Science.gov

Sample records for agricultural system models

  1. Phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  2. Integration of agricultural and energy system models for biofuel assessment

    EPA Science Inventory

    This paper presents a coupled modeling framework to capture the dynamic linkages between agricultural and energy markets that have been enhanced through the expansion of biofuel production, as well as the environmental impacts resulting from this expansion. The framework incorpor...

  3. Application Of Colored Petri Net In Modeling Ofan Agricultural Enterprise Informationmanagement System

    NASA Astrophysics Data System (ADS)

    Zhang, Fangtian; Wang, Kaiyi; Sui, Jin; Liu, Chang; Liu, Zhongqiang

    Business system modeling of an agricultural enterprise is one of the difficulties in developing and researching an agricultural enterprise management information system. Given the inadequate description of concurrent and synchronal events in the traditional modeling methods, this paper presents a modeling method, which uses Colored Petri Net. The paper discusses the application of Colored Petri Net in system modeling with the example of an agricultural enterprise production management system model, and analyzes the feasibility and effectiveness of that model.

  4. Agricultural Model for the Nile Basin Decision Support System

    NASA Astrophysics Data System (ADS)

    van der Bolt, Frank; Seid, Abdulkarim

    2014-05-01

    To analyze options for increasing food supply in the Nile basin the Nile Agricultural Model (AM) was developed. The AM includes state-of-the-art descriptions of biophysical, hydrological and economic processes and realizes a coherent and consistent integration of hydrology, agronomy and economics. The AM covers both the agro-ecological domain (water, crop productivity) and the economic domain (food supply, demand, and trade) and allows to evaluate the macro-economic and hydrological impacts of scenarios for agricultural development. Starting with the hydrological information from the NileBasin-DSS the AM calculates the available water for agriculture, the crop production and irrigation requirements with the FAO-model AquaCrop. With the global commodity trade model MAGNET scenarios for land development and conversion are evaluated. The AM predicts consequences for trade, food security and development based on soil and water availability, crop allocation, food demand and food policy. The model will be used as a decision support tool to contribute to more productive and sustainable agriculture in individual Nile countries and the whole region.

  5. State of science of phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  6. Data model for the collaboration between land administration systems and agricultural land parcel identification systems.

    PubMed

    Inan, Halil Ibrahim; Sagris, Valentina; Devos, Wim; Milenov, Pavel; van Oosterom, Peter; Zevenbergen, Jaap

    2010-12-01

    The Common Agricultural Policy (CAP) of the European Union (EU) has dramatically changed after 1992, and from then on the CAP focused on the management of direct income subsidies instead of production-based subsidies. For this focus, Member States (MS) are expected to establish Integrated Administration and Control System (IACS), including a Land Parcel Identification System (LPIS) as the spatial part of IACS. Different MS have chosen different solutions for their LPIS. Currently, some MS based their IACS/LPIS on data from their Land Administration Systems (LAS), and many others use purpose built special systems for their IACS/LPIS. The issue with these different IACS/LPIS is that they do not have standardized structures; rather, each represents a unique design in each MS, both in the case of LAS based or special systems. In this study, we aim at designing a core data model for those IACS/LPIS based on LAS. For this purpose, we make use of the ongoing standardization initiatives for LAS (Land Administration Domain Model: LADM) and IACS/LPIS (LPIS Core Model: LCM). The data model we propose in this study implies the collaboration between LADM and LCM and includes some extensions. Some basic issues with the collaboration model are discussed within this study: registration of farmers, land use rights and farming limitations, geometry/topology, temporal data management etc. For further explanation of the model structure, sample instance level diagrams illustrating some typical situations are also included.

  7. Reverse engineering of legacy agricultural phenology modeling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A program which implements predictive phenology modeling is a valuable tool for growers and scientists. Such a program was created in the late 1980's by the creators of general phenology modeling as proof of their techniques. However, this first program could not continue to meet the needs of the fi...

  8. Evaluation of the precision agricultural landscape modeling system (PALMS) in the semiarid Texas southern high plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  9. Exploring agricultural production systems and their fundamental components with system dynamics modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex wa...

  10. Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast

    DOE PAGES

    Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui; Nair, Sujithkumar Surendran

    2016-02-11

    Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance inmore » regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.« less

  11. Using Agricultural Knowledge Systems: From an Institutional Approach to a Functional Extension Model.

    ERIC Educational Resources Information Center

    Brunold, S.; Scheuermeier, U.

    1996-01-01

    Uses of the agricultural knowledge systems concept of information flow are described in Holland, Bhutan, Switzerland, and India. Application of the model for gaining an overview of institutions must be combined with a functional approach for designing appropriate extension programs. (SK)

  12. Comparing Supply-Side Specifications in Models of Global Agriculture and the Food System

    SciTech Connect

    Robinson, Sherman; van Meijl, Hans; Willenbockel, Dirk; Valin, Hugo; Fujimori, Shinichiro; Masui, Toshihiko; Sands, Ronald; Wise, Marshall A.; Calvin, Katherine V.; Havlik, Petr; Mason d'Croz, Daniel; Tabeau, Andrzej; Kavallari, Aikaterini; Schmitz, Christoph; Dietrich, Jan P.; von Lampe, Martin

    2014-01-01

    This paper compares the theoretical specification of production and technical change across the partial equilibrium (PE) and computable general equilibrium (CGE) models of the global agricultural and food system included in the AgMIP model comparison study. The two modeling approaches have different theoretical underpinnings concerning the scope of economic activity they capture and how they represent technology and the behavior of supply and demand in markets. This paper focuses on their different specifications of technology and supply behavior, comparing their theoretical and empirical treatments. While the models differ widely in their specifications of technology, both within and between the PE and CGE classes of models, we find that the theoretical responsiveness of supply to changes in prices can be similar, depending on parameter choices that define the behavior of supply functions over the domain of applicability defined by the common scenarios used in the AgMIP comparisons. In particular, we compare the theoretical specification of supply in CGE models with neoclassical production functions and PE models that focus on land and crop yields in agriculture. In practice, however, comparability of results given parameter choices is an empirical question, and the models differ in their sensitivity to variations in specification. To illustrate the issues, sensitivity analysis is done with one global CGE model, MAGNET, to indicate how the results vary with different specification of technical change, and how they compare with the results from PE models.

  13. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    D. Muth; K. M. Bryden

    2003-12-01

    Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40

  14. Regional scale cropland carbon budgets: evaluating a geospatial agricultural modeling system using inventory data

    SciTech Connect

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; Sahajpal, Ritvik; West, Tristram O.; Thomson, Allison M.; Xu, Min; Zhao, Kaiguang; LeDuc, Stephen D.; Williams, Jimmy R.

    2015-01-01

    Accurate quantification and clear understanding of regional scale cropland carbon (C) cycling is critical for designing effective policies and management practices that can contribute toward stabilizing atmospheric CO2 concentrations. However, extrapolating site-scale observations to regional scales represents a major challenge confronting the agricultural modeling community. This study introduces a novel geospatial agricultural modeling system (GAMS) exploring the integration of the mechanistic Environmental Policy Integrated Climate model, spatially-resolved data, surveyed management data, and supercomputing functions for cropland C budgets estimates. This modeling system creates spatially-explicit modeling units at a spatial resolution consistent with remotely-sensed crop identification and assigns cropping systems to each of them by geo-referencing surveyed crop management information at the county or state level. A parallel computing algorithm was also developed to facilitate the computationally intensive model runs and output post-processing and visualization. We evaluated GAMS against National Agricultural Statistics Service (NASS) reported crop yields and inventory estimated county-scale cropland C budgets averaged over 2000–2008. We observed good overall agreement, with spatial correlation of 0.89, 0.90, 0.41, and 0.87, for crop yields, Net Primary Production (NPP), Soil Organic C (SOC) change, and Net Ecosystem Exchange (NEE), respectively. However, we also detected notable differences in the magnitude of NPP and NEE, as well as in the spatial pattern of SOC change. By performing crop-specific annual comparisons, we discuss possible explanations for the discrepancies between GAMS and the inventory method, such as data requirements, representation of agroecosystem processes, completeness and accuracy of crop management data, and accuracy of crop area representation. Based on these analyses, we further discuss strategies to improve GAMS by updating input

  15. Modeling Agricultural Nonpoint Source Pollution Using a Geographic Information System Approach

    NASA Astrophysics Data System (ADS)

    Emili, Lisa A.; Greene, Richard P.

    2013-01-01

    Agricultural non-point source (NPS) pollution, primarily sediment and nutrients, is the leading source of water-quality impacts to surface waters in North America. The overall goal of this study was to develop geographic information system (GIS) protocols to facilitate the spatial and temporal modeling of changes in soils, hydrology, and land-cover change at the watershed scale. In the first part of this article, we describe the use of GIS to spatially integrate watershed scale data on soil erodibility, land use, and runoff for the assessment of potential source areas within an intensively agricultural watershed. The agricultural non-point source pollution (AGNPS) model was used in the Muddy Creek, Ontario, watershed to evaluate the effectiveness of management strategies in decreasing sediment and nutrient [phosphorus (P)] pollution. This analysis was accompanied by the measurement of water-quality parameters (dissolved oxygen, pH, hardness, alkalinity, and turbidity) as well as sediment and P loadings to the creek. Practices aimed at increasing year-round soil cover would be most effective in decreasing sediment and P losses in this watershed. In the second part of this article, we describe a method for characterizing land-cover change in a dynamic urban fringe watershed. The GIS method we developed for the Blackberry Creek, Illinois, watershed will allow us to better account for temporal changes in land use, specifically corn and soybean cover, on an annual basis and to improve on the modeling of watershed processes shown for the Muddy Creek watershed. Our model can be used at different levels of planning with minimal data preprocessing, easily accessible data, and adjustable output scales.

  16. Modeling agricultural nonpoint source pollution using a geographic information system approach.

    PubMed

    Emili, Lisa A; Greene, Richard P

    2013-01-01

    Agricultural non-point source (NPS) pollution, primarily sediment and nutrients, is the leading source of water-quality impacts to surface waters in North America. The overall goal of this study was to develop geographic information system (GIS) protocols to facilitate the spatial and temporal modeling of changes in soils, hydrology, and land-cover change at the watershed scale. In the first part of this article, we describe the use of GIS to spatially integrate watershed scale data on soil erodibility, land use, and runoff for the assessment of potential source areas within an intensively agricultural watershed. The agricultural non-point source pollution (AGNPS) model was used in the Muddy Creek, Ontario, watershed to evaluate the effectiveness of management strategies in decreasing sediment and nutrient [phosphorus (P)] pollution. This analysis was accompanied by the measurement of water-quality parameters (dissolved oxygen, pH, hardness, alkalinity, and turbidity) as well as sediment and P loadings to the creek. Practices aimed at increasing year-round soil cover would be most effective in decreasing sediment and P losses in this watershed. In the second part of this article, we describe a method for characterizing land-cover change in a dynamic urban fringe watershed. The GIS method we developed for the Blackberry Creek, Illinois, watershed will allow us to better account for temporal changes in land use, specifically corn and soybean cover, on an annual basis and to improve on the modeling of watershed processes shown for the Muddy Creek watershed. Our model can be used at different levels of planning with minimal data preprocessing, easily accessible data, and adjustable output scales.

  17. Modeling the impacts of regulatory frameworks on self-organization in dryland agricultural systems

    NASA Astrophysics Data System (ADS)

    Gower, D.; Caylor, K. K.; McCord, P. F.; Evans, T. P.

    2015-12-01

    The climatological conditions that characterize dryland environments - high potential evapotranspiration combined with low and variable total rainfall - pose challenges for farmers deciding when and how much to irrigate. These challenges are greater in developing countries where the absence of sufficient storage infrastructure means that irrigation water is sometimes applied to agricultural fields directly from rivers. Because soil moisture and river flow both depend on recent rainfall, high irrigation demand often coincides with low river flow, limiting access to water when it is most needed. These feedbacks can constrain the yield increases expected from irrigation in such settings. Scaled up to the catchment level, irrigation water availability varies spatially as well as temporally. Irrigators in upstream areas of the catchment have first access to river water but rely on a smaller drainage network while those in downstream areas are affected by the opposite conditions. During periods of high rainfall, downstream users have the greatest access to water while upstream users are then favored during drought intervals. In the absence of rules governing water access, these flow dynamics will constrain the distribution of potential agricultural yields within the catchment. A simple numerical model simulating catchment and irrigation processes was constructed in order to better understand how climate and geomorphologic characteristics affect crop yield, economic returns and the spatial distribution of irrigated areas. By assuming a statistically representative river network structure, the model was first used to explore the effect of unregulated irrigation withdrawals on these variables. Multiple water management programs, including withdrawal limits, rotational systems and flow minima, were then simulated and the results compared to the unregulated case. This analysis shows the potential for simple models to provide insight into complex irrigation systems and to make

  18. A generic bio-economic farm model for environmental and economic assessment of agricultural systems.

    PubMed

    Janssen, Sander; Louhichi, Kamel; Kanellopoulos, Argyris; Zander, Peter; Flichman, Guillermo; Hengsdijk, Huib; Meuter, Eelco; Andersen, Erling; Belhouchette, Hatem; Blanco, Maria; Borkowski, Nina; Heckelei, Thomas; Hecker, Martin; Li, Hongtao; Oude Lansink, Alfons; Stokstad, Grete; Thorne, Peter; van Keulen, Herman; van Ittersum, Martin K

    2010-12-01

    Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models. PMID:21113782

  19. A generic bio-economic farm model for environmental and economic assessment of agricultural systems.

    PubMed

    Janssen, Sander; Louhichi, Kamel; Kanellopoulos, Argyris; Zander, Peter; Flichman, Guillermo; Hengsdijk, Huib; Meuter, Eelco; Andersen, Erling; Belhouchette, Hatem; Blanco, Maria; Borkowski, Nina; Heckelei, Thomas; Hecker, Martin; Li, Hongtao; Oude Lansink, Alfons; Stokstad, Grete; Thorne, Peter; van Keulen, Herman; van Ittersum, Martin K

    2010-12-01

    Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models.

  20. A Generic Bio-Economic Farm Model for Environmental and Economic Assessment of Agricultural Systems

    PubMed Central

    Louhichi, Kamel; Kanellopoulos, Argyris; Zander, Peter; Flichman, Guillermo; Hengsdijk, Huib; Meuter, Eelco; Andersen, Erling; Belhouchette, Hatem; Blanco, Maria; Borkowski, Nina; Heckelei, Thomas; Hecker, Martin; Li, Hongtao; Oude Lansink, Alfons; Stokstad, Grete; Thorne, Peter; van Keulen, Herman; van Ittersum, Martin K.

    2010-01-01

    Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models. PMID:21113782

  1. Teaching Diversified Organic Crop Production Using the Community Supported Agriculture Farming System Model

    ERIC Educational Resources Information Center

    Falk, Constance L.; Pao, Pauline; Cramer, Christopher S.

    2005-01-01

    An organic garden operated as a community supported agriculture (CSA) venture on the New Mexico State University (NMSU) main campus was begun in January 2002. Students enroll in an organic vegetable production class during spring and fall semesters to help manage and work on the project. The CSA model of farming involves the sale of shares to…

  2. A modeling approach to simulate the role of anecic and endogeic earthworms in soil structure dynamics of two agricultural systems

    NASA Astrophysics Data System (ADS)

    Le Couteulx, Alexis; Wolf, Cédric; Pérès, Guénola; Hallaire, Vincent

    2015-04-01

    In agriculture, one of the main purposes of innovative systems is to preserve and improve soil quality and noticeably their physical quality. This physical quality of a soil is intimately linked with its structure, i.e. the spatial arrangement of voids and solids. It is well-known that agricultural systems may deeply impact on soil structure through their effect on various structuring processes, in particular (i) the mechanical action of soil tillage and (ii) the burrowing activity and casts production of earthworms. As the assessment of agricultural systems needs long term experiments, it is not feasible to assess them all. However, the modeling approach has been used seldom despite it seems promising. As a first step towards the modeling of agricultural systems, we propose a model that simulates the impact of earthworm bioturbation and several tillage practices on soil structure dynamics. The proposed model accounts for two earthworm ecological categories: anecics and endogeics. Anecics are split into epi-anecics and true anecics and endogeics are kept at the specific level. The model takes into account their physiological and morphological features such as their diapause period, their gut transit time or their body size. In order to simulate the bioturbation activity of earthworms, they can make six different actions: (i) burrow new paths by ingesting soil particles, (ii) move inside existing paths, (iii) move to soil surface, (iv) wait, (v) produce a subsurface cast or (vi) produce a surface cast. For the various species and groups of earthworms, the probability of these actions was adjusted from experiments and published results. This part of the model dedicated to earthworms allows to build and study their network of burrows but also the position and volume of their subsurface and surface casts. This network may be couple with models of water conductivity to assess the role of earthworm on this soil functional property. To better simulate soil structure

  3. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  4. Detecting transition in agricultural systems

    NASA Technical Reports Server (NTRS)

    Neary, P. J.; Coiner, J. C.

