Science.gov

Sample records for agricultural sustainability problems

  1. Agriculture: Sustainability

    EPA Pesticide Factsheets

    Sustainability creates and maintains the conditions under which humans and nature can exist in productive harmony, that permit fulfilling the food, feed, and fiber needs of our country and the social, economic and other requirements.

  2. Advanced agricultural biotechnologies and sustainable agriculture.

    PubMed

    Lyson, Thomas A

    2002-05-01

    Agricultural biotechnologies are anchored to a scientific paradigm rooted in experimental biology, whereas sustainable agriculture rests on a biological paradigm that is best described as ecological. Both biotechnology and sustainable agriculture are associated with particular social science paradigms: biotechnology has its foundation in neoclassical economics, but sustainability is framed by an emerging community-centered, problem-solving perspective. Fundamentally, biotechnology and neoclassical economics are reductionist in nature. Sustainability and community problem-solving, however, are nonreductionist. Given these differences, we might see the development of two rather distinct systems of food production in the near future.

  3. Is rangeland agriculture sustainable?

    PubMed

    Heitschmidt, R K; Vermeire, L T; Grings, E E

    2004-01-01

    The objective of this paper is to examine the sustainability of rangeland agriculture (i.e., managed grazing) on a world-wide basis, with a focus on North America. Sustainability is addressed on three fronts: 1) ecological, 2) economic, and 3) social acceptance. Based on previous and on-going research, we suggest that employment of science-based rangeland grazing management strategies and tactics can ensure ecological sustainability. The formidable challenge in employing such technology centers around the need to balance efficiency of solar energy capture and subsequent harvest efficiencies across an array of highly spatially and temporally variable vegetation growing conditions using animals that graze selectively. Failure to meet this fundamental challenge often accelerates rangeland desertification processes, and in some instances, enhances rate and extent of the invasion of noxious weeds. We also suggest that the fundamental reason that ecologically sound grazing management technologies are often not employed in the management of grazed ecological systems is because social values drive management decisions more so than ecological science issues. This is true in both well-developed societies with substantial economic resources and in less-developed societies with few economic resources. However, the social issues driving management are often entirely different, ranging from multiple-use issues in developed countries to human day-to-day survival issues in poorly developed countries. We conclude that the long-term sustainability of rangeland agriculture in 1) developed societies depends on the ability of rangeland agriculturalists to continually respond in a dynamic, positive, proactive manner to ever-changing social values and 2) less-developed societies on their ability to address the ecological and social consequences arising from unsustainable human populations before the adoption of science-based sustainable rangeland management technologies.

  4. Sustaining Rural Communities through Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Ikerd, John

    A 5-year collaborative project between Missouri, Michigan State, and Nebraska Universities to provide new opportunities for rural community self-development through sustainable agriculture had mixed results. This happened because community members did not understand the principles of sustainability, and because the extension education system was…

  5. A Farming Revolution: Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Klinkenborg, Verlyn

    1995-01-01

    Growing realization of the economic, social, and environmental costs of conventional agriculture has led many U.S. farmers to embrace and become advocates for agricultural practices that limit the need for pesticides and chemical fertilizers, decrease soil erosion, and improve soil health. Some hope that sustainable agriculture can promote smaller…

  6. The transition to agricultural sustainability

    PubMed Central

    Ruttan, Vernon W.

    1999-01-01

    The transition to sustainable growth in agricultural production during the 21st century will take place within the context of a transition to a stable population and a possible transition to a stable level of material consumption. If the world fails to successfully navigate a transition to sustainable growth in agricultural production, the failure will be due more to a failure in the area of institutional innovation than to resource and environmental constraints. PMID:10339524

  7. Toward a Sustainable Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Future trends in population growth, energy use, climate change, and globalization will challenge agriculturists to develop innovative production systems that are highly productive and environmentally sound. Furthermore, future agricultural production systems must possess an inherent capacity to adap...

  8. [Organic agriculture and sustainable development].

    PubMed

    Li, Yu; Wang, Gang

    2004-12-01

    Basing on the research and practice of organic agriculture at home and abroad, this paper discussed the objectives of developing green food and the principles that must be persisted in the practice in China. In the light of the arguments concerning with sustainable agriculture, we also discussed the significance of "alternative agriculture" in theory and practice. Compared with conventional high-intensity agriculture, the production approaches of organic alternatives can improve soil fertility and have fewer detrimental effects on the environment. It is unclear whether conventional agriculture can be sustained because of the shortcomings presented in this paper, and it has taken scientists approximately one century to research and practice organic farming as a representative of alternative agriculture. The development of green food in China has only gone through more than ten years, and there would be some practical and theoretical effects on the development of China's green food if we exploit an environment-friendly production pattern of organic agriculture which majors in keeping human health and maintaining sustainable agriculture.

  9. Agriculture - Sustainable biofuels Redux

    SciTech Connect

    Robertson, G. Phillip; Dale, Virginia H; Doering, Otto C.; Hamburg, Steven P; Melillo, Jerry M; Wander, Michele M; Parton, William

    2008-10-01

    Last May's passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences. This time, however, the subsidy is for both the refiners ($1.01 per gallon) and the growers ($45 per ton of biomass), which will rapidly accelerate adoption and place hard-to-manage pressures on efforts to design and implement sustainable production practices - as will a 2007 legislative mandate for 16 billion gallons of cellulosic ethanol per year by 2022. Similar directives elsewhere, e.g., the European Union's mandate that 10% of all transport fuel in Europe be from renewable sources by 2020, make this a global issue. The European Union's current reconsideration of this target places even more emphasis on cellulosic feedstocks (1). The need for knowledge- and science-based policy is urgent. Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown and, thus, need to be explicitly considered by using a framework that allows the outcomes of alternative systems to be consistently evaluated and compared. A cellulosic biofuels industry could have many positive social and environmental attributes, but it could also suffer from many of the sustainability issues that hobble grain-based biofuels, if not implemented the right way.

  10. Methylotrophic bacteria in sustainable agriculture.

    PubMed

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  11. Agricultural sustainability: concepts, principles and evidence.

    PubMed

    Pretty, Jules

    2008-02-12

    Concerns about sustainability in agricultural systems centre on the need to develop technologies and practices that do not have adverse effects on environmental goods and services, are accessible to and effective for farmers, and lead to improvements in food productivity. Despite great progress in agricultural productivity in the past half-century, with crop and livestock productivity strongly driven by increased use of fertilizers, irrigation water, agricultural machinery, pesticides and land, it would be over-optimistic to assume that these relationships will remain linear in the future. New approaches are needed that will integrate biological and ecological processes into food production, minimize the use of those non-renewable inputs that cause harm to the environment or to the health of farmers and consumers, make productive use of the knowledge and skills of farmers, so substituting human capital for costly external inputs, and make productive use of people's collective capacities to work together to solve common agricultural and natural resource problems, such as for pest, watershed, irrigation, forest and credit management. These principles help to build important capital assets for agricultural systems: natural; social; human; physical; and financial capital. Improving natural capital is a central aim, and dividends can come from making the best use of the genotypes of crops and animals and the ecological conditions under which they are grown or raised. Agricultural sustainability suggests a focus on both genotype improvements through the full range of modern biological approaches and improved understanding of the benefits of ecological and agronomic management, manipulation and redesign. The ecological management of agroecosystems that addresses energy flows, nutrient cycling, population-regulating mechanisms and system resilience can lead to the redesign of agriculture at a landscape scale. Sustainable agriculture outcomes can be positive for food

  12. Sustainable intensification in agricultural systems

    PubMed Central

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-01-01

    Background Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms ‘sustainable’ and ‘intensification’ is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. Scope and Conclusions This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural–environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and

  13. Participatory approach: from problem identification to setting strategies for increased productivity and sustainability in small scale irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Habtu, Solomon; Ludi, Eva; Jamin, Jean Yves; Oates, Naomi; Fissahaye Yohannes, Degol

    2014-05-01

    Practicing various innovations pertinent to irrigated farming at local field scale is instrumental to increase productivity and yield for small holder farmers in Africa. However the translation of innovations from local scale to the scale of a jointly operated irrigation scheme is far from trivial. It requires insight on the drivers for adoption of local innovations within the wider farmer communities. Participatory methods are expected to improve not only the acceptance of locally developed innovations within the wider farmer communities, but to allow also an estimation to which extend changes will occur within the entire irrigation scheme. On such a base, more realistic scenarios of future water productivity within an irrigation scheme, which is operated by small holder farmers, can be estimated. Initial participatory problem and innovation appraisal was conducted in Gumselassa small scale irrigation scheme, Ethiopia, from Feb 27 to March 3, 2012 as part of the EAU4FOOD project funded by EC. The objective was to identify and appraise problems which hinder sustainable water management to enhance production and productivity and to identify future research strategies. Workshops were conducted both at local (Community of Practices) and regional (Learning Practice Alliance) level. At local levels, intensive collaboration with farmers using participatory methods produced problem trees and a "Photo Safari" documented a range of problems that negatively impact on productive irrigated farming. A range of participatory methods were also used to identify local innovations. At regional level a Learning Platform was established that includes a wide range of stakeholders (technical experts from various government ministries, policy makers, farmers, extension agents, researchers). This stakeholder group did a range of exercise as well to identify major problems related to irrigated smallholder farming and already identified innovations. Both groups identified similar problems

  14. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    PubMed

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  15. Sustainable intensification of agriculture for human prosperity and global sustainability.

    PubMed

    Rockström, Johan; Williams, John; Daily, Gretchen; Noble, Andrew; Matthews, Nathanial; Gordon, Line; Wetterstrand, Hanna; DeClerck, Fabrice; Shah, Mihir; Steduto, Pasquale; de Fraiture, Charlotte; Hatibu, Nuhu; Unver, Olcay; Bird, Jeremy; Sibanda, Lindiwe; Smith, Jimmy

    2017-02-01

    There is an ongoing debate on what constitutes sustainable intensification of agriculture (SIA). In this paper, we propose that a paradigm for sustainable intensification can be defined and translated into an operational framework for agricultural development. We argue that this paradigm must now be defined-at all scales-in the context of rapidly rising global environmental changes in the Anthropocene, while focusing on eradicating poverty and hunger and contributing to human wellbeing. The criteria and approach we propose, for a paradigm shift towards sustainable intensification of agriculture, integrates the dual and interdependent goals of using sustainable practices to meet rising human needs while contributing to resilience and sustainability of landscapes, the biosphere, and the Earth system. Both of these, in turn, are required to sustain the future viability of agriculture. This paradigm shift aims at repositioning world agriculture from its current role as the world's single largest driver of global environmental change, to becoming a key contributor of a global transition to a sustainable world within a safe operating space on Earth.

  16. Sustainability of Agricultural Systems: Concept to Application

    EPA Science Inventory

    Agriculture not only feeds the planet, it also is the biggest overall factor affecting the environment. Thus, innovative sustainable farming systems that produce healthy food and protect the environment at the same time are very much needed. We, as agricultural engineers, need ...

  17. Geologic research in support of sustainable agriculture

    USGS Publications Warehouse

    Gough, L.P.; Herring, J.R.

    1993-01-01

    The importance and role of the geosciences in studies of sustainable agriculture include such traditional research areas as, agromineral resource assessments, the mapping and classification of soils and soil amendments, and the evaluation of landscapes for their vulnerability to physical and chemical degradation. Less traditional areas of study, that are increasing in societal importance because of environmental concerns and research into sustainable systems in general, include regional geochemical studies of plant and animal trace element deficiencies and toxicities, broad-scale water quality investigations, agricultural chemicals and the hydrogeologic interface, and minimally processed and ion-exchange agrominerals. We discuss the importance and future of phosphate in the US and world based on human population growth, projected agromineral demands in general, and the unavailability of new, high-quality agricultural lands. We also present examples of studies that relate geochemistry and the hydrogeologic characteristics of a region to the bioavailability and cycling of trace elements important to sustainable agricultural systems. ?? 1993.

  18. The role of conservation agriculture in sustainable agriculture.

    PubMed

    Hobbs, Peter R; Sayre, Ken; Gupta, Raj

    2008-02-12

    The paper focuses on conservation agriculture (CA), defined as minimal soil disturbance (no-till, NT) and permanent soil cover (mulch) combined with rotations, as a more sustainable cultivation system for the future. Cultivation and tillage play an important role in agriculture. The benefits of tillage in agriculture are explored before introducing conservation tillage (CT), a practice that was borne out of the American dust bowl of the 1930s. The paper then describes the benefits of CA, a suggested improvement on CT, where NT, mulch and rotations significantly improve soil properties and other biotic factors. The paper concludes that CA is a more sustainable and environmentally friendly management system for cultivating crops. Case studies from the rice-wheat areas of the Indo-Gangetic Plains of South Asia and the irrigated maize-wheat systems of Northwest Mexico are used to describe how CA practices have been used in these two environments to raise production sustainably and profitably. Benefits in terms of greenhouse gas emissions and their effect on global warming are also discussed. The paper concludes that agriculture in the next decade will have to sustainably produce more food from less land through more efficient use of natural resources and with minimal impact on the environment in order to meet growing population demands. Promoting and adopting CA management systems can help meet this goal.

  19. 7 CFR 3430.312 - Emphasis on sustainable agriculture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sustainable agriculture. NIFA shall ensure that grants made under this subpart are, where appropriate, consistent with the development of systems of sustainable agriculture as defined in section 1404 of NARETPA. ... 7 Agriculture 15 2011-01-01 2011-01-01 false Emphasis on sustainable agriculture. 3430.312...

  20. 7 CFR 3430.312 - Emphasis on sustainable agriculture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sustainable agriculture. NIFA shall ensure that grants made under this subpart are, where appropriate, consistent with the development of systems of sustainable agriculture as defined in section 1404 of NARETPA. ... 7 Agriculture 15 2012-01-01 2012-01-01 false Emphasis on sustainable agriculture. 3430.312...

  1. 7 CFR 3430.312 - Emphasis on sustainable agriculture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sustainable agriculture. NIFA shall ensure that grants made under this subpart are, where appropriate, consistent with the development of systems of sustainable agriculture as defined in section 1404 of NARETPA. ... 7 Agriculture 15 2013-01-01 2013-01-01 false Emphasis on sustainable agriculture. 3430.312...

  2. 7 CFR 3430.312 - Emphasis on sustainable agriculture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sustainable agriculture. NIFA shall ensure that grants made under this subpart are, where appropriate, consistent with the development of systems of sustainable agriculture as defined in section 1404 of NARETPA. ... 7 Agriculture 15 2014-01-01 2014-01-01 false Emphasis on sustainable agriculture. 3430.312...

  3. Agricultural sustainability and intensive production practices.

    PubMed

    Tilman, David; Cassman, Kenneth G; Matson, Pamela A; Naylor, Rosamond; Polasky, Stephen

    2002-08-08

    A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global usable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.

  4. Sustainable agriculture: how to sustain a production system in a changing environment.

    PubMed

    Wagner, W C

    1999-01-01

    During the past 10-15 years, sustainable agriculture has progressed from a focus primarily on a low-input, organic farming approach with a major emphasis on small fruit or vegetable production farms, often described as Low Input Sustainable Agriculture, to the current situation where sustainability is an important part of mainstream animal and plant production units. The US Department of Agriculture programmes cover a broad range of activities, including conserving the natural resource base, enhancing environmental quality, and sustaining productivity of the nation's farms. The use of Geographic Information Systems technology to direct application of fertilisers, pesticides, and herbicides is one example of a rapidly emerging technology that can reduce use of external inputs, protect the agricultural environment, and improve economic returns. This Geographic Information Systems technology also is being used to localise animal pest and disease problems, assist in regulatory or control measures, and identify high risk areas that might need different management systems or should be avoided as sites for animal production. Use of intensive grazing systems also has increased markedly over the past 5-6 years. These systems will allow longer grazing seasons in southern parts of the USA, provide more efficient use of the forages being produced and reduce labour costs in the typical dairy operation. Major animal and plant production agriculture-oriented programmes at the US Department of Agriculture focus on integrated production systems, use of Integrated Pest Management techniques, and development of alternative methods to manage pests and diseases that reduce or avoid the use of drugs and chemicals. The US Department of Agriculture has a programme for sustainable agriculture, the Sustainable Agriculture Research and Education programme, which emphasises alternative approaches for animal and plant production systems.

  5. Comparative review of multifunctionality and ecosystem services in sustainable agriculture.

    PubMed

    Huang, Jiao; Tichit, Muriel; Poulot, Monique; Darly, Ségolène; Li, Shuangcheng; Petit, Caroline; Aubry, Christine

    2015-02-01

    Two scientific communities with broad interest in sustainable agriculture independently focus on multifunctional agriculture or ecosystem services. These communities have limited interaction and exchange, and each group faces research challenges according to independently operating paradigms. This paper presents a comparative review of published research in multifunctional agriculture and ecosystem services. The motivation for this work is to improve communication, integrate experimental approaches, and propose areas of consensus and dialog for the two communities. This extensive analysis of publication trends, ideologies, and approaches enables formulation of four main conclusions. First, the two communities are closely related through their use of the term "function." However, multifunctional agriculture considers functions as agricultural activity outputs and prefers farm-centred approaches, whereas ecosystem services considers ecosystem functions in the provision of services and prefers service-centred approaches. Second, research approaches to common questions in these two communities share some similarities, and there would be great value in integrating these approaches. Third, the two communities have potential for dialog regarding the bundle of ecosystem services and the spectrum of multifunctional agriculture, or regarding land sharing and land sparing. Fourth, we propose an integrated conceptual framework that distinguishes six groups of ecosystem services and disservices in the agricultural landscape, and combines the concepts of multifunctional agriculture and ecosystem services. This integrated framework improves applications of multifunctional agriculture and ecosystem services for operational use. Future research should examine if the framework can be readily adapted for modelling specific problems in agricultural management.

  6. Earthworms, pesticides and sustainable agriculture: a review.

    PubMed

    Datta, Shivika; Singh, Joginder; Singh, Sharanpreet; Singh, Jaswinder

    2016-05-01

    The aim of this review is to generate awareness and understand the importance of earthworms in sustainable agriculture and effect of pesticides on their action. The natural resources are finite and highly prone to degradation by the misuse of land and mismanagement of soil. The world is in utter need of a healthy ecosystem that provides with fertile soil, clean water, food and other natural resources. Anthropogenic activities have led to an increased contamination of land. The intensification of industrial and agricultural practices chiefly the utilization of pesticides has in almost every way made our natural resources concave. Earthworms help in a number of tasks that support many ecosystem services that favor agrosystem sustainability but are degraded by exhaustive practices such as the use of pesticides. The present review assesses the response of earthworm toward the pesticides and also evaluates the relationship between earthworm activity and plant growth. We strictly need to refresh and rethink on the policies and norms devised by us on sustainable ecology. In an equivalent way, the natural resources should be utilized and further, essential ways for betterment of present and future livelihood should be sought.

  7. Agricultural policy and sustainable livestock development.

    PubMed

    Schillhorn van Veen, T W

    1999-01-01

    Future agricultural and rural development is, to a large extent, influenced by the projected food needs of 2.5 billion people expected to swell the world population by 2020. This increase will require more food in general and, in view of recent experience in East Asia, more animal products. To achieve this increase will require judicious use of resources, and trade, especially in those countries where natural resources are insufficient to support food production. Achieving food sufficiency in a sustainable manner is a major challenge for farmers, agro-industries, researchers and governments. The latter play an important role as many of the farmers' choices are, to a large extent, directed by government or supra-government, often through macro- and micro-economic policy. In many countries the economic, environmental, trade and agricultural policies have not been conducive to an agricultural development that is risk-free with respect to the environment, animal welfare or public health. The recent decline of government support in agriculture forced farmers in Western countries to think about more risk adverse agricultural practices and more efficient production systems. On the other hand, many countries in Eastern Europe and the former Soviet Union, as well as other developing countries, are still going through a painful process of adjustment to new market conditions. International banks and development agencies have a mandate to help developing countries, but are somewhat restricted both by needing to work directly with governments and by their perceived dogmatic approach to development. Changing policies do, now and in the future, also affect the development of animal disease control programmes, including the control of parasitic diseases. On the one hand there is an increasing interest in risk-free control practices, and on the other hand a demand for greater regulatory control over the production process. As parasitic diseases of animals are closely linked to the

  8. Conventionalization, Civic Engagement, and the Sustainability of Organic Agriculture

    ERIC Educational Resources Information Center

    Goldberger, Jessica R.

    2011-01-01

    It is often assumed that organic farming is synonymous with sustainable agriculture. The broad goals of sustainable agriculture include economic profitability, environmental stewardship, and community vitality. However, the "question of sustainability" (Ikerd, 2008) can be asked of any type of farming, including organic production. One…

  9. The Concept of Sustainable Agriculture: Challenges and Prospects

    NASA Astrophysics Data System (ADS)

    Abubakar, M. S.; Attanda, M. L.

    2013-12-01

    Agriculture has changed dramatically, especially since the end of World War II. Food and fibre productivity raised due to new technologies, mechanization, increased chemical use, specialization and government policies that favoured maximizing production. Sustainable agriculture is a subject of great interest and lively debate in many parts of the world. Most agriculturalists agree that the concept of sustainable agriculture is of paramount importance to the sustainability of our biosphere and its ever increasing human population. This paper is an effort to identify the ideas, practices and policies that constitute concept of sustainable agriculture.

  10. A Landscape Perspective on Sustainability of Agricultural Systems

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Kaffka, Stephen R; Langeveld, J.W.A.

    2013-01-01

    Landscape sustainability of agricultural systems considers effects of farm activities on social, economic, and ecosystem services at local and regional scales. Sustainable agriculture entails: defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior. A landscape perspective is useful because landscape ecology provides theory and methods for dealing with spatial heterogeneity, scaling, integration, and complexity. To implement agricultural sustainability, we propose adopting a systems perspective, recognizing spatial heterogeneity, addressing the influences of context, and integrating landscape-design principles. Topics that need further attention at local and regional scales include (1) protocols for quantifying material and energy flows; (2) effects of management practices; (3) incentives for enhancing social, economic, and ecosystem services; (4) integrated landscape planning and management; (5) monitoring and assessment; (6) effects of societal demand; and (7) consistent and holistic policies for promoting agricultural sustainability.

  11. North Carolina Cooperative Extension Service Professionals' Attitudes toward Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Minarovic, Rosanne E.; Mueller, J. Paul

    2000-01-01

    Responses from 369 of 500 extension professionals reflected a shared vision for sustainable agriculture and recognition of a need for environmentally sound farming practices. There was less unanimity about endorsing the social aspects of sustainable agriculture, though they agreed on the need for more systems research. (SK)

  12. Transgenic Crops: Implications for Biodiversity and Sustainable Agriculture

    ERIC Educational Resources Information Center

    Garcia, Maria Alice; Altieri, Miguel A.

    2005-01-01

    The potential for genetically modified (GM) crops to threaten biodiversity conservation and sustainable agriculture is substantial. Megadiverse countries and centers of origin and/or diversity of crop species are particularly vulnerable regions. The future of sustainable agriculture may be irreversibly jeopardized by contamination of in situ…

  13. Sustainability of natural attenuation of nitrate in agricultural aquifers

    USGS Publications Warehouse

    Green, Christopher T.; Bekins, Barbara A.

    2010-01-01

    Increased concentrations of nitrate in groundwater in agricultural areas, coinciding with increased use of chemical and organic fertilizers, have raised concern because of risks to environmental and human health. At some sites, these problems are mitigated by natural attenuation of nitrate as a result of microbially mediated reactions. Results from U.S. Geological Survey (USGS) research under the National Water-Quality Assessment (NAWQA) program show that reactions of dissolved nitrate with solid aquifer minerals and organic carbon help lower nitrate concentrations in groundwater beneath agricultural fields. However, increased fluxes of nitrate cause ongoing depletion of the finite pool of solid reactants. Consumption of the solid reactants diminishes the capacity of the aquifer to remove nitrate, calling into question the long-term sustainability of these natural attenuation processes.

  14. Toward malaysian sustainable agriculture in 21st century

    NASA Astrophysics Data System (ADS)

    Khorramnia, K.; Shariff, A. R. M.; Rahim, A. Abdul; Mansor, S.

    2014-02-01

    Sustainable agriculture should be able to meet various social goals and objectives so that it can be maintained for an indefinite period without significant negative impacts on environment and natural resources. A wide variety of agricultural activities are running in Malaysia. Maintaining high quality of agricultural products with lower environmental impacts through a sustainable economic viability and life satisfaction of farmers and community are important factors helping to meet sustainable agriculture. Human resources are playing key role in directing the community toward sustainable development. The trend of improving the human development index in Malaysia is highest in the East Asia and the Pacific, high human development countries and the world, since 2000. Precision agriculture is providing strong tools to achieve sustainable agriculture. Different types of sensors, positioning and navigation systems, GIS, software and variable rate technology are well known components of precision agriculture. Drones and robots are promising tools that enabling farmers and managers to collect information or perform particular actions in remote areas or tough conditions. According to a survey, forestry and timber, rubber production and oil palm estates are three main agricultural divisions that precision agriculture may improve the productivity in respect to area of cropland/worker. Main factors affecting the adoption of precision agriculture in Malaysia are: a) Political and legal supports, b) Decision support systems and user interfaces c) Experienced research team works d) National educational policy e) Success in commercialization of precision agriculture system.

  15. Opportunities and challenges of sustainable agricultural development in China.

    PubMed

    Zhao, Jingzhu; Luo, Qishan; Deng, Hongbing; Yan, Yan

    2008-02-27

    This paper introduces the concepts and aims of sustainable agriculture in China. Sustainable agricultural development comprises sustainability of agricultural production, sustainability of the rural economy, ecological and environmental sustainability within agricultural systems and sustainability of rural society. China's prime aim is to ensure current and future food security. Based on projections of China's population, its economy, societal factors and agricultural resources and inputs between 2000 and 2050, total grain supply and demand has been predicted and the state of food security analysed. Total and per capita demand for grain will increase continuously. Total demand will reach 648 Mt in 2020 and 700 Mt in 2050, while total grain yield of cultivated land will reach 470 Mt in 2010, 585 Mt in 2030 and 656 Mt in 2050. The per capita grain production will be around 360kg in the period 2000-2030 and reach 470kg in 2050. When productivities of cultivated land and other agricultural resources are all taken into consideration, China's food self-sufficiency ratio will increase from 94.4% in 2000 to 101.3% in 2030, suggesting that China will meet its future demand for food and need for food security. Despite this positive assessment, the country's sustainable agricultural development has encountered many obstacles. These include: agricultural water-use shortage; cultivated land loss; inappropriate usage of fertilizers and pesticides, and environmental degradation.

  16. Sustaining Irrigated Agriculture in Arid Areas: Lessons Learned in the San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conventional wisdom is that drainage is required to sustain irrigation in arid and semiarid areas. However, disposal of saline drainage water is a problem throughout the world that is challenging the sustainability of irrigated agriculture. The presence of elements besides salt in the drainage w...

  17. How sustainable agriculture can address the environmental and human health harms of industrial agriculture.

    PubMed Central

    Horrigan, Leo; Lawrence, Robert S; Walker, Polly

    2002-01-01

    The industrial agriculture system consumes fossil fuel, water, and topsoil at unsustainable rates. It contributes to numerous forms of environmental degradation, including air and water pollution, soil depletion, diminishing biodiversity, and fish die-offs. Meat production contributes disproportionately to these problems, in part because feeding grain to livestock to produce meat--instead of feeding it directly to humans--involves a large energy loss, making animal agriculture more resource intensive than other forms of food production. The proliferation of factory-style animal agriculture creates environmental and public health concerns, including pollution from the high concentration of animal wastes and the extensive use of antibiotics, which may compromise their effectiveness in medical use. At the consumption end, animal fat is implicated in many of the chronic degenerative diseases that afflict industrial and newly industrializing societies, particularly cardiovascular disease and some cancers. In terms of human health, both affluent and poor countries could benefit from policies that more equitably distribute high-protein foods. The pesticides used heavily in industrial agriculture are associated with elevated cancer risks for workers and consumers and are coming under greater scrutiny for their links to endocrine disruption and reproductive dysfunction. In this article we outline the environmental and human health problems associated with current food production practices and discuss how these systems could be made more sustainable. PMID:12003747

  18. How sustainable agriculture can address the environmental and human health harms of industrial agriculture.

    PubMed

    Horrigan, Leo; Lawrence, Robert S; Walker, Polly

    2002-05-01

    The industrial agriculture system consumes fossil fuel, water, and topsoil at unsustainable rates. It contributes to numerous forms of environmental degradation, including air and water pollution, soil depletion, diminishing biodiversity, and fish die-offs. Meat production contributes disproportionately to these problems, in part because feeding grain to livestock to produce meat--instead of feeding it directly to humans--involves a large energy loss, making animal agriculture more resource intensive than other forms of food production. The proliferation of factory-style animal agriculture creates environmental and public health concerns, including pollution from the high concentration of animal wastes and the extensive use of antibiotics, which may compromise their effectiveness in medical use. At the consumption end, animal fat is implicated in many of the chronic degenerative diseases that afflict industrial and newly industrializing societies, particularly cardiovascular disease and some cancers. In terms of human health, both affluent and poor countries could benefit from policies that more equitably distribute high-protein foods. The pesticides used heavily in industrial agriculture are associated with elevated cancer risks for workers and consumers and are coming under greater scrutiny for their links to endocrine disruption and reproductive dysfunction. In this article we outline the environmental and human health problems associated with current food production practices and discuss how these systems could be made more sustainable.

  19. Assessing the sustainability of agriculture: a case of Mae Chaem Catchment, northern Thailand.

    PubMed

    Praneetvatakul, S; Janekarnkij, P; Potchanasin, C; Prayoonwong, K

    2001-09-01

    Sustainability is not a new concept but rather a prominent concept at the present time. Researchers have categorized sustainability indicators into economic, social, and ecological aspects. Sustainability of agriculture in the context of development efforts has to meet production efficiency, resilience of ecosystems, appropriate technology, maintenance of the environment, cultural diversity, and satisfaction of the basic needs. The research objective of this study is to determine the critical indicators of agricultural sustainability in the Mae Chaem Catchment, northern Thailand. In assessing sustainability, the authors applied the sustainability indicator analysis developed by FAO. The results of the study show that food sufficiency in the Wat Chan subcatchment is the most sustainable aspect of agriculture. The least sustainable facets of agriculture in the Wat Chan subcatchment are land holding size, land tenure, and water shortage. While expansion of agricultural land in the watershed area is not legally permitted, a practice of agroforestry is recommended. Insecure land tenure may result in reduced incentives to improve land productivity. Thus, official recognition of land ownership is required. As the problem of water shortage is most critical in the lower reaches, increased participation in the allocation scheme by downstream villagers should be encouraged. Finally, the construction of a small-scale water storage in the lower part of the catchment to increase water supply should be considered.

  20. A Professional Development Climate Course for Sustainable Agriculture in Australia

    ERIC Educational Resources Information Center

    George, David; Clewett, Jeff; Birch, Colin; Wright, Anthony; Allen, Wendy

    2009-01-01

    There are few professional development courses in Australia for the rural sector concerned with climate variability, climate change and sustainable agriculture. The lack of educators with a sound technical background in climate science and its applications in agriculture prevents the delivery of courses either stand-alone or embedded in other…

  1. Common Ground: Agriculture for a Sustainable Future. Lesson Plans.

    ERIC Educational Resources Information Center

    Selfridge, Deborah J.

    This document contains lesson plans for a four-unit course in agriculture for sustainable development and is accompanied by a video tape and a booklet that discusses existing and future agricultural practices. Each unit of the document contains some or all of the following components: an introduction; objectives and competencies addressed; a list…

  2. Middle way strategies for sustainable intensification of agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable intensification is a widely-shared idealistic vision for agriculture, in which production, resource conservation and other ecosystem services jointly increase to meet future “life-support” needs of humanity. Progress toward sustainable intensification is likely to require a higher degree...

  3. Water resource management for sustainable agriculture in Punjab, India.

    PubMed

    Aggarwal, Rajan; Kaushal, Mohinder; Kaur, Samanpreet; Farmaha, Bhupinder

    2009-01-01

    The state of Punjab comprising 1.5% area of the country has been contributing 40-50% rice and 60-65% wheat to the central pool since last three decades. During last 35 years The area under foodgrains has increased from 39,200 sq km ha to 63,400 sq km and the production of rice and wheat has increased from 0.18 to 0.32 kg/m2 and 0.22 to 0.43 kg/m2 respectively. This change in cropping pattern has increased irrigation water requirement tremendously and the irrigated area has increased from 71 to 95% in the state. Also the number of tube wells has increased from 0.192 to 1.165 million in the last 35 years. The excessive indiscriminate exploitation of ground water has created a declining water table situation in the state. The problem is most critical in central Punjab. The average rate of decline over the last few years has been 55 cm per year. The worst affected districts are Moga, Sangrur, Nawanshahar, Ludhiana and Jalandhar. This has resulted in extra power consumption, affects the socio-economic conditions of the small farmers, destroy the ecological balance and adversely affect the sustainable agricultural production and economy of the state. Therefore, in this paper attempt has been made to analyse the problem of declining water table, possible factors responsible for this and suggest suitable strategies for arresting declining water table for sustainable agriculture in Punjab. The strategies include shift of cropping pattern, delay in paddy transplantation, precision irrigation and rainwater harvesting for artificial groundwater recharge.

  4. Linking knowledge and action through mental models of sustainable agriculture.

    PubMed

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-09-09

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer "mental models" of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems.

  5. Linking knowledge and action through mental models of sustainable agriculture

    PubMed Central

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-01-01

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer “mental models” of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems. PMID:25157158

  6. Exploitation of endophytes for sustainable agricultural intensification.

    PubMed

    Le Cocq, Kate; Gurr, Sarah J; Hirsch, Penny R; Mauchline, Tim H

    2016-08-25

    Intensive agriculture, which depends on unsustainable levels of agrochemical inputs, is environmentally harmful, and the expansion of these practices to meet future needs is not economically feasible. Other options should be considered to meet the global food security challenge. The plant microbiome has been linked to improved plant productivity and, in this microreview, we consider the endosphere - a subdivision of the plant microbiome. We suggest a new definition of microbial endophyte status, the need for synergy between fungal and bacterial endophyte research efforts, as well as potential strategies for endophyte application to agricultural systems.

  7. Exploitation of endophytes for sustainable agricultural intensification

    PubMed Central

    Le Cocq, Kate; Gurr, Sarah J.; Hirsch, Penny R.

    2016-01-01

    Summary Intensive agriculture, which depends on unsustainable levels of agrochemical inputs, is environmentally harmful, and the expansion of these practices to meet future needs is not economically feasible. Other options should be considered to meet the global food security challenge. The plant microbiome has been linked to improved plant productivity and, in this microreview, we consider the endosphere – a subdivision of the plant microbiome. We suggest a new definition of microbial endophyte status, the need for synergy between fungal and bacterial endophyte research efforts, as well as potential strategies for endophyte application to agricultural systems. PMID:27559722

  8. Precision Farming and Conservation Advances Agricultural Sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To many, Precision Farming, more formally termed Precision Agriculture, seems like an oxymoron. Yet site-specific management makes sense to an exponentially growing number of farmers. So where is Precision Farming headed? The short answer is that it is being extended from a focus on crop productio...

  9. Beginning Farmer Sustainable Agriculture Project. Interim Report.

    ERIC Educational Resources Information Center

    Center for Rural Affairs, Hartington, NE.

    This project increases opportunities for beginning farmers to learn about and implement sustainable farming methods through mutual-help discussion groups and continuing education opportunities. Local groups established in six areas in northeast Nebraska in 1991 constitute the Beginning Farmer Support Network (BFSN). At workshops held throughout…

  10. Sustainable nanomaterials using waste agricultural residues

    EPA Science Inventory

    Sustainable synthetic processes developed during the past two decades involving the use of alternate energy inputs and greener reaction media are summarized. Learning from nature, one can produce a wide variety of nanoparticles using completely safe and benign materials such as ...

  11. Earth Observation for Food Security and Sustainable Agriculture

    NASA Astrophysics Data System (ADS)

    Bach, Heike; Mauser, Wolfram; Gernot, Klepper

    2016-08-01

    The global and regional potentials of Earth Observation (EO) to contribute to food security and sustainable agriculture in the 2050-timeframe were analysed in the ESA study EO4Food, whose outcome will be presented (www.EO4Food.org). Emphasis was put on the global societal, economic, environmental and technological megatrends that will create demand for food and shape the future societies. They will also constitute the background for developments in EO for food security and sustainable agriculture. The capabilities of EO in this respect were critically reviewed with three perspectives 1) the role of EO science for society, 2) observables from space and 3) development of future science missions.It was concluded that EO can be pivotal for the further development of food security and sustainable agriculture. EO allows to support the whole economic and societal value chain from farmers through food industry to insurance and financial industry in satisfying demands and at the same time to support society in governing sustainable agriculture through verifyable rules and regulations. It has the potential to become the global source of environmental information that is assimilated into sophisticated environmental management models and is used to make agriculture sustainable.

  12. Modeling Sustainable Agricultural Residue Removal at the Subfield Scale

    SciTech Connect

    Muth, D.J.; McCorkle, D.S.; Koch, J.B.; Bryden, K.M.

    2012-05-02

    This study developed a computational strategy that utilizes data inputs from multiple spatial scales to investigate how variability within individual fields can impact sustainable residue removal for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in limiting soil erosion and maintaining soil C, health, and productivity. Increased availability of subfield-scale data sets such as grain yield data, high-fidelity digital elevation models, and soil characteristic data provides an opportunity to investigate the impacts of subfield-scale variability on sustainable agricultural residue removal. Using three representative fields in Iowa, this study contrasted the results of current NRCS conservation management planning analysis with subfield-scale analysis for rake-and-bale removal of agricultural residue. The results of the comparison show that the field-average assumptions used in NRCS conservation management planning may lead to unsustainable residue removal decisions for significant portions of some fields. This highlights the need for additional research on subfield-scale sustainable agricultural residue removal including the development of real-time variable removal technologies for agricultural residue.

  13. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    SciTech Connect

    Negri, M. Cristina; Ssegane, H.

    2015-08-01

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  14. Sustaining the Earth's watersheds, agricultural research data system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  15. Educational and Training Opportunities in Sustainable Agriculture. 5th Edition.

    ERIC Educational Resources Information Center

    Gates, Jane Potter

    This directory lists 151 programs in alternative farming systems (systems that aim at maintaining agricultural productivity and profitability, while protecting natural resources, especially sustainable, low-input, regenerative, biodynamic or organic farming and gardening). It includes programs conducted by colleges and universities, research…

  16. Facilitating North-South Partnerships for Sustainable Agriculture

    ERIC Educational Resources Information Center

    Termeer, C. J. A. M.; Hilhorst, T.; Oorthuizen, J.

    2010-01-01

    The increased number of development cooperation and sustainable agriculture partnerships brings with it new challenges for professionals who are asked to facilitate these partnering processes. In this article we shed more light on the world of development cooperation and we explore questions that facilitators working with North-South partnerships…

  17. Educational and Training Opportunities in Sustainable Agriculture. 8th Edition.

    ERIC Educational Resources Information Center

    Gates, Jane Potter

    This directory provides information on over 200 institutions and organizations that are involved in organic, alternative, or sustainable agriculture and that also focus on education, training, or provision of information. The directory was compiled by the Alternative Farming Systems Information Center (AFSIC), which is 1 of 10 information centers…

  18. Innovating towards Sustainable Agriculture: A Greek Case Study

    ERIC Educational Resources Information Center

    Koutsouris, Alex

    2008-01-01

    Agronomists (scientists and extensionists), despite the emergence of interactive approaches, still have troubles with (the introduction of) innovations, such as sustainable forms of agriculture. This article critically addresses such difficulties based on the evaluation of a project mainly concerning the introduction of Integrated Crop Management…

  19. Educational and Training Opportunities in Sustainable Agriculture. 7th Edition.

    ERIC Educational Resources Information Center

    Gates, Jane Potter

    This directory contains information about institutions and organizations involved in organic, alternative, or sustainable agriculture, and its focus is on education, training, and provision of information. The directory contains program and contact information for 122 institutions, associations, centers, universities, and foundations; and 4…

  20. Educational and Training Opportunities in Sustainable Agriculture. Third Edition.

    ERIC Educational Resources Information Center

    Gates, Jane Potter

    This directory contains an updated list of institutions involved in organic, low input, or sustainable agriculture that provide education, training, or information. Scope of coverage is the United States and Canada, with 124 listings for the United States and 5 for Canada. Arranged alphabetically, listings consist of institution name, address,…

  1. Sustainable Uses of FGD Gypsum in Agricultural Systems: Introduction.

    PubMed

    Watts, Dexter B; Dick, Warren A

    2014-01-01

    Interest in using gypsum as a management tool to improve crop yields and soil and water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur from combustion gases at coal-fired power plants, in major agricultural producing regions within the last two decades has attributed to this interest. Currently, published data on the long-term sustainability of FGD gypsum use in agricultural systems is limited. This has led to organization of the American Society of Agronomy's Community "By-product Gypsum Uses in Agriculture" and a special collection of nine technical research articles on various issues related to FGD gypsum uses in agricultural systems. A brief review of FGD gypsum, rationale for the special collection, overviews of articles, knowledge gaps, and future research directions are presented in this introductory paper. The nine articles are focused in three general areas: (i) mercury and other trace element impacts, (ii) water quality impacts, and (iii) agronomic responses and soil physical changes. While this is not an exhaustive review of the topic, results indicate that FGD gypsum use in sustainable agricultural production systems is promising. The environmental impacts of FGD gypsum are mostly positive, with only a few negative results observed, even when applied at rates representing cumulative 80-year applications. Thus, FGD gypsum, if properly managed, seems to represent an important potential input into agricultural systems.

  2. Role of ruminant livestock in sustainable agricultural systems.

    PubMed

    Oltjen, J W; Beckett, J L

    1996-06-01

    Ruminants have served and will continue to serve a valuable role in sustainable agricultural systems. They are particularly useful in converting vast renewable resources from rangeland, pasture, and crop residues or other by-products into food edible for humans. With ruminants, land that is too poor or too erodable to cultivate becomes productive. Also, nutrients in by-products are utilized and do not become a waste-disposal problem. The need to maintain ruminants to utilize these humanly inedible foodstuffs and convert them into high-quality foods for human consumption has been a characteristic of advanced societies for several thousand years. Further, ruminant livestock production is entirely consistent with proper agronomy practices in which forages are grown on 25% of arable land to minimize water and soil erosion. Questions have been asked, however, about the use of humanly edible foodstuffs (grains, protein sources, etc.) in ruminant diets. Does their use create a net loss of nutrients for human consumption? What level of their use is necessary or desirable? Does the use of some of these improve the nutrient (e.g. protein) quality or product value? Too often the opponents of animal agriculture evaluate the desirability of animal production on gross calorie or protein intake/output values. However, in many cases the feeds used in animal production are not consumable by humans, and in order to properly evaluate animal production, humanly consumable energy and protein intake should be used for efficiency comparisons. Analysis of the costs/returns of humanly edible energy and protein for a variety of dairy and beef cattle production systems shows that food value is increased with ruminant products, and that net returns of humanly edible nutrients are dependent on the production system used. The efficiency with which ruminants convert humanly edible energy and protein into meat or milk is highly dependent on diet, and hence, on regional production practices

  3. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  4. Sustainability of irrigated agriculture in the San Joaquin Valley, California.

    PubMed

    Schoups, Gerrit; Hopmans, Jan W; Young, Chuck A; Vrugt, Jasper A; Wallender, Wesley W; Tanji, Ken K; Panday, Sorab

    2005-10-25

    The sustainability of irrigated agriculture in many arid and semiarid areas of the world is at risk because of a combination of several interrelated factors, including lack of fresh water, lack of drainage, the presence of high water tables, and salinization of soil and groundwater resources. Nowhere in the United States are these issues more apparent than in the San Joaquin Valley of California. A solid understanding of salinization processes at regional spatial and decadal time scales is required to evaluate the sustainability of irrigated agriculture. A hydro-salinity model was developed to integrate subsurface hydrology with reactive salt transport for a 1,400-km(2) study area in the San Joaquin Valley. The model was used to reconstruct historical changes in salt storage by irrigated agriculture over the past 60 years. We show that patterns in soil and groundwater salinity were caused by spatial variations in soil hydrology, the change from local groundwater to snowmelt water as the main irrigation water supply, and by occasional droughts. Gypsum dissolution was a critical component of the regional salt balance. Although results show that the total salt input and output were about equal for the past 20 years, the model also predicts salinization of the deeper aquifers, thereby questioning the sustainability of irrigated agriculture.

  5. Bioprospecting bacterial and fungal volatiles for sustainable agriculture.

    PubMed

    Kanchiswamy, Chidananda Nagamangala; Malnoy, Mickael; Maffei, Massimo E

    2015-04-01

    Current agricultural practice depends on a wide use of pesticides, bactericides, and fungicides. Increased demand for organic products indicates consumer preference for reduced chemical use. Therefore, there is a need to develop novel sustainable strategies for crop protection and enhancement that do not rely on genetic modification and/or harmful chemicals. An increasing body of evidence indicates that bacterial and fungal microbial volatile organic compounds (MVOCs) might provide an alternative to the use of chemicals to protect plants from pathogens and provide a setting for better crop welfare. It is well known that MVOCs can modulate the physiology of plants and microorganisms and in this Opinion we propose that MVOCs can be exploited as an ecofriendly, cost-effective, and sustainable strategy for agricultural practices.

  6. An integrated approach to monitoring ecosystem services and agriculture: implications for sustainable agricultural intensification in Rwanda.

    PubMed

    Rosa, Melissa F; Bonham, Curan A; Dempewolf, Jan; Arakwiye, Bernadette

    2017-01-01

    Maintaining the long-term sustainability of human and natural systems across agricultural landscapes requires an integrated, systematic monitoring system that can track crop productivity and the impacts of agricultural intensification on natural resources. This study presents the design and practical implementation of a monitoring framework that combines satellite observations with ground-based biophysical measurements and household surveys to provide metrics on ecosystem services and agricultural production at multiple spatial scales, reaching from individual households and plots owned by smallholder farmers to 100-km(2) landscapes. We developed a set of protocols for monitoring and analyzing ecological and agricultural household parameters within two 10 × 10-km landscapes in Rwanda, including soil fertility, crop yield, water availability, and fuelwood sustainability. Initial results suggest providing households that rely on rainfall for crop irrigation with timely climate information and improved technical inputs pre-harvest could help increase crop productivity in the short term. The value of the monitoring system is discussed as an effective tool for establishing a baseline of ecosystem services and agriculture before further change in land use and climate, identifying limitations in crop production and soil fertility, and evaluating food security, economic development, and environmental sustainability goals set forth by the Rwandan government.

  7. Agricultural biodiversity, social-ecological systems and sustainable diets.

    PubMed

    Allen, Thomas; Prosperi, Paolo; Cogill, Bruce; Flichman, Guillermo

    2014-11-01

    The stark observation of the co-existence of undernourishment, nutrient deficiencies and overweight and obesity, the triple burden of malnutrition, is inviting us to reconsider health and nutrition as the primary goal and final endpoint of food systems. Agriculture and the food industry have made remarkable advances in the past decades. However, their development has not entirely fulfilled health and nutritional needs, and moreover, they have generated substantial collateral losses in agricultural biodiversity. Simultaneously, several regions are experiencing unprecedented weather events caused by climate change and habitat depletion, in turn putting at risk global food and nutrition security. This coincidence of food crises with increasing environmental degradation suggests an urgent need for novel analyses and new paradigms. The sustainable diets concept proposes a research and policy agenda that strives towards a sustainable use of human and natural resources for food and nutrition security, highlighting the preeminent role of consumers in defining sustainable options and the importance of biodiversity in nutrition. Food systems act as complex social-ecological systems, involving multiple interactions between human and natural components. Nutritional patterns and environment structure are interconnected in a mutual dynamic of changes. The systemic nature of these interactions calls for multidimensional approaches and integrated assessment and simulation tools to guide change. This paper proposes a review and conceptual modelling framework that articulate the synergies and tradeoffs between dietary diversity, widely recognised as key for healthy diets, and agricultural biodiversity and associated ecosystem functions, crucial resilience factors to climate and global changes.

  8. Epichloë grass endophytes in sustainable agriculture.

    PubMed

    Kauppinen, Miia; Saikkonen, Kari; Helander, Marjo; Pirttilä, Anna Maria; Wäli, Piippa R

    2016-02-03

    There is an urgent need to create new solutions for sustainable agricultural practices that circumvent the heavy use of fertilizers and pesticides and increase the resilience of agricultural systems to environmental change. Beneficial microbial symbionts of plants are expected to play an important role in integrated pest management schemes over the coming decades. Epichloë endophytes, symbiotic fungi of many grass species, can protect plants against several stressors, and could therefore help to increase the productivity of forage grasses and the hardiness of turf grasses while reducing the use of synthetic pesticides. Indeed, Epichloë endophytes have successfully been developed and commercialized for agricultural use in the USA, Australia and New Zealand. Many of the host grass species originate from Europe, which is a biodiversity hotspot for both grasses and endophytes. However, intentional use of endophyte-enhanced grasses in Europe is virtually non-existent. We suggest that the diversity of European Epichloë endophytes and their host grasses should be exploited for the development of sustainable agricultural, horticultural and landscaping practices, and potentially for bioremediation and bioenergy purposes, and for environmental improvement.

  9. An inverse problem for a mathematical model of aquaponic agriculture

    NASA Astrophysics Data System (ADS)

    Bobak, Carly; Kunze, Herb

    2017-01-01

    Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.

  10. Remote sensing and GIS in support of sustainable agricultural development

    NASA Astrophysics Data System (ADS)

    Duro, Dennis Correa

    Over the coming decades it is expected that the vast amounts of area currently in agricultural production will face growing pressure to intensify as world populations continue to grow, and the demand for a more Western-based diet increases. Coupled with the potential consequences of climate change, and the increasing costs involved with current energy-intensive agricultural production methods, meeting goals of environmental and socioeconomic sustainability will become ever more challenging. At a minimum, meeting such goals will require a greater understanding of rates of change, both over time and space, to properly assess how present demand may affect the needs of future generations. As agriculture represents a fundamental component of modern society, and the most ubiquitous form of human induced landscape change on the planet, it follows that mapping and tracking changes in such environments represents a crucial first step towards meeting the goal of sustainability. In anticipation of the mounting need for consistent and timely information related to agricultural development, this thesis proposes several advances in the field of geomatics, with specific contributions in the areas of remote sensing and spatial analysis: First, the relative strengths of several supervised machine learning algorithms used to classify remotely sensed imagery were assessed using two image analysis approaches: pixel-based and object-based. Second, a feature selection process, based on a Random Forest classifier, was applied to a large data set to reduce the overall number of object-based predictor variables used by a classification model without sacrificing overall classification accuracy. Third, a hybrid object-based change detection method was introduced with the ability to handle disparate image sources, generate per-class change thresholds, and minimize map updating errors. Fourth, a spatial disaggregation procedure was performed on coarse scale agricultural census data to render

  11. Agricultural Accident Prevention--Problems and Accomplishments

    ERIC Educational Resources Information Center

    Bristol, Benton K.

