diversity in agricultural systems. • A diachronic analysis carried out at the Italian agricultural district scale.« less

  8. Financial competitiveness of organic agriculture on a global scale.

    PubMed

    Crowder, David W; Reganold, John P

    2015-06-16

    To promote global food and ecosystem security, several innovative farming systems have been identified that better balance multiple sustainability goals. The most rapidly growing and contentious of these systems is organic agriculture. Whether organic agriculture can continue to expand will likely be determined by whether it is economically competitive with conventional agriculture. Here, we examined the financial performance of organic and conventional agriculture by conducting a meta-analysis of a global dataset spanning 55 crops grown on five continents. When organic premiums were not applied, benefit/cost ratios (-8 to -7%) and net present values (-27 to -23%) of organic agriculture were significantly lower than conventional agriculture. However, when actual premiums were applied, organic agriculture was significantly more profitable (22-35%) and had higher benefit/cost ratios (20-24%) than conventional agriculture. Although premiums were 29-32%, breakeven premiums necessary for organic profits to match conventional profits were only 5-7%, even with organic yields being 10-18% lower. Total costs were not significantly different, but labor costs were significantly higher (7-13%) with organic farming practices. Studies in our meta-analysis accounted for neither environmental costs (negative externalities) nor ecosystem services from good farming practices, which likely favor organic agriculture. With only 1% of the global agricultural land in organic production, our findings suggest that organic agriculture can continue to expand even if premiums decline. Furthermore, with their multiple sustainability benefits, organic farming systems can contribute a larger share in feeding the world.

  9. Trichoderma for climate resilient agriculture.

    PubMed

    Kashyap, Prem Lal; Rai, Pallavi; Srivastava, Alok Kumar; Kumar, Sudheer

    2017-08-01

    Climate change is one of the biggest challenges of the twenty-first century for sustainable agricultural production. Several reports highlighted the need for better agricultural practices and use of eco-friendly methods for sustainable crop production under such situations. In this context, Trichoderma species could be a model fungus to sustain crop productivity. Currently, these are widely used as inoculants for biocontrol, biofertilization, and phytostimulation. They are reported to improve photosynthetic efficiency, enhance nutrient uptake and increase nitrogen use efficiency in crops. Moreover, they can be used to produce bio-energy, facilitate plants for adaptation and mitigate adverse effect of climate change. The technological advancement in high throughput DNA sequencing and biotechnology provided deep insight into the complex and diverse biotic interactions established in nature by Trichoderma spp. and efforts are being made to translate this knowledge to enhance crop growth, resistance to disease and tolerance to abiotic stresses under field conditions. The discovery of several traits and genes that are involved in the beneficial effects of Trichoderma spp. has resulted in better understanding of the performance of bioinoculants in the field, and will lead to more efficient use of these strains and possibly to their improvement by genetic modification. The present mini-review is an effort to elucidate the molecular basis of plant growth promotion and defence activation by Trichoderma spp. to garner broad perspectives regarding their functioning and applicability for climate resilient agriculture.

  10. Human health problems associated with current agricultural food production.

    PubMed

    Bhat, Ramesh V

    2008-01-01

    Scientific and technological developments in the agricultural sectors in the recent past has resulted in increased food production and at the same time led to certain public health concerns. Unseasonal rains at the time of harvest and improper post harvest technology often results in agricultural commodities being contaminated with certain fungi and results in the production of mycotoxins. Consumption of such commodities has resulted in human disease outbreaks. Naturally occurring toxins, inherently present in foods and either consumed as such or mixed up with grains, had been responsible for disease outbreaks. Other possible causes of health concern include the application of various agrochemicals such as pesticides and the use of antibiotics in aquaculture and veterinary practices. Foodborne pathogens entering the food chain during both traditional and organic agriculture pose a challenge to public health. Modern biotechnology, producing genetically modified foods, if not regulated appropriately could pose dangers to human health. Use of various integrated food management systems like the Hazard Analysis and critical control system approach for risk prevention, monitoring and control of food hazards are being emphasized with globalization to minimise the danger posed to human health from improper agricultural practices.

  11. Selection of Sustainable Processes using Sustainability ...

    EPA Pesticide Factsheets

    Chemical products can be obtained by process pathways involving varying amounts and types of resources, utilities, and byproduct formation. When such competing process options such as six processes for making methanol as are considered in this study, it is necessary to identify the most sustainable option. Sustainability of a chemical process is generally evaluated with indicators that require process and chemical property data. These indicators individually reflect the impacts of the process on areas of sustainability, such as the environment or society. In order to choose among several alternative processes an overall comparative analysis is essential. Generally net profit will show the most economic process. A mixed integer optimization problem can also be solved to identify the most economic among competing processes. This method uses economic optimization and leaves aside the environmental and societal impacts. To make a decision on the most sustainable process, the method presented here rationally aggregates the sustainability indicators into a single index called sustainability footprint (De). Process flow and economic data were used to compute the indicator values. Results from sustainability footprint (De) are compared with those from solving a mixed integer optimization problem. In order to identify the rank order of importance of the indicators, a multivariate analysis is performed using partial least square variable importance in projection (PLS-VIP)

  12. AN INNOVATIVE SYSTEM FOR BIOREMEDIATION OF AGRICULTURAL CHEMICALS FOR ENVIRONMENTAL SUSTAINABILITY

    EPA Science Inventory

    Agricultural chemicals (both inorganic and organic) in drainage discharge from watersheds have raised concerns about the quality of surface water resources. For example, hypoxia in the Gulf of Mexico has been related to the nutrients discharging from agricultural watersheds...

  13. Sustainable uses of FGD gypsum in agricultural systems

    USDA-ARS?s Scientific Manuscript database

    Interest in using gypsum as a management tool to improve crop yields and soil/water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur (S) from combustion gases at coal-fired power plants, in major agricultural...

  14. An agriculture and health inter-sectorial research process to reduce hazardous pesticide health impacts among smallholder farmers in the Andes.

    PubMed

    Cole, Donald C; Orozco T, Fadya; Pradel, Willy; Suquillo, Jovanny; Mera, Xavier; Chacon, Aura; Prain, Gordon; Wanigaratne, Susitha; Leah, Jessica

    2011-11-08

    The use of highly hazardous pesticides by smallholder farmers constitutes a classic trans-sectoral 'wicked problem'. We share our program of research in potato and vegetable farming communities in the Andean highlands, working with partners from multiple sectors to confront this problem over several projects. We engaged in iterative cycles of mixed methods research around particular questions, actions relevant to stakeholders, new proposal formulation and implementation followed by evaluation of impacts. Capacity building occurred among farmers, technical personnel, and students from multiple disciplines. Involvement of research users occurred throughout: women and men farmers, non-governmental development organizations, Ministries of Health and Agriculture, and, in Ecuador, the National Council on Social Participation. Pesticide poisonings were more widespread than existing passive surveillance systems would suggest. More diversified, moderately developed agricultural systems had lower pesticide use and better child nutrition. Greater understanding among women of crop management options and more equal household gender relations were associated with reduced farm pesticide use and household pesticide exposure. Involvement in more organic agriculture was associated with greater household food security and food sovereignty. Markets for safer produce supported efforts by smallholder farmers to reduce hazardous pesticide use.Participatory interventions included: promoting greater access to alternative methods and inputs in a store co-sponsored by the municipality; producing less harmful inputs such as compost by women farmers; strengthening farmer organizations around healthier and more sustainable agriculture; marketing safer produce among social sectors; empowering farmers to act as social monitors; and using social monitoring results to inform decision makers. Uptake by policy makers has included: the Ecuadorian Ministry of Health rolling out pesticide poisoning

  15. Field-scale monitoring of the long-term impact and sustainability of drainage water reuse on the west side of California’s San Joaquin Valley

    USDA-ARS?s Scientific Manuscript database

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a potential water resource rather than as a disposal problem. Drainage water from tile-drained, irrigated agricultural land is degraded water that is often in large supply, but the long-term impact and sustain...

  16. Designing agricultural landscapes for biodiversity-based ecosystem services

    DOE PAGES

    Landis, Douglas A.

    2016-07-28

    Sustainable and resilient agricultural systems are needed to feed and fuel a growing human population. However, the current model of agricultural intensification which produces high yields has also resulted in a loss of biodiversity, ecological function, and critical ecosystem services in agricultural landscapes. A key consequence of agricultural intensification is landscape simplification, where once heterogeneous landscapes contain increasingly fewer crop and non-crop habitats. Landscape simplification exacerbates biodiversity losses which leads to reductions in ecosystem services on which agriculture depends. In recent decades, considerable research has focused on mitigating these negative impacts, primarily via management of habitats to promote biodiversity andmore » enhance services at the local scale. While it is well known that local and landscape factors interact, modifying overall landscape structure is seldom considered due to logistical constraints. Here, I propose that the loss of ecosystem services due to landscape simplification can only be addressed by a concerted effort to fundamentally redesign agricultural landscapes. Designing agricultural landscapes will require that scientists work with stakeholders to determine the mix of desired ecosystem services, evaluate current landscape structure in light of those goals, and implement targeted modifications to achieve them. I evaluate the current status of landscape design, ranging from fundamental ecological principles to resulting guidelines and socioeconomic tools. Finally, while research gaps remain, the time is right for ecologists to engage with other disciplines, stakeholders, and policymakers in education and advocacy to foster agricultural landscape design for sustainable and resilient biodiversity services.« less

  17. Designing agricultural landscapes for biodiversity-based ecosystem services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landis, Douglas A.

    Sustainable and resilient agricultural systems are needed to feed and fuel a growing human population. However, the current model of agricultural intensification which produces high yields has also resulted in a loss of biodiversity, ecological function, and critical ecosystem services in agricultural landscapes. A key consequence of agricultural intensification is landscape simplification, where once heterogeneous landscapes contain increasingly fewer crop and non-crop habitats. Landscape simplification exacerbates biodiversity losses which leads to reductions in ecosystem services on which agriculture depends. In recent decades, considerable research has focused on mitigating these negative impacts, primarily via management of habitats to promote biodiversity andmore » enhance services at the local scale. While it is well known that local and landscape factors interact, modifying overall landscape structure is seldom considered due to logistical constraints. Here, I propose that the loss of ecosystem services due to landscape simplification can only be addressed by a concerted effort to fundamentally redesign agricultural landscapes. Designing agricultural landscapes will require that scientists work with stakeholders to determine the mix of desired ecosystem services, evaluate current landscape structure in light of those goals, and implement targeted modifications to achieve them. I evaluate the current status of landscape design, ranging from fundamental ecological principles to resulting guidelines and socioeconomic tools. Finally, while research gaps remain, the time is right for ecologists to engage with other disciplines, stakeholders, and policymakers in education and advocacy to foster agricultural landscape design for sustainable and resilient biodiversity services.« less

  18. From waste to resource: a systems-based approach to sustainable community development through equitable enterprise and agriculturally-derived polymeric composites

    NASA Astrophysics Data System (ADS)

    Teipel, Elisa

    Rural communities in developing countries are most vulnerable to the plight of requiring repeated infusions of charitable aid over time. Micro-business opportunities that effectively break the cycle of poverty in resource-rich countries in the developing world are limited. However, a strong model for global commerce can break the cycle of donor-based economic supplements and limited local economic growth. Sustainable economic development can materialize when a robust framework combines engineering with the generous investment of profits back into the community. This research presents a novel, systems-based approach to sustainable community development in which a waste-to-resource methodology catalyzes the disruption of rural poverty. The framework developed in this thesis was applied to the rural communities of Cagmanaba and Badian, Philippines. An initial assessment of these communities showed that community members are extremely poor, but they possess an abundant natural resource: coconuts. The various parts of the coconut offer excellent potential value in global commerce. Today the sale of coconut water is on the rise, and coconut oil is an established $3 billion market annually that is also growing rapidly. Since these current industries harvest only two parts of the coconut (meat and water), the 50 billion coconuts that grow annually leave behind approximately 100 billion pounds of coconut shell and husk as agricultural waste. Coconuts thus provide an opportunity to create and test a waste-to-resource model. Intensive materials analysis, research, development, and optimization proved that coconut shell, currently burned as a fuel or discarded as agricultural waste, can be manufactured into high-grade coconut shell powder (CSP), which can be a viable filler in polymeric composites. This framework was modeled and tested as a case study in a manufacturing facility known as a Community Transformation Plant (CTP) in Cagmanaba, Philippines. The CTP enables local

  19. Race by Gender Group Differences in the Protective Effects of Socioeconomic Factors Against Sustained Health Problems Across Five Domains.

    PubMed

    Assari, Shervin; Nikahd, Amirmasoud; Malekahmadi, Mohammad Reza; Lankarani, Maryam Moghani; Zamanian, Hadi

    2016-10-17

    Despite the existing literature on the central role of socioeconomic status (SES; education and income) for maintaining health, less is known about group differences in this effect. Built on the intersectionality approach, this study compared race by gender groups for the effects of baseline education and income on sustained health problems in five domains: depressive symptoms, insomnia, physical inactivity, body mass index (BMI), and self-rated health (SRH). Data came from waves 7, 8, and 10 of the Health and Retirement Study (HRS), which were collected in 2004, 2006, and 2010, respectively. The study followed 37,495 white and black men and women above age 50 for up to 6 years. This number included 12,495 white men, 15,581 white women, 3839 black men, and 5580 black women. Individuals reported their depressive symptoms (Center for Epidemiological Studies-Depression (CES-D) 11), insomnia, physical inactivity, BMI, and SRH across all waves. Multigroup structural equation modeling (SEM) was used to compare black men, black women, white men, and white women for the effects of education and income in 2004 on sustained health problems from 2004 to 2010. In the pooled sample, higher education and income at baseline were associated with lower sustained health problems across all five domains. However, race by gender group differences were found in the effects of education and income on sustained insomnia, physical inactivity, and BMI, but not depressive symptoms and SRH. The protective effects of education against insomnia, physical inactivity, and BMI were not found for black men. For black women, the effect of education on BMI was not found. Income had a protective effect against sustained high BMI among white and black women but not white and black men. The intersection of race and gender alters the protective effects of social determinants on sustained health problems such as insomnia, physical inactivity, and BMI. Social groups particularly vary in the operant

  20. Boundary work for sustainable development: Natural resource management at the Consultative Group on International Agricultural Research (CGIAR)

    PubMed Central

    Clark, William C.; Tomich, Thomas P.; van Noordwijk, Meine; Guston, David; Catacutan, Delia; Dickson, Nancy M.; McNie, Elizabeth

    2016-01-01

    Previous research on the determinants of effectiveness in knowledge systems seeking to support sustainable development has highlighted the importance of “boundary work” through which research communities organize their relations with new science, other sources of knowledge, and the worlds of action and policymaking. A growing body of scholarship postulates specific attributes of boundary work that promote used and useful research. These propositions, however, are largely based on the experience of a few industrialized countries. We report here on an effort to evaluate their relevance for efforts to harness science in support of sustainability in the developing world. We carried out a multicountry comparative analysis of natural resource management programs conducted under the auspices of the Consultative Group on International Agricultural Research. We discovered six distinctive kinds of boundary work contributing to the successes of those programs—a greater variety than has been documented in previous studies. We argue that these different kinds of boundary work can be understood as a dual response to the different uses for which the results of specific research programs are intended, and the different sources of knowledge drawn on by those programs. We show that these distinctive kinds of boundary work require distinctive strategies to organize them effectively. Especially important are arrangements regarding participation of stakeholders, accountability in governance, and the use of “boundary objects.” We conclude that improving the ability of research programs to produce useful knowledge for sustainable development will require both greater and differentiated support for multiple forms of boundary work. PMID:21844351

  1. Boundary work for sustainable development: Natural resource management at the Consultative Group on International Agricultural Research (CGIAR).

    PubMed

    Clark, William C; Tomich, Thomas P; van Noordwijk, Meine; Guston, David; Catacutan, Delia; Dickson, Nancy M; McNie, Elizabeth

    2016-04-26

    Previous research on the determinants of effectiveness in knowledge systems seeking to support sustainable development has highlighted the importance of "boundary work" through which research communities organize their relations with new science, other sources of knowledge, and the worlds of action and policymaking. A growing body of scholarship postulates specific attributes of boundary work that promote used and useful research. These propositions, however, are largely based on the experience of a few industrialized countries. We report here on an effort to evaluate their relevance for efforts to harness science in support of sustainability in the developing world. We carried out a multicountry comparative analysis of natural resource management programs conducted under the auspices of the Consultative Group on International Agricultural Research. We discovered six distinctive kinds of boundary work contributing to the successes of those programs-a greater variety than has been documented in previous studies. We argue that these different kinds of boundary work can be understood as a dual response to the different uses for which the results of specific research programs are intended, and the different sources of knowledge drawn on by those programs. We show that these distinctive kinds of boundary work require distinctive strategies to organize them effectively. Especially important are arrangements regarding participation of stakeholders, accountability in governance, and the use of "boundary objects." We conclude that improving the ability of research programs to produce useful knowledge for sustainable development will require both greater and differentiated support for multiple forms of boundary work.

  2. Food security and sustainable resource management

    NASA Astrophysics Data System (ADS)

    McLaughlin, Dennis; Kinzelbach, Wolfgang

    2015-07-01

    The projected growth in global food demand until mid-century will challenge our ability to continue recent increases in crop yield and will have a significant impact on natural resources. The water and land requirements of current agriculture are significantly less than global reserves but local shortages are common and have serious impacts on food security. Recent increases in global trade have mitigated some of the effects of spatial and temporal variability. However, trade has a limited impact on low-income populations who remain dependent on subsistence agriculture and local resources. Potential adverse environmental impacts of increased agricultural production include unsustainable depletion of water and soil resources, major changes in the global nitrogen and phosphorous cycles, human health problems related to excessive nutrient and pesticide use, and loss of habitats that contribute to agricultural productivity. Some typical case studies from China illustrate the connections between the need for increased food production and environmental stress. Sustainable options for decreasing food demand and for increasing production include reduction of food losses on both the producer and consumer ends, elimination of unsustainable practices such as prolonged groundwater overdraft, closing of yield gaps with controlled expansions of fertilizer application, increases in crop yield and pest resistance through advances in biotechnology, and moderate expansion of rain fed and irrigated cropland. Calculations based on reasonable assumptions suggest that such measures could meet the food needs of an increasing global population while protecting the environment.

  3. Agricultural aviation research

    NASA Technical Reports Server (NTRS)

    Chevalier, H. L. (Compiler); Bouse, L. F. (Compiler)

    1977-01-01

    A compilation of papers, comments, and results is provided during a workshop session. The purpose of the workshop was to review and evaluate the current state of the art of agricultural aviation, to identify and rank potentially productive short and long range research and development areas, and to strengthen communications between research scientists and engineers involved in agricultural research. Approximately 71 individuals actively engaged in agricultural aviation research were invited to participate in the workshop. These were persons familiar with problems related to agricultural aviation and processing expertise which are of value for identifying and proposing beneficial research.