    1979-01-01

    Remote sensing of agricultural phenomena has been largely concentrated on analysis of agriculture at the field level. Concern has been to identify crop status, crop condition, and crop distribution, all of which are spatially analyzed on a field-by-field basis. A more general level of abstraction is the agricultural system, or the complex of crops and other land cover that differentiate various agricultural economies. The paper reports on a methodology to assist in the analysis of the landscape elements of agricultural systems with Landsat digital data. The methodology involves tracing periods of photosynthetic activity for a fixed area. Change from one agricultural system to another is detected through shifts in the intensity and periodicity of photosynthetic activity as recorded in the radiometric return to Landsat. The Landsat-derived radiometric indicator of photosynthetic activity appears to provide the ability to differentiate agricultural systems from each other as well as from conterminous natural vegetation.

  5. Three Dimensional Modeling of Agricultural Contamination of Groundwater: a Case Study in the Nebraska Management Systems Evaluation Area (MSEA) Site

    NASA Astrophysics Data System (ADS)

    Akbariyeh, S.; Snow, D. D.; Bartelt-Hunt, S.; Li, X.; Li, Y.

    2015-12-01

    Contamination of groundwater from nitrogen fertilizers and pesticides in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater, impacting future uses of this limited resource. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have been validated based on realistic three dimensional soil lithology, hydrological conditions, and historical changes in groundwater quality. In this work, contamination of groundwater in the Nebraska Management Systems Evaluation Area (MSEA) site was simulated based on extensive field data including (1) lithology from 69 wells and 11 test holes; (2) surface soil type, land use, and surface elevations; (3) 5-year groundwater level and flow velocity; (4) daily meteorological monitoring; (5) 5-year seasonal irrigation records; (6) 5-years of spatially intensive contaminant concentration in 40 multilevel monitoring wells; and (7) detailed cultivation records. Using this data, a three-dimensional vadose zone lithological framework was developed using a commercial software tool (RockworksTM). Based on the interpolated lithology, a hydrological model was developed using HYDRUS-3D to simulate water flow and contaminant transport. The model was validated through comparison of simulated atrazine and nitrate concentration with historical data from 40 wells and multilevel samplers. The validated model will be used to predict potential changes in ground water quality due to agricultural contamination under future climate scenarios in the High Plain Aquifer system.

  6. Designing a Model for Integration of Information and Communication Technologies (ICTs) in the Iranian Agricultural Research System

    ERIC Educational Resources Information Center

    Sharifzadeh, Aboulqasem; Abdollahzadeh, Gholam Hossein; Sharifi, Mahnoosh

    2009-01-01

    Capacity Development is needed in the Iranian Agricultural System. Integrating Information and Communication Technologies (ICTs) in the agricultural research system is an appropriate capacity development mechanism. The appropriate application of ICTs and information such as a National Agricultural Information System requires a systemically…

  7. Accuracy of some simple models for predicting particulate interception and retention in agricultural systems

    SciTech Connect

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.

    1989-04-01

    The accuracy of three radionuclide transfer models for predicting the interception and retention of airborne particles by agricultural crops was tested using Pu-bearing aerosols released to the atmosphere from nuclear fuel facilities on the U.S. Department of Energy's Savannah River Plant, near Aiken, SC. The models evaluated were: (1) NRC, the model defined in U.S. Nuclear Regulatory Guide 1.109; (2) FOOD, a model similar to the NRC model that also predicts concentrations in grains; and (3) AGNS, a model developed from the NRC model for the southeastern United States. Plutonium concentrations in vegetation and grain were predicted from measured deposition rates and compared to concentrations observed in the field. Crops included wheat, soybeans, corn and cabbage. Although predictions of the three models differed by less than a factor of 4, they showed different abilities to predict concentrations observed in the field. The NRC and FOOD models consistently underpredicted the observed Pu concentrations for vegetation. The AGNS model was a more accurate predictor of Pu concentrations for vegetation. Both the FOOD and AGNS models accurately predicted the Pu concentrations for grains.

  8. Representing Extremes in Agricultural Models

    NASA Technical Reports Server (NTRS)

    Ruane, Alex

    2015-01-01

    AgMIP and related projects are conducting several activities to understand and improve crop model response to extreme events. This involves crop model studies as well as the generation of climate datasets and scenarios more capable of capturing extremes. Models are typically less responsive to extreme events than we observe, and miss several forms of extreme events. Models also can capture interactive effects between climate change and climate extremes. Additional work is needed to understand response of markets and economic systems to food shocks. AgMIP is planning a Coordinated Global and Regional Assessment of Climate Change Impacts on Agricultural Production and Food Security with an aim to inform the IPCC Sixth Assessment Report.

  9. Prospective and participatory integrated assessment of agricultural systems from farm to regional scales: Comparison of three modeling approaches.

    PubMed

    Delmotte, Sylvestre; Lopez-Ridaura, Santiago; Barbier, Jean-Marc; Wery, Jacques

    2013-11-15

    Evaluating the impacts of the development of alternative agricultural systems, such as organic or low-input cropping systems, in the context of an agricultural region requires the use of specific tools and methodologies. They should allow a prospective (using scenarios), multi-scale (taking into account the field, farm and regional level), integrated (notably multicriteria) and participatory assessment, abbreviated PIAAS (for Participatory Integrated Assessment of Agricultural System). In this paper, we compare the possible contribution to PIAAS of three modeling approaches i.e. Bio-Economic Modeling (BEM), Agent-Based Modeling (ABM) and statistical Land-Use/Land Cover Change (LUCC) models. After a presentation of each approach, we analyze their advantages and drawbacks, and identify their possible complementarities for PIAAS. Statistical LUCC modeling is a suitable approach for multi-scale analysis of past changes and can be used to start discussion about the futures with stakeholders. BEM and ABM approaches have complementary features for scenarios assessment at different scales. While ABM has been widely used for participatory assessment, BEM has been rarely used satisfactorily in a participatory manner. On the basis of these results, we propose to combine these three approaches in a framework targeted to PIAAS. PMID:24013558

  10. A hydro-sedimentary modeling system for flash flood propagation and hazard estimation under different agricultural practices

    NASA Astrophysics Data System (ADS)

    Kourgialas, N. N.; Karatzas, G. P.

    2014-03-01

    A modeling system for the estimation of flash flood flow velocity and sediment transport is developed in this study. The system comprises three components: (a) a modeling framework based on the hydrological model HSPF, (b) the hydrodynamic module of the hydraulic model MIKE 11 (quasi-2-D), and (c) the advection-dispersion module of MIKE 11 as a sediment transport model. An important parameter in hydraulic modeling is the Manning's coefficient, an indicator of the channel resistance which is directly dependent on riparian vegetation changes. Riparian vegetation's effect on flood propagation parameters such as water depth (inundation), discharge, flow velocity, and sediment transport load is investigated in this study. Based on the obtained results, when the weed-cutting percentage is increased, the flood wave depth decreases while flow discharge, velocity and sediment transport load increase. The proposed modeling system is used to evaluate and illustrate the flood hazard for different riparian vegetation cutting scenarios. For the estimation of flood hazard, a combination of the flood propagation characteristics of water depth, flow velocity and sediment load was used. Next, a well-balanced selection of the most appropriate agricultural cutting practices of riparian vegetation was performed. Ultimately, the model results obtained for different agricultural cutting practice scenarios can be employed to create flood protection measures for flood-prone areas. The proposed methodology was applied to the downstream part of a small Mediterranean river basin in Crete, Greece.

  11. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    SciTech Connect

    Adam, J. C.; Stephens, J. C.; Chung, Serena; Brady, M. P.; Evans, R. D.; Kruger, C. E.; Lamb, Brian K.; Liu, M. L.; Stockle, Claudio O.; Vaughan, Joseph K.; Rajagopalan, K.; Harrison, John; Tague, C. L.; Kalyanaraman, Anantharaman; Chen, Yong; Guenther, Alex B.; Leung, F. Y.; Leung, Lai-Yung R.; Perleberg, A. B.; Yoder, J.; Allen, Elizabeth; Anderson, S.; Chandrasekharan, B.; Malek, K.; Mullis, T.; Miller, C.; Nergui, T.; Poinsatte, J.; Reyes, J.; Zhu, J.; Choate, J. S.; Jiang, X.; Nelson, R.; Yoon, Jin-Ho; Yorgey, G. G.; Johnson, Kristen; Chinnayakanhalli, K. J.; Hamlet, A. F.; Nijssen, B.; Walden, Von

    2015-04-01

    As managers of agricultural and natural resources are confronted with uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (land, air, water, economics, etc). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and "usability" of EaSMs. BioEarth is a current research initiative with a focus on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a "bottom-up" approach, upscaling a catchment-scale model to basin and regional scales, as opposed to the "top-down" approach of downscaling global models utilized by most other EaSM efforts. This paper describes the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.

  12. Assessing the Impact of Climate Change on Columbia River Basin Agriculture through Integrated Crop Systems, Hydrologic, and Water Management Modeling

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Barber, M. E.; Yorgey, G.; Stockle, C.; Nelson, R.; Brady, M.; Dinesh, S.; Malek, K.; Kruger, C.; Yoder, J.; Marsh, T.

    2011-12-01

    The Columbia River Basin (CRB) in the Pacific Northwest covers parts of US and Canada with a total drainage area of about 670,000 square kilometers. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of Columbia River water with 14,000 square kilometers of irrigated area in the CRB. Agriculture is an important component of the economy in the region, with an annual value over $5 billion in Washington State alone. The availability of surface water for irrigation in the basin is expected to be negatively impacted by climate change. Previous climate change studies in the CRB region suggest a likelihood of increasing temperatures and a shift in precipitation patterns, with precipitation higher in the winter and lower in the summer. Warming further exacerbates summer water availability in many CRB tributaries as they shift from snowmelt-dominant towards rain-dominant hydrologic regimes. The goal of this research is to study the impacts of climate change on CRB water availability and agricultural production in the expectation that curtailment will occur more frequently in an altered climate. Towards this goal it is essential that we understand the interactions between crop-growth dynamics, climate dynamics, the hydrologic cycle, water management, and agricultural economy. To study these interactions at the regional scale, we use the newly developed crop-hydrology model VIC-CropSyst, which integrates a crop growth model CropSyst with the hydrologic model, Variable Infiltration Capacity (VIC). Simulation of future climate by VIC-CropSyst captures the socio-economic aspects of this system through economic analysis of the impacts of climate change on crop patterns. This integrated framework (submitted as a separate paper) is linked to a reservoir operations simulations model, Colsim. ColSim is modified to explicitly account for agricultural withdrawals. Washington State water

  13. Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; F. McCabe, Matthew; Cescatti, Alessandro; A. Gitelson, Anatoly

    2015-12-01

    Leaf chlorophyll content (Chll) may serve as an observational proxy for the maximum rate of carboxylation (Vmax), which describes leaf photosynthetic capacity and represents the single most important control on modeled leaf photosynthesis within most Terrestrial Biosphere Models (TBMs). The parameterization of Vmax is associated with great uncertainty as it can vary significantly between plants and in response to changes in leaf nitrogen (N) availability, plant phenology and environmental conditions. Houborg et al. (2013) outlined a semi-mechanistic relationship between Vmax25 (Vmax normalized to 25 °C) and Chll based on inter-linkages between Vmax25, Rubisco enzyme kinetics, N and Chll. Here, these relationships are parameterized for a wider range of important agricultural crops and embedded within the leaf photosynthesis-conductance scheme of the Community Land Model (CLM), bypassing the questionable use of temporally invariant and broadly defined plant functional type (PFT) specific Vmax25 values. In this study, the new Chll constrained version of CLM is refined with an updated parameterization scheme for specific application to soybean and maize. The benefit of using in-situ measured and satellite retrieved Chll for constraining model simulations of Gross Primary Productivity (GPP) is evaluated over fields in central Nebraska, U.S.A between 2001 and 2005. Landsat-based Chll time-series records derived from the Regularized Canopy Reflectance model (REGFLEC) are used as forcing to the CLM. Validation of simulated GPP against 15 site-years of flux tower observations demonstrate the utility of Chll as a model constraint, with the coefficient of efficiency increasing from 0.91 to 0.94 and from 0.87 to 0.91 for maize and soybean, respectively. Model performances particularly improve during the late reproductive and senescence stage, where the largest temporal variations in Chll (averaging 35-55 μg cm-2 for maize and 20-35 μg cm-2 for soybean) are observed. While

  14. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions--Application of system dynamics modeling for the case of Latvia.

    PubMed

    Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio

    2015-09-15

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to "neutralize" the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries. PMID:25958357

  15. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions--Application of system dynamics modeling for the case of Latvia.

    PubMed

    Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio

    2015-09-15

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to "neutralize" the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries.

  16. Sustainable intensification in agricultural systems

    PubMed Central

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-01-01

    Background Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms ‘sustainable’ and ‘intensification’ is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. Scope and Conclusions This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural–environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and

  17. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    DOE PAGES

    Adam, Jennifer C.; Stephens, Jennie C.; Chung, Serena H.; Brady, Michael P.; Evans, R. David; Kruger, Chad E.; Lamb, Brian K.; Liu, Mingliang; Stöckle, Claudio O.; Vaughan, Joseph K.; et al

    2014-04-24

    Uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and “usability” of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region thatmore » explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatial-scale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. Here, we describe the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.« less

  18. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    SciTech Connect

    Adam, Jennifer C.; Stephens, Jennie C.; Chung, Serena H.; Brady, Michael P.; Evans, R. David; Kruger, Chad E.; Lamb, Brian K.; Liu, Mingliang; Stöckle, Claudio O.; Vaughan, Joseph K.; Rajagopalan, Kirti; Harrison, John A.; Tague, Christina L.; Kalyanaraman, Ananth; Chen, Yong; Guenther, Alex; Leung, Fok-Yan; Leung, L. Ruby; Perleberg, Andrew B.; Yoder, Jonathan; Allen, Elizabeth; Anderson, Sarah; Chandrasekharan, Bhagyam; Malek, Keyvan; Mullis, Tristan; Miller, Cody; Nergui, Tsengel; Poinsatte, Justin; Reyes, Julian; Zhu, Jun; Choate, Janet S.; Jiang, Xiaoyan; Nelson, Roger; Yoon, Jin-Ho; Yorgey, Georgine G.; Johnson, Kristen; Chinnayakanahalli, Kiran J.; Hamlet, Alan F.; Nijssen, Bart; Walden, Von

    2014-04-24

    Uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and “usability” of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatial-scale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. Here, we describe the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.

  19. A Resource-Based Modelling Framework to Assess Habitat Suitability for Steppe Birds in Semiarid Mediterranean Agricultural Systems

    PubMed Central

    Cardador, Laura; De Cáceres, Miquel; Bota, Gerard; Giralt, David; Casas, Fabián; Arroyo, Beatriz; Mougeot, François; Cantero-Martínez, Carlos; Moncunill, Judit; Butler, Simon J.; Brotons, Lluís

    2014-01-01

    European agriculture is undergoing widespread changes that are likely to have profound impacts on farmland biodiversity. The development of tools that allow an assessment of the potential biodiversity effects of different land-use alternatives before changes occur is fundamental to guiding management decisions. In this study, we develop a resource-based model framework to estimate habitat suitability for target species, according to simple information on species’ key resource requirements (diet, foraging habitat and nesting site), and examine whether it can be used to link land-use and local species’ distribution. We take as a study case four steppe bird species in a lowland area of the north-eastern Iberian Peninsula. We also compare the performance of our resource-based approach to that obtained through habitat-based models relating species’ occurrence and land-cover variables. Further, we use our resource-based approach to predict the effects that change in farming systems can have on farmland bird habitat suitability and compare these predictions with those obtained using the habitat-based models. Habitat suitability estimates generated by our resource-based models performed similarly (and better for one study species) than habitat based-models when predicting current species distribution. Moderate prediction success was achieved for three out of four species considered by resource-based models and for two of four by habitat-based models. Although, there is potential for improving the performance of resource-based models, they provide a structure for using available knowledge of the functional links between agricultural practices, provision of key resources and the response of organisms to predict potential effects of changing land-uses in a variety of context or the impacts of changes such as altered management practices that are not easily incorporated into habitat-based models. PMID:24667825

  20. Modelling soil carbon in agricultural systems: a way to widen the experimental space

    NASA Astrophysics Data System (ADS)

    O'Leary, Garry; Li Liu, De; Nuttall, James; Rajin Anwar, Muhuddin; Robertson, Fiona

    2015-07-01

    Mechanistic and explanatory simulation models provide robust and objective methods to extrapolate likely responses of crops and soils to climate change over different landscapes and time periods. Central to such simulation models are the supply of mineralised nutrients, in particular nitrogen, to crops through linked crop and nutrient sub-models that is achieved through modelling soil carbon dynamics. Attention to soil processes is therefore an essential part of building robust and sustainable production systems and understanding the potential impacts of climate change. To the farmer, focus must be on the productive capacity of the land and its rejuvenation to sustain production. In the broader context of reducing atmospheric CO2 concentration through soil C sequestration, understanding soil processes and the immediate environment likewise require attention to productivity issues. This is because without maintaining productivity a better understanding of soil organic carbon (SOC) processes is unlikely to lead to increased SOC sequestration in Australia's farming land. Some gaps in knowledge of how to manage SOC are being addressed in a national research effort, including the scant measured data against which models can be tested. Nevertheless, continuing to apply models to push the boundaries well beyond what can be achieved in practice widens the experimental space, allowing new ideas to be tested where physical experiments are not possible. This raises optimism that new ways may be discovered to explain change in SOC and increase SOC where it is possible in a beneficial way.