    1976-01-01

    Titles of bulletins, for persons who are interested in agricultural accident prevention, are listed as well as examples of farm machinery manufacturers who are making special efforts to produce valuable teaching aids and to inform all segments of agriculture about important safety development. (HD)

  12. Plant genetics, sustainable agriculture and global food security.

    PubMed

    Ronald, Pamela

    2011-05-01

    The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant-environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts-the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems.

  13. Plant Genetics, Sustainable Agriculture and Global Food Security

    PubMed Central

    Ronald, Pamela

    2011-01-01

    The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant–environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts—the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems. PMID:21546547

  14. Measuring biodiversity and sustainable management in forests and agricultural landscapes

    PubMed Central

    Dudley, Nigel; Baldock, David; Nasi, Robert; Stolton, Sue

    2005-01-01

    Most of the world's biodiversity will continue to exist outside protected areas and there are also managed lands within many protected areas. In the assessment of millennium targets, there is therefore a need for indicators to measure biodiversity and suitability of habitats for biodiversity both across the whole landscape/seascape and in specific managed habitats. The two predominant land uses in many inhabited areas are forestry and agriculture and these are examined. Many national-level criteria and indicator systems already exist that attempt to assess biodiversity in forests and the impacts of forest management, but there is generally less experience in measuring these values in agricultural landscapes. Existing systems are reviewed, both for their usefulness in providing indicators and to assess the extent to which they have been applied. This preliminary gap analysis is used in the development of a set of indicators suitable for measuring progress towards the conservation of biodiversity in managed forests and agriculture. The paper concludes with a draft set of indicators for discussion, with suggestions including proportion of land under sustainable management, amount of produce from such land, area of natural or high quality semi-natural land within landscapes under sustainable management and key indicator species. PMID:15814357

  15. Risk identification of agricultural drought for sustainable Agroecosystems

    NASA Astrophysics Data System (ADS)

    Dalezios, N. R.; Blanta, A.; Spyropoulos, N. V.; Tarquis, A. M.

    2014-09-01

    Drought is considered as one of the major natural hazards with a significant impact on agriculture, environment, society and economy. Droughts affect sustainability of agriculture and may result in environmental degradation of a region, which is one of the factors contributing to the vulnerability of agriculture. This paper addresses agrometeorological or agricultural drought within the risk management framework. Risk management consists of risk assessment, as well as a feedback on the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. This paper deals with risk identification of agricultural drought, which involves drought quantification and monitoring, as well as statistical inference. For the quantitative assessment of agricultural drought, as well as the computation of spatiotemporal features, one of the most reliable and widely used indices is applied, namely the vegetation health index (VHI). The computation of VHI is based on satellite data of temperature and the normalized difference vegetation index (NDVI). The spatiotemporal features of drought, which are extracted from VHI, are areal extent, onset and end time, duration and severity. In this paper, a 20-year (1981-2001) time series of the National Oceanic and Atmospheric Administration/advanced very high resolution radiometer (NOAA/AVHRR) satellite data is used, where monthly images of VHI are extracted. Application is implemented in Thessaly, which is the major agricultural drought-prone region of Greece, characterized by vulnerable agriculture. The results show that agricultural drought appears every year during the warm season in the region. The severity of drought is increasing from mild to extreme throughout the warm season, with peaks appearing in the summer. Similarly, the areal extent of drought is also increasing during the warm season, whereas the number of extreme drought pixels is much less than

  16. Risk identification of agricultural drought for sustainable agroecosystems

    NASA Astrophysics Data System (ADS)

    Dalezios, N. R.; Blanta, A.; Spyropoulos, N. V.; Tarquis, A. M.

    2014-04-01

    Drought is considered as one of the major natural hazards with significant impact to agriculture, environment, society and economy. Droughts affect sustainability of agriculture and may result in environmental degradation of a region, which is one of the factors contributing to the vulnerability of agriculture. This paper addresses agrometeorological or agricultural drought within the risk management framework. Risk management consists of risk assessment, as well as a feedback on the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. This paper deals with risk identification of agricultural drought, which involves drought quantification and monitoring, as well as statistical inference. For the quantitative assessment of agricultural drought, as well as the computation of spatiotemporal features, one of the most reliable and widely used indices is applied, namely the Vegetation Health Index (VHI). The computation of VHI is based on satellite data of temperature and the Normalized Difference Vegetation Index (NDVI). The spatiotemporal features of drought, which are extracted from VHI are: areal extent, onset and end time, duration and severity. In this paper, a 20 year (1981-2001) time series of NOAA/AVHRR satellite data is used, where monthly images of VHI are extracted. Application is implemented in Thessaly, which is the major agricultural drought-prone region of Greece, characterized by vulnerable agriculture. The results show that agricultural drought appears every year during the warm season in the region. The severity of drought is increasing from mild to extreme throughout the warm season with peaks appearing in the summer. Similarly, the areal extent of drought is also increasing during the warm season, whereas the number of extreme drought pixels is much less than those of mild to moderate drought throughout the warm season. Finally, the areas with diachronic

  17. Importance of Animals in Agricultural Sustainability and Food Security.

    PubMed

    Reynolds, Lawrence P; Wulster-Radcliffe, Meghan C; Aaron, Debra K; Davis, Teresa A

    2015-07-01

    A conservative projection shows the world's population growing by 32% (to 9.5 billion) by 2050 and 53% (to 11 billion) by 2100 compared with its current level of 7.2 billion. Because most arable land worldwide is already in use, and water and energy also are limiting, increased production of food will require a substantial increase in efficiency. In this article, we highlight the importance of animals to achieving food security in terms of their valuable contributions to agricultural sustainability, especially in developing countries, and the high nutritional value of animal products in the diet.

  18. Operational indicators for measuring agricultural sustainability in developing countries.

    PubMed

    Zhen, Lin; Routray, Jayant K

    2003-07-01

    This paper reviews relevant literature on the sustainability indicators theoretically proposed and practically applied by scholars over the past 15 years. Although progress is being made in the development and critical analysis of sustainability indicators, in many cases existing or proposed indicators are not the most sensitive or useful measures in developing countries. Indicator selection needs to meet the following criteria: relative availability of data representing the indicators, sensitivity to stresses on the system, existence of threshold values and guidelines, predictivity, integratability and known response to disturbances, anthropogenic stresses, and changes over time. Based on these criteria, this paper proposes a set of operational indicators for measuring agricultural sustainability in developing countries. These indicators include ecological indicators involving amounts of fertilizers and pesticides used, irrigation water used, soil nutrient content, depth to the groundwater table, water use efficiency, quality of groundwater for irrigation, and nitrate content of both groundwater and crops. Economic indicators include crop productivity, net farm income, benefit-cost ratio of production, and per capita food grain production. Social indicators encompass food self-sufficiency, equality in food and income distribution among farmers, access to resources and support services, and farmers' knowledge and awareness of resource conservation. This article suggests that the selection of indicators representing each aspect of sustainability should be prioritized according to spatial and temporal characteristics under consideration.

  19. Problems of Manpower in Agriculture. OECD Documentation in Food and Agriculture.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    Problems related to rapid reduction of the agricultural labor force were examined in the 21 Organisation for Economic Co-operation and Development countries. The size and changes of the agricultural labor force, economic forces tending towards change, technical requirements for labor in agriculture, and obstacles hindering economic adjustment of…

  20. Ecologically sustainable chemical recommendations for agricultural pest control?

    PubMed

    Thomson, Linda J; Hoffmann, Ary A

    2007-12-01

    Effective pest control remains an essential part of food production, and it is provided both by chemicals and by natural enemies within agricultural ecosystems. These methods of control are often in conflict because of the negative impact of chemicals on natural enemies. There are already well-established approaches such as those provided by the International Organization for Biological and Integrated Control-Pesticides and Beneficial Organisms for testing, collecting, and publishing information on responses of natural enemies to chemicals based on laboratory responses of specific organisms; however, these tests do not assess the cumulative impact of chemical inputs across an entire season or consider impacts on the complex communities of natural enemies that can provide effective pest control on a farm. Here, we explore the potential of different approaches for assessing the impact of chemicals on agricultural ecosystems and we propose a simple metric for sustainable chemical use on farms that minimizes overall impact on beneficial groups. We suggest ways in which the effectiveness of metrics can be extended to include persistence and habitat features. Such metrics can assist farmers in developing targets for sustainable chemical use as demonstrated in the viticultural industry.

  1. Food sustainability: problems, perspectives and solutions.

    PubMed

    Garnett, Tara

    2013-02-01

    The global food system makes a significant contribution to climate changing greenhouse gas emissions with all stages in the supply chain, from agricultural production through processing, distribution, retailing, home food preparation and waste, playing a part. It also gives rise to other major environmental impacts, including biodiversity loss and water extraction and pollution. Policy makers are increasingly aware of the need to address these concerns, but at the same time they are faced with a growing burden of food security and nutrition-related problems, and tasked with ensuring that there is enough food to meet the needs of a growing global population. In short, more people need to be fed better, with less environmental impact. How might this be achieved? Broadly, three main 'takes' or perspectives, on the issues and their interactions, appear to be emerging. Depending on one's view point, the problem can be conceptualised as a production challenge, in which case there is a need to change how food is produced by improving the unit efficiency of food production; a consumption challenge, which requires changes to the dietary drivers that determine food production; or a socio-economic challenge, which requires changes in how the food system is governed. This paper considers these perspectives in turn, their implications for nutrition and climate change, and their strengths and weaknesses. Finally, an argument is made for a reorientation of policy thinking which uses the insights provided by all three perspectives, rather than, as is the situation today, privileging one over the other.

  2. Sustainable Agriculture as a Recruitment Tool for Geoscience Majors

    NASA Astrophysics Data System (ADS)

    Enright, K. P.; Gilbert, L. A.; McGillis, A.

    2014-12-01

    Small-scale agriculture has exploded with popularity in recent years, as teenagers and college students gain interest in local food sources. Outdoor experiences, including gardening and farming, are often among the motivations for students to take their first geoscience courses in college. The methods and theories of small agriculture translate well into geologic research questions, especially in the unique setting of college campus farms and gardens. We propose an activity or assignment to engage student-farmers in thinking about geosciences, and connect them with geoscience departments as a gateway to the major and career field. Furthermore, the activity will encourage a new generation of passionate young farmers to integrate the principles of earth science into their design and implementation of more sustainable food systems. The activity includes mapping, soil sampling, and interviewing professionals in agriculture and geology, and results in the students writing a series of recommendations for their campus or other farm. The activity includes assessment tools for instructors and can be used to give credit for a summer farming internship or as part of a regular course. We believe reaching out to students interested in farming could be an important recruitment tool for geosciences and helps build interdisciplinary and community partnerships.

  3. Seeds of Knowledge: The Evolution of the Louis Bromfield Sustainable Agriculture Library.

    ERIC Educational Resources Information Center

    Miraglia, Laurie L.

    The Louis Bromfield Sustainable Agriculture Library is located in Lucas, Ohio, at Malabar Farm State Park. Established in 1992, the library is jointly maintained by the Ohio State University Sustainable Agriculture Program and the Ohio Department of Agriculture. The library's namesake, Louis Bromfield, was a Pulitzer Prize-winning author and noted…

  4. Students' Experiential Learning and Use of Student Farms in Sustainable Agriculture Education

    ERIC Educational Resources Information Center

    Parr, Damian M.; Trexler, Cary J.

    2011-01-01

    Student farms, developed largely out of student efforts, have served as centers for the development of experiential learning and sustainable agriculture and food systems educational activities on land-grant colleges of agriculture well before most formal sustainable agriculture and food systems programs were proposed. This study explored students'…

  5. College Students' View of Biotechnology Products and Practices in Sustainable Agriculture Systems

    ERIC Educational Resources Information Center

    Anderson, William A.

    2008-01-01

    Sustainable agriculture implies the use of products and practices that sustain production, protect the environment, ensure economic viability, and maintain rural community viability. Disagreement exists as to whether or not the products and practices of modern biotechnological support agricultural sustainability. The purpose of this study was to…

  6. World Food and Agriculture. Economic Problems and Issues.

    ERIC Educational Resources Information Center

    Asefa, Sisay, Ed.

    This book contains a series of essays based on public lectures delivered by six agricultural economists during the 1986-1987 academic year at Western Michigan University. Some of the main issues and problems addressed in the essays are the role of technical change in agricultural development, the value of learning from historical and comparative…

  7. Balancing water scarcity and quality for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  8. Experimental learning projects address contemporary issues related to energy, environment, and sustainable agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The “Bio-Fuel, sustainability, and geospatial information technologies to enhance experiential learning paradigm for precision agriculture project”, recently funded by USDA extends the environmental stewardship archetype of the preceding project titled “Environmentally conscious precision agricultur...

  9. Agricultural Education for Sustainable Rural Development: Challenges for Developing Countries in the 21st Century.

    ERIC Educational Resources Information Center

    van Crowder, L.; Lindley, W. I.; Bruening, T. H.; Doron, N.

    1998-01-01

    Agricultural education institutions in developing countries must address immediate production needs as well as food security, sustainable agricultural, and rural development needs. This will mean moving to an interdisciplinary, systems approach that incorporates new topics. (Author/JOW)

  10. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  11. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    PubMed

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome.

  12. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures.

    PubMed

    Pierart, Antoine; Shahid, Muhammad; Séjalon-Delmas, Nathalie; Dumat, Camille

    2015-05-30

    The increasing interest in urban agriculture highlights the crucial question of crop quality. The main objectives for environmental sustainability are a decrease in chemical inputs, a reduction in the level of pollutants, and an improvement in the soil's biological activity. Among inorganic pollutants emitted by vehicle traffic and some industrial processes in urban areas, antimony (Sb) is observed on a global scale. While this metalloid is known to be potentially toxic, it can transfer from the soil or the atmosphere to plants, and accumulate in their edible parts. Urban agriculture is developing worldwide, and could therefore increasingly expose populations to Sb. The objective of this review was in consequences to gather and interpret actual knowledge of Sb uptake and bioaccumulation by crops, to reveal investigative fields on which to focus. While there is still no legal maximal value for Sb in plants and soils, light has to be shed on its accumulation and the factors affecting it. A relative absence of data exists about the role of soil flora and fauna in the transfer, speciation and compartmentation of Sb in vegetables. Moreover, little information exists on Sb ecotoxicity for terrestrial ecosystems. A human risk assessment has finally been reviewed, with particular focus on Sb bioaccessibility.

  13. Strategies and models for agricultural sustainability in developing Asian countries.

    PubMed

    Kesavan, P C; Swaminathan, M S

    2008-02-27

    The green revolution of the 1960s and 1970s which resulted in dramatic yield increases in the developing Asian countries is now showing signs of fatigue in productivity gains. Intensive agriculture practiced without adherence to the scientific principles and ecological aspects has led to loss of soil health, and depletion of freshwater resources and agrobiodiversity. With progressive diversion of arable land for non-agricultural purposes, the challenge of feeding the growing population without, at the same time, annexing more forestland and depleting the rest of life is indeed daunting. Further, even with food availability through production/procurement, millions of marginal farming, fishing and landless rural families have very low or no access to food due to lack of income-generating livelihoods. Approximately 200 million rural women, children and men in India alone fall in this category. Under these circumstances, the evergreen revolution (pro-nature, pro-poor, pro-women and pro-employment/livelihood oriented ecoagriculture) under varied terms are proposed for achieving productivity in perpetuity. In the proposed 'biovillage paradigm', eco-friendly agriculture is promoted along with on- and non-farm eco-enterprises based on sustainable management of natural resources. Concurrently, the modern ICT-based village knowledge centres provide time- and locale-specific, demand-driven information needed for evergreen revolution and ecotechnologies. With a system of 'farm and marine production by masses', the twin goals of ecoagriculture and eco-livelihoods are addressed. The principles, strategies and models of these are briefly discussed in this paper.

  14. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  15. [Problems in development of agriculture-animal husbandry ecotone and its countermeasures].

    PubMed

    Baoyin, Taogetao; Bai, Yongfei

    2004-02-01

    Problems in development of Duolun, a typical agriculture-animal husbandry ecotone, and its countermeasures were discussed in this paper. Economic structure was not rational in Duolun, and it should develop industry and commerce, limit the scope of agriculture and animal husbandry, and actively increase efficiency of agriculture and animal husbandry. The structure of land use was not rational, and the main countermeasures were to increase area of forestland and grassland, and decrease cultivated area. On resources use, the main countermeasures were to exploit water resource rationally and bring into play resource superiority of mutually benefits on agriculture and animal husbandry. The ecological environment construction was the foundation of the national economy for sustainable development in agriculture-animal husbandry ecotone.

  16. How Cognitive Style and Problem Complexity Affect Preservice Agricultural Education Teachers' Abilities to Solve Problems in Agricultural Mechanics

    ERIC Educational Resources Information Center

    Blackburn, J. Joey; Robinson, J. Shane; Lamm, Alexa J.

    2014-01-01

    The purpose of this experimental study was to determine the effects of cognitive style and problem complexity on Oklahoma State University preservice agriculture teachers' (N = 56) ability to solve problems in small gasoline engines. Time to solution was operationalized as problem solving ability. Kirton's Adaption-Innovation Inventory was…

  17. Sustainable conjunctive water management in irrigated agriculture: Model formulation and application to the Yaqui Valley, Mexico

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit; Addams, C. Lee; Minjares, José Luis; Gorelick, Steven M.

    2006-10-01

    This paper investigates strategies to alleviate the effects of droughts on the profitability and sustainability of irrigated agriculture. These strategies include conjunctive management of surface water and groundwater resources, and engineered improvements such as lining of irrigation canals and addition of regional pumping well capacity. A spatially distributed simulation-optimization model was developed for an irrigated system consisting of multiple surface water reservoirs and an alluvial aquifer. The simulation model consists of an agronomic component and simulators describing the hydrologic system. The physical models account for storage and flow through the reservoirs, routing through the irrigation canals, and regional groundwater flow. The agronomic model describes crop productivity as a function of irrigation quantity and salinity, and determines agricultural profit. A profit maximization problem was formulated and solved using large-scale constrained gradient-based optimization. The model was applied to a real-world conjunctive surface water/groundwater management problem in the Yaqui Valley, an irrigated agricultural region in Sonora, Mexico. The model reproduces recorded reductions in agricultural production during a historical drought. These reductions were caused by a decline in surface water availability and limited installed pumping capacity. Results indicate that the impact of the historical 8-year drought could have been significantly reduced without affecting profit in wet years by better managing surface water and groundwater resources. Namely, groundwater could have been more heavily relied upon and surface water allocation capped at a sustainable level as an operating rule. Lining the irrigation canals would have resulted in water savings of 30% of historical reservoir releases during wet years, which could have been used in subsequent drier years to increase agricultural production. The benefits of a greater reliance on groundwater pumping

  18. Sustainability of current agriculture practices, community perception, and implications for ecosystem health: an Indian study.

    PubMed

    Sarkar, Atanu; Patil, Shantagouda; Hugar, Lingappa B; vanLoon, Gary

    2011-12-01

    In order to support agribusiness and to attain food security for ever-increasing populations, most countries in the world have embraced modern agricultural technologies. Ecological consequences of the technocentric approaches, and their sustainability and impacts on human health have, however, not received adequate attention particularly in developing countries. India is one country that has undergone a rapid transformation in the field of agriculture by adopting strategies of the Green Revolution. This article provides a comparative analysis of the effects of older and newer paradigms of agricultural practices on ecosystem and human health within the larger context of sustainability. The study was conducted in three closely situated areas where different agricultural practices were followed: (a) the head-end of a modern canal-irrigated area, (b) an adjacent dryland, and (c) an area (the ancient area) that has been provided with irrigation for some 800 years. Data were collected by in-depth interviews of individual farmers, focus-group discussions, participatory observations, and from secondary sources. The dryland, receiving limited rainfall, continues to practice diverse cropping centered to a large extent on traditional coarse cereals and uses only small amounts of chemical inputs. On the other hand, modern agriculture in the head-end emphasizes continuous cropping of rice supported by extensive and indiscriminate use of agrochemicals. Market forces have, to a significant degree, influenced the ancient area to abandon much of its early practices of organic farming and to take up aspects of modern agricultural practice. Rice cultivation in the irrigated parts has changed the local landscape and vegetation and has augmented the mosquito population, which is a potential vector for malaria, Japanese encephalitis and other diseases. Nevertheless, despite these problems, perceptions of adverse environmental effects are lowest in the heavily irrigated area.

  19. Impact of Sustainable Agriculture on Secondary School Agricultural Education Teachers and Programs in the North Central Region.

    ERIC Educational Resources Information Center

    Agbaje, Kehinde Aderemi Ajaiyeoba; Martin, Robert A.; Williams, David L.

    2001-01-01

    Responses from 298 of 600 secondary agriculture teachers in north central United States revealed limited impact of sustainable agriculture. Most teachers had neutral perceptions; a moderate number taught it, but not from a systems perspective. However, related agronomy topics were taught, providing a possible foundation for future inclusion of…

  20. Sustainable agriculture for Alaska and the circumpolar north: Part 1. Development and status of northeren agriculture and food security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alaska is food insecure, importing an estimated 95% of all agricultural products and 50 commodities and only maintaining a year round food supply of about three to five days. We 51 review the history, development and current state of sustainable agriculture at high-latitudes, 52 especially Alaska, a...

  1. Nematode problems affecting agriculture in the Philippines.

    PubMed

    Davide, R G

    1988-04-01

    Nematodes are considered major pests on most economic crops in the Philippines, particularly on banana, pineapple, citrus, tomato, ramie, and sugarcane. Radopholus similis is the most destructive nematode on banana, while Meloidogyne spp. are more serious on various vegetable crops such as tomato, okra, and celery and on fiber crops such as ramie. Tylenchulus semipenetrans is a problem on citrus and Rotylenchulus reniformis on pineapple and some legume crops. Hirschmanniella oryzae and Aphelenchoides besseyi are becoming serious on rice, and Pratylenchus zeae is affecting corn in some areas. Lately, Globodera rostochiensis has been causing serious damage on potato in the highlands. Control measures such as crop rotation, planting resistant varieties, chemical nematicide application, and biological control have been recommended to control these nematodes.

  2. Teaching the Nature of Science in a Course in Sustainable Agriculture

    ERIC Educational Resources Information Center

    Cessna, Stephen; Neufeld, Douglas Graber; Horst, S. Jeanne

    2013-01-01

    Claims of the (non-)sustainability of a given agricultural practice generally hinge on scientific evidence and the reliability of that evidence, or at least the perception of its reliability. Advocates of sustainable agriculture may dismiss science as purely subjective, or at the other extreme, may inappropriately elevate scientific findings to…

  3. The sources of deforestation - implications for sustainable agriculture in Brazil

    SciTech Connect

    Torres-Zorrilla, J.; Arnode, C.

    1992-12-01

    Agricultural equilibrium conditions are used to identify the sources of deforestation in Brazil. The rate which forestland can be converted into agricultural land and meet agricultural and environmental goals is calculated. This serves the task of determining how long agricultural land growth can be maintained until environmental targets are violated.

  4. Promoting Sustainable Agricultural Practices Through Remote Sensing Education and Outreach

    NASA Astrophysics Data System (ADS)

    Driese, K. L.; Sivanpillai, R.

    2007-12-01

    Ever increasing demand for food and fiber calls for farm management strategies such as effective use of chemicals and efficient water use that will maximize productivity while reducing adverse impacts on the environment. Remotely sensed data collected by satellites are a valuable resource for farmers and ranchers for gaining insights about farm and ranch productivity. While researchers in universities and agencies have made tremendous advances, technology transfer to end-users has lagged, preventing the farmers from taking advantage of this valuable resource. To overcome this barrier, the Upper Midwest Aerospace Consortium (UMAC), a NASA funded program headed by the University of North Dakota, has been working with end-users to promote the use of remote sensing technology for sustainable agricultural practices. We will highlight the UMAC activities in Wyoming aimed at promoting this technology to sugar-beet farmers in the Big Horn Basin. To assist farmers who might not have a computer at home, we provide them to local county Cooperative Extension Offices pre-loaded with relevant imagery. Our targeted outreach activities have resulted in farmers requesting and using new and old Landsat images to identify growth anomalies and trends which have enabled them to develop management zones within their croplands.

  5. Farming with Grass: Achieving Sustainable Mixed Agricultural Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in grassland environments is facing multiple stresses from shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Grassla...

  6. Influence of sustainable management on aggregate stability and soil organic matter on agricultural soil of southern Spain

    NASA Astrophysics Data System (ADS)

    Morugan-Coronado, Alicia; Arcenegui, Victoria; Mataix-Solera, Jorge; Gomez-Lucas, Ignacio; Garcia-Orenes, Fuensanta

    2016-04-01

    Intensive agriculture has increased crop yields but also posed severe environmental problems. Unsustainable land management such as excessive tillage can lead to a loss of soil fertility and a drastic reduction in the aggregate stability and soil organic matter content. However sustainable agriculture can keep good crop yields with minimal impact on ecological factors conserving the soil quality and its ecosystem services. Sustainable agriculture management promotes the maintenance of soil organic matter levels providing plant nutrients through the microbial decomposition of organic materials. Also this management has a positive effect on soil structure with the improvement of stability of aggregates. The resistance of soil aggregates to the slaking and dispersive effects of water (aggregate stability) is important for maintaining the structure in arable soils. Our purpose was to investigate and compare the effects of sustainable agricultural practices versus intensive agriculture on aggregate stability and soil organic matter. Three agricultural areas are being monitored in the southern of Spain, two of them with citrus orchards (AL) and (FE) and one with grapevine(PA). In all of them two agricultural treatments are being developed, organic with no-tillage management(O) and inorganic fertilization with herbicide application and intensive tillage (I). The sustainable agricultural management (manure, no tillage and vegetation cover) contributed to the improve of soil conditions, increasing organic matter and aggregate stability. Meanwhile, herbicide treatment and intensive tillage with inorganic fertilization managements resulted in the decreasing of aggregate stability and low levels of soil organic carbon. Soil organic matter content is generally low in all unsustainable treatments plots and tends to decline in aggregate stability and soil physical condition. In both treatments the crop yield are comparable.

  7. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  8. Sustainable development in agriculture, food and nutrition--a patent analysis.

    PubMed

    Vani, Kohila P; Doble, Mukesh

    2011-05-01

    The paper discusses the patents that have been filed in the areas of sustainable development in agriculture, food and nutrition and use of natural resources in achieving this goal. A large number of patents deal with the production of fertilizers from animal manure, plant sources and other organic wastes, which are more sustainable that the chemical fertilizers that are being currently used. Sustainability in agriculture is achieved in developing processes for the manufacture of biopesticides/insecticides and bioactive agricultural products. Development of novel sustainable agricultural processes has also been the focus of researchers and technologists. Plant derived nutritious food products are sustainable and can cater for the growing population burden. This has been the focus of several patents. Processes for enhancing the nutrition in food also serve the purpose of catering for the under nourished population.

  9. Innovative type of Reproduction of Agriculture of the Komi Republic - the Basis of its Sustainable Development

    NASA Astrophysics Data System (ADS)

    Ponomareva, Anna

    2013-04-01

    The necessity of transition of agriculture to sustainability is complicated by the necessity to increase production of local environmentally safe food, unemployment indigenous growth of living standards of the peasant community, stable and balanced nature management. Due to the difficult economic conditions of natural and agricultural development for the Komi Republic principle of food self-sufficiency is unacceptable, but the production of basic food products, for which favorable there are conditions, is objective necessity in the short term. Priority directions of development of the agricultural and fisheries sectors: the production of socially significant food products - potatoes, vegetables of the local range, milk, fresh meat, eggs, dietary, preservation and development of traditional industries, and collecting wild mushrooms and berries and its processing. Off forecast in the northern agricultural areas three scenarios selected: a base (slow), optimistic and pessimistic. For all versions of the forecast to be considered systemic crisis of the agricultural sector of the North is ongoing. Functioning of on sector under a particular scenario will depend on the factors and conditions that affect the stability of the agricultural enterprises and farms. At the base, especially under unfavorable conditions, negative external factors and conditions will prevail. The baseline scenario of recent years assumes the maintenance of the rate of change indicators of agriculture, of the levels of state industry conditions of interbranch exchange in agriculture, of access to economic entities in the financial markets, of the pricing and taxation policies, of relatively low investment opportunities to upgrade production capacity. In this embodiment the growth of agricultural production and its reduction will occur in suburban (peripheral areas). The optimistic scenario will be characterized by protectionist policies of the state, increase investment to improve soil fertility

  10. Epidemiology of criniviruses, an emerging problem in world agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Crinivirus includes the whitefly-transmitted members of the family Closteroviridae. Whitefly-transmitted viruses have emerged as a major problem for world agriculture and are responsible for diseases that lead to losses measured in the billions of dollars annually. Criniviruses have emerge...

  11. Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment

    SciTech Connect

    Muth, David J.; Bryden, Kenneth Mark; Nelson, R. G.

    2012-10-06

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10–100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.

  12. Sustainable Agricultural Residue Removal for Bioenergy: A Spatially Comprehensive National Assessment

    SciTech Connect

    D. Muth, Jr.; K. M. Bryden; R. G. Nelson

    2013-02-01

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 – 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.

  13. Health of our air: Toward sustainable agriculture in Canada

    SciTech Connect

    Janzen, H.H.

    1999-09-01

    This report is written for those who want to understand the links between agriculture and air quality. It addresses in detail the amounts of agriculture-related greenhouse gas emission and possible ways of reducing such emission, with discussions limited mainly to agricultural production. It does not consider the fate of agricultural products, except for ethanol, once they have left the farm. Other current atmospheric issues considered include ground-level ozone, ammonia, ultraviolet radiation from the sun, aerosols, nitrogen oxides, pesticides, and farm-related odors.

  14. [Problems of population and agricultural development in Rwanda].

    PubMed

    Sibomana, J M

    1984-01-01

    The primary goal of law 3/81 created by the National Office of Population (l'Office National de la Population--ONAPU) in 1981, is to establish a demographic policy consistent with national realities and designed to ease the problem of overpopulation. ONAPU supports family planning for all of Rwanda as an approach to the population situation. The family planning objective promotes conscientious and wanted procreation. It encourages couples to have children in accordance with a preestablished plan, which takes into account the size of the family and the calendar of procreation. Unmatched population growth with limited economic growth have been major concerns for ONAPU; hence, emphasis on maintaining a level of equilibrium between the 2 is a national priority. In the meantime, increased population growth has been causing agricultural problems. Small amounts of land available for cultivation and rudimentary agricultural technology necessitate a change in the financial organization of this sector. Simultaneously, there is an abundance of agricultural workers and a threat of famine due to population demands outstripping subsistence yields. If the population growth rate of Rwanda remains at 3.79%, the land will be insufficient. To avoid future problems, a financial revolution which involves both the agricultural and nonagricultural sectors must be planned. Economic, social, and cultural reorganization is critical, especially for family planning. The policy of spacing births will not be accepted without amelioration 1st family and community health.

  15. Agricultural biology in the 3rd millennium: nutritional food security & specialty crops through sustainable agriculture and biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food security and agricultural sustainability are of prime concern in the world today in light of the increasing trends in population growth in most parts of the globe excepting Europe. The need to develop capacity to produce more to feed more people is complicated since the arable land is decreasin...

  16. Contributions to Sustainability by Communities and Individuals: Problems and Prospects

    SciTech Connect

    MacGregor, D.; Tonn, B.E.

    1998-11-01

    This report examines relationships between a comprehensive set of definitions of and viewpoints on the concept of Sustainability and the abilities of communities and individuals in the United States to meet the behavioral prescriptions inherent in these definitions and viewpoints. This research is timely because sustainability is becoming a cornerstone of national and international environmental strategies designed to simultaneously achieve environmental, economic, and social goals. In the United States, many communities have adopted sustainability principles as the foundation for both their environmental protection efforts and their socioeconomic development initiatives. This research is important because it highlights serious problems communities and inviduals may have in achieving sustainability expectations, and illustrates how much work is needed to help communities and individuals overcome numerous considerable and complex constraints to sustainability.

  17. Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems?

    NASA Astrophysics Data System (ADS)

    Wiek, Arnim; Foley, Rider W.; Guston, David H.

    2012-09-01

    Nanotechnology is widely associated with the promise of positively contributing to sustainability. However, this view often focuses on end-of-pipe applications, for instance, for water purification or energy efficiency, and relies on a narrow concept of sustainability. Approaching sustainability problems and solution options from a comprehensive and systemic perspective instead may yield quite different conclusions about the contribution of nanotechnology to sustainability. This study conceptualizes sustainability problems as complex constellations with several potential intervention points and amenable to different solution options. The study presents results from interdisciplinary workshops and literature reviews that appraise the contribution of the selected nanotechnologies to mitigate such problems. The study focuses exemplarily on the urban context to make the appraisals tangible and relevant. The solution potential of nanotechnology is explored not only for well-known urban sustainability problems such as water contamination and energy use but also for less obvious ones such as childhood obesity. Results indicate not only potentials but also limitations of nanotechnology's contribution to sustainability and can inform anticipatory governance of nanotechnology in general, and in the urban context in particular.

  18. Where the Grass Grows Again: Knowledge Exchange in the Sustainable Agriculture Movement.

    ERIC Educational Resources Information Center

    Hassanein, Neva; Kloppenburg, Jack R., Jr.

    1995-01-01

    Intensive rotational grazing by Wisconsin dairy farmers represents a local expression of the sustainable agriculture movement. Contrary to interpretations that view local knowledge in agriculture as idiosyncratic, these graziers use horizontal forms of organizing and information exchange to overcome the limits of personal experience and share…

  19. People of the Corn: Teachings in Hopi Traditional Agriculture, Spirituality, and Sustainability

    ERIC Educational Resources Information Center

    Wall, Dennis; Masayesva, Virgil

    2004-01-01

    This article describes aspects of a unique relationship between an ancient agricultural practice and the culture that it sustains. Hopi agriculture, known as "dry farming" because it relies strictly on precipitation and runoff water (along with hard work and prayer), has kept the Hopi culture intact for nearly a thousand years. But aside from the…

  20. Sustaining the Earth's Watersheds-Agricultural Research Data System: Data development, user interaction, and operations management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To support the Agricultural Research Service’s Conservation Effects Assessment Project (CEAP) in assessing USDA conservation programs and practices on soil and water quality, a publicly available web-based watershed data system, called Sustaining the Earth’s Watersheds, Agricultural Research Data Sy...

  1. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability.

    PubMed

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N; Singh, Devendra P

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  2. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    PubMed Central

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  3. Sustainable Agriculture in Print: Current Books. Special Reference Briefs: SRB 95-02.

    ERIC Educational Resources Information Center

    National Agricultural Library, Beltsville, MD.

    Prepared by the Alternative Farming Systems Information Center (AFSIC) staff and volunteers, this annotated bibliography provides a list of 85 recently published books pertaining to sustainable agriculture. AFSIC focuses on alternative farming systems (e.g., sustainable, low-input, regenerative, biodynamic, and organic) that maintain agricultural…

  4. Biofertilizers: a potential approach for sustainable agriculture development.

    PubMed

    Mahanty, Trishna; Bhattacharjee, Surajit; Goswami, Madhurankhi; Bhattacharyya, Purnita; Das, Bannhi; Ghosh, Abhrajyoti; Tribedi, Prosun

    2017-02-01

    The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.

  5. Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon

    PubMed Central

    Galford, Gillian L.; Soares-Filho, Britaldo; Cerri, Carlos E. P.

    2013-01-01

    The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes. PMID:23610175

  6. Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon.

    PubMed

    Galford, Gillian L; Soares-Filho, Britaldo; Cerri, Carlos E P

    2013-06-05

    The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes.

  7. Solution to the Problems of the Sustainable Development Management

    NASA Astrophysics Data System (ADS)

    Rusko, Miroslav; Procházková, Dana

    2011-01-01

    The paper shows that environment is one of the basic public assets of a human system, and it must be therefore specially protected. According to our present knowledge, the sustainability is necessary for all human systems and it is necessary to invoke the sustainable development principles in all human system assets. Sustainable development is understood as a development that does not erode ecological, social or politic systems on which it depends, but it explicitly approves ecological limitation under the economic activity frame and it has full comprehension for support of human needs. The paper summarises the conditions for sustainable development, tools, methods and techniques to solve the environmental problems and the tasks of executive governance in the environmental segment.

  8. Environmental Education, Sustainable Agriculture, and CGIAR: History and Future Prospects

    ERIC Educational Resources Information Center

    Nelles, Wayne

    2011-01-01

    The Consultative Group on International Agricultural Research (CGIAR) is a global network of 15 specialized centers employing around 2,000 international scientists and 6,000 national staff in over 100 countries. CGIAR educational approaches to environmental issues have varied amid conflicting perspectives. Inadequate policies, learning resources,…

  9. Learning about Agriculture within the Framework of Education for Sustainability

    ERIC Educational Resources Information Center

    Tal, Tali

    2008-01-01

    The last two decades have seen increased threats to agricultural landscapes in Israel. Key factors include population growth, strong pressure from construction entrepreneurs and possible profit to land owners who benefit from a legal conversion of farmland into lands allocated for construction. While each Israeli elementary school student used to…

  10. Challenges and opportunities in supporting sustainable agriculture and food security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2014 IUPAC International Congress of Pesticide Chemistry (San Francisco, August, 2014) included a symposium on “Challenges Associated with Global Adoption of Agricultural Biotechnology” to review current obstacles in promoting GM crops. Challenges identified by symposium presenters included i) ...

  11. Sustainable corn stover harvest strategies for Midwest agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To support emerging U.S. cellulosic bioenergy industries, 239 site-years of data from field studies at 36 sites in seven states were recently summarized in BioEnergy Research by the ARS Resilient Economic Agricultural Practices (REAP) team [formerly the Renewable Energy Assessment Project (REAP) tea...

  12. The Communication of Innovations and the Case of Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Higgins, Mary Anne

    This paper begins by providing a thorough history and review of the diffusion of innovations research tradition. It then focuses on undesirable, indirect, and unanticipated consequences of innovations based on the dominant paradigm of development. In the case of high-input agriculture, the consequences have affected the quality of the environment…

  13. Breaking New Ground: The Search for a Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Rodale, Robert

    1983-01-01

    Conventional farming methods attempt to dominate nature. This approach is leading farmers toward self-destruction. If farmers use regenerative agriculture, farming would change from a battle against nature into the art of encouraging nature to release the most benefits for human use with the least possible effort. (AM)

  14. Sustainability initiatives in agriculture: The role of science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sustainable society is one that can meet its needs while preserving natural resources for future generations. Key components of this goal are production of a robust food supply while protecting human health and the environment, conserving precious resources, and balancing economic viability. Rapid...

  15. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  16. Epidemiology of criniviruses: an emerging problem in world agriculture

    PubMed Central

    Tzanetakis, Ioannis E.; Martin, Robert R.; Wintermantel, William M.

    2013-01-01

    The genus Crinivirus includes the whitefly-transmitted members of the family Closteroviridae. Whitefly-transmitted viruses have emerged as a major problem for world agriculture and are responsible for diseases that lead to losses measured in the billions of dollars annually. Criniviruses emerged as a major agricultural threat at the end of the twentieth century with the establishment and naturalization of their whitefly vectors, members of the genera Trialeurodes and Bemisia, in temperate climates around the globe. Several criniviruses cause significant diseases in single infections whereas others remain asymptomatic and only cause disease when found in mixed infections with other viruses. Characterization of the majority of criniviruses has been done in the last 20 years and this article provides a detailed review on the epidemiology of this important group of viruses. PMID:23730300

  17. The role of biotechnology for agricultural sustainability in Africa.

    PubMed

    Thomson, Jennifer A

    2008-02-27

    Sub-Saharan Africa could have a shortfall of nearly 90Mt of cereals by the year 2025 if current agricultural practices are maintained. Biotechnology is one of the ways to improve agricultural production. Insect-resistant varieties of maize and cotton suitable for the subcontinent have been identified as already having a significant impact. Virus-resistant crops are under development. These include maize resistant to the African endemic maize streak virus and cassava resistant to African cassava mosaic virus. Parasitic weeds such as Striga attack the roots of crops such as maize, millet, sorghum and upland rice. Field trials in Kenya using a variety of maize resistant to a herbicide have proven very successful. Drought-tolerant crops are also under development as are improved varieties of local African crops such as bananas, cassava, sorghum and sweet potatoes.

  18. Global food demand and the sustainable intensification of agriculture.

    PubMed

    Tilman, David; Balzer, Christian; Hill, Jason; Befort, Belinda L

    2011-12-13

    Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100-110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ~1 billion ha of land would be cleared globally by 2050, with CO(2)-C equivalent greenhouse gas emissions reaching ~3 Gt y(-1) and N use ~250 Mt y(-1) by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ~0.2 billion ha, greenhouse gas emissions of ~1 Gt y(-1), and global N use of ~225 Mt y(-1). Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.

  19. Research priorities for harnessing plant microbiomes in sustainable agriculture

    PubMed Central

    Soman, Chinmay; Wagner, Maggie R.; Friesen, Maren L.; Kremer, James; Bennett, Alison; Morsy, Mustafa; Eisen, Jonathan A.; Leach, Jan E.; Dangl, Jeffery L.

    2017-01-01

    Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes—i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance—into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host–microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply. PMID:28350798

  20. Management Strategies for Transition to Sustainable Agricultural Irrigation

    NASA Astrophysics Data System (ADS)

    Ahlfeld, D.; Mulligan, K.; Brown, C. M.; Yang, Y. E.

    2011-12-01

    In many agricultural regions of the world, aquifer overdrafting for agricultural irrigation continues. Management strategies are investigated that transition from this unsustainable use of water to a future, diminished use of irrigation. Complications arising from climate change and volatile energy prices are considered. A command and control strategy is modeled using combined simulation and optimization techniques. This strategy is compared with market based mechanisms such as cap and trade and Pigouvian pricing that are modeled using agent based methods. The formulations are designed to model the effects of different management strategies including those that seek to avoid rapid changes in basin-wide water utilization (considered a surrogate for agricultural production) over this time period. Formulations also include limits on total reduction in aquifer storage and controls on streamflow in the basin. The management formulations used in this study are developed for planning horizons of 50 to 100 years and use the Republican River Basin in the High Plains Aquifer as a case study. Historical and climate-adjusted recharge patterns are considered. Spatial and temporal variation in total irrigated acreage and the aquifer storage change determined by the solutions of the management formulations are analyzed and presented.

  1. Smallholder farmers' behavioural intentions towards sustainable agricultural practices.

    PubMed

    Zeweld, Woldegebrial; Van Huylenbroeck, Guido; Tesfay, Girmay; Speelman, Stijn

    2017-02-01

    The introduction of sustainable practices is considered a win-win strategy for low-income countries because of its potential to simultaneously improve food security and address environmental issues. Despite the numerous studies that focus on the adoption of technological innovations, little work has been done on the socio-psychological behaviour of farmers with regard to sustainable practices. This study investigates smallholder farmers' intentions towards two practices: minimum tillage and row planting. The decomposed theory of planned behaviour is used as a theoretical framework to analyse the intentions. The findings reveal that attitudes and normative issues positively explain farmers' intentions to adopt both practices. Perceived control also has a positive significant effect on the intention to apply minimum tillage. When the intention is formed, farmers are expected to carry out their intention when opportunities arise. Moreover, perceived usefulness, social capital, and perceived ease of operation are also significant predictors of farmers' attitudes. Furthermore, social capital and training are factors that positively affect the normative issue, which in turn also positively mediates the relationship between training, social capital and intention. Finally, it is shown that neither the perceived resources nor information from the media significantly affect farmers' intentions. This paper thus confirms that social capital, personal efficacy, training and perceived usefulness play significant roles in the decision to adopt sustainable practices. In addition, willingness to adopt seems to be limited by negative attitudes and by weak normative issues. Therefore, to improve adoption of sustainable practices by smallholder farmers, attention should be given to socio-psychological issues. This could lead to improvements in farm productivity and enhance the livelihoods of smallholders.

  2. Definition and use of Solution-focused Sustainability Assessment: A novel approach to generate, explore and decide on sustainable solutions for wicked problems.

    PubMed

    Zijp, Michiel C; Posthuma, Leo; Wintersen, Arjen; Devilee, Jeroen; Swartjes, Frank A

    2016-05-01

    This paper introduces Solution-focused Sustainability Assessment (SfSA), provides practical guidance formatted as a versatile process framework, and illustrates its utility for solving a wicked environmental management problem. Society faces complex and increasingly wicked environmental problems for which sustainable solutions are sought. Wicked problems are multi-faceted, and deriving of a management solution requires an approach that is participative, iterative, innovative, and transparent in its definition of sustainability and translation to sustainability metrics. We suggest to add the use of a solution-focused approach. The SfSA framework is collated from elements from risk assessment, risk governance, adaptive management and sustainability assessment frameworks, expanded with the 'solution-focused' paradigm as recently proposed in the context of risk assessment. The main innovation of this approach is the broad exploration of solutions upfront in assessment projects. The case study concerns the sustainable management of slightly contaminated sediments continuously formed in ditches in rural, agricultural areas. This problem is wicked, as disposal of contaminated sediment on adjacent land is potentially hazardous to humans, ecosystems and agricultural products. Non-removal would however reduce drainage capacity followed by increased risks of flooding, while contaminated sediment removal followed by offsite treatment implies high budget costs and soil subsidence. Application of the steps in the SfSA-framework served in solving this problem. Important elements were early exploration of a wide 'solution-space', stakeholder involvement from the onset of the assessment, clear agreements on the risk and sustainability metrics of the problem and on the interpretation and decision procedures, and adaptive management. Application of the key elements of the SfSA approach eventually resulted in adoption of a novel sediment management policy. The stakeholder

  3. Utilization of Live Localized Weather Information for Sustainable Agriculture

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Usher, J.

    2010-09-01

    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a

  4. Linking international agricultural research knowledge with action for sustainable development

    PubMed Central

    Kristjanson, Patti; Reid, Robin S.; Dickson, Nancy; Clark, William C.; Romney, Dannie; Puskur, Ranjitha; MacMillan, Susan; Grace, Delia

    2009-01-01

    We applied an innovation framework to sustainable livestock development research projects in Africa and Asia. The focus of these projects ranged from pastoral systems to poverty and ecosystems services mapping to market access by the poor to fodder and natural resource management to livestock parasite drug resistance. We found that these projects closed gaps between knowledge and action by combining different kinds of knowledge, learning, and boundary spanning approaches; by providing all partners with the same opportunities; and by building the capacity of all partners to innovate and communicate. PMID:19289830

  5. Linking international agricultural research knowledge with action for sustainable development.

    PubMed

    Kristjanson, Patti; Reid, Robin S; Dickson, Nancy; Clark, William C; Romney, Dannie; Puskur, Ranjitha; Macmillan, Susan; Grace, Delia

    2009-03-31

    We applied an innovation framework to sustainable livestock development research projects in Africa and Asia. The focus of these projects ranged from pastoral systems to poverty and ecosystems services mapping to market access by the poor to fodder and natural resource management to livestock parasite drug resistance. We found that these projects closed gaps between knowledge and action by combining different kinds of knowledge, learning, and boundary spanning approaches; by providing all partners with the same opportunities; and by building the capacity of all partners to innovate and communicate.

  6. Sustainable management of a coupled groundwater-agriculture hydrosystem using multi-criteria simulation based optimisation.

    PubMed

    Grundmann, Jens; Schütze, Niels; Lennartz, Franz

    2013-01-01

    In this paper we present a new simulation-based integrated water management tool for sustainable water resources management in arid coastal environments. This tool delivers optimised groundwater withdrawal scenarios considering saltwater intrusion as a result of agricultural and municipal water abstraction. It also yields a substantially improved water use efficiency of irrigated agriculture. To allow for a robust and fast operation we unified process modelling with artificial intelligence tools and evolutionary optimisation techniques. The aquifer behaviour is represented using an artificial neural network (ANN) which emulates a numerical density-dependent groundwater flow model. The impact of agriculture is represented by stochastic crop water production functions (SCWPF). Simulation-based optimisation techniques together with the SCWPF and ANN deliver optimal groundwater abstraction and cropping patterns. To address contradicting objectives, e.g. profit-oriented agriculture vs. sustainable abstraction scenarios, we performed multi-objective optimisations using a multi-criteria optimisation algorithm.

  7. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture

    SciTech Connect

    Binder, Claudia R.; Feola, Giuseppe; Steinberger, Julia K.

    2010-02-15

    This paper develops a framework for evaluating sustainability assessment methods by separately analyzing their normative, systemic and procedural dimensions as suggested by Wiek and Binder [Wiek, A, Binder, C. Solution spaces for decision-making - a sustainability assessment tool for city-regions. Environ Impact Asses Rev 2005, 25: 589-608.]. The framework is then used to characterize indicator-based sustainability assessment methods in agriculture. For a long time, sustainability assessment in agriculture has focused mostly on environmental and technical issues, thus neglecting the economic and, above all, the social aspects of sustainability, the multi-functionality of agriculture and the applicability of the results. In response to these shortcomings, several integrative sustainability assessment methods have been developed for the agricultural sector. This paper reviews seven of these that represent the diversity of tools developed in this area. The reviewed assessment methods can be categorized into three types: (i) top-down farm assessment methods; (ii) top-down regional assessment methods with some stakeholder participation; (iii) bottom-up, integrated participatory or transdisciplinary methods with stakeholder participation throughout the process. The results readily show the trade-offs encountered when selecting an assessment method. A clear, standardized, top-down procedure allows for potentially benchmarking and comparing results across regions and sites. However, this comes at the cost of system specificity. As the top-down methods often have low stakeholder involvement, the application and implementation of the results might be difficult. Our analysis suggests that to include the aspects mentioned above in agricultural sustainability assessment, the bottom-up, integrated participatory or transdisciplinary methods are the most suitable ones.

  8. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources.

  9. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  10. Reliable conjunctive use rules for sustainable irrigated agriculture and reservoir spill control

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit; Addams, C. Lee; Minjares, Jose Luis; Gorelick, Steven M.