  4. Enhancing agricultural productivity and rural incomes through sustainable use of natural resources in the semi arid tropics.

    PubMed

    Wani, Suhas P; Dixin, Yin; Li, Zhong; Dar, William D; Chander, Girish

    2012-03-30

    A participatory watershed management approach is one of the tested, sustainable and eco-friendly options to upgrade rain-fed agriculture to meet growing food demand along with additional multiple benefits in terms of improving livelihoods, addressing equity issues and biodiversity concerns. Watershed interventions at study sites in Thailand (Tad Fa and Wang Chai) and India (Kothapally) effectively reduced runoff and the associated soil loss. Such interventions at Xiaoxincun (China) and Wang Chai improved groundwater recharging and availability. Enhanced productive transpiration increased rainwater use efficiency for crop production by 13-29% at Xiaoxincun; 13-160% at Lucheba (China), 32-37% at Tad Fa and 23-46% at Wang Chai and by two to five times at Kothapally. Watershed interventions increased significantly the additional net returns from crop production as compared with the pre-watershed intervention period. Increased water availability opened up options for crop diversification with high-value crops, including increased forage production and boosted livestock-based livelihoods. In dryland tropics, integrated watershed management approach enabled farmers to diversify the systems along with increasing agricultural productivity through increased water availability, while conserving the natural resource base. Household incomes increased substantially, leading to improved living and building the resilience of the community and natural resources. Copyright © 2011 Society of Chemical Industry.

  5. Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification.

    PubMed

    Jepson, P C; Guzy, M; Blaustein, K; Sow, M; Sarr, M; Mineau, P; Kegley, S

    2014-04-05

    We outline an approach to pesticide risk assessment that is based upon surveys of pesticide use throughout West Africa. We have developed and used new risk assessment models to provide, to our knowledge, the first detailed, geographically extensive, scientifically based analysis of pesticide risks for this region. Human health risks from dermal exposure to adults and children are severe enough in many crops to require long periods of up to three weeks when entry to fields should be restricted. This is impractical in terms of crop management, and regulatory action is needed to remove these pesticides from the marketplace. We also found widespread risks to terrestrial and aquatic wildlife throughout the region, and if these results were extrapolated to all similar irrigated perimeters in the Senegal and Niger River Basins, they suggest that pesticides could pose a significant threat to regional biodiversity. Our analyses are presented at the regional, national and village levels to promote regulatory advances but also local risk communication and management. Without progress in pesticide risk management, supported by participatory farmer education, West African agriculture provides a weak context for the sustainable intensification of agricultural production or for the adoption of new crop technologies.

  6. Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification

    PubMed Central

    Jepson, P. C.; Guzy, M.; Blaustein, K.; Sow, M.; Sarr, M.; Mineau, P.; Kegley, S.

    2014-01-01

    We outline an approach to pesticide risk assessment that is based upon surveys of pesticide use throughout West Africa. We have developed and used new risk assessment models to provide, to our knowledge, the first detailed, geographically extensive, scientifically based analysis of pesticide risks for this region. Human health risks from dermal exposure to adults and children are severe enough in many crops to require long periods of up to three weeks when entry to fields should be restricted. This is impractical in terms of crop management, and regulatory action is needed to remove these pesticides from the marketplace. We also found widespread risks to terrestrial and aquatic wildlife throughout the region, and if these results were extrapolated to all similar irrigated perimeters in the Senegal and Niger River Basins, they suggest that pesticides could pose a significant threat to regional biodiversity. Our analyses are presented at the regional, national and village levels to promote regulatory advances but also local risk communication and management. Without progress in pesticide risk management, supported by participatory farmer education, West African agriculture provides a weak context for the sustainable intensification of agricultural production or for the adoption of new crop technologies. PMID:24535399

  7. Towards sustainability: nitrogen emissions from beef feedyards

    USDA-ARS?s Scientific Manuscript database

    Greater public awareness of the potential effects of food production on the environment calls for livestock management systems that are sustainable with regard to the environment, society, and the economy. The concept of sustainable agriculture challenges producers to better understand the dynamics ...

  8. Measuring Agricultural Paradigmatic Preferences: The Redevelopment of an Instrument to Determine Individual and Collective Preferences--A Pilot Study

    ERIC Educational Resources Information Center

    Sanagorski, Laura; Murphrey, Theresa Pesl; Lawver, David E.; Baker, Matt; Lindner. James R.

    2013-01-01

    Sustainable agriculture is an area that is gaining momentum. Extension agents are expected to teach production methods that include sustainable agriculture, yet little is known regarding how Extension agents feel about this agricultural paradigm. The research reported here sought to further develop an instrument that could quantitatively measure…

  9. Agricultural lands preservation: a sociology of survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.S.

    1983-01-01

    This is a rural sociological study investigating the viability of agricultural lands use-values and rural communities in the context of the structure of US agriculture. It outlines the theoretical foundation, ideology, and praxis of a sociology of survival. It is undertaken within the framework of environmental sociology, which focuses on the dynamic interpenetration of social and biotic systems. The concepts of carrying capacity, sustained multiple-use yield, and land-use compatibility and their significance are discussed. The phenomenon of phantom carrying capacity is explored, and its ominous portent noted; but the astonishing potential of agricultural lands to produce huge net gains inmore » use values and in real carrying capacity is affirmed. The theory of unlimited resources, substitution, and market-allocation is falsified. Absolute shortages of renewable and nonrenewable resources are documented, and the necessity for population control, conservation, expanded sustained-yield production, and social allocation is established.« less

  10. Financial competitiveness of organic agriculture on a global scale

    PubMed Central

    Crowder, David W.; Reganold, John P.

    2015-01-01

    To promote global food and ecosystem security, several innovative farming systems have been identified that better balance multiple sustainability goals. The most rapidly growing and contentious of these systems is organic agriculture. Whether organic agriculture can continue to expand will likely be determined by whether it is economically competitive with conventional agriculture. Here, we examined the financial performance of organic and conventional agriculture by conducting a meta-analysis of a global dataset spanning 55 crops grown on five continents. When organic premiums were not applied, benefit/cost ratios (−8 to −7%) and net present values (−27 to −23%) of organic agriculture were significantly lower than conventional agriculture. However, when actual premiums were applied, organic agriculture was significantly more profitable (22–35%) and had higher benefit/cost ratios (20–24%) than conventional agriculture. Although premiums were 29–32%, breakeven premiums necessary for organic profits to match conventional profits were only 5–7%, even with organic yields being 10–18% lower. Total costs were not significantly different, but labor costs were significantly higher (7–13%) with organic farming practices. Studies in our meta-analysis accounted for neither environmental costs (negative externalities) nor ecosystem services from good farming practices, which likely favor organic agriculture. With only 1% of the global agricultural land in organic production, our findings suggest that organic agriculture can continue to expand even if premiums decline. Furthermore, with their multiple sustainability benefits, organic farming systems can contribute a larger share in feeding the world. PMID:26034271

  11. Empirical Study on the Sustainability of China's Grain Quality Improvement: The Role of Transportation, Labor, and Agricultural Machinery.

    PubMed

    Zhang, Ming; Duan, Fang; Mao, Zisen

    2018-02-05

    As a major part of farming sustainability, the issues of grain production and its quality improvement have been important in many countries. This paper aims to address these issues in China. Based on the data from the main production provinces and by applying the stochastic frontier analysis methodology, we find that the improvement of transportation and the use of agricultural machinery have become the main driving forces for grain quality improvement in China. After further studying different provinces' potentials of grain quality improvement, we show that grain quality has increased steadily. Therefore, we can conclude China's grain quality improvement is indeed sustainable. Furthermore, different grains like rice, wheat, and corn share similar characteristics in terms of quality improvement, but the improvement rate for rice is relatively low, while those of corn and wheat are relatively high. Moreover, the overall change of efficiency gain of grain quality improvement is not significant for different provinces. The efficiency gains of the quality improvements for rice and wheat even decrease slightly. In addition, we find that only expanding grain quality improvement potential can simultaneously achieve the dual objectives of improving grain quality and increasing yield.

  12. Extending the scope of eco-labelling in the food industry to drive change beyond sustainable agriculture practices.

    PubMed

    Miranda-Ackerman, Marco A; Azzaro-Pantel, Catherine

    2017-12-15

    New consumer awareness is shifting industry towards more sustainable practices, creating a virtuous cycle between producers and consumers enabled by eco-labelling. Eco-labelling informs consumers of specific characteristics of products and has been used to market greener products. Eco-labelling in the food industry has yet been mostly focused on promoting organic farming, limiting the scope to the agricultural stage of the supply chain, while carbon labelling informs on the carbon footprint throughout the life cycle of the product. These labelling strategies help value products in the eyes of the consumer. Because of this, decision makers are motivated to adopt more sustainable models. In the food industry, this has led to important environmental impact improvements at the agricultural stage, while most other stages in the Food Supply Chain (FSC) have continued to be designed inefficiently. The objective of this work is to define a framework showing how carbon labelling can be integrated into the design process of the FSC. For this purpose, the concept of Green Supply Chain Network Design (GSCND) focusing on the strategic decision making for location and allocation of resources and production capacity is developed considering operational, financial and environmental (CO 2 emissions) issues along key stages in the product life cycle. A multi-objective optimization strategy implemented by use of a genetic algorithm is applied to a case study on orange juice production. The results show that the consideration of CO 2 emission minimization as an objective function during the GSCND process together with techno-economic criteria produces improved FSC environmental performance compared to both organic and conventional orange juice production. Typical results thus highlight the importance that carbon emissions optimization and labelling may have to improve FSC beyond organic labelling. Finally, CO 2 emission-oriented labelling could be an important tool to improve the

  13. Impacts of Agricultural Practices and Tourism Activities on the Sustainability of Telaga Warna and Telaga Pengilon Lakes, Dieng Plateau, Central Java

    NASA Astrophysics Data System (ADS)

    Sudarmadji; Pudjiastuti, Hermin

    2018-02-01

    Telaga Warna and Telaga Pengilon are two volcanic lakes in the Dieng Plateau offer some unique phenomena which are interested for tourists to visit. Telaga Warna and Telaga Pengilon are located side by side in the Dieng Palteau. Those two lakes also have specific ecosystem which differ to other lakes. However as land use in the surrounding area is now gradually changing, the lake is now facing to environmental degradation. The land use in the surrounding area is for intensive agricultural which main crops are vegetable, especially potatoes. Meanwhile, the number of tourist visiting those two lakes is increasing; it may also give some impact to the lake environment. This research aims to study the impacts of agricultural practices and tourism activities to the lake environmental which lead to the environment sustainability of the lakes. The field survey was conducted to collect some data on lakes characteristics, agricultural and tourism activities. Some interviews to local people and tourists were also conducted. Some water and sediment samples were collected followed by laboratory analyses. Some secondary data from previous study was also collected. Data analysis was conducted based on qualitative and quantitative techniques. The study found that agricultural practices of potatoes plantation uses water from the Telaga Pengilon to irrigate the plant by pumping out the water using water pump and distributes the water over the plantation area. Agricultural practices lead to soil erosion, which contribute sediment to the lake carried by surface runoff. Therefore, the volume of lakes is gradually decreasing. The use of fertilizer in the agricultural practice contribute nutrient into the lake carried by surface runoff, leading to the eutrophication, due to the excess used of fertilizer. The study concludes that agricultural practices and tourism activities have some positive economic impacts to the local community, however it also give some adverse affects on the lakes

  14. Transitions to sustainable management of phosphorus in Brazilian agriculture.

    PubMed

    Withers, Paul J A; Rodrigues, Marcos; Soltangheisi, Amin; de Carvalho, Teotonio S; Guilherme, Luiz R G; Benites, Vinicius de M; Gatiboni, Luciano C; de Sousa, Djalma M G; Nunes, Rafael de S; Rosolem, Ciro A; Andreote, Fernando D; Oliveira, Adilson de; Coutinho, Edson L M; Pavinato, Paulo S

    2018-02-07

    Brazil's large land base is important for global food security but its high dependency on inorganic phosphorus (P) fertilizer for crop production (2.2 Tg rising up to 4.6 Tg in 2050) is not a sustainable use of a critical and price-volatile resource. A new strategic analysis of current and future P demand/supply concluded that the nation's secondary P resources which are produced annually (e.g. livestock manures, sugarcane processing residues) could potentially provide up to 20% of crop P demand by 2050 with further investment in P recovery technologies. However, the much larger legacy stores of secondary P in the soil (30 Tg in 2016 worth over $40 billion and rising to 105 Tg by 2050) could provide a more important buffer against future P scarcity or sudden P price fluctuations, and enable a transition to more sustainable P input strategies that could reduce current annual P surpluses by 65%. In the longer-term, farming systems in Brazil should be redesigned to operate profitably but more sustainably under lower soil P fertility thresholds.

  15. Gender and Environmental Sustainability: Issues and Problems Involved for Persons with Special Needs in Nigeria

    ERIC Educational Resources Information Center

    Egaga, Patrick I.; Aderibigbe, S. Akinwumi

    2015-01-01

    Sustainability of the environment is one of the major problems facing African people, most especially Nigerians. It is unfortunate that women, by the nature of their daily activities of managing the homes and families are in touch with nature and environment and are at greater risk of health hazards and foetal damage. This paper focuses on the…

  16. Sustainable aggregate production planning in the chemical process industry - A benchmark problem and dataset.

    PubMed

    Brandenburg, Marcus; Hahn, Gerd J

    2018-06-01

    Process industries typically involve complex manufacturing operations and thus require adequate decision support for aggregate production planning (APP). The need for powerful and efficient approaches to solve complex APP problems persists. Problem-specific solution approaches are advantageous compared to standardized approaches that are designed to provide basic decision support for a broad range of planning problems but inadequate to optimize under consideration of specific settings. This in turn calls for methods to compare different approaches regarding their computational performance and solution quality. In this paper, we present a benchmarking problem for APP in the chemical process industry. The presented problem focuses on (i) sustainable operations planning involving multiple alternative production modes/routings with specific production-related carbon emission and the social dimension of varying operating rates and (ii) integrated campaign planning with production mix/volume on the operational level. The mutual trade-offs between economic, environmental and social factors can be considered as externalized factors (production-related carbon emission and overtime working hours) as well as internalized ones (resulting costs). We provide data for all problem parameters in addition to a detailed verbal problem statement. We refer to Hahn and Brandenburg [1] for a first numerical analysis based on and for future research perspectives arising from this benchmarking problem.

  17. Water for Agriculture: the Convergence of Sustainability and Safety.

    PubMed

    Markland, Sarah M; Ingram, David; Kniel, Kalmia E; Sharma, Manan

    2017-05-01

    Agricultural water is a precious and limited resource. Increasingly more water types and sources are being explored for use in irrigation within the United States and across the globe. As outlined in this chapter, the Produce Safety Rule (PSR) in the Food Safety and Modernization Act (FSMA) provide irrigation water standards for application of water to fruits and vegetables consumed raw. These rules for production and use of water will continue to develop and be required as the world experiences aspects of a changing climate including flooding as well as drought conditions. Research continues to assess the use of agricultural water types. The increased use of reclaimed water in the United States as well as for selected irrigation water needs for specific crops may provide increased water availability. The use of surface water can be used in irrigation as well, but several studies have shown the presence of some enteric bacterial pathogens (enterohemorrhagic E. coli , Salmonella spp. and Listeria monocytogenes ) in these waters that may contaminate fruits and vegetables. There have been outbreaks of foodborne illness in the U.S., South America, Europe, and Australia related to the use of contaminated water in fruit and vegetable irrigation or washing. Unreliable water supplies, more stringent microbial water standards, mitigation technologies and expanded uses of reclaimed waters have all increased interest in agricultural water.

  18. Role of solute-transport models in the analysis of groundwater salinity problems in agricultural areas

    USGS Publications Warehouse

    Konikow, Leonard F.

    1981-01-01

    Undesirable salinity increases occur in both groundwater and surface water and are commonly related to agricultural practices. Groundwater recharge from precipitation or irrigation will transport and disperse residual salts concentrated by evapotranspiration, salts leached from soil and aquifer materials, as well as some dissolved fertilizers and pesticides. Where stream salinity is affected by agricultural practices, the increases in salt load usually are attributable mostly to a groundwater component of flow. Thus, efforts to predict, manage, or control stream salinity increases should consider the role of groundwater in salt transport. Two examples of groundwater salinity problems in Colorado, U.S.A., illustrate that a model which simulates accurately the transport and dispersion of solutes in flowing groundwater can be (1) a valuable investigative tool to help understand the processes and parameters controlling the movement and fate of the salt, and (2) a valuable management tool for predicting responses and optimizing the development and use of the total water resource. ?? 1981.

  19. Sustainable agricultural practices: energy inputs and outputs, pesticide, fertilizer and greenhouse gas management.

    PubMed

    Wang, Yue-Wen

    2009-01-01

    The food security issue was addressed by the development of "modern agriculture" in the last century. But food safety issues and environment degradation were the consequences suffered as a result. Climate change has been recognized as the result of release of stored energy in fossil fuel into the atmosphere. Homogeneous crop varieties, machinery, pesticides and fertilizers are the foundation of uniform commodities in modern agriculture. Fossil fuels are used to manufacture fertilizers and pesticides as well as the energy source for agricultural machinery, thus characterizes modern agriculture. Bio-fuel production and the possibility of the agriculture system as a form of energy input are discussed.

  20. Agricultural ponds support amphibian populations

    USGS Publications Warehouse

    Knutson, M.G.; Richardson, W.B.; Reineke, D.M.; Gray, B.R.; Parmelee, J.R.; Weick, S.E.