  1. A history of wind erosion prediction models in the United States Department of Agriculture: The Wind Erosion Prediction System (WEPS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of the Wind Erosion Prediction System (WEPS) was officially inaugurated in 1985 by United States Department of Agriculture-Agricultural Research Service (USDA-ARS) scientists in response to customer requests, particularly those coming from the USDA Soil Conservation Service (SCS), for im...

  2. Modeling GHG Emissions and Carbon Changes in Agricultural and Forest Systems to Guide Mitigation and Adaptation: Synthesis and Future Needs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production systems and land use change for agriculture and forestry are important sources of anthropogenic greenhouse gas (GHG) emissions. Recent commitments by the European Union, the United States, and China to reduce GHG emissions highlight the need to improve estimates of current em...

  3. Assessing the mitigation potential of agricultural systems by optimization of the agricultural management: A modeling study on 8 agricultural observation sites across Europe with the process based model LandscapeDNDC

    NASA Astrophysics Data System (ADS)

    Molina Herrera, Saul; Haas, Edwin; Klatt, Steffen; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus

    2014-05-01

    The use of mineral nitrogen (N) fertilizers increase crop yields but cause the biggest anthropogenic source of nitrous oxide (N2O) emissions and strongly contribute to surface water eutrophication (e.g. nitrate leaching). The necessity to identify affordable strategies that improve crop production while improving ecosystem services are in continuous debate between policy decision makers and farmers. In this line, a lack commitment from farmers to enforce laws might result in the reduction of benefits. For this reason, farmers should aim to increase crop production and to reduce environmental harm by the adoption of precision climate smart agriculture tools applied to management practices for instance. In this study we present optimized strategies for 8 sites (agricultural and grassland ecosystems) with long term field observation across Europe to show the mitigation potential to reduce reactive nitrogen losses under the constrain of keeping yields at observed levels. LandscapeDNDC simulations of crop yields and associated nitrogen losses (N2O emissions and NO3 leaching) were evaluated against long term field measurements. The sites presented different management regimes including the main commodity crops (maize, wheat, barley, rape seeds, etc) and fertilization amendments (synthetic and organic fertilizers) in Europe. The simulations reproduced the observed yields, captured N2O emissions and NO3 leaching losses with high statistical presicion (r2), acurrency (ME) and agreement (RMSPEn). The mitigation potentials to reduce N losses while keeping yields at observed levels for all 8 sites were assesed by Monte Carlo optimizations of the individual underlying multi year agricultural management options (timings of planting and harvest, fertilization & manure applications and rates, residues management). In this study we present for all 8 agricultural observations sites their individual mitigation potentials to reduce N losses for multi year rotations. The conclusions

  4. A Spatial Data Model Desing For The Management Of Agricultural Data (Farmer, Agricultural Land And Agricultural Production)

    NASA Astrophysics Data System (ADS)

    Taşkanat, Talha; İbrahim İnan, Halil

    2016-04-01

    Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and

  5. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model

    SciTech Connect

    Tim, U.S.; Jolly, R.

    1994-01-01

    Considerable progress has been made in developing physically based, distributed parameter, hydrologic/water quality (HIWQ) models for planning and control of nonpoint-source pollution. The widespread use of these models is often constrained by the excessive and time-consuming input data demands and the lack of computing efficiencies necessary for iterative simulation of alternative management strategies. Recent developments in geographic information systems (GIS) provide techniques for handling large amounts of spatial data for modeling nonpoint-source pollution problems. Because a GIS can be used to combine information from several sources to form an array of model input data and to examine any combinations of spatial input/output data, it represents a highly effective tool for HiWQ modeling. This paper describes the integration of a distributed-parameter model (AGNPS) with a GIS (ARC/INFO) to examine nonpoint sources of pollution in an agricultural watershed. The ARC/INFO GIS provided the tools to generate and spatially organize the disparate data to support modeling, while the AGNPS model was used to predict several water quality variables including soil erosion and sedimentation within a watershed. The integrated system was used to evaluate the effectiveness of several alternative management strategies in reducing sediment pollution in a 417-ha watershed located in southern Iowa. The implementation of vegetative filter strips and contour buffer (grass) strips resulted in a 41 and 47% reduction in sediment yield at the watershed outlet, respectively. In addition, when the integrated system was used, the combination of the above management strategies resulted in a 71% reduction in sediment yield. In general, the study demonstrated the utility of integrating a simulation model with GIS for nonpoini-source pollution control and planning. Such techniques can help characterize the diffuse sources of pollution at the landscape level. 52 refs., 6 figs., 1 tab.

  6. Parameter trade-offs for imaging spectroscopy systems. [application of HIRIS instrument model to agricultural remote sensing

    NASA Technical Reports Server (NTRS)

    Kerekes, John P.; Landgrebe, David A.

    1991-01-01

    With the advent of the EOS era and of configurable sensors, users of these instruments are faced with the twin problems of specifying data acquisition parameters and extracting desired information from the voluminous data. An application of a system model is made to explore system parameter trade-offs for a model sensor based on the High Resolution Imaging Spectrometer. Radiometric performance was studied, along with the effect on classification accuracy of several system parameters. Using a model scene based on typical agricultural reflectance and atmospheric conditions, the atmosphere and sensor are seen to have significant effects on the mean received signal and noise performance. The effect of random uncorrelated errors in the radiometric calibration of the detector array is seen to degrade system performance, especially in the spectral bands below 1 micron. Accurate pixel-to-pixel relative radiometric calibration and the use of the Image Motion Compensation option are seen to improve classification accuracy, especially at high solar zenith angles. Feature sets chosen from characteristics of the scene performed best overall, but ones chosen based on signal-to-noise ratios were seen to be more robust.

  7. Analysis and synthesis of models for effects of climate change on agricultural systems. Final report

    SciTech Connect

    Geng, S.; Plant, R.; Loomis, R.

    1992-07-27

    Our objectives are to develop a new integrative physiological-morphological model of the wheat crop that will behave realistically in high-CO{sub 2} environments, and to update the ALFALFA model to match the wheat model`s photosynthetic structures and microclimates.

  8. Task-focused modeling in automated agriculture

    NASA Astrophysics Data System (ADS)

    Vriesenga, Mark R.; Peleg, K.; Sklansky, Jack

    1993-01-01

    Machine vision systems analyze image data to carry out automation tasks. Our interest is in machine vision systems that rely on models to achieve their designed task. When the model is interrogated from an a priori menu of questions, the model need not be complete. Instead, the machine vision system can use a partial model that contains a large amount of information in regions of interest and less information elsewhere. We propose an adaptive modeling scheme for machine vision, called task-focused modeling, which constructs a model having just sufficient detail to carry out the specified task. The model is detailed in regions of interest to the task and is less detailed elsewhere. This focusing effect saves time and reduces the computational effort expended by the machine vision system. We illustrate task-focused modeling by an example involving real-time micropropagation of plants in automated agriculture.

  9. Modelling adaptation to climate change of Ecuadorian agriculture and associated water resources: uncertainties in coastal and highland cropping systems

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Bastidas, Wellington; Cóndor, Amparo; Villacís, Marcos; Calderón, Marco; Herrera, Mario; Zambrano, José Luis; Lizaso, Jon; Hernández, Carlos; Rodríguez, Alfredo; Capa-Morocho, Mirian

    2016-04-01

    Climate change threatens sustainability of farms and associated water resources in Ecuador. Although the last IPCC report (AR5) provides a general framework for adaptation, , impact assessment and especially adaptation analysis should be site-specific, taking into account both biophysical and social aspects. The objective of this study is to analyse the climate change impacts and to sustainable adaptations to optimize the crop yield. Furthermore is also aimed to weave agronomical and hydrometeorological aspects, to improve the modelling of the coastal ("costa") and highland ("sierra") cropping systems in Ecuador, from the agricultural production and water resources points of view. The final aim is to support decision makers, at national and local institutions, for technological implementation of structural adaptation strategies, and to support farmers for their autonomous adaptation actions to cope with the climate change impacts and that allow equal access to resources and appropriate technologies. . A diagnosis of the current situation in terms of data availability and reliability was previously done, and the main sources of uncertainty for agricultural projections have been identified: weather data, especially precipitation projections, soil data below the upper 30 cm, and equivalent experimental protocol for ecophysiological crop field measurements. For reducing these uncertainties, several methodologies are being discussed. This study was funded by PROMETEO program from Ecuador through SENESCYT (M. Ruiz-Ramos contract), and by the project COOP-XV-25 funded by Universidad Politécnica de Madrid.

  10. Analysis and synthesis of models for effects of climate change on agricultural systems

    SciTech Connect

    Geng, S.; Plant, R.; Loomis, R.

    1992-07-27

    Our objectives are to develop a new integrative physiological-morphological model of the wheat crop that will behave realistically in high-CO[sub 2] environments, and to update the ALFALFA model to match the wheat model's photosynthetic structures and microclimates.

  11. Modeling biogeochemistry in agricultural soils

    SciTech Connect

    Li, C.; Frolking, S.; Harriss, R.

    1994-09-01

    An existing model of C and N dynamics in soils was supplemented with a plant growth submodel and cropping practice routines (fertilization, irrigation, tillage, crop rotation, and manure amendments) to study the biogeochemistry of soil carbon in arable lands. The new model was validated against field results for short-term (1-9 years) decomposition experiments, the seasonal pattern of soil CO{sub 2} respiration, and long-term (100 years) soil carbon storage dynamics. A series of sensitivity runs investigated the impact of varying agricultural practices on soil organic carbon (SOC) sequestration. The tests were simulated for corn (maize) plots over a range of soil and climate conditions typical of the United States. The largest carbon sequestration occurred with manure additions; the results were very sensitive to soil texture (more clay led to greater sequestration). Increased N fertilization generally enhanced carbon sequestration, but the results were sensitive to soil texture, initial soil carbon content, and annual precipitation. Reduced tillage also generally (but not always) increased SOC content, through the results were very sensitive to soil texture, initial SOC content, and annual precipitation. A series of long-term simulations investigated the SOC equilibrium for various agricultural practices, soil and climate conditions, and crop rotations. Equilibrium SOC content increased with decreasing temperatures, increasing clay content, enhanced N fertilization, manure amendments, and crops with higher residue yield. Time to equilibrium appears to be one hundred to several hundred years. In all cases, equilibration time was longer for increasing SOC content than for decreasing SOC content. Efforts to enhance carbon sequestration in agricultural soils would do well to focus on those specific areas and agricultural practices with the greatest potential for increasing soil carbon content. 64 refs., 13 figs., 5 tabs.

  12. Comparison of models for determining soil-surface carbon dioxide effluxes in different agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-surface CO2 efflux (SCE) models are appealing due to expense and labor of fine temporal- and spatial-resolution field measurements. However, several simple SCE models are reported in the literature. Our objective was to compare and validate selected soil temperature (Ts)- and water content ('v)...

  13. How much detail and accuracy is required in plant growth sub-models to address questions about optimal management strategies in agricultural systems?

    PubMed Central

    Renton, Michael

    2011-01-01

    Background and aims Simulations that integrate sub-models of important biological processes can be used to ask questions about optimal management strategies in agricultural and ecological systems. Building sub-models with more detail and aiming for greater accuracy and realism may seem attractive, but is likely to be more expensive and time-consuming and result in more complicated models that lack transparency. This paper illustrates a general integrated approach for constructing models of agricultural and ecological systems that is based on the principle of starting simple and then directly testing for the need to add additional detail and complexity. Methodology The approach is demonstrated using LUSO (Land Use Sequence Optimizer), an agricultural system analysis framework based on simulation and optimization. A simple sensitivity analysis and functional perturbation analysis is used to test to what extent LUSO's crop–weed competition sub-model affects the answers to a number of questions at the scale of the whole farming system regarding optimal land-use sequencing strategies and resulting profitability. Principal results The need for accuracy in the crop–weed competition sub-model within LUSO depended to a small extent on the parameter being varied, but more importantly and interestingly on the type of question being addressed with the model. Only a small part of the crop–weed competition model actually affects the answers to these questions. Conclusions This study illustrates an example application of the proposed integrated approach for constructing models of agricultural and ecological systems based on testing whether complexity needs to be added to address particular questions of interest. We conclude that this example clearly demonstrates the potential value of the general approach. Advantages of this approach include minimizing costs and resources required for model construction, keeping models transparent and easy to analyse, and ensuring the model

  14. An integrated modeling approach to support management decisions of coupled groundwater-agricultural systems under multiple uncertainties

    NASA Astrophysics Data System (ADS)

    Hagos Subagadis, Yohannes; Schütze, Niels; Grundmann, Jens

    2015-04-01

    The planning and implementation of effective water resources management strategies need an assessment of multiple (physical, environmental, and socio-economic) issues, and often requires new research in which knowledge of diverse disciplines are combined in a unified methodological and operational frameworks. Such integrative research to link different knowledge domains faces several practical challenges. Such complexities are further compounded by multiple actors frequently with conflicting interests and multiple uncertainties about the consequences of potential management decisions. A fuzzy-stochastic multiple criteria decision analysis tool was developed in this study to systematically quantify both probabilistic and fuzzy uncertainties associated with complex hydrosystems management. It integrated physical process-based models, fuzzy logic, expert involvement and stochastic simulation within a general framework. Subsequently, the proposed new approach is applied to a water-scarce coastal arid region water management problem in northern Oman, where saltwater intrusion into a coastal aquifer due to excessive groundwater extraction for irrigated agriculture has affected the aquifer sustainability, endangering associated socio-economic conditions as well as traditional social structure. Results from the developed method have provided key decision alternatives which can serve as a platform for negotiation and further exploration. In addition, this approach has enabled to systematically quantify both probabilistic and fuzzy uncertainties associated with the decision problem. Sensitivity analysis applied within the developed tool has shown that the decision makers' risk aversion and risk taking attitude may yield in different ranking of decision alternatives. The developed approach can be applied to address the complexities and uncertainties inherent in water resources systems to support management decisions, while serving as a platform for stakeholder participation.

  15. Mining Environmental Data from a Coupled Modelling System to Examine the Impact of Agricultural Management Practices on Groundwater and Air Quality

    NASA Astrophysics Data System (ADS)

    Garcia, V.; Cooter, E. J.; Hayes, B.; Murphy, M. S.; Bash, J. O.