    2006-12-01

    We develop optimal conjunctive use water management strategies that balance two potentially conflicting objectives: sustaining irrigated agriculture during droughts and minimizing unnecessary spills and resulting water losses from the reservoir during wet periods. Conjunctive use is specified by a linear operating rule, which determines the maximum surface water release as a function of initial reservoir storage. Optimal strategies are identified using multiobjective interannual optimization for sustainability and spill control, combined with gradient-based annual profit maximization. Application to historical conditions in the irrigated system of the Yaqui Valley, Mexico, yields a Pareto curve of solutions illustrating the trade-off between sustaining agriculture and minimizing spills and water losses. Minimal water losses are obtained by maximizing surface water use and limiting groundwater pumping, such that reservoir levels are kept sufficiently low. Maximum agricultural sustainability, on the other hand, results from increased groundwater use and keeping surface water reservoir levels high during wet periods. Selected optimal operating rules from the multiobjective optimization are tested over a large number of equally probable streamflow time series, generated with a stochastic time series model. In this manner, statistical properties, such as the mean sustainability and sustainability percentiles, are determined for each optimal rule. These statistical properties can be used to select rules for water management that are reliable over a wide range of streamflow conditions.

  11. From subsistence farming towards a multifunctional agriculture: sustainability in the Chinese rural reality.

    PubMed

    Prändl-Zika, Veronika

    2008-04-01

    The rural economic situation in China-with a living standard mostly at subsistence level-lags far behind the prosperous development in the cities and coastal areas. To balance this disequilibrium, comprehensive concepts and endeavors are necessary keeping in view all-not just economic-interests and needs that contribute to lively rural identities. In this context the role of agriculture, where still 50% of the Chinese population are working, will be newly defined, and sustainability concepts can help to find a readjusted position within the Chinese economy focusing on environmental health and food safety as main targets of political and other supporting measures. Within the SUCCESS project, a Concept of Sustainable Agriculture was developed and it drafts one conceivable relation between the exposure to natural resources and economy and tries to find new answers to the broad range of rural challenges in China. It is a qualitative model and, therefore, not always fully applicable, but in the concrete situation of villages, it shows possible directions of sustainability-oriented development by considering the typical local potentials. In the Chinese context that means identifying the different functions of agriculture-the well-known and the hidden-to make them explicit for the Chinese public and therewith to give them new significance. The article is based on a 3-years study within the EU-China Project SUCCESS with field research in four Chinese rural communities. It analyzes the agricultural sustainability potential of these selected villages against the background of massive structural changes within the next 20 years in rural China. Starting from the current agricultural reality, based on a qualitative analysis of the actual situation, local potentials and needs towards sustainable production and marketing are identified, and possible functions of the Chinese agriculture are formulated for the future.

  12. Sustainable agriculture and plant diseases: an epidemiological perspective.

    PubMed

    Gilligan, Christopher A

    2008-02-27

    The potential for modern biology to identify new sources for genetical, chemical and biological control of plant disease is remarkably high. Successful implementation of these methods within globally and locally changing agricultural environments demands new approaches to durable control. This, in turn, requires fusion of population genetics and epidemiology at a range of scales from the field to the landscape and even to continental deployment of control measures. It also requires an understanding of economic and social constraints that influence the deployment of control. Here I propose an epidemiological framework to model invasion, persistence and variability of epidemics that encompasses a wide range of scales and topologies through which disease spreads. By considering how to map control methods onto epidemiological parameters and variables, some new approaches towards optimizing the efficiency of control at the landscape scale are introduced. Epidemiological strategies to minimize the risks of failure of chemical and genetical control are presented and some consequences of heterogeneous selection pressures in time and space on the persistence and evolutionary changes of the pathogen population are discussed. Finally, some approaches towards embedding epidemiological models for the deployment of control in an economically plausible framework are presented.

  13. Biodiversity management of organic farming enhances agricultural sustainability.

    PubMed

    Liu, Haitao; Meng, Jie; Bo, Wenjing; Cheng, Da; Li, Yong; Guo, Liyue; Li, Caihong; Zheng, Yanhai; Liu, Meizhen; Ning, Tangyuan; Wu, Guanglei; Yu, Xiaofan; Feng, Sufei; Wuyun, Tana; Li, Jing; Li, Lijun; Zeng, Yan; Liu, Shi V; Jiang, Gaoming

    2016-04-01

    Organic farming (OF) has been believed to be capable of curtailing some hazardous effects associated with chemical farming (CF). However, debates also exist on whether OF can feed a world with increasing human population. We hypothesized that some improvements on OF may produce adequate crops and reduce environmental pollutions from CF. This paper makes comparative analysis of crop yield, soil organic matter and economic benefits within the practice on Biodiversity Management of Organic Farming (BMOF) at Hongyi Organic Farm (HOF) over eight years and between BMOF and CF. Linking crop production with livestock to maximal uses of by-products from each production and avoid xenobiotic chemicals, we have achieved beneficial improvement in soil properties, effective pest and weed control, and increased crop yields. After eight years experiment, we have obtained a gradual but stable increase in crop yields with a 9.6-fold increase of net income. The net income of HOF was 258,827 dollars and 24,423 dollars in 2014 and 2007 respectively. Thus, BMOF can not only feed more population, but also increase adaptive capacity of agriculture ecosystems and gain much higher economic benefits.

  14. Biodiversity management of organic farming enhances agricultural sustainability

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Meng, Jie; Bo, Wenjing; Cheng, Da; Li, Yong; Guo, Liyue; Li, Caihong; Zheng, Yanhai; Liu, Meizhen; Ning, Tangyuan; Wu, Guanglei; Yu, Xiaofan; Feng, Sufei; Wuyun, Tana; Li, Jing; Li, Lijun; Zeng, Yan; Liu, Shi V.; Jiang, Gaoming

    2016-04-01

    Organic farming (OF) has been believed to be capable of curtailing some hazardous effects associated with chemical farming (CF). However, debates also exist on whether OF can feed a world with increasing human population. We hypothesized that some improvements on OF may produce adequate crops and reduce environmental pollutions from CF. This paper makes comparative analysis of crop yield, soil organic matter and economic benefits within the practice on Biodiversity Management of Organic Farming (BMOF) at Hongyi Organic Farm (HOF) over eight years and between BMOF and CF. Linking crop production with livestock to maximal uses of by-products from each production and avoid xenobiotic chemicals, we have achieved beneficial improvement in soil properties, effective pest and weed control, and increased crop yields. After eight years experiment, we have obtained a gradual but stable increase in crop yields with a 9.6-fold increase of net income. The net income of HOF was 258,827 dollars and 24,423 dollars in 2014 and 2007 respectively. Thus, BMOF can not only feed more population, but also increase adaptive capacity of agriculture ecosystems and gain much higher economic benefits.

  15. Biodiversity management of organic farming enhances agricultural sustainability

    PubMed Central

    Liu, Haitao; Meng, Jie; Bo, Wenjing; Cheng, Da; Li, Yong; Guo, Liyue; Li, Caihong; Zheng, Yanhai; Liu, Meizhen; Ning, Tangyuan; Wu, Guanglei; Yu, Xiaofan; Feng, Sufei; Wuyun, Tana; Li, Jing; Li, Lijun; Zeng, Yan; Liu, Shi V.; Jiang, Gaoming

    2016-01-01

    Organic farming (OF) has been believed to be capable of curtailing some hazardous effects associated with chemical farming (CF). However, debates also exist on whether OF can feed a world with increasing human population. We hypothesized that some improvements on OF may produce adequate crops and reduce environmental pollutions from CF. This paper makes comparative analysis of crop yield, soil organic matter and economic benefits within the practice on Biodiversity Management of Organic Farming (BMOF) at Hongyi Organic Farm (HOF) over eight years and between BMOF and CF. Linking crop production with livestock to maximal uses of by-products from each production and avoid xenobiotic chemicals, we have achieved beneficial improvement in soil properties, effective pest and weed control, and increased crop yields. After eight years experiment, we have obtained a gradual but stable increase in crop yields with a 9.6-fold increase of net income. The net income of HOF was 258,827 dollars and 24,423 dollars in 2014 and 2007 respectively. Thus, BMOF can not only feed more population, but also increase adaptive capacity of agriculture ecosystems and gain much higher economic benefits. PMID:27032369

  16. Is current biochar soil study addressing global soil constraints for sustainable agriculture?

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Zhang, Dengxiao; Yan, Ming; Niu, Yaru; Liu, Xiaoyu; van Zwieten, Lukas; Chen, De; Bian, Rongjun; Cheng, Kun; Li, Lianqing; Joseph, Stephen; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Crowley, David; Filley, Timothy

    2016-04-01

    Global soil degradation has been increasingly threatened sustainability of world agriculture. Use of biochar from bio-wastes has been proposed as a global option for its great potential in tackling soil degradation and mitigating climate change in agriculture. For last 10 years, there have been greatly increasing interests in application of charred biomass, more recently termed biochar, as a soil amendment for addressing soil constraints for sustainable agriculture. Biochar soil studies could deliver reliable information for appropriate application of biochar to soils where for sustainable agriculture has been challenged. Here we review the literature of 798 publications reporting biochar soil studies by August, 2015 to address potential gaps in understanding of biochar's role in agriculture. We have found some substantial biases and gaps inherent in the current biochar studies. 1) The majority of published studies were from developed regions where the soils are less constrained and were much more frequent in laboratory and glasshouse pot experiments than field studies under realistic agriculture. 2) The published biochar soil studies have used more often small kiln or lab prepared biochar than commercial scale biochars, more often wood and municipal waste derived biochars than crop straw biochars. Overall, the lack of long-term well designed field studies using biochar produced in commercial processes may have limited our current understanding of biochar's potential to enhance global crop production and climate change mitigation. We have also recommended a global alliance between longer-term research experiments and biochar production facilities to foster the uptake of this important technology at a global scale. Keywords: biochar, soil study, literature review, research gap, global perspective, quantitative assessment, sustainable agriculture

  17. Quantifying and sustaining biodiversity in tropical agricultural landscapes

    PubMed Central

    Mendenhall, Chase D.; Shields-Estrada, Analisa; Krishnaswami, Arjun J.; Daily, Gretchen C.

    2016-01-01

    Decision-makers increasingly seek scientific guidance on investing in nature, but biodiversity remains difficult to estimate across diverse landscapes. Here, we develop empirically based models for quantifying biodiversity across space. We focus on agricultural lands in the tropical forest biome, wherein lies the greatest potential to conserve or lose biodiversity. We explore two questions, drawing from empirical research oriented toward pioneering policies in Costa Rica. First, can remotely sensed tree cover serve as a reliable basis for improved estimation of biodiversity, from plots to regions? Second, how does tropical biodiversity change across the land-use gradient from native forest to deforested cropland and pasture? We report on understory plants, nonflying mammals, bats, birds, reptiles, and amphibians. Using data from 67,737 observations of 908 species, we test how tree cover influences biodiversity across space. First, we find that fine-scale mapping of tree cover predicts biodiversity within a taxon-specific radius (of 30–70 m) about a point in the landscape. Second, nearly 50% of the tree cover in our study region is embedded in countryside forest elements, small (typically 0.05–100 ha) clusters or strips of trees on private property. Third, most species use multiple habitat types, including crop fields and pastures (to which 15% of species are restricted), although some taxa depend on forest (57% of species are restricted to forest elements). Our findings are supported by comparisons of 90 studies across Latin America. They provide a basis for a planning tool that guides investments in tropical forest biodiversity similar to those for securing ecosystem services. PMID:27791070

  18. Quantifying and sustaining biodiversity in tropical agricultural landscapes.

    PubMed

    Mendenhall, Chase D; Shields-Estrada, Analisa; Krishnaswami, Arjun J; Daily, Gretchen C

    2016-12-20

    Decision-makers increasingly seek scientific guidance on investing in nature, but biodiversity remains difficult to estimate across diverse landscapes. Here, we develop empirically based models for quantifying biodiversity across space. We focus on agricultural lands in the tropical forest biome, wherein lies the greatest potential to conserve or lose biodiversity. We explore two questions, drawing from empirical research oriented toward pioneering policies in Costa Rica. First, can remotely sensed tree cover serve as a reliable basis for improved estimation of biodiversity, from plots to regions? Second, how does tropical biodiversity change across the land-use gradient from native forest to deforested cropland and pasture? We report on understory plants, nonflying mammals, bats, birds, reptiles, and amphibians. Using data from 67,737 observations of 908 species, we test how tree cover influences biodiversity across space. First, we find that fine-scale mapping of tree cover predicts biodiversity within a taxon-specific radius (of 30-70 m) about a point in the landscape. Second, nearly 50% of the tree cover in our study region is embedded in countryside forest elements, small (typically 0.05-100 ha) clusters or strips of trees on private property. Third, most species use multiple habitat types, including crop fields and pastures (to which 15% of species are restricted), although some taxa depend on forest (57% of species are restricted to forest elements). Our findings are supported by comparisons of 90 studies across Latin America. They provide a basis for a planning tool that guides investments in tropical forest biodiversity similar to those for securing ecosystem services.

  19. Biogeosystem technique as a base of Sustainable Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdulmalik

    2016-04-01

    The world water strategy is to be changed because the current imitational gravitational frontal isotropic-continual paradigm of irrigation is not sustainable. This paradigm causes excessive consumption of fresh water - global deficit - up to 4-15 times, adverse effects on soils and landscapes. Current methods of irrigation does not control the water spread throughout the soil continuum. The preferable downward fluxes of irrigation water are forming, up to 70% and more of water supply loses into vadose zone. The moisture of irrigated soil is high, soil loses structure in the process of granulometric fractions flotation decomposition, the stomatal apparatus of plant leaf is fully open, transpiration rate is maximal. We propose the Biogeosystem technique - the transcendental, uncommon and non-imitating methods for Sustainable Natural Resources Management. New paradigm of irrigation is based on the intra-soil pulse discrete method of water supply into the soil continuum by injection in small discrete portions. Individual volume of water is supplied as a vertical cylinder of soil preliminary watering. The cylinder position in soil is at depth form 10 to 30 cm. Diameter of cylinder is 1-2 cm. Within 5-10 min after injection the water spreads from the cylinder of preliminary watering into surrounding soil by capillary, film and vapor transfer. Small amount of water is transferred gravitationally to the depth of 35-40 cm. The soil watering cylinder position in soil profile is at depth of 5-50 cm, diameter of the cylinder is 2-4 cm. Lateral distance between next cylinders along the plant raw is 10-15 cm. The soil carcass which is surrounding the cylinder of non-watered soil remains relatively dry and mechanically stable. After water injection the structure of soil in cylinder restores quickly because of no compression from the stable adjoining volume of soil and soil structure memory. The mean soil thermodynamic water potential of watered zone is -0.2 MPa. At this potential

  20. The Living Soil: Exploring Soil Science and Sustainable Agriculture with Your Guide, The Earthworm. Unit I.

    ERIC Educational Resources Information Center

    Weber, Eldon C.; And Others

    This instructional packet introduces students to soil biology, ecology, and specific farming practices that promote sustainable agriculture. It helps students to discover the role of earthworms in improving the environment of all other soil-inhabiting organisms and in making the soil more fertile. The activities (classroom as well as outdoor)…

  1. The Status of Literacy of Sustainable Agriculture in Iran: A Systematic Review

    ERIC Educational Resources Information Center

    Vaninee, Hassan Sadough; Veisi, Hadi; Gorbani, Shiva; Falsafi, Peyman; Liaghati, Houman

    2016-01-01

    This study analyzes heterogeneous research with a focus on the knowledge, attitude, and behavior of farmers and the components of sustainable agriculture literacy through an interdisciplinary, systematic literature review for the time frame from 1996 to 2013. The major research databases were searched and 170 papers were identified. Paper…

  2. Do You See What I See? Examining the Epistemic Barriers to Sustainable Agriculture

    ERIC Educational Resources Information Center

    Carolan, Michael S.

    2006-01-01

    This paper examines the epistemic barriers to sustainable agriculture, which are those aspects of food production that are not readily revealed by direct perception: such as decreases in rates of soil and nutrient loss, increases in levels of beneficial soil micro-organisms, and reductions in the amount of chemicals leaching into the water table.…

  3. A Conceptual Evaluation of Sustainable Variable-Rate Agricultural Residue Removal

    SciTech Connect

    David J. Muth, Jr.; K. M. Bryden

    2012-10-01

    Agricultural residues have near-term potential as a feedstock for bioenergy production, but their removal must be managed carefully to maintain soil health and productivity. Recent studies have shown that subfield scale variability in soil properties (e.g., slope, texture, and organic matter content) that affect grain yield significantly affect the amount of residue that can be sustainably removed from different areas within a single field. This modeling study examines the concept of variable-rate residue removal equipment that would be capable of on-the-fly residue removal rate adjustments ranging from 0 to 80%. Thirteen residue removal rates (0% and 25–80% in 5% increments) were simulated using a subfield scale integrated modeling framework that evaluates residue removal sustainability considering wind erosion, water erosion, and soil carbon constraints. Three Iowa fields with diverse soil, slope, and grain yield characteristics were examined and showed sustainable, variable-rate agricultural residue removal that averaged 2.35, 7.69, and 5.62 Mg ha-1, respectively. In contrast, the projected sustainable removal rates using rake and bale removal for the entire field averaged 0.0, 6.40, and 5.06 Mg ha-1, respectively. The modeling procedure also projected that variable-rate residue harvest would result in 100% of the land area in all three fields being managed in a sustainable manner, whereas Field 1 could not be sustainably managed using rake and bale removal, and only 83 and 62% of the land area in Fields 2 and 3 would be managed sustainably using a rake and bale operation for the entire field. In addition, it was found that residue removal adjustments of 40 to 65% are sufficient to collect 90% of the sustainably available agricultural residue.

  4. A conceptual evaluation of sustainable variable-rate agricultural residue removal.

    PubMed

    Muth, D; Bryden, K M

    2012-01-01

    Agricultural residues have near-term potential as a feedstock for bioenergy production, but their removal must be managed carefully to maintain soil health and productivity. Recent studies have shown that subfield scale variability in soil properties (e.g., slope, texture, and organic matter content) that affect grain yield significantly affect the amount of residue that can be sustainably removed from different areas within a single field. This modeling study examines the concept of variable-rate residue removal equipment that would be capable of on-the-fly residue removal rate adjustments ranging from 0 to 80%. Thirteen residue removal rates (0% and 25-80% in 5% increments) were simulated using a subfield scale integrated modeling framework that evaluates residue removal sustainability considering wind erosion, water erosion, and soil carbon constraints. Three Iowa fields with diverse soil, slope, and grain yield characteristics were examined and showed sustainable, variable-rate agricultural residue removal that averaged 2.35, 7.69, and 5.62 Mg ha, respectively. In contrast, the projected sustainable removal rates using rake and bale removal for the entire field averaged 0.0, 6.40, and 5.06 Mg ha, respectively. The modeling procedure also projected that variable-rate residue harvest would result in 100% of the land area in all three fields being managed in a sustainable manner, whereas Field 1 could not be sustainably managed using rake and bale removal, and only 83 and 62% of the land area in Fields 2 and 3 would be managed sustainably using a rake and bale operation for the entire field. In addition, it was found that residue removal adjustments of 40 to 65% are sufficient to collect 90% of the sustainably available agricultural residue.

  5. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture.

    PubMed

    Johansson, Jonas F; Paul, Leslie R; Finlay, Roger D

    2004-04-01

    In sustainable, low-input cropping systems the natural roles of microorganisms in maintaining soil fertility and biocontrol of plant pathogens may be more important than in conventional agriculture where their significance has been marginalised by high inputs of agrochemicals. Better understanding of the interactions between arbuscular mycorrhizal fungi and other microorganisms is necessary for the development of sustainable management of soil fertility and crop production. Many studies of the influence of mycorrhizal colonisation on associated bacterial communities have been conducted, however, the mechanisms of interaction are still poorly understood. Novel approaches including PCR-based methods, stable isotope profiling, and molecular markers have begun to shed light on the activity, identity and spatiotemporal location of bacteria in the mycorrhizosphere. This paper reviews current knowledge concerning the interactions between arbuscular mycorrhizal fungi and other microorganisms, particularly bacteria, and discusses the implications these interactions may have in sustainable agriculture.

  6. Technology-Driven and Innovative Training for Sustainable Agriculture in The Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Wishart, D. N.

    2015-12-01

    Innovative training in 'Sustainable Agriculture' for an increasingly STEM-dependent agricultural sector will require a combination of approaches and technologies for global agricultural production to increase while offsetting climate change. Climate change impacts the water resources of nations as normal global weather patterns are altered during El Nino events. Agricultural curricula must incorporate awareness of 'climate change' in order to find novel ways to (1) assure global food security; (2) improve soil productivity and conservation; (3) improve crop yields and irrigation; (4) inexpensively develop site specific principles of crop management based on variable soil and associated hydrological properties; and (5) improve precision farming. In February 2015, Central State University (CSU), Ohio became an 1890 Land-Grant institution vital to the sustainability of Ohio's agricultural sector. Besides agricultural extension, the agriculture curriculum at CSU integrates multidisciplinary courses in science, technology engineering, agriculture, and mathematics (STEAM). The agriculture program could benefit from a technology-driven, interdisciplinary soil science course that promotes climate change education and climate literacy while being offered in both a blended and collaborative learning environment. The course will focus on the dynamics of microscale to mesoscale processes occurring in farming systems, those of which impact climate change or could be impacted by climate change. Elements of this course will include: climate change webinars; soil-climate interactions; carbon cycling; the balance of carbon fluxes between soil storage and atmosphere; microorganisms and soil carbon storage; paleoclimate and soil forming processes; geophysical techniques used in the characterization of soil horizons; impact of climate change on soil fertility; experiments; and demonstrations.

  7. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production.

    PubMed

    Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair

    2017-03-01

    Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.

  8. An agenda for assessing and improving conservation impacts of sustainability standards in tropical agriculture.

    PubMed

    Milder, Jeffrey C; Arbuthnot, Margaret; Blackman, Allen; Brooks, Sharon E; Giovannucci, Daniele; Gross, Lee; Kennedy, Elizabeth T; Komives, Kristin; Lambin, Eric F; Lee, Audrey; Meyer, Daniel; Newton, Peter; Phalan, Ben; Schroth, Götz; Semroc, Bambi; Van Rikxoort, Henk; Zrust, Michal

    2015-04-01

    Sustainability standards and certification serve to differentiate and provide market recognition to goods produced in accordance with social and environmental good practices, typically including practices to protect biodiversity. Such standards have seen rapid growth, including in tropical agricultural commodities such as cocoa, coffee, palm oil, soybeans, and tea. Given the role of sustainability standards in influencing land use in hotspots of biodiversity, deforestation, and agricultural intensification, much could be gained from efforts to evaluate and increase the conservation payoff of these schemes. To this end, we devised a systematic approach for monitoring and evaluating the conservation impacts of agricultural sustainability standards and for using the resulting evidence to improve the effectiveness of such standards over time. The approach is oriented around a set of hypotheses and corresponding research questions about how sustainability standards are predicted to deliver conservation benefits. These questions are addressed through data from multiple sources, including basic common information from certification audits; field monitoring of environmental outcomes at a sample of certified sites; and rigorous impact assessment research based on experimental or quasi-experimental methods. Integration of these sources can generate time-series data that are comparable across sites and regions and provide detailed portraits of the effects of sustainability standards. To implement this approach, we propose new collaborations between the conservation research community and the sustainability standards community to develop common indicators and monitoring protocols, foster data sharing and synthesis, and link research and practice more effectively. As the role of sustainability standards in tropical land-use governance continues to evolve, robust evidence on the factors contributing to effectiveness can help to ensure that such standards are designed and

  9. The Implementation of the Food Safety Modernization Act and the Strength of the Sustainable Agriculture Movement.

    PubMed

    Wiseman, Samuel R

    2015-01-01

    In the wake of growing public concerns over salmonella outbreaks and other highly publicized food safety issues, Congress passed the FDA Food Safety Modernization Act in 2011, which placed more stringent standards on food growing and packaging operations. In negotiations preceding the Act's passage, farmers of local, sustainable food argued that these rules would unduly burden local agricultural operations or, at the extreme, drive them out of business by creating overly burdensome rules. These objections culminated in the addition of the Tester-Hagan Amendment to the Food Safety Modernization Act, which created certain exemptions for small farms. Proposed Food and Drug Administration (FDA) rules to implement the Act threatened to weaken this victory for small farm groups, however, prompting a loud response from small farmers and local food proponents. The FDA's second set of proposed rules, issued in September 2014 in response to these and other complaints, were, perhaps surprisingly, responsive to small farmers' concerns. Using comments submitted to the FDA, this article explores the responses of the agriculture industry and public health organizations, as well as small farm groups, consumers of local food, and sustainable agriculture interests (which, for simplicity, I alternately describe as comprising the "sustainable agriculture" or "small farm" movement), to three aspects of the FDA's proposed rules--involving manure application, on-farm packing activities, and exemptions for very small farms--to assess the strength of the sustainable agriculture movement. The rules involving manure application and on-farm packing, it turns out, reveal little about the independent political strength of the local food movement, as large industry groups also objected to these provisions. But for the third issue discussed here--exemptions for very small farms--the interests of sustainable agriculture groups were directly opposed to both industry and public health organizations

  10. The responding relationship between plants and environment is the essential principle for agricultural sustainable development on the globe.

    PubMed

    Zhou, Yi; Shao, Hong-Bo

    2008-04-01

    The mutual-responding relationship between plants and environment is involved in all life processes, which are the essential bases for different types of sustainable development on the globe, particularly the critical basis for agricultural sustainable development. How to regulate the above relationship between plants and the corresponding environment (in particular soil environment) is the key problem to modern sustainable agriculture development under global climate change, which is one of the hot topics in the field of plant biology. Detailed dissection of this responding relationship is also important for conducting global eco-environmental restoration and construction. Although powerful methodology and dataset related to genomics, post-genomics, and metabolomics have provided some insights into this relationship, crop physiological measures are also critical for crop full performance in field. With the increase of tested plants (including model plants) and development of integrated molecular biology, a complete understanding of the relationship at different scales under biotic and abiotic stresses will be accelerated. In the current paper, we will cover some important aspects in combination with the recent work from our laboratory and related advances reflected by international academic journals, as follows: plant physiological function performance under natural condition, plant gene regulatory network system under abiotic stresses, gene regulatory network system and drought resistance improvement, summary of the related work from our laboratory, conclusions, and acknowledgement.

  11. Sustainable Agricultural and Watershed Management in Developing Countries - An India Case Study

    NASA Astrophysics Data System (ADS)

    Kiliszek, A.; Vaicunas, R.; Zook, K.; Popkin, J.; Inamdar, S. P.; Duke, J.; Awokuse, T.; Sims, T.; Hansen, D.; Wani, S. P.

    2011-12-01

    The goal of sustainable agricultural and watershed management is to enhance agricultural productivity while protecting and preserving our environment and natural resources. The vast majority of information on sustainable watershed management practices is primarily derived from studies in developed nations with very few inputs from developing nations. Through a USDA-funded project, the University of Delaware (UD) initiated a collaboration with the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) located in Hyderabad, India to study sustainable agricultural management practices in developing countries and their impacts on the environment, crop productivity, and socioeconomic conditions of the watershed community. As a part of this project, ICRISAT provided us with a vast amount of data on sustainable agricultural practices and their impacts on runoff, soil and water quality, crop yields, nutrient management and socioeconomic conditions. Conservation practices that were implemented included check dams, groundwater recharge wells, intercropping, nutrient management, integrated pest management and a suite of other practices. Using this information, students and faculty at UD developed teaching modules that were used for education and enrichment of existing UD courses and are also being used for the development of a stand-alone online course. The students and faculty visited India in July 2010 to get a first-hand experience of the conditions in the agricultural watersheds and the impacts of sustainable management practices. The project was a tremendous learning experience for US students and faculty and highlighted the challenges people face in developing countries and how that affects every aspect of their lives. Such challenges include environmental, agricultural, technological, economic, and transportation. Although we experience many of the same challenges, developing countries do not have the technology or economic infrastructure in place to

  12. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    D. Muth; K. M. Bryden

    2003-12-01

    Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40

  13. Urban agricultural activities and women's strategies in sustaining family livelihoods in Harare, Zimbabwe.

    PubMed

    Mudimu, G D

    1996-12-01

    This article examines the interplay of changes in urban environments, economic reforms and women's strategies in sustaining family livelihood through a case study based on the survey of off-plot urban cultivators in Harare, Zimbabwe. It also exemplifies the nature of gender-based conflicts arising from varying perceptions of the uses of open urban spaces. This article is organized into four sections. The first section briefly discusses some contemporary issues regarding urban agriculture in eastern and southern Africa. Specifically, it examines the role of women and the conflicts that arise over the use of urban spaces for agricultural activities from the perspective of women's struggle and strategies for sustaining family livelihood. The second section gives some background to urban agriculture in Harare, emphasizing the contribution of urban agriculture to women's strategies for maintaining household food and cash income security as a response to economic reforms and how this comes into conflict with Harare City Council's view. The third and fourth section discusses the results of the survey of urban agriculturists, illuminating how female participation in the activity has distinctive motivations and contributions to the household and the urban economy. Finally, the conclusion outlines the challenges to city planning in a tropical country faced with demand for agricultural use within the urban environment.

  14. Remote sensing applications for sustainable agriculture in South Africa (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jarmain, Caren; Van Niekerk, Adriaan; Goudriaan, Ruben

    2016-10-01

    Agriculture contributes greatly to the economy of South Africa (SA), through job creation and produce exports. SA is classified as a semi-arid country and due to its low rainfall, fierce competition exists for the available water resources. Balancing the need for water resources on the one hand, with the importance of agricultural production on the other, is often challenging. A lot of emphasis is placed on prudent water management and enhanced crop water use efficiency. Suitable information and tools are key in empowering both water resources managers and (crop) producers for sustainable agricultural production. Information and tools available at frequent intervals throughout the production season and at a range of levels - from the field to the catchment and for the entire country - has become essential. The frequency and availability of remote sensing data, developments in algorithms to produce information related to the water cycle and crop growth and hence the actual information sets produced over time, makes for fitting solutions. Though much progress has been made over the past years to integrate these spatial data products into water management and agricultural systems, it is likely still in its infancy. In the paper, some flagship projects related to sustainable agriculture and water management - both research and applied - are showcased.

  15. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability.

    PubMed

    Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A

    2016-06-01

    Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts.

  16. Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change.

    PubMed

    Kollah, Bharati; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2016-03-01

    This review addresses the perspectives of Azolla as a multifaceted aquatic resource to ensure ecosystem sustainability. Nitrogen fixing potential of cyanobacterial symbiont varies between 30 and 60 kg N ha(-1) which designates Azolla as an important biological N source for agriculture and animal industry. Azolla exhibits high bioremediation potential for Cd, Cr, Cu, and Zn. Azolla mitigates greenhouse gas emission from agriculture. In flooded rice ecosystem, Azolla dual cropping decreased CH4 emission by 40 % than did urea alone and also stimulated CH4 oxidation. This review highlighted integrated approach using Azolla that offers enormous public health, environmental, and cost benefits.

  17. Evaluation of Agricultural Professionals' Perceptions and Knowledge on Sustainable Agriculture: A Useful Step in the Development of an Online Extension Program

    ERIC Educational Resources Information Center

    Menalled, Fabian D.; Grimberg, Bruna I.; Jones, Clain A.

    2009-01-01

    This study assessed needs, knowledge, and interests of agricultural professionals who were likely to enroll in an online extension course in sustainable agriculture. The objectives of the study were: to (1) describe their demographic characteristics, (2) identify their concerns and interests related to farming, (3) evaluate participants' knowledge…

  18. [Good agricultural practice (GAP) of Chinese materia medica (CMM) for ten years: achievements, problems and proposals].

    PubMed

    Guo, Lan-Ping; Zhang, Yan; Zhu, Shou-Dong; Wang, Gui-Hua; Wang, Xiu; Zhang, Xiao-Bo; Chen, Mei-Lan; He, Ya-Li; Han, Bang-Xing; Chen, Nai-Fu; Huang, Lu-Qi

    2014-04-01

    This paper aims to summarize the achievements during the implementation process of good agricultural practice (GAP) in Chinese Materia Medica (CMM), and on basis of analyzing the existing problems of GAP, to propose further implementation of GAP in TCM growing. Since the launch of GAP in CMM growing ten years ago, it has acquired great achievements, including: (1) The promulgation of a series of measures for the administration of the GAP approval in the CMM growing; (2) The expanded planting area of CMM; (3) The increased awareness of standardized CMM growing among farmers and enterprises; (4) The establishment of GAP implementation bases for CMM growing; (5) The improvement of theory and methodology for CMM growing; (6) The development of a large group of experts and scholars in GAP approval for CMM production. The problems existing in the production include: (1) A deep understanding of GAP and its certification is still needed; (2) The distribution of the certification base is not reasonable; (3) The geo-economics effect and the backward farming practices are thought to be the bottlenecks in the standardization of CMM growing and the scale production of CMM; (4) Low comparative effectiveness limits the development of the GAP; (5) The base of breeding improved variety is blank; (6) The immature of the cultivation technique lead to the risk of production process; (7) The degradation of soil microbial and the continuous cropping obstacle restrict the sustainable development of the GAP base. To further promote the health and orderly GAP in the CMM growing, the authors propose: (1) To change the mode of production; (2) To establish a sound standard system so as to ensure quality products for fair prices; (3) To fully consider the geo-economic culture and vigorously promote the definite cultivating of traditional Chinese medicinal materials; (4) To strengthen the transformation and generalization of basic researches and achievements, in order to provide technical

  19. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    NASA Astrophysics Data System (ADS)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  20. SALSA: a simulation tool to assess ecological sustainability of agricultural production.

    PubMed

    Eriksson, Ingrid Strid; Elmquist, Helena; Nybrant, Thomas

    2005-06-01

    In order to assess the ecological sustainability of agricultural production systems, there is a need for effective tools. We describe an environmental systems analysis tool called SALSA (Systems Ana/ysis for Sustainable Agriculture). It consists of substance/material flow models in which the simulation results are interpreted with life-cycle assessment methodology. The application of SALSA is demonstrated in a case study in which three different ways of producing pigs are compared with respect to energy input and the environmental impacts of global warming, eutrophication, and acidification. The scenario that combined a low-protein diet without soy meal with an improved manure-management technique with low nitrogen losses was the best for all impact categories studied. The strength of the SALSA models was their capacity to capture consequences of management options that had an influence on several processes on a farm, which enabled the type of complex studies we describe.

  1. Development and application of conservation tillage technologies toward sustainable agriculture in Northeast China

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; He, Di; Zhang, Xun

    2005-09-01

    Health and sustainability of agricultural ecosystems in Northeast China have been challenged by over-utilization and inappropriate management. A set of protective measures were developed and applied in Heilongjiang, China, to enhance the farmland sustainability while increasing or maintaining the needed productivity. These measures included no-till farming, return of agricultural residuals, high-efficiency irrigation, integrative pest management, crop rotation, and precision farming with remote sensing and GIS. Equipment and technologies were developed to implement the protective measures. Application of these technologies in the past several years has produced a significant improvement in both ecological and economical aspects. Potential application of such protective measures in other regions of China was also discussed.

  2. Problems Faced by High School Agricultural Education Teachers

    ERIC Educational Resources Information Center

    Boone, Harry N., Jr.; Boone, Deborah A.

    2007-01-01

    If the agricultural education profession is going to grow and prosper in the 21st century, it will need an adequate supply of qualified teachers. In 2001, however, the number of qualified potential agricultural education teachers actually seeking employment as teachers fell far short of the net number of replacements needed. Two contributing…

  3. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  4. Polyurethanes: versatile materials and sustainable problem solvers for today's challenges.

    PubMed

    Engels, Hans-Wilhelm; Pirkl, Hans-Georg; Albers, Reinhard; Albach, Rolf W; Krause, Jens; Hoffmann, Andreas; Casselmann, Holger; Dormish, Jeff

    2013-09-02

    Polyurethanes are the only class of polymers that display thermoplastic, elastomeric, and thermoset behavior depending on their chemical and morphological makeup. In addition to compact polyurethanes, foamed variations in particular are very widespread, and they achieve their targeted properties at very low weights. The simple production of sandwich structures and material composites in a single processing step is a key advantage of polyurethane technology. The requirement of energy and resource efficiency increasingly demands lightweight structures. Polyurethanes can serve this requirement by acting as matrix materials or as flexible adhesives for composites. Polyurethanes are indispensable when it comes to high-quality decorative coatings or maintaining the value of numerous objects. They are extremely adaptable and sustainable problem solvers for today's challenges facing our society, all of which impose special demands on materials.

  5. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    PubMed Central

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  6. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    PubMed

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-05-08

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.

  7. The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Calzadilla, Alvaro; Rehdanz, Katrin; Tol, Richard S. J.

    2010-04-01

    SummaryAgriculture is the largest consumer of freshwater resources - around 70 percent of all freshwater withdrawals are used for food production. These agricultural products are traded internationally. A full understanding of water use is, therefore, impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) water resources in agriculture and within the context of international trade. We use future projections of allowable water withdrawals for surface water and groundwater to define two alternative water management scenarios. The first scenario explores a deterioration of current trends and policies in the water sector (water crisis scenario). The second scenario assumes an improvement in policies and trends in the water sector and eliminates groundwater overdraft world-wide, increasing water allocation for the environment (sustainable water use scenario). In both scenarios, welfare gains or losses are not only associated with changes in agricultural water consumption. Under the water crisis scenario, welfare not only rises for regions where water consumption increases (China, South East Asia and the USA). Welfare gains are considerable for Japan and South Korea, Southeast Asia and Western Europe as well. These regions benefit from higher levels of irrigated production and lower food prices. Alternatively, under the sustainable water use scenario, welfare losses not only affect regions where overdrafting is occurring. Welfare decreases in other regions as well. These results indicate that, for water use, there is a clear trade-off between economic welfare and environmental sustainability.

  8. Sustainability Assessment for Agriculture Scenarios in Europe's Mountain Areas: Lessons from Six Study Areas

    NASA Astrophysics Data System (ADS)

    Partidário, Maria Rosário; Sheate, William R.; Bina, Olivia; Byron, Helen; Augusto, Bernardo

    2009-01-01

    Sustainability assessment (SA) is a holistic and long-range strategic instrument capable of assisting policy-making in electing, and deciding upon, future development priorities. The outcomes of an SA process become more relevant and strengthened when conducted with multi-stakeholder engagement, which provides for multiple dialogues and perspectives. This was the object of research of the SA team in the context of BioScene ( Scenarios for Reconciling Biodiversity Conservation with Declining Agriculture Use in Mountain Areas in Europe), a three-year project (2002-2005) funded by the European Union 5th Framework Program, which aimed to investigate the implications of agricultural restructuring and decline for biodiversity conservation in the mountain areas of Europe, using three distinct methodological streams: the ecological, the socio-economic, and the SA approaches. The SA approach drew on the previous two to assess the importance for biodiversity management of different scenarios of agri-environmental change and rural policy in six countries (France, Greece, Norway, Slovakia, Switzerland, and the United Kingdom), develop causal chains, include stakeholder views, and identify potential contributions for, or conflicts with, sustainability. This article tells how SA was used, what sustainability meant in each study area through different objectives of sustainability considered, discusses the methods used in SA, and the benefits arising. The SA was conducted by a team independent of any study area, who developed and oversaw the application of the SA methodology, assisting national teams, and developing a cross-country understanding of the sustainability of proposed scenarios in the different geographical and social contexts, and their implications for policy-making. Finally, it reflects on the persistent challenges of interdisciplinary research, compounded by multi-cultural teams, and concludes on the BioScene’s lessons for the further development and application

  9. Problems associated with the use of chemicals by agricultural workers.

    PubMed

    Baloch, U K

    1985-01-01

    The agricultural productivity in Pakistan is hampered by insects, diseases, and weeds, which are reported causing losses ranging up to 50%, estimated at a total value of over 900 million U.S. dollars. The use of pesticides in Pakistan started in 1954 with 254 metric tons of formulation, increasing to the level of 16,226 metric tons in 1976-77. Since the import and use of pesticides was in the public sector, the promulgation of the Agricultural Pesticides Ordinance was delayed to 1971 and the Rules to 1973. Under these Rules exist provisions necessary for the registration, marketing, and safe use of pesticides. Through the Agricultural Pesticides Technical Advisory Committee consisting of members drawn from the various Federal and Provincial agencies relevant to the subject, the Ministry of Food, Agriculture and Cooperatives, Government of Pakistan, is responsible for its implementation, but no regular agency for monitoring the implementation of the Rules exists. The extent of health hazards to agricultural workers as a result of exposure to pesticides, among other things, depends on the socioeconomic and educational background of their society, the local laws governing registration, and the scientific and regulatory institutional setup of the country. The above factors, of particular relevance to Pakistan, are discussed.

  10. Agricultural and water-quality conflicts. Economic dimensions of the problem. Agriculture information bulletin

    SciTech Connect

    Crutchfield, S.; Hansen, L.; Ribaudo, M.

    1993-07-01

    Modern farm production practices, which use agricultural chemicals, benefit consumers through lower prices and increased output. Consequences of agricultural production, however, such as soil erosion, chemical runoff and leaching, and wetlands conversion, may impair surface and ground water quality. These off-farm water-quality effects impose costs on society, including damage to fish and wildlife resources, costs of avoiding potential health hazards and preserving natural environments, and lost recreational opportunities. The report summarizes conflicts between agricultural production and water quality and discusses policies that stress the use of economic and technical assistance incentives to encourage adoption of pollution-reducing farming practices.

  11. A Multi-Factor Analysis of Sustainable Agricultural Residue Removal Potential

    SciTech Connect

    Jared Abodeely; David Muth; Paul Adler; Eleanor Campbell; Kenneth Mark Bryden

    2012-10-01

    Agricultural residues have significant potential as a near term source of cellulosic biomass for bioenergy production, but sustainable removal of agricultural residues requires consideration of the critical roles that residues play in the agronomic system. Previous work has developed an integrated model to evaluate sustainable agricultural residue removal potential considering soil erosion, soil organic carbon, greenhouse gas emission, and long-term yield impacts of residue removal practices. The integrated model couples the environmental process models WEPS, RUSLE2, SCI, and DAYCENT. This study uses the integrated model to investigate the impact of interval removal practices in Boone County, Iowa, US. Residue removal of 4.5 Mg/ha was performed annually, bi-annually, and tri-annually and were compared to no residue removal. The study is performed at the soil type scale using a national soil survey database assuming a continuous corn rotation with reduced tillage. Results are aggregated across soil types to provide county level estimates of soil organic carbon changes and individual soil type soil organic matter content if interval residue removal were implemented. Results show interval residue removal is possible while improving soil organic matter. Implementation of interval removal practices provide greater increases in soil organic matter while still providing substantial residue for bioenergy production.

  12. A Need for Education in Water Sustainability in the Agricultural Realm

    NASA Astrophysics Data System (ADS)

    Krajewski, J.

    2015-12-01

    This study draws upon the definition of water sustainability from the National Water Research Institute as the continual supply of clean water for human uses and for other living beings without compromising the water welfare of future generations. Currently, the greatest consumer of water resources worldwide is irrigation. The move from small-scale, family farms towards corporately owned and market driven, mass scale operations have drastically increased corn production and large-scale factory hog farming in the American Midwest—and the water quality related costs associated with this shift are well-documented. In the heart of the corn belt, the state of Iowa has dealt with issues over the past two decades ranging from flooding of historic proportions, to yield destroying droughts. Most recently, the state's water quality is intensely scrutinized due to nutrient levels higher than almost anywhere else in the world. While the changed agricultural landscape is ultimately responsible for these environmental costs, they can be mitigated if the farmers adopt practices that support water sustainability. However, many Iowa farmers have yet to embrace these necessary practices because of a lack of proper education in this context. Thus, the purpose of this paper is to explore how water sustainability is being conceptualized within the agricultural realm, and ultimately, how the issues are being communicated and understood within various subgroups in Iowa, such as the farmers, the college students, and the general public.

  13. Human health problems associated with current agricultural food production.

    PubMed

    Bhat, Ramesh V

    2008-01-01

    Scientific and technological developments in the agricultural sectors in the recent past has resulted in increased food production and at the same time led to certain public health concerns. Unseasonal rains at the time of harvest and improper post harvest technology often results in agricultural commodities being contaminated with certain fungi and results in the production of mycotoxins. Consumption of such commodities has resulted in human disease outbreaks. Naturally occurring toxins, inherently present in foods and either consumed as such or mixed up with grains, had been responsible for disease outbreaks. Other possible causes of health concern include the application of various agrochemicals such as pesticides and the use of antibiotics in aquaculture and veterinary practices. Foodborne pathogens entering the food chain during both traditional and organic agriculture pose a challenge to public health. Modern biotechnology, producing genetically modified foods, if not regulated appropriately could pose dangers to human health. Use of various integrated food management systems like the Hazard Analysis and critical control system approach for risk prevention, monitoring and control of food hazards are being emphasized with globalization to minimise the danger posed to human health from improper agricultural practices.

  14. The Solutions of the Agricultural Land Use Monitoring Problems

    ERIC Educational Resources Information Center

    Vershinin, Valentin V.; Murasheva, Alla A.; Shirokova, Vera A.; Khutorova, Alla O.; Shapovalov, Dmitriy A.; Tarbaev, Vladimir A.

    2016-01-01

    Modern landscape--it's a holistic system of interconnected and interacting components. To questions of primary importance belongs evaluation of stability of modern landscape (including agrarian) and its optimization. As a main complex characteristic and landscape inhomogeneity in a process of agricultural usage serves materials of quantitative and…

  15. Interactions between Niche and Regime: An Analysis of Learning and Innovation Networks for Sustainable Agriculture across Europe

    ERIC Educational Resources Information Center

    Ingram, Julie; Maye, Damian; Kirwan, James; Curry, Nigel; Kubinakova, Katarina

    2015-01-01

    Purpose: This paper aims to reveal, and contribute to an understanding of, the processes that connect learning and innovation networks in sustainable agriculture to elements of the mainstream agricultural regime. Drawing on the innovations and transition literature, the paper frames the analysis around niche-regime interaction using the notion of…

  16. Providing Semantic Metadata to Online Learning Resources on Sustainable Agriculture and Farming: Combining Values and Technical Knowledge

    ERIC Educational Resources Information Center

    Garcia-Barriocanal, Elena; Sicilia, Miguel-Angel; Sanchez-Alonso, Salvador

    2013-01-01

    Sustainable or organic agriculture aims at harmonizing the efficient production of food with the preservation of the environmental conditions for continuing production in a sustained way. As such, it embodies a set of environmental values that are currently taught and learnt worldwide in specific courses or as part of broader programs or…

  17. Ethnography of a Sustainable Agriculture Program: A Case Study of a Social Movement's Inception and Growth on a University Campus

    ERIC Educational Resources Information Center

    Triana, Benjamin

    2016-01-01

    This ethnography documents how the message of sustainability was interpreted and communicated through a sustainable agricultural (SAG) program at an American higher education institution. The ethnography documents the evolution of the program as the program tackled obstacles and accomplished its goals during the initial phases of the program's…

  18. The local view on the role of plant protection in sustainable agriculture in India.

    PubMed

    Jayaraj, S; Rabindra, R J

    1993-01-01

    Indiscriminate use of chemical insecticides has affected humans and their environment and contributed significantly to reduced productivity of crops. With the increasing realization of the importance of sustainable agriculture, the concept of integrated pest management (IPM) for sustainable agriculture has emerged. In the recent past entomologists and the farmers have identified methods of pest management that are ecologically non-disruptive and stable. Concurrently indigenous crop varieties with resistance to pests and diseases have been developed and cultivated. According to the principle of 'organic farming', several non-chemical methods have become popular among the local farmers. Simple cultural practices like increasing the seed rate to compensate for pest damage, adjusting the time of sowing to avoid pest damage, mulching, intercropping, trap cropping and crop rotation have been found to provide adequate protection from pest damage with no additional cost and without harmful effects on the environment. The age-old method of catch and kill is still being practised by farmers, particularly for cotton. Mechanical methods like the bow trap for control of rats and provision of tin sheets around coconut tree trunks to prevent rats damaging the nuts are still being adopted. The use of botanical materials such as the neem products for pest management has been well received almost all over the world. Biological control using the natural enemies of insect pests has become very popular among the farmers in the 1980s. The farmers who clamoured for chemical pesticides in the 1960s and 1970s are now disillusioned with these poisonous eco-destabilizing substances; they want sensible, biologically rational methods of IPM. Pest surveillance and monitoring play an important role in IPM for sustainable agriculture.

  19. Measuring environmental sustainability in agriculture: A composite environmental impact index approach.

    PubMed

    Sabiha, Noor-E; Salim, Ruhul; Rahman, Sanzidur; Rola-Rubzen, Maria Fay

    2016-01-15

    The present study develops a composite environmental impact index (CEII) to evaluate the extent of environmental degradation in agriculture after successfully validating its flexibility, applicability and relevance as a tool. The CEII tool is then applied to empirically measure the extent of environmental impacts of High Yield Variety (HYV) rice cultivation in three districts of north-western Bangladesh for a single crop year (October, 2012-September, 2013). Results reveal that 27 to 69 per cent of the theoretical maximum level of environmental damage is created due to HYV rice cultivation with significant regional variations in the CEII scores, implying that policy interventions are required in environmentally critical areas in order to sustain agriculture in Bangladesh.

  20. Frontiers of sustainability: Environmentally sound agriculture, forestry, transportation, and power production

    SciTech Connect

    Dower, R.; Ditz, D.

    1998-11-01

    The book presents the first practical vision of the sustainable future of the United States and the steps needed to get there. Authors examine the environmental performance and trends in four key economic sectors; agriculture, electricity generation, transportation, and pulp and paper manufacturing. They map out and explore the implications of potentially dangerous trends and developments, and detail methods for reducing or managing emergency threats. Each chapter sets forth a technologically feasible vision of the future in which the unwanted trends one sees unfolding now are reversed. Frontiers of sustainability presents an adaptable formula for moving the United States toward a future that ensures generations to come a healthy stock of environmental and natural resource assets.

  1. Agriculture in Africa: strategies to improve and sustain smallholder production systems.

    PubMed

    Jama, Bashir; Pizarro, Gonzalo

    2008-01-01

    Agricultural development lies at the heart of poverty reduction and increased food security of most developing nations. Sub-Saharan Africa (hereafter referred to as Africa) is, however, the only region in the world where per capita agricultural productivity has remained stagnant over the past 40 years. In Asia and Latin America, the use of tailored techniques and technologies has transformed agricultural practice and its productivity, leading to what has been called the "green revolution." The dissemination of uniquely African green revolution technologies has not occurred on the continent. This chapter will argue that the same results in increased productivity and food security can be achieved in Africa if the appropriate investments are made in key interventions: soil fertility improvement, improved seeds, water management, market access, extension services, access to credit, and improvements in weather forecasting. Where these have happened, even partially, the outcome has been remarkable. However, bringing them to scale in ways that sustainably increase agricultural productivity and alleviate poverty requires increased investments and innovative institutional arrangements. Fortunately, several research and development projects on the continent, including the Millennium Villages Project, are providing valuable insights. Finally, this chapter outlines the key remaining challenges.