    2004-01-01

    In some agricultural regions, natural wetlands are scarce, and constructed agricultural ponds may represent important alternative breeding habitats for amphibians. Properly managed, these agricultural ponds may effectively increase the total amount of breeding habitat and help to sustain populations. We studied small, constructed agricultural ponds in southeastern Minnesota to assess their value as amphibian breeding sites. Our study examined habitat factors associated with amphibian reproduction at two spatial scales: the pond and the landscape surrounding the pond. We found that small agricultural ponds in southeastern Minnesota provided breeding habitat for at least 10 species of amphibians. Species richness and multispecies reproductive success were more closely associated with characteristics of the pond (water quality, vegetation, and predators) compared with characteristics of the surrounding landscape, but individual species were associated with both pond and landscape variables. Ponds surrounded by row crops had similar species richness and reproductive success compared with natural wetlands and ponds surrounded by nongrazed pasture. Ponds used for watering livestock had elevated concentrations of phosphorus, higher turbidity, and a trend toward reduced amphibian reproductive success. Species richness was highest in small ponds, ponds with lower total nitrogen concentrations, tiger salamanders (Ambystoma tigrinum) present, and lacking fish. Multispecies reproductive success was best in ponds with lower total nitrogen concentrations, less emergent vegetation, and lacking fish. Habitat factors associated with higher reproductive success varied among individual species. We conclude that small, constructed farm ponds, properly managed, may help sustain amphibian populations in landscapes where natural wetland habitat is rare. We recommend management actions such as limiting livestock access to the pond to improve water quality, reducing nitrogen input, and

  1. Investigating the Wicked Problems of (Un)sustainability Through Three Case Studies Around the Water-Energy-Food Nexus

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Curren, R. R.

    2016-12-01

    Effective engagement with the problems of sustainability begins with an understanding of the nature of the challenges. The entanglement of interacting human and Earth systems produces solution-resistant dilemmas that are often portrayed as wicked problems. As introduced by urban planners Rittel and Webber (1973), wicked problems are "dynamically complex, ill-structured, public problems" arising from complexity in both biophysical and socio-economic systems. The wicked problem construct is still in wide use across diverse contexts, disciplines, and sectors. Discourse about wicked problems as related to sustainability is often connected to discussion of complexity or complex systems. In preparation for life and work in an uncertain, dynamic and hyperconnected world, students need opportunities to investigate real problems that cross social, political and disciplinary divides. They need to grapple with diverse perspectives and values, and collaborate with others to devise potential solutions. Such problems are typically multi-casual and so intertangled with other problems that they cannot be resolved using the expertise and analytical tools of any single discipline, individual, or organization. We have developed a trio of illustrative case studies that focus on energy, water and food, because these resources are foundational, interacting, and causally connected in a variety of ways with climate destabilization. The three interrelated case studies progress in scale from the local and regional, to the national and international and include: 1) the 2010 Gulf of Mexico oil spill with examination of the multiple immediate and root causes of the disaster, its ecological, social, and economic impacts, and the increasing risk and declining energy return on investment associated with the relentless quest for fossil fuels; 2) development of Australia's innovative National Water Management System; and 3) changing patterns of food production and the intertwined challenge of

  2. Global economic trade-offs between wild nature and tropical agriculture

    PubMed Central

    Webb, Edward L.; Symes, William S.; Koh, Lian P.

    2017-01-01

    Global demands for agricultural and forestry products provide economic incentives for deforestation across the tropics. Much of this deforestation occurs with a lack of information on the spatial distribution of benefits and costs of deforestation. To inform global sustainable land-use policies, we combine geographic information systems (GIS) with a meta-analysis of ecosystem services (ES) studies to perform a spatially explicit analysis of the trade-offs between agricultural benefits, carbon emissions, and losses of multiple ecosystem services because of tropical deforestation from 2000 to 2012. Even though the value of ecosystem services presents large inherent uncertainties, we find a pattern supporting the argument that the externalities of destroying tropical forests are greater than the current direct economic benefits derived from agriculture in all cases bar one: when yield and rent potentials of high-value crops could be realized in the future. Our analysis identifies the Atlantic Forest, areas around the Gulf of Guinea, and Thailand as areas where agricultural conversion appears economically efficient, indicating a major impediment to the long-term financial sustainability of Reducing Emissions from Deforestation and forest Degradation (REDD+) schemes in those countries. By contrast, Latin America, insular Southeast Asia, and Madagascar present areas with low agricultural rents (ARs) and high values in carbon stocks and ES, suggesting that they are economically viable conservation targets. Our study helps identify optimal areas for conservation and agriculture together with their associated uncertainties, which could enhance the efficiency and sustainability of pantropical land-use policies and help direct future research efforts. PMID:28732022

  3. Global economic trade-offs between wild nature and tropical agriculture.

    PubMed

    Carrasco, Luis R; Webb, Edward L; Symes, William S; Koh, Lian P; Sodhi, Navjot S

    2017-07-01

    Global demands for agricultural and forestry products provide economic incentives for deforestation across the tropics. Much of this deforestation occurs with a lack of information on the spatial distribution of benefits and costs of deforestation. To inform global sustainable land-use policies, we combine geographic information systems (GIS) with a meta-analysis of ecosystem services (ES) studies to perform a spatially explicit analysis of the trade-offs between agricultural benefits, carbon emissions, and losses of multiple ecosystem services because of tropical deforestation from 2000 to 2012. Even though the value of ecosystem services presents large inherent uncertainties, we find a pattern supporting the argument that the externalities of destroying tropical forests are greater than the current direct economic benefits derived from agriculture in all cases bar one: when yield and rent potentials of high-value crops could be realized in the future. Our analysis identifies the Atlantic Forest, areas around the Gulf of Guinea, and Thailand as areas where agricultural conversion appears economically efficient, indicating a major impediment to the long-term financial sustainability of Reducing Emissions from Deforestation and forest Degradation (REDD+) schemes in those countries. By contrast, Latin America, insular Southeast Asia, and Madagascar present areas with low agricultural rents (ARs) and high values in carbon stocks and ES, suggesting that they are economically viable conservation targets. Our study helps identify optimal areas for conservation and agriculture together with their associated uncertainties, which could enhance the efficiency and sustainability of pantropical land-use policies and help direct future research efforts.

  4. Sustainability initiatives in agriculture: The role of science

    USDA-ARS?s Scientific Manuscript database

    A sustainable society is one that can meet its needs while preserving natural resources for future generations. Key components of this goal are production of a robust food supply while protecting human health and the environment, conserving precious resources, and balancing economic viability. Rapid...

  5. Development paths of China's agricultural Pharmaceutical industry under Eco-agriculture background.

    PubMed

    Li, Jinkai; Gong, Liutang; Ji, Xi; Zhang, Jin; Miao, Pei

    2014-07-01

    Using pesticides has double effects. On one hand, it contributes to pests control and regulates the growth of crops; On the other hand, it does harm to the environment. To develop ecological agriculture should not only emphasize the output level of agriculture to pursuit of economic efficiency, but also need to keep the ecological environment protected and focus on the social benefits during the development of the industry. As a large agricultural country in the world, China is vigorously promoting the development of ecological agriculture, which is bound to put forward to developing the pesticide industry and green ecological development requirements to promote the transformation and upgrading of agricultural pharmaceutical industry. This paper discusses the mechanism of pesticide pollution on the ecological environment and analyzes China's agricultural problems in the pharmaceutical industry. Then study on the development of Chinese green pesticides and try to find the proper paths of agricultural pharmaceutical to achieve industrial upgrading.

  6. The role of biotechnology for agricultural sustainability in Africa.

    PubMed

    Thomson, Jennifer A

    2008-02-27

    Sub-Saharan Africa could have a shortfall of nearly 90Mt of cereals by the year 2025 if current agricultural practices are maintained. Biotechnology is one of the ways to improve agricultural production. Insect-resistant varieties of maize and cotton suitable for the subcontinent have been identified as already having a significant impact. Virus-resistant crops are under development. These include maize resistant to the African endemic maize streak virus and cassava resistant to African cassava mosaic virus. Parasitic weeds such as Striga attack the roots of crops such as maize, millet, sorghum and upland rice. Field trials in Kenya using a variety of maize resistant to a herbicide have proven very successful. Drought-tolerant crops are also under development as are improved varieties of local African crops such as bananas, cassava, sorghum and sweet potatoes.

  7. An Assessment of Regional Water Resources and Agricultural Sustainability in the Mississippi River Alluvial Aquifer System of Mississippi and Arkansas Under Current and Future Climate

    NASA Astrophysics Data System (ADS)

    Rigby, J.; Reba, M.

    2011-12-01

    The Lower Mississippi River Alluvial Plain is a highly productive agricultural region for rice, soy beans, and cotton that depends heavily on irrigation. Development of the Mississippi River Alluvial Aquifer (MRAA), one of the more prolific agricultural aquifers in the country, has traditionally been the primary source for irrigation in the region yielding over 1,100 Mgal/day to irrigation wells. Increasingly, the realities of changing climate and rapidly declining water tables have highlighted the necessity for new water management practices. Tail-water recovery and reuse is a rapidly expanding practice due in part to the efforts and cost-sharing of the NRCS, but regional studies of the potential for such practices to alleviate groundwater mining under current and future climate are lacking. While regional studies of aquifer geology have long been available, including assessments of regional groundwater flow, much about the aquifer is still not well understood including controls on recharge rates, a crucial component of water management design. We review the trends in regional availability of surface and groundwater resources, their current status, and the effects of recent changes in management practices on groundwater decline in Mississippi and Arkansas. Global and regional climate projections are used to assess scenarios of sustainable aquifer use under current land use and management along with the potential for more widely practiced surface water capture and reuse to alleviate groundwater decline. Finally, we highlight crucial knowledge gaps and challenges associated with the development of water management practices for sustainable agricultural use in the region.

  8. Achieving sustainable plant disease management through evolutionary principles.

    PubMed

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Horticulture Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains five units with relevant problem areas for horticulture. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. Each problem area includes some or all of the following components: related problem…

  10. Cultural Patterns of Soil Understanding in Organic Agriculture

    NASA Astrophysics Data System (ADS)

    Patzel, Nikola

    2017-04-01

    Different branches of modern agriculture rely on different cultural patterns of soil understanding; and they are supported by different schools of thought in soil science with their specific values and perspectives. For example, the European branch of organic agriculture, as it developed mainly in the 20th Century, is rooted in specific cultural concepts and was supported by associated minorities, or rather marginalised tendencies, within the soil science community. Some cases: It is about the transformations of living or organic matter, linked with debates on "microbes" and "life particles", "tissues" and macromolecules in the humus-sphere. It is about the "industrialised economical-technical paradigm" versus an "organic" or "ecological paradigm" - whatever both may be. It is about the relevance respectively of the "duties" of control by power, or by relatedness and "intercourse" in agricultural human-nature interaction. It is about the male and female qualities of effective God-images - both in their "religious" as well as their "secular" representations in individuals' and society's relation with nature and when dealing with soil. In today's conceptual and strategic debates and power struggles over how to sustainably feed from the land, we see patterns similar to those from the 19th and 20th Centuries in action. But the threats they pose are not yet sufficiently realised; the opportunities they offer are not yet sufficiently fulfilled. In this presentation, using the example of cultural patterns inside organic agriculture in Europe, some cultural problems and tasks will be highlighted, to which geosciences are of course confronted, being part of human society.

  11. The sustainability of changes in agricultural technology: The carbon, economic and labour implications of mechanisation and synthetic fertiliser use.

    PubMed

    Gathorne-Hardy, Alfred

    2016-12-01

    New agricultural technologies bring multiple impacts which are hard to predict. Two changes taking place in Indian agriculture are a transition from bullocks to tractors and an associated replacement of manure with synthetic fertilisers. This paper uses primary data to model social, environmental and economic impacts of these transitions in South India. It compares ploughing by bullocks or tractors and the provision of nitrogen from manure or synthetic urea for irrigated rice from the greenhouse gas (GHG), economic and labour perspective. Tractors plough nine times faster than bullocks, use substantially less labour, with no significant difference in GHG emissions. Tractors are twice as costly as bullocks yet remain more popular to hire. The GHG emissions from manure-N paddy are 30 % higher than for urea-N, largely due to the organic matter in manure driving methane emissions. Labour use is significantly higher for manure, and the gender balance is more equal. Manure is substantially more expensive as a source of nutrients compared to synthetic nutrients, yet remains popular when available. This paper demonstrates the need to take a broad approach to analysing the sustainability impacts of new technologies, as trade-offs between different metrics are common.

  12. Preservice Agricultural Education Teachers' Mathematics Ability

    ERIC Educational Resources Information Center

    Stripling, Christopher T.; Roberts, T. Grady

    2012-01-01

    The purpose of this study was to examine the mathematics ability of the nation's preservice agricultural education teachers. Based on the results of this study, preservice teachers were not proficient in solving agricultural mathematics problems, and agricultural teacher education programs require basic and intermediate mathematics as their…

  13. Utilization of Live Localized Weather Information for Sustainable Agriculture

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Usher, J.

    2010-09-01

    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a

  14. Sustainable Biofuel Crops Project, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juhn, Daniel; Grantham, Hedley

    2014-05-28

    Over the last six years, the Food and Agriculture Organization of the United Nations (FAO) has developed the Bioenergy and Food Security (BEFS) Approach to help countries design and implement sustainable bioenergy policies and strategies. The BEFS Approach consists of two sets of multidisciplinary and integrated tools and guidance (the BEFS Rapid Appraisal and the BEFS Detailed Analysis) to facilitate better decision on bioenergy development which should foster both food and energy security, and contribute to agricultural and rural development. The development of the BEFS Approach was for the most part funded by the German Federal Ministry of Food andmore » Agriculture. Recognizing the need to provide support to countries that wanted an initial assessment of their sustainable bioenergy potential, and of the associated opportunities, risks and trade offs, FAO began developing the BEFS-RA (Rapid Appraisal). The BEFS RA is a spreadsheet–based assessment and analysis tool designed to outline the country's basic energy, agriculture and food security context, the natural resources potential, the bioenergy end use options, including initial financial and economic implications, and the identification of issues that might require fuller investigation with the BEFS Detailed Analysis.« less

  15. Agriflection: A Learning Model for Agricultural Extension in South Africa

    ERIC Educational Resources Information Center

    Worth, S. H.

    2006-01-01

    Prosperity--continuous and sustainable wealth creation--is an elusive goal in South African smallholder agriculture. This paper suggests that agricultural extension can facilitate realising this objective if an appropriate approach to extension can be developed. To develop such an approach requires that the definition of extension and the…

  16. Empirical Study on the Sustainability of China’s Grain Quality Improvement: The Role of Transportation, Labor, and Agricultural Machinery

    PubMed Central

    Zhang, Ming; Duan, Fang; Mao, Zisen

    2018-01-01

    As a major part of farming sustainability, the issues of grain production and its quality improvement have been important in many countries. This paper aims to address these issues in China. Based on the data from the main production provinces and by applying the stochastic frontier analysis methodology, we find that the improvement of transportation and the use of agricultural machinery have become the main driving forces for grain quality improvement in China. After further studying different provinces’ potentials of grain quality improvement, we show that grain quality has increased steadily. Therefore, we can conclude China’s grain quality improvement is indeed sustainable. Furthermore, different grains like rice, wheat, and corn share similar characteristics in terms of quality improvement, but the improvement rate for rice is relatively low, while those of corn and wheat are relatively high. Moreover, the overall change of efficiency gain of grain quality improvement is not significant for different provinces. The efficiency gains of the quality improvements for rice and wheat even decrease slightly. In addition, we find that only expanding grain quality improvement potential can simultaneously achieve the dual objectives of improving grain quality and increasing yield. PMID:29401727

  17. Global food demand and the sustainable intensification of agriculture.

    PubMed

    Tilman, David; Balzer, Christian; Hill, Jason; Befort, Belinda L

    2011-12-13

    Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100-110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ~1 billion ha of land would be cleared globally by 2050, with CO(2)-C equivalent greenhouse gas emissions reaching ~3 Gt y(-1) and N use ~250 Mt y(-1) by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ~0.2 billion ha, greenhouse gas emissions of ~1 Gt y(-1), and global N use of ~225 Mt y(-1). Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.

  18. Long-term impact of precision agriculture on a farmer’s field

    USDA-ARS?s Scientific Manuscript database

    Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century. Although potential is high, few studies have documented long-term effects of precision agriculture on crop production and environmenta...

  19. Spatio-temporal optimization of agricultural practices to achieve a sustainable development at basin level; framework of a case study in Colombia

    NASA Astrophysics Data System (ADS)

    Uribe, Natalia; corzo, Gerald; Solomatine, Dimitri

    2016-04-01

    The flood events present during the last years in different basins of the Colombian territory have raised questions on the sensitivity of the regions and if this regions have common features. From previous studies it seems important features in the sensitivity of the flood process were: land cover change, precipitation anomalies and these related to impacts of agriculture management and water management deficiencies, among others. A significant government investment in the outreach activities for adopting and promoting the Colombia National Action Plan on Climate Change (NAPCC) is being carried out in different sectors and regions, having as a priority the agriculture sector. However, more information is still needed in the local environment in order to assess were the regions have this sensitivity. Also the continuous change in one region with seasonal agricultural practices have been pointed out as a critical information for optimal sustainable development. This combined spatio-temporal dynamics of crops cycle in relation to climate change (or variations) has an important impact on flooding events at basin areas. This research will develop on the assessment and optimization of the aggregated impact of flood events due to determinate the spatio-temporal dynamic of changes in agricultural management practices. A number of common best agricultural practices have been identified to explore their effect in a spatial hydrological model that will evaluate overall changes. The optimization process consists on the evaluation of best performance in the agricultural production, without having to change crops activities or move to other regions. To achieve this objectives a deep analysis of different models combined with current and future climate scenarios have been planned. An algorithm have been formulated to cover the parametric updates such that the optimal temporal identification will be evaluated in different region on the case study area. Different hydroinformatics

  20. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided.

  1. Seasonal water demand in Benin's agriculture.

    PubMed

    Gruber, Ina; Kloos, Julia; Schopp, Marion

    2009-01-01

    This paper describes and analyzes agricultural water demands for Benin, West Africa. Official statistical data regarding water quantities as well as knowledge on factors influencing the demand for water are extremely rare and often reveal national trends without considering regional or local differences. Thus policy makers usually work with this estimated and aggregated data, which make it very difficult to adequately address regional and local development goals. In the framework of an interdisciplinary analysis the following paper provides insight into water quantification and detects water problems under seasonal aspects for agriculture according to regional differences. Following the definition of the Food and Agriculture Organization [FAO, 1995. Water Report 7. Irrigation in Africa in Figures. Rome] agriculture is divided into irrigation and livestock watering, which were analyzed using different field methods. The study reveals that although water supply in absolute terms seems to be sufficient in Benin, seasonal water problems occur both in irrigation and in livestock management. Thus arising seasonal water problems are not the consequence of general water scarcity but more linked to three major problems. These problems emerge from difficulties in technical equipment and financial means of farmers, from the specific local conditions influencing the access to water sources and the extraction of groundwater, and third from the overall low organizational structure of water management. Therefore regional differences as well as a general improvement of knowledge on better management structures, technical know how, and access to credits for farmers need to be considered in national strategies in order to improve the agricultural water usage in Benin.

  2. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    PubMed

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.