    2014-12-01

    Excess nitrogen (N) resulting from current agricultural management practices can leach into sources of drinking water as nitrate, increasing human health risks of 'blue baby syndrome', hypertension, and some cancers and birth defects. Nitrogen also enters the atmosphere from land surfaces forming air pollution increasing human health risks of pulmonary and cardio-vascular disease. Characterizing and attributing nitrogen from agricultural management practices is difficult due to the complex and inter-related chemical and biological reactions associated with the nitrogen cascade. Coupled physical process-based models, however, present new opportunities to investigate relationships among environmental variables on new scales; particularly because they link emission sources with meteorology and the pollutant concentration ultimately found in the environment. In this study, we applied a coupled meteorology (NOAA-WRF), agricultural (USDA-EPIC) and air quality modelling system (EPA-CMAQ) to examine the impact of nitrogen inputs from corn production on ecosystem and human health and wellbeing. The coupled system accounts for the nitrogen flux between the land surface and air, and the soil surface and groundwater, providing a unique opportunity to examine the effect of management practices such as type and timing of fertilization, tilling and irrigation on both groundwater and air quality across the conterminous US. In conducting the study, we first determined expected relationships based on literature searches and then identified model variables as direct or surrogate variables. We performed extensive and methodical multi-variate regression modelling and variable selection to examine associations between agricultural management practices and environmental condition. We then applied the regression model to predict and contrast pollution levels between two corn production scenarios (Figure 1). Finally, we applied published health functions (e.g., spina bifida and cardio

  16. Agricultural Drainage Management Systems Task Force (ADMSTF)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Drainage Management Systems (ADMS) Task Force was initiated during a Charter meeting in the fall of 2002 by dedicated professional employees of Federal, State, and Local Government Agencies and Universities. The Agricultural Drainage Management (ADM) Coalition was established in 200...

  17. Sustainability of Agricultural Systems: Concept to Application

    EPA Science Inventory

    Agriculture not only feeds the planet, it also is the biggest overall factor affecting the environment. Thus, innovative sustainable farming systems that produce healthy food and protect the environment at the same time are very much needed. We, as agricultural engineers, need ...

  18. Transforming Agricultural Mechanics Curriculum through Expert Opinion to Model Technologies in Food, Environmental, and Natural Resource Systems.

    ERIC Educational Resources Information Center

    Shinn, Glen C.

    A study was conducted to develop a consensus document that would provide an external perspective of the curriculum in agricultural education that includes agricultural mechanics as a course of study. Data were collected in four phases: solicitation of expert opinion from 53 experts in the field (34 respondents); rating of the opinions; development…

  19. Changes in Information Systems in Czech Agriculture

    ERIC Educational Resources Information Center

    Slavik, Milan

    2004-01-01

    A study carried out in 1998 (reported in the Journal of Agricultural Education and Extension, 2003) of the information systems used by farmers in the Czech Republic to access information and advice was repeated in 2003. The research aim was to assess whether, and how, the systems had changed during these five years. The perceived importance of 10…

  20. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as

  1. Statistical modeling of agricultural chemical occurrence in midwestern rivers

    NASA Astrophysics Data System (ADS)

    Battaglin, William A.; Goolsby, Donald A.

    1997-09-01

    Agricultural chemicals in surface water may constitute a human health risk or have adverse effects on aquatic life. Recent research on unregulated rivers in the midwestern USA documents that elevated concentrations of herbicides occur for 1-4 months following application in late spring and early summer. In contrast, nitrate concentrations in unregulated rivers are elevated during fall, winter, and spring months. Natural and anthropogenic variables of river drainage basins, such as soil permeability, amount of agricultural chemicals applied, or percentage of land planted in corn, affect agricultural chemical concentration and mass transport in rivers. Presented is an analysis of selected data on agricultural chemicals collected for three regional studies conducted by the US Geological Survey. Statistical techniques such as multiple linear and logistic regression were used to identify natural and anthropogenic variables of drainage basins that have strong relations to agricultural chemical concentrations and mass transport measured in rivers. A geographic information system (GIS) was used to manage and analyze spatial data. Statistical models were developed that estimated the concentration, annual transport, and annual mean concentration of selected agricultural chemicals in midwestern rivers. Multiple linear regression models were not very successful ( R2 from 0.162 to 0.517) in explaining the variance in observed agricultural chemical concentrations during post-planting runoff. Logistic regression models were somewhat more successful, correctly matching the observed concentration category in 61-80% of observations. Linear and multiple linear regression models were moderately successful ( R2 from 0.522 to 0.995) in explaining the variance in observed annual transport and annual mean concentration of agricultural chemicals. Explanatory variables that were commonly significant in the regression models include estimates of agricultural chemical use, crop acreage, soil

  2. Statistical modeling of agricultural chemical occurrence in midwestern rivers

    USGS Publications Warehouse

    Battaglin, W.A.; Goolsby, D.A.

    1997-01-01

    Agricultural chemicals in surface water may constitute a human health risk or have adverse effects on aquatic life. Recent research on unregulated rivers in the midwestern USA documents that elevated concentrations of herbicides occur for 1-4 months following application in late spring and early summer. In contrast, nitrate concentrations in unregulated rivers are elevated during fall, winter, and spring months. Natural and anthropogenic variables of fiver drainage basins, such as soil permeability, amount of agricultural chemicals applied, or percentage of land planted in corn, affect agricultural chemical concentration and mass transport in rivers. Presented is an analysis of selected data on agricultural chemicals collected for three regional studies conducted by the US Geological Survey. Statistical techniques such as multiple linear and logistic regression were used to identify natural and anthropogenic variables of drainage basins that have strong relations to agricultural chemical concentrations and mass transport measured in rivers. A geographic information system (GIS) was used to manage and analyze spatial data. Statistical models were developed that estimated the concentration, annual transport, and annual mean concentration of selected agricultural chemicals in midwestern rivers. Multiple linear regression models were not very successful (R2 from 0.162 to 0.517) in explaining the variance in observed agricultural chemical concentrations during post-planting runoff. Logistic regression models were somewhat more successful, correctly matching the observed concentration category in 61-80% of observations. Linear and multiple linear regression models were moderately successful (R2 from 0.522 to 0.995) in explaining the variance in observed annual transport and annual mean concentration of agricultural chemicals. Explanatory variables that were commonly significant in the regression models include estimates of agricultural chemical use, crop acreage, soil

  3. Synthesis and modeling of greenhouse gas emissions and carbon storage in agricultural and forest systems to guide mitigation and adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the early 21st century, climate change has emerged as one of the great societal challenges. Taking effective actions to address this concern is complicated by many technological hurdles and socio-economic challenges. Agriculture is a critical player in this arena, because it disproportionately in...

  4. Towards a Better Conceptual Framework for Innovation Processes in Agriculture and Rural Development: From Linear Models to Systemic Approaches

    ERIC Educational Resources Information Center

    Knickel, Karlheinz; Brunori, Gianluca; Rand, Sigrid; Proost, Jet

    2009-01-01

    The role of farming previously dedicated mainly to food production changed with an increasing recognition of the multifunctionality of agriculture and rural areas. It seems obvious to expect that farmers and rural actors adapt themselves to these new conditions, which are innovative and redefine their job. In many regions farmers can increase…

  5. Mearsurement and control system for agricultural robot

    NASA Astrophysics Data System (ADS)

    Sun, Tong; Zhang, Fangming; Ying, Yibin

    2006-10-01

    Automation of agricultural equipments in the near term appears both economically viable and technically feasible. This paper describes measurement and control system for agriculture robot. It consists of a computer, a pair of NIR cameras, one inclinometer, one potentionmeter and two encoders. Inclinometer, potentionmeter and encoders are used to measure obliquity of camera, turning angle of front-wheel and velocity of rear wheel, respectively. These sensor data are filtered before sending to PC. The test shows that the system can measure turning angle of front-wheel and velocity of rear wheel accurately whether robot is at stillness state or at motion state.

  6. Linking Remote Sensing Data and Energy Balance Models for a Scalable Agriculture Insurance System for sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Osgood, D. E.; McCarty, J. L.; Husak, G. J.; Hain, C.; Neigh, C. S. R.

    2014-12-01

    One of the most immediate and obvious impacts of climate change is on the weather-sensitive agriculture sector. Both local and global impacts on production of food will have a negative effect on the ability of humanity to meet its growing food demands. Agriculture has become more risky, particularly for farmers in the most vulnerable and food insecure regions of the world such as East Africa. Smallholders and low-income farmers need better financial tools to reduce the risk to food security while enabling productivity increases to meet the needs of a growing population. This paper will describe a recently funded project that brings together climate science, economics, and remote sensing expertise to focus on providing a scalable and sensor-independent remote sensing based product that can be used in developing regional rainfed agriculture insurance programs around the world. We will focus our efforts in Ethiopia and Kenya in East Africa and in Senegal and Burkina Faso in West Africa, where there are active index insurance pilots that can test the effectiveness of our remote sensing-based approach for use in the agriculture insurance industry. The paper will present the overall program, explain links to the insurance industry, and present comparisons of the four remote sensing datasets used to identify drought: the CHIRPS 30-year rainfall data product, the GIMMS 30-year vegetation data product from AVHRR, the ESA soil moisture ECV-30 year soil moisture data product, and a MODIS Evapotranspiration (ET) 15-year dataset. A summary of next year's plans for this project will be presented at the close of the presentation.

  7. Automatic Positioning System of Small Agricultural Robot

    NASA Astrophysics Data System (ADS)

    Momot, M. V.; Proskokov, A. V.; Natalchenko, A. S.; Biktimirov, A. S.

    2016-08-01

    The present article discusses automatic positioning systems of agricultural robots used in field works. The existing solutions in this area have been analyzed. The article proposes an original solution, which is easy to implement and is characterized by high- accuracy positioning.

  8. Carbon Sequestration Potential of Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through proper management, agricultural systems (cropland, pasture, and forest) have the ability to remove carbon dioxide from the atmosphere and sequester it in soils and wood products. The carbon thus sequestered can help slow the increase in atmospheric carbon dioxide currently occurring as a res...

  9. Nitrate in aquifers beneath agricultural systems

    USGS Publications Warehouse

    Burkart, M.R.; Stoner, J.D.

    2002-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWOA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and shallow carbonate aquifers provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The agricultural system of corn, soybeans, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems, although mean nitrate concentrations in counties with dairy, poultry, cattle and grains, and horticulture systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as in Asia, may experience the greatest impact of

  10. Nitrate in aquifers beneath agricultural systems

    USGS Publications Warehouse

    Burkart, M.R.; Stoner, J.D.; ,

    2007-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWQA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and also shallow carbonate aquifers that provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The system of corn, soybean, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems because this system imports the largest amount of N-fertilizer per unit production area. Mean nitrate under dairy, poultry, horticulture, and cattle and grains systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as

  11. Nitrate in aquifers beneath agricultural systems.

    PubMed

    Burkart, M R; Stoner, J D

    2007-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWQA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and also shallow carbonate aquifers that provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The system of corn, soybean, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems because this system imports the largest amount of N-fertilizer per unit production area. Mean nitrate under dairy, poultry, horticulture, and cattle and grains systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as

  12. Plumbum contamination detecting model for agricultural soil using hyperspectral data

    NASA Astrophysics Data System (ADS)

    Liu, Xiangnan; Huang, Fang; Wang, Ping

    2008-10-01

    The issue of environmental pollution due to toxic heavy metals in agricultural land has caused worldwide growing concern in recent years. Being one of toxic heavy metals, the accumulation of Plumbum (Pb) may have negative effects on natural and agricultural vegetation growth, yield and quality. It can also constitute short-term and long-term health risks by entering the food chain. In this study, we analyze the relationships between physical and chemical characteristics, biological parameters of soil-vegetation system and hyperspectral spectrum responses systematically. The relation between hyperspectral data and the biological parameters of Pb polluted wheat canopy such as leaf pigments, leaf moisture, cell structure and leaf area index (LAI) are discussed. We detect the changes in the wheat biological parameters and spectral response associated with Pb concentration in soil. To reveal the impact mechanisms of Pb concentration on agricultural soil, six models including chlorophyll-leaf moisture model, chlorophyll-cell structure model, chlorophyll-LAI model, leaf moisture-cell structure model, leaf moisture-LAI model, cell structure- LAI model are explored. We find that changes in Pb concentration present various features in different models. Pb contamination in agricultural soil can be identified and assessed effectively while integrating the characteristics of those developed models.

  13. Nitrate in aquifers beneath agricultural systems.

    PubMed

    Burkart, M R; Stoner, J D

    2002-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWOA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and shallow carbonate aquifers provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional concentrations of groundwater nitrate than all other agricultural systems, although mean nitrate concentrations in counties with dairy, poultry, cattle and grains, and horticulture systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as in Asia, may experience the greatest impact of this practice.

  14. Utilizing Indigenous Knowledge Systems in Agricultural Education to Promote Sustainable Agriculture.

    ERIC Educational Resources Information Center

    Williams, David L.; Muchena, Olivia N.

    1991-01-01

    Understanding and appreciation of indigenous knowledge systems (IKS) are essential for promoting sustainable agriculture development. IKS provides a cultural basis for nonformal agricultural programs that is absent in technology transfer approaches. (SK)

  15. Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: Rice agriculture in the Mekong Delta's An Giang Province, Vietnam.

    PubMed

    Chapman, Alexander; Darby, Stephen

    2016-07-15

    Challenging dynamics are unfolding in social-ecological systems around the globe as society attempts to mitigate and adapt to climate change while sustaining rapid local development. The IPCC's 5th assessment suggests these changing systems are susceptible to unforeseen and dangerous 'emergent risks'. An archetypal example is the Vietnamese Mekong Delta (VMD) where the river dyke network has been heightened and extended over the last decade with the dual objectives of (1) adapting the delta's 18 million inhabitants and their livelihoods to increasingly intense river-flooding, and (2) developing rice production through a shift from double to triple-cropping. Negative impacts have been associated with this shift, particularly in relation to its exclusion of fluvial sediment deposition from the floodplain. A deficit in our understanding of the dynamics of the rice-sediment system, which involve unintuitive delays, feedbacks, and tipping points, is addressed here, using a system dynamics (SD) approach to inform sustainable adaptation strategies. Specifically, we develop and test a new SD model which simulates the dynamics between the farmers' economic system and their rice agriculture operations, and uniquely, integrates the role of fluvial sediment deposition within their dyke compartment. We use the model to explore a range of alternative rice cultivation strategies. Our results suggest that the current dominant strategy (triple-cropping) is only optimal for wealthier groups within society and over the short-term (ca. 10years post-implementation). The model suggests that the policy of opening sluice gates and leaving paddies fallow during high-flood years, in order to encourage natural sediment deposition and the nutrient replenishment it supplies, is both a more equitable and a more sustainable policy. But, even with this approach, diminished supplies of sediment-bound nutrients and the consequent need to compensate with artificial fertilisers will mean that smaller

  16. Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: Rice agriculture in the Mekong Delta's An Giang Province, Vietnam.

    PubMed

    Chapman, Alexander; Darby, Stephen

    2016-07-15

    Challenging dynamics are unfolding in social-ecological systems around the globe as society attempts to mitigate and adapt to climate change while sustaining rapid local development. The IPCC's 5th assessment suggests these changing systems are susceptible to unforeseen and dangerous 'emergent risks'. An archetypal example is the Vietnamese Mekong Delta (VMD) where the river dyke network has been heightened and extended over the last decade with the dual objectives of (1) adapting the delta's 18 million inhabitants and their livelihoods to increasingly intense river-flooding, and (2) developing rice production through a shift from double to triple-cropping. Negative impacts have been associated with this shift, particularly in relation to its exclusion of fluvial sediment deposition from the floodplain. A deficit in our understanding of the dynamics of the rice-sediment system, which involve unintuitive delays, feedbacks, and tipping points, is addressed here, using a system dynamics (SD) approach to inform sustainable adaptation strategies. Specifically, we develop and test a new SD model which simulates the dynamics between the farmers' economic system and their rice agriculture operations, and uniquely, integrates the role of fluvial sediment deposition within their dyke compartment. We use the model to explore a range of alternative rice cultivation strategies. Our results suggest that the current dominant strategy (triple-cropping) is only optimal for wealthier groups within society and over the short-term (ca. 10years post-implementation). The model suggests that the policy of opening sluice gates and leaving paddies fallow during high-flood years, in order to encourage natural sediment deposition and the nutrient replenishment it supplies, is both a more equitable and a more sustainable policy. But, even with this approach, diminished supplies of sediment-bound nutrients and the consequent need to compensate with artificial fertilisers will mean that smaller

  17. Agricultural and Environmental Input Parameters for the Biosphere Model

    SciTech Connect

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  18. An Obstacle Alerting System for Agricultural Application

    NASA Technical Reports Server (NTRS)

    DeMaio, Joe

    2003-01-01

    Wire strikes are a significant cause of helicopter accidents. The aircraft most at risk are aerial applicators. The present study examines the effectiveness of a wire alert delivered by way of the lightbar, a GPS-based guidance system for aerial application. The alert lead-time needed to avoid an invisible wire is compared with that to avoid a visible wire. A flight simulator was configured to simulate an agricultural application helicopter. Two pilots flew simulated spray runs in fields with visible wires, invisible wires, and no wires. The wire alert was effective in reducing wire strikes. A lead-time of 3.5 sec was required for the alert to be effective. The lead- time required was the same whether the pilot could see the wire or not.