  2. Challenges and Alternatives to Sustainable Management of Agriculture and Pastoral Ecosystems in Asian Drylands

    NASA Astrophysics Data System (ADS)

    Qi, J.

    2015-12-01

    There is no question that human must produce additional 70% food to feed the new 2.2 billion of people on the planet by 2050, but the question is where to grow the additional food. The demand for the additional food lies not only in producing the basic resources needed to sustain a healthy lifestyle, but also from a changing diet, especially in rapidly developing countries in the dryland regions around the world. It is forecast that this demand for meat will require an additional 0.2 billion tons per year by 2050, which is almost a doubling of present meat consumption. These new demands create mounting pressures on agriculture and pastoral ecosystems and the reported trajectory of warmer and drier climate in the future increases uncertainties in food security, adding further stresses to the already stressed nations in the Asian dryland belt. Different approaches are being either proposed or practiced in the region but the question is whether or not the current practices are sustainable or optimal in addressing the emerging issues. Given the complexity and interplay among the food, water and energy, what are alternatives to ensure a sustainable trajectory of regional development to meet the new food demand? This presentation reviews existing practices and proposes alternative solutions, by specifically examining the trade-offs between different ecosystem services that drylands in Asian may provide. Preliminary analysis suggested that the current trajectory of meat and milk production is likely not on a sustainable pathway.

  3. Productivity ranges of sustainable biomass potentials from non-agricultural land

    NASA Astrophysics Data System (ADS)

    Schueler, Vivian; Fuss, Sabine; Steckel, Jan Christoph; Weddige, Ulf; Beringer, Tim

    2016-07-01

    Land is under pressure from a number of demands, including the need for increased supplies of bioenergy. While bioenergy is an important ingredient in many pathways compatible with reaching the 2 °C target, areas where cultivation of the biomass feedstock would be most productive appear to co-host other important ecosystems services. We categorize global geo-data on land availability into productivity deciles, and provide a geographically explicit assessment of potentials that are concurrent with EU sustainability criteria. The deciles unambiguously classify the global productivity range of potential land currently not in agricultural production for biomass cultivation. Results show that 53 exajoule (EJ) sustainable biomass potential are available from 167 million hectares (Mha) with a productivity above 10 tons of dry matter per hectare and year (tD Mha-1 a-1), while additional 33 EJ are available on 264 Mha with yields between 4 and 10 tD M ha-1 a-1: some regions lose less of their highly productive potentials to sustainability concerns than others and regional contributions to bioenergy potentials shift when less productive land is considered. Challenges to limit developments to the exploitation of sustainable potentials arise in Latin America, Africa and Developing Asia, while new opportunities emerge for Transition Economies and OECD countries to cultivate marginal land.

  4. Effects of the Problem Solving and Subject Matter Approaches on the Problem Solving Ability of Secondary School Agricultural Education

    ERIC Educational Resources Information Center

    Olowa, O. W.

    2009-01-01

    The approach used by teachers is very important to the success of the teaching process. This is why this study seeks to determine which teaching approaches--problem solving and subject-matter, would best improve the problem solving ability of selected secondary agricultural education students in Ikorodu Local Government Area. Ten classes and 150…

  5. Ecosystem Services in Agricultural Landscapes: A Spatially Explicit Approach to Support Sustainable Soil Management

    PubMed Central

    Crossman, Neville D.; MacEwan, Richard J.; Wallace, D. Dugal; Bennett, Lauren T.

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km2 in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes. PMID:24616632

  6. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    PubMed

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-04-29

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  7. Effects of Teaching Approach on Problem Solving Ability of Agricultural Education Students with Varying Learning Styles.

    ERIC Educational Resources Information Center

    Dyer, James E.; Osborne, Edward W.

    1996-01-01

    One group of Illinois secondary agriculture students was taught using a problem-solving approach (PSA), the other with a subject-matter approach (SMA). A problem-solving posttest and Group Embedded Figures Test showed significantly higher problem-solving ability in the PSA group. Field independent learners in the PSA group significantly increased…

  8. GIS support for precision agriculture: problems and possibilities.

    PubMed

    Bregt, A K

    1997-01-01

    Precision farming aims to optimize the use of soil resources and external inputs on a site-specific basis. Base ingredients for research in the field of precision farming are spatial data, including a characterization of the spatial variability, and simulation models for the characterization of the processes that take place. Geographical information systems (GIS) are systems for the storage, analysis and presentation of spatial data. A combination of GIS and simulation models is highly relevant for precision farming. Currently only static one- or two-dimensional simulation models can be fully supported by commercial GIS systems. Within precision agriculture an engineering component can be also distinguished, in which the research findings are translated into operational systems for use at farm level. GIS can support this engineering activity by providing a good platform for storage of base data, simple modelling, presentation of results, development of a user interface and, in combination with a global positioning system, controlling the navigation of farm vehicles. On the basis of GIS a decision support system could be developed for operational application of precision agriculture at farm level.

  9. Apcocynum Pictum and Sustainable Agriculture Along the Tarim River In Arid Northwest, China

    NASA Astrophysics Data System (ADS)

    Aihemaitijiang, R.

    2014-12-01

    Water scarcity and population increase have been a major limiting factor in oasis development along the Tarim River in Xinjiang, Northwest China which has very continental and dry climate, and all the agriculture and livelihoods depend on glacier melt water from Tarim River. Due to vast land reclamation along the Tarim River to grow cotton, native plant species are facing a severe competition for water, which is essential for their survival. Decreasing river runoff and inefficient water use practices by agriculture and industry has exacerbated already serious situation even worse. In addition, a large influx of migrant famers from Eastern China is being settled in this region to cultivate new agricultural lands that consumed even more water. Under those conditions, the natural riparian vegetation and the irrigation agriculture, especially along the lower reaches, suffers water shortage leading the degradation and economic losses, respectively. Along with the enlargement of irrigation area and periods of water shortage, soil salinization has become a major concern for farmers in the area. Alternative cash crops are much needed to reduce water use, so both native vegetation and human demand for water would be fulfilled. We hypothesized Apocynum Pictum, perennial herb species with multiple uses as potential substitute. Multidisciplinary approach is being used in this study to investigate three related issues to offer a basis for Apocynum's role in sustainable agriculture, such as Biomass production of Apocynum; Water budget of Apocynum; and Economic utilization of Apocynum. A.Pictum is perennial plant distributed in Central Asia and China, which its roots are perennial, while the stems die every year. Thus, A.pictum grow under the arid climate of Central Asia and provide utilization options without irrigation. We initially estimate water requirement for this plant is much less than cotton. In order to validate our hypothesis, we have measured water consumption of the

  10. Review: Balancing Limiting Factors and Economic Drivers to Achieve Sustainable Midwestern US Agricultural Residue Feedstock Supplies

    SciTech Connect

    Wally W. Wilhelm; J. Richard Hess; Douglas L. Karlen; David J. Muth; Jane M. F. Johnson; John M. Baker; Hero T. Gollany; Jeff M. Novak; Diane E. Stott; Gary E. Varvel

    2010-10-01

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading soil resources. This review examines six agronomic factors that collectively define many of the limits and opportunities for harvesting crop residue for biofuel feedstock. These six “limiting factors” are discussed in relationship to economic drivers associated with harvesting corn (Zea mays L.) stover as a potential cellulosic feedstock. The limiting factors include soil organic carbon, wind and water erosion, plant nutrient balance, soil water and temperature dynamics, soil compaction, and off-site environmental impacts. Initial evaluations using the Revised Universal Soil Loss Equation 2.0 (RUSLE2) show that a single factor analysis based on simply meeting tolerable soil loss might indicate stover could be harvested sustainably, but the same analysis based on maintaining soil organic carbon shows the practice to be non-sustainable. Modifying agricultural management to include either annual or perennial cover crops is shown to meet both soil erosion and soil carbon requirements. The importance of achieving high yields and planning in a holistic manner at the landscape scale are also shown to be crucial for balancing limitations and drivers associated with renewable bioenergy production.

  11. Sustainability of Italian Agriculture: A Methodological Approach for Assessing Crop Water Footprint at Local Scale

    NASA Astrophysics Data System (ADS)

    Altobelli, F.; Dalla Marta, A.; Cimino, O.; Orlandini, S.; Natali, F.

    2014-12-01

    In a world where population is rapidly growing and where several planetary boundaries (i.e. climate change, biodiversity loss and nitrogen cycle) have already been crossed, agriculture is called to respond to the needs of food security through a sustainable use of natural resources. In particular, water is one of the main elements of fertility so the agricultural activity, and the whole agro-food chain, is one of the productive sectors more dependent on water resource and it is able to affect, at regional level, its availability for all the other sectors. In this study, we proposed a methodology for assessing the green and blue water footprint of the main Italian crops typical of the different geographical areas (northwest, northeast, center, and south) based on data extracted from Italian Farm Accountancy Data Network (FADN). FADN is an instrument for evaluating the income of agricultural holdings and the impacts of the Common Agricultural Policy. Crops were selected based on incidence of cultivated area on the total arable land of FADN farms net. Among others, the database contains data on irrigation management (irrigated surface, length of irrigation season, volumes of water, etc.), and crop production. Meteorological data series were obtained by a combination of local weather stations and ECAD E-obs spatialized database. Crop water footprints were evaluated against water availability and risk of desertification maps of Italy. Further, we compared the crop water footprints obtained with our methodology with already existing data from similar studies in order to highlight the effects of spatial scale and level of detail of available data.

  12. Local soil fertility management on small-scale farming systems for sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Namriah, Kilowasid, Laode Muhammad Harjoni

    2015-09-01

    The sustainability of small-scale farming systems on marginal lands is still being a topic of debate in scientific and institutional communities. To address this, a study was conducted to find a method of sustaining the productivity of marginal lands for food crop production. Agricultural practices (fallow and traditional cultivation) used by the local small-scale farmers in managing soil fertility to meet the natural biological processes above and below the ground were studied in Muna Island Southeast Sulawesi, Indonesia. Participatory approach was used to gather data and information on soil and land as well as to collect soil macrofauna. The results showed that the practices of local small-scale farmers are based on local soil and land suitability. Organic materials are the source of nutrient inputs to sustain the productivity of their lands by fallowing, burning natural vegetation, putting back the crop residues, doing minimum tillage and mix- and inter-crops. In conclusion, the sustainability of local small-scale farming systems will be established by knowing and understanding local soil and land classification systems and preferred crops being planted. Following the nature of fallow and monitoring soil macrofauna diversity and abundance, all preferred crops should be planted during rainy season with different time of harvest until the next rainy season. Therefore, soils are still covered with crops during dry season. It was suggested that planting time should be done in the rainy season. Doing more researches in other locations with different socio-cultural, economical, and ecological conditions is suggested to validate and refine the method.

  13. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods.

  14. Potential of extensification of European agriculture for a more sustainable food system, focusing on nitrogen

    NASA Astrophysics Data System (ADS)

    van Grinsven, Hans J. M.; Willem Erisman, Jan; de Vries, Wim; Westhoek, Henk

    2015-02-01

    Most global strategies for future food security focus on sustainable intensification of production of food and involve increased use of nitrogen fertilizer and manure. The external costs of current high nitrogen (N) losses from agriculture in the European Union, are 0.3-1.9% of gross domestic product (GDP) in 2008. We explore the potential of sustainable extensification for agriculture in the EU and The Netherlands by analysing cases and scenario studies focusing on reducing N inputs and livestock densities. Benefits of extensification are higher local biodiversity and less environmental pollution and therefore less external costs for society. Extensification also has risks such as a reduction of yields and therewith a decrease of the GDP and farm income and a smaller contribution to the global food production, and potentially an i0ncrease of global demand for land. We demonstrate favourable examples of extensification. Reducing the N fertilization rate for winter wheat in Northwest Europe to 25-30% below current N recommendations accounts for the external N cost, but requires action to compensate for a reduction in crop yield by 10-20%. Dutch dairy and pig farmers changing to less intensive production maintain or even improve farm income by price premiums on their products, and/or by savings on external inputs. A scenario reducing the Dutch pig and poultry sector by 50%, the dairy sector by 20% and synthetic N fertilizer use by 40% lowers annual N pollution costs by 0.2-2.2 billion euro (40%). This benefit compensates for the loss of GDP in the primary sector but not in the supply and processing chain. A 2030 scenario for the EU27 reducing consumption and production of animal products by 50% (demitarean diet) reduces N pollution by 10% and benefits human health. This diet allows the EU27 to become a food exporter, while reducing land demand outside Europe in 2030 by more than 100 million hectares (2%), which more than compensates increased land demand when

  15. Efficient nitrogen recycling through sustainable use of organic wastes in agriculture - an Australian case study

    NASA Astrophysics Data System (ADS)

    Rigby, Hannah; Landman, Michael; Collins, David; Walton, Katrina; Penney, Nancy; Pritchard, Deborah

    2014-05-01

    to nutrient losses to air and water. This paper discusses the sustainable recycling N resources in biosolids and biowastes in agriculture in Australia using specific recent research examples from Western Australia, including lime amended biosolids, alum sludge and dewatered biosolids cake, and from Tasmania, papermill sludge. The primary focus is the N fertiliser replacement value of different biosolids and biowaste types under different environmental conditions, and management issues relating to the sustainable recycling of N. Experimental work included field trials and soil incubation studies. The findings are compared with research findings conducted in different climatic regions and soil types across Australia (Queensland, Victoria, New South Wales) and internationally.

  16. Problems with heterogeneity in physically based agricultural catchment models

    NASA Astrophysics Data System (ADS)

    Hansen, Jeppe Rølmer; Refsgaard, Jens Christian; Hansen, Søren; Ernstsen, Vibeke

    2007-08-01

    SummaryLumped conceptual rainfall-runoff models and physically based distributed models are being used successfully for simulating daily discharge at catchment scale. Physically based models are more desirable for simulation of the fate of agrochemicals (e.g. nitrate) because they rely on physical equations for flow and transport. The literature shows that the average response (e.g. percolation and leaching) at field scale can be simulated successfully by using effective or standard values in the parameterisation of these models. However, in areas characterised by a high degree of spatial variability the physically based models sometimes fail to simulate the discharge dynamics at catchment scale properly possibly due to the lack of representation of sub-grid variability. This paper presents an agricultural physically based distributed model concept which included 3561 combinations of root zone simulations of percolation and leaching that was distributed within a 622 km 2 catchment according to land use, climate, soil types, etc. This was thought to account for all heterogeneity within the catchment but did not. It was shown that a much simpler model with less than 100 combinations of root zone calculations partially including important variability at the catchment scale could simulate discharge equally well and in some cases better than the complex one. The most important parameter heterogeneity to include in the conceptualisation step apparently was sub-grid variation of soil physical parameters and variability of crop growth. The variation of crop growth was forced by restricting the rooting depth which potentially lumped other heterogeneities into this property. The results also suggest that the groundwater table that constitutes the lower boundary condition in the unsaturated zone is another important factor. However, this was difficult to examine because of the modelling approach that did not feature feedback from the saturated to the unsaturated zone. A list

  17. Remotely Sensed Hydrometeorological and Agrometeorological Drought Risk Identification for Sustainable Agriculture.

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas R.; Blanta, Anna; Spyropoulos, Nicos

    2013-04-01

    Drought is considered as one of the major environmental hazards with significant impacts to agriculture, environment, economy and society. This paper addresses drought as a hazard within the risk management framework. Indeed, hazards may be defined as a potential threat to humans and their welfare and risk (or consequence) as the probability of a hazard occurring and creating loss. Besides, risk management consists of risk assessment and feedback of the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. In order to ensure sustainability in agricultural production a better understanding of the natural disasters, in particular droughts, that impact agriculture is essential. Droughts may result in environmental degradation of an area, which is one of the factors contributing to the vulnerability of agriculture, because it directly magnifies the risk of natural disasters. This paper deals with drought risk identification, which involves hazard quantification, event monitoring including early warning systems and statistical inference. For drought quantification the Reconnaissance Drought Index (RDI) combined with Vegetation Health Index (VHI) is employed. RDI is a new index based on hydrometeorological parameters, and in particular precipitation and potential evapotranspiration, which has been recently modified to incorporate monthly satellite (NOAA/AVHAA) data for a period of 20 years (1981-2001). VHI is based on NDVI. The study area is Thessaly in central Greece, which is one of the major agricultural areas of the country occasionally facing droughts. Drought monitoring is conducted by monthly remotely sensed RID and VHI images and several drought features are extracted such as severity, duration, areal extent, onset and end time. Drought early warning is developed using empirical relationships of the above mentioned features. In particular, two second-order polynomials

  18. Chemodynamics of Methyl Parathion and Ethyl Parathion: Adsorption Models for Sustainable Agriculture

    PubMed Central

    Rafique, Uzaira; Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2014-01-01

    The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue. PMID:24689059

  19. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and profitability

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    The optimality of irrigation strategies may be sought with respect to a number of criteria, including water requirements, crop yield, and profitability. To explore the suitability of different demand-based irrigation strategies, we link the probabilistic description of irrigation requirements under stochastic hydro-climatic conditions, provided in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv Water Resour 2011;34(2):263-71], to crop-yield and economic analyses. Water requirements, application efficiency, and investment costs of different irrigation methods, such as surface, sprinkler and drip irrigation systems, are described via a unified conceptual and theoretical approach, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. This allows us to analyze irrigation strategies with respect to sustainability, productivity, and economic return, using the same framework, and quantify them as a function of climate, crop, and soil parameters. We apply our results to corn ( Zea mays), a food staple and biofuel source, which is currently mainly irrigated through surface systems. As our analysis shows, micro-irrigation maximizes water productivity, but more traditional solutions may be more profitable at least in some contexts.

  20. Chemodynamics of methyl parathion and ethyl parathion: adsorption models for sustainable agriculture.

    PubMed

    Tabassum, Noshabah; Rafique, Uzaira; Balkhair, Khaled S; Ashraf, Muhammad Aqeel

    2014-01-01

    The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue.

  1. Nanotechnology for sustainable wastewater treatment and use for agricultural production: A comparative long-term study.

    PubMed

    De La Cueva Bueno, Patricia; Gillerman, Leonid; Gehr, Ronald; Oron, Gideon

    2017-03-01

    Nanotechnology applications can be used for filtering low quality waters, allowing under given conditions, the removal of salts and other micropollutants from these waters. A long-term field experiment, implementing nanotechnology in the form of UltraFiltration (UF) and Reverse Osmosis (RO) for salt removal from treated wastewater, was conducted with secondary effluents, aiming to prove the sustainability of agricultural production using irrigation with treated wastewater. Six outdoor field treatments, each under four replications, were conducted for examining the salt accumulation effects on the soil and the crops. The field experiments proved that crop development is correlated with the water quality as achieved from the wastewater filtration capability of the hybrid nanotechnology system. The key goal was to maintain sustainable food production, despite the low quality of the waters. Of the six treatment methods tested, irrigation with RO-treated effluent produced the best results in terms of its effect on soil salinity and crop yield. Nevertheless, it must be kept in mind that this process is not only costly, but it also removes all organic matter content from the irrigation water, requiring the addition of fertilizers to the effluent.

  2. Community supported agriculture membership in Arizona. An exploratory study of food and sustainability behaviours.

    PubMed

    MacMillan Uribe, Alexandra L; Winham, Donna M; Wharton, Christopher M

    2012-10-01

    Community supported agriculture (CSA) programs have become a viable source of locally produced foods and represent a new way to increase fruit and vegetable consumption among individuals. Because CSAs represent a way for consumers to acquire healthy foods while providing financial support to local farmers, CSA involvement could reflect, and be related to, greater concern with both health and environmental impact of food choice. As such, the aim of this study was to examine whether ecological attitudes of CSA members could predict food- and sustainability-related behaviours. Using an online survey, respondents answered questions about attitudes towards the environment, as well behaviours related to food purchases, family food preparation, composting, recycling and minimising food-packaging waste. A total of 115 CSA member responses were collected. Ordinary least squares (OLS) multivariate regression analysis was used to investigate the predictive validity of environmental attitudes on measures of behaviours. A large portion of participants reported the amount and variety of fruits and vegetables their households ate increased as a result of joining a CSA program. Ecological sensitivity was a significant predictor of sustainability-related behaviours as well as money spent eating out and times eaten away from home per week. However, it was not predictive of family involvement in home food preparation.

  3. The potential and sustainability of agricultural land use in a changing ecosystem in southern Greenland

    NASA Astrophysics Data System (ADS)

    Hunziker, Matthias; Caviezel, Chatrina; Kuhn, Nikolaus J.

    2015-04-01

    Southern Greenland currently experiences an increase in summer temperatures and a prolonged growing season (Masson-Delmotte et al. 2012), resulting in an increased potential regarding agricultural land use. Subsequently, the agricultural sector is expected to grow. Thereby, a higher hay production and grazing capacity is pursued by applying more efficient farming practices (Greenland Agriculture Advisory Board 2009). However, agricultural potential at borderline ecotones is not only influenced by factors like temperature and growing season but also by other ecologic parameters. In addition, the intensification of land use in the fragile boreal - tundra border ecotone has various environmental impacts (Perren et al. 2012; Normand et al. 2013). Already the Norse settlers practiced animal husbandry in southern Greenland between 986-1450 AD. Several authors mention the unadapted land use as main reason for the demise of the Norse in Greenland, as grazing pressure exceeded the resilience of the landscape and pasture economy failed (Fredskild 1988; Perren et al. 2012). During the field work in summer 2014, we compared the pedologic properties of already used hay fields, grazed land, birch woodland and barren, unused land around Igaliku (South Greenland), in order to estimate the potential and the sustainability of the land use in southern Greenland. Beside physical soil properties, nutrient condition of the different land use types, the shrub woodland and barren areas was analyzed. The results of the study show that the most suitable areas for intensive agricultural activity are mostly occupied. Further on, the fields, which were used by the Norse, seem to be the most productive sites nowadays. Less productive hay fields are characterized by a higher coarse fraction, leading to a reduced ability to store water and to an unfavorable nutrient status. An intensification of the agricultural land use by applying fertilizer would lead to an increased environmental impact

  4. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control.

    PubMed

    Bianchi, F J J A; Booij, C J H; Tscharntke, T

    2006-07-22

    Agricultural intensification has resulted in a simplification of agricultural landscapes by the expansion of agricultural land, enlargement of field size and removal of non-crop habitat. These changes are considered to be an important cause of the rapid decline in farmland biodiversity, with the remaining biodiversity concentrated in field edges and non-crop habitats. The simplification of landscape composition and the decline of biodiversity may affect the functioning of natural pest control because non-crop habitats provide requisites for a broad spectrum of natural enemies, and the exchange of natural enemies between crop and non-crop habitats is likely to be diminished in landscapes dominated by arable cropland. In this review, we test the hypothesis that natural pest control is enhanced in complex patchy landscapes with a high proportion of non-crop habitats as compared to simple large-scale landscapes with little associated non-crop habitat. In 74% and 45% of the studies reviewed, respectively, natural enemy populations were higher and pest pressure lower in complex landscapes versus simple landscapes. Landscape-driven pest suppression may result in lower crop injury, although this has rarely been documented. Enhanced natural enemy activity was associated with herbaceous habitats in 80% of the cases (e.g. fallows, field margins), and somewhat less often with wooded habitats (71%) and landscape patchiness (70%). The similar contributions of these landscape factors suggest that all are equally important in enhancing natural enemy populations. We conclude that diversified landscapes hold most potential for the conservation of biodiversity and sustaining the pest control function.

  5. Agriculture

    EPA Pesticide Factsheets

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  6. Linking Knowledge and Action for a Transition to Sustainability: Lessons from the Yaqui Valley agricultural region and other case studies

    NASA Astrophysics Data System (ADS)

    Matson, P. A.

    2012-12-01

    In recent years, there has been a call-to-arms for the science community to focus on sustainability challenges, and many research programs and projects, publication venues, and meetings provide evidence of progress in this realm. Purposeful actions to link this new knowledge with action for meeting sustainability goals are less evident. This talk will provide several examples of linking knowledge and action for sustainability in agricultural systems of Sonora, Mexico, and will summarize some of the lessons learned from this case study in comparison with a number of others.

  7. Child labor in agriculture: some new developments to an ancient problem.

    PubMed

    Beyer, Dorianne

    2012-01-01

    Advocates for working children worldwide strive to eradicate the employment that minimizes a child's opportunities for education, good health and future potential. In agriculture, some promising developments in corporate social responsibility may generate partial solutions to child labor problems that have persisted for generations across world regions where food, fiber and fuel are produced. The purpose of this paper is to review these promising developments and propose recommendations in the context of a future of continued agricultural globalization and industrialization.

  8. Sustainable agriculture, renewable energy and rural development: An analysis of bio-energy systems used by small farms in China

    NASA Astrophysics Data System (ADS)

    Zhou, Aiming

    Renewable energy needs to be incorporated into the larger picture of sustainable agriculture and rural development if it is to serve the needs of the 3.25 billion human beings whose livelihoods and based on rural economies and ecologies. For rural communities, increasing agriculture production is key to raising income generation and improving social well-being, but this linkage depends also upon not harming natural resources. This dissertation provides an overview of recent Chinese agriculture history, discusses the role of energy in contemporary's China's agriculture and rural development, and introduces a new approach---the integrated agricultural bio-energy (IAB) system---to address the challenge of sustainable agriculture and rural development. IAB is an innovative design and offers a renewable energy solution for improving agricultural productivity, realizing efficient resource management, and enhancing social well-being for rural development. In order to understand how the IAB system can help to achieve sustainable agricultural and rural development in China, a comprehensive evaluation methodology is developed from health, ecological, energy and economic (HE3) perspectives. With data from surveys of 200 small farm households, a detailed study of IAB and conventional agricultural energy (CAE) system applications (in China's Liaoning and Yunnan Province) is conducted. The HE3 impacts of IAB systems in China's rural areas (compared to existing CAE systems) are quantified. The dissertation analyzes the full life-cycle costs and benefits of IAB systems, including their contributions to energy savings, CO2 emissions reduction, agricultural waste reduction, increased rural incomes, better rural health, and improved ecosystem sustainability. The analysis relies upon qualitative and quantitative modeling in order to produce a comprehensive assessment of IAB system impacts. Finally, the dissertation discusses the barriers to greater diffusion of the IAB systems

  9. Problem area 1 effective water management in agriculture-Product area accomplishments-FY 11 - FY14

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service National Program 211 is composed of four components or problem areas. Problem Area 1, Effective Water Management in Agriculture, focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) I...

  10. Introducing Future Engineers to Sustainable Ecology Problems: A Case Study

    ERIC Educational Resources Information Center

    Filipkowski, A.

    2011-01-01

    The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and…

  11. Where Are the Gardens in the Garden State? Middle School Lessons on Sustainable Agriculture and Farmland Preservation.

    ERIC Educational Resources Information Center

    Chen, Loris

    This unit helps middle school students explore the local face of a global challenge: vanishing farmland and the need for sustainable agriculture. With an eye on the National Geography Standards and five areas of the New Jersey core curriculum standards, this unit also develops the skills needed to contribute toward creative solutions for such…

  12. Results of an Assessment to Identify Potential Barriers to Sustainable Agriculture on American Indian Reservations in the Western United States

    ERIC Educational Resources Information Center

    Singletary, Loretta; Emm, Staci; Brummer, Fara Ann; Hill, George C.; Lewis, Steve; Hebb, Vicki

    2016-01-01

    Purpose: This paper reports the results of survey research conducted with tribal producers between 2011 and 2012 on 19 of the largest American Indian reservations in Idaho, Nevada, North Dakota, Oregon, South Dakota, and Washington. The purpose of the research was to identify potential barriers to sustainable agriculture on reservation lands. This…

  13. LandSoil model application for erosion management in sustainable agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Follain, Stéphane; Raclot, Damien; Le Bissonnais, Yves

    2016-04-01

    Soil erosion and land degradation can lead to irreversible changes and landscape degradation. In order to achieve the sustainability of agricultural landscapes, the land use scenarios might be developed and tested for their erosion mitigation effects. Despite the importance of the long-term scenarios (which are complicated by predictability of climate change in a small scale, its effect on change in soil properties and crops, and the societal behaviour of individual players), the management decision have to be applied already now. Therefore the short-term and medium term scenarios to achieve the most effective soil management and the least soil erosion footprint are necessary to develop. With increasing importance of individual large erosion events, the event-based models, considering soil properties and landscape structures appears to be suitable. The LandSoil model (Ciampalini et al., 2012) - a landscape evolution model operating at the field/small catchment scale, have been applied in order to analyse the effect of different soil erosion mitigation and connectivity management practices in two different Mediterranean catchments. In the soil erosion scenarios the proposed measures targeted soil erosion on field or on catchment scale, and the effect of different extreme events on soil redistribution was evaluated under different spatial designs. Anna Smetanová has received the support of the AgreenSkills fellowship (under grant agreement n°267196). R. Ciampalini, S. Follain, Y. Le Bissonnais, LandSoil: A model for analysing the impact of erosion on agricultural landscape evolution, Geomorphology, 175-176, 2012, 25-37.

  14. The Unsustainability Imperative? Problems with "Sustainability" and "Sustainable Development" as Regulative Ideals

    ERIC Educational Resources Information Center

    Stables, Andrew

    2013-01-01

    Normality is imminently catastrophic. Climate change is a contemporary instantiation of the perpetual sense of crisis that characterises the human condition, and concepts such as sustainability and resilience serve as regulative ideals (cf. beauty, perfection, and truth) in the fight against ubiquitous unsustainability. Unsustainability is an…

  15. Agricultural management practices to sustain crop yields and improve soil and environmental qualities.

    PubMed

    Sainju, Upendra M; Whitehead, Wayne F; Singh, Bharat P

    2003-08-20

    In the past several decades, agricultural management practices consisting of intensive tillage and high rate of fertilization to improve crop yields have resulted in the degradation of soil and environmental qualities by increasing erosion and nutrient leaching in the groundwater and releasing greenhouses gases, such as carbon dioxide (CO2) and nitrous oxide (N2O), that cause global warming in the atmosphere by oxidation of soil organic matter. Consequently, management practices that sustain crop yields and improve soil and environmental qualities are needed. This paper reviews the findings of the effects of tillage practices, cover crops, and nitrogen (N) fertilization rates on crop yields, soil organic carbon (C) and N concentrations, and nitrate (NO3)-N leaching from the soil. Studies indicate that conservation tillage, such as no-till or reduced till, can increase soil organic C and N concentrations at 0- to 20-cm depth by as much as 7-17% in 8 years compared with conventional tillage without significantly altering crop yields. Similarly, cover cropping and 80-180 kg N ha(-1) year(-1) fertilization can increase soil organic C and N concentrations by as much as 4-12% compared with no cover cropping or N fertilization by increasing plant biomass and amount of C and N inputs to the soil. Reduced till, cover cropping, and decreased rate of N fertilization can reduce soil N leaching compared with conventional till, no cover cropping, and full rate of N fertilization. Management practices consisting of combinations of conservation tillage, mixture of legume and nonlegume cover crops, and reduced rate of N fertilization have the potentials for sustaining crop yields, increasing soil C and N storage, and reducing soil N leaching, thereby helping to improve soil and water qualities. Economical and social analyses of such practices are needed to find whether they are cost effective and acceptable to the farmers.

  16. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  17. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : Sustainable water and wastewater utilities Sustainable water resources management Stormwater and green infrastructure Sustainability in wastewater treatment Life cycle assessment (LCA) applications Sustainability and energy in wastewater industry, Sustainability and asset management.

  18. Conservation and sustainable use of medicinal plants: problems, progress, and prospects.

    PubMed

    Chen, Shi-Lin; Yu, Hua; Luo, Hong-Mei; Wu, Qiong; Li, Chun-Fang; Steinmetz, André

    2016-01-01

    Medicinal plants are globally valuable sources of herbal products, and they are disappearing at a high speed. This article reviews global trends, developments and prospects for the strategies and methodologies concerning the conservation and sustainable use of medicinal plant resources to provide a reliable reference for the conservation and sustainable use of medicinal plants. We emphasized that both conservation strategies (e.g. in situ and ex situ conservation and cultivation practices) and resource management (e.g. good agricultural practices and sustainable use solutions) should be adequately taken into account for the sustainable use of medicinal plant resources. We recommend that biotechnical approaches (e.g. tissue culture, micropropagation, synthetic seed technology, and molecular marker-based approaches) should be applied to improve yield and modify the potency of medicinal plants.

  19. New mixes based on collagen extracts with bioactive properties, for treatment of seeds in sustainable agriculture.

    PubMed

    Gaidau, Carmen; Niculescu, Mihaela; Stepan, Emil; Epure, Doru-Gabriel; Gidea, Mihai

    2013-01-01

    The world's population, areas intended for the production of bio-mass and bio-fuels and the food demand of mankind are on a continuous ascending trend. In this context, an increased efficiency in obtaining large and steady productions, in compliance with the requirements of sustainable development of the agricultural eco-system, is a priority. To be effective, the seed treatment will fulfill the following requirements: shall disinfect and protect the seeds against the pests and pathogen agents found in the soil, shall ensure the system protection, shall not pollute the soil, water and environment, shall have no remnant effect onto the environment and onto the crops and shall be bio-degradable, easy to transport and to use. This paper aims at presenting new collagen based materials for cereal seed treatment, which generates an increase of the quality and protection indicators for treated seeds. Creation of a new and advanced technology for treatment of cereal seeds, by using pesticide-collagen hydrolysate mixes has the objectives of increasing seed quality indexes; reducing pesticide consumption, which will in turn decrease environmental pollution and the cost of treatment for cereal seeds; achieving a better management of resources; reducing production expenses while preserving the environment. The technologies developed for protein raw material processing and characteristics of collagen hydrolysates with bioactive properties are presented. The future route for ecological treatment of seeds is the use of microencapsulated plant extracts (thyme and cinnamon essential oils) with insecticidal and antifungal properties in a shell made using collagen hydrolysate.

  20. Healthy and happy: animal welfare as an integral part of sustainable agriculture.

    PubMed

    Keeling, Linda J

    2005-06-01

    Good animal welfare is necessary if an agricultural system is to be sustainable. Although we have been concerned about the welfare of our animals since we first domesticated them and became dependent on their health and reproduction, this article focuses mainly on the development of the animal welfare debate since the 1960s. It presents animal welfare as a science that arose from society's concern about the way animals are kept. These moral and ethical concerns lead to it having a value framework that must also be taken into consideration. Different definitions of animal welfare, as well as examples of research, are presented and discussed in the light of developments in this area. For example, in recent years there has been an increased interest among consumers for animal-friendly products, as there has been for environment friendly products, and this has stimulated the move from experimental studies of animal welfare to its application in practice and to monitoring animal welfare on farms. Traditionally such measurements have been resource based, e.g. specifying the minimum amount of feeding space or the maximum stocking density, but now the trend is toward animal-based measures, such as the numberof lame animals, body condition, etc.

  1. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Joergensen, 1994) in which systems are modeled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  2. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  3. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    ScienceCinema

    Danuso, Francesco [University of Udine, Italy

    2016-07-12

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  4. Hydrological problems of water resources in irrigated agriculture: A management perspective

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2016-10-01

    The development of irrigated agriculture is necessary for fulfilling the rising food requirements of the burgeoning global population. However, the intensification of irrigated agriculture causes the twin menace of waterlogging and soil salinization in arid and semiarid regions where more than 75% of the world's population lives. These problems can be managed by either adopting preventive measures which decrease the inflow of water and salt or by employing remedial measures which increase the outflow. This paper presents an overview of various measures used for the management of waterlogging and salinity problems. The background, processes involved, and severity of waterlogging and salinity problems are provided. The role of drainage systems, conjunctive use of different water sources, use of computer-based mathematical models, and the use of remote sensing and GIS techniques in managing the problems are discussed. Conclusions are provided which could be useful for all the stakeholders.

  5. Effective utilization of waste water through recycling, reuse, and remediation for sustainable agriculture.

    PubMed

    Raman, Rajamani; Krishnamoorthy, Renga

    2014-01-01

    Water is vital for human, animal, and plant life. Water is one of the most essential inputs for the production of crops. Plants need it in enormous quantities continuously during their life. The role of water is felt everywhere; its scarcity causes droughts and famines, its excess causes floods and deluge. During the next two decades, water will increasingly be considered a critical resource for the future survival of the arid and semiarid countries. The requirement of water is increasing day by day due to intensive agriculture practices, urbanization, population growth, industrialization, domestic use, and other uses. On the other hand, the availability of water resources is declining and the existing water is not enough to meet the needs. To overcome this problem, one available solution is utilization of waste water by using recycling, reuse, and remediation process.

  6. Evaluation of current state of agricultural land using problem-oriented fuzzy indicators in GIS environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current state of agricultural lands is defined under influence of processes in soil, plants and atmosphere and is described by observation data, complicated models and subjective opinion of experts. Problem-oriented indicators summarize this information in useful form for decision of the same specif...

  7. AGRICULTURAL LABOR--THE PROBLEM, ATTEMPTS AT ORGANIZATION, CURRENT LAWS, AND WHAT ARE THE ISSUES.

    ERIC Educational Resources Information Center

    CALL, DAVID

    THE NUMBER OF HIRED FARM WORKERS IS DECREASING WITH THE INCREASED USE OF LABORSAVING FARM MACHINERY AND TECHNOLOGY WHICH ALLOWS GREATER OUTPUT PER WORKER. THE LOW WAGE SCALE PREVALENT IN AGRICULTURE IS THE MAJOR CAUSE OF THE FARM LABOR PROBLEM. WAGE RATES ARE DIFFICULT TO MEASURE ACCURATELY BECAUSE OF A GREAT DIVERSITY IN METHODS OF PAYMENT AND…

  8. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Zhang, Gong; Yang, Xiahua; You, Shao-Hong

    2015-10-01

    This review on Sustainability covers selected 2014 publications on the focus of the following sections: • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  9. Sustainable agriculture, soil management and erosion from prehistoric times to 2100

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, Tom; Gómez, Jose Alfonso; Infante Amate, Juan; González Molina, Manuel; Fernández, David Soto; Guzmán, Gema; Vanderlinden, Karl; Laguna, Ana; Giráldez, Juan Vicente

    2015-04-01

    The rational use of soil requires the selection of management practices to take profit of the beneficial functions of plant growth, water and nutrient storage, and pollutants removal by filtering and decomposition without altering its properties. However, the first evidence of important and widespread erosion peaks can generally be found with the arrival of the first farmers all over the world. In areas with a long land-use history such as the Mediterranean, clear signs indicating the advanced degradation status of the landscape, such as heavily truncated soils, are visible throughout. Soil conservation practices are then aimed at reducing erosion to geological rates, in equilibrium with long-term soil formation rates, while maximizing agricultural production. The adoption of such practices in most areas of the world are as old as the earliest soil erosion episodes themselves. This work firstly reviews historical evidence linking soil management and soil erosion intensity, with examples from N Europe and the Mediterranean. In particular, work by the authors in olive orchards will be presented that shows how significant variations in soil erosion rates between could be linked to the historical soil management. The potential of historical documents for calibrating a soil erosion model is shown as the model, in this case RUSLE-based and combining tillage and water erosion, adequately represents the measured erosion rate dynamics. Secondly, results from present-day, long-term farm experiments in the EU are reviewed to evaluate the effect of different soil management practices on physical soil properties, such as bulk density, penetration resistance, aggregate stability, runoff coefficient or sediment yield. Finally, we reflect upon model and field data that indicate how future global climate change is expected to affect soil management and erosion and how the examples used above hold clues about sustainable historical management practices that can be used successfully

  10. Pedagogy for Addressing the Worldview Challenge in Sustainable Development of Agriculture

    ERIC Educational Resources Information Center

    Jordan, Nicholas R.; Bawden, Richard J.; Bergmann, Luke

    2008-01-01

    Agriculture is offering new forms of support to society, as evidenced by rapid development of an agricultural "bio-economy," and increasing emphasis on production of ecological services in farmed landscapes. The advent of these innovations will engage agricultural professionals in critical civic debates about matters that are complex and…

  11. Sustainable agricultural practices: energy inputs and outputs, pesticide, fertilizer and greenhouse gas management.

    PubMed

    Wang, Yue-Wen

    2009-01-01

    The food security issue was addressed by the development of "modern agriculture" in the last century. But food safety issues and environment degradation were the consequences suffered as a result. Climate change has been recognized as the result of release of stored energy in fossil fuel into the atmosphere. Homogeneous crop varieties, machinery, pesticides and fertilizers are the foundation of uniform commodities in modern agriculture. Fossil fuels are used to manufacture fertilizers and pesticides as well as the energy source for agricultural machinery, thus characterizes modern agriculture. Bio-fuel production and the possibility of the agriculture system as a form of energy input are discussed.

  12. Exploring Corn-Ethanol As A Complex Problem To Teach Sustainability Concepts Across The Science-Business-Liberal Arts Curriculum

    NASA Astrophysics Data System (ADS)

    Oches, E. A.; Szymanski, D. W.; Snyder, B.; Gulati, G. J.; Davis, P. T.

    2012-12-01

    The highly interdisciplinary nature of sustainability presents pedagogic challenges when sustainability concepts are incorporated into traditional disciplinary courses. At Bentley University, where over 90 percent of students major in business disciplines, we have created a multidisciplinary course module centered on corn ethanol that explores a complex social, environmental, and economic problem and develops basic data analysis and analytical thinking skills in several courses spanning the natural, physical, and social sciences within the business curriculum. Through an NSF-CCLI grant, Bentley faculty from several disciplines participated in a summer workshop to define learning objectives, create course modules, and develop an assessment plan to enhance interdisciplinary sustainability teaching. The core instructional outcome was a data-rich exercise for all participating courses in which students plot and analyze multiple parameters of corn planted and harvested for various purposes including food (human), feed (animal), ethanol production, and commodities exchanged for the years 1960 to present. Students then evaluate patterns and trends in the data and hypothesize relationships among the plotted data and environmental, social, and economic drivers, responses, and unintended consequences. After the central data analysis activity, students explore corn ethanol production as it relates to core disciplinary concepts in their individual classes. For example, students in Environmental Chemistry produce ethanol using corn and sugar as feedstocks and compare the efficiency of each process, while learning about enzymes, fermentation, distillation, and other chemical principles. Principles of Geology students examine the effects of agricultural runoff on surface water quality associated with extracting greater agricultural yield from mid-continent croplands. The American Government course examines the role of political institutions, the political process, and various

  13. Integrating social identity theory and the theory of planned behaviour to explain decisions to engage in sustainable agricultural practices.

    PubMed

    Fielding, Kelly S; Terry, Deborah J; Masser, Barbara M; Hogg, Michael A

    2008-03-01

    The present research integrates core aspects of social identity theory with the theory of planned behaviour to investigate factors influencing engagement in sustainable agricultural practices. Using a two-wave prospective design, two studies were conducted with samples of farmers (N = 609 and N = 259, respectively). At Time 1, a questionnaire survey assessed theory of planned behaviour variables in relation to engaging in riparian zone management (a sustainable agricultural practice). In addition, intergroup perceptions (i.e. relations between rural and urban groups), group norms and group identification were assessed. At Time 2, self-reported behaviour was measured. There was support for the integrated model across both studies. As predicted, past behaviour, attitudes and perceived behavioural control were significant predictors of intentions, and intentions significantly predicted self-reported behaviour. Group norms and intergroup perceptions were also significant predictors of intentions providing support for the inclusion of social identity concepts in the theory of planned behaviour. More supportive group norms were associated with higher intentions, especially for high-group identifiers. In contrast, more negative intergroup perceptions were associated with lower intentions and, unexpectedly, this effect only emerged for low-group identifiers. This suggests that in the context of decisions to engage in riparian zone management, an important sustainable agricultural practice, high identifiers are influenced predominantly by in-group rather than out-group considerations, whereas low identifiers may attend to cues from both the in-group and the out-group when making their decisions.

  14. Measuring agricultural sustainability in terms of efficiency: the case of Dutch sugar beet growers.

    PubMed

    De Koeijer, T J; Wossink, G A A; Struik, P C; Renkema, J A

    2002-09-01

    Sustainability embraces socio-economic and bio-ecological dimensions or attributes. This paper presents a conceptual framework for quantifying sustainability on the basis of efficiency theory commonly used in economics. The conceptual model is implemented using Data Envelopment Analysis (DEA). Sustainability is measured for a sample of Dutch sugar beet growers. The average technical efficiency was only 50%. A positive correlation was found between technical efficiency and sustainable efficiency. Differences in efficiency among farmers were persistent within and between years. We conclude that there is considerable scope for improving the sustainability of arable farming by better management.

  15. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  16. Mitigation of musculoskeletal problems and body discomfort of agricultural workers through educational intervention.

    PubMed

    Vyas, Rekha

    2012-01-01

    Farming is a physically arduous occupation that places farm workers' at potential risk of musculoskeletal disorders, which has been observed to impose a greater impact on their health. Each activity in agriculture brings about certain stress and strain on bones and muscles leading to work-related musculoskeletal disorders which can lead to several permanent diseases and disabilities. The purpose of analyzing musculoskeletal problems among male and female workers engaged in agriculture was to know about the risk factors dangerous to health so that interventions can be planned for mitigating them thereby increasing the efficiency of work. Educational intervention included audio-visual aids as well as printed literature. It was hoped that awareness of these factors through dissemination of information would contribute at preventing hazards amongst farmers and their families. The results revealed that the workers reported very severe to severe pain in low back while performing agricultural activities. Weeding was the most strenuous activity for females and threshing crop for males. Training and education on MSDs through educational intervention proved that the knowledge of the farm workers could be enhanced and can help reduce risk of many musculoskeletal problems. It can be help in empowering the community and mitigate MSDs in agriculture.

  17. Review: Computer-based models for managing the water-resource problems of irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2015-09-01

    Irrigation is essential for achieving food security to the burgeoning global population but unplanned and injudicious expansion of irrigated areas causes waterlogging and salinization problems. Under this backdrop, groundwater resources management is a critical issue for fulfilling the increasing water demand for agricultural, industrial, and domestic uses. Various simulation and optimization approaches were used to solve the groundwater management problems. This paper presents a review of the individual and combined applications of simulation and optimization modeling for the management of groundwater-resource problems associated with irrigated agriculture. The study revealed that the combined use of simulation-optimization modeling is very suitable for achieving an optimal solution for groundwater-resource problems, even with a large number of variables. Independent model tools were used to solve the problems of uncertainty analysis and parameter estimation in groundwater modelling studies. Artificial neural networks were used to minimize the problem of computational complexity. The incorporation of socioeconomic aspects into the groundwater management modeling would be an important development in future studies.

  18. Towards a more sustainable agriculture: wheat mycorrhization to protect against powdery mildew.

    PubMed

    Mustafa, G; Tisserant, B; Randoux, B; Fontaine, J; Reignault, Ph; Sahraoui, A Lounes-Hadj

    2013-01-01

    One of the means to reduce the use of pesticides, which are harmful for humans and the environment, is the development of alternative methods to control crop diseases. In this context, arbuscular mycorrhizal inoculation possesses a great potential for crop production by a more sustainable agriculture. Our work aims to (i) determine the optimal conditions for wheat mycorrhization (ii) study the impact of arbuscular mycorrhizal inoculation on a foliar disease of wheat, powdery mildew (Blumeria graminis f.sp. tritici, Bgt), (iii) evaluate the stimulation of natural defences of wheat (Triticuma estivum). Therefore, this work consisted firstly of defining the parameters, affecting the establishment of wheat mycorrhization, such as: phosphorus concentration (62, 12.5, 6.2 mg/L), culture time (4, 5, 6, 7 weeks), arbuscular mycorrhizal species used as an inoculum (Rhizophagus irregularis (Ri), Glomus masseae (Gm) and the mixture of (Ri+Gm)) and wheat cultivars (Orvantis and Lord, sensitive and moderately resistant to Bgt, respectively). Secondly, the protective effect of mycorrhizal inoculation against Bgt was estimated by comparing infection rates of wheat seedlings subjected and non-subjected to AMF. Finally, to better understand the biochemical mechanisms involved in the protection, two enzymatic activities described as defense markers [lipoxygenase (LOX) and peroxidase (POX)] were also assessed. Extensive mycorrhization (about 31%) was obtained at P/5 concentration (12.5 mg/L) when wheat plants were 6 weeks old. The highest colonization rate was obtained when wheat was inoculated with Gm compared to SZE and Ri. The higher resistance level of Lord wheat cultivar against Bgt did not affect the mycorrhizal rate compared to the more susceptible cultivar Orvantis. Our work showed a significant protection level in mycorrhizal (M) wheat plants against Bgt, estimated to about 25 and 43% with Ri and SZE respectively compared to non-mycorrhizal (NM) Orvantis plants. The

  19. Introduction and domestication of woody plants for sustainable agriculture in desert areas

    NASA Astrophysics Data System (ADS)

    Shelef, Oren; Soloway, Elaine; Rachmilevitch, Shimon

    2014-05-01

    plantation in arid conditions. 5) Balanites aegyptiaca is potentially a good biomass crop and good feed for grazers as goats. We illuminated differences related to drought tolerance between two distinct ecotypes. Attempts to develope sustainable agriculture based on local species will save resources (water, fertilizers, insecticides and herbicides), keep endangered plant species and enhance vegetation reestablishment.

  20. Agriculture, food, and nutrition interventions that facilitate sustainable food production and impact health: an overview of systematic reviews.

    PubMed

    Haby, Michelle M; Chapman, Evelina; Clark, Rachel; Galvão, Luiz A C

    2016-08-01

    Objectives To identify the agriculture, food, and nutrition security interventions that facilitate sustainable food production and have a positive impact on health. Methods Systematic review methods were used to synthesize evidence from multiple systematic reviews and economic evaluations through a comprehensive search of 17 databases and 10 websites. The search employed a pre-defined protocol with clear inclusion criteria. Both grey and peer-reviewed literature published in English, Spanish, and Portuguese between 1 January 1997 and November 2013 were included. To classify as "sustainable," interventions needed to aim to positively impact at least two dimensions of the integrated framework for sustainable development and include measures of health impact. Results Fifteen systematic reviews and seven economic evaluations met the inclusion criteria. All interventions had some impact on health or on risk factors for health outcomes, except those related to genetically modified foods. Impact on health inequalities was rarely measured. All interventions with economic evaluations were very cost-effective, had cost savings, or net benefits. In addition to impacting health (inclusive social development), all interventions had the potential to impact on inclusive economic development, and some, on environmental sustainability, though these effects were rarely assessed. Conclusions What is needed now is careful implementation of interventions with expected positive health impacts but with concurrent, rigorous evaluation. Possible impact on health inequalities needs to be considered and measured by future primary studies and systematic reviews, as does impact of interventions on all dimensions of sustainable development.