  3. Managing adaptively for multifunctionality in agricultural systems.

    PubMed

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  4. Managing adaptively for multifunctionality in agricultural systems

    USGS Publications Warehouse

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig R.; Magda, Danièle

    2016-01-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn’t reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to

  5. Sustainable corn stover harvest strategies for Midwest agricultural landscapes

    USDA-ARS?s Scientific Manuscript database

    To support emerging U.S. cellulosic bioenergy industries, 239 site-years of data from field studies at 36 sites in seven states were recently summarized in BioEnergy Research by the ARS Resilient Economic Agricultural Practices (REAP) team [formerly the Renewable Energy Assessment Project (REAP) tea...

  6. Why Do Smallholder Farmers Dis-adopt Conservation Agriculture? Insights from Malawi

    NASA Astrophysics Data System (ADS)

    Chinseu, Edna; Dougill, Andrew; Stringer, Lindsay

    2017-04-01

    International donors and advisory bodies, national governments and non-governmental organisations (NGOs) are all actively promoting conservation agriculture (CA) as a route to sustainable agricultural development, recognising the importance of agriculture to the national economy and livelihoods of rural communities. CA is anchored in 3 principles: i) minimum soil disturbance, ii) continuous soil cover and iii) crop associations. It is advocated on the basis of improving crop yields, income and/or profits; reducing production costs; and conserving soil and water. Despite huge investments made by CA proponents, many farmers only practice CA for a short time. They subsequently dis-adopt (abandon) the seemingly appropriate innovation and revert back to conventional tillage practices. While factors affecting the (initial) adoption of agricultural technologies have been studied extensively, dis-adoption has rarely been investigated. Improving our understanding of dis-adoption of seemingly appropriate and sustainable interventions is vital for long-term sustainable land management, food security and for ensuring sustained impacts of agricultural development project interventions more broadly. This research investigates why smallholder farmers abandon CA practices in Malawi by exploring farmers' experiences of CA and their implications in dis-adoption. A mixed methods approach was used, involving household questionnaire survey and focus group discussions with smallholder farmers. Findings reveal that reasons for dis-adoption are multi-dimensional and multi-layered. While CA proponents are marketing CA as a time saving, labour saving and yield improving technology, many farmers report contrary experiences. Findings also showed that farmers lacked ownership of CA projects and encountered various social challenges, which coupled with unfulfilled expectations, led to dis-adoption. In sub-Saharan Africa, this suggests that there is a need to: (1) market CA as a climate

  7. Arthropod genomics research in the United States Department of Agriculture-Agricultural Research Service: Current impacts and future prospects

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service (ARS) is the intramural research agency of the United States Department of Agriculture (USDA) which employs scientists to conduct basic and applied research aimed to develop and transfer solutions to agricultural problems of high national priority and to ensure food...

  8. Managed aquifer recharge through off-season irrigation in agricultural regions

    USGS Publications Warehouse

    Niswonger, Richard; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-01-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7–13%, increase crop consumptive use by 9–12%, and increase natural vegetation consumption by 20–30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  9. Managed aquifer recharge through off-season irrigation in agricultural regions

    NASA Astrophysics Data System (ADS)

    Niswonger, Richard G.; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-08-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7-13%, increase crop consumptive use by 9-12%, and increase natural vegetation consumption by 20-30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  10. An index-based approach for the sustainability assessment of irrigation practice based on the water-energy-food nexus framework

    NASA Astrophysics Data System (ADS)

    de Vito, Rossella; Portoghese, Ivan; Pagano, Alessandro; Fratino, Umberto; Vurro, Michele

    2017-12-01

    Increasing pressure affects water resources, especially in the agricultural sector, with cascading impacts on energy consumption. This is particularly relevant in the Mediterranean area, showing significant water scarcity problems, further exacerbated by the crucial economic role of agricultural production. Assessing the sustainability of water resource use is thus essential to preserving ecosystems and maintaining high levels of agricultural productivity. This paper proposes an integrated methodology based on the Water-Energy-Food Nexus to evaluate the multi-dimensional implications of irrigation practices. Three different indices are introduced, based on an analysis of the most influential factors. The methodology is then implemented in a catchment located in Puglia (Italy) and a comparative analysis of the three indices is presented. The results mainly highlight that economic land productivity is a key driver of irrigated agriculture, and that groundwater is highly affordable compared to surface water, thus being often dangerously perceived as freely available.

  11. Linear Equations. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying algebraic operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  12. Common Fractions. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying mathematical operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  13. Modeling Sustainment Investment

    DTIC Science & Technology

    2015-05-01

    Requests Strategy Staffing Training & Process Funding sustainment capacity sustainment performance gap Bandwagon Effect R1 Limits to Growth B1...Mellon University sustainment capacity sustainment performance gap Bandwagon Effect R1 Limits to Growth B1 S Work Smarter B3 Work Bigger B2 desired... effects of decisions and • Suggests how to prevent problems before they become too expensive. Next: A sample piece of the simulation model

  14. LASL/USDA computer applications annual progress report, October 1, 1978-September 30, 1979. [Data Base Management activities regarding agricultural problems in southwestern USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, W.M.; Campbell, C.L.; Pickerill, P.A.

    1980-10-01

    The Los Alamos Scientific Laboratory is funded by the US Department of Agriculture to apply scientific and computer technology to solve agricultural problems. This report summarizes work during the period October 1, 1978 through September 30, 1979 on the application of computer technology to four areas: (1) Texas brucellosis calfhood-vaccination studies, (2) brucellosis data-entry system in New Mexico, (3) Idaho adult vaccination data base, and (4) surveillance of slaughterplants in Texas.

  15. [Ecological agriculture: future of Good Agriculture Practice of Chinese materia medica].

    PubMed

    Guo, Lan-ping; Zhou, Liang-yun; Mo, Ge; Wang, Sheng; Huang, Lu-qi

    2015-09-01

    Based on the ecological and economic problems in Good Agriculture Practice (GAP) of Chinese material medica, we introduced the origin, concept, features and operative technology of eco-agriculture worldwide, emphasizing its modes on different biological levels of landscape, ecosystem, community, population, individual and gene in China. And on this basis, we analyzed the background and current situation of eco-agriculture of Chinese materia medica, and proposed its development ideas and key tasks, including: (1) Analysis and planning of the production pattern of Chinese material medica national wide. (2) Typical features extraction of regional agriculture of Chinese materia medica. (3) Investigation of the interaction and its mechanism between typical Chinese materia medica in each region and the micro-ecology of rhizosphere soil. (4) Study on technology of eco-agriculture of Chinese materia medica. (5) Extraction and solidification of eco-agriculture modes of Chinese materia medica. (6) Study on the theory of eco-agriculture of Chinese materia medica. Also we pointed out that GAP and eco-agriculture of Chinese material medica are both different and relative, but they are not contradictory with their own features. It is an irresistible trend to promote eco-agriculture in the GAP of Chinese material medica and coordinate ecological and economic development.

  16. How to use water footprint as an indicator to assess the sustainability of food systems? Insights from a Mediterranean perspective

    NASA Astrophysics Data System (ADS)

    Altobelli, Filiberto; Meybeck, Alexandre; Gitz, Vincent; Dalla Marta, Anna

    2014-05-01

    The water footprint (WF) accounts for both the direct and indirect water use. It enables to calculate the water used to produce specific agricultural products. These have different water footprints. Thus the composition of the diet drives its water footprint, and ultimately agriculture's water consumption. This paper considers how the WF indicator could be used to assess the sustainability of food systems. FAO has started to study the notion of sustainable diets in order to design methods and indicators towards their assessment in different agro-ecological zones. A first issue is to identify issues which are critical to sustainability in a given area. Water scarcity is the most critical development problem in the Mediterranean area and the single most important factor in limiting agricultural growth. Water availability in the region has been declining steadily since the late 1950s. In turn, agriculture is one of the main water user. The Mediterranean diet model has been well scientifically characterized through its new revised pyramidal representation (Bach et al, 2011). Studies have calculated that the Mediterranean diet consumes less water then Anglo-Saxon types of diets. But such studies measure the water footprint of a model rather than the reality of food consumption patterns in the Mediterranean area. Moreover for a given water footprint, the "net" environmental impact depends not only on water consumption but also on water scarcity (WS) in the area of production, and also at the time of production. Therefore a more complete indicator to assess the sustainability of a food system from a consumption perspective could be WF/WS. It would include the distinction between green and blue water, as well as methodologies to determine the most appropriate scale (local, national, watershed) and measure it. Such a use of the WF, applied to domestic and imported food products alike, would enable to assess the water impact of food consumption. It could be completed by an

  17. Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem.

    PubMed

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; Zornoza, Raul; Cerdà, Artemi; Scow, Kate

    2013-01-01

    Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage.

  18. Topical Collection: Groundwater-based agriculture in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Kuper, Marcel; Leduc, Christian; Massuel, Sylvain; Bouarfa, Sami

    2017-09-01

    This essay introduces a collection of articles that explore the future of groundwater-based agriculture in the Mediterranean from an interdisciplinary perspective, in a context of declining water tables due to intensive groundwater use. The imminent crisis that many groundwater economies face due to very rapid and intense global change may have severe irreversible social, economic and environmental consequences, but could also be the opportunity to make a clear break with current agricultural development models and move towards more sustainable agricultural practices. The Mediterranean region is, therefore, an interesting case for the future of intensive groundwater use, as innovative ideas and practices may emerge and inspire similar groundwater-based agricultural systems around the world.

  19. Modeling Coherent Strategies for the Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Walsh, B.; Obersteiner, M.; Herrero, M.; Riahi, K.; Fritz, S.; van Vuuren, D.; Havlik, P.

    2016-12-01

    The Sustainable Development Goals (SDGs) call for a comprehensive new approach to development rooted in planetary boundaries, equity and inclusivity. Societies have largely responded to this call with siloed strategies capable of making progress on selected subsets of these goals. However, agendas crafted specifically to alleviate poverty, hunger, deforestation, biodiversity loss, or other ills may doom the SDG agenda, as policies and strategies designed to accomplish one or several goals can impede and in some cases reverse progress toward others at national, regional, and global levels. We adopt a comprehensive modeling approach to understand the basis for tradeoffs among environmental conservation initiatives (goals 13-15) and food prices (goal 2). We show that such tradeoffs are manifestations of policy-driven pressure in land (i.e. agricultural and environmental) systems. By reducing total land system pressure, Sustainable Consumption and Production (SCP, goal 12) policies minimize tradeoffs and should therefore be regarded as necessary conditions for achieving multiple SDGs. SDG strategies constructed around SCP policies escape problem-shifting, which has long placed global development and conservation agendas at odds. We expect that this and future systems analyses will allow policymakers to negotiate tradeoffs and exploit synergies as they assemble sustainable development strategies equal in scope to the ambition of the SDGs.

  20. Synthetic fuels, and a sustainable set of civilizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, R.S.

    Described in this paper is a concept that combines a set of technologies with a set of economic and social concepts that would allow people to create sustainable ecologies for their region or country. As such it describes a possible implementation path. The technologies are : solar electricity, power satellites, wireless power transmission, electrolytic hydrogen, and synthetic liquid fuels manufactured from air, water, and electricity. Economic initiatives and policies include creating sustainable economic development regions through the use of tax incentives and tax penalties. The technologies and economies are brought together by social concepts such as Technopolis and the theorymore » of self-organizing and self-energizing social systems, i.e. creating wealth where there was none through sweat equity. Existing organizational structures such as credit unions, kibbutz`s and agricultural and marketing cooperatives provide methods by which global marco-projects can be implemented on a local level. Some topics of this paper are : creating global markets by solving global problems or how to breakout of the chicken or egg paradox that has stymied the development of energy from space for so long ; and linking energy availability to self-help economic development programs that create sustainable cultures while benefiting both the local and global environment. 1 refs., 6 figs., 6 tabs.« less

  1. Agricultural vehicles and rural road safety: tackling a persistent problem.

    PubMed

    Jaarsma, Catharinus F; De Vries, Jasper R

    2014-01-01

    Crashes involving agricultural vehicles (AVs) on public roads are an increasing road safety problem. We aim to analyze developments in the appearance and severity of these accidents, identify influencing factors, and draw lessons for possible interventions for accident prevention within the context of modern mechanized agriculture. To analyze developments in the appearance of accidents we use a subset of accidents with AVs involved on public roads in The Netherlands aggregated per year for 1987-2010. To identify and explore preventive measures we use an in-depth study of the Dutch Safety Board. With a study of international literature we put our findings in a wider context. During this time span, Dutch annual averages show 15 registered fatal accidents involving AVs, 93 with hospitalization and 137 with slight injuries. For nonfatal accidents, the numbers are decreasing over time. This decrease is proportionate to the reduction in the total number of traffic victims. For fatalities, however, the number is stable, increasing its proportion in all traffic fatalities from 1 in 1987 to 2 percent in 2010. Related to the number of inhabitants, this number is 2 times the value in the UK and 3 times the value in the United States. Influencing factors can be related to the 3 road system components (AV, driver, and infrastructure). Weak points for AVs are the view from the driver's seat, visibility at night, permitted vehicle width, and crash aggressivity (large kinetic energy of the AV) that is transferred to other road users in case of a collision. Important factors identified for the driver are poor risk perception and high risk acceptance, in combination with speeding, dysfunctional use such as the use of AVs as modes of transport to and from school, and driving on public roads without protecting or removing protruding and sharp components. For infrastructure, the focus is on road design and separation of AVs from other motor vehicles. Lessons to be learned follow from

  2. Adapting agriculture to climate change.

    PubMed

    Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-12-11

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

  3. Agriculture and malnutrition in India.

    PubMed

    Gulati, Ashok; Ganesh-Kumar, A; Shreedhar, Ganga; Nandakumar, T

    2012-03-01

    Despite the high and relatively stable overall growth of the economy, India's agriculture sector is underperforming and a vast section of the population remains undernourished. To explore the possible interplay between agricultural performance and malnutrition indicators to see whether states that perform better in agriculture record better nutritional outcomes. Correlation analysis and a simple linear regression model were used to study the relationship between agricultural performance and malnutrition among children under 5 years of age and adults from 15 to 49 years of age at 20 major states using data from the National Family Health Survey-3 for the year 2005/06 and the national accounts. Indicators of the level of agricultural performance or income have a strong and significant negative relationship with indices of undernutrition among adults and children, a result suggesting that improvement of agricultural productivity can be a powerful tool to reduce undernutrition across the vast majority of the population. In addition to agriculture, access to sanitation facilities and women's literacy were also found to be strong factors affecting malnutrition. Access to healthcare for women and child-care practices, in particular breastfeeding within 1 hour after birth, are other important determinants of malnutrition among adults and children. Malnutrition is a multidimensional problem that requires multisectoral interventions. The findings show that improving agricultural performance can have a positive impact on nutritional outcomes. However, improvements in agriculture alone cannot be effective in combating malnutrition if several other mediating factors are not in place. Interventions to improve education, health, sanitation and household infrastructure, and care and feeding practices are critical. Innovative strategies that integrate agriculture and nutrition programs stand a better chance of combating the malnutrition problem.

  4. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    PubMed Central

    Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  5. Current status and future potential of energy derived from Chinese agricultural land: a review.

    PubMed

    Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction.

  6. Women Farmers' Perceptions of the Economic Problems Influencing Their Productivity in Agricultural Systems: Meme Division of the Southwest Province, Cameroon.

    ERIC Educational Resources Information Center

    Endeley, Joyce B.

    Women farmers produce about 60% of the food in Cameroon, but face more problems and constraints than men in performing their agricultural activities. Cash crop farmers (mostly men) are the targeted beneficiaries of government and international aids, and have better access to extension services, loans, subsidized production input (herbicides,…

  7. Achieving sustainable cultivation of potatoes

    USDA-ARS?s Scientific Manuscript database

    Every phase of the production cycle impacts the sustainability of potato. Potato physiology determines how genetically encoded developmental attributes interact with local environmental conditions as modified through agricultural practice to produce a perishable crop. In this chapter we highlight ho...

  8. Potentials and problems of sustainable irrigation with water high in salts

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon

    2015-04-01

    Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of climate, soil, and very critically, of crop sensitivity and the actual salinity of the irrigation water. The more sensitive the crop and more saline the water, the higher the agronomic cost and the greater the quantitative need for leaching. Israel is a forerunner in large-scale utilization of poor quality water for irrigation and can be used as a case study looking at long term repercussions of policy alternatively encouraging irrigation with recycled water or brackish groundwater. In cases studied in desert conditions of Israel, as much of half of the water applied to crops including bell peppers in greenhouses and date palms is actually used to leach salts from the root zone. The excess water used to leach salts and maintain agronomic and economic success when irrigating with water containing salts can become an environmental hazard, especially in dry areas where natural drainage is non-existent. The leachate often contains not only salts but also agrochemicals including nutrients, and natural contaminants can be picked up and transported as well. This leachate passes beyond the root zone and eventually reaches ground or surface water resources. This, together with evidence of ongoing increases in sodium content of fresh produce and increased SAR levels of soils, suggest that the current policy and practice in Israel of utilization of high amounts of low quality irrigation water is inherently non- sustainable. Current

  9. Stable carbon and nitrogen isotopes and quality traits of fossil cereal grains provide clues on sustainability at the beginnings of Mediterranean agriculture.

    PubMed

    Aguilera, Mònica; Araus, José Luis; Voltas, Jordi; Rodríguez-Ariza, Maria Oliva; Molina, Fernando; Rovira, Núria; Buxó, Ramon; Ferrio, Juan Pedro

    2008-06-01

    We present a novel approach to study the sustainability of ancient Mediterranean agriculture that combines the measurement of carbon isotope discrimination (Delta(13)C) and nitrogen isotope composition (delta(15)N) along with the assessment of quality traits in fossil cereal grains. Charred grains of naked wheat and barley were recovered in Los Castillejos, an archaeological site in SE Spain, with a continuous occupation of ca. 1500 years starting soon after the origin of agriculture (ca. 4000 BCE) in the region. Crop water status and yield were estimated from Delta(13)C and soil fertility and management practices were assessed from the delta(15)N and N content of grains. The original grain weight was inferred from grain dimensions and grain N content was assessed after correcting N concentration for the effect of carbonisation. Estimated water conditions (i.e. rainfall) during crop growth remained constant for the entire period. However, the grain size and grain yield decreased progressively during the first millennium after the onset of agriculture, regardless of the species, with only a slight recovery afterwards. Minimum delta(15)N values and grain N content were also recorded in the later periods of site occupation. Our results indicate a progressive loss of soil fertility, even when the amount of precipitation remained steady, thereby indicating the unsustainable nature of early agriculture at this site in the Western Mediterranean Basin. In addition, several findings suggest that barley and wheat were cultivated separately, the former being restricted to marginal areas, coinciding with an increased focus on wheat cultivation. John Wiley & Sons, Ltd

  10. Opening the "Black Box" of Agro-Scientific Expert Knowledge--and Bringing the Perspectives Back into the Agricultural University

    ERIC Educational Resources Information Center

    Kaltoft, Pernille; Rasmussen, Jesper

    2004-01-01

    Quite a few papers in the two journals, The Journal of Agricultural Education and Extension and The Journal of Sustainable Agriculture, deal with ideas for future education towards sustainability and extension and advisory service as facilitation. Both subjects include participatory learning and/or farming systems approaches based on systems…

  11. Managing nitrogen for sustainable development.

    PubMed

    Zhang, Xin; Davidson, Eric A; Mauzerall, Denise L; Searchinger, Timothy D; Dumas, Patrice; Shen, Ye

    2015-12-03

    Improvements in nitrogen use efficiency in crop production are critical for addressing the triple challenges of food security, environmental degradation and climate change. Such improvements are conditional not only on technological innovation, but also on socio-economic factors that are at present poorly understood. Here we examine historical patterns of agricultural nitrogen-use efficiency and find a broad range of national approaches to agricultural development and related pollution. We analyse examples of nitrogen use and propose targets, by geographic region and crop type, to meet the 2050 global food demand projected by the Food and Agriculture Organization while also meeting the Sustainable Development Goals pertaining to agriculture recently adopted by the United Nations General Assembly. Furthermore, we discuss socio-economic policies and technological innovations that may help achieve them.