  19. TMDL implementation in agricultural landscapes: a communicative and systemic approach.

    PubMed

    Jordan, Nicholas R; Slotterback, Carissa Schively; Cadieux, Kirsten Valentine; Mulla, David J; Pitt, David G; Olabisi, Laura Schmitt; Kim, Jin-Oh

    2011-07-01

    Increasingly, total maximum daily load (TMDL) limits are being defined for agricultural watersheds. Reductions in non-point source pollution are often needed to meet TMDL limits, and improvements in management of annual crops appear insufficient to achieve the necessary reductions. Increased adoption of perennial crops and other changes in agricultural land use also appear necessary, but face major barriers. We outline a novel strategy that aims to create new economic opportunities for land-owners and other stakeholders and thereby to attract their voluntary participation in land-use change needed to meet TMDLs. Our strategy has two key elements. First, focused efforts are needed to create new economic enterprises that capitalize on the productive potential of multifunctional agriculture (MFA). MFA seeks to produce a wide range of goods and ecosystem services by well-designed deployment of annual and perennial crops across agricultural landscapes and watersheds; new revenue from MFA may substantially finance land-use change needed to meet TMDLs. Second, efforts to capitalize on MFA should use a novel methodology, the Communicative/Systemic Approach (C/SA). C/SA uses an integrative GIS-based spatial modeling framework for systematically assessing tradeoffs and synergies in design and evaluation of multifunctional agricultural landscapes, closely linked to deliberation and design processes by which multiple stakeholders can collaboratively create appropriate and acceptable MFA landscape designs. We anticipate that application of C/SA will strongly accelerate TMDL implementation, by aligning the interests of multiple stakeholders whose active support is needed to change agricultural land use and thereby meet TMDL goals.

  20. Agricultural biodiversity, social-ecological systems and sustainable diets.

    PubMed

    Allen, Thomas; Prosperi, Paolo; Cogill, Bruce; Flichman, Guillermo

    2014-11-01

    The stark observation of the co-existence of undernourishment, nutrient deficiencies and overweight and obesity, the triple burden of malnutrition, is inviting us to reconsider health and nutrition as the primary goal and final endpoint of food systems. Agriculture and the food industry have made remarkable advances in the past decades. However, their development has not entirely fulfilled health and nutritional needs, and moreover, they have generated substantial collateral losses in agricultural biodiversity. Simultaneously, several regions are experiencing unprecedented weather events caused by climate change and habitat depletion, in turn putting at risk global food and nutrition security. This coincidence of food crises with increasing environmental degradation suggests an urgent need for novel analyses and new paradigms. The sustainable diets concept proposes a research and policy agenda that strives towards a sustainable use of human and natural resources for food and nutrition security, highlighting the preeminent role of consumers in defining sustainable options and the importance of biodiversity in nutrition. Food systems act as complex social-ecological systems, involving multiple interactions between human and natural components. Nutritional patterns and environment structure are interconnected in a mutual dynamic of changes. The systemic nature of these interactions calls for multidimensional approaches and integrated assessment and simulation tools to guide change. This paper proposes a review and conceptual modelling framework that articulate the synergies and tradeoffs between dietary diversity, widely recognised as key for healthy diets, and agricultural biodiversity and associated ecosystem functions, crucial resilience factors to climate and global changes.

  1. The concept of development of the integrated agricultural land assessment system

    NASA Astrophysics Data System (ADS)

    Zatserkovniy, V. I.; Gebrin, L. V.; Kryvoberets, S. V.

    2014-12-01

    The article takes up some of the characteristics of Ukrainian soils current conditions. Here cartographically shown the matter of soils, heavy metals pollution of soils, soil loss tolerance and a radiation pollution of soils. The article also analyzes the functional diagram of the agricultural lands spatial data integration and the stages of implementation of the overall agricultural lands monitoring system. It describes the advantages of the integrated agricultural crops conditions assessment model and the advantages of crop yield forecasting based on remote sensing.

  2. A New Extension Model: The Memorial Middle School Agricultural Extension and Education Center

    ERIC Educational Resources Information Center

    Skelton, Peter; Seevers, Brenda

    2010-01-01

    The Memorial Middle School Agricultural Extension and Education Center is a new model for Extension. The center applies the Cooperative Extension Service System philosophy and mission to developing public education-based programs. Programming primarily serves middle school students and teachers through agricultural and natural resource science…

  3. Integrating Sensory/Actuation Systems in Agricultural Vehicles

    PubMed Central

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  4. Integrating sensory/actuation systems in agricultural vehicles.

    PubMed

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  5. Integrating sensory/actuation systems in agricultural vehicles.

    PubMed

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-02-26

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles.

  6. Agricultural and Environmental Input Parameters for the Biosphere Model

    SciTech Connect

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-06-20

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.

  7. Higher Agricultural Universities Serve for "Sannong" by Offering English Human Resources Support System

    ERIC Educational Resources Information Center

    Yuan, Youqin; Cheng, Baole

    2008-01-01

    This paper puts higher agricultural English education how to serve for "Sannong" construction as priority, combining the actual market demand, based on teaching reform in the past few years, tries to explore English nurturing model and curriculum system for real delivery the agriculture-related qualified foreign language professionals.…

  8. The Development Model Electronic Commerce of Regional Agriculture

    NASA Astrophysics Data System (ADS)

    Kang, Jun; Cai, Lecai; Li, Hongchan

    With the developing of the agricultural information, it is inevitable trend of the development of agricultural electronic commercial affairs. On the basis of existing study on the development application model of e-commerce, combined with the character of the agricultural information, compared with the developing model from the theory and reality, a new development model electronic commerce of regional agriculture base on the government is put up, and such key issues as problems of the security applications, payment mode, sharing mechanisms, and legal protection are analyzed, etc. The among coordination mechanism of the region is discussed on, it is significance for regulating the development of agricultural e-commerce and promoting the regional economical development.

  9. Groundwater economics: An object-oriented foundation for integrated studies of irrigated agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An integrated foundation is presented to study the impacts of external forcings on irrigated agricultural systems. Individually, models are presented that simulate groundwater hydrogeology and econometric farm level crop choices and irrigated water use. The natural association between groundwater we...

  10. Development of an Agricultural Fertilizer Modeling System for Bi-Directional Ammonia Fluxes in the Community Multiscale Air Quality (CMAQ) Model

    EPA Science Inventory

    Atmospheric ammonia (NH3) plays an important role in fine-mode aerosol formation. Accurate estimates of ammonia from both human and natural emissions can reduce uncertainties in air quality modeling. The majority of ammonia anthropogenic emissions come from the agricul...

  11. Linking knowledge and action through mental models of sustainable agriculture.

    PubMed

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-09-01

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer "mental models" of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems.

  12. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Riddick, Stuart; Ward, Daniel; Hess, Peter; Mahowald, Natalie; Massad, Raia; Holland, Elisabeth

    2016-06-01

    Nitrogen applied to the surface of the land for agricultural purposes represents a significant source of reactive nitrogen (Nr) that can be emitted as a gaseous Nr species, be denitrified to atmospheric nitrogen (N2), run off during rain events or form plant-useable nitrogen in the soil. To investigate the magnitude, temporal variability and spatial heterogeneity of nitrogen pathways on a global scale from sources of animal manure and synthetic fertilizer, we developed a mechanistic parameterization of these pathways within a global terrestrial land model, the Community Land Model (CLM). In this first model version the parameterization emphasizes an explicit climate-dependent approach while using highly simplified representations of agricultural practices, including manure management and fertilizer application. The climate-dependent approach explicitly simulates the relationship between meteorological variables and biogeochemical processes to calculate the volatilization of ammonia (NH3), nitrification and runoff of Nr following manure or synthetic fertilizer application. For the year 2000, approximately 125 Tg N yr-1 is applied as manure and 62 Tg N yr-1 is applied as synthetic fertilizer. We estimate the resulting global NH3 emissions are 21 Tg N yr-1 from manure (17 % of manure production) and 12 Tg N yr-1 from fertilizer (19 % of fertilizer application); reactive nitrogen runoff during rain events is calculated as 11 Tg N yr-1 from manure and 5 Tg N yr-1 from fertilizer. The remaining nitrogen from manure (93 Tg N yr-1) and synthetic fertilizer (45 Tg N yr-1) is captured by the canopy or transferred to the soil nitrogen pools. The parameterization was implemented in the CLM from 1850 to 2000 using a transient simulation which predicted that, even though absolute values of all nitrogen pathways are increasing with increased manure and synthetic fertilizer application, partitioning of nitrogen to NH3 emissions from manure is increasing on a percentage basis, from

  13. A Landscape Perspective on Sustainability of Agricultural Systems

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Kaffka, Stephen R; Langeveld, J.W.A.

    2013-01-01

    Landscape sustainability of agricultural systems considers effects of farm activities on social, economic, and ecosystem services at local and regional scales. Sustainable agriculture entails: defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior. A landscape perspective is useful because landscape ecology provides theory and methods for dealing with spatial heterogeneity, scaling, integration, and complexity. To implement agricultural sustainability, we propose adopting a systems perspective, recognizing spatial heterogeneity, addressing the influences of context, and integrating landscape-design principles. Topics that need further attention at local and regional scales include (1) protocols for quantifying material and energy flows; (2) effects of management practices; (3) incentives for enhancing social, economic, and ecosystem services; (4) integrated landscape planning and management; (5) monitoring and assessment; (6) effects of societal demand; and (7) consistent and holistic policies for promoting agricultural sustainability.

  14. Quantification of isotopic turnover in agricultural systems

    NASA Astrophysics Data System (ADS)

    Braun, A.; Auerswald, K.; Schnyder, H.

    2012-04-01

    The isotopic turnover, which is a proxy for the metabolic rate, is gaining scientific importance. It is quantified for an increasing range of organisms, from microorganisms over plants to animals including agricultural livestock. Additionally, the isotopic turnover is analyzed on different scales, from organs to organisms to ecosystems and even to the biosphere. In particular, the quantification of the isotopic turnover of specific tissues within the same organism, e.g. organs like liver and muscle and products like milk and faeces, has brought new insights to improve understanding of nutrient cycles and fluxes, respectively. Thus, the knowledge of isotopic turnover is important in many areas, including physiology, e.g. milk synthesis, ecology, e.g. soil retention time of water, and medical science, e.g. cancer diagnosis. So far, the isotopic turnover is quantified by applying time, cost and expertise intensive tracer experiments. Usually, this comprises two isotopic equilibration periods. A first equilibration period with a constant isotopic input signal is followed by a second equilibration period with a distinct constant isotopic input signal. This yields a smooth signal change from the first to the second signal in the object under consideration. This approach reveals at least three major problems. (i) The input signals must be controlled isotopically, which is almost impossible in many realistic cases like free ranging animals. (ii) Both equilibration periods may be very long, especially when the turnover rate of the object under consideration is very slow, which aggravates the first problem. (iii) The detection of small or slow pools is improved by large isotopic signal changes, but large isotopic changes also involve a considerable change in the input material; e.g. animal studies are usually carried out as diet-switch experiments, where the diet is switched between C3 and C4 plants, since C3 and C4 plants differ strongly in their isotopic signal. The

  15. Linking knowledge and action through mental models of sustainable agriculture

    PubMed Central

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-01-01

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer “mental models” of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems. PMID:25157158

  16. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Riddick, S. N.; Ward, D. S.; Hess, P.; Mahowald, N.; Massad, R. S.; Holland, E. A.

    2015-09-01

    Nitrogen applied to the surface of the land for agricultural purposes represents a significant source of reactive nitrogen (Nr) that can be emitted as a gaseous Nr species, be denitrified to atmospheric nitrogen (N2), run-off during rain events or form plant useable nitrogen in the soil. To investigate the magnitude, temporal variability and spatial heterogeneity of nitrogen pathways on a global scale from sources of animal manure and synthetic fertilizer, we developed a mechanistic parameterization of these pathways within a global terrestrial model. The parameterization uses a climate dependent approach whereby the relationships between meteorological variables and biogeochemical processes are used to calculate the volatilization of ammonia (NH3), nitrification and run-off of Nr following manure or fertilizer application. For the year 2000, we estimate global NH3 emission and Nr dissolved during rain events from manure at 21 and 11 Tg N yr-1, respectively; for synthetic fertilizer we estimate the NH3 emission and Nr run-off during rain events at 12 and 5 Tg N yr-1, respectively. The parameterization was implemented in the Community Land Model from 1850 to 2000 using a transient simulation which predicted that, even though absolute values of all nitrogen pathways are increasing with increased manure and synthetic fertilizer application, partitioning of nitrogen to NH3 emissions from manure is increasing on a percentage basis, from 14 % of nitrogen applied (3 Tg NH3 yr-1) in 1850 to 18 % of nitrogen applied in 2000 (22 Tg NH3 yr-1). While the model confirms earlier estimates of nitrogen fluxes made in a range of studies, its key purpose is to provide a theoretical framework that can be employed within a biogeochemical model, that can explicitly respond to climate and that can evolve and improve with further observation.

  17. Integrating seasonal climate prediction and agricultural models for insights into agricultural practice

    PubMed Central

    Hansen, James W

    2005-01-01

    Interest in integrating crop simulation models with dynamic seasonal climate forecast models is expanding in response to a perceived opportunity to add value to seasonal climate forecasts for agriculture. Integrated modelling may help to address some obstacles to effective agricultural use of climate information. First, modelling can address the mismatch between farmers' needs and available operational forecasts. Probabilistic crop yield forecasts are directly relevant to farmers' livelihood decisions and, at a different scale, to early warning and market applications. Second, credible ex ante evidence of livelihood benefits, using integrated climate–crop–economic modelling in a value-of-information framework, may assist in the challenge of obtaining institutional, financial and political support; and inform targeting for greatest benefit. Third, integrated modelling can reduce the risk and learning time associated with adaptation and adoption, and related uncertainty on the part of advisors and advocates. It can provide insights to advisors, and enhance site-specific interpretation of recommendations when driven by spatial data. Model-based ‘discussion support systems’ contribute to learning and farmer–researcher dialogue. Integrated climate–crop modelling may play a genuine, but limited role in efforts to support climate risk management in agriculture, but only if they are used appropriately, with understanding of their capabilities and limitations, and with cautious evaluation of model predictions and of the insights that arises from model-based decision analysis. PMID:16433092

  18. Case Analysis of Farm Agriculture Machinery Informatization Management Network System

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Wang, Xi; Zhuang, Weidong

    In the process of China's agricultural modernization, especially agricultural machinery modernization, in terms of equipment, we've chose the way that foreign imports (and domestic research) with the combination of self-developed, in the software, it is difficult to fully apply this approach, the specific reasons are: the modernization of China's agriculture development model is diversified, it is difficult to find a unified management model, even in the scale of operations of the representative state-owned farms and the abroad farms are also very different management models. Due to various types of growth models of biological complexity, diverse climatic and geographical environment factors, coupled with the characteristics such as long cycle of agricultural production, high input, high-risk, and decentralized management, industrial management mode it is very difficult to apply. Moreover, the application of modern management tools is also difficult to quantify the benefits, leading to the current research and application are in a state of comparatively dropped behind.

  19. Against the Grain: The Influence of Changing Agricultural Management on the Earth System

    NASA Astrophysics Data System (ADS)

    Foley, J. A.