  1. Risk factors for injuries and other health problems sustained in a marathon

    PubMed Central

    Satterthwaite, P.; Norton, R.; Larmer, P.; Robinson, E.

    1999-01-01

    OBJECTIVES: To identify risk factors for injuries and other health problems occurring during or immediately after participation in a marathon. METHODS: A prospective cohort study was undertaken of participants in the 1993 Auckland Citibank marathon. Demographic data, information on running experience, training and injuries, and information on other lifestyle factors were obtained from participants before the race using an interviewer-administered questionnaire. Information on injuries and other health problems sustained during or immediately after the marathon were obtained by a self administered questionnaire. Logistic regression analyses were undertaken to identify significant risk factors for health problems. RESULTS: This study, one of only a few controlled epidemiological studies that have been undertaken of running injuries, has identified a number of risk factors for injuries and other health problems sustained in a marathon. Men were at increased risk of hamstring and calf problems, whereas women were at increased risk of hip problems. Participation in a marathon for the first time, participation in other sports, illness in the two weeks before the marathon, current use of medication, and drinking alcohol once a month or more, were associated with increased self reported risks of problems. While increased training seemed to increase the risk of front thigh and hamstring problems, it may decrease the risk of knee problems. There are significant but complex relations between age and risk of injury or health problem. CONCLUSIONS: This study has identified certain high risk subjects and risk factors for injuries and other health problems sustained in a marathon. In particular, subjects who have recently been unwell or are taking medication should weigh up carefully the pros and cons of participating. 


 PMID:10027053

  2. Sustained Attention at Age 5 Predicts Attention-Related Problems at Age 9

    ERIC Educational Resources Information Center

    Martin, Anne; Razza, Rachel A.; Brooks-Gunn, Jeanne

    2012-01-01

    This study tested whether two aspects of sustained attention (focused attention and lack of impulsivity) measured at child age 5 predicted attention problems reported by mothers and teachers at age 9. Because lack of impulsivity reflects the executive control network, and ADHD is commonly characterized as a deficit in executive function, it was…

  3. ASIT--A Problem Solving Strategy for Education and Eco-Friendly Sustainable Design

    ERIC Educational Resources Information Center

    Turner, Steve

    2009-01-01

    There is growing recognition of the role teaching and learning experiences in technology education can contribute to Education for Sustainable Development. It appears, however, that in the Technology Education classroom little or no change has been achieved to the practice of designing and problem solving strategies oriented towards sustainable…

  4. Gender and Environmental Sustainability: Issues and Problems Involved for Persons with Special Needs in Nigeria

    ERIC Educational Resources Information Center

    Egaga, Patrick I.; Aderibigbe, S. Akinwumi

    2015-01-01

    Sustainability of the environment is one of the major problems facing African people, most especially Nigerians. It is unfortunate that women, by the nature of their daily activities of managing the homes and families are in touch with nature and environment and are at greater risk of health hazards and foetal damage. This paper focuses on the…

  5. Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators.

    PubMed

    Springer, Nathaniel P; Garbach, Kelly; Guillozet, Kathleen; Haden, Van R; Hedao, Prashant; Hollander, Allan D; Huber, Patrick R; Ingersoll, Christina; Langner, Megan; Lipari, Genevieve; Mohammadi, Yaser; Musker, Ruthie; Piatto, Marina; Riggle, Courtney; Schweisguth, Melissa; Sin, Emily; Snider, Sara; Vidic, Nataša; White, Aubrey; Brodt, Sonja; Quinn, James F; Tomich, Thomas P

    2015-01-01

    Understanding how to source agricultural raw materials sustainably is challenging in today's globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly--depending largely on the stakeholder perspective--as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 "integrated" issues--24 impact issues and 36 vulnerability issues--that are composed of 318 "component" issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent them. Issues in the

  6. Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators

    PubMed Central

    Springer, Nathaniel P.; Garbach, Kelly; Guillozet, Kathleen; Haden, Van R.; Hedao, Prashant; Hollander, Allan D.; Huber, Patrick R.; Ingersoll, Christina; Langner, Megan; Lipari, Genevieve; Mohammadi, Yaser; Musker, Ruthie; Piatto, Marina; Riggle, Courtney; Schweisguth, Melissa; Sin, Emily; Snider, Sara; Vidic, Nataša; White, Aubrey; Brodt, Sonja; Quinn, James F.; Tomich, Thomas P.

    2015-01-01

    Understanding how to source agricultural raw materials sustainably is challenging in today’s globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly—depending largely on the stakeholder perspective—as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 “integrated” issues—24 impact issues and 36 vulnerability issues —that are composed of 318 “component” issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent them

  7. A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture.

    PubMed

    Gaxiola, Roberto A; Edwards, Mark; Elser, James J

    2011-08-01

    Concerns about phosphorus (P) sustainability in agriculture arise not only from the potential of P scarcity but also from the known effects of agricultural P use beyond the field, i.e., eutrophication leading to dead zones in lakes, rivers and coastal oceans due to runoffs from fertilized fields. Plants possess a large number of adaptive responses to P(i) (orthophosphate) limitation that provide potential raw materials to enhance P(i) scavenging abilities of crop plants. Understanding and engineering these adaptive responses to increase the efficiency of crop capture of natural and fertilizer P(i) in soils is one way to optimize P(i) use efficiency (PUE) and, together with other approaches, help to meet the P sustainability challenge in agriculture. Research on the molecular and physiological basis of P(i) uptake is facilitating the generation of plants with enhanced P(i) use efficiency by genetic engineering. Here we describe work done in this direction with emphasis on the up-regulation of plant proton-translocating pyrophosphatases (H(+)-PPases).

  8. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century.

    PubMed

    Glaser, Bruno

    2007-02-28

    Terra Preta soils of central Amazonia exhibit approximately three times more soil organic matter, nitrogen and phosphorus and 70 times more charcoal compared to adjacent infertile soils. The Terra Preta soils were generated by pre-Columbian native populations by chance or intentionally adding large amounts of charred residues (charcoal), organic wastes, excrements and bones. In this paper, it is argued that generating new Terra Preta sites ('Terra Preta nova') could be the basis for sustainable agriculture in the twenty-first century to produce food for billions of people, and could lead to attaining three Millennium Development Goals: (i) to combat desertification, (ii) to sequester atmospheric CO2 in the long term, and (iii) to maintain biodiversity hotspots such as tropical rainforests. Therefore, large-scale generation and utilization of Terra Preta soils would decrease the pressure on primary forests that are being extensively cleared for agricultural use with only limited fertility and sustainability and, hence, only providing a limited time for cropping. This would maintain biodiversity while mitigating both land degradation and climate change. However, it should not be overlooked that the infertility of most tropical soils (and associated low population density) is what could have prevented tropical forests undergoing large-scale clearance for agriculture. Increased fertility may increase the populations supported by shifting cultivation, thereby maintaining and increasing pressure on forests.

  9. Determining the Effects of Cognitive Style, Problem Complexity, and Hypothesis Generation on the Problem Solving Ability of School-Based Agricultural Education Students

    ERIC Educational Resources Information Center

    Blackburn, J. Joey; Robinson, J. Shane

    2016-01-01

    The purpose of this experimental study was to assess the effects of cognitive style, problem complexity, and hypothesis generation on the problem solving ability of school-based agricultural education students. Problem solving ability was defined as time to solution. Kirton's Adaption-Innovation Inventory was employed to assess students' cognitive…

  10. The Trofobiose Theory and organic agriculture: the active mobilization of nutrients and the use of rock powder as a tool for sustainability.

    PubMed

    Polito, Wagner L

    2006-12-01

    The primary objective of the present paper is to link some relevant concepts on the use of ecological agricultural practices to the production of food crops. In a special topic the Trofobiose Theory, as well as the principle of Active Dissolution of Rocks are considered as important tools in improving the sustainability of Organic, Biodynamic and Process Agricultures.

  11. Avoid, Control, Succumb, or Balance: Engineering Students' Approaches to a Wicked Sustainability Problem

    NASA Astrophysics Data System (ADS)

    Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena

    2016-07-01

    Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to students' abilities to address WSPs. Specifically, we aim to (I) describe key constituents of engineering students' approaches to a WSP, (II) evaluate these approaches in relation to the normative context of education for sustainable development (ESD), and (III) identify relevant aspects of learning related to WSPs. Aim I is addressed through a phenomenographic study, while aims II and III are addressed by relating the results to research literature about human problem solving, sustainable development, and ESD. We describe four qualitatively different ways of approaching a specific WSP, as the outcome of the phenomenographic study: A. Simplify and avoid, B. Divide and control, C. Isolate and succumb, and D. Integrate and balance. We identify approach D as the most appropriate approach in the context of ESD, while A and C are not. On this basis, we identify three learning objectives related to students' abilities to address WSPs: learn to use a fully integrative approach, distinguish WSPs from tame and well-structured problems, and understand and consider the normative context of SD. Finally, we provide recommendations for how these learning objectives can be used to guide the design of science and engineering educational activities.

  12. Traditional agricultural practices enable sustainable remediation of highly polluted soils in Southern Spain for cultivation of food crops.

    PubMed

    Madejón, P; Barba-Brioso, C; Lepp, N W; Fernández-Caliani, J C

    2011-07-01

    This study relates elemental content of a range of edible crops grown in soils severely polluted by metals and metalloids as affected by traditional smallholder management practices. Five agricultural plots close to a sulfidic waste dump were monitored. Soil analysis demonstrated elevated concentrations of As, Cu, Pb and Zn that were greatly in excess of maximum statutory limits for agricultural soils in the studied region. The main vegetables (lettuce, chard, onion, potatoes) and lemon, together with their associated soils, were measured for elemental content. Extractable soil element concentrations were very low. There were differences in elemental accumulation between crops, but none exceeded statutory concentrations in edible parts. Soil-plant transfer factors were uniformly low for all elements and crops. It is concluded that traditional soil management practices (annual liming and application of animal manures) have created conditions for sustainable long-term safety use, with potential for multiple end-use, of these highly polluted soils.

  13. Sociopolitical crisis and the reconstruction of sustainable periurban agriculture in Abidjan, Côte d'Ivoire.

    PubMed

    Babo, Alfred

    2010-01-01

    This article examines the effects of the post-2002 sociopolitical crisis in Abidjan, Côte d'Ivoire, on urban and peri-urban agriculture. Based on the case study of Abidjan, it argues for a conceptualization of sustainability that includes social as well as environmental dimensions and focuses on coping strategies of producers and merchants. In Abidjan, these strategies included internal migration within the city and its periphery, the use of organic fertilizers, and changes in market structure. The study illustrates how such strategies allowed producers to continue to supply produce to the market, despite the difficulties of war.

  14. Agricultural nematology in East and Southern Africa: problems, management strategies and stakeholder linkages.

    PubMed

    Talwana, Herbert; Sibanda, Zibusiso; Wanjohi, Waceke; Kimenju, Wangai; Luambano-Nyoni, Nessie; Massawe, Cornel; Manzanilla-López, Rosa H; Davies, Keith G; Hunt, David J; Sikora, Richard A; Coyne, Danny L; Gowen, Simon R; Kerry, Brian R

    2016-02-01

    By 2050, Africa's population is projected to exceed 2 billion. Africa will have to increase food production more than 50% in the coming 50 years to meet the nutritional requirements of its growing population. Nowhere is the need to increase agricultural productivity more pertinent than in much of Sub-Saharan Africa, where it is currently static or declining. Optimal pest management will be essential, because intensification of any system creates heightened selection pressures for pests. Plant-parasitic nematodes and their damage potential are intertwined with intensified systems and can be an indicator of unsustainable practices. As soil pests, nematodes are commonly overlooked or misdiagnosed, particularly where appropriate expertise and knowledge transfer systems are meager or inadequately funded. Nematode damage to roots results in less efficient root systems that are less able to access nutrients and water, which can produce symptoms typical of water or nutrient deficiency, leading to misdiagnosis of the underlying cause. Damage in subsistence agriculture is exacerbated by growing crops on degraded soils and in areas of low water retention where strong root growth is vital. This review focuses on the current knowledge of economically important nematode pests affecting key crops, nematode control methods and the research and development needs for sustainable management, stakeholder involvement and capacity building in the context of crop security in East and Southern Africa, especially Kenya, Tanzania, Uganda and Zimbabwe.

  15. Soil, land use time, and sustainable intensification of agriculture in the Brazilian Cerrado region.

    PubMed

    Trabaquini, Kleber; Galvão, Lênio Soares; Formaggio, Antonio Roberto; de Aragão, Luiz Eduardo Oliveira E Cruz

    2017-02-01

    The Brazilian Cerrado area is in rapid decline because of the expansion of modern agriculture. In this study, we used extensive field data and a 30-year chronosequence of Landsat images (1980-2010) to assess the effects of time since conversion of Cerrado into agriculture upon soil chemical attributes and soybean/corn yield in the Alto do Rio Verde watershed. We determined the rates of vegetation conversion into agriculture, the agricultural land use time since conversion, and the temporal changes in topsoil (0-20 cm soil depth) and subsurface (20-40 cm) chemical attributes of the soils. In addition, we investigated possible associations between fertilization/over-fertilization and land use history detected from the satellites. The results showed that 61.8% of the native vegetation in the Alto do Rio Verde watershed was already converted into agriculture with 31% of soils being used in agriculture for more than 30 years. While other fertilizers in cultivated soils (e.g., Ca(+2), Mg(+2), and P) have been compensated over time by soil management practices to keep crop yield high, large reductions in C org (38%) and N tot (29%) were observed in old cultivated areas. Furthermore, soybean and cornfields having more than 10 years of farming presented higher values of P and Mg(+2) than the ideal levels necessary for plant development. Therefore, increased risks of over-fertilization of the soils and environmental contamination with these macronutrients were associated with soybean and cornfields having more than 10 years of farming, especially those with more than 30 years of agricultural land use.

  16. Health and sustainability.

    PubMed

    Kjӕrgård, Bente; Land, Birgit; Bransholm Pedersen, Kirsten

    2014-09-01

    In the present article, we explore how sustainable development strategies and health promotion strategies can be bridged. The concept of the 'duality of structure' is taken as our starting point for understanding the linkages between health promotion and sustainable development, and for uncovering the structural properties or conditions which either enable or constrain sustainable public health initiatives. We argue that strategies towards health promotion are not sufficiently integrated with strategies for sustainable development, and thus political strategies aimed at solving health problems or sustainability problems may cause new, undesired and unforeseen environmental or health problems. First, we explore how the relation between health and sustainability is articulated in international policy documents. Next, we develop a model for understanding the relation between health promotion and sustainability. Third, we use examples from agriculture and food production to illustrate that health and sustainability are mutually enabling and constraining. We conclude that while the renewed focus on food security and food inequalities has brought the health and sustainability dimensions of the food system onto the political agenda, the conceptualization of duality between health and sustainability could be a new platform for a critical and theoretical stance towards the market-oriented food system strategy. Thinking along the lines of duality means that the integration of health promotion strategies and sustainable development strategies cannot be based on an approach to integration in which either health or sustainability is given precedence over the other. From a duality perspective, integration means conceiving sustainability from a health perspective and health from a sustainability perspective.

  17. Identifying, monitoring and implementing "sustainable" agricultural practices for smallholder farmers over large geographic areas in India and Vietnam

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Ahuja, R.; Nair, D.; Esteves, T.; Rudek, J.; Thu Ha, T.

    2015-12-01

    Industrial agriculture systems, mostly in developed and some emerging economies, are far different from the small-holder farms (size <1 acre) in Asia and Africa. Along with our partners from non-governmental, corporate, academic and government sectors and tens of thousands of farming families, we have worked actively in five states in India and two provinces in Vietnam for the last five years to understand how sustainable and climate smart farming practices can be monitored at small-holder farms. Here, any approach to monitor farming must begin by accounting for the tremendous management variability from farm to farm and also the current inability to ground-truth remote sensing data due to lack of relaible basic parameters (e.g., yields, N use, farm boundaries) which are necessary for calibrating empirical/biogeochemical models. While we continue to learn from new research, we have found that it is crucial to follow some steps if sustainable farming programs are to succeed at small-holder farms Demographic data collection and GPS plot demarcation to establish farm size and ownership Baseline nutrient, water & energy use and crop yield determination via surveys and self-reporting which are verifiable through farmer networks given the importance of peer to peer learning in the dissemination of new techniques in such landscapes "Sustainable" practice determination in consultation with local universities/NGO experts Measurements on representative plots for 3-4 years to help calibrate biogeochemical models and/or empirical equations and establish which practices are truly "sustainable" (e.g., GHG emission reduction varies from 0-7 tCO2e/acre for different sustainable practices). Propagation of sustainable practices across the landscape via local NGOs/governments after analyzing the replicability of identified farming practices in the light of local financial, cultural or socio-political barriers. We will present results from representative plots (including soil and

  18. Theme: Is Problem-Solving Teaching and SAE Needed in Agricultural Education in the 21st Century?

    ERIC Educational Resources Information Center

    Wardlow, George, Ed.

    1999-01-01

    Nine articles in this theme issue address problem-solving teaching and supervised agricultural experience. Topics covered include systems approaches to SAE, SAE for Y2K, SAE for science, applied SAE, types of SAE, and examples of activities. (JOW)

  19. Organic textile waste as a resource for sustainable agriculture in arid and semi-arid areas.

    PubMed

    Eriksson, Bo G

    2017-03-01

    New vegetation in barren areas offers possibilities for sequestering carbon in the soil. Arid and semi-arid areas (ASAs) are candidates for new vegetation. The possibility of agriculture in ASAs is reviewed, revealing the potential for cultivation by covering the surface with a layer of organic fibres. This layer collects more water from humidity in the air than does the uncovered mineral surface, and creates a humid environment that promotes microbial life. One possibility is to use large amounts of organic fibres for soil enhancement in ASAs. In the context of the European Commission Waste Framework Directive, the possibility of using textile waste from Sweden is explored. The costs for using Swedish textile waste are high, but possible gains are the sale of agricultural products and increased land prices as well as environmental mitigation. The findings suggest that field research on such agriculture in ASAs should start as soon as possible.

  20. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises.

    PubMed

    de Oliveira, Jhones Luiz; Campos, Estefânia Vangelie Ramos; Bakshi, Mansi; Abhilash, P C; Fraceto, Leonardo Fernandes

    2014-12-01

    This review article discusses the use of nanotechnology in combination with botanical insecticides in order to develop systems for pest control in agriculture. The main types of botanical insecticides are described, together with different carrier systems and their potential uses. The botanical insecticides include those based on active principles isolated from plant extracts, as well as essential oils derived from certain plants. The advantages offered by the systems are highlighted, together with the main technological challenges that must be resolved prior to future implementation of the systems for agricultural pest control. The use of botanical insecticides associated with nanotechnology offers considerable potential for increasing agricultural productivity, while at the same time reducing impacts on the environment and human health.

  1. The nitrogen fate beyond the current nutrient mitigation measures: sustainability of an integrated agriculture

    NASA Astrophysics Data System (ADS)

    Thieu, V.; Billen, G. F.; Garnier, J.; Lancelot, C.; Gypens, N.

    2010-12-01

    Located in the North-Western Europe the terrestrial continuum that includes the Seine, Somme, and Scheldt River basins offers an interesting example of a transborder territory (France, Belgium, and Netherlands) with high-intensity anthropogenic pressures. It well-illustrates the rapid development of modern agriculture in industrialised countries and the resulting severe alteration of water resources and jeopardising the capacity of rural territories to produce drinking water. The corresponding nutrient loads delivered then into the Southern Bight of the North Sea, strongly affect the ecological functioning of the coastal zone. An integrated ‘river-ocean’ assessment, coupling two deterministic models - the SENEQUE RIVESTRAHLER model simulating nutrient dynamic in the drainage network and the MIRO model describing the ecological functioning coastal ecosystem - points out the relevance of current policy based measures (improvement of waste water treatment) to mitigate phosphorous emissions, while the nitrogen pollution related to agriculture will remain critical despite the implementation of classical management measure (good agricultural practices). Therefore and irrespectively of the current political agenda, a more radical alternative is established, consisting of a generalised shift to an integrated agriculture of all agricultural areas in the three basins, excluding the use of synthetically compounded fertilisers and the importation of livestock feed. Such scenario aims at evaluating whether agriculture, by essence, can conciliate (i) the demand for food and feed by local populations, (ii) a good ecological functioning of aquatic ecosystems and (iii) a balanced nutrient status for the adjacent coastal area. This scenario involves an increased livestock density in the Seine and Somme and a decrease in livestock in the Scheldt basin. It leads to a significant reduction of agricultural production that finally brings the three basins closer to autotrophy

  2. Parent-reported homework problems in the MTA study: evidence for sustained improvement with behavioral treatment.

    PubMed

    Langberg, Joshua M; Arnold, L Eugene; Flowers, Amanda M; Epstein, Jeffery N; Altaye, Mekibib; Hinshaw, Stephen P; Swanson, James M; Kotkin, Ronald; Simpson, Stephen; Molina, Brooke S G; Jensen, Peter S; Abikoff, Howard; Pelham, William E; Vitiello, Benedetto; Wells, Karen C; Hechtman, Lily

    2010-01-01

    Parent-report of child homework problems was examined as a treatment outcome variable in the MTA-Multimodal Treatment Study of Children with Attention-Deficit/Hyperactivity Disorder (ADHD). Five hundred seventy-nine children ages 7.0 to 9.9 were randomly assigned to either medication management, behavioral treatment, combination treatment, or routine community care. Results showed that only participants who received behavioral treatment (behavioral and combined treatment) demonstrated sustained improvements in homework problems in comparison to routine community care. The magnitude of the sustained effect at the 10-month follow-up assessment was small to moderate for combined and behavioral treatment over routine community care (d = .37, .40, respectively). Parent ratings of initial ADHD symptom severity was the only variable found to moderate these effects.

  3. Acting as a Change Agent in Supporting Sustainable Agriculture: How to Cope with New Professional Situations?

    ERIC Educational Resources Information Center

    Cerf, M.; Guillot, M. N.; Olry, P.

    2011-01-01

    How do change agents deal with the diversity of farmers' attitudes towards the future of agriculture? How do they themselves cope with change and understand their role as change agents? We chose a comprehensive, action-training approach to answer such questions and worked with agents belonging to two different extension networks. The agents…

  4. Sustaining the earth's watersheds-agricultural research data system: Overview of development and challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comprehensive, long-term data for watershed systems across diverse locations are essential for interdisciplinary hydrologic and ecosystem analysis and model development, calibration and validation. The USDA and Agricultural Research Service (ARS) have supported watershed research since the 1930’s w...

  5. Agroecology and the Sustainable Production of Food and Fiber: Emergy Evaluation of Agriculture in the Montado

    EPA Science Inventory

    The silvopastoral, agricultural system of the montado in Southern Portugal is an example of the self-organization of an agroecological system adapted to the climate and soil conditions of the Mediterranean basin. This system with its consistent production of food, fiber, and ecos...

  6. Barriers to the Adoption of Sustainable Agriculture on Rented Land: An Examination of Contesting Social Fields

    ERIC Educational Resources Information Center

    Carolan, Michael S.

    2005-01-01

    While over half of the cropland in the United States is rented, interest in land tenancy within sociological circles has been sporadic at best. In light of the prevalence of rented land in agriculture--particularly in the Midwest--it is vital that further research be conducted to investigate the effect that the rental relationship has upon the…

  7. Nitrogen balance as an indicator of the environmental impact: towards sustainable agricultural production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economics is a principle driver impacting management decisions in agricultural production systems. While increasing concern has focused on preserving the natural resource base to ensure continued support for future production, little emphasis has been placed on examining how drivers alter management...

  8. Enhancing Cultural Awareness through an Agricultural Sustainability Course in Costa Rica

    ERIC Educational Resources Information Center

    Unruh-Snyder, Lori J.; Lamm, Alexa J.; Brendemuhl, Joel; Irani, Tracy; Roberts, T. Grady; Rodriguez, Mary T.; Navarro, Julia

    2011-01-01

    International learning experiences are increasingly considered critical by universities in order to address the breadth of knowledge and skills required by food and agricultural scientists. An international experience helps create an awareness of international perspectives and prepares students for a global workforce. This article discusses the…

  9. Micronutrient-Efficient Genotypes for Crop Yield and Nutritional Quality in Sustainable Agriculture: A Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronutrient deficiency is a limiting factor for crop productivity in many agricultural lands worldwide. Furthermore, many food systems in developing countries can not provide sufficient micronutrient contents to meet the demands of their people, especially low-income families. Several approaches...

  10. Toward agricultural sustainability through integrated crop–livestock systems. II. Production responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping and animal production as two separately specialized agricultural systems has led to unacceptable deterioration of the environment due to (i) excessive concentration of nutrients and pathogens in livestock production systems and (ii) loss of natural biodiversity and excess...

  11. Toward agricultural sustainability through integrated crop–livestock systems. III. Social aspects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping and animal production as two separately specialized agricultural systems has led to unacceptable deterioration of the environment due to (i) excessive concentration of nutrients and pathogens in livestock production systems and (ii) loss of natural biodiversity and excess...

  12. Toward agricultural sustainability through integrated crop-livestock systems: Environmental outcomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping and animal production as two separately specialized agricultural systems has led to unacceptable deterioration of the environment due to (i) excessive concentration of nutrients and pathogens in livestock production systems and (ii) loss of natural biodiversity and excess...

  13. The problem of epistemic jurisdiction in global governance: The case of sustainability standards for biofuels.

    PubMed

    Winickoff, David E; Mondou, Matthieu

    2017-02-01

    While there is ample scholarly work on regulatory science within the state, or single-sited global institutions, there is less on its operation within complex modes of global governance that are decentered, overlapping, multi-sectorial and multi-leveled. Using a co-productionist framework, this study identifies 'epistemic jurisdiction' - the power to produce or warrant technical knowledge for a given political community, topical arena or geographical territory - as a central problem for regulatory science in complex governance. We explore these dynamics in the arena of global sustainability standards for biofuels. We select three institutional fora as sites of inquiry: the European Union's Renewable Energy Directive, the Roundtable on Sustainable Biomaterials, and the International Organization for Standardization. These cases allow us to analyze how the co-production of sustainability science responds to problems of epistemic jurisdiction in the global regulatory order. First, different problems of epistemic jurisdiction beset different standard-setting bodies, and these problems shape both the content of regulatory science and the procedures designed to make it authoritative. Second, in order to produce global regulatory science, technical bodies must manage an array of conflicting imperatives - including scientific virtue, due process and the need to recruit adoptees to perpetuate the standard. At different levels of governance, standard drafters struggle to balance loyalties to country, to company or constituency and to the larger project of internationalization. Confronted with these sometimes conflicting pressures, actors across the standards system quite self-consciously maneuver to build or retain authority for their forum through a combination of scientific adjustment and political negotiation. Third, the evidentiary demands of regulatory science in global administrative spaces are deeply affected by 1) a market for standards, in which firms and states can

  14. Facilitating Systemic Research and Learning and the Transition to Agricultural Sustainability

    ERIC Educational Resources Information Center

    Eksvard, Karin

    2010-01-01

    This article focuses on how a facilitated process of triple loop learning can enable transition toward more sustainable forms of farming. The article is a case-based study of Participatory Learning and Action Research with organic tomato growers in Malardalen, Sweden. The importance of negotiating learning and action, capacity building, and…

  15. Social Capital, Organic Agriculture, and Sustainable Livelihood Security: Rethinking Agrarian Change in Mexico

    ERIC Educational Resources Information Center

    Getz, Christy

    2008-01-01

    This paper explores the relevance of extra local market linkages and local-level social capital to sustainable livelihood outcomes in two agrarian communities on Mexico's Baja Peninsula. Contextualized by the specificity of Mexico's transition from state-directed rural development to neoliberally-guided rural development in the 1990s, findings…

  16. REMOTE SENSING, VISUALIZATION AND DECISION SUPPORT FOR WATERSHED MANAGEMENT AND SUSTAINABLE AGRICULTURE

    EPA Science Inventory

    The integration of satellite and airborne remote sensing, scientific visualization and decision support tools is discussed within the context of management techniques for minimizing the non-point source pollution load of inland waterways and the sustainability of food crop produc...

  17. Balancing limiting factors and economic drivers for sustainable midwestern U.S. agricultural residue feedstock supplies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading the soil and other natural resources. This review examine...

  18. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices

    PubMed Central

    Tilman, David

    1999-01-01

    The recent intensification of agriculture, and the prospects of future intensification, will have major detrimental impacts on the nonagricultural terrestrial and aquatic ecosystems of the world. The doubling of agricultural food production during the past 35 years was associated with a 6.87-fold increase in nitrogen fertilization, a 3.48-fold increase in phosphorus fertilization, a 1.68-fold increase in the amount of irrigated cropland, and a 1.1-fold increase in land in cultivation. Based on a simple linear extension of past trends, the anticipated next doubling of global food production would be associated with approximately 3-fold increases in nitrogen and phosphorus fertilization rates, a doubling of the irrigated land area, and an 18% increase in cropland. These projected changes would have dramatic impacts on the diversity, composition, and functioning of the remaining natural ecosystems of the world, and on their ability to provide society with a variety of essential ecosystem services. The largest impacts would be on freshwater and marine ecosystems, which would be greatly eutrophied by high rates of nitrogen and phosphorus release from agricultural fields. Aquatic nutrient eutrophication can lead to loss of biodiversity, outbreaks of nuisance species, shifts in the structure of food chains, and impairment of fisheries. Because of aerial redistribution of various forms of nitrogen, agricultural intensification also would eutrophy many natural terrestrial ecosystems and contribute to atmospheric accumulation of greenhouse gases. These detrimental environmental impacts of agriculture can be minimized only if there is much more efficient use and recycling of nitrogen and phosphorus in agroecosystems. PMID:10339530

  19. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    PubMed

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources.

  20. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    PubMed

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.

  1. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production.

  2. Boundary work for sustainable development: Natural resource management at the Consultative Group on International Agricultural Research (CGIAR).

    PubMed

    Clark, William C; Tomich, Thomas P; van Noordwijk, Meine; Guston, David; Catacutan, Delia; Dickson, Nancy M; McNie, Elizabeth

    2016-04-26

    Previous research on the determinants of effectiveness in knowledge systems seeking to support sustainable development has highlighted the importance of "boundary work" through which research communities organize their relations with new science, other sources of knowledge, and the worlds of action and policymaking. A growing body of scholarship postulates specific attributes of boundary work that promote used and useful research. These propositions, however, are largely based on the experience of a few industrialized countries. We report here on an effort to evaluate their relevance for efforts to harness science in support of sustainability in the developing world. We carried out a multicountry comparative analysis of natural resource management programs conducted under the auspices of the Consultative Group on International Agricultural Research. We discovered six distinctive kinds of boundary work contributing to the successes of those programs-a greater variety than has been documented in previous studies. We argue that these different kinds of boundary work can be understood as a dual response to the different uses for which the results of specific research programs are intended, and the different sources of knowledge drawn on by those programs. We show that these distinctive kinds of boundary work require distinctive strategies to organize them effectively. Especially important are arrangements regarding participation of stakeholders, accountability in governance, and the use of "boundary objects." We conclude that improving the ability of research programs to produce useful knowledge for sustainable development will require both greater and differentiated support for multiple forms of boundary work.

  3. Climate change adaptation options for sustainable management of agriculture in the Eastern Lower Danube Plain, Romania

    NASA Astrophysics Data System (ADS)

    Popovici, Elena-Ana; Sima, Mihaela; Balteanu, Dan; Dragota, Carmen-Sofia; Grigorescu, Ines; Kucsicsa, Gheorghe

    2013-04-01

    The current study was carried out within the FP7 ECLISE project in the Eastern Lower Danube Plain (Bărăgan Plain), one of the major agricultural areas in Romania. In this region, climate change signals are becoming more evident being predominantly characterized by increasing temperatures, decreasing of precipitations and intensification of extreme events in terms of frequency, intensity and duration. Over the past decades, the effects of extreme climatic phenomena on crop production have been ever more severe (very low outputs in the droughty years, significant crop losses during flooding periods, hailstorms, etc.). Concurrently, these effects have been the result of a whole range of complex interactions with other environmental, social, economic and political factors over the post-communist period. Using questionnaires survey for small individual households and large agricultural farms, focus group interviews and direct field observation, this study analyses the farmers' perception in terms of climate change, the impact of climate change on agriculture and how the farmers react and adapt to these changes. The current study have revealed that all farmers believe drought as being by far the most important climatic factor with major impact on agricultural production, followed by acid rains, hail storms and ground frost, facts evidenced also by the climatic diagnosis of the region. The majority of respondents have taken adaptation agricultural measures in response to changes in climate conditions (drought resistant seeds, modern technology to keep the moisture in the soil, etc.), but they consider that a national strategy for mitigating the effects of climate change would be more effective in this respect. Also, in order to correlate the farmers' perception of climate change and climatic factors, the authors used and processed a wide range of meteorological data (daily, monthly and annual from the most representative meteorological stations in the study-area), as

  4. Ditch network sustains functional connectivity and influences patterns of gene flow in an intensive agricultural landscape

    PubMed Central

    Favre-Bac, L; Mony, C; Ernoult, A; Burel, F; Arnaud, J-F

    2016-01-01

    In intensive agricultural landscapes, plant species previously relying on semi-natural habitats may persist as metapopulations within landscape linear elements. Maintenance of populations' connectivity through pollen and seed dispersal is a key factor in species persistence in the face of substantial habitat loss. The goals of this study were to investigate the potential corridor role of ditches and to identify the landscape components that significantly impact patterns of gene flow among remnant populations. Using microsatellite loci, we explored the spatial genetic structure of two hydrochorous wetland plants exhibiting contrasting local abundance and different habitat requirements: the rare and regionally protected Oenanthe aquatica and the more commonly distributed Lycopus europaeus, in an 83 km2 agricultural lowland located in northern France. Both species exhibited a significant spatial genetic structure, along with substantial levels of genetic differentiation, especially for L. europaeus, which also expressed high levels of inbreeding. Isolation-by-distance analysis revealed enhanced gene flow along ditches, indicating their key role in effective seed and pollen dispersal. Our data also suggested that the configuration of the ditch network and the landscape elements significantly affected population genetic structure, with (i) species-specific scale effects on the genetic neighborhood and (ii) detrimental impact of human ditch management on genetic diversity, especially for O. aquatica. Altogether, these findings highlighted the key role of ditches in the maintenance of plant biodiversity in intensive agricultural landscapes with few remnant wetland habitats. PMID:26486611

  5. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  6. Modeling analysis of the benefits of Crassulacean acid metabolism (CAM) for sustainable agriculture in arid regions

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; Vico, G.; Porporato, A. M.

    2012-12-01

    In view of the pressing needs to sustainably manage water and soil resources, especially in arid and semi-arid regions, here we propose a new carbon assimilation model that couples a simple yet mechanistic description of Crassulacean acid metabolism (CAM) photosynthesis to the soil-plant-atmosphere continuum. The model captures the full coupling of the CAM photosynthetic pathway with fluctuations in environmental conditions (cycles of light availability and air humidity, changes in soil moisture as driven by plant transpiration and rainfall occurrence). As such, the model is capable of reproducing the different phases of CAM, including daytime stomatal closure and photosynthesis from malic acid, afternoon stomatal opening for direct carbon assimilation, and nighttime stomatal opening for CO2 uptake and malic acid synthesis. Thanks to its versatility, our model allows us to relate CAM productivity, for both obligate and facultative CAM plants, to various soil moisture conditions including hydroclimatic scenarios of rainfall frequency and intensity as well as different night-time conditions of temperature, wind speed, and humidity. Our analyses show the potential productive benefits of CAM cultivation in dryland environments as feedstock and possible biofuel source, in terms of sustainable water use and economic benefits. In particular, the model is used to explore conditions where CAM plant resiliency to water stress makes these plants a more sustainable alternative to C3 and C4 species for potential deficit irrigation.

  7. Characterisation and change detection of the agricultural terraced landscape of Costa Viola (Calabria, Italy) in view of its sustainable management

    NASA Astrophysics Data System (ADS)

    Modica, Giuseppe; Praticò, Salvatore; Lanucara, Simone; Di Fazio, Salvatore

    2015-04-01

    The research presented in this paper aimed at the dynamic characterisation of the historical terraced landscape of 'Costa Viola', a coastal region in South Italy, in view of its sustainable management. Here the agricultural terraces, used for vineyards, over time have occupied very steep sites and today are recognised as worthy of protection because of their high cultural and scenic value. During the last century, because of the loss of economic competitiveness, the agricultural terraces have undergone progressive abandonment, followed by landscape deterioration and increase of hydrogeologic risk. As a consequence it has recently emerged the need to support the permanence of terraced agriculture through a sensitive management of the area, based on a precise and updated knowledge of the landscape system and its ongoing dynamics of change. To this end the main characteristics of the Costa Viola dry-stone terraces and the Land Use/Land Cover (LU/LC) evolution between 1955 and 2012 were analysed. Taking into consideration the very steep slopes of Costa Viola and the need to analyse with high precision the historical evolution of the terraced landscape, they were implemented investigation methods coupling the use of precision tools with in-situ detailed surveys. A parallel diachronic study was also carried out, covering nearly 60 years and aiming to identify the local geomorphological processes and forms (such as landslides) through stereoscopic analysis of high resolution historic aerial photograms (1955 and 1976) compared to full colour digital orthophotos (1988, 2006, 2008, 2012), direct on-field verification, analysis of cadastral data and pluviometric data series. The geomorphological processes were analysed also in relation with the changes occurred over time in the agricultural terraces and in the urban/rural interface evolution. They were implemented a geographic database based on PostGIS and a Spatial Data Infrastructure (SDI) developed in a GFOSS (Geographic

  8. Implications for sustainability of a changing agricultural mosaic in the Sacramento-San Joaquin Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Lucero, C. E.; Deverel, S. J.; Jacobs, P.; Kelsey, R.

    2015-12-01

    Transformed from the largest wetland system on the west coast of the United States to agriculture, the Sacramento-San Joaquin Delta is an extreme teaching example of anthropogenic threats to sustainability. For over 6,000 years, over 280,000 ha of intertidal freshwater marsh accreted due to seal level rise and sediment deposition. Farming of organic soils since 1850 resulted in land subsidence caused primarily by oxidation. Over 2 billion cubic meters of soil were lost resulting in elevations on Delta islands ranging from -1 to -8 m and increased risk of levee failures and water supply disruption. Alteration of water flows and habitat caused dramatic declines in aquatic species. A cycle in which oxidation of organic soils leads to deepening of drainage ditches to maintain an aerated root zone which in turn results in sustained oxidation and subsidence is perpetuated by the momentum of the status quo despite evidence that agricultural practices are increasingly unsustainable. Flooding of the soils breaks the oxidation/subsidence cycle. We assessed alternate land uses and the carbon market as a potential impetus for change. Using the peer-reviewed and locally calibrated SUBCALC model, we estimated net global warming potential for a range of scenarios for a representative island, from status quo to incorporating significant proportions of subsidence-mitigating land use. We analyzed economic implications by determining profit losses or gains when a simulated GHG offset market is available for wetlands using a regional agricultural production and economic optimization model, We estimated baseline GHG emissions at about 60,000 tons CO2-e per year. In contrast, modeled implementation of rice and wetlands resulted in substantial emissions reductions to the island being a net GHG sink. Subsidence would be arrested or reversed where these land uses are implemented. Results of economic modeling reveal that conversion to wetlands can have significant negative farm financial

  9. Which environmental problems get policy attention? Examining energy and agricultural sector policies in Sweden

    SciTech Connect

    Engstroem, Rebecka Nilsson, Mans Finnveden, Goeran

    2008-05-15

    Not all environmental problems get the same level of policy attention. An interesting question is thus why certain aspects receive attention and others do not. This paper studies the level of policy attention given to different environmental aspects in agriculture and energy policy in Sweden and explores empirically some factors that can explain the level of attention. The first step was to explore the link between environmental issue characteristics and the level of policy attention. The level of policy attention was measured through a content analysis of Swedish government bills. The results from the content analysis are clear and stable over the studied time period. In the agriculture sector biodiversity and toxicity are in focus whereas in the energy sector climate change and resources are given the attention. Besides these aspects, the attention is limited. These results were compared with the results from sector-wide environmental assessments of the same sectors. These assessments were based on hybrid input-output analysis and life cycle assessment methodologies. A main finding from the study is that issue importance is a necessary but not a sufficient condition for policy attention. Other explanations are needed to understand which environmental issues get attention in sectoral policy. Our assessment showed that while the level of knowledge does not provide an explanation, the presence of strong and well-organised stakeholders within the sector, with an interest in having a certain issue on the agenda, might be decisive for issue attention. Path dependency and limited attention capacity are other important factors.

  10. Future state of the climate change, mitigation and development of sustainable agriculture in Bulgaria

    NASA Astrophysics Data System (ADS)

    Kazandjiev, V.; Georgieva, V.; Moteva, M.; Marinova, T.; Dimitrov, P.

    2010-09-01

    The farming is one of the most important branches that bring the increase to the gross internal production in Bulgaria. At the same time, the agriculture is the only branch, as in home, so in world scale in which the made as well direct production spending and investing regenerating (or not) only in the frameworks to one vegetative season. In addition on this, development of the intensive farming without using the most advanced technologies such as irrigation, automation, selection - for obtaining stable cultivars and hybrids, permanent weather monitoring and agroclimatic zoning and integrated and biochemical protection to the cultures and plantations had not possible. Analysis of long-term meteorological data from different regions shows clear tendencies to warming and drying for the period of contemporary climate (1971-2000) as well in Bulgaria. Hydro-meteorological conditions in the country are worsened. The most entire estimate is made from the Intergovernmental Panel for Climate Change (IPCC) 2007. Most of authors proven that the last decades are really warmest for last century, even for the entire period of the most instrumental observations. The causes for global warming was long time debatable, but the last investigations prove it anthropogenetic derive. The main goal of the paper is framing in conditions of the expected climate changes in our country for period 2020-2050-2070 and the most likely impacts on the agriculture with inspection padding to the consequences in them and making physical conditions for development of proof farming in production regions of the country. By the means of the systematized database of meteorological and agrometeorological data which we have at disposition for the period of this survey (1971-2000); Provide assignment of the expected climatic changes according to the scenarios in the centers for observing and investigations of climatic changes in Europe, US., Canada and Australia (ECHAM 4, HadCM 2, CGCM 1, CSIRO-MK2 Bs and

  11. Using Coastal Fog to Support Sustainable Water Use in a California Agricultural System

    NASA Astrophysics Data System (ADS)

    Baguskas, S. A.; Loik, M. E.

    2015-12-01

    Impacts of climate change threaten California farmers in a number of ways, most importantly through a decline in freshwater availability, concurrent with a rise in water demand. The future of California's multibillion-dollar agricultural industry depends on increasing water use efficiency on farms. In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. While the impacts of coastal fog on plant biology have been extensively studied in natural ecosystems, very few studies have evaluated its direct effects on the water and energy budgets of agricultural systems. The objective of this study was to develop a mechanistic understanding of the relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration rates, which has potential to curtail groundwater use based on local cloud meteorology. We established three sites on strawberry farms along a coastal-inland gradient in the Salinas Valley, California. At each site, we installed a passive fog collector and a micrometeorological station to monitor variation in microclimate conditions. Flow meters were installed in drip lines to quantify irrigation amount and timing. To assess plant response to foggy and non-foggy conditions, we collected measurements of photosynthesis and transpiration rates at the leaf and canopy-scale between June-September 2015. We found that canopy-level transpiration rates on foggy days were reduced by half compared to sunny, clear days (1.5 and 3 mmol H2O m-2 s-1, respectively). Whereas the amount of direct fog water inputs to the soil did not differ significantly between foggy and clear days, average photosynthetically active radiation between 0900-1100 hr. was reduced from 1500 to 500 μmol photons m-2 s-1 between these sampling periods. Our results provide convincing

  12. A New Health Care Prevention Agenda: Sustainable Food Procurement and Agricultural Policy.

    PubMed

    Harvie, Jamie; Mikkelsen, Leslie; Shak, Linda

    2009-07-01

    Health care leaders are broadening their awareness to include the need to address the food system as a means to individual, public, and global health, above and beyond basic nutritional factors. Key voices from the health care sector have begun to engage in market transformation and are aggregating to articulate the urgency for engagement in food and agricultural policy. Systemic transformation requires a range of policies that complement one another and address various aspects of the food system. Health care involvement in policy and advocacy is vital to solve the expanding ecological health crises facing our nation and globe and will require an urgency that may be unprecedented.

  13. A New Health Care Prevention Agenda: Sustainable Food Procurement and Agricultural Policy

    PubMed Central

    Harvie, Jamie; Mikkelsen, Leslie; Shak, Linda

    2009-01-01

    Health care leaders are broadening their awareness to include the need to address the food system as a means to individual, public, and global health, above and beyond basic nutritional factors. Key voices from the health care sector have begun to engage in market transformation and are aggregating to articulate the urgency for engagement in food and agricultural policy. Systemic transformation requires a range of policies that complement one another and address various aspects of the food system. Health care involvement in policy and advocacy is vital to solve the expanding ecological health crises facing our nation and globe and will require an urgency that may be unprecedented. PMID:23144678

  14. Implementation of efficient irrigation management for a sustainable agriculture. LIFE+ project IRRIMAN

    NASA Astrophysics Data System (ADS)

    Pérez-Pastor, Alejandro; Garcia-Vila, Margarita; Gamero-Ojeda, Pedro; Ascensión Carmona, M.°; Hernandez, David; José Alarcón, Juan; Nicolás, Emilio; Nortes, Pedro; Aroca, Antonio; María de la Rosa, Jose; Zornoza, Raúl; Faz, Ángel; Molina, Angel; Torres, Roque; Ruiz, Manuel; Calatrava, Javier

    2016-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. But its success greatly depends on the adequate application of the water deficit and requires a continuous and precise control of the plant and soil water status to adjust the water supplies at every crop phenological period. The main objective of this project is to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. With the adoption of this irrigation management we mean to ensure efficient use of water resources, improving quantitative water management, preserving high level of water quality and avoiding misuse and deterioration of water resources. The adoption of efficient irrigation will also lead to increments in water productivity, increments in the potential carbon fixation of the agroecosystem, and decrease energy costs of pressurized irrigation, together with mitigation and adaptation to climate change. The project will achieve the general objective by implication of farmers, irrigation communities, agronomists, industry, consultants, associations and public administration, by increments in social awareness for sustainable irrigation benefits, optimization of irrigation scheduling, improvements in technology, and

  15. A chaotic model of sustaining attention problem in attention deficit disorder

    NASA Astrophysics Data System (ADS)

    Baghdadi, G.; Jafari, S.; Sprott, J. C.; Towhidkhah, F.; Hashemi Golpayegani, M. R.

    2015-01-01

    The problem of keeping an attention level is one of the common symptoms of attention deficit disorder. Dopamine deficiency is introduced as one of the causes of this disorder. Based on some physiological facts about the attention control mechanism and chaos intermittency, a behavioral model is presented in this paper. This model represents the problem of undesired alternation of attention level, and can also suggest different valuable predictions about a possible cause of attention deficit disorder. The proposed model reveals that there is a possible interaction between different neurotransmitters which help the individual to adaptively inhibit the attention switching over time. The result of this study can be used to examine and develop a new practical and more appropriate treatment for the problem of sustaining attention.

  16. Incorporating Sustainability and 21st-Century Problem Solving into Physics Courses

    NASA Astrophysics Data System (ADS)

    Rogers, Michael; Pfaff, Tom; Hamilton, Jason; Erkan, Ali

    2013-09-01

    As educators we are facing an unprecedented challenge to prepare our students not only for traditional careers but also for future careers that don't exist today. Many of these careers will require a firm grounding in disciplines such as physics, along with multidisciplinary, Global, and systems thinking skill sets. Our Multidisciplinary Sustainability Education (MSE) project is addressing this challenge by creating sustainability-themed modules where a variety of courses in a range of disciplines tackle relevant, real-world problems from each discipline's perspective. Each course involved in a module, which addresses an overarching question, has students write technical reports, using their discipline knowledge to address the question, and they are expected to read and synthesize reports from other discipline-based courses. This paper discusses one of our modules, "What Are the Current and Future Impacts of Global Climate Change on Polar Bears?" and how students studying thermal physics can help answer this question.

  17. Is voluntary certification of tropical agricultural commodities achieving sustainability goals for small-scale producers? A review of the evidence

    NASA Astrophysics Data System (ADS)

    DeFries, Ruth S.; Fanzo, Jessica; Mondal, Pinki; Remans, Roseline; Wood, Stephen A.

    2017-03-01

    Over the last several decades, voluntary certification programs have become a key approach to promote sustainable supply chains for agricultural commodities. These programs provide premiums and other benefits to producers for adhering to environmental and labor practices established by the certifying entities. Following the principles of Cochrane Reviews used in health sciences, we assess evidence to evaluate whether voluntary certification of tropical agricultural commodities (bananas, cocoa, coffee, oil palm, and tea) has achieved environmental benefits and improved economic and social outcomes for small-scale producers at the level of the farm household. We reviewed over 2600 papers in the peer-review literature and identified 24 cases of unique combinations of study area, certification program, and commodity in 16 papers that rigorously analyzed differences between treatment (certified households) and control groups (uncertified households) for a wide range of response variables. Based on analysis of 347 response variables reported in these papers, we conclude that certification is associated on average with positive outcomes for 34% of response variables, no significant difference for 58% of variables, and negative outcomes for 8% of variables. No significant differences were observed for different categories of responses (environmental, economic and social) or for different commodities (banana, coffee and tea), except negative outcomes were significantly less for environmental than other outcome categories (p = 0.01). Most cases (20 out of 24) investigated coffee certification and response variables were inconsistent across cases, indicating the paucity of studies to conduct a conclusive meta-analysis. The somewhat positive results indicate that voluntary certification programs can sometimes play a role in meeting sustainable development goals and do not support the view that such programs are merely greenwashing. However, results also indicate that

  18. The sustainability of changes in agricultural technology: The carbon, economic and labour implications of mechanisation and synthetic fertiliser use.