  12. Biostimulators: A New Trend towards Solving an Old Problem.

    PubMed

    Posmyk, Małgorzata M; Szafrańska, Katarzyna

    2016-01-01

    Stresses provoked by adverse living conditions are inherent to a changing environment (climate change and anthropogenic influence) and they are basic factors that limit plant development and yields. Agriculture always struggled with this problem. The survey of non-toxic, natural, active substances useful in protection, and stimulation of plants growing under suboptimal and even harmful conditions, as well as searching for the most effective methods for their application, will direct our activities toward sustainable development and harmony with nature. It seems highly probable that boosting natural plant defense strategies by applying biostimulators will help to solve an old problem of poor yield in plant cultivation, by provoking their better growth and development even under suboptimal environmental conditions. This work is a concise review of such substances and methods of their application to plants.

  13. Explaining Strengthening Mechanisms, Institutional Orientations and Problematic Challenges of University Agricultural Research in Iran

    ERIC Educational Resources Information Center

    Sharifzadeh, Aboulghasem; Abdollahzadeh, Gholamhossein

    2009-01-01

    According to empirical evidence and noted implications of sustainable agricultural development as a systemic and multi-actor process, integration of the research function of higher agricultural education in Iranian agricultural research systems seems to be an ongoing and considerable necessity. With the aim of identification and analysis of…

  14. Genetic Technology and Agricultural Development

    ERIC Educational Resources Information Center

    Staub, William J.; Blase, Melvin G.

    1971-01-01

    Examines the nature, application, limits and potential of applied genetics in plant breeding as a factor in South Asian agricultural development. Concludes other factors were also present in recent agricultural growth, and indicates some economic implications of continued growth, including problems of employment of displaced rural workers. (AL)

  15. Salty or Sweet: Exploring the Challenges of Groundwater Salinization Within a Sustainability Framework

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Van Meter, K. J.; Tate, E.

    2012-12-01

    In semi-arid to arid landscapes under intensive irrigation, groundwater salinization can be a persistent and critical problem, leading to reduced agricultural productivity, limited access to fresh drinking water, and ultimately desertification. It is estimated that in India alone, problems of salinity are now affecting over 6 million hectares of agricultural land. In villages of the Mewat district of Haryana in Northern India, subsistence-level farming is the primary source of income, and farming families live under serious threat from increasing salinity levels, both in terms of crop production and adequate supplies of drinking water. The Institute for Rural Research and Development (IRRAD), a non-governmental organization (NGO) working in Mewat, has taken an innovative approach in this area to problems of groundwater salinization, using check dams and rainwater harvesting ponds to recharge aquifers in the freshwater zones of upstream hill areas, and to create freshwater pockets within the saline groundwater zones of down-gradient areas. Initial, pilot-scale efforts have led to apparent success in raising groundwater levels in freshwater zones and changing the dynamics of encroaching groundwater salinity, but the expansion of such efforts to larger-scale restoration is constrained by the availability of adequate resources. Under such resource constraints, which are typical of international development work, it becomes critical to utilize a decision-analysis framework to quantify both the immediate and long-term effectiveness and sustainability of interventions by NGOs such as IRRAD. In the present study, we have developed such a framework, linking the climate-hydrological dynamics of monsoon driven systems with village-scale socio-economic attributes to evaluate the sustainability of current restoration efforts and to prioritize future areas for intervention. We utilize a multi-dimensional metric that takes into account both physical factors related to water

  16. Economic Drought Impact on Agriculture: analysis of all agricultural sectors affected

    NASA Astrophysics Data System (ADS)

    Gil, M.; Garrido, A.; Hernández-Mora, N.

    2012-04-01

    The analysis of drought impacts is essential to define efficient and sustainable management and mitigation. In this paper we present a detailed analysis of the impacts of the 2004-2008 drought in the agricultural sector in the Ebro river basin (Spain). An econometric model is applied in order to determine the magnitude of the economic loss attributable to water scarcity. Both the direct impacts of drought on agricultural productivity and the indirect impacts of drought on agricultural employment and agroindustry in the Ebro basin are evaluated. The econometric model measures losses in the economic value of irrigated and rainfed agricultural production, of agricultural employment and of Gross Value Added both from the agricultural sector and the agro-industrial sector. The explanatory variables include an index of water availability (reservoir storage levels for irrigated agriculture and accumulated rainfall for rainfed agriculture), a price index representative of the mix of crops grown in each region, and a time variable. The model allows for differentiating the impacts due to water scarcity from other sources of economic losses. Results show how the impacts diminish as we approach the macro-economic indicators from those directly dependent on water abstractions and precipitation. Sectors directly dependent on water are the most affected with identifiable economic losses resulting from the lack of water. From the management perspective implications of these findings are key to develop mitigation measures to reduce drought risk exposure. These results suggest that more open agricultural markets, and wider and more flexible procurement strategies of the agro-industry reduces the socio-economic exposure to drought cycles. This paper presents the results of research conducted under PREEMPT project (Policy relevant assessment of the socioeconomic effects of droughts and floods, ECHO - grant agreement # 070401/2010/579119/SUB/C4), which constitutes an effort to provide

  17. Healthy and sustainable diets for future generations.

    PubMed

    Green, Hilary; Broun, Pierre; Cook, Douglas; Cooper, Karen; Drewnowski, Adam; Pollard, Duncan; Sweeney, Gary; Roulin, Anne

    2018-07-01

    Global food systems will face unprecedented challenges in the coming years. They will need to meet the nutritional needs of a growing population and feed an expanding demand for proteins. This is against a backdrop of increasing environmental challenges (water resources, climate change, soil health) and the need to improve farming livelihoods. Collaborative efforts by a variety of stakeholders are needed to ensure that future generations have access to healthy and sustainable diets. Food will play an increasingly important role in the global discourse on health. These topics were explored during Nestlé's second international conference on 'Planting Seeds for the Future of Food: The Agriculture, Nutrition and Sustainability Nexus', which took place in July 2017. This article discusses some of the key issues from the perspective of three major stakeholder groups, namely farming/agriculture, the food industry and consumers. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  18. A review on water pricing problem for sustainable water resource

    NASA Astrophysics Data System (ADS)

    Hek, Tan Kim; Ramli, Mohammad Fadzli; Iryanto

    2017-05-01

    A report that presented at the World Forum II at The Hague in March 2000, said that it would be water crisis around the world and some countries will be lack of water in 2025, as a result of global studies. Inefficient using of water and considering water as free goods which means it can be used as much as we want without any lost. Thus, it causes wasteful consumption and low public awareness in using water without effort to preserve and conserve the water resources. In addition, the excessive exploitation of ground water for industrial facilities also leads to declining of available freshwater. Therefore, this paper reviews some problems arise all over the world regarding to improper and improving management, policies and methods to determine the optimum model of freshwater price in order to avoid its wasteful thus ensuring its sustainability. In this paper, we also proposed a preliminary model of water pricing represents a case of Medan, North Sumatera, Indonesia.

  19. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts

  20. Simulating Sustainable P Management Practices in Tile-Drained Landscapes of Central Ohio Using the Agricultural Policy Environmental Extender (APEX)

    NASA Astrophysics Data System (ADS)

    Ford, W. I., III; King, K.; Williams, M.

    2014-12-01

    Despite extensive application of conservation practices to minimize sediment P delivery to streams, hypoxic conditions and harmful algal blooms persist in receiving water bodies. Tile-drainage networks are a focal point for reducing soluble P in the food-producing Midwestern United States in that they promote higher connectivity between upland soils and stream channels which decreases soil contact time, and biogeochemical alterations. A critical next step to reduce the environmental impact and maintain sustainable agriculture is to implement best management practices (BMPs) under a holistic framework that considers adverse effects to water resources and crop production, while maintaining economic feasibility. The objective of this study was to apply a robust numerical model, the Agricultural Policy Environmental Extender (APEX), in a tile-drained landscape in Central Ohio in order to evaluate the effectiveness of a suite of BMPs on soluble and particulate P delivery to stream channels. The model was applied and evaluated at two adjacent edge-of-field sites with similar soil, topographic and management characteristics (except for tillage and tile installation on the south field in 2012, preceded by more than 20 years of no-till operations). Three years of daily discharge, total suspended solids, soluble P, soluble N (NO3 and NH4), total P, total N, and crop yields were utilized to verify the model performance. Prevalent BMPs simulated within the modeling framework included drainage water management, tillage and crop rotations, the 4Rs framework (right fertilizer source, rate, time, and placement), and bioreactors. Results of the study quantify the ability of the numerical model to simulate hydrology and P transport for surface runoff and subsurface tile drainage and highlight modifications that improve model performance. Further, results highlight BMPs that effectively reduce P loads to streams while maintaining crop yields, which can later be used to inform BMPs

  1. Is voluntary certification of tropical agricultural commodities achieving sustainability goals for small-scale producers? A review of the evidence

    NASA Astrophysics Data System (ADS)

    DeFries, Ruth S.; Fanzo, Jessica; Mondal, Pinki; Remans, Roseline; Wood, Stephen A.

    2017-03-01

    Over the last several decades, voluntary certification programs have become a key approach to promote sustainable supply chains for agricultural commodities. These programs provide premiums and other benefits to producers for adhering to environmental and labor practices established by the certifying entities. Following the principles of Cochrane Reviews used in health sciences, we assess evidence to evaluate whether voluntary certification of tropical agricultural commodities (bananas, cocoa, coffee, oil palm, and tea) has achieved environmental benefits and improved economic and social outcomes for small-scale producers at the level of the farm household. We reviewed over 2600 papers in the peer-review literature and identified 24 cases of unique combinations of study area, certification program, and commodity in 16 papers that rigorously analyzed differences between treatment (certified households) and control groups (uncertified households) for a wide range of response variables. Based on analysis of 347 response variables reported in these papers, we conclude that certification is associated on average with positive outcomes for 34% of response variables, no significant difference for 58% of variables, and negative outcomes for 8% of variables. No significant differences were observed for different categories of responses (environmental, economic and social) or for different commodities (banana, coffee and tea), except negative outcomes were significantly less for environmental than other outcome categories (p = 0.01). Most cases (20 out of 24) investigated coffee certification and response variables were inconsistent across cases, indicating the paucity of studies to conduct a conclusive meta-analysis. The somewhat positive results indicate that voluntary certification programs can sometimes play a role in meeting sustainable development goals and do not support the view that such programs are merely greenwashing. However, results also indicate that

  2. Experience from use of GMOs in Argentinian agriculture, economy and environment.

    PubMed

    Burachik, Moisés

    2010-11-30

    Argentina is the second largest grower of genetically modified (GM) crops. This high level of adoption of this new agricultural technology is the result of a complex combination of circumstances. We can identify four main causes that led to this: political support (from agriculture officials), ability to solve prevalent farmers' needs, economic and environmental factors and an early implementation of effective regulations. The political willingness to study this new technology and crops as well as the recruitment of sound professionals and scientists to perform the task was crucial. These professionals, with very diverse backgrounds, created the necessary regulatory framework to work with these new crops. Farmers played a decisive role, as adopting this new technology solved some of their agronomic problems, helped them perform more sustainable agronomic practices and provided economic benefits. Nonetheless, all these advancements had not been possible without a rational, science-based and flexible regulatory framework that would make sure that the GM crops were safe for food, feed and processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Hydroeconomic modeling of sustainable groundwater management

    NASA Astrophysics Data System (ADS)

    MacEwan, Duncan; Cayar, Mesut; Taghavi, Ali; Mitchell, David; Hatchett, Steve; Howitt, Richard

    2017-03-01

    In 2014, California passed legislation requiring the sustainable management of critically overdrafted groundwater basins, located primarily in the Central Valley agricultural region. Hydroeconomic modeling of the agricultural economy, groundwater, and surface water systems is critically important to simulate potential transition paths to sustainable management of the basins. The requirement for sustainable groundwater use by 2040 is mandated for many overdrafted groundwater basins that are decoupled from environmental and river flow effects. We argue that, for such cases, a modeling approach that integrates a biophysical response function from a hydrologic model into an economic model of groundwater use is preferable to embedding an economic response function in a complex hydrologic model as is more commonly done. Using this preferred approach, we develop a dynamic hydroeconomic model for the Kings and Tulare Lake subbasins of California and evaluate three groundwater management institutions—open access, perfect foresight, and managed pumping. We quantify the costs and benefits of sustainable groundwater management, including energy pumping savings, drought reserve values, and avoided capital costs. Our analysis finds that, for basins that are severely depleted, losses in crop net revenue are offset by the benefits of energy savings, drought reserve value, and avoided capital costs. This finding provides an empirical counterexample to the Gisser and Sanchez Effect.

  4. Geomorphological characterization of conservation agriculture

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta

    2017-04-01

    Soil water erosion is one of the major threats to soil resources throughout the world. Conventional agriculture has worsened the situation. Therefore, agriculture is facing multiple challenges: it has to produce more food to feed a growing population, and, on the other hand, safeguard natural resources adopting more sustainable production practices. In this perspective, more conservation-minded soil management practices should be taken to achieve an environmental sustainability of crop production. Indeed, conservation agriculture is considered to produce relevant environmental positive outcomes (e.g. reducing runoff and soil erosion, improving soil organic matter content and soil structure, and promoting biological activity). However, as mechanical weed control is limited or absent, in conservation agriculture, dependence on herbicides increases especially in the first years of transition from the conventional system. Consequently, also the risk of herbicide losses via runoff or adsorbed to eroded soil particles could be increased. To better analyse the complexity of soil water erosion and runoff processes in landscapes characterised by conservation agriculture, first, it is necessary to demonstrate if such different practices can significantly affect the surface morphology. Indeed, surface processes such erosion and runoff strongly depend on the shape of the surface. The questions are: are the lands treated with conservation and conventional agriculture different from each other regarding surface morphology? If so, can these differences provide a better understanding of hydrogeomorphic processes as the basis for a better and sustainable land management? To give an answer to these questions, we considered six study areas (three cultivated with no-tillage techniques, three with tillage techniques) in an experimental farm. High-resolution topography, derived from low-cost and fast photogrammetric techniques Structure-from-Motion (SfM), served as the basis to

  5. Sustainable Soil Management: Its perception and the need for policy intervention

    NASA Astrophysics Data System (ADS)

    Basch, Gottlieb; Kassam, Amir; González-Sánchez, Emilio

    2017-04-01

    As stated in the strategic objectives of the Global Soil Partnership "healthy soils and sustainable soil management are the precondition for human well-being and economic welfare and therefore play the key role for sustainable development". Although the functional properties of a healthy soil are well understood, in practice it is easily overlooked what is necessary to achieve and sustain healthy agricultural soils. This contribution intends: to discuss the concept of sustainable soil management in agricultural production with regard to soil health, and to highlight its importance in the achievement of both Sustainable Development Goals and the 4 per mille objectives, as well as for the Common Agricultural Policy (CAP). In Europe, soil and the need for its conservation and stewardship gained visibility at the beginning of this century during the discussions related to the Soil Thematic Strategy. This higher level of awareness concerning the status of Europe's soils led to the introduction of soil conservation standards into the cross-compliance mechanism within the 1st Pillar of CAP. These standards were applied through the definition of Good Agricultural and Environmental Conditions (GAECs) which are compulsory for all farmers receiving direct payments, and in the last CAP reform in 2014, through the introduction of additional Greening Measures in Pilar 1. Despite these measures and the claim of some writers that they already contributed to significantly reducing soil erosion, the EC Joint Research Centre still reports water erosion in Europe amounting to almost one billion tonnes annually. Regarding soil conservation, soil carbon stocks or the provision of additional ecosystem services, measures called for in GAEC 4 (Minimum soil cover), in GAEC 5 (Minimum land management reflecting site specific conditions to limit soil erosion), and in GAEC 6 (Maintenance of soil organic matter level through appropriate practices, …), give the impression that a lot is being

  6. Development of Strategies for Sustainable Irrigation Water Management in Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    During 1960 - 1990 years irrigated areas in Russia have increased rapidly, helping to boost agricultural output. Although the impressive achievements of irrigation in this period its large experience indicates problems and failures of irrigation water management. In addition to large water use and low irrigation water efficiency, environmental concerns (excessive water depletion, water quality reduction, water logging, soil degradation) are usually considered like the most significant problem of the irrigation sector. Despite of considerable shrinking of irrigated areas in Russia and decreasing of water withdrawal for irrigation purposes during two last decades a degradation of environment as well as degradation of soil and water resources in irrigated areas was prolonged and will probably continue if current irrigation practices are maintained. Nowadays, in different regions of Russia there are societal demand to restore agricultural irrigation in Russia as answer to challenges from climate pattern changes and degradation of land & water resources. In the respect of these demands there is a need to develop strategies for sustainability of agricultural irrigation in Russia that should be based on three main societal objectives: costeffective use of water in irrigated agriculture at farm level, and satisfactory preserving the natural environment. Therefore sustainable irrigation water management is not only an objective at farm level but also an overall goal at the local and regional as well. A way to achieve sustainability in irrigation water management is to solve the local conflicts arising from the interactions between water use at irrigation areas and surrounding environment. Thus should be based on the development of irrigation framework program including on the irrigation water management issues, policies & decisions making at federal and regional levels should be based on the indicators of environment & irrigation water efficiency monitoring promoting the

  7. Modeling groundwater quality in an arid agricultural environment in the face of an uncertain climate: the case of Mewat District, India

    NASA Astrophysics Data System (ADS)

    Weber, M. C.; Ward, A. S.; Muste, M.