    2007-12-01

    The rise of modern agriculture was one of the most transformative events in human history, and has forever changed our relationship to the natural world. By clearing tropical forests, practicing subsistence agriculture on marginal lands and intensifying industrialized farmland production, agricultural practices are changing the worldês landscapes in pervasive ways. In the past decade, we have made tremendous progress in monitoring agricultural expansion from satellites, and modeling associated environmental impacts. In the past decade, the Earth System Science research community has begun to recognize the importance of agricultural lands, particularly as they continue expanding at the expense of important natural ecosystems, potentially altering the planetês carbon cycle and climate. With the advent of new remote sensing and global modeling methods, several efforts have documented the expansion of agricultural lands, the corresponding loss of natural ecosystems, and how this may influence the earth system. But the geographic expansion of agricultural lands is not the whole story. While significant agricultural expansion (or extensification) has occurred in the past few decades, the intensification of agricultural practices Ð under the aegis of the -Green Revolution" Ð has dramatically altered the relationship between humans and environmental systems across the world. Simply put, many of the worldês existing agricultural lands are being used much more intensively as opportunities for agricultural expansion are being exhausted elsewhere. In the last 40 years, global agricultural production has more than doubled Ð although global cropland has increased by only 12% Ð mainly through the use of high yielding varieties of grain, increased reliance on irrigation, massive increases in chemical fertilization, and increased mechanization. Indeed, in the past 40 years there has been a 700% increase in global fertilizer use and a 70% increase in irrigated cropland area

  20. Systems in peril: Climate change, agriculture and biodiversity in Australia

    NASA Astrophysics Data System (ADS)

    Cocklin, Chris; Dibden, Jacqui

    2009-11-01

    This paper reflects on the interplay amongst three closely linked systems - climate, agriculture and biodiversity - in the Australian context. The advance of a European style of agriculture has imperilled Australian biodiversity. The loss and degradation of biodiversity has, in turn, had negative consequences for agriculture. Climate change is imposing new pressures on both agriculture and biodiversity. From a policy and management perspective, though, it is possible to envisage mitigation and adaptation responses that would alleviate pressures on all three systems (climate, agriculture, biodiversity). In this way, the paper seeks to make explicit the important connections between science and policy. The paper outlines the distinctive features of both biodiversity and agriculture in the Australian context. The discussion then addresses the impacts of agriculture on biodiversity, followed by an overview of how climate change is impacting on both of these systems. The final section of the paper offers some commentary on current policy and management strategies that are targeted at mitigating the loss of biodiversity and which may also have benefits in terms of climate change.

  1. Application of Program Logic Model to Agricultural Technology Transfer Programs.

    ERIC Educational Resources Information Center

    Framst, Gordon

    1995-01-01

    Program logic models provide a method of presenting program objectives schematically. This article presents a model that explicitly recognizes the ultimate societal-level benefits and accommodates identification of outputs, performance indicators, and targets. The model is illustrated with a hypothetical agricultural technology transfer program.…

  2. Probabilistic assessment of agricultural droughts using graphical models

    NASA Astrophysics Data System (ADS)

    Ramadas, Meenu; Govindaraju, Rao S.

    2015-07-01

    Agricultural droughts are often characterized by soil moisture in the root zone of the soil, but crop needs are rarely factored into the analysis. Since water needs vary with crops, agricultural drought incidences in a region can be characterized better if crop responses to soil water deficits are also accounted for in the drought index. This study investigates agricultural droughts driven by plant stress due to soil moisture deficits using crop stress functions available in the literature. Crop water stress is assumed to begin at the soil moisture level corresponding to incipient stomatal closure, and reaches its maximum at the crop's wilting point. Using available location-specific crop acreage data, a weighted crop water stress function is computed. A new probabilistic agricultural drought index is then developed within a hidden Markov model (HMM) framework that provides model uncertainty in drought classification and accounts for time dependence between drought states. The proposed index allows probabilistic classification of the drought states and takes due cognizance of the stress experienced by the crop due to soil moisture deficit. The capabilities of HMM model formulations for assessing agricultural droughts are compared to those of current drought indices such as standardized precipitation evapotranspiration index (SPEI) and self-calibrating Palmer drought severity index (SC-PDSI). The HMM model identified critical drought events and several drought occurrences that are not detected by either SPEI or SC-PDSI, and shows promise as a tool for agricultural drought studies.

  3. Strategies and models for agricultural sustainability in developing Asian countries.

    PubMed

    Kesavan, P C; Swaminathan, M S

    2008-02-27

    The green revolution of the 1960s and 1970s which resulted in dramatic yield increases in the developing Asian countries is now showing signs of fatigue in productivity gains. Intensive agriculture practiced without adherence to the scientific principles and ecological aspects has led to loss of soil health, and depletion of freshwater resources and agrobiodiversity. With progressive diversion of arable land for non-agricultural purposes, the challenge of feeding the growing population without, at the same time, annexing more forestland and depleting the rest of life is indeed daunting. Further, even with food availability through production/procurement, millions of marginal farming, fishing and landless rural families have very low or no access to food due to lack of income-generating livelihoods. Approximately 200 million rural women, children and men in India alone fall in this category. Under these circumstances, the evergreen revolution (pro-nature, pro-poor, pro-women and pro-employment/livelihood oriented ecoagriculture) under varied terms are proposed for achieving productivity in perpetuity. In the proposed 'biovillage paradigm', eco-friendly agriculture is promoted along with on- and non-farm eco-enterprises based on sustainable management of natural resources. Concurrently, the modern ICT-based village knowledge centres provide time- and locale-specific, demand-driven information needed for evergreen revolution and ecotechnologies. With a system of 'farm and marine production by masses', the twin goals of ecoagriculture and eco-livelihoods are addressed. The principles, strategies and models of these are briefly discussed in this paper.

  4. Using Multispectral Analysis in GIS to Model the Potential for Urban Agriculture in Philadelphia

    NASA Astrophysics Data System (ADS)

    Dmochowski, J. E.; Cooper, W. P.

    2010-12-01

    In the context of growing concerns about the international food system’s dependence on fossil fuels, soil degradation, climate change, and other diverse issues, a number of initiatives have arisen to develop and implement sustainable agricultural practices. Many seeking to reform the food system look to urban agriculture as a means to create localized, sustainable agricultural production, while simultaneously providing a locus for community building, encouraging better nutrition, and promoting the rebirth of depressed urban areas. The actual impact of such system, however, is not well understood, and many critics of urban agriculture regard its implementation as impractical and unrealistic. This project uses multispectral imagery from United States Department of Agriculture’s National Agricultural Imagery Program with a one-meter resolution to quantify the potential for increasing urban agriculture in an effort to create a sustainable food system in Philadelphia. Color infrared images are classified with a minimum distance algorithm in ArcGIS to generate baseline data on vegetative cover in Philadelphia. These data, in addition to mapping on the ground, form the basis of a model of land suitable for conversion to agriculture in Philadelphia, which will help address questions related to potential yields, workforce, and energy requirements. This research will help city planners, entrepreneurs, community leaders, and citizens understand how urban agriculture can contribute to creating a sustainable food system in a major North American city.

  5. Monitoring and modeling agricultural drought for famine early warning (Invited)

    NASA Astrophysics Data System (ADS)

    Verdin, J. P.; Funk, C.; Budde, M. E.; Lietzow, R.; Senay, G. B.; Smith, R.; Pedreros, D.; Rowland, J.; Artan, G. A.; Husak, G. J.; Michaelsen, J.; Adoum, A.; Galu, G.; Magadzire, T.; Rodriguez, M.

    2009-12-01

    The Famine Early Warning Systems Network (FEWS NET) makes quantitative estimates of food insecure populations, and identifies the places and periods during which action must be taken to assist them. Subsistence agriculture and pastoralism are the predominant livelihood systems being monitored, and they are especially drought-sensitive. At the same time, conventional climate observation networks in developing countries are often sparse and late in reporting. Consequently, remote sensing has played a significant role since FEWS NET began in 1985. Initially there was heavy reliance on vegetation index imagery from AVHRR to identify anomalies in landscape greenness indicative of drought. In the latter part of the 1990s, satellite rainfall estimates added a second, independent basis for identification of drought. They are used to force crop water balance models for the principal rainfed staple crops in twenty FEWS NET countries. Such models reveal seasonal moisture deficits associated with yield reduction on a spatially continuous basis. In 2002, irrigated crops in southwest Asia became a concern, and prompted the implementation of a gridded energy balance model to simulate the seasonal mountain snow pack, the main source of irrigation water. MODIS land surface temperature data are also applied in these areas to directly estimate actual seasonal evapotranspiration on the irrigated lands. The approach reveals situations of reduced irrigation water supply and crop production due to drought. The availability of MODIS data after 2000 also brought renewed interest in vegetation index imagery. MODIS NDVI data have proven to be of high quality, thanks to significant spectral and spatial resolution improvements over AVHRR. They are vital to producing rapid harvest assessments for drought-impacted countries in Africa and Asia. The global food crisis that emerged in 2008 has led to expansion of FEWS NET monitoring to over 50 additional countries. Unlike previous practice, these

  6. Sustainable Uses of FGD Gypsum in Agricultural Systems: Introduction.

    PubMed

    Watts, Dexter B; Dick, Warren A

    2014-01-01

    Interest in using gypsum as a management tool to improve crop yields and soil and water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur from combustion gases at coal-fired power plants, in major agricultural producing regions within the last two decades has attributed to this interest. Currently, published data on the long-term sustainability of FGD gypsum use in agricultural systems is limited. This has led to organization of the American Society of Agronomy's Community "By-product Gypsum Uses in Agriculture" and a special collection of nine technical research articles on various issues related to FGD gypsum uses in agricultural systems. A brief review of FGD gypsum, rationale for the special collection, overviews of articles, knowledge gaps, and future research directions are presented in this introductory paper. The nine articles are focused in three general areas: (i) mercury and other trace element impacts, (ii) water quality impacts, and (iii) agronomic responses and soil physical changes. While this is not an exhaustive review of the topic, results indicate that FGD gypsum use in sustainable agricultural production systems is promising. The environmental impacts of FGD gypsum are mostly positive, with only a few negative results observed, even when applied at rates representing cumulative 80-year applications. Thus, FGD gypsum, if properly managed, seems to represent an important potential input into agricultural systems. PMID:25602557

  7. Representative Agricultural Pathways and Climate Impact Assessment for Pacific Northwest Agricultural Systems

    NASA Astrophysics Data System (ADS)

    MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.

    2013-12-01

    Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.

  8. Spatial modeling of agricultural land use change at global scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  9. Spatial Modeling of Indian Agriculture, Economic Activity and Population under Climate Change

    NASA Astrophysics Data System (ADS)

    McCord, G. C.

    2010-12-01

    We present a spatial model of economic activity and human population built on physical geography that takes particular account of its effects through agricultural productivity and transport costs for trade. A major component of this work is an agricultural model, driven in part by high-resolution climate data and model output. We put forward India as the initial region for this modeling work; India is a relatively data-rich country, it exhibits significant within-country spatial and temporal variation in agricultural productivity, urbanization rates, and population growth rates, and the climate dynamics of the monsoon are well-studied and expected to change on decadal time scales. Agricultural productivity is modeled as a function of soil, climate, and technology variables. Farmers locate optimally given varying geography and transport costs; in turn, food availability defines urbanization rates and economic activity in non-agricultural sectors. This “social system” integrated assessment model is a step towards a valuable policy tool, but requires a significant mobilization of data and a grid-cell-level system of equations to describe the underlying dynamics of the model. We test against past trends of social-natural system progression in demography, human location, income, food production, etc., and argue that the model could be used to assess future trends under varying climate change scenarios, and eventually serve to model feedbacks through effects on migration, population growth rates, or economic activity.

  10. Sustaining the Earth's watersheds, agricultural research data system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  11. Private Agricultural Extension System in Kenya: Practice and Policy Lessons

    ERIC Educational Resources Information Center

    Muyanga, Milu; Jayne, T. S.

    2008-01-01

    Private extension system has been at the centre of a debate triggered by inefficient public agricultural extension. The debate is anchored on the premise that the private sector is more efficient in extension service delivery. This study evaluates the private extension system in Kenya. It employs qualitative and quantitative methods. The results…

  12. Modeling nitrate contamination of groundwater in agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Almasri, Mohammad N.; Kaluarachchi, Jagath J.

    2007-09-01

    SummaryThis paper presents and implements a framework for modeling the impact of land use practices and protection alternatives on nitrate pollution of groundwater in agricultural watersheds. The framework utilizes the national land cover database (NLCD) of the United State Geological Survey (USGS) grid and a geographic information system (GIS) to account for the spatial distribution of on-ground nitrogen sources and corresponding loadings. The framework employs a soil nitrogen dynamic model to estimate nitrate leaching to groundwater. These estimates were used in developing a groundwater nitrate fate and transport model. The framework considers both point and non-point sources of nitrogen across different land use classes. The methodology was applied for the Sumas-Blaine aquifer of Washington State, US, where heavy dairy industry and berry plantations are concentrated. Simulations were carried out using the developed framework to evaluate the overall impacts of current land use practices and the efficiency of proposed protection alternatives on nitrate pollution in the aquifer.

  13. Investigation of a ponding irrigation system to recycle agricultural wastewater.

    PubMed

    Chen, P H; Leung, K C; Wang, J T

    2000-08-01

    This article presents the results of natural carrying capacity of ponding irrigation system in Taoyuan agricultural zone, Taiwan. Both the systematic water quality and the ponding effects were examined. The ponding irrigation system included a flow channel and storage ponds. The data showed that most water characteristics deteriorated gradually from upper- to down-stream in the flow channel and the flow channel was not attributed to any self-purification in agricultural returning water practically. On the other hand, the results of storage ponds indicated that they can provide a natural treatment (i.e., the outlet water quality of the ponds is more desirable than that of the inlet). Consequently, the ponding irrigation system offers the natural self-purification in ponds to reuse and recycle the returning agricultural wastewater and to extend the irrigation capacity and efficiency.

  14. Feasibility study of a microwave radar system for agricultural inspection

    SciTech Connect

    Okelo-Odongo, S.

    1994-10-03

    The feasibility of an impulse radar system for agricultural inspection is investigated. This system would be able to quickly determine the quality of foodstuffs that are passed through the system. A prototype was designed at the Lawrence Livermore National Laboratory and this report discusses it`s evaluation. A variety of apples were used to test the system and preliminary data suggests that this technology holds promise for successful application on a large scale in food processing plants.

  15. Life cycle assessment of domestic and agricultural rainwater harvesting systems.

    PubMed

    Ghimire, Santosh R; Johnston, John M; Ingwersen, Wesley W; Hawkins, Troy R

    2014-04-01

    To further understanding of the environmental implications of rainwater harvesting and its water savings potential relative to conventional U.S. water delivery infrastructure, we present a method to perform life cycle assessment of domestic rainwater harvesting (DRWH) and agricultural rainwater harvesting (ARWH) systems. We also summarize the design aspects of DRWH and ARWH systems adapted to the Back Creek watershed, Virginia. The baseline design reveals that the pump and pumping electricity are the main components of DRWH and ARWH impacts. For nonpotable uses, the minimal design of DRWH (with shortened distribution distance and no pump) outperforms municipal drinking water in all environmental impact categories except ecotoxicity. The minimal design of ARWH outperforms well water in all impact categories. In terms of watershed sustainability, the two minimal designs reduced environmental impacts, from 58% to 78% energy use and 67% to 88% human health criteria pollutants, as well as avoiding up to 20% blue water (surface/groundwater) losses, compared to municipal drinking water and well water. We address potential environmental and human health impacts of urban and rural RWH systems in the region. The Building for Environmental and Economic Sustainability (BEES) model-based life cycle inventory data were used for this study.

  16. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  17. Ecological constraints on the ability of precision agriculture to improve the environmental performance of agricultural production systems.

    PubMed

    Groffman, P M

    1997-01-01

    In this paper, I address three topics relevant to the ability of precision agriculture to improve the environmental performance of agricultural production systems. First, I describe the fundamental ecological factors that influence the environmental performance of these systems and address how precision agriculture practices can or cannot interact with these factors. Second, I review the magnitude of the ecological processes that we hope to manage with precision agriculture relative to agricultural inputs to determine whether managing these processes can significantly affect system environmental performance. Finally, I address scale incongruencies between ecological processes and precision agriculture techniques that could limit the ability of these techniques to manage variability in these processes. The analysis suggests that there are significant ecological constraints on the ability of precision agriculture techniques to improve the environmental performance of agricultural production systems. The primary constraint is that these techniques do not address many of the key factors that cause poor environmental performance in these systems. Further, the magnitude of the ecological processes that we hope to manage with precision agriculture are quite small relative to agricultural inputs and, finally, these processes vary on scales that are incongruent with precision management techniques.

  18. Benchmarking the performance of a land data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of land data assimilation systems to operational agricultural drought monitoring requires the development of (at least) three separate system sub-components: 1) a retrieval model to invert satellite-derived observations into soil moisture estimates, 2) a prognostic soil water balance...

  19. [Integrated evaluation of circular agriculture system: a life cycle perspective].