    PubMed

    Gathorne-Hardy, Alfred

    2016-12-01

    New agricultural technologies bring multiple impacts which are hard to predict. Two changes taking place in Indian agriculture are a transition from bullocks to tractors and an associated replacement of manure with synthetic fertilisers. This paper uses primary data to model social, environmental and economic impacts of these transitions in South India. It compares ploughing by bullocks or tractors and the provision of nitrogen from manure or synthetic urea for irrigated rice from the greenhouse gas (GHG), economic and labour perspective. Tractors plough nine times faster than bullocks, use substantially less labour, with no significant difference in GHG emissions. Tractors are twice as costly as bullocks yet remain more popular to hire. The GHG emissions from manure-N paddy are 30 % higher than for urea-N, largely due to the organic matter in manure driving methane emissions. Labour use is significantly higher for manure, and the gender balance is more equal. Manure is substantially more expensive as a source of nutrients compared to synthetic nutrients, yet remains popular when available. This paper demonstrates the need to take a broad approach to analysing the sustainability impacts of new technologies, as trade-offs between different metrics are common.

  19. Enhancing Drought Early Warning System for Sustainable Water Resources and Agricultural Management through Apllication of Space Science - Nigeria in Perspective

    NASA Astrophysics Data System (ADS)

    Okpara, J. N.; Akeh, L. E.; Anuforom, A. C.; Aribo, P. B.; Olayanju, S. O.

    Enhancing Drought Early Warning System for Sustainable Water Resources and Agriculture Management through Application of Space Science - Nigeria in Perspective BY J N Okpara L E Akeh Anuforom P B Aribo and S O Olayanju Directorate of Applied Meteorological Services Nigerian Meteorological Agency NIMET P M B 615 Garki Abuja Nigeria e-mail underline Juddy Okpara yahoo co uk and underline tonycanuforom yahoo com underline Abstract This paper attempts to highlight the importance of drought early warning system in water resources and agricultural management in Nigeria Various studies have shown that the negative impacts of droughts and other forms of extreme weather phenomena can be substantially reduced by providing early warning on any impending weather extremes X-rayed in this study are the various techniques presently used by the Nigerian Meteorological Agency NIMET in generating information for meteorological Early Warning System EWS which are based on models that make use of ground-based raingauge data and sea surface temperatures SST Komuscu standardized precipitation index SPI inclusive These methods are often limited by such factors as network density of stations limited communication infrastructure human inefficiency etc NIMET is therefore embarking on the development of a new Satellite Agrometeorological Information System SAMIS-Nigeria for famine and drought early warning The system combines satellite data with raingauge data to give a range of

  20. Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification.

    PubMed

    Jepson, P C; Guzy, M; Blaustein, K; Sow, M; Sarr, M; Mineau, P; Kegley, S

    2014-04-05

    We outline an approach to pesticide risk assessment that is based upon surveys of pesticide use throughout West Africa. We have developed and used new risk assessment models to provide, to our knowledge, the first detailed, geographically extensive, scientifically based analysis of pesticide risks for this region. Human health risks from dermal exposure to adults and children are severe enough in many crops to require long periods of up to three weeks when entry to fields should be restricted. This is impractical in terms of crop management, and regulatory action is needed to remove these pesticides from the marketplace. We also found widespread risks to terrestrial and aquatic wildlife throughout the region, and if these results were extrapolated to all similar irrigated perimeters in the Senegal and Niger River Basins, they suggest that pesticides could pose a significant threat to regional biodiversity. Our analyses are presented at the regional, national and village levels to promote regulatory advances but also local risk communication and management. Without progress in pesticide risk management, supported by participatory farmer education, West African agriculture provides a weak context for the sustainable intensification of agricultural production or for the adoption of new crop technologies.

  1. Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification

    PubMed Central

    Jepson, P. C.; Guzy, M.; Blaustein, K.; Sow, M.; Sarr, M.; Mineau, P.; Kegley, S.

    2014-01-01

    We outline an approach to pesticide risk assessment that is based upon surveys of pesticide use throughout West Africa. We have developed and used new risk assessment models to provide, to our knowledge, the first detailed, geographically extensive, scientifically based analysis of pesticide risks for this region. Human health risks from dermal exposure to adults and children are severe enough in many crops to require long periods of up to three weeks when entry to fields should be restricted. This is impractical in terms of crop management, and regulatory action is needed to remove these pesticides from the marketplace. We also found widespread risks to terrestrial and aquatic wildlife throughout the region, and if these results were extrapolated to all similar irrigated perimeters in the Senegal and Niger River Basins, they suggest that pesticides could pose a significant threat to regional biodiversity. Our analyses are presented at the regional, national and village levels to promote regulatory advances but also local risk communication and management. Without progress in pesticide risk management, supported by participatory farmer education, West African agriculture provides a weak context for the sustainable intensification of agricultural production or for the adoption of new crop technologies. PMID:24535399

  2. The role of trees in agroecology and sustainable agriculture in the tropics.

    PubMed

    Leakey, Roger R B

    2014-01-01

    Shifting agriculture in the tropics has been replaced by sedentary smallholder farming on a few hectares of degraded land. To address low yields and low income both, the soil fertility, the agroecosystem functions, and the source of income can be restored by diversification with nitrogen-fixing trees and the cultivation of indigenous tree species that produce nutritious and marketable products. Biodiversity conservation studies indicate that mature cash crop systems, such as cacao and coffee with shade trees, provide wildlife habitat that supports natural predators, which, in turn, reduce the numbers of herbivores and pathogens. This review offers suggestions on how to examine these agroecological processes in more detail for the most effective rehabilitation of degraded land. Evidence from agroforestry indicates that in this way, productive and environmentally friendly farming systems that provide food and nutritional security, as well as poverty alleviation, can be achieved in harmony with wildlife.

  3. Alternative stable states and the sustainability of forests, grasslands, and agriculture

    PubMed Central

    Henderson, Kirsten A.; Bauch, Chris T.; Anand, Madhur

    2016-01-01

    Endangered forest–grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human–environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations—especially for forests—due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for human–environment mosaic ecosystems. PMID:27956605

  4. Alternative stable states and the sustainability of forests, grasslands, and agriculture.

    PubMed

    Henderson, Kirsten A; Bauch, Chris T; Anand, Madhur

    2016-12-20

    Endangered forest-grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human-environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations-especially for forests-due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for human-environment mosaic ecosystems.

  5. A combined remote sensing and modeling based approach to identify sustainable pathways for urban and peri-urban agriculture in China

    NASA Astrophysics Data System (ADS)

    Wattenbach, M.; Delgado, J. M.; Roessner, S.; Bochow, M.; Güntner, A.; Kropp, J.; Cantu Ros, A. G.; Hattermann, F.; Kolbe, T.; Sodoudi, S.; Cubasch, U. Ulrich; Zeitz, J.; Ross, L.; Böckel, K.; Fang, C.; Bo, L.; Pan, G.

    2012-04-01

    As the world's biggest economy, China is becoming the biggest consumer of resources globally. Given this trend, the over-proportional fast increase in urbanization presents China with fundamental problems. Among the most urgent ones is the increasing loss of agricultural land as urbanization takes place in the most productive regions along the coast. The latter is being responsible for a shift in agriculture production towards climatically less favorable areas. At the same time, the loss of green areas in and around growing cities is increasing the effect of the urban heat island. The perception of the potential risks related to this phenomenon, in the context of climate change, has led the Shanghai city administration to increase its urban-greening efforts, expanding the per capita area of green from 1m2 in 1990 to 12.5m2 in 2008. In this context, this paper aims at identifying the influence of urban and peri-urban agriculture (UPA) on the sustainability of the urban regions of Shanghai and Nanjing. In particular, it focuses on the effects of UPA on the greenhouse gas (GHG) emissions, soil nutrients and water balances, local climate and the structure and functions of the urbanized areas. We propose an interdisciplinary framework combining remote sensing, model simulations and GHG field observations and targeted at identifying "win-win" strategies for sustainable planning pathways showing high potentials for UPA. The framework is based on spatial scenario modeling, automatic classification of urban structure types and on a prototype of a high-quality spatial database consisting of a 3D city model. Dynamic boundary conditions for climate and urban development are provided by state of the art models. These approaches meet the needs of stakeholders and planners in China. A special emphasis is put on interdependencies between small holder farming in the urban and peri-urban zone and climate change adaptation and mitigation strategies focusing on improved management of

  6. Soybean (Glycine max L.) N-Turnover Effects on Sustainable Agriculture

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    A lysimeter N-experiment was carried out over a period of three years (1986-1988) in Hungary on a slightly calcareous Ramann sandy-loam brown forest soil. In a trial without seed inoculation, the effect of N-fertiliser was studied on yield and N-uptake and the mineral (NO3+ NO2 ) N-content of 0-90 cm soil-layer of soybean. On the given soil with regulated optimal water supply the highest quantity of 200 kg/ha N-dose seemed to give alredy over-fertilization and lowered in its tendency the grain and pod yield. About one third of the dry matter production without roots and foliage at harvest was given by the grain yield, which ranged between 1.8-5.4 t/ha, depending on the treatment applied and on years. The N-content was accumulated chiefly in the grain, its concentration exceeded about 7-10 times the N-content of roots and stalk. The half of the total N-uptake, on an average 102-256 kg/ha, was built in the grain. The highest N-yield = 631 kg/ha was achieved in 1988 by 150 kg/ha N-fertilization per year. In the first years the N-uptake of the plants agreed with the total supply (mineral reserve of soil + given in the form of fertilizer + precipitation N), while in the 3th year a double amount was recorded. The mineral reserve of N in the soil did not decrease at the end of the trial. Presumably, the soil of soybean in monoculture lost gradually its "Rhisobium japonicum sterility", the biological N-fixation increased with the time. In the first years without seed inoculation however, soybean may be in need of N-fertilization. Key Words: soybean, nitrogen, sustainable agriculture Introduction Soya is an important crop and is now grown all over the world (Márton et al. 1998, Márton et al. 1998, Kádár and Márton 1999, Márton and Kádár 1999, Márton and Kádár 1998). This crop originated in the Far East and has been grown in China for more than four thousand years. It has for long been regarded as one of the five sacred grains with rice, wheat, barley and millet

  7. Establishing sustainable GHG inventory systems in African countries for Agriculture and Land Use, Land-use Change and Forestry (LULUCF)

    NASA Astrophysics Data System (ADS)

    Wirth, T. C.; Troxler, T.

    2015-12-01

    As signatories to the United Nations Framework Convention on Climate Change (UNFCCC), developing countries are required to produce greenhouse gas (GHG) inventories every two years. For many developing countries, including many of those in Africa, this is a significant challenge as it requires establishing a robust and sustainable GHG inventory system. In order to help support these efforts, the U.S. Environmental Protection Agency (EPA) has worked in collaboration with the UNFCCC to assist African countries in establishing sustainable GHG inventory systems and generating high-quality inventories on a regular basis. The sectors we have focused on for these GHG inventory capacity building efforts in Africa are Agriculture and Land Use, Land-use Change and Forestry (LULUCF) as these tend to represent a significant portion of their GHG emissions profile and the data requirements and methodologies are often more complex than for other sectors. To support these efforts, the U.S. EPA has provided technical assistance in understanding the methods in the IPCC Guidelines, assembling activity data and emission factors, including developing land-use maps for representing a country's land base, and implementing the calculations. EPA has also supported development of various tools such as a Template Workbook that helps the country build the institutional arrangement and strong documentation that are necessary for generating GHG inventories on a regular basis, as well as performing other procedures as identified by IPCC Good Practice Guidance such as quality assurance/quality control, key category analysis and archiving. Another tool used in these projects and helps country's implement the methods from the IPCC Guidelines for the Agriculture and LULUCF sectors is the Agriculture and Land Use (ALU) tool. This tool helps countries assemble the activity data and emission factors, including supporting the import of GIS maps, and applying the equations from the IPPC Guidelines to

  8. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security.

    PubMed

    McDonald, Bruce A; Stukenbrock, Eva H

    2016-12-05

    Agricultural ecosystems are composed of genetically depauperate populations of crop plants grown at a high density and over large spatial scales, with the regional composition of crop species changing little from year to year. These environments are highly conducive for the emergence and dissemination of pathogens. The uniform host populations facilitate the specialization of pathogens to particular crop cultivars and allow the build-up of large population sizes. Population genetic and genomic studies have shed light on the evolutionary mechanisms underlying speciation processes, adaptive evolution and long-distance dispersal of highly damaging pathogens in agro-ecosystems. These studies document the speed with which pathogens evolve to overcome crop resistance genes and pesticides. They also show that crop pathogens can be disseminated very quickly across and among continents through human activities. In this review, we discuss how the peculiar architecture of agro-ecosystems facilitates pathogen emergence, evolution and dispersal. We present four example pathosystems that illustrate both pathogen specialization and pathogen speciation, including different time frames for emergence and different mechanisms underlying the emergence process. Lastly, we argue for a re-design of agro-ecosystems that embraces the concept of dynamic diversity to improve their resilience to pathogens. This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.

  9. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture

    PubMed Central

    Masclaux-Daubresse, Céline; Daniel-Vedele, Françoise; Dechorgnat, Julie; Chardon, Fabien; Gaufichon, Laure; Suzuki, Akira

    2010-01-01

    Background Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. Scope An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. Conclusions This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising. PMID:20299346

  10. Polymeric and Solid Lipid Nanoparticles for Sustained Release of Carbendazim and Tebuconazole in Agricultural Applications

    PubMed Central

    Campos, Estefânia Vangelie Ramos; Oliveira, Jhones Luiz de; da Silva, Camila Morais Gonçalves; Pascoli, Mônica; Pasquoto, Tatiane; Lima, Renata; Abhilash, P. C.; Fernandes Fraceto, Leonardo

    2015-01-01

    Carbendazim (MBC) (methyl-2-benzimidazole carbamate) and tebuconazole (TBZ) ((RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol) are widely used in agriculture for the prevention and control of fungal diseases. Solid lipid nanoparticles and polymeric nanocapsules are carrier systems that offer advantages including changes in the release profiles of bioactive compounds and their transfer to the site of action, reduced losses due to leaching or degradation, and decreased toxicity in the environment and humans. The objective of this study was to prepare these two types of nanoparticle as carrier systems for a combination of TBZ and MBC, and then investigate the release profiles of the fungicides as well as the stabilities and cytotoxicities of the formulations. Both nanoparticle systems presented high association efficiency (>99%), indicating good interaction between the fungicides and the nanoparticles. The release profiles of MBC and TBZ were modified when the compounds were loaded in the nanoparticles, and cytotoxicity assays showed that encapsulation of the fungicides decreased their toxicity. These fungicide systems offer new options for the treatment and prevention of fungal diseases in plants. PMID:26346969

  11. Polymeric and Solid Lipid Nanoparticles for Sustained Release of Carbendazim and Tebuconazole in Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Campos, Estefânia Vangelie Ramos; Oliveira, Jhones Luiz De; da Silva, Camila Morais Gonçalves; Pascoli, Mônica; Pasquoto, Tatiane; Lima, Renata; Abhilash, P. C.; Fernandes Fraceto, Leonardo

    2015-09-01

    Carbendazim (MBC) (methyl-2-benzimidazole carbamate) and tebuconazole (TBZ) ((RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol) are widely used in agriculture for the prevention and control of fungal diseases. Solid lipid nanoparticles and polymeric nanocapsules are carrier systems that offer advantages including changes in the release profiles of bioactive compounds and their transfer to the site of action, reduced losses due to leaching or degradation, and decreased toxicity in the environment and humans. The objective of this study was to prepare these two types of nanoparticle as carrier systems for a combination of TBZ and MBC, and then investigate the release profiles of the fungicides as well as the stabilities and cytotoxicities of the formulations. Both nanoparticle systems presented high association efficiency (>99%), indicating good interaction between the fungicides and the nanoparticles. The release profiles of MBC and TBZ were modified when the compounds were loaded in the nanoparticles, and cytotoxicity assays showed that encapsulation of the fungicides decreased their toxicity. These fungicide systems offer new options for the treatment and prevention of fungal diseases in plants.

  12. Polymeric and Solid Lipid Nanoparticles for Sustained Release of Carbendazim and Tebuconazole in Agricultural Applications.

    PubMed

    Campos, Estefânia Vangelie Ramos; de Oliveira, Jhones Luiz; da Silva, Camila Morais Gonçalves; Pascoli, Mônica; Pasquoto, Tatiane; Lima, Renata; Abhilash, P C; Fraceto, Leonardo Fernandes

    2015-09-08

    Carbendazim (MBC) (methyl-2-benzimidazole carbamate) and tebuconazole (TBZ) ((RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol) are widely used in agriculture for the prevention and control of fungal diseases. Solid lipid nanoparticles and polymeric nanocapsules are carrier systems that offer advantages including changes in the release profiles of bioactive compounds and their transfer to the site of action, reduced losses due to leaching or degradation, and decreased toxicity in the environment and humans. The objective of this study was to prepare these two types of nanoparticle as carrier systems for a combination of TBZ and MBC, and then investigate the release profiles of the fungicides as well as the stabilities and cytotoxicities of the formulations. Both nanoparticle systems presented high association efficiency (>99%), indicating good interaction between the fungicides and the nanoparticles. The release profiles of MBC and TBZ were modified when the compounds were loaded in the nanoparticles, and cytotoxicity assays showed that encapsulation of the fungicides decreased their toxicity. These fungicide systems offer new options for the treatment and prevention of fungal diseases in plants.

  13. Ecosystem Services Mapping for Sustainable Agricultural Water Management in California's Central Valley.

    PubMed

    Matios, Edward; Burney, Jennifer

    2017-02-24

    Accurate information on agricultural water needs and withdrawals at appropriate spatial and temporal scales remains a key limitation to joint water and land management decision-making. We use InVEST ecosystem service mapping to estimate water yield and water consumption as functions of land use in Fresno County, a key farming region in California's Central Valley. Our calculations show that in recent years (2010-2015), the total annual water yield for the county has varied dramatically from ∼0.97 to 5.37 km(3) (all ±17%; 1 MAF ≈ 1.233 km(3)), while total annual water consumption has changed over a smaller range, from ∼3.37 to ∼3.98 km(3) (±20%). Almost all of the county's water consumption (∼96% of total use) takes place in Fresno's croplands, with discrepancy between local annual surface water yields and crop needs met by surface water allocations from outside the county and, to a much greater extent, private groundwater irrigation. Our estimates thus bound the amount of groundwater needed to supplement consumption each year (∼1.76 km(3) on average). These results, combined with trends away from field crops and toward orchards and vineyards, suggest that Fresno's land and water management have become increasingly disconnected in recent years, with the harvested area being less available as an adaptive margin to hydrological stress.

  14. Sustainable conversion of agriculture wastes into activated carbons: energy balance and arsenic removal from water.

    PubMed

    Dieme, M M; Villot, A; Gerente, C; Andres, Y; Diop, S N; Diawara, C K

    2017-02-01

    The aims of this study are to investigate the production of activated carbons (AC) from Senegal agricultural wastes such as cashew shells, millet stalks and rice husks and to implement them in adsorption processes devoted to arsenic (V) removal. AC were produced by a direct physical activation with water steam without other chemicals. This production of AC has also led to co-products (gas and bio-oil) which have been characterized in terms of physical, chemical and thermodynamical properties for energy recovery. Considering the arsenic adsorption results and the energy balance for the three studied biomasses, the first results have shown that the millet stalks seem to be more interesting for arsenate removal from natural water and an energy recovery with a GEEelec of 18.9%. Cashew shells, which have shown the best energy recovery (34.3%), are not suitable for arsenate removal. This global approach is original and contributes to a recycling of biowastes with a joint recovery of energy and material.

  15. Copper oxide nanoparticle foliar uptake, phytotoxicity and consequences for sustainable urban agriculture.

    PubMed

    Xiong, Tiantian; Dumat, Camille; Dappe, Vincent; Vezin, Hervé; Schreck, Eva; Shahid, Muhammad; Pierart, Antoine; Sobanska, Sophie

    2017-04-06

    Throughout the world, urban agriculture supplies fresh local vegetables to city populations. However, the increasing anthropogenic uses of metal containing nanoparticles (NPs) such as CuO-NPs in urban areas may contaminate vegetables through foliar uptake. This study focused on the CuO-NPs transfer processes in leafy edible vegetables (i.e. lettuce and cabbage) to assess their potential phytotoxicity. Vegetables were exposed via leaves for 5, 10 or 15 days to various concentrations of CuO-NPs (0, 10 or 250 mg per plant). Biomass and gas exchange measurements were determined in relation to the Cu uptake rate, localization and Cu speciation within the plant tissues. High foliar Cu uptake occurred after 15 days of exposure for lettuce (3773 mg kg(-1) DW) and cabbage (4448 mg kg-1 DW), along with: (i) decreased plant weight, net photosynthesis and water content and (ii) necrotic Cu-rich areas near deformed stomata containing CuO-NPs observed by SEM-EDX. Analysis of the CuO-NPs transfer rate (7.8-242 µg day(-1)), Cu translocation from leaves to roots and Cu speciation biotransformation in leaf tissues using EPR, suggests the involvement of plant Cu regulation processes. Finally, a potential health risk associated with consumption of vegetables contaminated with CuO-NPs was highlighted.

  16. 4-Hydroxyphenylpyruvate dioxygenase inhibitors in combination with safeners: solutions for modern and sustainable agriculture.

    PubMed

    Ahrens, Hartmut; Lange, Gudrun; Müller, Thomas; Rosinger, Chris; Willms, Lothar; van Almsick, Andreas

    2013-09-02

    Inhibitors of 4-hydroxyphenylpyruvate dioxygenase (HPPD) prevent plant carotenoid pigment formation, which in turn leads to chlorophyll degradation. This "bleaching" herbicide mode of action provides weed-control products for various crops, such as rice, corn, and cereals. Combinations with suitable safeners allow the full exploitation of the potential of this compound class to selectively control major weed problems, including rapidly increasing cases of resistance against other important herbicide classes.

  17. Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa

    PubMed Central

    Pretty, Jules; Pervez Bharucha, Zareen

    2015-01-01

    Integrated Pest Management (IPM) is a leading complement and alternative to synthetic pesticides and a form of sustainable intensification with particular importance for tropical smallholders. Global pesticide use has grown over the past 20 years to 3.5 billion kg/year, amounting to a global market worth $45 billion. The external costs of pesticides are $4–$19 (€3–15) per kg of active ingredient applied, suggesting that IPM approaches that result in lower pesticide use will benefit, not only farmers, but also wider environments and human health. Evidence for IPM’s impacts on pesticide use and yields remains patchy. We contribute an evaluation using data from 85 IPM projects from 24 countries of Asia and Africa implemented over the past twenty years. Analysing outcomes on productivity and reliance on pesticides, we find a mean yield increase across projects and crops of 40.9% (SD 72.3), combined with a decline in pesticide use to 30.7% (SD 34.9) compared with baseline. A total of 35 of 115 (30%) crop combinations resulted in a transition to zero pesticide use. We assess successes in four types of IPM projects, and find that at least 50% of pesticide use is not needed in most agroecosystems. Nonetheless, policy support for IPM is relatively rare, counter-interventions from pesticide industry common, and the IPM challenge never done as pests, diseases and weeds evolve and move. PMID:26463073

  18. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production.

    PubMed

    Wargent, Jason J; Jordan, Brian R

    2013-03-01

    Largely because of concerns regarding global climate change, there is a burgeoning interest in the application of fundamental scientific knowledge in order to better exploit environmental cues in the achievement of desirable endpoints in crop production. Ultraviolet (UV) radiation is an energetic driver of a diverse range of plant responses and, despite historical concerns regarding the damaging consequences of UV-B radiation for global plant productivity as related to stratospheric ozone depletion, current developments representative of a range of organizational scales suggest that key plant responses to UV-B radiation may be exploitable in the context of a sustainable contribution towards the strengthening of global crop production, including alterations in secondary metabolism, enhanced photoprotection, up-regulation of the antioxidative response and modified resistance to pest and disease attack. Here, we discuss the prospect of this paradigm shift in photobiology, and consider the linkages between fundamental plant biology and crop-level outcomes that can be applied to the plant UV-B response, in addition to the consequences for related biota and many other facets of agro-ecosystem processes.

  19. Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa.

    PubMed

    Pretty, Jules; Bharucha, Zareen Pervez

    2015-03-05

    Integrated Pest Management (IPM) is a leading complement and alternative to synthetic pesticides and a form of sustainable intensification with particular importance for tropical smallholders. Global pesticide use has grown over the past 20 years to 3.5 billion kg/year, amounting to a global market worth $45 billion. The external costs of pesticides are $4-$19 (€3-15) per kg of active ingredient applied, suggesting that IPM approaches that result in lower pesticide use will benefit, not only farmers, but also wider environments and human health. Evidence for IPM's impacts on pesticide use and yields remains patchy. We contribute an evaluation using data from 85 IPM projects from 24 countries of Asia and Africa implemented over the past twenty years. Analysing outcomes on productivity and reliance on pesticides, we find a mean yield increase across projects and crops of 40.9% (SD 72.3), combined with a decline in pesticide use to 30.7% (SD 34.9) compared with baseline. A total of 35 of 115 (30%) crop combinations resulted in a transition to zero pesticide use. We assess successes in four types of IPM projects, and find that at least 50% of pesticide use is not needed in most agroecosystems. Nonetheless, policy support for IPM is relatively rare, counter-interventions from pesticide industry common, and the IPM challenge never done as pests, diseases and weeds evolve and move.

  20. A bio-economic analysis of a sustainable agricultural transition using green biorefinery.

    PubMed

    Cong, Rong-Gang; Termansen, Mette

    2016-11-15

    Traditional pig production often relies on cereal-based feed, which has adverse environmental effects, e.g. nitrogen leaching and greenhouse gas (GHG) emissions. Alternative production systems are therefore sought to improve the sustainability of pig production. A promising alternative is to use proteinaceous feed from grass, produced in a green bio-refinery (GBR), to substitute part of the cereals in the feed. Cultivation of grass on arable land can reduce nitrogen leaching and pesticide application, and increase carbon storage. The GBR using grass as feedstock also produces valuable byproducts, e.g. fibre and biogas. In this study we combine a life-cycle analysis (LCA) and a cost-benefit analysis to compare the economic and environmental effects of producing the pig feed to produce 1ton of pork using two feeding systems. We apply this approach to the intensive Danish pork production as a case study. The results show that compared with traditional cereal-based feeding system for producing a ton of pork, using proteinaceous concentrate from small-scale GBR will (1) decrease the average feed cost by 5.01%; (2) produce a profit of 96€ before tax in the GBR; and (3) decrease the nitrogen leaching (NO3-N) by 28.2%. However, in most of the scenarios (except for G2), the nitrogen emissions into the air (N2O-N) will also increase because of the increased N fertilizer application compared to a cereal-based system. In most of the scenarios (except for S1 and G1), the energy and land use will also be saved. However, some important factors, e.g. the soil characteristics, pressed juice fraction in fresh biomass and scale of GBR, could subvert the conclusion about energy and land use saving in the alternative feeding system.

  1. Circles of live buffer strips in a center pivot to improve multiple ecosystem services and sustainability of irrigated agriculture in the southern great plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declining Ogallala Aquifer has threatened sustainability of highly productive irrigated agriculture in the region. The region, known for the dust bowl of thirties, is scared of its return. Lower well outputs and increasing pumping costs have compelled farmers to adapt alternative conservation strate...

  2. Recycling biosolids and lake-dredged materials to pasture-based animal agriculture: Alternative nutrient sources for forage productivity and sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic sewage sludge or biosolids and lake-dredged materials are examples of materials that can be used to cut fertilizer costs in pasture-based animal agriculture. Sustainable biosolids and lake-dredged materials management is based upon controlling and influencing the quantity, quality and chara...

  3. The Use of the Persian Translation of the Learning Transfer System Inventory in the Context of Agricultural Sustainability Learning in Iran

    ERIC Educational Resources Information Center

    Zamani, Naser; Ataei, Pouria; Bates, Reid

    2016-01-01

    The Learning Transfer System Inventory considers 16 factors likely to influence the transfer of training to the workplace. This study uses the Persian translation of the inventory and applies it to agricultural sustainability learning in Iran. The aim is to examine the internal structure and predictive ability of the inventory as translated into…

  4. Environmental problem solving in coastal ecosystems: A paradigm shift to sustainability

    NASA Astrophysics Data System (ADS)

    Dennison, William C.

    2008-04-01

    The human ecological footprint now extends to the entire globe, and human impacts are the dominant feature of many ecosystems, resulting in our current era being coined the 'anthropocene'. This is particularly apparent in coastal ecosystems as human populations are increasing rapidly in coastal cities and the ecosystem services in these areas are rapidly being compromised. Science has historically progressed as a series of paradigm shifts and this paper reviews this history of paradigm shifts and makes the case that the next major paradigm shift will be directed at sustainability, resulting in a shift in scientific focus on solving rather than just studying our current environmental problems. Traditionally, science has been extremely effective at data acquisition and then successively less effective at translating this into information, knowledge and finally environmental problem solving. The currently required paradigm shift is to focus on environmental problem solving, filling gaps in knowledge, information and data only as required to solve a particular problem. A key element in turning this process around is better science communication between scientists, key stakeholders and the community. This will require more 'science communicators' who can use credibility, tenacity, creativity and virtue to effect solutions.

  5. Potentials and problems of sustainable irrigation with water high in salts

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon

    2015-04-01

    Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of climate, soil, and very critically, of crop sensitivity and the actual salinity of the irrigation water. The more sensitive the crop and more saline the water, the higher the agronomic cost and the greater the quantitative need for leaching. Israel is a forerunner in large-scale utilization of poor quality water for irrigation and can be used as a case study looking at long term repercussions of policy alternatively encouraging irrigation with recycled water or brackish groundwater. In cases studied in desert conditions of Israel, as much of half of the water applied to crops including bell peppers in greenhouses and date palms is actually used to leach salts from the root zone. The excess water used to leach salts and maintain agronomic and economic success when irrigating with water containing salts can become an environmental hazard, especially in dry areas where natural drainage is non-existent. The leachate often contains not only salts but also agrochemicals including nutrients, and natural contaminants can be picked up and transported as well. This leachate passes beyond the root zone and eventually reaches ground or surface water resources. This, together with evidence of ongoing increases in sodium content of fresh produce and increased SAR levels of soils, suggest that the current policy and practice in Israel of utilization of high amounts of low quality irrigation water is inherently non- sustainable. Current

  6. Paper versus plastic, water versus carbon and sustainable agriculture in the US

    NASA Astrophysics Data System (ADS)

    Bowling, L. C.

    2011-12-01

    It is increasingly recognized that food and energy security are inextricably linked to climate and climate change, resulting in the so-called climate, energy, food nexus, with the water cycle at its hub. The ability to provide sufficient and consistent energy and food for this generation, while not depleting soil, climate and water resources for future generations involves interconnected feedbacks along the paths of this wheel. In the US corn belt, for example, agricultural water management in the form of subsurface drainage lowers the regional water table to enhance crop production, while at the same time providing a conduit for the more efficient export of nitrate-nitrogen to the Gulf of Mexico and increasing rates of decomposition and subsidence in organic-rich soils. The use of control structures to regulate drainage water has the potential to reduce nitrate and carbon dioxide losses, while at the same time increasing the emissions of other greenhouse gases. Increased biofuels production offers the potential to increase domestic energy security, but at the cost of increased water demand and threats to food security. Just as budding US consumer environmentalists of the last decade struggled with the question of paper versus plastic for bagging their groceries, today's informed consumers are being asked to tacitly choose between water and carbon. The local foods movement encourages consumption of locally-produced foods as a means of reducing carbon emissions associated with food transportation, among other perceived benefits. At the same time, the concept of virtual water trade recognizes that importing the water embedded in production in the form of food can balance a local water deficit. Taking into account the virtual water of food production and carbon emissions of food transportation, the spatial arrangement of the current US crop portfolio minimizes neither water nor carbon footprints. Changes in crop distribution result in trade-offs between the per capita

  7. Water quality assessment for sustainable agriculture in the Wet Tropics--a community-assisted approach.

    PubMed

    Faithful, John; Finlayson, Wendy

    2005-01-01

    A number of studies in north Queensland over the past two decades have concluded that large amounts of nutrients and sediments are exported from agricultural watersheds, particularly during wet season rainfall events. With the co-operation of a number of growers, runoff from Queensland Wet Tropics banana and cane farm paddocks in two distinct tropical river catchments was examined to provide an estimate of nutrient and sediment concentrations and export, with comparison to water quality of flow through a small urban lakes system. Median total nitrogen concentrations in cane drainage runoff (3110 microg N/L) were higher than for banana paddock drainage (2580 microg N/L), although the maximum concentration was recorded from a banana paddock (20,900 microg N/L). Nitrogen losses during post-event drainage flow were supplemented by high proportions of NO(X) (nitrate + nitrite) sourced from groundwater inputs. Banana paddocks had the highest maximum and median total phosphorus and TSS concentrations (5120 and 286 microg P/L, and 7250 and 75 mg/L respectively) compared to the cane farms (1430 and 50 microg P/L, and 1840 and 14 mg/L respectively). The higher phosphorus and TSS concentrations in the banana runoff were attributed to higher paddock slopes and a greater proportion of exposed ground surface during the wet season. Highest nutrient and TSS concentrations corresponded with samples collected near the peak discharge periods; however, the rising stage of the drainage flows, where the highest nutrient and TSS concentrations are often reported, were difficult to target because of the manual sampling strategy used. This study shows that high concentrations of nutrients and TSS occur in the runoff from cane and banana paddocks. Median total nitrogen, total phosphorus and TSS concentrations in flow through the urban lakes were 369 microg N/L, 16 microg P/L and 11 mg/L, respectively. Flux estimates of 9.2 kg N, 0.8 kg P and 126 kg TSS/ha were determined for drainage runoff

  8. Simulating Sustainable P Management Practices in Tile-Drained Landscapes of Central Ohio Using the Agricultural Policy Environmental Extender (APEX)

    NASA Astrophysics Data System (ADS)

    Ford, W. I., III; King, K.; Williams, M.

    2014-12-01

    Despite extensive application of conservation practices to minimize sediment P delivery to streams, hypoxic conditions and harmful algal blooms persist in receiving water bodies. Tile-drainage networks are a focal point for reducing soluble P in the food-producing Midwestern United States in that they promote higher connectivity between upland soils and stream channels which decreases soil contact time, and biogeochemical alterations. A critical next step to reduce the environmental impact and maintain sustainable agriculture is to implement best management practices (BMPs) under a holistic framework that considers adverse effects to water resources and crop production, while maintaining economic feasibility. The objective of this study was to apply a robust numerical model, the Agricultural Policy Environmental Extender (APEX), in a tile-drained landscape in Central Ohio in order to evaluate the effectiveness of a suite of BMPs on soluble and particulate P delivery to stream channels. The model was applied and evaluated at two adjacent edge-of-field sites with similar soil, topographic and management characteristics (except for tillage and tile installation on the south field in 2012, preceded by more than 20 years of no-till operations). Three years of daily discharge, total suspended solids, soluble P, soluble N (NO3 and NH4), total P, total N, and crop yields were utilized to verify the model performance. Prevalent BMPs simulated within the modeling framework included drainage water management, tillage and crop rotations, the 4Rs framework (right fertilizer source, rate, time, and placement), and bioreactors. Results of the study quantify the ability of the numerical model to simulate hydrology and P transport for surface runoff and subsurface tile drainage and highlight modifications that improve model performance. Further, results highlight BMPs that effectively reduce P loads to streams while maintaining crop yields, which can later be used to inform BMPs

  9. Women Farmers' Perceptions of the Economic Problems Influencing Their Productivity in Agricultural Systems: Meme Division of the Southwest Province, Cameroon.

    ERIC Educational Resources Information Center

    Endeley, Joyce B.

    Women farmers produce about 60% of the food in Cameroon, but face more problems and constraints than men in performing their agricultural activities. Cash crop farmers (mostly men) are the targeted beneficiaries of government and international aids, and have better access to extension services, loans, subsidized production input (herbicides,…

  10. Impact of conservation agriculture on harnessing sustainability and building resilience against land degradation in the northern Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Araya, Tesfay; Cornelis, Wim M.; Govaerts, Bram; Bauer, Hans; Deckers, Jozef; Nyssen, Jan

    2013-04-01

    compared to CT, specifically at 0-10 cm depth. Aggregate instability index, crack size at harvest, relative water capacity and plastic limit were significantly larger in CT compared to CA treatments. Adoption of improved local practices of DER+ and TER+ planting systems that employ conservation agriculture principles can reduce runoff, soil loss and improve crop yield and soil quality and thus, sustainability in Vertisols. Keywords: Soil resilience, Vertisol, conservation agriculture, field conservation practices, soil quality

  11. "Sustainability On Earth" WebQuests: Do They Qualify as Problem-Based Learning Activities?

    NASA Astrophysics Data System (ADS)

    Leite, Laurinda; Dourado, Luís; Morgado, Sofia

    2015-02-01

    Information and communication technologies (ICT), namely the Internet, can play a valuable educational role in several school subjects, including science education. The same applies to problem-based learning (PBL), that is, a student-centered active learning methodology that can prepare students for lifelong learning. WebQuests (WQs) combine PBL and Internet use, and they can reduce the probability of having students surfing the Internet without any clear purpose. The objective of this paper is to investigate to what extent WQs available from Portuguese schools' and universities' websites, focusing on the "Sustainability on Earth" eighth-grade school science theme, are consistent with a PBL perspective. Results from content analysis of 92 WQs indicate that the WQs selected for this paper are rarely consistent with PBL requirements. Teachers should be both aware of this issue and ready to improve the WQs available before using them in their science classes so that greater educational advantage can be generated from this powerful tool.

  12. The Problem of Agricultural and Industrial Education for African Americans: A Historical Inquiry

    ERIC Educational Resources Information Center

    Croom, Dan B.; Alston, Antoine

    2009-01-01

    The model of agricultural and industrial education for African Americans in the United States was created by Samuel Chapman Armstrong, founder of Hampton Normal and Agricultural Institute. Armstrong developed a paternal approach to educating African Americans and developed the Hampton Institute curriculum with moral education as its base. Booker…

  13. Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: towards higher catalytic activities empowering sustainable agriculture.

    PubMed

    Kumari, Indu; Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-06-01

    Trichoderma spp. are well-known bioagents for the plant growth promotion and pathogen suppression. The beneficial activities of the fungus Trichoderma spp. are attributed to their ability to produce and secrete certain secondary metabolites such as trichodermin that belongs to trichothecene family of molecules. The initial steps of trichodermin biosynthetic pathway in Trichoderma are similar to the trichothecenes from Fusarium sporotrichioides. Trichodiene synthase (TS) encoded by tri5 gene in Trichoderma catalyses the conversion of farnesyl pyrophosphate to trichodiene as reported earlier. In this study, we have carried out a comprehensive comparative sequence and structural analysis of the TS, which revealed the conserved residues involved in catalytic activity of the protein. In silico, modelled tertiary structure of TS protein showed stable structural behaviour during simulations. Two single-substitution mutants, i.e. D109E, D248Y and one double-substitution mutant (D109E and D248Y) of TS with potentially higher activities are screened out. The mutant proteins showed more stability than the wild type, an increased number of electrostatic interactions and better binding energies with the ligand, which further elucidates the amino acid residues involved in the reaction mechanism. These results will lead to devise strategies for higher TS activity to ultimately enhance the trichodermin production by Trichoderma spp. for its better exploitation in the sustainable agricultural practices.

  14. Using problem-based learning for occupational and environmental health nursing education: pesticide exposures among migrant agricultural workers.

    PubMed

    Ivicek, Kristy; de Castro, A B; Salazar, Mary K; Murphy, Helen H; Keifer, Matthew

    2011-03-01

    Problem-based learning, which emphasizes group collaboration to solve real-world case scenarios, is an instructional approach that is well suited to occupational and environmental health nursing education. Learners actively work through case studies rather than passively receive information presented through lectures. Problem-based learning methods promote critical thinking skills and motivate learning, preparing learners for professional practice in complex, ever-changing environments. Despite these advantages, problem-based learning is under-utilized in nursing education compared to more traditional lecture methods. This article presents key concepts of problem-based learning, discusses problem-based learning in educating occupational and environmental health nurses, and describes the development of a problem-based learning case aimed at increasing occupational and environmental health nurses capacity to address pesticide exposure among migrant and seasonal agricultural workers.

  15. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review.

    PubMed

    De Luca, Anna Irene; Iofrida, Nathalie; Leskinen, Pekka; Stillitano, Teodora; Falcone, Giacomo; Strano, Alfio; Gulisano, Giovanni

    2017-04-07

    Life cycle (LC) methodologies have attracted a great interest in agricultural sustainability assessments, even if, at the same time, they have sometimes been criticized for making unrealistic assumptions and subjective choices. To cope with these weaknesses, Multi-Criteria Decision Analysis (MCDA) and/or participatory methods can be used to balance and integrate different sustainability dimensions. The purpose of this study is to highlight how life cycle approaches were combined with MCDA and participatory methods to address agricultural sustainability in the published scientific literature. A systematic and critical review was developed, highlighting the following features: which multi-criterial and/or participatory methods have been associated with LC tools; how they have been integrated or complemented (methodological relationships); the intensity of the involvement of stakeholders (degree of participation); and which synergies have been achieved by combining the methods. The main typology of integration was represented by multi-criterial frameworks integrating LC evaluations. LC tools can provide MCDA studies with local and global information on how to reduce negative impacts and avoid burden shifts, while MCDA methods can help LC practitioners deal with subjective assumptions in an objective way, to take into consideration actors' values and to overcome trade-offs among the different dimensions of sustainability. Considerations concerning the further development of Life Cycle Sustainability Assessment (LCSA) have been identified as well.

  16. The Capacity-Building Stewardship Model: Assessment of an agricultural network as a mechanism for improving regional agroecosystem sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Working lands have potential to meet agricultural production targets while serving as reservoirs of biological diversity and as sources of ecological services. Yet agricultural policy creates disincentives for this integration of conservation and production goals. While necessary, the development of...

  17. Sustain

    SciTech Connect

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactive graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.

  18. The role of sustainable agriculture and renewable-resource management in reducing greenhouse-gas emissions and increasing sinks in China and India.

    PubMed

    Pretty, J N; Ball, A S; Xiaoyun, Li; Ravindranath, N H

    2002-08-15

    This paper contains an analysis of the technical options in agriculture for reducing greenhouse-gas emissions and increasing sinks, arising from three distinct mechanisms: (i) increasing carbon sinks in soil organic matter and above-ground biomass; (ii) avoiding carbon emissions from farms by reducing direct and indirect energy use; and (iii) increasing renewable-energy production from biomass that either substitutes for consumption of fossil fuels or replaces inefficient burning of fuelwood or crop residues, and so avoids carbon emissions, together with use of biogas digesters and improved cookstoves. We then review best-practice sustainable agriculture and renewable-resource-management projects and initiatives in China and India, and analyse the annual net sinks being created by these projects, and the potential market value of the carbon sequestered. We conclude with a summary of the policy and institutional conditions and reforms required for adoption of best sustainability practice in the agricultural sector to achieve the desired reductions in emissions and increases in sinks. A review of 40 sustainable agriculture and renewable-resource-management projects in China and India under the three mechanisms estimated a carbon mitigation potential of 64.8 MtC yr(-1) from 5.5 Mha. The potential income for carbon mitigation is $324 million at $5 per tonne of carbon. The potential exists to increase this by orders of magnitude, and so contribute significantly to greenhouse-gas abatement. Most agricultural mitigation options also provide several ancillary benefits. However, there are many technical, financial, policy, legal and institutional barriers to overcome.

  19. Population, food situation and problems of agricultural development in Andhra Pradesh.

    PubMed

    Surendra, S

    1991-01-01

    Increased food production in less developed regions of India has been outpaced by unprecedented rapid population growth and a corresponding decline in the quality of life. This study analyses food supply and food requirements in Andhra Pradesh, with consideration of the relationships between population, food, land inequality, and agricultural development. To check population growth, the study found a need to more strongly emphasize family planning programs. More comprehensive measures are, however, recommended to combat widely spread inadequate nutrition. Accounting for 60% of all disease in the region, malnutrition is due to underproduction, lack of purchasing power among the poor, lack of proper spatial distribution, lack of irrigational facilities, and land inequality. Food production should be increased through extensive irrigation where needed, while landless agricultural laborers and small farmers should be assisted through housing, education, health facilities, agricultural subsidies, bank credits, HYV seeds, and other contributory interventions. Finally, land reforms already underway should continue until target goals are reached.

  20. Collaborative Problem Solving Effectively Implemented, But Not Sustained: A Case for Aligning the Sun, the Moon, and the Stars

    ERIC Educational Resources Information Center

    Santangelo, Tanya

    2009-01-01

    This 2-year qualitative case study examined factors influencing implementation and sustainability of collaborative problem-solving programs. One selected elementary school served as the focus site. Using a participant-observer field-based approach, data were collected via observations, interviews, mute evidence, and field notes. During Year 1 of…

  1. Characteristics and Problems of Older Returning Students. College of Agricultural & Life Sciences Research Report.

    ERIC Educational Resources Information Center

    Flannery, Daniele; Apps, Jerold

    A study examined the barriers encountered by returning adult students and the potential change of those barriers over time. The 43 students constituting the survey population were enrolled in the graduate programs of the College of Agricultural and Life Sciences and the School of Education at the University of Wisconsin-Madison. Students had to be…

  2. Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability

    NASA Astrophysics Data System (ADS)

    Landers, John N.; Rass, Gerard; de Freitas, Pedro L.; Basch, Gottlieb; González Sanchez, Emilio J.; Tabaglio, Vincenzo; Kassan, Amir; Derpsch, Rolf; Friedrich, Theodor; Giupponi, Luca

    2013-04-01

    Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter (SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion, reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO2 emissions, (iv) cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff, (vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x) an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European countries, mainstream adoption is still to come

  3. Surface protection treatments of highly porous building stones and sustainability problems

    NASA Astrophysics Data System (ADS)

    Calia, Angela; Lettieri, Maria Teresa; Matera, Loredana; Sileo, Maria

    2013-04-01

    The growing attention to the cultural value and the potential touristic attraction of the historic towns has led to increasing activities of rehabilitation and conservation of the historical built heritage. Chemical treatments have become a common practice for the protection of the stone building surface against the decay agents and traditional methods of protection, such as the application of sacrificial layers, have been even more neglected. The use of chemical products on large scale works on the historical built heritage draws the attention towards the sustainability of the conservation treatments, that involve peculiar features with relation to the different types of stones. Sustainability is undoubtedly in terms of human and environmental impact of the used products, so that the use of new formulations based on aqueous solvent should be preferred. Sustainability also means the equilibrium between the required performances of the treatments and the preservation of the original stone properties (colour, permeability, etc), namely harmlessness and effectiveness of the treatments. This can be a critical aspect when we deal with very porous stones, namely having porosity between 30-40%, that are widely used in many countries as traditional building materials. In most cases no information - or very general recommendations - is reported in the technical sheets of the conservation products with reference to the application to these types of stones. Relevant problems of compatibility can arise from the significant amounts absorbed by the high porous structure, as well as in terms of cost effectiveness of the treatments. In this work several calcarenites with different petro-physic characteristics and porosity between 30 and 45% are concerned for the assessment of the performance of two commercial water based products for stone protection, respectively an alcoxy-siloxane with low molecular weight and a modified organo-silane. This activity is a part of the Apulia

  4. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    PubMed

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of

  5. Incorporating Sustainability into an American Government Course: The Problems, the Progress, the Promise

    ERIC Educational Resources Information Center

    Smith, Elizabeth S.

    2012-01-01

    This article evaluates the incorporation of issues of sustainability as a central orienting theme into an American Government course. Issues of sustainability are at the forefront of the American political agenda and are intricately linked to our ability as a nation to prosper economically, socially, and physically. In this course, students are…

  6. Education and Training for Sustainable Tourism: Problems, Possibilities and Cautious First Steps.

    ERIC Educational Resources Information Center

    Gough, Stephen; Scott, William

    1999-01-01

    Advances a possible theoretical approach to education for sustainable tourism and describes a small-scale research project based on this approach. Seeks to integrate education for sustainable tourism into an established management curriculum using an innovative technique based on the idea of an adaptive concept. (Author/CCM)

  7. Drivers Impacting the Adoption of Sustainable Agricultural Management Practices and Production Systems of the Northeast and Southeast U.S

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production responds to economic, social, environmental, and technological drivers operating both internal and external to the production system. These drivers influence producers’ decision making processes, and act to shape the individual production systems through modification of produ...

  8. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability

    PubMed Central

    Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh

    2015-01-01

    Abstract In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978

  9. Sustainable Development.

    ERIC Educational Resources Information Center

    Auerbach, Raymond

    1994-01-01

    Discusses South African national development priorities, sustainable development, and the future of agriculture and presents three scenarios of possible national action: production for sale and export, household food security, and conservation of natural resources. (MKR)

  10. Black water sludge reuse in agriculture: are heavy metals a problem?

    PubMed

    Tervahauta, Taina; Rani, Sonia; Hernández Leal, Lucía; Buisman, Cees J N; Zeeman, Grietje

    2014-06-15

    Heavy metal content of sewage sludge is currently the most significant factor limiting its reuse in agriculture within the European Union. In the Netherlands most of the produced sewage sludge is incinerated, mineralizing the organic carbon into the atmosphere rather than returning it back to the soil. Source-separation of black water (toilet water) excludes external heavy metal inputs, such as industrial effluents and surface run-offs, producing sludge with reduced heavy metal content that is a more favorable source for resource recovery. The results presented in this paper show that feces is the main contributor to the heavy metal loading of vacuum collected black water (52-84%), while in sewage the contribution of feces is less than 10%. To distinguish black water from sewage in the sludge reuse regulation, a control parameter should be implemented, such as the Hg and Pb content that is significantly higher in sewage sludge compared to black water sludge (from 50- to 200-fold). The heavy metals in feces and urine are primarily from dietary sources, and promotion of the soil application of black water sludge over livestock manure and artificial fertilizers could further reduce the heavy metal content in the soil/food cycle.

  11. Environmental Communication Pedagogy for Sustainability: Developing Core Capacities to Engage with Complex Problems

    ERIC Educational Resources Information Center

    McGreavy, Bridie; Druschke, Caroline Gottschalk; Sprain, Leah; Thompson, Jessica L.; Lindenfeld, Laura A.

    2016-01-01

    Pedagogy informed by environmental communication can enhance collaboration within and outside the classroom. Through our collaborative, sustainability-focused work within the United States and internationally, we identified core capacities that prepare people to work together to form inclusive organizations and identify and respond to pressing…

  12. Delivering Lifelong Learning for Sustainable Development in Southern Africa: Problems and Prospects

    ERIC Educational Resources Information Center

    Maruatona, Tonic L.

    2012-01-01

    Southern African Development Community (SADC) nations in principle endorse lifelong learning (LLL) as a useful framework for sustainable development. However, in spite of the rhetoric, only a few member states such as South Africa, Botswana and Namibia have officially endorsed LLL in their educational policies. The sub-region is plagued by social…

  13. Adapting an Outcome-Based Education Development Process to Meet Near Real-Time Challenges to Sustainable Agricultural Production

    ERIC Educational Resources Information Center

    Halbleib, Mary L.; Jepson, Paul C.