    2014-12-01

    The salinization of groundwater resources is a widespread problem in arid agricultural environments. In Mewat District (Haryana, India), groundwater salinity has rendered much of the accessible supply unfit for human consumption or agriculture. Historically, this closed basin retained fresh pockets of water at the foothills of the Aravalli Hills, where monsoonal precipitation runoff from the mountains was recharged through infiltration or facilitated by man-made structures. To date, an increasing number of pumps supply the region with fresh water for consumption and agriculture leading to shrinking the freshwater zone at an accelerated pace. The potential for increased human consumption corroborated with the effects of climate change bring uncertainty about the future of water security for the Mewat communities, most of them critically bound to the existence of local water. This study addresses the sustainability of the freshwater supply under a range of land interventions and climate scenarios, using a 2-D groundwater flow and transport model. Our results quantify potential futures for this arid, groundwater-dependent location, using numerical groundwater modeling to quantify interactions between human water use, infrastructure, and climate. Outcomes of this modeling study will inform an NGO active in the area on sustainable management of groundwater resources.

  8. Sustainable agriculture, soil management and erosion from prehistoric times to 2100

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, Tom; Gómez, Jose Alfonso; Infante Amate, Juan; González Molina, Manuel; Fernández, David Soto; Guzmán, Gema; Vanderlinden, Karl; Laguna, Ana; Giráldez, Juan Vicente

    2015-04-01

    The rational use of soil requires the selection of management practices to take profit of the beneficial functions of plant growth, water and nutrient storage, and pollutants removal by filtering and decomposition without altering its properties. However, the first evidence of important and widespread erosion peaks can generally be found with the arrival of the first farmers all over the world. In areas with a long land-use history such as the Mediterranean, clear signs indicating the advanced degradation status of the landscape, such as heavily truncated soils, are visible throughout. Soil conservation practices are then aimed at reducing erosion to geological rates, in equilibrium with long-term soil formation rates, while maximizing agricultural production. The adoption of such practices in most areas of the world are as old as the earliest soil erosion episodes themselves. This work firstly reviews historical evidence linking soil management and soil erosion intensity, with examples from N Europe and the Mediterranean. In particular, work by the authors in olive orchards will be presented that shows how significant variations in soil erosion rates between could be linked to the historical soil management. The potential of historical documents for calibrating a soil erosion model is shown as the model, in this case RUSLE-based and combining tillage and water erosion, adequately represents the measured erosion rate dynamics. Secondly, results from present-day, long-term farm experiments in the EU are reviewed to evaluate the effect of different soil management practices on physical soil properties, such as bulk density, penetration resistance, aggregate stability, runoff coefficient or sediment yield. Finally, we reflect upon model and field data that indicate how future global climate change is expected to affect soil management and erosion and how the examples used above hold clues about sustainable historical management practices that can be used successfully

  9. Nastran's Application in Agricultural Engineering

    NASA Technical Reports Server (NTRS)

    Vanwicklen, G. L.

    1985-01-01

    Finite element analysis has been recognized as a valuable solution method by agricultural engineers. NASTRAN has been obtained by the Agricultural Engineering Department at the University of Georgia. The NASTRAN Thermal Analyzer has been used in the teaching program for an undergraduate course in heat transfer and will be used for a new graduate course in finite element analysis. The NASTRAN Thermal Analyzer has also been applied to several research problems in the Agricultural Engineering Department.

  10. Farmers' Willingness to Adopt Conservation Agriculture: New Evidence from Lebanon.

    PubMed

    Chalak, Ali; Irani, Alexandra; Chaaban, Jad; Bashour, Issam; Seyfert, Karin; Smoot, Kaitlyn; Abebe, Gumataw Kifle

    2017-10-01

    With increasing food insecurity and climate change, conservation agriculture has emerged as a sustainable alternative to intensive conventional agriculture as a source of food supply. Yet the adoption rate of conservation agriculture is still low. Our paper analyses the factors affecting farmers' willingness to adopt conservation agriculture in Lebanon. The findings show that household characteristics-years of farming and farm size affect conservation agriculture adoption. However, household characteristics alone were insufficient to explain conservation agriculture adoption. We found that farming experience, information sources, frequency of irrigation, and severity of weed infestation in the past, participation in specific trainings, and farmers' perception about the long-term impact of conservation agriculture, were key determinants of conservation agriculture adoption. Our paper encourages policymakers to invest in conservation agriculture to overcome food insecurity and environmental changes affecting food systems in the Middle East. The paper also informs agribusiness firms to view conservation agriculture as a viable alternative to strengthen their business relationship with farmers in arid and semi-arid regions.

  11. Farmers' Willingness to Adopt Conservation Agriculture: New Evidence from Lebanon

    NASA Astrophysics Data System (ADS)

    Chalak, Ali; Irani, Alexandra; Chaaban, Jad; Bashour, Issam; Seyfert, Karin; Smoot, Kaitlyn; Abebe, Gumataw Kifle

    2017-10-01

    With increasing food insecurity and climate change, conservation agriculture has emerged as a sustainable alternative to intensive conventional agriculture as a source of food supply. Yet the adoption rate of conservation agriculture is still low. Our paper analyses the factors affecting farmers' willingness to adopt conservation agriculture in Lebanon. The findings show that household characteristics—years of farming and farm size affect conservation agriculture adoption. However, household characteristics alone were insufficient to explain conservation agriculture adoption. We found that farming experience, information sources, frequency of irrigation, and severity of weed infestation in the past, participation in specific trainings, and farmers' perception about the long-term impact of conservation agriculture, were key determinants of conservation agriculture adoption. Our paper encourages policymakers to invest in conservation agriculture to overcome food insecurity and environmental changes affecting food systems in the Middle East. The paper also informs agribusiness firms to view conservation agriculture as a viable alternative to strengthen their business relationship with farmers in arid and semi-arid regions.

  12. Governance, agricultural intensification, and land sparing in tropical South America.

    PubMed

    Ceddia, Michele Graziano; Bardsley, Nicholas Oliver; Gomez-y-Paloma, Sergio; Sedlacek, Sabine

    2014-05-20

    In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970-2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process.

  13. Biofuels-Strengthening links between agriculture and military

    USDA-ARS?s Scientific Manuscript database

    U.S. agricultural producers and military planners share a strong commitment to the commercial-scale development of ready-to-use biofuels that can be sustainably produced using plant-based materials harvested from farms, forests, and other rural lands. Researchers in private business, government, and...

  14. Labor Factor Efficiency in the Agricultural Industry

    ERIC Educational Resources Information Center

    R?y, Inna U.; Shakulikova, Gulzada T.; Kozhakhmetova, Gulnar A.; Lashkareva, Olga V.; Bondarenko, Elena G.; Bermukhambetova, Botagoz B.; Baimagambetova, Zamzagul A.; Zhetessova, Mariyam T.; Beketova, Kamar N.; Anafiyaeva, Zhibek

    2016-01-01

    Agricultural problems associated with prospects of the rural population and agriculture in general have recently become an important factor in the modern economic policy development. The urgency of finding ways to improve the labor resource efficiency in agriculture pursuant to the state tasks is determined by the need to restore the agricultural…

  15. Challenges and opportunities in supporting sustainable agriculture and food security

    USDA-ARS?s Scientific Manuscript database

    The 2014 IUPAC International Congress of Pesticide Chemistry (San Francisco, August, 2014) included a symposium on “Challenges Associated with Global Adoption of Agricultural Biotechnology” to review current obstacles in promoting GM crops. Challenges identified by symposium presenters included i) ...

  16. The Metric System. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying mathematical operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  17. Sustainability - what are the odds? Envisioning the future of our environment, economy and society

    EPA Science Inventory

    Sustainability – the word is everywhere these days. Cities, transportation systems, energy producers, agriculture, fisheries, businesses, even mines (!), are making claims or making plans for sustainability. Several formal definitions of sustainability have been offered; here is ...

  18. Tracking Agricultural Land Degradation with Landsat

    NASA Astrophysics Data System (ADS)

    Lam, K.; Jimenez, U.; Mclean, A.

    2013-12-01

    Land preservation and in particular, soil preservation, is key to maintaining the stability of wildlife on earth. The necessity to maintain land quality isn't unique to any specific area, it is a global issue. Land degradation can be witnessed across the globe, from the Heihe River Basin, China to the San Joaquin River in Central Valley, California. Large-scale 'traditional' agricultural practices such as widespread monoculture, overuse of chemical fertilizers and pesticides, and over-farming, have been found to cause significant land degradation in many regions. Once the causes of land degradation have been established, it is important to research preventative and rehabilitative measures. This is where the popularization of agricultural sustainability has proven wildly important, manifesting in a world-wide phenomenon. This research used Landsat and ENVI to: (1) identify changes in vegetation, over time, along the Heihe River, in an effort to measure the effectiveness of a new mandate focused on rehabilitating this desertification-prone area; and (2) show changes in the San Joaquin River through three droughts (1986 to present). The sudden spur of interest in agricultural sustainability and land preservation has led to changes in legislation, such as the Heihe River Basin Mandate, increased concern over the use of land degrading techniques, tools, chemicals, and more research on extreme weather events.

  19. Agriculture and Community Development Interface. Joint Meeting of the Southern Region State Leaders for Agriculture and Natural Resources and Community Resource Development Proceedings (October 8-11, 1989, Williamsburg, Virginia).

    ERIC Educational Resources Information Center

    Warner, Paul D., Ed.; Campbell, Raymond, Ed.

    This document is a summary of remarks presented at a joint meeting of Agriculture and Natural Resources and Community Resource Development state leaders in 1989. The focus of the meeting was economic viability, rural extension and education, water quality, waste management, biotechnology, low-input sustainable agriculture (LISA), and rural…

  20. Intensive agriculture erodes β-diversity at large scales.

    PubMed

    Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C

    2012-09-01

    Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity. © 2012 Blackwell Publishing Ltd/CNRS.

  1. Agricultural Research Needs and Priorities as Perceived by West Virginia Vocational Agriculture Teachers and County Extension Agents. Miscellaneous Publication 11.

    ERIC Educational Resources Information Center

    Chalamira, Lucas R.; Lawrence, Layle D.

    Data were obtained in 1982 from 196 vocational agriculture teachers and 48 county agricultural extension agents identifying specific problems in West Virginia's agriculture that were most in need of research solutions. Multiflora rose eradication, coping with high production costs and interest rates, and improving state level funding for extension…

  2. Sustainable Biofuels Development Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production andmore » utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.« less

  3. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture.

    PubMed

    Nicolopoulou-Stamati, Polyxeni; Maipas, Sotirios; Kotampasi, Chrysanthi; Stamatis, Panagiotis; Hens, Luc

    2016-01-01

    The industrialization of the agricultural sector has increased the chemical burden on natural ecosystems. Pesticides are agrochemicals used in agricultural lands, public health programs, and urban green areas in order to protect plants and humans from various diseases. However, due to their known ability to cause a large number of negative health and environmental effects, their side effects can be an important environmental health risk factor. The urgent need for a more sustainable and ecological approach has produced many innovative ideas, among them agriculture reforms and food production implementing sustainable practice evolving to food sovereignty. It is more obvious than ever that the society needs the implementation of a new agricultural concept regarding food production, which is safer for man and the environment, and to this end, steps such as the declaration of Nyéléni have been taken.

  4. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture

    PubMed Central

    Nicolopoulou-Stamati, Polyxeni; Maipas, Sotirios; Kotampasi, Chrysanthi; Stamatis, Panagiotis; Hens, Luc

    2016-01-01

    The industrialization of the agricultural sector has increased the chemical burden on natural ecosystems. Pesticides are agrochemicals used in agricultural lands, public health programs, and urban green areas in order to protect plants and humans from various diseases. However, due to their known ability to cause a large number of negative health and environmental effects, their side effects can be an important environmental health risk factor. The urgent need for a more sustainable and ecological approach has produced many innovative ideas, among them agriculture reforms and food production implementing sustainable practice evolving to food sovereignty. It is more obvious than ever that the society needs the implementation of a new agricultural concept regarding food production, which is safer for man and the environment, and to this end, steps such as the declaration of Nyéléni have been taken. PMID:27486573

  5. The Changing Face of Agricultural Education in Nigeria: Challenges and Prospects

    ERIC Educational Resources Information Center

    Egun, A. C.

    2010-01-01

    Self sufficiency in food and raw material production for agro-based industries has been the thrust of Nigerian agricultural policy. Realizing the goals of the policy has been bedevilled with series of plethora problems. This paper took a look at agricultural reforms, examined the problems of agricultural practices and suggests education of the…

  6. Sustainable Development: Paradoxes, Misunderstandings and Learning Organizations

    ERIC Educational Resources Information Center

    Ramirez, Gabriel A.

    2012-01-01

    Purpose: Sustainability is, in itself, the idea of a harmonic answer to the dual nature of the most pressing problem for global society. Most of the problems dealing with sustainability concern its dual and contradictory nature. That paradoxical reality is in no way a unique feature of sustainability; its universal pervasiveness is demonstrated by…

  7. The Unsustainability Imperative? Problems with "Sustainability" and "Sustainable Development" as Regulative Ideals

    ERIC Educational Resources Information Center

    Stables, Andrew

    2013-01-01

    Normality is imminently catastrophic. Climate change is a contemporary instantiation of the perpetual sense of crisis that characterises the human condition, and concepts such as sustainability and resilience serve as regulative ideals (cf. beauty, perfection, and truth) in the fight against ubiquitous unsustainability. Unsustainability is an…

  8. The macroecology of sustainability

    USGS Publications Warehouse

    Burger, Joseph R.; Allen, Craig D.; Brown, James H.; Burnside, William R.; Davidson, Ana D.; Fristoe, Trevor S.; Hamilton, Marcus J.; Mercado-Silva, Norman; Nekola, Jeffrey C.; Okie, Jordan G.; Zuo, Wenyun

    2012-01-01

    The discipline of sustainability science has emerged in response to concerns of natural and social scientists, policymakers, and lay people about whether the Earth can continue to support human population growth and economic prosperity. Yet, sustainability science has developed largely independently from and with little reference to key ecological principles that govern life on Earth. A macroecological perspective highlights three principles that should be integral to sustainability science: 1) physical conservation laws govern the flows of energy and materials between human systems and the environment, 2) smaller systems are connected by these flows to larger systems in which they are embedded, and 3) global constraints ultimately limit flows at smaller scales. Over the past few decades, decreasing per capita rates of consumption of petroleum, phosphate, agricultural land, fresh water, fish, and wood indicate that the growing human population has surpassed the capacity of the Earth to supply enough of these essential resources to sustain even the current population and level of socioeconomic development.

  9. The Macroecology of Sustainability

    PubMed Central

    Burger, Joseph R.; Allen, Craig D.; Brown, James H.; Burnside, William R.; Davidson, Ana D.; Fristoe, Trevor S.; Hamilton, Marcus J.; Mercado-Silva, Norman; Nekola, Jeffrey C.; Okie, Jordan G.; Zuo, Wenyun

    2012-01-01

    The discipline of sustainability science has emerged in response to concerns of natural and social scientists, policymakers, and lay people about whether the Earth can continue to support human population growth and economic prosperity. Yet, sustainability science has developed largely independently from and with little reference to key ecological principles that govern life on Earth. A macroecological perspective highlights three principles that should be integral to sustainability science: 1) physical conservation laws govern the flows of energy and materials between human systems and the environment, 2) smaller systems are connected by these flows to larger systems in which they are embedded, and 3) global constraints ultimately limit flows at smaller scales. Over the past few decades, decreasing per capita rates of consumption of petroleum, phosphate, agricultural land, fresh water, fish, and wood indicate that the growing human population has surpassed the capacity of the Earth to supply enough of these essential resources to sustain even the current population and level of socioeconomic development. PMID:22723741

  10. Soil Management Effects on Gas Fluxes from an Organic Soil Agricultural System

    NASA Astrophysics Data System (ADS)

    Jennewein, S. P.; Bhadha, J. H.; Lang, T. A.; Singh, M.; Daroub, S. H.; McCray, M.

    2015-12-01

    The role of soil management on gas flux isn't well understood for Histosols of the Everglades Agricultural Area (EAA) of southern Florida. The region is responsible for roughly half of sugarcane (Saccharum spp. hybrids) production in the USA along with supplying winter vegetable crops to the eastern USA. Future productivity in the EAA is jeopardized by soil subsidence resulting from oxidation of organic matter. Establishing the role of tillage, water-table depth, nitrogen fertilizer, and soil depth on gas flux will help determine how effective various managements are on conserving soil. Ongoing lysimeter and field studies examined effects of management practices (water-table, tillage, and nitrogen fertilizer), and soil depth on, gas emission and microbial biomass. The trials were set in Belle Glade, FL, on Lauderhill muck (Lithic Haplosaprists). Results to be presented include soil microbial biomass and soil gas (CO2, CH4, and N2O) flux. This study provides insight into management effectiveness and agriculture sustainability on shallow muck soils of the EAA and will help farmers mitigate problems associated with soil subsidence and seasonally high water-tables.

  11. Part-Time Employment by Secondary Agricultural Education Teachers

    ERIC Educational Resources Information Center

    Boone, Harry N., Jr.; Scarbrough, Connie; Gartin, Stacy A.; Boone, Deborah A.

    2006-01-01

    The purpose of this study was to compare secondary agricultural educators' perceptions of the benefits and problems associated with teaching agricultural education and being involved in other part-time employment activities. The sample consisted of 107 agricultural educators nonrandomly selected from three states. Sixty-nine usable questionnaires…

  12. Environmental Education, Sustainable Agriculture, and CGIAR: History and Future Prospects

    ERIC Educational Resources Information Center

    Nelles, Wayne

    2011-01-01

    The Consultative Group on International Agricultural Research (CGIAR) is a global network of 15 specialized centers employing around 2,000 international scientists and 6,000 national staff in over 100 countries. CGIAR educational approaches to environmental issues have varied amid conflicting perspectives. Inadequate policies, learning resources,…

  13. [Effects of agricultural practices on community structure of arbuscular mycorrhizal fungi in agricultural ecosystem: a review].