    PubMed

    Liang, Long; Chen, Yuan-Quan; Gao, Wang-Sheng

    2010-11-01

    For the point of view that recycling economy system is one of ways to achieve the low-carbon economy, we have made an evaluation on a typical circular agriculture duck industry in Hunan Province, China, through improving the framework of life cycle assessment (LCA). The analysis indicated that the consumption of non-renewable resources, land and water were 48.629 MJ, 2.36 m2 and 1 321.41 kg, while the potential greenhouse gas (GHGs), acidification, eutrophication, human toxicity, freshwater ecotoxicity and terrestrial ecotoxicity were 11 543.26 g (CO2 eq), 52.36g (SO2eq), 25.83g (PO4eq), 1.26, 60.74 and 24.65 g (1,4-DCBeq), respectively. The potential damage of aquatic eutrophication, freshwater ecotoxicity and terrestrial ecotoxicity was more serious than that of GHGs. Main results were following: i. the circular agricultural chain promoted the principle of "moderate circulation", which based on the traditional production methods; ii. circular agriculture could not blindly pursue low carbon development. Instead, soil and biological carbon sequestration should be considered, in addition to reducing carbon emissions; iii. circular economy and circular agriculture should take other potential environmental impacts into account such as acidification, eutrophication and ecotoxicity,with the exception to carbon emissions,to developed integrated system assessment; iv. LCA could provide a comprehensive assessment of circular agriculture, and it was worth of further study.

  20. A decision support system for rainfed agricultural areas of Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rural inhabitants of arid lands lack sufficient water to fulfill their agricultural and household needs. They do not have readily available technical information to support decisions regarding the course of action they should follow to handle the agro-climatic risk. In this paper, a computer model (...

  1. Modeling Sustainable Agricultural Residue Removal at the Subfield Scale

    SciTech Connect

    Muth, D.J.; McCorkle, D.S.; Koch, J.B.; Bryden, K.M.

    2012-05-02

    This study developed a computational strategy that utilizes data inputs from multiple spatial scales to investigate how variability within individual fields can impact sustainable residue removal for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in limiting soil erosion and maintaining soil C, health, and productivity. Increased availability of subfield-scale data sets such as grain yield data, high-fidelity digital elevation models, and soil characteristic data provides an opportunity to investigate the impacts of subfield-scale variability on sustainable agricultural residue removal. Using three representative fields in Iowa, this study contrasted the results of current NRCS conservation management planning analysis with subfield-scale analysis for rake-and-bale removal of agricultural residue. The results of the comparison show that the field-average assumptions used in NRCS conservation management planning may lead to unsustainable residue removal decisions for significant portions of some fields. This highlights the need for additional research on subfield-scale sustainable agricultural residue removal including the development of real-time variable removal technologies for agricultural residue.

  2. Ohio Agricultural Business and Production Systems. Technical Competency Profile (TCP).

    ERIC Educational Resources Information Center

    Ray, Gayl M.; Kershaw, Isaac; Mokma, Arnie

    This document describes the essential competencies from secondary through post-secondary associate degree programs for a career in agricultural business and production systems. Following an introduction, the Ohio College Tech Prep standards and program, and relevant definitions are described. Next are the technical competency profiles for these…

  3. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  4. Transformation and Transport Processes of Nitrogen in Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transformation and transport processes of nitrogen (N) in agricultural systems are discussed and information is provided on overall reservoir sizes for N. Nitrogen is ubiquitous in the environment and is required for the survival of all living things. It is also one of the most important essen...

  5. Investigation of the photochemical changes of chlorogenic acids induced by ultraviolet light in model systems and in agricultural practice with Stevia rebaudiana cultivation as an example.

    PubMed

    Karaköse, Hande; Jaiswal, Rakesh; Deshpande, Sagar; Kuhnert, Nikolai

    2015-04-01

    Mono- and diacyl chlorogenic acids undergo photochemical trans-cis isomerization under ultraviolet (UV) irradiation. The photochemical equilibrium composition was established for eight selected derivatives. In contrast to all other dicaffeoylquinic acid derivatives, cynarin (1,3-dicaffeoylquinic acid) undergoes a [2 + 2] photochemical cycloaddition reaction, constituting a first example of Schmidt's law in a natural product family. The relevance of photochemical isomerization in agricultural practice was investigated using 120 samples of Stevia rebaudiana leave samples grown under defined cultivation conditions. Ratios of cis to trans chlorogenic acids were determined in leaf samples and correlated with climatic and harvesting conditions. The data indicate a clear correlation between the formation of cis-caffeoyl derivatives and sunshine hours prior to harvesting and illustrate the relevance of UV exposure to plant material affecting its phytochemical composition. PMID:25699645

  6. Investigation of the photochemical changes of chlorogenic acids induced by ultraviolet light in model systems and in agricultural practice with Stevia rebaudiana cultivation as an example.

    PubMed

    Karaköse, Hande; Jaiswal, Rakesh; Deshpande, Sagar; Kuhnert, Nikolai

    2015-04-01

    Mono- and diacyl chlorogenic acids undergo photochemical trans-cis isomerization under ultraviolet (UV) irradiation. The photochemical equilibrium composition was established for eight selected derivatives. In contrast to all other dicaffeoylquinic acid derivatives, cynarin (1,3-dicaffeoylquinic acid) undergoes a [2 + 2] photochemical cycloaddition reaction, constituting a first example of Schmidt's law in a natural product family. The relevance of photochemical isomerization in agricultural practice was investigated using 120 samples of Stevia rebaudiana leave samples grown under defined cultivation conditions. Ratios of cis to trans chlorogenic acids were determined in leaf samples and correlated with climatic and harvesting conditions. The data indicate a clear correlation between the formation of cis-caffeoyl derivatives and sunshine hours prior to harvesting and illustrate the relevance of UV exposure to plant material affecting its phytochemical composition.

  7. Rapid assessment methods of resilience for natural and agricultural systems.

    PubMed

    Torrico, Juan C; Janssens, Marc J J

    2010-12-01

    The resilience, ecological function and quality of both agricultural and natural systems were evaluated in the mountainous region of the Atlantic Rain Forest of Rio de Janeiro through Rapid Assessment Methods. For this goal new indicators were proposed, such as eco-volume, eco-height, bio-volume, volume efficiency, and resilience index. The following agricultural and natural systems have been compared according: (i) vegetables (leaf, fruit and mixed); (ii) citrus; (iii) ecological system; (iv) cattle, (v) silvo-pastoral system, (vi) forest fragment and (vii) forest in regeneration stage (1, 2 and 3 years old). An alternative measure (index) of resilience was proposed by considering the actual bio-volume as a function of the potential eco-volume. The objectives and hypotheses were fulfilled; it is shown that there does exist a high positive correlation between resilience index, biomass, energy efficiency and biodiversity. Cattle and vegetable systems have lowest resilience, whilst ecological and silvo-pastoral systems have greatest resilience. This new approach offers a rapid, though valuable assessment tool for ecological studies, agricultural development and landscape planning, particularly in tropical countries.

  8. Modelling of agricultural combination driver behaviour from the aspect of safety of movement.

    PubMed

    Szczepaniak, Jan; Tanaś, Wojciech; Pawłowski, Tadeusz; Kromulski, Jacek

    2014-01-01

    Statistics show that the travel of agricultural machinery to a work area and their movement during labour is the source of many serious accidents. The most dangerous in consequences prove to be those that occur during transport and associated with maneuvering tractors and machinery (about 30% of all fatal accidents). It can be assumed that at least some of these accidents were caused indirectly by the specific design features of agricultural machines which adversely affect the driveability. The single- and multi-loop structures of the driver-vehicle system models are formulated to study the contributions of various preview and prediction strategies to the path tracking and dynamic performance of the articulated vehicle. In the presented study the compensatory model of driver utilizes the lateral acceleration of the tractor, roll angle of trailer sprung mass and the articulation rate as the internal motion feedback variables. The control model of steering of an agricultural set has been implemented in the Matlab/Simulink environment. The model has been constructed with the use of stochastic methods and operational transmittances describing the various components of the system. The model operational transmittances has been estimated using Box-Jenkins and continuous-time process models from input-output data. The model has been tested using experimental data from road investigation of the agricultural set. PMID:24959798

  9. Modelling of agricultural combination driver behaviour from the aspect of safety of movement.

    PubMed

    Szczepaniak, Jan; Tanaś, Wojciech; Pawłowski, Tadeusz; Kromulski, Jacek

    2014-01-01

    Statistics show that the travel of agricultural machinery to a work area and their movement during labour is the source of many serious accidents. The most dangerous in consequences prove to be those that occur during transport and associated with maneuvering tractors and machinery (about 30% of all fatal accidents). It can be assumed that at least some of these accidents were caused indirectly by the specific design features of agricultural machines which adversely affect the driveability. The single- and multi-loop structures of the driver-vehicle system models are formulated to study the contributions of various preview and prediction strategies to the path tracking and dynamic performance of the articulated vehicle. In the presented study the compensatory model of driver utilizes the lateral acceleration of the tractor, roll angle of trailer sprung mass and the articulation rate as the internal motion feedback variables. The control model of steering of an agricultural set has been implemented in the Matlab/Simulink environment. The model has been constructed with the use of stochastic methods and operational transmittances describing the various components of the system. The model operational transmittances has been estimated using Box-Jenkins and continuous-time process models from input-output data. The model has been tested using experimental data from road investigation of the agricultural set.

  10. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  11. Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate.

    PubMed

    Couture, Raoul-Marie; Tominaga, Koji; Starrfelt, Jostein; Moe, S Jannicke; Kaste, Øyvind; Wright, Richard F

    2014-07-01

    A model network comprising climate models, a hydrological model, a catchment-scale model for phosphorus biogeochemistry, and a lake thermodynamics and plankton dynamics model was used to simulate phosphorus loadings, total phosphorus and chlorophyll concentrations in Lake Vansjø, Southern Norway. The model network was automatically calibrated against time series of hydrological, chemical and biological observations in the inflowing river and in the lake itself using a Markov Chain Monte-Carlo (MCMC) algorithm. Climate projections from three global climate models (GCM: HadRM3, ECHAM5r3 and BCM) were used. The GCM model HadRM3 predicted the highest increase in temperature and precipitation and yielded the highest increase in total phosphorus and chlorophyll concentrations in the lake basin over the scenario period of 2031-2060. Despite the significant impact of climate change on these aspects of water quality, it is minimal when compared to the much larger effect of changes in land-use. The results suggest that implementing realistic abatement measures will remain a viable approach to improving water quality in the context of climate change.

  12. Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate.

    PubMed

    Couture, Raoul-Marie; Tominaga, Koji; Starrfelt, Jostein; Moe, S Jannicke; Kaste, Øyvind; Wright, Richard F

    2014-07-01

    A model network comprising climate models, a hydrological model, a catchment-scale model for phosphorus biogeochemistry, and a lake thermodynamics and plankton dynamics model was used to simulate phosphorus loadings, total phosphorus and chlorophyll concentrations in Lake Vansjø, Southern Norway. The model network was automatically calibrated against time series of hydrological, chemical and biological observations in the inflowing river and in the lake itself using a Markov Chain Monte-Carlo (MCMC) algorithm. Climate projections from three global climate models (GCM: HadRM3, ECHAM5r3 and BCM) were used. The GCM model HadRM3 predicted the highest increase in temperature and precipitation and yielded the highest increase in total phosphorus and chlorophyll concentrations in the lake basin over the scenario period of 2031-2060. Despite the significant impact of climate change on these aspects of water quality, it is minimal when compared to the much larger effect of changes in land-use. The results suggest that implementing realistic abatement measures will remain a viable approach to improving water quality in the context of climate change. PMID:24622900

  13. The Agricultural Policy/Environmental Extender (Apex) Model: An Emerging Tool for Landscape and Watershed Environmental Analyses

    SciTech Connect

    Gassman, Philip W.; Williams, Jimmy R.; Wang, Xiuying; Saleh, Ali; Osei, Edward; Hauck, Larry; Izaurralde, Roberto C.; Flowers, Joan

    2010-06-01

    The Agricultural Policy Environmental eXtender (APEX) model was developed by the Blacklands Research and Extension Center in Temple, Texas. APEX is a flexible and dynamic tool that is capable of simulating a wide array of management practices, cropping systems, and other land uses across a broad range of agricultural landscapes, including whole farms and small watersheds.

  14. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  15. Evaluating the Impacts of Climate variability on Agriculture: an integrated modeling approach

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Miralles-Wilhelm, F. R.; Podestá, G. P.; Broad, K.; Letson, D.

    2005-05-01

    Climate variability is just one factor that affects agriculture, other factors such as socio-economic conditions, demographic changes, land use and land cover changes, and water allocation policies also have significant impacts. In this research, the exposure of Florida agriculture to multiple stresses is analyzed using an integrated modeling approach, based on system dynamics modeling principles. The model consists of five interacting sectors of population, land use, water use, pollution and economy. Land use is further divided into urban/industrial, farmland, commercial forest, and state forest. Water use consists of demand for domestic, industrial, agricultural, environmental, and recreational purposes. The framework of the model is described, and the results of alternate policy runs and a sensitivity analysis are presented. The integrated model is used to explore three policy scenarios. First, we explore if current trends of demographic change, water use and land use continue, what will happen under different climate variability scenarios (i.e., change in temperature and precipitation, both in time and space). Second, we explore scenarios with changes in water demand and supply through adding desalinization plants, reducing water losses, preserving water through efficient use, changing crop variety and pattern, and importing virtual water. Third, we explore scenarios based on land use changes considering land allocation for alternate uses (e.g., changing commercial forest to agricultural use) and changing land use within certain category (e.g., different crops within agricultural land use). The research advances work on estimating the impacts of climate variability on agriculture by considering dynamic interaction among multiple influencing factors. The results should help agencies involved in management of agriculture and water resources in Florida to develop policies for sustainable management of these resources.

  16. Sustaining the earth's watersheds-agricultural research data system: Overview of development and challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comprehensive, long-term data for watershed systems across diverse locations are essential for interdisciplinary hydrologic and ecosystem analysis and model development, calibration and validation. The USDA and Agricultural Research Service (ARS) have supported watershed research since the 1930’s w...

  17. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  18. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  19. 3-D Imaging Systems for Agricultural Applications—A Review

    PubMed Central

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  20. Urban Agriculture Programs on the Rise: Agriculture Education Model Can Reach Students Other Classes Leave Behind

    ERIC Educational Resources Information Center

    Fritsch, Julie M.

    2013-01-01

    Agricultural education begins with hands-on classroom and laboratory instruction. Because agriculture is such a broad topic, schools typically tailor agriculture class offerings to match the interests of the student population, needs of nearby businesses and industry, or topics relevant to their state's standard assessments. Within most…

  1. Theme--Achieving 2020. Goal 3: All Students Are Conversationally Literate in Agriculture, Food, Fiber, and Natural Resource Systems.

    ERIC Educational Resources Information Center

    Trexler, Cary, Ed.

    2000-01-01

    Nine theme articles focus on the need for students to be conversationally literate about agriculture, food, fiber, and natural resources systems. Discusses the definition of conversational literacy, the human and institutional resources needed, and exemplary models for promoting literacy. (JOW)

  2. Modelling Approach to Assess Future Agricultural Water Demand

    NASA Astrophysics Data System (ADS)

    Spano, D.; Mancosu, N.; Orang, M.; Sarreshteh, S.; Snyder, R. L.