    2015-01-01

    Purpose: This paper examines the benefits of using an outcome-based education (OBE) method within agricultural extension outreach programmes for professional and farmer audiences. Design/Methodology/Approach: The method is elaborated through two practical examples, which show that focused, short-duration programmes can produce meaningful skill…

  14. Contribution of biocontrol agents to sustainable agriculture: do insights from microbiome research and BCA “omics” pay off

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By the year 2050 there will be 9 to 11 billion people on earth to feed using the same amount or less land and water as is currently available for agricultural production. The United Nations estimated that global food production will need to increase by 70% by 2050. Currently, about one-third of all ...

  15. Delivery Strategies to Enhance the Sustainability of Training: Lessons from the Food and Agriculture Organization of the United Nations

    ERIC Educational Resources Information Center

    de Rosa, Cecilia; Nadeau, Andrew; Hernandez, Emilio; Kafeero, Fred; Zahiga, Jacques

    2016-01-01

    The Food and Agriculture Organization of the United Nations (FAO) utilizes training as a major component of the support it provides to its member countries in Africa. In the past, stand-alone training events targeting individual actors were the norm. However, an external evaluation indicated that this type of training scores low in terms of…

  16. Art, science and mathematics: new approaches to animal health problems in the agricultural industry.

    PubMed

    Davies, G

    1985-09-14

    This article is about change; particularly the prospect for change in veterinary research during the last decade and a half of the 20th century. The title encapsulates the idea that veterinary medicine, if it is to be effective, periodically has to change its approach to solving animal health problems; that over the last century we have witnessed one major change, that from veterinary medicine as an art to veterinary medicine as a science, and that we are probably on the brink of another change, moving from a scientific or more correctly an experimental approach to a mathematical or observational approach.

  17. The Social Practice of Sustainable Agriculture under Audit Discipline: Initial Insights from the ARGOS Project in New Zealand

    ERIC Educational Resources Information Center

    Campbell, Hugh; Rosin, Christopher; Hunt, Lesley; Fairweather, John

    2012-01-01

    One of the most interesting recent developments in global agri-food systems has been the rapid emergence and elaboration of market audit systems claiming environmental qualities or sustainability. In New Zealand, as a strongly export-oriented, high-value food producer, these environmental market audit systems have emerged as an important pathway…

  18. Biochar: Is it a sustainable solution to dry land agriculture, forest soil reclamation and greenhouse gas mitigation?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is the carbon-rich solid co-product of thermochemical biofuel production, which has been advocated as a soil amendment capable of sequestering carbon while simultaneously improving crop yields and ecosystem sustainability. The recovery of biochar from biofuel production systems and its use a...

  19. Spatio-temporal optimization of agricultural practices to achieve a sustainable development at basin level; framework of a case study in Colombia

    NASA Astrophysics Data System (ADS)

    Uribe, Natalia; corzo, Gerald; Solomatine, Dimitri

    2016-04-01

    The flood events present during the last years in different basins of the Colombian territory have raised questions on the sensitivity of the regions and if this regions have common features. From previous studies it seems important features in the sensitivity of the flood process were: land cover change, precipitation anomalies and these related to impacts of agriculture management and water management deficiencies, among others. A significant government investment in the outreach activities for adopting and promoting the Colombia National Action Plan on Climate Change (NAPCC) is being carried out in different sectors and regions, having as a priority the agriculture sector. However, more information is still needed in the local environment in order to assess were the regions have this sensitivity. Also the continuous change in one region with seasonal agricultural practices have been pointed out as a critical information for optimal sustainable development. This combined spatio-temporal dynamics of crops cycle in relation to climate change (or variations) has an important impact on flooding events at basin areas. This research will develop on the assessment and optimization of the aggregated impact of flood events due to determinate the spatio-temporal dynamic of changes in agricultural management practices. A number of common best agricultural practices have been identified to explore their effect in a spatial hydrological model that will evaluate overall changes. The optimization process consists on the evaluation of best performance in the agricultural production, without having to change crops activities or move to other regions. To achieve this objectives a deep analysis of different models combined with current and future climate scenarios have been planned. An algorithm have been formulated to cover the parametric updates such that the optimal temporal identification will be evaluated in different region on the case study area. Different hydroinformatics

  20. Sustained adoption of an evidence-based treatment: a survey of clinicians certified in problem-solving therapy.

    PubMed

    Crabb, Rebecca M; Areán, Patricia A; Hegel, Mark T

    2012-01-01

    Training models that incorporate case supervision in addition to didactic instruction appear to be effective in maximizing clinicians' proficiency in evidence-based treatments (EBTs). However, it is unknown the extent to which these models promote sustained adoption of EBTs. We describe the results of an online survey on post-training utilization of an EBT, problem-solving therapy (PST), among 40 clinicians highly trained in PST. Seventy-five percent of the survey's 40 respondents reported that they continued to use PST in their clinical practices. Many PST-trained clinicians reported that they had modified the PST protocol in their clinical practices according to patient characteristics or preferences. Considering these results, we recommend emphasizing patient variability and treatment tailoring throughout the training process as a means for promoting clinicians' sustained adoption of EBTs.

  1. Traditional Agriculture and Permaculture.

    ERIC Educational Resources Information Center

    Pierce, Dick

    1997-01-01

    Discusses benefits of combining traditional agricultural techniques with the concepts of "permaculture," a framework for revitalizing traditions, culture, and spirituality. Describes school, college, and community projects that have assisted American Indian communities in revitalizing sustainable agricultural practices that incorporate…

  2. Bacteriological Monitoring and Sustainable Management of Beach Water Quality in Malaysia: Problems and Prospects

    PubMed Central

    Dada, Ayokunle Christopher; Asmat, Ahmad; Gires, Usup; Heng, Lee Yook; Deborah, Bandele Oluwaseun

    2012-01-01

    Despite the growing demand of tourism in Malaysia, there are no resolute efforts to develop beaches as tourist destinations. With no incentives to monitor public beaches or to use them in a sustainable manner, they might eventually degenerate in quality as a result of influx of pollutants. This calls for concerted action plans with a view to promoting their sustainable use. The success of such plans is inevitably anchored on the availability of robust quality monitoring schemes. Although significant efforts have been channelled to collation and public disclosure of bacteriological quality data of rivers, beach water monitoring appears left out. This partly explains the dearth of published information related to beach water quality data. As part of an on-going nation-wide surveillance study on the bacteriological quality of recreational beaches, this paper draws on a situation analysis with a view to proffering recommendations that could be adapted for ensuring better beach water quality in Malaysia. PMID:22980239

  3. Bacteriological monitoring and sustainable management of beach water quality in Malaysia: problems and prospects.

    PubMed

    Dada, Ayokunle Christopher; Asmat, Ahmad; Gires, Usup; Heng, Lee Yook; Deborah, Bandele Oluwaseun

    2012-04-28

    Despite the growing demand of tourism in Malaysia, there are no resolute efforts to develop beaches as tourist destinations. With no incentives to monitor public beaches or to use them in a sustainable manner, they might eventually degenerate in quality as a result of influx of pollutants. This calls for concerted action plans with a view to promoting their sustainable use. The success of such plans is inevitably anchored on the availability of robust quality monitoring schemes. Although significant efforts have been channelled to collation and public disclosure of bacteriological quality data of rivers, beach water monitoring appears left out. This partly explains the dearth of published information related to beach water quality data. As part of an on-going nation-wide surveillance study on the bacteriological quality of recreational beaches, this paper draws on a situation analysis with a view to proffering recommendations that could be adapted for ensuring better beach water quality in Malaysia.

  4. Something fishy: Chile's blue revolution, commodity diseases, and the problem of sustainability.

    PubMed

    Soluri, John

    2011-01-01

    The United Nations describes aquaculture as the fastest-growing method of food production, and some industry boosters have heralded the coming of a sustainable blue revolution. This article interprets the meteoric rise and sudden collapse of Atlantic salmon aquaculture in southern Chile (1980-2010) by integrating concepts from commodity studies and comparative environmental history. I juxtapose salmon aquaculture to twentieth-century export banana production to reveal the similar dynamics that give rise to "commodity diseases"—events caused by the entanglement of biological, social, and political-economic processes that operate on local, regional, and transoceanic geographical scales. Unsurprisingly, the risks and burdens associated with commodity diseases are borne disproportionately by production workers and residents in localities where commodity disease events occur. Chile's blue revolution suggests that evaluating the sustainability of aquaculture in Latin America cannot be divorced from processes of accumulation.

  5. Theme: Agricultural Literacy.

    ERIC Educational Resources Information Center

    Deeds, Jacquelyn P.; And Others

    1991-01-01

    Six theme articles attempt to define and advocate agricultural literacy, review the status of K-8 agricultural literacy programs in states, discuss an Oklahoma study of agricultural literacy, clarify the meaning of sustainable agriculture, and describe the Future Farmers of America's Food for America program for elementary students. (SK)

  6. Biotech crops: imperative for achieving the millenium development goals and sustainability of agriculture in the climate change era.

    PubMed

    Husaini, Amjad M; Tuteja, Narendra

    2013-01-01

    Biotechnological intervention in the development of crops has opened new vistas in agriculture. Central to the accomplishment of the Millennium Development Goals (MDGs), biotech-agriculture is essential in meeting these targets. Biotech crops have already made modest contributions toward ensuring food and nutrition security by reducing losses and increasing productivity, with less pesticide input. These crops could help address some of the major challenges in agriculture-based economies created by climate change. Projections of global climate change expect the concentration of greenhouse gases to increase, aridization of the environment to increase, temperature fluctuations to occur sharply and frequently, and spatial and temporal distribution of rainfall to be disturbed-all of which will increase abiotic stress-related challenges to crops. Countering these challenges and to meet the food requirement of the ever-increasing world population (expected to reach 9 billion by 2030) we need to (1) develop and use biotech crops for mitigating adverse climatic changes; (2) develop biotech crops resilient to adverse environmental conditions; and (3) address the issues/non-issues raised by NGO's and educate the masses about the benefits of biotech crops.

  7. Sustainable smallholder poultry interventions to promote food security and social, agricultural, and ecological resilience in the Luangwa Valley, Zambia.

    PubMed

    Dumas, Sarah E; Lungu, Luke; Mulambya, Nathan; Daka, Whiteson; McDonald, Erin; Steubing, Emily; Lewis, Tamika; Backel, Katherine; Jange, Jarra; Lucio-Martinez, Benjamin; Lewis, Dale; Travis, Alexander J

    2016-06-01

    In Zambia's Luangwa Valley, highly variable rainfall and lack of education, agricultural inputs, and market access constrain agricultural productivity, trapping smallholder farmers in chronic poverty and food insecurity. Human and animal disease (e.g. HIV and Newcastle Disease, respectively), further threaten the resilience of poor families. To cope with various shocks and stressors, many farmers employ short-term coping strategies that threaten ecosystem resilience. Community Markets for Conservation (COMACO) utilizes an agribusiness model to alleviate poverty and food insecurity through conservation farming, market development and value-added food production. COMACO promotes household, agricultural and ecological resilience along two strategic lines: improving recovery from shocks (mitigation) and reducing the risk of shock occurrence. Here we focus on two of COMACO's poultry interventions and present data showing that addressing health and management constraints within the existing village poultry system resulted in significantly improved productivity and profitability. However, once reliable productivity was achieved, farmers preferred to sell chickens rather than eat either the birds or their eggs. Sales of live birds were largely outside the community to avoid price suppression; in contrast, the sale of eggs from community-operated, semi-intensive egg production facilities was invariably within the communities. These facilities resulted in significant increases in both producer income and community consumption of eggs. This intervention therefore has the potential to improve not only producers' economic resilience, but also resilience tied to the food security and physical health of the entire community.

  8. Sustained Effects of Incredible Years as a Preventive Intervention in Preschool Children with Conduct Problems

    ERIC Educational Resources Information Center

    Posthumus, Jocelyne A.; Raaijmakers, Maartje A. J.; Maassen, Gerard H.; van Engeland, Herman; Matthys, Walter

    2012-01-01

    The present study evaluated preventive effects of the Incredible Years program for parents of preschool children who were at risk for a chronic pattern of conduct problems, in the Netherlands. In a matched control design, 72 parents of children with conduct problems received the Incredible Years program. These families (intervention group) were…

  9. Unified heuristics to solve routing problem of reverse logistics in sustainable supply chain

    NASA Astrophysics Data System (ADS)

    Anbuudayasankar, S. P.; Ganesh, K.; Lenny Koh, S. C.; Mohandas, K.

    2010-03-01

    A reverse logistics problem, motivated by many real-life applications, is examined where bottles/cans in which products are delivered from a processing depot to customers in one period are available for return to the depot in the following period. The picked-up bottles/cans need to be adjusted in the place of delivery load. This problem is termed as simultaneous delivery and pick-up problem with constrained capacity (SDPC). We develop three unified heuristics based on extended branch and bound heuristic, genetic algorithm and simulated annealing to solve SDPC. These heuristics are also designed to solve standard travelling salesman problem (TSP) and TSP with simultaneous delivery and pick-up (TSDP). We tested the heuristics on standard, derived and randomly generated datasets of TSP, TSDP and SDPC and obtained satisfying results with high convergence in reasonable time.

  10. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  11. Agricultural Microbiology.

    ERIC Educational Resources Information Center

    Brill, Winston J.

    1981-01-01

    Elucidates strategies for applying microbiological techniques to traditional agricultural practices. Discusses the manipulation of microorganisms that live with plants and also the problems involved in the introduction of new genes into crop plants by recombinant DNA methods. (CS)

  12. The impact of policy and institutional environment on costs and benefits of sustainable agricultural land uses: the case of the Chittagong Hill Tracts, Bangladesh.

    PubMed

    Rasul, Golam; Thapa, Gopal B

    2007-08-01

    As in other mountain regions of Asia, agricultural lands in the Chittagong Hill Tracts (CHT) of Bangladesh are undergoing degradation due primarily to environmentally incompatible land-use systems such as shifting cultivation (jhum) and annual cash crops. The suitable land-use systems such as agroforestry and timber tree plantation provide benefit to the society at large, but they might not provide attractive economic benefits to farmers, eventually constraining a wide-scale adoption of such land-use systems. Therefore, it is essential to evaluate agricultural land-use systems from both societal and private perspectives in the pursuit of promoting particularly environmentally sustainable systems. This article evaluated five major land-use systems being practiced in CHT, namely jhum, annual cash crops, horticulture, agroforestry, and timber plantation. The results of the financial analysis revealed the annual cash crops as the most attractive land use and jhum as the least attractive of the five land-use systems considered under the study. Horticulture, timber plantation, and agroforestry, considered to be suitable land-use systems particularly for mountainous areas, held the middle ground between these two systems. Annual cash crops provided the highest financial return at the cost of a very high rate of soil erosion. When the societal cost of soil erosion is considered, annual cash crops appear to be the most costly land-use system, followed by jhum and horticulture. Although financially less attractive compared to annual cash crops and horticulture, agroforestry and timber plantation are the socially most beneficial land-use systems. Findings of the alternative policy analyses indicate that there is a good prospect for making environmentally sustainable land-use systems, such as agroforestry and timber plantation, attractive for the farmers by eliminating existing legal and institutional barriers, combined with the provision of necessary support services and

  13. The Impact of Policy and Institutional Environment on Costs and Benefits of Sustainable Agricultural Land Uses: The Case of the Chittagong Hill Tracts, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rasul, Golam; Thapa, Gopal B.

    2007-08-01

    As in other mountain regions of Asia, agricultural lands in the Chittagong Hill Tracts (CHT) of Bangladesh are undergoing degradation due primarily to environmentally incompatible land-use systems such as shifting cultivation ( jhum) and annual cash crops. The suitable land-use systems such as agroforestry and timber tree plantation provide benefit to the society at large, but they might not provide attractive economic benefits to farmers, eventually constraining a wide-scale adoption of such land-use systems. Therefore, it is essential to evaluate agricultural land-use systems from both societal and private perspectives in the pursuit of promoting particularly environmentally sustainable systems. This article evaluated five major land-use systems being practiced in CHT, namely jhum, annual cash crops, horticulture, agroforestry, and timber plantation. The results of the financial analysis revealed the annual cash crops as the most attractive land use and jhum as the least attractive of the five land-use systems considered under the study. Horticulture, timber plantation, and agroforestry, considered to be suitable land-use systems particularly for mountainous areas, held the middle ground between these two systems. Annual cash crops provided the highest financial return at the cost of a very high rate of soil erosion. When the societal cost of soil erosion is considered, annual cash crops appear to be the most costly land-use system, followed by jhum and horticulture. Although financially less attractive compared to annual cash crops and horticulture, agroforestry and timber plantation are the socially most beneficial land-use systems. Findings of the alternative policy analyses indicate that there is a good prospect for making environmentally sustainable land-use systems, such as agroforestry and timber plantation, attractive for the farmers by eliminating existing legal and institutional barriers, combined with the provision of necessary support services and

  14. Toward a sustainable utilization of land resources in China: problems, policies, and practices.

    PubMed

    Hong, Wuyang; Li, Feixue; Li, Manchun; Zhang, Fangfang; Tong, Lihua; Huang, Qiuhao

    2014-10-01

    China's economy is growing explosively with double-digit rates of growth. However, behind the scenes of this economic miracle, a dark underbelly exists. The potential impact of the unsustainable use of land resources is increasing. Each parcel of land has a stationary geographic location, while its utilization is optional. The re-adjustment and optimization of land use patterns ought to be encouraged. Spatial reconstruction refers to the combination of various land elements, which can promote the rational and efficient allocation of land resources through a four-layer action framework: the development of unused land, urban renewal, ecological reconstruction, and spatial displacement. The feasibility and validity of these methods are illustrated by practical cases in different provinces in China. We thus propose that pursuing sustainable development and building an ecological civilization will be necessary for China in future decades.

  15. Agricultural and green infrastructures: the role of non-urbanised areas for eco-sustainable planning in a metropolitan region.

    PubMed

    La Greca, Paolo; La Rosa, Daniele; Martinico, Francesco; Privitera, Riccardo

    2011-01-01

    Non-Urbanised Areas (NUAs) are part of agricultural and green infrastructures that provide ecosystem services. Their role is fundamental for the minimization of urban pollution and adaptation to climate change. Like all natural ecosystems, NUAs are endangered by urban sprawl. The regulation of sprawl is a key issue for land-use planning. We propose a land use suitability strategy model to orient Land Uses of NUAs, based on integration of Land Cover Analysis (LCA) and Fragmentation Analysis (FA). With LCA the percentage of evapotranspiring surface is defined for each land use. Dimensions and densities of NUAs patches are assessed in FA. The model has been developed with Geographical Information Systems, using an extensive set of geodatabases, including orthophotos, vectorial cartographies and field surveys. The case of the municipality of Mascalucia in Catania metropolitan area (Italy), characterized by a considerable urban sprawl, is presented.

  16. Parent-Reported Homework Problems in the MTA Study: Evidence for Sustained Improvement with Behavioral Treatment

    ERIC Educational Resources Information Center

    Langberg, Joshua M.; Arnold, L. Eugene; Flowers, Amanda M.; Epstein, Jeffery N.; Altaye, Mekibib; Hinshaw, Stephen P.; Swanson, James M.; Kotkin, Ronald; Simpson, Stephen; Molina, Brooke S. G.; Jensen, Peter S.; Abikoff, Howard; Pelham, William E., Jr.; Vitiello, Benedetto; Wells, Karen C.; Hechtman, Lily

    2010-01-01

    Parent-report of child homework problems was examined as a treatment outcome variable in the MTA-Multimodal Treatment Study of Children with Attention-Deficit/Hyperactivity Disorder (ADHD). Five hundred seventy-nine children ages 7.0 to 9.9 were randomly assigned to either medication management, behavioral treatment, combination treatment, or…

  17. "Sustainability on Earth" Webquests: Do They Qualify as Problem-Based Learning Activities?

    ERIC Educational Resources Information Center

    Leite, Laurinda; Dourado, Luís; Morgado, Sofia

    2015-01-01

    Information and communication technologies (ICT), namely the Internet, can play a valuable educational role in several school subjects, including science education. The same applies to problem-based learning (PBL), that is, a student-centered active learning methodology that can prepare students for lifelong learning. WebQuests (WQs) combine PBL…

  18. From waste to resource: a systems-based approach to sustainable community development through equitable enterprise and agriculturally-derived polymeric composites

    NASA Astrophysics Data System (ADS)

    Teipel, Elisa

    Rural communities in developing countries are most vulnerable to the plight of requiring repeated infusions of charitable aid over time. Micro-business opportunities that effectively break the cycle of poverty in resource-rich countries in the developing world are limited. However, a strong model for global commerce can break the cycle of donor-based economic supplements and limited local economic growth. Sustainable economic development can materialize when a robust framework combines engineering with the generous investment of profits back into the community. This research presents a novel, systems-based approach to sustainable community development in which a waste-to-resource methodology catalyzes the disruption of rural poverty. The framework developed in this thesis was applied to the rural communities of Cagmanaba and Badian, Philippines. An initial assessment of these communities showed that community members are extremely poor, but they possess an abundant natural resource: coconuts. The various parts of the coconut offer excellent potential value in global commerce. Today the sale of coconut water is on the rise, and coconut oil is an established $3 billion market annually that is also growing rapidly. Since these current industries harvest only two parts of the coconut (meat and water), the 50 billion coconuts that grow annually leave behind approximately 100 billion pounds of coconut shell and husk as agricultural waste. Coconuts thus provide an opportunity to create and test a waste-to-resource model. Intensive materials analysis, research, development, and optimization proved that coconut shell, currently burned as a fuel or discarded as agricultural waste, can be manufactured into high-grade coconut shell powder (CSP), which can be a viable filler in polymeric composites. This framework was modeled and tested as a case study in a manufacturing facility known as a Community Transformation Plant (CTP) in Cagmanaba, Philippines. The CTP enables local

  19. Towards sustainable management of louisiana's coastal wetland forests: Problems, constraints, and a new beginning

    USGS Publications Warehouse

    Chambers, J.L.; Conner, W.H.; Keim, R.F.; Faulkner, S.P.; Day, J.W.; Gardiner, E.S.; Hughes, M.S.; King, S.L.; McLeod, K.W.; Miller, C.A.; Nyman, J.A.; Shaffer, G.P.

    2006-01-01

    Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the available science, suggestions for policy change, and a multidisciplinary (multi-responsibility) approach were needed to address these issues [in the context of private land]. In response, the Louisiana Governor's office formed a Coastal Wetland Forest Conservation and Use Science Working Group (SWG) and an associated Advisory Panel to provide the Governor with information and suggestions of strategies for environmental and economic utilization, conservation, and protection of Louisiana's coastal wetland forest ecosystem in the long-term. The process of engaging scientists, resource managers, and other stakeholders in this effort is described, and the recommendations of the SWG are presented relative to forestry practices and the potential for sustainable management of coastal wetland forests.

  20. Towards sustainable management of Louisiana’s coastal wetland forests: problems, constraints, and a new beginning

    SciTech Connect

    Chambers, J. L.; Keim, R. F.; Faulkner, S. P.; Day Jr., J. W.; Gardiner, E. S.; Hughes, M. S.; King, S. L.; McLeod, K. W.; Miller, C. A.; Nyman, J. A.; Shaffer, G. P.

    2006-01-01

    Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the available science, suggestions for policy change, and a multidisciplinary (multi-responsibility) approach were needed to address these issues [in the context of private land]. In response, the Louisiana Governor's office formed a Coastal Wetland Forest Conservation and Use Science Working Group (SWG) and an associated Advisory Panel to provide the Governor with information and suggestions of strategies for environmental and economic utilization, conservation, and protection of Louisiana's coastal wetland forest ecosystem in the long-term. The process of engaging scientists, resource managers, and other stakeholders in this effort is described, and the recommendations of the SWG are presented relative to forestry practices and the potential for sustainable management of coastal wetland forests.

  1. The problem of sustainable groundwater management: the case of La Mancha aquifers, Spain

    NASA Astrophysics Data System (ADS)

    Esteban, Encarna; Albiac, José

    2012-08-01

    Gisser and Sánchez (Water Resour Res 16(4):638-642, 1980) compared two different strategies to manage aquifers: "free market" and policy regulation. They stated that the outcome of both is practically the same, and that policy regulation could not improve social welfare. This study challenges this argument by analyzing the management strategies in two large aquifers located in southern Spain, the Eastern La Mancha and the Western La Mancha aquifers. The appeal of this case stems from the fact that management of the Eastern La Mancha aquifer is almost sustainable. In stark contrast, its neighboring Western La Mancha aquifer is being grossly mismanaged. The results engage two major questions from previous groundwater literature. The first question is whether or not aquifer management requires policy intervention. The answer depends upon the consideration and magnitude of environmental damages in the model. The second question addresses the nature of groundwater policies. The contrast in management outcomes between the Western and the Eastern La Mancha aquifers is related to the different types of policy instruments implemented for each aquifer. The results of these policies underline the importance of nurturing the stakeholders' collective action under the appropriate institutional setting.

  2. A strategy for reducing pollutants at source in order to obtain sustainable agricultural recycling of wastewater sludge.

    PubMed

    Mattsson, A; Mattsson, J; Davidsson, F

    2012-01-01

    The Swedish licensing system for wastewater sludge use in agriculture, REVAQ, sets challenges. These include a maximum nominal accumulation rate of 0.2%/year on farmland, for specified metals, to be reached by 2025. Here a model is suggested, and applied for the Gothenburg regional wastewater treatment plant, Gryaab, to quantify historic sludge quality improvements and necessary future development. Local sampling campaigns covering two decades show a substantial reduction of heavy metals and ecologically harmful organic substances (such as adsorbable organic halogens, nonylphenols, phthalates, naphthalenes and polycyclic aromatic hydrocarbons) from households and society at large. For the metals studied the historic mass flow reduction to sludge varies from 1 to 2%/year for mercury, zinc and copper to 15%/year for silver. Copper needs further reduction, involving water pipes and copper roofing. Silver is rare in soil, and significant reduction from already low levels is needed to reach the accumulation goal. Further reduction of other metals involves addressing storm- and drainage water entering the sewers and the sediments already in the sewers. Fulfilling the goals of REVAQ implies national and local measures affecting public and private stakeholders including property owners, the wastewater collection system, commercial businesses and legislating authorities.

  3. Simulating Irrigation Requirements And Water Withdrawals: The Role Of Agricultural Irrigation In Basin Hydrology And Non-Sustainable Water Use

    NASA Astrophysics Data System (ADS)

    Wisser, D.; Douglas, E. M.; Schumann, A. H.; Vörösmarty, C. J.

    2006-05-01

    The development of irrigation can cause drastic alterations of the water cycle both through changed evaporation patterns, water abstractions, and (in the case of paddy rice), increased percolation rates. The interactions of irrigation development and large-scale water cycles have traditionally not been accounted for in macroscale hydrological models. We use a modified version an existing water balance model (the WBM model) to explicitly consider the effects of irrigation on regional and continental water cycles. The irrigation module is based on the FAO-CROPWAT approach and uses a daily soil moisture balance to simulate crop consumptive water use. Time series of irrigated areas and the distribution of crops and cropping patterns are derived from a combination of remotely sensed data and national and sub-national statistics. An assessment is made of (1) how irrigation water is supplied and (2) how much of this water is abstracted in excess of the renewable water supply in the basin considering different time horizons. Using different scenarios of water availability and irrigation water demand, the response of irrigation water use to water supply and the potential threats to food security are investigated. Case studies in a few river basins that are heavily influenced by irrigated agriculture and that represent different regions of the world will be presented.

  4. The American Land. Its History, Soil, Water, Wildlife, Agricultural Land Planning, and Land Problems of Today and Tomorrow.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Presented in this booklet is the commentary for "The American Land," a television series prepared by the Soil Conservation Service and the Graduate School, United States Department of Agriculture, in cooperation with WETA - TV, Washington, D.C. It explores the resource of land in America, its history, soil, water, wildlife, agricultural land…

  5. SOCIO-CULTURAL PROBLEMS AND THE ROLE OF AGRICULTURAL EDUCATION IN THE UNITED ARAB REPUBLIC (PH.D. THESIS).

    ERIC Educational Resources Information Center

    ABDEL-HAMID FAWZI ABDEL-AZIZ

    IN THE UNITED ARAB REPUBLIC, MANY GRADUATES OF AGRICULTURAL SCHOOLS HAVE NOT BECOME ESTABLISHED IN FARMING. THIS STUDY WAS MADE TO (1) EXAMINE THE FACTORS WHICH AFFECT THE DECISION TO ENTER UPON FARMING, (2) PROPOSE THE ROLE OF SOCIAL CHANGE AGENT FOR AGRICULTURAL EDUCATION, AND (3) PROVIDE A GENERAL UNDERSTANDING OF THE ROLE OF AGRICULTURAL…

  6. Diffusion of innovative agricultural production systems for sustainable development of small islands: A methodological approach based on the science of complexity

    NASA Astrophysics Data System (ADS)

    Barbera, Guiseppe; Butera, Federico M.

    1992-09-01

    In order to develop small islands, not only must a vital agricultural system be maintained, but the range of opportunities for tourism must be increased with respect to both the seaside and the environmental features of the rural landscape. As an alternative to the traditional and economically declining ones, many innovative production processes can be identified, but their success depends on their interaction with the physical, biological, economic and social environment. In order to identify the main nodes and the most critical interactions, so as to increase the probability of success of a new productive process, a methodological approach based on the science of complexity is proposed for the cultivation of capers ( Capparis spinosa L.) on the island of Pantelleria. The methodology encompasses the identification of actors and factors involved. the quantitative evaluation of their interactions with the different stages of the productive process, and a quasiquantitative evaluation of the probability that the particular action will be performed successfully. The study of “traditional,” “modernized,” and “modernized-sustainable” processes, shows that the modernized-sustainable process offers mutually reinforcing opportunities in terms of an integrated development of high-quality agricultural products and the enhancement of environmental features, in conjunction with high-efficiency production techniques, in conjunction with high-efficiency production techniques, in a way that suits the development of Pantelleria. There is a high probability of failure, however, as a result of the large number of critical factors. Nevertheless, the present study indicates which activities will enhance the probability of successful innovation in the production process.

  7. Water harvesting experience in sub-Saharan Africa - lessons for sustainable intensification of rainfed agriculture and the influence of available soils and rainfall data

    NASA Astrophysics Data System (ADS)

    Gowin, John; Bunclark, Lisa

    2013-04-01

    Africa is seen by many as the continent with the greatest potential for agricultural growth, but land degradation and environmental change threaten the African soil resource more severely than in many other regions of the planet. Achieving future food security will depend mainly on increasing production from rainfed agriculture. The challenge of delivering the required sustainable intensification in rainfed agriculture is most acute in the drylands - the semi-arid and dry sub-humid climatic regions. There are two broad strategies for increasing yields under these circumstances: (1) capturing more rainwater and storing it (increasing water availability), and (2) using the available water more effectively by increasing the plant growth and/or reducing non-productive soil evaporation (increasing water productivity). We focus on the first of these options - water harvesting, which is defined as, "the collection and concentration of rainfall runoff, or floodwaters, for plant production". The benefits of water harvesting have been documented from small scale experimental plot studies, but evidence of successful adoption and impact is weak. As a contribution to improving the evidence base, we present results from an investigation conducted in SSA to gather information on progress with efforts to promote adoption of water harvesting. The intention was to investigate in detail the processes and outcomes on a large enough sample area to draw some common conclusions. This was not a comprehensive analysis of all that is happening in each country, nor was it a random sample; this was a purposive sample guided by available baseline information to permit comparative analysis. Water harvesting seems to have made the most progress where techniques can be adopted by individual farmers: in Burkina Faso and Niger micro- scale zaï /tassa and demi-lune systems; in Sudan and Tanzania meso-scale majaruba and teras systems. Macro-scale systems requiring social organisation may offer

  8. Multifunctional Agriculture in Policy and Practice? A Comparative Analysis of Norway and Australia

    ERIC Educational Resources Information Center

    Bjorkhaug, Hilde; Richards, Carol Ann

    2008-01-01

    Ideals of productivist agriculture in the Western world have faded as the unintended consequences of intensive agriculture and pastoralism have contributed to rural decline and environmental problems. In Norway and Australia, there has been an increasing acceptance of the equal importance of social and environmental sustainability as well as…

  9. Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity?

    PubMed

    Vassilev, Nikolay; Martos, Eva; Mendes, Gilberto; Martos, Vanessa; Vassileva, Maria

    2013-06-01

    Phosphorus (P) is an essential element for all living organisms. However, in soil-plant systems, this nutrient is the most limiting, leading to frequent applications of soluble P fertilisers. Their excessive use provokes alterations in the natural P cycle, soil biodiversity and ecological equilibrium and is the main reason for the eutrophication of water, with consequences on food safety. Biotechnology offers a number of sustainable solutions that can mitigate these problems by using various waste materials as a source of P and, on the other hand, their solubilisation by selected micro-organisms. This review present results on the solubilisation of animal bone char with high phosphate content by micro-organisms to produce organic acids such as lactic acid, citric acid and itaconic acid. All experiments were performed under conditions of liquid submerged and solid state fermentation processes. Freely suspended and immobilised cells of the corresponding microbial cultures were employed using substrates characterised by low cost and abundance. Other alternative technologies are discussed as well in order to stimulate further studies in this field, bearing in mind the progressive increase in P fertiliser prices based on high global P consumption and the scarcity of rock phosphate reserves.

  10. Toward a Theory of the Facilitation of a Sustained Capacity for Problem Solving in Urban Schools. Draft. Documentation and Technical Assistance in Urban Schools.

    ERIC Educational Resources Information Center

    Lenoir, Teresa C.

    This monograph presents a theory of helping practice for groups that aim to facilitate a sustained capacity for problem solving in urban public schools. The theory is based on information gathered by the Documentation and Technical Assistance project (DTA) of the Center for New Schools (Chicago, Illinois), in the process of observing experiences…

  11. Theme: In-Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Elliot, Jack, Ed.; And Others

    1991-01-01

    Seven theme articles review the history and philosophy of vocational agriculture, its relationship to the national goals for education, the place of sustainable agriculture and supervised experience in the curriculum, diversifying the curriculum, and fisheries education programs in Alaska. (SK)

  12. Measuring Florida Extension Faculty's Agricultural Paradigmatic Preferences

    ERIC Educational Resources Information Center

    Warner, Laura A.; Murphrey, Theresa Pesl; Lawver, David E.; Baker, Matt; Lindner, James R.

    2014-01-01

    The demand for sustainable agriculture has increased, and many institutions, including the University of Florida, have adopted agricultural sustainability as a major goal. Extension has been identified as a critical information source, important in disseminating sustainable agricultural growing techniques. However, research has demonstrated that…

  13. Assessing the biophysical and socio-economic potential of Sustainable Land Management and Water Harvesting Technologies for rainfed agriculture across semi-arid Africa.

    NASA Astrophysics Data System (ADS)

    Irvine, Brian; Fleskens, Luuk; Kirkby, Mike

    2016-04-01

    Stakeholders in recent EU projects identified soil erosion as the most frequent driver of land degradation in semi-arid environments. In a number of sites, historic land management and rainfall variability are recognised as contributing to the serious environmental impact. In order to consider the potential of sustainable land management and water harvesting techniques stakeholders and study sites from the projects selected and trialled both local technologies and promising technologies reported from other sites . The combined PESERA and DESMICE modelling approach considered the regional effects of the technologies in combating desertification both in environmental and socio-economical terms. Initial analysis was based on long term average climate data with the model run to equilibrium. Current analysis, primarily based on the WAHARA study sites considers rainfall variability more explicitly in time series mode. The PESERA-DESMICE approach considers the difference between a baseline scenario and a (water harvesting) technology scenario, typically, in terms of productivity, financial viability and scope for reducing erosion risk. A series of 50 year rainfall realisations are generated from observed data to capture a full range of the climatic variability. Each realisation provides a unique time-series of rainfall and through modelling can provide a simulated time-series of crop yield and erosion risk for both baseline conditions and technology scenarios. Subsequent realisations and model simulations add to an envelope of the potential crop yield and cost-benefit relations. The development of such envelopes helps express the agricultural and erosional risk associated with climate variability and the potential for conservation measures to absorb the risk, highlighting the probability of achieving a given crop yield or erosion limit. Information that can directly inform or influence the local adoption of conservation measures under the climatic variability in semi

  14. An approach to integrate spatial and climatological data as support to drought monitoring and agricultural management problems in South Sudan

    NASA Astrophysics Data System (ADS)

    Bonetto, Sabrina; Facello, Anna; Camaro, Walther; Isotta Cristofori, Elena; Demarchi, Alessandro

    2016-04-01

    Drought is a natural hazard characterized by an abnormally dry event in the hydrological cycle caused by insufficient precipitation over an extended period of time, which affects more people than any other natural disaster and results in social, economic and environmental costs. In Africa, the economic system is based primarily on natural resources for example farming. For this reason, climate variability and events such as drought are phenomena that can represent significant disturbances and threats in the agricultural systems. In particular, this study concerns the monitoring of environmental changes in the south sector of South Sudan. The climate and environment in the South Sudan have shown localised changes during the course of this century and recurrent wars and droughts in the last years determined a large food-crisis. Actually, the security situation is stabilised with sporadic fighting concentrated in Jonglei, Unity and Upper Nile States. With the stabilisation of the conflict, many refugees have returned to their regions, trying to recover the economic structure based mainly on agriculture. For this reason, it is important to monitoring and analysis the vegetation and drought trend over the last years to support agricultural development and food security, in particular in post-conflict areas. This study focuses on the analysis of the relationship between the temporal variations of state of vegetation and the precipitation patterns. A historical analysis of the vegetation behaviour (NDVI) and the drought during the year is developed. In addition, with the aim to identify the wet and dry seasons, an analysis of precipitation is performed. Based on the vegetation and precipitation trends obtained, it is possible to characterize the best areas to start an agricultural system, giving priority to certain areas in order to plan the land use for agricultural purposes and programming crop (which and where). Consequently, with the aim to identify possible

  15. AURA (Army Unit Readiness/Sustainability Assessor) User’s Manual. Volume 2. Data Input and Sample Problem.

    DTIC Science & Technology

    1983-06-01

    34 The Army Unit Readiness/Sustainability Assessor (AURA) model provides an analytic context within which a variety of support improvements may be tested...Sustainability Assessor ) is a Monte Carlo discrete-event sielation mcdel intended for analyzinq the irterrelaticns amonq the resources asscciated with a...Alternative maintenance and supply doctrines, manpower policies, improved battle damage and recovery capabilities, and increased stock levels for

  16. Effects of electrical voltage/current on farm animals: How to detect and remedy problems. Agriculture handbook

    SciTech Connect

    Lefcourt, A.M.

    1991-12-01

    The handbook examines (1) the history of stray voltage/current problems on farms, (2) the physical and electrical sources of stray voltage/current phenomena, (3) the physiological and behavioral bases for losses in milk production, (4) methods for identifying and detecting stray voltage/current problems, (5) methods for mitigating such problems, and (6) areas where further research may be warranted. While the primary emphasis is on cattle and dairy farms, the theories and procedures discussed are completely relevant to all types of livestock and livestock housing facilities. Recommendations are made for action levels and concerning mitigation techniques. The fundamental conclusion of the handbook is that stray voltages/currents can be reduced to acceptable levels.

  17. Information for Agricultural Development.

    ERIC Educational Resources Information Center

    Kaungamno, E. E.

    This paper describes the major international agricultural information services, sources, and systems; outlines the existing information situation in Tanzania as it relates to problems of agricultural development; and reviews the improvements in information provision resources required to support the process of agricultural development in Tanzania.…

  18. Agriculture, Environmental Education Guide.

    ERIC Educational Resources Information Center

    Project I-C-E, Green Bay, WI.

    This agriculture guide, for use at the secondary level, is one of a series of guides, K-12, which were developed by teachers to help introduce environmental education into the total curriculum. Environmental problems are present in every community where agriculture education is offered, and therefore many agriculture teachers have included some…

  19. Selective and Sustained Attention as Predictors of Social Problems in Children with Typical and Disordered Attention Abilities

    ERIC Educational Resources Information Center

    Andrade, Brendan F.; Brodeur, Darlene A.; Waschbusch, Daniel A.; Stewart, Sherry H.; McGee, Robin

    2009-01-01

    Objective: Investigated the relationship between selective and sustained attention and social behavior in children with different degrees of attentional disturbance. Method: Participants were 101 6- to 12-year-old children, including 18 who were diagnosed with Attention Deficit Hyperactivity Disorder (AD/HD), 61 who were clinically referred for…

  20. Issues of sustainable irrigated agriculture in the San Joaquin Valley of California in a changing regulatory environment concerning water quality and protection of wildlife

    SciTech Connect

    Quinn, N.W.T.; Delamore, M.L.

    1994-06-01

    Since the discovery of selenium toxicosis in the Kesterson Reservoir in the San Joaquin Valley, California, public perception of irrigated agriculture as a benign competitor for California`s developed water supply has been changed irrevocably. Subsurface return flows from irrigated agriculture were implicated as the source of selenium which led to incidents of reproductive failure in waterfowl and threatened survival of other fish and wildlife species. Stringent water quality objectives were promulgated to protect rivers, tributaries, sloughs and other water bodies receiving agricultural discharges from selenium contamination. Achieving these objectives was left to the agricultural water districts, federal and state agencies responsible for drainage and water quality enforcement in the San Joaquin Basin. This paper describes some of the strategies to improve management of water resources and water quality in response to these new environmental objectives. Similar environmental objectives will likely be adopted by other developed and developing countries with large regions of arid zone agriculture and susceptible wildlife resources. A series of simulation models have been developed over the past four years to evaluate regional drainage management strategies such as: irrigation source control; drainage recycling; selective retirement of agricultural land; regional shallow ground water pumping; coordination of agricultural drainage, wetland and reservoir releases; and short-term ponding of drainage water. A new generation of Geographic Information Service-based software is under development to bridge the gap between planning and program implementation. Use of the decision support system will allow water districts and regulators to continuously monitor drainage discharges to the San Joaquin River in real-time and to assess impacts of management strategies that have been implemented to take advantage of the River`s assimilative capacity for trace elements and salts.

  1. Animals as an energy source in third world agriculture

    SciTech Connect

    Ward, G.M.; Sutherland, T.M.; Sutherland, J.M.

    1980-05-09

    Agricultural development programs have so far been largely unable to meet the food needs of the world's poorest. Increased food production can be achieved only from more intensive agriculture, which requires greater energy inputs per farm worker. Problems of technological infrastructure and escalating oil prices appear to preclude the spread of mechanization to Third World agriculture at this time. Efficient utilization of grazing animals in specific integrated farming systems could not only increase energy inputs through draft and transportation but also increase the yield of high-grade products and by-products from the renewable energy of biomass. An approach to development based on animal agriculture systems is suggested that might initiate a self-sustaining, more productive agriculture requireing only small inputs of fossil-fuel energy.

  2. Envisioning Agricultural Sustainability from Field to Plate: Comparing Producer and Consumer Attitudes and Practices toward "Environmentally Friendly" Food and Farming in Washington State, USA

    ERIC Educational Resources Information Center

    Selfa, Theresa; Jussaume, Raymond A., Jr.; Winter, Michael

    2008-01-01

    A substantial body of sociological research has examined the relationship between farmers' environmental attitudes and their conservation behaviors, but little research has compared the attitudes of producers and consumers toward the environment with their behaviors or practices in support of sustainable agri-food systems. This paper addresses…

  3. The emergence of Taenia solium cysticercosis in Eastern and Southern Africa as a serious agricultural problem and public health risk.

    PubMed

    Phiri, Isaac K; Ngowi, Helena; Afonso, Sonia; Matenga, Elizabeth; Boa, Mathias; Mukaratirwa, Samson; Githigia, Samuel; Saimo, Margaret; Sikasunge, Chummy; Maingi, Ndichu; Lubega, George W; Kassuku, Ayub; Michael, Lynne; Siziya, Seter; Krecek, Rosina C; Noormahomed, Emilia; Vilhena, Manuela; Dorny, Pierre; Willingham, A Lee

    2003-06-01

    pigs positive. In Zimbabwe, a retrospective study in official abattoirs around the country from 1994 to 2001 reported a mean prevalence of 0.34% which is in contrast to a post-mortem survey in 1999, which showed that the prevalence of porcine cysticercosis in rural west Zimbabwe where smallholder pig keeping is popular was 28.6%. In Zambia, abattoir records reported porcine cysticercosis in six of the nine provinces. Routine meat inspection of 1316 pigs at a slaughter slab in Lusaka showed that 20.6% of the pigs had cysticercosis whereas serological testing of 874 pigs at the same abattoir indicated that 56.6% were found to have circulating antigens of Taenia solium. Field surveys based on lingual palpation in Southern and Eastern Provinces of Zambia revealed prevalences of 8.2-28.4 and 5.2%, respectively. South Africa has the largest number of pigs in Southern Africa and cysticercosis has been recognised as a problem in the country for many decades. There is strong evidence supporting the high prevalence of neurocysticercosis infecting humans from resource-poor areas of the country where pigs are being raised under smallholder conditions. In spite of this community-based surveys on porcine cysticercosis have never been conducted in South Africa and the last slaughterhouse survey was conducted nearly 40 years ago. The prevalences of porcine cysticercosis found in these ESA countries rank among the highest in the world and the disease is emerging as an important constraint for the nutritional and economic well being of resource-poor smallholder farming communities. The current findings suggest the widespread presence of human tapeworm carriers and thus a high risk of human cysticercosis in both rural areas and urban centres in the ESA region. More research is required in the region to assess the extent and public health and economic impact of T. solium infection in order to determine whether and what prevention and control efforts are needed.

  4. Multiple factors drive regional agricultural abandonment.

    PubMed

    Osawa, Takeshi; Kohyama, Kazunori; Mitsuhashi, Hiromune

    2016-01-15

    An understanding of land-use change and its drivers in agroecosystems is important when developing adaptations to future environmental and socioeconomic pressures. Agricultural abandonment occurs worldwide with multiple potentially positive and negative consequences; however, the main factors causing agricultural abandonment in a country i.e., at the macro scale, have not been identified. We hypothesized that socio-environmental factors driving agricultural abandonment could be summarized comprehensively into two, namely "natural" and "social", and the relative importance of these differs among regions. To test this postulate, we analyzed the factors currently leading to agricultural abandonment considering ten natural environment variables (e.g., temperature) and five social variables (e.g., number of farmers) using the random forest machine learning method after dividing Japan into eight regions. Our results showed that agricultural abandonment was driven by various socio-environmental factors, and the main factors leading to agricultural abandonment differed among regions, especially in Hokkaido in northern Japan. Hokkaido has a relatively large area of concentrated farmland, and abandonment might have resulted from the effectiveness of cultivation under specific climate factors, whereas the other regions have relatively small areas of farmland with many elderly part-time farmers. In such regions, abandonment might have been caused by the decreasing numbers of potential farmers. Thus, two different drivers of agricultural abandonment were found: inefficient cultivation and decreasing numbers of farmers. Therefore, agricultural abandonment cannot be prevented by adopting a single method or policy. Agricultural abandonment is a significant problem not only for food production but also for several ecosystem services. Governments and decision-makers should develop effective strategies to prevent further abandonment to ensure sustainable future management of agro-ecosystems.

  5. Problem-Oriented and Project-Based Learning (POPBL) as an Innovative Learning Strategy for Sustainable Development in Engineering Education

    ERIC Educational Resources Information Center

    Lehmann, M.; Christensen, P.; Du, X.; Thrane, M.

    2008-01-01

    In a world where systems are increasingly larger, where their boundaries are often difficult to identify, and where societal rather than technical issues play increasingly bigger roles, problems cannot be solved by applying a technical solution alone. It thus becomes important for engineers to be skilled not only in terms of their particular…

  6. Promoting Proper Education for Sustainability: An Exploratory Study of ICT Enhanced Problem Based Learning in a Developing Country

    ERIC Educational Resources Information Center

    Roy, Amit; Kihoza, Patrick; Suhonen, Jarkko; Vesisenaho, Mikko; Tukiaianen, Markku

    2014-01-01

    One of the goals of education is to create responsible citizens who can adequately understand the problems faced by their societies and who can then act to help solve them. Such behaviour can be fostered through proper education that facilitates expert knowledge about social issues, nurtures the ability to think critically and grows the skills…

  7. Is Sustainability Sustainable?

    ERIC Educational Resources Information Center

    Bonevac, Daniel

    2010-01-01

    The most important concept in current environmental thinking is "sustainability". Environmental policies, economic policies, development, resource use--all of these things, according to the consensus, ought to be sustainable. But what is sustainability? What is its ethical foundation? There is little consensus about how these questions…

  8. Chapter 9, Land and Bioenergy in Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & Sustainability: bridging the gaps.

    SciTech Connect

    Woods J, Lynd LR; Laser, M; Batistella M, De Castro D; Kline, Keith L; Faaij, Andre

    2015-01-01

    In this chapter we address the questions of whether and how enough biomass could be produced to make a material contribution to global energy supply on a scale and timeline that is consistent with prominent low carbon energy scenarios. We assess whether bioenergy provision necessarily conflicts with priority ecosystem services including food security for the world s poor and vulnerable populations. In order to evaluate the potential land demand for bioenergy, we developed a set of three illustrative scenarios using specified growth rates for each bioenergy sub-sector. In these illustrative scenarios, bioenergy (traditional and modern) increases from 62 EJ/yr in 2010 to 100, 150 and 200 EJ/yr in 2050. Traditional bioenergy grows slowly, increasing by between 0.75% and 1% per year, from 40 EJ/yr in 2010 to 50 or 60 EJ/ yr in 2050, continuing as the dominant form of bioenergy until at least 2020. Across the three scenarios, total land demand is estimated to increase by between 52 and 200 Mha which can be compared with a range of potential land availability estimates from the literature of between 240 million hectares to over 1 billion hectares. Biomass feedstocks arise from combinations of residues and wastes, energy cropping and increased efficiency in supply chains for energy, food and materials. In addition, biomass has the unique capability of providing solid, liquid and gaseous forms of modern energy carriers that can be transformed into analogues to existing fuels. Because photosynthesis fixes carbon dioxide from the atmosphere, biomass supply chains can be configured to store at least some of the fixed carbon in forms or ways that it will not be reemitted to the atmosphere for considerable periods of time, so-called negative emissions pathways. These attributes provide opportunities for bioenergy policies to promote longterm and sustainable options for the supply of energy for the foreseeable future.

  9. Potentials for win-win alliances among animal agriculture and forest products industries: application of the principles of industrial ecology and sustainable development.