    PubMed

    Sheng, Ping-Ping; Li, Min; Liu, Run-Jin

    2011-06-01

    Arbuscular mycorrhizal (AM) fungi are rich in diversity in agricultural ecosystem, playing a vital role based on their unique community structure. Host plants and environmental factors have important effects on AM fungal community structure, so do the agricultural practices which deserve to pay attention to. This paper summarized the research advances in the effects of agricultural practices such as irrigation, fertilization, crop rotation, intercropping, tillage, and pesticide application on AM fungal community structure, analyzed the related possible mechanisms, discussed the possible ways in improving AM fungal community structure in agricultural ecosystem, and put forward a set of countermeasures, i.e., improving fertilization system and related integrated techniques, increasing plant diversity in agricultural ecosystem, and inoculating AM fungi, to enhance the AM fungal diversity in agricultural ecosystem. The existing problems in current agricultural practices and further research directions were also proposed.

  14. Environmental challenges threatening the growth of urban agriculture in the United States.

    PubMed

    Wortman, Sam E; Lovell, Sarah Taylor

    2013-09-01

    Urban agriculture, though often difficult to define, is an emerging sector of local food economies in the United States. Although urban and agricultural landscapes are often integrated in countries around the world, the establishment of mid- to large-scale food production in the U.S. urban ecosystem is a relatively new development. Many of the urban agricultural projects in the United States have emerged from social movements and nonprofit organizations focused on urban renewal, education, job training, community development, and sustainability initiatives. Although these social initiatives have traction, critical knowledge gaps exist regarding the science of food production in urban ecosystems. Developing a science-based approach to urban agriculture is essential to the economic and environmental sustainability of the movement. This paper reviews abiotic environmental factors influencing urban cropping systems, including soil contamination and remediation; atmospheric pollutants and altered climatic conditions; and water management, sources, and safety. This review paper seeks to characterize the limited state of the science on urban agricultural systems and identify future research questions most relevant to urban farmers, land-use planners, and environmental consultants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Protecting and Promoting Indigenous Knowledge: Environmental Adult Education and Organic Agriculture

    ERIC Educational Resources Information Center

    Sumner, Jennifer

    2008-01-01

    Given today's pressing environmental issues, environmental adult educators can help us learn to live more sustainably. One of the models for more sustainable ways of life is organic agriculture, based in a knowledge system that works with nature, not against it. In order to understand this knowledge, we need to frame it in a way that captures all…

  16. The sustainability solutions agenda.

    PubMed

    Sarewitz, Daniel; Clapp, Richard; Crumbley, Cathy; Kriebel, David; Tickner, Joel

    2012-01-01

    Progress toward a more sustainable society is usually described in a "knowledge-first" framework, where science characterizes a problem in terms of its causes and mechanisms as a basis for subsequent action. Here we present a different approach-A Sustainability Solutions Agenda (SSA)-which seeks from the outset to identify the possible pathways to solutions. SSA focuses on uncovering paths to sustainability by improving current technological practice, and applying existing knowledge to identify and evaluate technological alternatives. SSA allows people and organizations to transition toward greater sustainability without sacrificing essential technological functions, and therefore does not threaten the interests that depend on those functions. Whereas knowledge-first approaches view scientific information as sufficient to convince people to take the right actions, even if those actions are perceived as against their immediate interests, SSA allows values to evolve toward greater attention to sustainability as a result of the positive experience of solving a problem.

  17. Global agriculture and carbon trade-offs

    PubMed Central

    Johnson, Justin Andrew; Runge, Carlisle Ford; Senauer, Benjamin; Foley, Jonathan; Polasky, Stephen

    2014-01-01

    Feeding a growing and increasingly affluent world will require expanded agricultural production, which may require converting grasslands and forests into cropland. Such conversions can reduce carbon storage, habitat provision, and other ecosystem services, presenting difficult societal trade-offs. In this paper, we use spatially explicit data on agricultural productivity and carbon storage in a global analysis to find where agricultural extensification should occur to meet growing demand while minimizing carbon emissions from land use change. Selective extensification saves ∼6 billion metric tons of carbon compared with a business-as-usual approach, with a value of approximately $1 trillion (2012 US dollars) using recent estimates of the social cost of carbon. This type of spatially explicit geospatial analysis can be expanded to include other ecosystem services and other industries to analyze how to minimize conflicts between economic development and environmental sustainability. PMID:25114254

  18. Global agriculture and carbon trade-offs.

    PubMed

    Johnson, Justin Andrew; Runge, Carlisle Ford; Senauer, Benjamin; Foley, Jonathan; Polasky, Stephen

    2014-08-26

    Feeding a growing and increasingly affluent world will require expanded agricultural production, which may require converting grasslands and forests into cropland. Such conversions can reduce carbon storage, habitat provision, and other ecosystem services, presenting difficult societal trade-offs. In this paper, we use spatially explicit data on agricultural productivity and carbon storage in a global analysis to find where agricultural extensification should occur to meet growing demand while minimizing carbon emissions from land use change. Selective extensification saves ∼ 6 billion metric tons of carbon compared with a business-as-usual approach, with a value of approximately $1 trillion (2012 US dollars) using recent estimates of the social cost of carbon. This type of spatially explicit geospatial analysis can be expanded to include other ecosystem services and other industries to analyze how to minimize conflicts between economic development and environmental sustainability.

  19. CATIE: Tropical Agricultural Research and Higher Education Center. http://www.catie.ac.cr

    ERIC Educational Resources Information Center

    Applied Environmental Education and Communication, 2004

    2004-01-01

    This article features CATIE (Centro Agronomico Tropical de Investigacion y Ensenanza), a tropical agricultural research and higher education center. CATIE's mission is to be instrumental in poverty reduction and rural development in the American tropics, by promoting diversified and competitive agriculture and sustainable management of natural…

  20. Agricultural Residues and Other Carbon-Based Resources as Feedstocks for Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Yong

    Agricultural residues are generally considered as renewable, economical and environmental-friendly sources to produce carbon-based nanomaterials with many advanced applications. Agricultural residues and by-products generated from the agricultural industry, such as distiller's dried grains with solubles (DDGS), are produced every year on a large scale but lack of proper utilization. As a result, seeking high-value applications based on agricultural residues is essential for the promotion of the economy in agricultural producing states like North Dakota, USA. With the fast development of nanotechnology in recent years, carbon-based nanomaterials have attracted intense research interests in the fields of chemistry, materials science and condensed matter physics due to many unique properties (e.g., chemical and thermal stability, electrical conductivity, mechanical strength, etc.). The development of low-cost nanomaterials using agricultural residues as feedstocks can be a promising route for the sustainable development of the agricultural industry. In this dissertation, the preparation of carbon-based materials from agricultural residues is explored. Many advanced applications are investigated, especially in the field of energy storage devices. The development of porous activate carbons were investigated in detail, and their application as electrode materials of supercapacitors was demonstrated. Hydrothermal carbonization of biomass to produce carbonaceous materials was also covered in this dissertation. In addition to traditional raw materials such as cellulose produced from wood industry, novel material sources such as bacterial cellulose were used to prepare nanocomposites that can be used for the electrodes of supercapacitors. This dissertation contributes to the sustainable development of the agricultural industry in North Dakota.

  1. Agricultural intensification escalates future conservation costs.

    PubMed

    Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L; Koh, Lian Pin; Pascual, Unai

    2013-05-07

    The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive "slash-and-burn" farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives.

  2. Agricultural intensification escalates future conservation costs

    PubMed Central

    Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L.; Koh, Lian Pin; Pascual, Unai

    2013-01-01

    The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive “slash-and-burn” farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives. PMID:23589860

  3. Bioenergy for sustainable development: An African context

    NASA Astrophysics Data System (ADS)

    Mangoyana, Robert Blessing

    This paper assesses the sustainability concerns of bioenergy systems against the prevailing and potential long term conditions in Sub-Saharan Africa with a special attention on agricultural and forestry waste, and cultivated bioenergy sources. Existing knowledge and processes about bioenergy systems are brought into a “sustainability framework” to support debate and decisions about the implementation of bioenergy systems in the region. Bioenergy systems have been recommended based on the potential to (i) meet domestic energy demand and reduce fuel importation (ii) diversify rural economies and create employment (iii) reduce poverty, and (iv) provide net energy gains and positive environmental impacts. However, biofuels will compete with food crops for land, labour, capital and entrepreneurial skills. Moreover the environmental benefits of some feedstocks are questionable. These challenges are, however, surmountable. It is concluded that biomass energy production could be an effective way to achieve sustainable development for bioenergy pathways that (i) are less land intensive, (ii) have positive net energy gains and environmental benefits, and (iii) provide local socio-economic benefits. Feasibility evaluations which put these issues into perspective are vital for sustainable application of agricultural and forest based bioenergy systems in Sub-Saharan Africa. Such evaluations should consider the long run potential of biofuels accounting for demographic, economic and technological changes and the related implications.

  4. Redesigning photosynthesis to sustainably meet global food and bioenergy demand

    PubMed Central

    Ort, Donald R.; Merchant, Sabeeha S.; Alric, Jean; Barkan, Alice; Blankenship, Robert E.; Bock, Ralph; Croce, Roberta; Hanson, Maureen R.; Hibberd, Julian M.; Long, Stephen P.; Moore, Thomas A.; Moroney, James; Niyogi, Krishna K.; Parry, Martin A. J.; Peralta-Yahya, Pamela P.; Prince, Roger C.; Redding, Kevin E.; Spalding, Martin H.; van Wijk, Klaas J.; Vermaas, Wim F. J.; von Caemmerer, Susanne; Weber, Andreas P. M.; Yeates, Todd O.; Yuan, Joshua S.; Zhu, Xin Guang

    2015-01-01

    The world’s crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production. PMID:26124102

  5. Biofuels and the role of space in sustainable innovation journeys☆

    PubMed Central

    Raman, Sujatha; Mohr, Alison

    2014-01-01

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970–80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  6. Biofuels and the role of space in sustainable innovation journeys.

    PubMed

    Raman, Sujatha; Mohr, Alison

    2014-02-15

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  7. Governance, agricultural intensification, and land sparing in tropical South America

    PubMed Central

    Ceddia, Michele Graziano; Bardsley, Nicholas Oliver; Gomez-y-Paloma, Sergio; Sedlacek, Sabine

    2014-01-01

    In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970–2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process. PMID:24799696

  8. Agricultural aviation user requirement priorities

    NASA Technical Reports Server (NTRS)

    Kaplan, R. L.; Meeland, T.; Peterson, J. E.

    1977-01-01

    The results are given of a research project pertaining to the development of agricultural aviation user requirement priorities. The raw data utilized in the project was obtained from the National Agricultural Aviation Association. A specially configured poll, developed by the Actuarial Research Corporation was used to solicit responses from NAAA members and others. The primary product of the poll is the specification of seriousness as determined by the respondents for some selected agricultural aviation problem areas identified and defined during the course of an intensive analysis by the Actuarial Research Corporation.

  9. The Solutions of the Agricultural Land Use Monitoring Problems

    ERIC Educational Resources Information Center

    Vershinin, Valentin V.; Murasheva, Alla A.; Shirokova, Vera A.; Khutorova, Alla O.; Shapovalov, Dmitriy A.; Tarbaev, Vladimir A.

    2016-01-01

    Modern landscape--it's a holistic system of interconnected and interacting components. To questions of primary importance belongs evaluation of stability of modern landscape (including agrarian) and its optimization. As a main complex characteristic and landscape inhomogeneity in a process of agricultural usage serves materials of quantitative and…

  10. Learning about Agriculture within the Framework of Education for Sustainability

    ERIC Educational Resources Information Center

    Tal, Tali

    2008-01-01

    The last two decades have seen increased threats to agricultural landscapes in Israel. Key factors include population growth, strong pressure from construction entrepreneurs and possible profit to land owners who benefit from a legal conversion of farmland into lands allocated for construction. While each Israeli elementary school student used to…

  11. Soil, land use time, and sustainable intensification of agriculture in the Brazilian Cerrado region.

    PubMed

    Trabaquini, Kleber; Galvão, Lênio Soares; Formaggio, Antonio Roberto; de Aragão, Luiz Eduardo Oliveira E Cruz

    2017-02-01

    The Brazilian Cerrado area is in rapid decline because of the expansion of modern agriculture. In this study, we used extensive field data and a 30-year chronosequence of Landsat images (1980-2010) to assess the effects of time since conversion of Cerrado into agriculture upon soil chemical attributes and soybean/corn yield in the Alto do Rio Verde watershed. We determined the rates of vegetation conversion into agriculture, the agricultural land use time since conversion, and the temporal changes in topsoil (0-20 cm soil depth) and subsurface (20-40 cm) chemical attributes of the soils. In addition, we investigated possible associations between fertilization/over-fertilization and land use history detected from the satellites. The results showed that 61.8% of the native vegetation in the Alto do Rio Verde watershed was already converted into agriculture with 31% of soils being used in agriculture for more than 30 years. While other fertilizers in cultivated soils (e.g., Ca +2 , Mg +2 , and P) have been compensated over time by soil management practices to keep crop yield high, large reductions in C org (38%) and N tot (29%) were observed in old cultivated areas. Furthermore, soybean and cornfields having more than 10 years of farming presented higher values of P and Mg +2 than the ideal levels necessary for plant development. Therefore, increased risks of over-fertilization of the soils and environmental contamination with these macronutrients were associated with soybean and cornfields having more than 10 years of farming, especially those with more than 30 years of agricultural land use.

  12. Human factors for a sustainable future.

    PubMed

    Thatcher, Andrew; Yeow, Paul H P

    2016-11-01

    Current human activities are seriously eroding the ability of natural and social systems to cope. Clearly we cannot continue along our current path without seriously damaging our own ability to survive as a species. This problem is usually framed as one of sustainability. As concerned professionals, citizens, and humans there is a strong collective will to address what we see as a failure to protect the natural and social environments that supports us. While acknowledging that we cannot do this alone, human factors and ergonomics needs to apply its relevant skills and knowledge to assist where it can in addressing the commonly identified problem areas. These problems include pollution, climate change, renewable energy, land transformation, and social unrest amongst numerous other emerging global problems. The issue of sustainability raises two fundamental questions for human factors and ergonomics: which system requires sustaining and what length of time is considered sustainable? In this paper we apply Wilson (2014) parent-sibling-child model to understanding what is required of an HFE sustainability response. This model is used to frame the papers that appear in this Special Issue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Brief History of Agricultural Systems Modeling

    NASA Technical Reports Server (NTRS)

    Jones, James W.; Antle, John M.; Basso, Bruno O.; Boote, Kenneth J.; Conant, Richard T.; Foster, Ian; Godfray, H. Charles J.; Herrrero, Mario; Howitt, Richard E.; Janssen, Sandor; hide

    2016-01-01

    Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the next generation models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of this history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. The lessons from history should be considered

  14. Brief history of agricultural systems modeling.

    PubMed

    Jones, James W; Antle, John M; Basso, Bruno; Boote, Kenneth J; Conant, Richard T; Foster, Ian; Godfray, H Charles J; Herrero, Mario; Howitt, Richard E; Janssen, Sander; Keating, Brian A; Munoz-Carpena, Rafael; Porter, Cheryl H; Rosenzweig, Cynthia; Wheeler, Tim R

    2017-07-01

    Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the "next generation" models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of this history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. The lessons from history should be

  15. Research in Agricultural Education. Proceedings of the Eastern Region Agricultural Education Research Conference (43rd, Mystic, Connecticut, May 4-6, 1989). Volume 43.

    ERIC Educational Resources Information Center

    Mannebach, Alfred J., Comp.; Bowen, Blannie E., Comp.

    This document contains 10 papers selected for presentation at a research conference on agricultural education. The titles are as follows: "Agriculture Students and Their Problem Solving Skills" (Rollins); "Agriculture Students' Preferred Styles of Learning" (Rollins); "Identification of Curricular Strategies for Enhancing…

  16. Mainstreaming conservation agriculture in Malawi: Knowledge gaps and institutional barriers.

    PubMed

    Dougill, Andrew J; Whitfield, Stephen; Stringer, Lindsay C; Vincent, Katharine; Wood, Benjamin T; Chinseu, Edna L; Steward, Peter; Mkwambisi, David D

    2017-06-15

    Conservation agriculture (CA) practices of reduced soil tillage, permanent organic soil coverage and intercropping/crop rotation, are being advocated globally, based on perceived benefits for crop yields, soil carbon storage, weed suppression, reduced soil erosion and improved soil water retention. However, some have questioned their efficacy due to uncertainty around the performance and trade-offs associated with CA practices, and their compatibility with the diverse livelihood strategies and varied agro-ecological conditions across African smallholder systems. This paper assesses the role of key institutions in Malawi in shaping pathways towards more sustainable land management based on CA by outlining their impact on national policy-making and the design and implementation of agricultural development projects. It draws on interviews at national, district and project levels and a multi-stakeholder workshop that mapped the institutional landscape of decision-making for agricultural land management practices. Findings identify knowledge gaps and institutional barriers that influence land management decision-making and constrain CA uptake. We use our findings to set out an integrated roadmap of research needs and policy options aimed at supporting CA as a route to enhanced sustainable land management in Malawi. Findings offer lessons that can inform design, planning and implementation of CA projects, and identify the multi-level institutional support structures required for mainstreaming sustainable land management in sub-Saharan Africa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. An agriculture and health inter-sectorial research process to reduce hazardous pesticide health impacts among smallholder farmers in the Andes

    PubMed Central

    2011-01-01

    Background The use of highly hazardous pesticides by smallholder farmers constitutes a classic trans-sectoral ‘wicked problem’. We share our program of research in potato and vegetable farming communities in the Andean highlands, working with partners from multiple sectors to confront this problem over several projects. Methods We engaged in iterative cycles of mixed methods research around particular questions, actions relevant to stakeholders, new proposal formulation and implementation followed by evaluation of impacts. Capacity building occurred among farmers, technical personnel, and students from multiple disciplines. Involvement of research users occurred throughout: women and men farmers, non-governmental development organizations, Ministries of Health and Agriculture, and, in Ecuador, the National Council on Social Participation. Results Pesticide poisonings were more widespread than existing passive surveillance systems would suggest. More diversified, moderately developed agricultural systems had lower pesticide use and better child nutrition. Greater understanding among women of crop management options and more equal household gender relations were associated with reduced farm pesticide use and household pesticide exposure. Involvement in more organic agriculture was associated with greater household food security and food sovereignty. Markets for safer produce supported efforts by smallholder farmers to reduce hazardous pesticide use. Participatory interventions included: promoting greater access to alternative methods and inputs in a store co-sponsored by the municipality; producing less harmful inputs such as compost by women farmers; strengthening farmer organizations around healthier and more sustainable agriculture; marketing safer produce among social sectors; empowering farmers to act as social monitors; and using social monitoring results to inform decision makers. Uptake by policy makers has included: the Ecuadorian Ministry of Health

  18. Agricultural subsidies and the American obesity epidemic.

    PubMed

    Franck, Caroline; Grandi, Sonia M; Eisenberg, Mark J

    2013-09-01

    Government-issued agricultural subsidies are worsening obesity trends in America. Current agricultural policy remains largely uninformed by public health discourse. Although findings suggest that eliminating all subsidies would have a mild impact on the prevalence of obesity, a revision of commodity programs could have a measurable public health impact on a population scale, over time. Policy reforms will be important determinants of the future of obesity in America, primarily through indemnity program revisions, and the allocation of increasing amounts of resources to sustainable agriculture. Public health intervention will be required at the policy level to promote healthy behavioral changes in consumers. The 2013 Farm Bill will be the key mechanism to induce such policy change in the near future. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices

    PubMed Central

    Tilman, David

    1999-01-01

    The recent intensification of agriculture, and the prospects of future intensification, will have major detrimental impacts on the nonagricultural terrestrial and aquatic ecosystems of the world. The doubling of agricultural food production during the past 35 years was associated with a 6.87-fold increase in nitrogen fertilization, a 3.48-fold increase in phosphorus fertilization, a 1.68-fold increase in the amount of irrigated cropland, and a 1.1-fold increase in land in cultivation. Based on a simple linear extension of past trends, the anticipated next doubling of global food production would be associated with approximately 3-fold increases in nitrogen and phosphorus fertilization rates, a doubling of the irrigated land area, and an 18% increase in cropland. These projected changes would have dramatic impacts on the diversity, composition, and functioning of the remaining natural ecosystems of the world, and on their ability to provide society with a variety of essential ecosystem services. The largest impacts would be on freshwater and marine ecosystems, which would be greatly eutrophied by high rates of nitrogen and phosphorus release from agricultural fields. Aquatic nutrient eutrophication can lead to loss of biodiversity, outbreaks of nuisance species, shifts in the structure of food chains, and impairment of fisheries. Because of aerial redistribution of various forms of nitrogen, agricultural intensification also would eutrophy many natural terrestrial ecosystems and contribute to atmospheric accumulation of greenhouse gases. These detrimental environmental impacts of agriculture can be minimized only if there is much more efficient use and recycling of nitrogen and phosphorus in agroecosystems. PMID:10339530

  20. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices.