    PubMed

    Cowling, Ellis B; Furiness, Cari S

    2005-09-01

    Commercial forests in many parts of the world are deficient in nitrogen and phosphorus. These nutrient-deficient forests often exist in close proximity to large animal feeding operations, meat processing and other food, textile, or other biomass-processing plants, and municipal waste treatment facilities. Many of these facilities produce large surpluses of nitrogen, phosphorus, and organic matter as gaseous ammonia, urea, uric acid, phosphorus compounds, bacterial sludges, and partially treated municipal wastewaters. These co-existing and substantial nutrient deficiencies and surpluses offer ready-made opportunities for discovery, demonstration, and commercial development of science-based, technology-facilitated, environmentally sound, economically viable, and socially acceptable "win-win alliances" among these major industries based on the principles of industrial ecology and sustainable development. The major challenge is to discover practical means to capture the surplus nutrients and put them to work in forest stands from which value-added products can be produced and sold at a profit.

  10. Potentials for win-win alliances among animal agriculture and forest products industries: application of the principles of industrial ecology and sustainable development.

    PubMed

    Cowling, Ellis B; Furiness, Carl S

    2005-12-01

    Commercial forests in many parts of the world are deficient in nitrogen and phosphorus. These nutrient-deficient forests often exist in close proximity to large animal feeding operations, meat processing and other food, textile, or other biomass-processing plants, and municipal waste treatment facilities. Many of these facilities produce large surpluses of nitrogen, phosphorus, and organic matter as gaseous ammonia, urea, uric acid, phosphorus compounds, bacterial sludges, and partially treated municipal wastewaters. These co-existing and substantial nutrient deficiencies and surpluses offer ready-made opportunities for discovery, demonstration, and commercial development of science-based, technology-facilitated, environmentally sound, economically viable, and socially acceptable "win-win alliances" among these major industries based on the principles of industrial ecology and sustainable development. The major challenge is to discover practical means to capture the surplus nutrients and put them to work in forest stands from which value-added products can be produced and sold at a profit.

  11. Boundaries of sustainability in simple and elaborate models of agricultural pest control with a pesticide and a non-toxic refuge.

    PubMed

    Mohammed-Awel, Jemal; Ringland, John; Bantle, John; Festinger, Aaron; Jo, Hee-Joon; Klafehn, Ryan

    2012-01-01

    In two models of pest control using a pesticidal crop along with a non-pesticidal refuge to prevent the development of resistance, we numerically compute the bifurcations that bound the region in parameter space where control is sustainable indefinitely. An exact formula for one of the bifurcation surfaces in one of the models is also found. One model is conceptual and as simple as possible. The other is realistic and very detailed. Despite the great differences in the models, we find the same distinctive bifurcation structure. We focus on the parameters that determine: (i) the restriction of pest exchange between the crop and the refuge, which we call 'screening' the refuge, and (ii) the recessiveness of the resistance trait. The screened refuge technique is seen to work in the models up to quite high values of fitness of resistant heterozygotes, that is, even when resistance is not strongly recessive.

  12. Agricultural use of wetlands: opportunities and limitations

    PubMed Central

    Verhoeven, Jos T. A.; Setter, Tim L.

    2010-01-01

    Background Wetlands are species-rich habitats performing valuable ecosystem services such as flood protection, water quality enhancement, food chain support and carbon sequestration. Worldwide, wetlands have been drained to convert them into agricultural land or industrial and urban areas. A realistic estimate is that 50 % of the world's wetlands have been lost. Scope This paper reviews the relationship between wetlands and agriculture with the aim to identify the successes and failures of agricultural use in different types of wetlands, with reference to short-term and long-term benefits and issues of sustainability. It also addresses a number of recent developments which will lead to pressure to reclaim and destroy natural wetlands, i.e. the continuous need for higher production to feed an increasing world population and the increasing cultivation of energy crops. Finally, attention is paid to the development of more flood-tolerant crop cultivars. Conclusions Agriculture has been carried out in several types of (former) wetlands for millennia, with crop fields on river floodplain soils and rice fields as major examples. However, intensive agricultural use of drained/reclaimed peatlands has been shown to lead to major problems because of the oxidation and subsidence of the peat soil. This does not only lead to severe carbon dioxide emissions, but also results in low-lying land which needs to be protected against flooding. Developments in South-East Asia, where vast areas of tropical peatlands are being converted into oil palm plantations, are of great concern in this respect. Although more flood-tolerant cultivars of commercial crop species are being developed, these are certainly not suitable for cultivation in wetlands with prolonged flooding periods, but rather will survive relatively short periods of waterlogging in normally improved agricultural soils. From a sustainability perspective, reclamation of peatlands for agriculture should be strongly discouraged

  13. Implementing interactive decision support: A case for combining cyberinfrastructure, data fusion, and social process to mobilize scientific knowledge in sustainability problems

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2014-12-01

    Geosciences are becoming increasingly data intensive, particularly in relation to sustainability problems, which are multi-dimensional, weakly structured and characterized by high levels of uncertainty. In the case of complex resource management problems, the challenge is to extract meaningful information from data and make sense of it. Simultaneously, scientific knowledge alone is insufficient to change practice. Creating tools, and group decision support processes for end users to interact with data are key challenges to transforming science-based information into actionable knowledge. The ENCOMPASS project began as a multi-year case study in the Atacama Desert of Chile to design and implement a knowledge transfer model for energy-water-mining conflicts in the region. ENCOMPASS combines the use of cyberinfrastructure (CI), automated data collection, interactive interfaces for dynamic decision support, and participatory modelling to support social learning. A pilot version of the ENCOMPASS CI uses open source systems and serves as a structure to integrate and store multiple forms of data and knowledge, such as DEM, meteorological, water quality, geomicrobiological, energy demand, and groundwater models. In the case study, informatics and data fusion needs related to scientific uncertainty around deep groundwater flowpaths and energy-water connections. Users may upload data from field sites with handheld devices or desktops. Once uploaded, data assets are accessible for a variety of uses. To address multi-attributed decision problems in the Atacama region a standalone application with touch-enabled interfaces was created to improve real-time interactions with datasets by groups. The tool was used to merge datasets from the ENCOMPASS CI to support exploration among alternatives and build shared understanding among stakeholders. To date, the project has increased technical capacity among stakeholders, resulted in the creation of both for-profit and non

  14. Agricultural aviation research

    NASA Technical Reports Server (NTRS)

    Chevalier, H. L. (Compiler); Bouse, L. F. (Compiler)

    1977-01-01

    A compilation of papers, comments, and results is provided during a workshop session. The purpose of the workshop was to review and evaluate the current state of the art of agricultural aviation, to identify and rank potentially productive short and long range research and development areas, and to strengthen communications between research scientists and engineers involved in agricultural research. Approximately 71 individuals actively engaged in agricultural aviation research were invited to participate in the workshop. These were persons familiar with problems related to agricultural aviation and processing expertise which are of value for identifying and proposing beneficial research.

  15. Sustainable development: a regional perspective.

    PubMed

    Icamina, P

    1988-12-01

    This article discusses sustainable development in Asia and current environmental problems in this region. Droughts and rainy seasons pose a major concern indicating environmental limitations: India's 1987 drought halted world grain production and China suffered US $435 million in flooding damage. Deforestation and land degradation are consequences of a rising population's demand for agriculture, fuelwood, irrigation, and hydroelectric projects; 1815 million hectares of forest are cleared/year and 40% of the land could possible be subjected to soil erosion. Although population growth is declining in some Asian countries, the continent inhabits the greatest proportion of world population; 300 million are underfed. Food production remains a problem for this region because of bad weather, highly populated areas, less cropland, soil erosion, and limited water supply. Efforts currently employed to conserve natural resources include community reforestation, providing available drinking water, substituting firewood for fuelwood, and delivering primary health care.

  16. Managing agricultural greenhouse gases: Coordinated agricultural research through GRACEnet to address our changing climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change presents numerous challenges to agriculture. Concurrent efforts to mitigate agricultural contributions to climate change while adapting to its projected consequences will be essential to ensure long-term sustainability and food security. To facilitate successful responses to ...

  17. The North Wyke Farm Platform, a UK national capability for research into sustainability of temperate agricultural grassland management: progress and developments

    NASA Astrophysics Data System (ADS)

    Harris, Paul; Dungait, Jennifer; Griffith, Bruce; Shepherd, Anita; Sint, Hadewij; Blackwell, Martin; Cardenas, Laura; Collins, Adrian; Goulding, Keith; Lee, Michael; Orr, Robert

    2015-04-01

    The North Wyke Farm Platform (NWFP) at Rothamsted Research in the South-West of England, is a large, farm-scale experiment for collaborative research, training and knowledge exchange in agro-environmental sciences; with the aim of addressing agricultural productivity and ecosystem responses to different management practices. The 63 ha NWFP site, captures the spatial and/or temporal data necessary to develop a better understanding of the dynamic processes and underlying mechanisms that can be used to model how agricultural grassland systems respond to different management inputs. Here, via beef and sheep production, the underlying principle is to manage each of three farmlets (each consisting of five man-made, hydrologically-isolated sub-catchments) in three contrasting ways: (i) improvement through use of mineral fertilizers; (ii) improvement through use of legumes; and (iii) improvement through innovation. The connectivity between the timing and intensity of the different management operations, together with the transport of nutrients and potential pollutants from the NWFP is evaluated using various data collection and data modelling exercises. The primary data collection strategy involves the use of a ground-based, wireless sensor network, where in each of the fifteen sub-catchments, water characteristics such as flow, turbidity and chemistry are measured at a flume laboratory that captures the sub-catchment's water drainage (via a system of directed French drains). This sensor network also captures: precipitation, soil moisture and soil temperature data for each sub-catchment; greenhouse gas data across key subsets of the fifteen sub-catchments; and meteorological data (other than precipitation) at a single site only (representative of the NWFP site, as a whole). Such high temporal resolution data sets (but with limited spatial resolution) are coupled with a secondary data collection strategy, for high spatial resolution data sets (but with limited temporal

  18. Agricultural Resources Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains four units with relevant problem areas and is intended as a source unit for agricultural education. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. Each problem area includes some or all of the…

  19. Perspectives on the Structure of American Agriculture. Volume I: The View from the Farm--Special Problems of Minority and Low-Income Farmers.

    ERIC Educational Resources Information Center

    Coughlin, Kenneth M., Ed.

    This is the first of two volumes of papers examining the impact of national agricultural policy on the rural poor. The seven articles in this volume offer personal accounts of minority and low-income farmers struggling to gain a foothold in American agriculture. "'It's Too Late for Our Family,'" by Marian Lenzen, describes a family's…

  20. Sustainability Evaluation.

    PubMed

    Stichnothe, Heinz

    2017-03-17

    The long-term substitution of fossil resources can only be achieved through a bio-based economy, with biorefineries and bio-based products playing a major role. However, it is important to assess the implications of the transition to a bio-based economy. Life cycle-based sustainability assessment is probably the most suitable approach to quantify impacts and to identify trade-offs at multiple levels. The extended utilisation of biomass can cause land use change and affect food security of the most vulnerable people throughout the world. Although this is mainly a political issue and governments should be responsible, the responsibility is shifted to companies producing biofuels and other bio-based products. Organic wastes and lignocellulosic biomass are considered to be the preferred feedstock for the production of bio-based products. However, it is unlikely that a bio-based economy can rely only on organic wastes and lignocellulosic biomass.It is crucial to identify potential problems related to socio-economic and environmental issues. Currently there are many approaches to the sustainability of bio-based products, both quantitative and qualitative. However, results of different calculation methods are not necessarily comparable and can cause confusion among decision-makers, stakeholders and the public.Hence, a harmonised, globally agreed approach would be the best solution to secure sustainable biomass/biofuels/bio-based chemicals production and trade, and to avoid indirect effects (e.g. indirect land use change). However, there is still a long way to go.Generally, the selection of suitable indicators that serve the purpose of sustainability assessment is very context-specific. Therefore, it is recommended to use a flexible and modular approach that can be adapted to various purposes. A conceptual model for the selection of sustainability indicators is provided that facilitates identifying suitable sustainability indicators based on relevance and significance in a

  1. The Campesino-to-Campesino agroecology movement of ANAP in Cuba: social process methodology in the construction of sustainable peasant agriculture and food sovereignty.

    PubMed

    Rosset, Peter Michael; Sosa, Braulio Machín; Jaime, Adilén María Roque; Lozano, Dana Rocío Ávila

    2011-01-01

    Agroecology has played a key role in helping Cuba survive the crisis caused by the collapse of the socialist bloc in Europe and the tightening of the US trade embargo. Cuban peasants have been able to boost food production without scarce and expensive imported agricultural chemicals by first substituting more ecological inputs for the no longer available imports, and then by making a transition to more agroecologically integrated and diverse farming systems. This was possible not so much because appropriate alternatives were made available, but rather because of the Campesino-a-Campesino (CAC) social process methodology that the National Association of Small Farmers (ANAP) used to build a grassroots agroecology movement. This paper was produced in a 'self-study' process spearheaded by ANAP and La Via Campesina, the international agrarian movement of which ANAP is a member. In it we document and analyze the history of the Campesino-to-Campesino Agroecology Movement (MACAC), and the significantly increased contribution of peasants to national food production in Cuba that was brought about, at least in part, due to this movement. Our key findings are (i) the spread of agroecology was rapid and successful largely due to the social process methodology and social movement dynamics, (ii) farming practices evolved over time and contributed to significantly increased relative and absolute production by the peasant sector, and (iii) those practices resulted in additional benefits including resilience to climate change.

  2. Glyphosate sustainability in South American cropping systems.

    PubMed

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it.

  3. Agriculture: Newsroom

    EPA Pesticide Factsheets

    Agriculture Newsroom. News releases, reports, and other documents from around EPA that are of interest or direct importance to the environmental management or compliance efforts of the agricultural community.

  4. Grassland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...

  5. Sustainable agriculture and nitrogen reduction: an open field experiment using natural zeolitites in silty-clay reclaimed soil at Codigoro (Po River Delta, Ferrara, Italy)

    NASA Astrophysics Data System (ADS)

    Faccini, Barbara; Di Giuseppe, Dario; Mastrocicco, Micòl; Coltorti, Massimo; Colombani, Nicolò; Ferretti, Giacomo

    2014-05-01

    Following the guidelines of Nitrate and Water Framework Directives (91/676/CEE, 200/60/CE) an innovative integrated zeolitite cycle is being tested on a reclaimed clayey-silt soil in the Po Delta area (Ferrara Province, Italy), in the framework of the EU-funded ZeoLIFE project (LIFE+10 ENV/IT/000321). Natural zeolitites are pyroclastic rocks containing more than 50% of zeolites, a kind of hydrous minerals with peculiar physical and chemical properties, like high and selective cation exchange capacity (CEC), molecular adsorption and reversible dehydration. Zeolitites can trap NH4+ from solutions and release it gradually to the plant roots once they have been mixed in agricultural soils, allowing both fertilization and irrigation reduction and improvement of the yield. The fertilization reduction can result in a decrease of the nitrate content in groundwater and surface waters, ultimately leading to a mitigation of nutrient excess in the environment. Similarly, reduction of irrigation water means a minor exploitation of the water resource. The selected material used in the project is a chabazite zeolitite coming from a quarry near Sorano in Central Italy (Bolsena volcanic district). The open-field experimentation foresees two year of cultivation. A surface of about 6 ha has been divided into six parcels: three control parcels are cultivated and irrigated in traditional way; two parcels have been added with coarse-grained (ø = 3- 6 mm) natural zeolitite at different zeolitite/soil ratios (5 kg/m2 and 15 kg/m2) and one has been mixed with fine-grained (ø < 3 mm) NH4+-charged zeolitite at 10 kg/m2. Zeolitite/soil ratios have been determined upon a series of greenhouse tests, and the ammonium enriched material is obtained by cation exchange with swine manure in a specifically conceived prototype. The environmental quality of soil and water in each parcel is monitored by periodic soil, groundwater and porewater analyses. Soil EC, temperature and volumetric water content

  6. Achieving sustainable cultivation of potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Every phase of the production cycle impacts the sustainability of potato. Potato physiology determines how genetically encoded developmental attributes interact with local environmental conditions as modified through agricultural practice to produce a perishable crop. In this chapter we highlight ho...

  7. Precision agriculture and food security.

    PubMed

    Gebbers, Robin; Adamchuk, Viacheslav I

    2010-02-12

    Precision agriculture comprises a set of technologies that combines sensors, information systems, enhanced machinery, and informed management to optimize production by accounting for variability and uncertainties within agricultural systems. Adapting production inputs site-specifically within a field and individually for each animal allows better use of resources to maintain the quality of the environment while improving the sustainability of the food supply. Precision agriculture provides a means to monitor the food production chain and manage both the quantity and quality of agricultural produce.

  8. Developing sustainable food supply chains.

    PubMed

    Smith, B Gail

    2008-02-27

    This paper reviews the opportunities available for food businesses to encourage consumers to eat healthier and more nutritious diets, to invest in more sustainable manufacturing and distribution systems and to develop procurement systems based on more sustainable forms of agriculture. The important factors in developing more sustainable supply chains are identified as the type of supply chain involved and the individual business attitude to extending responsibility for product quality into social and environmental performance within their own supply chains. Interpersonal trust and working to standards are both important to build more sustainable local and many conserved food supply chains, but inadequate to transform mainstream agriculture and raw material supplies to the manufactured and commodity food markets. Cooperation among food manufacturers, retailers, NGOs, governmental and farmers' organizations is vital in order to raise standards for some supply chains and to enable farmers to adopt more sustainable agricultural practices.

  9. Adapting agriculture to climate change.

    PubMed

    Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-12-11

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

  10. Solar charged agriculture

    SciTech Connect

    Heckeroth, S.

    1999-07-01

    It is becoming obvious that the developed world's reliance on petroleum for transportation and agricultural production is not sustainable. Industrial agriculture currently uses an average of 200 gallons of diesel per acre (1,900 liters per hectare) per year. Sustainability requires a transition to the use of non-polluting renewable energy sources, as well as small scale farming techniques. This paper outlines the tremendous potential electric tractors offer in a variety of applications all over the world, including greenhouses and organic farms, toxic cleanup, bomb disposal and mine sweeping, as well as use as a mobile power source in remote areas and in emergency applications. An electric tractor can be charged from photovoltaic panels, either on the tractor in the form of a shade canopy or mounted on the roof of a building.

  11. Heterogeneity and topsoil depletion due to tillage erosion and soil co-extraction with root vegetables: a serious threat to sustainable agricultural land use in the UK

    NASA Astrophysics Data System (ADS)

    Quine, Timothy; van Oost, Kristof

    2010-05-01

    The term soil erosion has become almost synonymous with water erosion and yet tillage erosion and soil loss with root crop harvest, although less visible, may be responsible for the majority of the on-site costs of soil erosion in many arable areas of the UK. The study reported here is a first attempt to model soil erosion associated with these processes in England and Wales, at the National scale. A GIS-based modelling approach in the Arc/Info environment is employed in order to meet the requirement for large-scale evaluation of erosion severity. Existing models that have been subject to independent test are used or adapted and widely available data is employed in model parameterisation. Tillage erosion is simulated using a diffusion-type model and a slope curvature index derived from coarse-scale topographic data. The curvature index is calibrated by statistical comparison to curvature values derived from a high resolution digital terrain model. Soil loss with root crop harvest is simulated using information concerning patterns of sugar beet and potato cultivation and estimation of soil moisture during the crop harvest season. Soil loss associated with root crop harvest may be as high as 1 t ha-1 year-1 if land is permanently used for root crops in a 3 year rotation. However, when the arable area of the UK is considered as a whole root crop harvest is responsible for a mean rate of soil loss of approximately 0.1 t ha-1 year-1. Tillage erosion is found to be the dominant process of soil redistribution and onsite erosion on arable land, in comparison with both soil loss through root crop harvest and with long-term water erosion rates. Mean gross rates of tillage erosion were found to be 3.7 t ha-1 year-1, representing approximately 7.4 t ha-1 year-1 erosion and the same rate of deposition. Soil redistribution at these rates is generating an heterogeneous soilscape in which continued functioning for food and fibre production may be jeopardized. These problems may be

  12. Sustainable development: women as partners.

    PubMed

    Dem, M

    1993-02-01

    The economic recession and the structural adjustment programs imposed y the International Monetary Fund have caused sluggish or no economic growth and a decline in living conditions in sub-Saharan Africa. Senegal's New Agricultural Policy has eliminated subsidies for agricultural inputs, worsening the already declining living conditions. Population growth in Senegal exceeds food production; it is very rapid in cities (urban growth rate, 2.7%). Women, especially, suffer from the economic crisis; it increases the burden on women for income generation, but the increased workload does not equate more income. This workload restricts women's opportunities to improve their physical environment and does not improve their status within society. Women still face discrimination daily; power lies with men. Oxfam supports urban women financially and technically as they organize and pursue income generation activities to institute change leading to sustainable development. It has helped a Serere women's group in Dakar to organize and provided credit funds to support their trading activities and family planning sensitization training. Oxfam also finances rural women coming to Dakar during the dry season to pound millet to sell. Problems which have to be overcome to achieve sustainable development acceptable to women are numerous. Women need access to the ways and means of food production. Resources are insufficient and inaccessible to women because women are excluded from the decision-making process. Women generally do not have access to information and training which would help them make their own choices and manage their own lives. Political and sociocultural environments, especially those of the poor, do not easily allow women opportunities for independent reflection and expression. Grassroots women's groups provide the best base to develop female solidarity and women's representation, leading to sustainable development. Development organizations must take up a new dynamic

  13. Agricultural Business and Management Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains 5 teaching units for 44 agricultural business and management cluster problem areas. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. The five units are as follows: (1) agribusiness operation and…

  14. Transforming Agricultural Water Management in Support of Ecosystem Restoration

    SciTech Connect

    Hanlon, Edward; Capece, John

    2009-11-20

    Threats to ecosystems are not local; they have to be handled with the global view in mind. Eliminating Florida farms, in order to meet its environmental goals, would simply move the needed agricultural production overseas, where environmentally less sensitive approaches are often used, thus yielding no net ecological benefit. South Florida is uniquely positioned to lead in the creation of sustainable agricultural systems, given its population, technology, and environmental restoration imperative. Florida should therefore aggressively focus on developing sustainable systems that deliver both agricultural production and environmental services. This presentation introduces a new farming concept of dealing with Florida’s agricultural land issues. The state purchases large land areas in order to manage the land easily and with ecosystem services in mind. The proposed new farming concept is an alternative to the current “two sides of the ditch” model, in which on one side are yield-maximizing, input-intensive, commodity price-dependent farms, while on the other side are publicly-financed, nutrient-removing treatment areas and water reservoirs trying to mitigate the externalized costs of food production systems and other human-induced problems. The proposed approach is rental of the land back to agriculture during the restoration transition period in order to increase water storage (allowing for greater water flow-through and/or water storage on farms), preventing issues such as nutrients removal, using flood-tolerant crops and reducing soil subsidence. Since the proposed approach is still being developed, there exist various unknown variables and considerations. However, working towards a long-term sustainable scenario needs to be the way ahead, as the threats are global and balancing the environment and agriculture is a serious global challenge.

  15. Optimal integrated management of groundwater resources and irrigated agriculture in arid coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, J.; Schütze, N.; Heck, V.

    2014-09-01

    Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.

  16. [Musculoskeletal disorders in agriculture].

    PubMed

    Bernard, Christophe; Tourne, Mathias

    2007-06-15

    Musculoskeletal disorders (MSD) are a major area of concern in the occupational world. The agricultural industry is particularly affected: 93 percent of occupational diseases in agriculture are MSD. Carpal tunnel syndrome occurs in one third of the cases. Shoulder is the second most common location. The most affected occupational areas are meat production, viticulture, market gardening, horticulture and small animal farming. This MSD phenomenon, of multifactorial origin, which has been amplifying for two decades, has led to some consensus in terms of definition and prevention strategy. The aim is to identify, limit or even suppress risk factors through worker training as well as through actions related to work organization. Regarding occupational health and safety in agriculture, two fronts of progress have been mentioned: the creation of a statistic observatory of MSD (disease, occupational area and cost) and the assessment of prevention activities. Finally, a new issue is being discussed: sustainable prevention of MSD.

  17. Sustainability as Moral Action

    ERIC Educational Resources Information Center

    Dunn, Merrily S.; Hart-Steffes, Jeanne S.

    2012-01-01

    When one considers sustainability as a moral action, there are equally complex realities at hand--climate change, resource depletion, water and land rights. One author describes this broad sense of sustainability as "the connection of specific social and environmental problems to the functioning of human and ecological systems" (Jenkins, 2011).…

  18. GREENSCOPE: Sustainable Process Modeling

    EPA Science Inventory

    EPA researchers are responding to environmental problems by incorporating sustainability into process design and evaluation. EPA researchers are also developing a tool that allows users to assess modifications to existing and new chemical processes to determine whether changes in...

  19. Bioenergy sustainability in China: potential and impacts.

    PubMed

    Zhuang, Jie; Gentry, Randall W; Yu, Gui-Rui; Sayler, Gary S; Bickham, John W

    2010-10-01

    The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability requirements of the environment, economy, and society. This article serves as a brief overview of China's bioenergy development and as an introduction to this special issue on the impacts of bioenergy development in China. The eleven articles in this special issue present a range of perspectives and scenario analyses on bioenergy production and its impacts as well as potential barriers to its development. Five general themes are covered: status and goals, biomass resources, energy plants, environmental impacts, and economic and social impacts. The potential for bioenergy production in China is huge, particularly in the central north and northwest. China plans to develop a bioenergy capacity of 30GW by 2020. However, realization of this goal will require breakthroughs in bioenergy landscape design, energy plant biotechnology, legislation, incentive policy, and conversion facilities. Our analyses suggest that (1) the linkage between bioenergy, environment, and economy are often circular rather than linear in nature; (2) sustainability is a core concept in bioenergy design and the ultimate goal of bioenergy development; and (3) each bioenergy development scheme must be region-specific and designed to solve local environmental and agricultural problems.

  20. Bioenergy Sustainability in China: Potential and Impacts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jie; Gentry, Randall W.; Yu, Gui-Rui; Sayler, Gary S.; Bickham, John W.

    2010-10-01

    The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability requirements of the environment, economy, and society. This article serves as a brief overview of China’s bioenergy development and as an introduction to this special issue on the impacts of bioenergy development in China. The eleven articles in this special issue present a range of perspectives and scenario analyses on bioenergy production and its impacts as well as potential barriers to its development. Five general themes are covered: status and goals, biomass resources, energy plants, environmental impacts, and economic and social impacts. The potential for bioenergy production in China is huge, particularly in the central north and northwest. China plans to develop a bioenergy capacity of 30GW by 2020. However, realization of this goal will require breakthroughs in bioenergy landscape design, energy plant biotechnology, legislation, incentive policy, and conversion facilities. Our analyses suggest that (1) the linkage between bioenergy, environment, and economy are often circular rather than linear in nature; (2) sustainability is a core concept in bioenergy design and the ultimate goal of bioenergy development; and (3) each bioenergy development scheme must be region-specific and designed to solve local environmental and agricultural problems.

  1. Selection of Sustainable Processes using Sustainability ...

    EPA Pesticide Factsheets

    Chemical products can be obtained by process pathways involving varying amounts and types of resources, utilities, and byproduct formation. When such competing process options such as six processes for making methanol as are considered in this study, it is necessary to identify the most sustainable option. Sustainability of a chemical process is generally evaluated with indicators that require process and chemical property data. These indicators individually reflect the impacts of the process on areas of sustainability, such as the environment or society. In order to choose among several alternative processes an overall comparative analysis is essential. Generally net profit will show the most economic process. A mixed integer optimization problem can also be solved to identify the most economic among competing processes. This method uses economic optimization and leaves aside the environmental and societal impacts. To make a decision on the most sustainable process, the method presented here rationally aggregates the sustainability indicators into a single index called sustainability footprint (De). Process flow and economic data were used to compute the indicator values. Results from sustainability footprint (De) are compared with those from solving a mixed integer optimization problem. In order to identify the rank order of importance of the indicators, a multivariate analysis is performed using partial least square variable importance in projection (PLS-VIP)

  2. Plant gnotobiology: Epiphytic microbes and sustainable agriculture.

    PubMed

    Kutschera, Ulrich; Khanna, Rajnish

    2016-12-01

    In 1963, a monograph by Thomas D. Luckey entitled Germfree Life and Gnotobiology was published, with a focus on animals treated with microbes and reference to the work of Louis Pasteur (1822-1895). Here, we review the history and current status of plant gnotobiology, which can be traced back to the experiments of Jean-Baptiste Boussingault (1801-1887) published in 1838. Since the outer surfaces of typical land plants are much larger than their internal areas, embryophytes "wear their guts on the outside." We describe the principles of gnotobiological analyses, with reference to epiphytic metylobacteria, and sunflower (Helianthus annuus) as well as Arabidopsis as model dicots. Finally, a Californian field experiment aiming to improve crop yield in strawberries (Fragaria ananassa) is described to document the practical value of this novel research agenda.

  3. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  4. VOCATIONAL AGRICULTURE.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Research Coordinating Unit.

    TO ASSIST THOSE WHO MAKE DECISIONS RELATING TO EDUCATIONAL PROGRAMS IN AGRICULTURE, RECENT RESEARCH IN VOCATIONAL AGRICULTURE IS SUMMARIZED. A 1963 STUDY TREATS THE RELATIONSHIP BETWEEN WORK EXPERIENCE AND STUDENT CHARACTERISTICS, PLANS, AND ASPIRATIONS. STUDIES ON POST-SECONDARY EDUCATION CONCERN GUIDELINES FOR TECHNICIAN PROGRAMS, JUSTIFICATION…

  5. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... promote and support the development of a viable and sustainable global agricultural system. Such work may... Administrator, Agricultural Marketing Service with respect to Dairy Product Mandatory Reporting (7 U.S.C....

  6. The macroecology of sustainability.

    PubMed

    Burger, Joseph R; Allen, Craig D; Brown, James H; Burnside, William R; Davidson, Ana D; Fristoe, Trevor S; Hamilton, Marcus J; Mercado-Silva, Norman; Nekola, Jeffrey C; Okie, Jordan G; Zuo, Wenyun

    2012-01-01

    The discipline of sustainability science has emerged in response to concerns of natural and social scientists, policymakers, and lay people about whether the Earth can continue to support human population growth and economic prosperity. Yet, sustainability science has developed largely independently from and with little reference to key ecological principles that govern life on Earth. A macroecological perspective highlights three principles that should be integral to sustainability science: 1) physical conservation laws govern the flows of energy and materials between human systems and the environment, 2) smaller systems are connected by these flows to larger systems in which they are embedded, and 3) global constraints ultimately limit flows at smaller scales. Over the past few decades, decreasing per capita rates of consumption of petroleum, phosphate, agricultural land, fresh water, fish, and wood indicate that the growing human population has surpassed the capacity of the Earth to supply enough of these essential resources to sustain even the current population and level of socioeconomic development.

  7. The macroecology of sustainability

    USGS Publications Warehouse

    Burger, Joseph R.; Allen, Craig D.; Brown, James H.; Burnside, William R.; Davidson, Ana D.; Fristoe, Trevor S.; Hamilton, Marcus J.; Mercado-Silva, Norman; Nekola, Jeffrey C.; Okie, Jordan G.; Zuo, Wenyun

    2012-01-01

    The discipline of sustainability science has emerged in response to concerns of natural and social scientists, policymakers, and lay people about whether the Earth can continue to support human population growth and economic prosperity. Yet, sustainability science has developed largely independently from and with little reference to key ecological principles that govern life on Earth. A macroecological perspective highlights three principles that should be integral to sustainability science: 1) physical conservation laws govern the flows of energy and materials between human systems and the environment, 2) smaller systems are connected by these flows to larger systems in which they are embedded, and 3) global constraints ultimately limit flows at smaller scales. Over the past few decades, decreasing per capita rates of consumption of petroleum, phosphate, agricultural land, fresh water, fish, and wood indicate that the growing human population has surpassed the capacity of the Earth to supply enough of these essential resources to sustain even the current population and level of socioeconomic development.

  8. Biosurfactants in agriculture.

    PubMed

    Sachdev, Dhara P; Cameotra, Swaranjit S

    2013-02-01

    Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant-microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.

  9. Sustainable Development, Education and Literacy

    ERIC Educational Resources Information Center

    Dale, Ann; Newman, Lenore

    2005-01-01

    Purpose: To distinguish sustainable development education from environmental education and stress the importance of problem-based interdisciplinary learning to sustainable development education. Design/methodology/approach: A range of published works relating to sustainable development education are critiqued, an introduction to complexity theory…

  10. Agricultural Energy Practices. Agriculture Energy.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with agricultural energy practices. Its objective is for the student to be able to discuss energy use and conservation of resources in the production of agricultural products. Some topics covered are basic uses of direct energy in…

  11. Agriculture Education. Agricultural Metal Working.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agricultural metal working. The guide presents units of study in the following areas: (1) oxyacetylene welding, (2) arc welding, (3) sheet metal, (4) blueprint reading for welders and (5) job…

  12. Beyond conservation agriculture

    PubMed Central

    Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  13. Beyond conservation agriculture.

    PubMed

    Giller, Ken E; Andersson, Jens A; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  14. Evaluating Internet for Extension in Agriculture.

    ERIC Educational Resources Information Center

    Gelb, E. M.; Bonati, G.

    1998-01-01

    Participants in an international agriculture extension workshop rated the following as critical subjects to study regarding farmers' use of the Internet: technical problems, user benefits, drawbacks, and accessibility. Ways to improve effective use in agriculture were identified. (SK)

  15. Nastran's Application in Agricultural Engineering

    NASA Technical Reports Server (NTRS)

    Vanwicklen, G. L.

    1985-01-01

    Finite element analysis has been recognized as a valuable solution method by agricultural engineers. NASTRAN has been obtained by the Agricultural Engineering Department at the University of Georgia. The NASTRAN Thermal Analyzer has been used in the teaching program for an undergraduate course in heat transfer and will be used for a new graduate course in finite element analysis. The NASTRAN Thermal Analyzer has also been applied to several research problems in the Agricultural Engineering Department.

  16. Food security and sustainable resource management

    NASA Astrophysics Data System (ADS)

    McLaughlin, Dennis; Kinzelbach, Wolfgang

    2015-07-01

    The projected growth in global food demand until mid-century will challenge our ability to continue recent increases in crop yield and will have a significant impact on natural resources. The water and land requirements of current agriculture are significantly less than global reserves but local shortages are common and have serious impacts on food security. Recent increases in global trade have mitigated some of the effects of spatial and temporal variability. However, trade has a limited impact on low-income populations who remain dependent on subsistence agriculture and local resources. Potential adverse environmental impacts of increased agricultural production include unsustainable depletion of water and soil resources, major changes in the global nitrogen and phosphorous cycles, human health problems related to excessive nutrient and pesticide use, and loss of habitats that contribute to agricultural productivity. Some typical case studies from China illustrate the connections between the need for increased food production and environmental stress. Sustainable options for decreasing food demand and for increasing production include reduction of food losses on both the producer and consumer ends, elimination of unsustainable practices such as prolonged groundwater overdraft, closing of yield gaps with controlled expansions of fertilizer application, increases in crop yield and pest resistance through advances in biotechnology, and moderate expansion of rain fed and irrigated cropland. Calculations based on reasonable assumptions suggest that such measures could meet the food needs of an increasing global population while protecting the environment.

  17. Sustainable aquaculture systems

    SciTech Connect

    Brune, D.E.

    1994-08-01

    The goal of this paper is to examine and assess the technical feasibility of the integration of plant and/or animal aquaculture systems into a sustainable agriculture. Although most researchers tend to avoid a precise definition of sustainable aquaculture, the implication that one gets from `reading between the lines` is that a sustainable agro-ecosystem is one which recycles materials at maximum energy efficiency. The `unspoken` standard against which comparisons of sustainability are often made is that of a mature natural ecosystem at a steady state. Cost comparisons of alternative systems will be used whenever possible, however, in many cases, conventional cost/benefit analysis will be of limited value in such an analysis. For aquaculture, such an analysis can best be conducted by analyzing the possibilities of integrating nutrients, water, and energy flow from aquaculture systems both to and from, conventional agricultural systems. The various aquaculture options are then qualitatively compared as their potential, limitations, environmental soundness, productivity, socio-economic viability and the availability of supporting technology. It is important to realize that the usefulness or applicability of any sustainable or integrated aquaculture practice is highly site specific.

  18. Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  19. Agriculture Sectors

    EPA Pesticide Factsheets

    The Agriculture sectors comprise establishments primarily engaged in growing crops, raising animals, and harvesting fish and other animals. Find information on compliance, enforcement and guidance on EPA laws and regulations on the NAICS 111 & 112 sectors.

  20. Agricultural Waste.

    PubMed

    Shu, Huajie; Zhang, Panpan; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2015-10-01

    The management and disposal of agricultural waste are drawn more and more attention because of the increasing yields and negative effects on the environment. However, proper treatments such as converting abundant biomass wastes into biogas through anaerobic digestion technology, can not only avoid the negative impacts, but also convert waste into available resources. This review summarizes the studies of nearly two hundred scholars from the following four aspects: the characterization, reuse, treatment, and management of agricultural waste.

  1. Defining goals and conditions for a sustainable world.

    PubMed Central

    Cairns, J

    1997-01-01

    Sustainable development is being approached component by component--socioeconomic, sustainable agriculture, transportation, forestry, energy use, cities, and the like--but, leaving a habitable planet for future generations will require the development of a widely shared paradigm. Further, the paradigm should be ecological from a scientific point of view. This development will be facilitated by a discussion of goals and those conditions necessary to meet them. The presently shared paradigm is that economic growth is the cure for all of society's problems, such as poverty, overpopulation, environmental degradation, and the increasing gap between rich and poor. A paradigm shift from growth to sustainability might result either from suffering painful consequences of continuing to follow out-moded paradigms or by discussing what sort of ecosystems will be available to future generations. The purpose of this paper is to help initiate such a discussion. PMID:9370512

  2. Agriculture: About EPA's National Agriculture Center

    EPA Pesticide Factsheets

    EPA's National Agriculture Center (Ag Center), with the support of the United States Department of Agriculture, serves growers, livestock producers, other agribusinesses, and agricultural information/education providers.

  3. Genetic Technology and Agricultural Development

    ERIC Educational Resources Information Center

    Staub, William J.; Blase, Melvin G.

    1971-01-01

    Examines the nature, application, limits and potential of applied genetics in plant breeding as a factor in South Asian agricultural development. Concludes other factors were also present in recent agricultural growth, and indicates some economic implications of continued growth, including problems of employment of displaced rural workers. (AL)

  4. “The problem is ours, it is not CRAIDS’ ”. Evaluating sustainability of Community Based Organisations for HIV/AIDS in a rural district in Zambia

    PubMed Central

    2012-01-01

    Background While sustainability of health programmes has been the subject of empirical studies, there is little evidence specifically on the sustainability of Community Based Organisations (CBOs) for HIV/AIDS. Debates around optimal approaches in community health have centred on utilitarian versus empowerment approaches. This paper, using the World Bank Multi-Country AIDS Program (MAP) in Zambia as a case study, seeks to evaluate whether or not this global programme contributed to the sustainability of CBOs working in the area of HIV/AIDS in Zambia. Lessons for optimising sustainability of CBOs in lower income countries are drawn. Methods In-depth interviews with representatives of all CBOs that received CRAIDS funding (n = 18) and district stakeholders (n= 10) in Mumbwa rural district in Zambia, in 2010; and national stakeholders (n=6) in 2011. Results Funding: All eighteen CBOs in Mumbwa that received MAP funding between 2003 and 2008 had existed prior to receiving MAP grants, some from as early as 1992. This was contrary to national level perceptions that CBOs were established to access funds rather than from the needs of communities. Funding opportunities for CBOs in Mumbwa in 2010 were scarce. Health services: While all CBOs were functioning in 2010, most reported reductions in service provision. Home visits had reduced due to a shortage of food to bring to people living with HIV/AIDS and scarcity of funding for transport, which reduced antiretroviral treatment adherence support and transport of patients to clinics. Organisational capacity and viability: Sustainability had been promoted during MAP through funding Income Generating Activities. However, there was a lack of infrastructure and training to make these sustainable. Links between health facilities and communities improved over time, however volunteers’ skills levels had reduced. Conclusions Whilst the World Bank espoused the idea of sustainability in their plans, it remained on the periphery of

  5. The Problem of Soil Erosion in Developing Countries--Direct and Indirect Causes and Recommendations for Reducing It to a Sustainable Level.

    ERIC Educational Resources Information Center

    Middlebrook, Cathy H.; Goode, Pamela M.

    1992-01-01

    Presents direct and indirect causes of erosion in developing countries. Identifies soil conservation developments ranging from major international policy reforms to small-scale, local farming programs. Suggests that strategies at all levels, and the political will to implement them, are needed if erosion is to be reduced to a sustainable rate. (23…

  6. Issues in Case-Study Methodology in Investigating Environmental and Sustainability Issues in Higher Education: Towards a Problem-Based Approach?

    ERIC Educational Resources Information Center

    Dillon, Justin; Reid, Alan

    2004-01-01

    Case studies are put to a variety of uses in investigating environmental and sustainability issues in higher education. These uses include: to document, describe (in detail), contextualize, investigate and/or explain information that characterizes and qualifies what is of interest in this area. The focus of the case study is often an event, a…

  7. Agricultural Meteorology in China.

    NASA Astrophysics Data System (ADS)

    Rosenberg, Norman J.

    1982-03-01

    During nearly five weeks in China (May-June 1981), the author visited scientific institutions and experiment stations engaged in agricultural meterology and climatology research and teaching. The facilities, studies, and research programs at each institution are described and the scientific work in these fields is evaluated. Agricultural meteorology and climatology are faced with some unique problems and opportunities in China and progress in these fields may be of critical importance to that nation in coming years. The author includes culinary notes and comments on protocol in China.

  8. Promoting healthy eating, active play and sustainability consciousness in early childhood curricula, addressing the Ben10™ problem: a randomised control trial

    PubMed Central

    2014-01-01

    Background This paper details the research protocol for a study funded by the Australian Research Council. An integrated approach towards helping young children respond to the significant pressures of ‘360 degree marketing’ on their food choices, levels of active play, and sustainability consciousness via the early childhood curriculum is lacking. The overall goal of this study is to evaluate the efficacy of curriculum interventions that educators design when using a pedagogical communication strategy on children’s knowledge about healthy eating, active play and the sustainability consequences of their toy food and toy selections. Methods/Design This cluster-randomised trial will be conducted with 300, 4 to 5 year-old children attending pre-school. Early childhood educators will develop a curriculum intervention using a pedagogical communication strategy that integrates content knowledge about healthy eating, active play and sustainability consciousness and deliver this to their pre-school class. Children will be interviewed about their knowledge of healthy eating, active play and the sustainability consequences of their food and toy selections. Parents will complete an Eating and Physical Activity Questionnaire rating their children’s food preferences, digital media viewing and physical activity habits. All measures will be administered at baseline, the end of the intervention and 6 months post intervention. Informed consent will be obtained from all parents and the pre-school classes will be allocated randomly to the intervention or wait-list control group. Discussion This study is the first to utilise an integrated pedagogical communication strategy developed specifically for early childhood educators focusing on children’s healthy eating, active play, and sustainability consciousness. The significance of the early childhood period, for young children’s learning about healthy eating, active play and sustainability, is now unquestioned. The specific

  9. Sustainability Frontiers

    ERIC Educational Resources Information Center

    Selby, David

    2010-01-01

    This article introduces Sustainability Frontiers, a newly formed, international, not-for-profit alliance of sustainability and global educators dedicated to challenging and laying bare the assumptions, exposing the blind spots, and transgressing the boundaries of mainstream understandings of sustainability-related education. Among the orthodoxies…

  10. Sustainable Biofuels Development Center

    SciTech Connect

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  11. Biofuels and sustainability.

    PubMed

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  12. Agriculture and water pollution

    NASA Astrophysics Data System (ADS)

    Page, G. William

    The attempt by certain jurisdictions to preserve a rural lifestyle by means of farmland preservation may produce some unwanted side effects, such as polluted water supplies. While there are many excellent and important reasons to preserve high-quality agricultural land for food production, efforts to retain or encourage agricultural activities in areas experiencing rapid population growth may produce some serious environmental problems.For the entire post-WW II period the United States has experienced almost continuous suburban sprawl. Many incorporated areas, experiencing rapid development, have attempted to preserve open-space and less-developed land uses by actively attempting to preserve agricultural activities. Often the most recent migrants to a growing municipality exemplify the ‘last in’ syndrome by being among the most vociferous in attempting to halt further development.

  13. Traumatic injuries in agriculture.

    PubMed

    Hard, D L; Myers, J R; Gerberich, S G

    2002-02-01

    The National Coalition for Agricultural Safety and Health (NCASH) in 1988 addressed issues in agriculture and noted "a sense of urgency... arose from the recognition of the unabating epidemic of traumatic death and injury in American farming . . ." This article provides an update to the NCASH conference on traumatic injuries in agriculture, a history on how the facts and figures were arrived at for the NCASH conference, and a current report on the status of traumatic injuries in agriculture in the U.S. Fatal and nonfatal injuries are addressed along with national and regional surveillance systems. The Census of Fatal Occupational Injuries (CFOI) was used for reporting national agricultural production fatal injuries from 1992-1998 (25.8 deaths per 100,000 workers), the Traumatic Injury Surveillance of Farmers (TISF) 1993-1995 was used to report nonfatal injuries occurring nationally (7.5/100 workers), and Regional Rural Injury Studies I and II (RRIS-I and RRIS-II) were used to illustrate a regional approach along with in-depth, specific analyses. Fatality rates, which showed some decline in the 1980s, were fairly constant during the 1990s. Changes in nonfatal injury rates for this sector could not be assessed due to a lack of benchmark data. The main concerns identified in the 1989 NCASH report continue today: tractors are the leading cause of farm-related death due mostly to overturns; older farmers continue to be at the highest risk for farm fatalities; and traumatic injuries continue to be a major concern for youth living or working on U.S. farms. Fatal and nonfatal traumatic injuries associated with agricultural production are a major public health problem that needs to be addressed through comprehensive approaches that include further delineation of the problem, particularly in children and older adults, and identification of specific risk factors through analytic efforts. Continued development of relevant surveillance systems and implementation of appropriate

  14. AGRICULTURAL EXTENSION.

    ERIC Educational Resources Information Center

    FARQUHAR, R.N.

    AUSTRALIAN AGRICULTURAL EXTENSION HAS LONG EMPHASIZED TECHNICAL ADVISORY SERVICE AT THE EXPENSE OF THE SOCIOECONOMIC ASPECTS OF FARM PRODUCTION AND FARM LIFE. ONLY IN TASMANIA HAS FARM MANAGEMENT BEEN STRESSED. DEMANDS FOR THE WHOLE-FARM APPROACH HAVE PRODUCED A TREND TOWARD GENERALISM FOR DISTRICT OFFICERS IN MOST STATES. THE FEDERAL GOVERNMENT,…

  15. Sustainability - what are the odds? Envisioning the future of our environment, economy and society

    EPA Science Inventory

    Sustainability – the word is everywhere these days. Cities, transportation systems, energy producers, agriculture, fisheries, businesses, even mines (!), are making claims or making plans for sustainability. Several formal definitions of sustainability have been offered; here is ...

  16. Carrying capacity in agriculture: environmental significance and some related patents.

    PubMed

    da Silva, Alexandre M

    2009-06-01

    Agriculture is one of the most important and possibly the oldest economic activity developed by humans. This activity was developed extensively and is becoming more and more dependent on development of technologies. The goal of this manuscript was examining some patents related to technologies developed for improving crop yields. Such patents are mainly related to more efficient formulations of agrochemicals and management techniques of plants, cattle and natural resources. A brief comment is carried out about bioprospection and related problems, relating, for example the case of Cupuaçu. The article is concluded mentioning that the development of policies and management strategies that increase agricultural yield and simultaneously preserve or conserve natural resources should also be prioritized, because certainly this is the only way we have to get the real sustainability and to improve life quality abroad the world.

  17. Sustainable Development: Paradoxes, Misunderstandings and Learning Organizations

    ERIC Educational Resources Information Center

    Ramirez, Gabriel A.

    2012-01-01

    Purpose: Sustainability is, in itself, the idea of a harmonic answer to the dual nature of the most pressing problem for global society. Most of the problems dealing with sustainability concern its dual and contradictory nature. That paradoxical reality is in no way a unique feature of sustainability; its universal pervasiveness is demonstrated by…

  18. Control System for Sustainable Development

    NASA Astrophysics Data System (ADS)

    Carlman, Inga

    2008-10-01

    Ecological sustainability presupposes that a global human population acts in such ways, that their total impact on the biosphere, together with nature's reactions, keeps the biosphere sufficient for sustaining generations to come. Human conduct is ultimately controlled by means of law. The problem can be summed up as: Controlling system—Population—Sustainable ecosystems This paper discusses two interlinked issues: a) the social scientific need for systems theory in the context of achieving and maintaining sustainable development and b) how theory of anticipatory modelling and computing can be applied when constructing and applying societal controlling systems for ecological sustainability with as much local democracy and economic efficiency as possible.

  19. Labor Factor Efficiency in the Agricultural Industry

    ERIC Educational Resources Information Center

    R?y, Inna U.; Shakulikova, Gulzada T.; Kozhakhmetova, Gulnar A.; Lashkareva, Olga V.; Bondarenko, Elena G.; Bermukhambetova, Botagoz B.; Baimagambetova, Zamzagul A.; Zhetessova, Mariyam T.; Beketova, Kamar N.; Anafiyaeva, Zhibek

    2016-01-01

    Agricultural problems associated with prospects of the rural population and agriculture in general have recently become an important factor in the modern economic policy development. The urgency of finding ways to improve the labor resource efficiency in agriculture pursuant to the state tasks is determined by the need to restore the agricultural…

  20. Sustainable Scientists

    SciTech Connect

    Mills, Evan

    2008-12-31

    Scientists are front and center in quantifying and solving environmental problems. Yet, as a spate of recent news articles in scientific journals point out, much can be done to enhance sustainability within the scientific enterprise itself, particularly by trimming the energy use associated with research facilities and the equipment therein (i,ii,iii, iv). Sponsors of research unwittingly spend on the order of $10 billion each year on energy in the U.S. alone, and the underlying inefficiencies drain funds from the research enterprise while causing 80 MT CO2-equivalent greenhouse-gas emissions (see Box). These are significant sums considering the opportunity costs in terms of the amount of additional research that could be funded and emissions that could be reduced if the underlying energy was used more efficiently. By following commercially proven best practices in facility design and operation, scientists--and the sponsors of science--can cost-effectively halve these costs, while doing their part to put society on alow-carbon diet.