    PubMed

    Tilman, D

    1999-05-25

    The recent intensification of agriculture, and the prospects of future intensification, will have major detrimental impacts on the nonagricultural terrestrial and aquatic ecosystems of the world. The doubling of agricultural food production during the past 35 years was associated with a 6.87-fold increase in nitrogen fertilization, a 3.48-fold increase in phosphorus fertilization, a 1.68-fold increase in the amount of irrigated cropland, and a 1.1-fold increase in land in cultivation. Based on a simple linear extension of past trends, the anticipated next doubling of global food production would be associated with approximately 3-fold increases in nitrogen and phosphorus fertilization rates, a doubling of the irrigated land area, and an 18% increase in cropland. These projected changes would have dramatic impacts on the diversity, composition, and functioning of the remaining natural ecosystems of the world, and on their ability to provide society with a variety of essential ecosystem services. The largest impacts would be on freshwater and marine ecosystems, which would be greatly eutrophied by high rates of nitrogen and phosphorus release from agricultural fields. Aquatic nutrient eutrophication can lead to loss of biodiversity, outbreaks of nuisance species, shifts in the structure of food chains, and impairment of fisheries. Because of aerial redistribution of various forms of nitrogen, agricultural intensification also would eutrophy many natural terrestrial ecosystems and contribute to atmospheric accumulation of greenhouse gases. These detrimental environmental impacts of agriculture can be minimized only if there is much more efficient use and recycling of nitrogen and phosphorus in agroecosystems.

  1. Sustained-release progesterone vaginal suppositories 1--development of sustained-release granule--.

    PubMed

    Nakayama, Ayako; Sunada, Hisakazu; Okamoto, Hirokazu; Furuhashi, Kaoru; Ohno, Yukiko; Ito, Mikio

    2009-02-01

    Progesterone (P) is an important hormone for the establishment of pregnancy, and its administration is useful for luteal insufficiency. Considering the problems of commercially available oral and injection drugs, hospital-formulated vaginal suppositories are clinically used. However, since the half-life of P suppositories is short, it is difficult to maintain its constant blood concentration. To sustain drug efficacy and prevent side-effects, we are attempting to develop sustained-release suppositories by examining the degree of sustained-release of active ingredients. In this study, we examined the combinations of granulation methods and release systems for the preparation of sustained-release granules of P, and produced 13 types of sustained-release granules. We also examined the diameter, content, and dissolution of each type of granules, and confirmed that the sustained-release of all types of granules was satisfactory. Among the sustained-release granules, we selected granules with a content and a degree of sustained-release suitable for sustained-release suppositories.

  2. Agricultural Science Protects Our Environment.

    ERIC Educational Resources Information Center

    1967

    Included are a 49 frame filmstrip and a script for narrating a presentation. The presentation is aimed at the secondary school level with an emphasis on how agricultural scientists investigate problems in farmland erosion, stream pollution, road building erosion problems, air pollution, farm pollution, pesticides, and insect control by biological…

  3. Sustainable Land Management in the Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Haile, Mitiku; Nyssen, Jan; Araya, Tesfay

    2014-05-01

    Through centuries of farming practices the farmers and pastoralists in Ethiopia were managing their land resources pertaining to the needs of prevalent populations. With an increasing population and growing demands, more land was put under cultivation. Subsequently forest areas were cleared, encroaching agriculture into steep slopes and areas that were not suitable for agricultural activities. Land degradation and particularly soil erosion by water not only reduced the productivity of the land but also aggravated the effects of drought, such as famine and migration. Obvious signs of degradation in the highlands of Ethiopia are wide gullies swallowing fertile lands and rock outcrops making farming a risky business. But also less visible sheet erosion processes result in a tremendous loss of fertile topsoil, particularly on cropland. Efforts have been made by the farming communities to mitigate land degradation by developing local practices of conserving soil and water. With keen interest and openness one can observe such indigenous practices in all corners of Ethiopia. Notwithstanding these practices, there were also efforts to introduce other soil and water conservation interventions to control erosion and retain the eroded soils. Since the early 1980s numerous campaigns were carried out to build terraces in farmlands and sloping areas. Major emphasis was given to structural technologies rather than on vegetative measures. Currently the landscape of the northern highlands is dotted with millions of hectares of terraced fields and in some places with planned watershed management interventions including exclosures. Apparently these interventions were introduced without prior investigating the detailed problems and conservation needs of the local population. Intensive research is undertaken on the processes of degradation, the impact of the different intervention measures and the role of communities in sustainably managing their land. This paper attempts to review the

  4. Application of methane fermentation technology into organic wastes in closed agricultural system

    NASA Astrophysics Data System (ADS)

    Endo, Ryosuke; Kitaya, Yoshiaki

    Sustainable and recycling-based systems are required in space agriculture which takes place in an enclosed environment. Methane fermentation is one of the most major biomass conversion technologies, because (1) it provides a renewable energy source as biogas including methane, suitable for energy production, (2) the nutrient-rich solids left after digestion can be used as compost for agriculture. In this study, the effect of the application of methane fermentation technology into space agriculture on the material and energy cycle was investigated.

  5. Unlocking the sustainable potential of land resources evaluation systems, strategies and tools.

    USDA-ARS?s Scientific Manuscript database

    Better matching of land use with its sustainable potential is a “no-regrets” strategy for sustainably increasing agricultural production on existing land, targeting restoration efforts to where they are likely to be most successful, and guiding biodiversity conservation initiatives. Land potential i...

  6. Curriculum for the Bioregion: Learning to Live Sustainably in Our "Life Places"

    ERIC Educational Resources Information Center

    MacGregor, Jean

    2005-01-01

    "Sustainable development" is one framework. "Bioregionalism" is another. Both phrases have evolved in an attempt to create a powerful, encompassing vision of planetary wellness and regeneration. Some American practitioner-philosophers of sustainable agriculture argued that people must become thoughtful, responsible dwellers of…

  7. Environmental Sustainability, Ecosystem Services, and Human Well-being

    EPA Science Inventory

    This article examines environmental sustainability from several perspectives. First we offer definitions and some historical background. Then through case studies of marine fisheries, agricultural systems, and urban environments, we illustrate contrasts between unsustainable and ...

  8. Biofuels and sustainability.

    PubMed

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  9. Can conservation trump impacts of climate change and extremes on soil erosion in agricultural landscapes

    USDA-ARS?s Scientific Manuscript database

    Preservation of top soil is critical for the long term sustainability of agricultural productivity, food security, and biodiversity. However, today’s growing population and increasing demand for food and fiber is stressing the agricultural soil and water resources. Climate change imposes additional ...

  10. Plant-Soil Feedback: Bridging Natural and Agricultural Sciences.

    PubMed

    Mariotte, Pierre; Mehrabi, Zia; Bezemer, T Martijn; De Deyn, Gerlinde B; Kulmatiski, Andrew; Drigo, Barbara; Veen, G F Ciska; van der Heijden, Marcel G A; Kardol, Paul

    2018-02-01

    In agricultural and natural systems researchers have demonstrated large effects of plant-soil feedback (PSF) on plant growth. However, the concepts and approaches used in these two types of systems have developed, for the most part, independently. Here, we present a conceptual framework that integrates knowledge and approaches from these two contrasting systems. We use this integrated framework to demonstrate (i) how knowledge from complex natural systems can be used to increase agricultural resource-use efficiency and productivity and (ii) how research in agricultural systems can be used to test hypotheses and approaches developed in natural systems. Using this framework, we discuss avenues for new research toward an ecologically sustainable and climate-smart future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Correlation of water with carbon/energy footprints for effective agricultural and livestock products classification

    NASA Astrophysics Data System (ADS)

    Borsato, Eros; Marinello, Francesco; Tarolli, Paolo

    2017-04-01

    World population is increasing and human diet is becoming of considerable concern for human welfare. Natural resources are overexploited and governments need policies for a good management of the environment. Sustainable agriculture can provide some solutions, as it minimizes inputs, wastes or pollution. The aim of the present study is to provide a combined analysis of different footprints approaches in order to allow comparison of different agricultural and livestock products in terms of efficiency of resource exploitation. Time is the real important variable that influences the footprint. Water use efficiency, greenhouse gas emissions and energy indexes are included in this study. The study takes advantage of indexes collected from a wide bibliography focused on different fresh agricultural products: the target is the definition of a time table of footprints for agricultural products. Starting from a top-down prospective, an analysis of the environmental footprint for different products is an approach to understand which products can be more sustainable for human diet. This study distinguishes different clusters in different sub-cluster of vegetable products and animal products. The classification is based on a comparison of water consumption in relation to yield, greenhouse gas emissions equivalent and energy for a given product quantity. Additionally time is considered, which affects sustainability, in terms of inputs caught for a period. The footprint is spread out in time, thus changing its relevance with respect to the exploitation of a resource. Ultimately, this works wants to propose a new original basis for sustainability metrics, allowing an effective quantitative comparison of food products for a more conscious human diet.

  12. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    ScienceCinema

    Danuso, Francesco

    2017-12-22

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  13. Measuring farm sustainability using data envelope analysis with principal components: the case of Wisconsin cranberry.

    PubMed

    Dong, Fengxia; Mitchell, Paul D; Colquhoun, Jed

    2015-01-01

    Measuring farm sustainability performance is a crucial component for improving agricultural sustainability. While extensive assessments and indicators exist that reflect the different facets of agricultural sustainability, because of the relatively large number of measures and interactions among them, a composite indicator that integrates and aggregates over all variables is particularly useful. This paper describes and empirically evaluates a method for constructing a composite sustainability indicator that individually scores and ranks farm sustainability performance. The method first uses non-negative polychoric principal component analysis to reduce the number of variables, to remove correlation among variables and to transform categorical variables to continuous variables. Next the method applies common-weight data envelope analysis to these principal components to individually score each farm. The method solves weights endogenously and allows identifying important practices in sustainability evaluation. An empirical application to Wisconsin cranberry farms finds heterogeneity in sustainability practice adoption, implying that some farms could adopt relevant practices to improve the overall sustainability performance of the industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Why we need GMO crops in agriculture

    USDA-ARS?s Scientific Manuscript database

    The fact that in a very short period of 35 years the global population will reach an estimated 9 billion people presents a massive challenge to agriculture: how do we feed all of these people with nutritious food in a sustainable way? At the present time the yields of most of our major crops are sta...

  15. A Food Systems Approach To Healthy Food And Agriculture Policy.

    PubMed

    Neff, Roni A; Merrigan, Kathleen; Wallinga, David

    2015-11-01

    Food has become a prominent focus of US public health policy. The emphasis has been almost exclusively on what Americans eat, not what is grown or how it is grown. A field of research, policy, and practice activities addresses the food-health-agriculture nexus, yet the work is still often considered "alternative" to the mainstream. This article outlines the diverse ways in which agriculture affects public health. It then describes three policy issues: farm-to-school programming, sustainability recommendations in the Dietary Guidelines for Americans, and antibiotic use in animal agriculture. These issues illustrate the progress, challenges, and public health benefits of taking a food systems approach that brings together the food, agriculture, and public health fields. Project HOPE—The People-to-People Health Foundation, Inc.

  16. Agricultural Meteorology in China.

    NASA Astrophysics Data System (ADS)

    Rosenberg, Norman J.

    1982-03-01

    During nearly five weeks in China (May-June 1981), the author visited scientific institutions and experiment stations engaged in agricultural meterology and climatology research and teaching. The facilities, studies, and research programs at each institution are described and the scientific work in these fields is evaluated. Agricultural meteorology and climatology are faced with some unique problems and opportunities in China and progress in these fields may be of critical importance to that nation in coming years. The author includes culinary notes and comments on protocol in China.

  17. Ecosystem services driven by the diversity of soil biota - understanding and management in agriculture - The Biodiversa SoilMan-Project

    NASA Astrophysics Data System (ADS)

    Potthoff, Martin; Pérès, Guénola; Taylor, Astrid; Schrader, Stefan; Landa, Blanca; Nicolai, Annegret; Sandor, Mignon; Öptik, Maarja; Gema, Guzmán; Bergmann, Holger; Cluzeau, Daniel; Banse, Martin; Bengtsson, Jan; Guernion, Muriel; Zaller, Johann; Roslin, Tomas; Scheu, Stefan; Gómez Calero, José Alfonso

    2017-04-01

    Soil biota diversity is ensuring primary production in terrestrial ecosystems and agricultural productivity. Water and nutrient cycling, soil formation and aggregation, decomposition and carbon sequestration as well as control of pest organisms are important functions in soil that are driven by biota and biota interactions. In agricultural systems these functions support and regulate ecosystem services directed to agricultural production and agricultural sustainability. A main goal of future cropping systems will be to maintain or raise agricultural productivity while keeping production sustainable in spite of increasing food demands and ongoing soil degradation caused by inappropriate soil management practices. Farm based tools that farmers use to engineer soils for plant production depend as soil management factors on decisions by farmers, which are triggered by regional traditions, knowledge and also by agriculture policies as a governance impact. However, biological impacts on soil fertility and soil health are often neglected or overseen when planning and shaping soil management in annual cropping systems or perennial systems like vineyards. In order to get progress in conservation farming and in agricultural sustainability not only knowledge creation is in need, but also a clash of perspectives has to be overcome within the societies (generals public, farmers associations, NGOs) The talk will present the conception of the recently startet SoilMan-project and summaries selected results from current and recent European research projects.

  18. Knowledge, Skills, or Attitudes/Beliefs: The Contexts of Agricultural Literacy in Upper-Elementary Science Curricula

    ERIC Educational Resources Information Center

    Vallera, Farah L.; Bodzin, Alec M.

    2016-01-01

    Agricultural literacy connects knowledge, skills, and attitudes/beliefs (KSABs) about agriculture to KSABs in environmental education, education for sustainable development, and science education identified in recent reform initiatives. This study conducted a content analysis of 12 current upper-elementary U.S. science textbooks and curriculum…

  19. Towards sustainable development

    NASA Astrophysics Data System (ADS)

    Munn, R. E.

    Sustainable development is a difficult phrase to define, particularly in the context of human ecosystems. Questions have to be asked, such as "Sustainable for whom?" "Sustainable for what purposes?" "Sustainable at the subsistence or at the luxury level?" and "Sustainable under what conditions?" In this paper, development is taken to mean improving the quality of life. (If development were to mean growth, then it could not be sustained over the long term.) Studies of development must, of course, consider economic factors, particularly in the case of societies who suffer from the pollution of poverty. However, cultural and environmental factors are equally important. In fact, development is not sustainable over the long term if it is not ecologically sustainable. The terms maximum sustainable yield of a renewable resource, carrying capacity of a region and assimilative capacity of a watershed or airshed are discussed. Approaches using these resource management tools are recommended when external conditions are not changing very much. The problem today is that unprecedented rates of change are expected in the next century, not only of environmental conditions such as climate but also of socioeconomic conditions such as renewable resource consumption and populations (of both people and of automobiles)! In rapidly changing situations, policies must be adopted that strengthen resilence and ecosystem integrity; that is, society must increase its ability to adapt. Maintaining the status quo is a long-term prescription for disaster. The problem is of course that little is known about how to design strategies that will increase resilience and ecosystem integrity, and this area of research needs to be strengthened. Some suggestions on appropriate indicators of ecosystem integrity are given in the paper but these need considerable refinement. One of the main problems with long-term environmental policy formulation is the uncertainty to be expected, including the possibility

  20. Which environmental problems get policy attention? Examining energy and agricultural sector policies in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engstroem, Rebecka; Nilsson, Mans; Finnveden, Goeran

    2008-05-15

    Not all environmental problems get the same level of policy attention. An interesting question is thus why certain aspects receive attention and others do not. This paper studies the level of policy attention given to different environmental aspects in agriculture and energy policy in Sweden and explores empirically some factors that can explain the level of attention. The first step was to explore the link between environmental issue characteristics and the level of policy attention. The level of policy attention was measured through a content analysis of Swedish government bills. The results from the content analysis are clear and stablemore » over the studied time period. In the agriculture sector biodiversity and toxicity are in focus whereas in the energy sector climate change and resources are given the attention. Besides these aspects, the attention is limited. These results were compared with the results from sector-wide environmental assessments of the same sectors. These assessments were based on hybrid input-output analysis and life cycle assessment methodologies. A main finding from the study is that issue importance is a necessary but not a sufficient condition for policy attention. Other explanations are needed to understand which environmental issues get attention in sectoral policy. Our assessment showed that while the level of knowledge does not provide an explanation, the presence of strong and well-organised stakeholders within the sector, with an interest in having a certain issue on the agenda, might be decisive for issue attention. Path dependency and limited attention capacity are other important factors.« less