    2013-12-01

    The combination of long-term climate changes (e.g., warmer average temperatures) and extremes events (e.g., droughts) can have decisive impacts on water demand, with further implications on the ecosystems. In countries already affected by water scarcity, water management problems are becoming increasingly serious. The sustainable management of available water resources at the global, regional, and site-specific level is necessary. In agriculture, the first step is to compute how much water is needed by crops in regards to climate conditions. Modelling approach can be a way to compute crop water requirement (CWR). In this study, the improved version of the SIMETAW model was used. The model is a user friendly soil water balance model, developed by the University of California, Davis, the California Department of Water Resource, and the University of Sassari. The SIMETAW# model assesses CWR and generates hypothetical irrigation scheduling for a wide range of irrigated crops experiencing full, deficit, or no irrigation. The model computes the evapotranspiration of the applied water (ETaw), which is the sum of the net amount of irrigation water needed to match losses due to the crop evapotranspiration (ETc). ETaw is determined by first computing reference evapotranspiration (ETo) using the daily standardized Reference Evapotranspiration equation. ETaw is computed as ETaw = CETc - CEr, where CETc and CE are the cumulative total crop ET and effective rainfall values, respectively. Crop evapotranspiration is estimated as ETc = ETo x Kc, where Kc is the corrected midseason tabular crop coefficient, adjusted for climate conditions. The net irrigation amounts are determined from a daily soil water balance, using an integrated approach that considers soil and crop management information, and the daily ETc estimates. Using input information on irrigation system distribution uniformity and runoff, when appropriate, the model estimates the applied water to the low quarter of the

  3. Climate Models, Spatial Scale, and Impacts of Climate Change on Agriculture (Invited)

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2010-12-01

    Agriculture is among the resource sectors that received very early attention regarding possible climate change effects, and it has continued to receive considerable attention since that early research in the mid-1980s. Agriculture was also the sector wherein studies of possible adaptation to climate change first appeared. Application of results from climate models that simulate the effects of increased greenhouse gases on the atmosphere and earth system were an important component of this impacts research from the beginning, when the typical spatial resolution of climate models was on the order of 5 ° latitude by 5° longitude, or about 500 km × 500 km. This was recognized as being a very coarse resolution for applications to agriculture, and this ‘mismatch’ of scale between the climate models and the resolution at which one would want to determine impacts has remained a concern. Climate models have improved tremendously over the past 25 years since the early days of climate impacts research, in terms of the processes represented in the models as well as in their spatial resolution. Typically global models have resolutions of about 2 ° latitude and longitude, and some atmosphere-ocean general circulation models (AOGCMs) are now being run at a 1° spatial resolution. Nevertheless, even this resolution is viewed as being relatively coarse from the perspective of resolving important physical processes that govern climate as well as for the apparent needs of impacts researchers and policy makers. Over the past couple of decades techniques have been developed to allow for producing information about climate change at higher resolutions. Generating information at grid scales below that of AOGCMs is referred to as downscaling, and there are at least four different techniques for developing such information. In this talk I will present an overview of these techniques and how higher resolution information has been used in agricultural impacts assessments. Most

  4. Modeling radionuclide effluxes from agricultural and natural ecosystems in Belarus.

    PubMed

    Zhuchenko, Yu M; Firsakova, S K; Voigt, G

    2002-06-01

    A mathematical model is described which is appropriately constructed to calculate effluxes of radionuclides from agricultural and natural ecosystems. The application of this model is demonstrated by estimating effluxes in the Bragin region and in the Narovlya region in the Republic of Belarus both highly affected by the Chernobyl accident fallout. Depending on the nature of the area and the deposition, the total efflux and the exported radioactivity are calculated. It is shown that the exported radioactivity for natural foodstuffs represents more than 64% (Bragin region) and 86% (Narovlya region) of the total 137Cs efflux, and for agricultural products 2.7% and 2.3%, respectively. The contribution of the different foodstuffs deriving from natural and agricultural used land to the individual and collective dose for 137Cs and 90Sr are estimated and presented. In the Bragin region for the collective annual dose the highest contribution is due to milk and meat consumption (137Cs) and flour and milk (90Sr), for individual annual dose milk and mushrooms (137Cs), and milk and flour (90Sr) contribute most. In the Narovlya region this contribution for the collective and individual annual dose is due to milk and mushroom consumption (137Cs) and flour and milk (90Sr).

  5. Assessing and modelling ecohydrologic processes at the agricultural field scale

    NASA Astrophysics Data System (ADS)

    Basso, Bruno

    2015-04-01

    One of the primary goals of agricultural management is to increase the amount of crop produced per unit of fertilizer and water used. World record corn yields demonstrated that water use efficiency can increase fourfold with improved agronomic management and cultivars able to tolerate high densities. Planting crops with higher plant density can lead to significant yield increases, and increase plant transpiration vs. soil water evaporation. Precision agriculture technologies have been adopted for the last twenty years but seldom have the data collected been converted to information that led farmers to different agronomic management. These methods are intuitively appealing, but yield maps and other spatial layers of data need to be properly analyzed and interpreted to truly become valuable. Current agro-mechanic and geospatial technologies allow us to implement a spatially variable plan for agronomic inputs including seeding rate, cultivars, pesticides, herbicides, fertilizers, and water. Crop models are valuable tools to evaluate the impact of management strategies (e.g., cover crops, tile drains, and genetically-improved cultivars) on yield, soil carbon sequestration, leaching and greenhouse gas emissions. They can help farmers identify adaptation strategies to current and future climate conditions. In this paper I illustrate the key role that precision agriculture technologies (yield mapping technologies, within season soil and crop sensing), crop modeling and weather can play in dealing with the impact of climate variability on soil ecohydrologic processes. Case studies are presented to illustrate this concept.

  6. MODELING OF MACROSCALE AGRICULTURAL ELEMENTS IN PESTICIDE EXPOSURE

    EPA Science Inventory

    Yuma County, Arizona, is the site of year around agriculture. To understand the role of agricultural pesticide exposures experienced by children, urinary metabolite concentrations were compared with agricultural use of pesticides. The urinary metabolite and household data wer...

  7. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  8. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems

    PubMed Central

    Verbruggen, Erik; Toby Kiers, E

    2010-01-01

    The root systems of most agronomic crops are colonized by diverse assemblages of arbuscular mycorrhizal fungi (AMF), varying in the functional benefits (e.g. nutrient transfer, pathogen protection, water uptake) provided to hosts. Little is known about the evolutionary processes that shape the composition of these fungal assemblages, nor is it known whether more diverse assemblages are beneficial to crop productivity. In this review we aim to identify the evolutionary selection pressures that shape AMF diversity in agricultural systems and explore whether promotion of AMF diversity can convincingly be linked to increases in agricultural productivity and/or sustainability. We then ask whether farmers can (and should) actively modify evolutionary selection pressures to increase AMF functioning. We focus on three agriculturally imposed selection regimes: tillage, fertilization, and continuous monoculture. We find that the uniform nature of these practices strongly selects for dominance of few AMF species. These species exhibit predictable, generally non-beneficial traits, namely heavy investment in reproduction at the expense of nutrient scavenging and transfer processes that are beneficial for hosts. A number of focus-points are given based on empirical and theoretical evidence that could be utilized to slow down negative selection pressures on AMF functioning, therein increasing crop benefit. PMID:25567946

  9. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  10. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  11. Changes in Soil Chemistry and Agricultural Return Flow in an Integrated Seawater Agriculture System (ISAS) Demonstration in Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Ning, Q.; Matiin, W. A.; Ahmad, F.

    2012-12-01

    Growing halophytes using Integrated Seawater Agriculture Systems (ISAS) offers a sustainable solution for the generation of biomass feedstock for carbon neutral biofuels - halophytes do not enter the foodchain and they do not compete with food-crops for natural resources. A field demonstration of ISAS in the coastal regions of Abu Dhabi, UAE, scheduled to start in 2013, will likely face a number of region-specific challenges not encountered in past demonstrations of ISAS at coastal locations in Mexico and Eritrea. The arid climate, unique soil chemistry (evaporite deposits, especially gypsum), and hypersaline coastal hydrogeology of Abu Dhabi will affect long-term halophyte agricultural productivity when Arabian Gulf seawater is applied to coastal soils as part of ISAS. Therefore, the changes in irrigation return flow quality and soil chemistry must be monitored closely over time to establish transient salt and water balances in order to assess the sustainability of ISAS in the region. As an initial phase of the ISAS demonstration project, numerical modeling of different seawater loadings onto coastal soils was conducted to estimate the chemical characteristics of soil and the irrigation return flow over time. These modeling results will be validated with field monitoring data upon completion of one year of ISAS operation. The results from this study could be used to (i) determine the optimal saline water loading that the soils at the ISAS site can tolerate, (ii) potential for sodicity of the soil with saline water application, (iii) impacts of land application of saline water on underlying coastal groundwater, and (iv) develop strategies to control soil water activities in favor of halophyte agricultural productivity.

  12. World agriculture and climate change: Current modeling issues

    SciTech Connect

    Darwin, R.

    1996-12-31

    Recent studies suggest that although global increases in temperature and changes in precipitation patterns during the next century will affect world agriculture, farmer adaptations are likely to prevent climate change from jeopardizing world food production. The costs and benefits of global climate change, however, are not equally distributed around the world. Agricultural production may increase in high latitude and alpine areas, but decrease in tropical and some other areas. Also, land use changes that accompany climate-induced shifts in cropland and permanent pasture are likely to raise additional social and environmental issues. Despite these advances, some important aspects of climate change have not been adequately simulated in global models. These include the effects that climate-induced changes in water resources are likely to have on agricultural production, the well-documented beneficial effects of higher concentrations of atmospheric carbon dioxide on plant growth and water use, and the cooling effects of tropospheric emissions of sulfur dioxide. In addition, past research generally relied on equilibrium climates based on a doubling of atmospheric carbon dioxide. Now, however, results from transient climate change experiments are available.

  13. AgBase: supporting functional modeling in agricultural organisms

    PubMed Central

    McCarthy, Fiona M.; Gresham, Cathy R.; Buza, Teresia J.; Chouvarine, Philippe; Pillai, Lakshmi R.; Kumar, Ranjit; Ozkan, Seval; Wang, Hui; Manda, Prashanti; Arick, Tony; Bridges, Susan M.; Burgess, Shane C.

    2011-01-01

    AgBase (http://www.agbase.msstate.edu/) provides resources to facilitate modeling of functional genomics data and structural and functional annotation of agriculturally important animal, plant, microbe and parasite genomes. The website is redesigned to improve accessibility and ease of use, including improved search capabilities. Expanded capabilities include new dedicated pages for horse, cat, dog, cotton, rice and soybean. We currently provide 590 240 Gene Ontology (GO) annotations to 105 454 gene products in 64 different species, including GO annotations linked to transcripts represented on agricultural microarrays. For many of these arrays, this provides the only functional annotation available. GO annotations are available for download and we provide comprehensive, species-specific GO annotation files for 18 different organisms. The tools available at AgBase have been expanded and several existing tools improved based upon user feedback. One of seven new tools available at AgBase, GOModeler, supports hypothesis testing from functional genomics data. We host several associated databases and provide genome browsers for three agricultural pathogens. Moreover, we provide comprehensive training resources (including worked examples and tutorials) via links to Educational Resources at the AgBase website. PMID:21075795

  14. Pathogen population dynamics in agricultural landscapes: the Ddal modelling framework.

    PubMed

    Papaïx, Julien; Adamczyk-Chauvat, Katarzyna; Bouvier, Annie; Kiêu, Kiên; Touzeau, Suzanne; Lannou, Christian; Monod, Hervé

    2014-10-01

    Modelling processes that occur at the landscape scale is gaining more and more attention from theoretical ecologists to agricultural managers. Most of the approaches found in the literature lack applicability for managers or, on the opposite, lack a sound theoretical basis. Based on the metapopulation concept, we propose here a modelling approach for landscape epidemiology that takes advantage of theoretical results developed in the metapopulation context while considering realistic landscapes structures. A landscape simulator makes it possible to represent both the field pattern and the spatial distribution of crops. The pathogen population dynamics are then described through a matrix population model both stage- and space-structured. In addition to a classical invasion analysis we present a stochastic simulation experiment and provide a complete framework for performing a sensitivity analysis integrating the landscape as an input factor. We illustrate our approach using an example to evaluate whether the agricultural landscape composition and structure may prevent and mitigate the development of an epidemic. Although designed for a fungal foliar disease, our modelling approach is easily adaptable to other organisms.

  15. The Development of the Integrated Three-Component Model of Agricultural Education

    ERIC Educational Resources Information Center

    Croom, D. Barry

    2008-01-01

    This research project sought to determine the origin of the three-component model of agricultural education in the United States and provided a contextual base for future research into the three-component model for agricultural education. The study concluded that each of the three components of the agricultural education model originated at…

  16. An Interoperable, Agricultural Information System Based on Satellite Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Chiu, Long; Doraiswamy, Paul; Kempler, Steven; Liu, Zhong; Pham, Long; Rui, Hualan

    2005-01-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of US. agricultural products and for global food security. The Goddard Space Flight Center Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide satellite remote sensing data products (e.g., rainfall) and services. The data products will include crop condition and yield prediction maps, generated from a crop growth model with satellite data inputs, in collaboration with the USDA Agricultural Research Service. The AIS will enable the remote, interoperable access to distributed data, by using the GrADS-DODS Server (GDS) and by being compliant with Open GIS Consortium standards. Users will be able to download individual files, perform interactive online analysis, as well as receive operational data flows. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as those of the USDA Foreign Agricultural Service and the U.N. World Food Program.

  17. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  18. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  19. Modeling the impacts of climate change and agricultural management practices on surface erosion in a dryland agricultural basin

    NASA Astrophysics Data System (ADS)

    Ottenbreit, E.; Adam, J. C.; Barber, M. E.

    2010-12-01

    The objective of this study is to investigate the effects of climate change and agricultural management practices on suspended sediment concentrations in the Potlach River basin in northwestern Idaho. Suspended sediment is a pollutant in many water systems and contributes to the impairment of streams. Conventional tillage practices and rain-on-snow events in the Palouse region of northern Idaho and eastern Washington can produce some of the highest sediment losses per acre in the United States. Climate change may lead to further problems as more frequent and intense winter storm events are predicted to occur. Many hydrological models have been developed which examine suspended sediment in river systems. The Potlatch River basin near Julietta, ID was examined using the Distributed Hydrology Soil Vegetation Model (DHSVM), which has a sediment module that includes surface erosion and channel sediment transport. DHSVM was calibrated and evaluated over the historical period of streamflow observations and was used to predict soil erosion rates and suspended sediment concentrations using a range of downscaled Global Climate Models (GCMs) emissions scenarios for the year 2045. Furthermore, the sensitivity of suspended sediment concentrations to conventional versus convservative tillage practices was explored. The results show that as the projected climate-driven intensity of storms increase, more sediment is predicted in the Potlatch River. Suspended sediment and streamflow are predicted to increase during the late fall through the early spring. This increase occurs during times of heightened runoff when suspended sediment concentration in the river is highest. Three tillage scenarios were incorporated into DHSVM for winter wheat: conventional till, reduced till, and no till. Erosion and suspended sediment were higher during storm events under conventional agricultural tillage scenarios. In the long-term, this research can lead to examination of the effects of climate

  20. Ecohydrological modeling: the consideration of agricultural trees is essential in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; von Bloh, Werner; Shi, Sinan; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall and direct degradation of ecosystems. Human population growth and socioeconomic changes, notably on the Eastern and Southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive ecohydrological model. Here we present here the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL, "Lund-Potsdam-Jena managed Land"): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was then successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. A first application of the model indicates that, currently, agricultural trees consume in average more irrigation water per hectare than annual crops. Also, different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. This is very relevant since the Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 74% from climate change and population growth if irrigation systems and conveyance are not improved. Additionally, future water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios by the end of the century (1). The importance of including agricultural trees in the ecohydrological models is also shown in the results concerning soil organic carbon (SOC). Since in former model

  1. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    NASA Astrophysics Data System (ADS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Havlík, Petr; Herrero, Mario; Schmitz, Christoph; Rolinski, Susanne

    2015-09-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.

  2. An integrated Modelling framework to monitor and predict trends of agricultural management (iMSoil)

    NASA Astrophysics Data System (ADS)

    Keller, Armin; Della Peruta, Raneiro; Schaepman, Michael; Gomez, Marta; Mann, Stefan; Schulin, Rainer

    2014-05-01

    Agricultural systems lay at the interface between natural ecosystems and the anthroposphere. Various drivers induce pressures on the agricultural systems, leading to changes in farming practice. The limitation of available land and the socio-economic drivers are likely to result in further intensification of agricultural land management, with implications on fertilization practices, soil and pest management, as well as crop and livestock production. In order to steer the development into desired directions, tools are required by which the effects of these pressures on agricultural management and resulting impacts on soil functioning can be detected as early as possible, future scenarios predicted and suitable management options and policies defined. In this context, the use of integrated models can play a major role in providing long-term predictions of soil quality and assessing the sustainability of agricultural soil management. Significant progress has been made in this field over the last decades. Some of these integrated modelling frameworks include biophysical parameters, but often the inherent characteristics and detailed processes of the soil system have been very simplified. The development of such tools has been hampered in the past by a lack of spatially explicit soil and land management information at regional scale. The iMSoil project, funded by the Swiss National Science Foundation in the national research programme NRP68 "soil as a resource" (www.nrp68.ch) aims at developing and implementing an integrated modeling framework (IMF) which can overcome the limitations mentioned above, by combining socio-economic, agricultural land management, and biophysical models, in order to predict the long-term impacts of different socio-economic scenarios on the soil quality. In our presentation we briefly outline the approach that is based on an interdisciplinary modular framework that builds on already existing monitoring tools and model components that are

  3. Modelling the Impact of Land Use Change on Water Quality in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Johnes, P. J.; Heathwaite, A. L.

    1997-03-01

    Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological pathways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.

  4. Modeling a phosphorus credit trading program in an agricultural watershed.

    PubMed

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2014-10-01

    Water quality and economic models were linked to assess the economic and environmental benefits of implementing a phosphorus credit trading program in an agricultural sub-basin of Lake Okeechobee watershed, Florida, United States. The water quality model determined the effects of rainfall, land use type, and agricultural management practices on the amount of total phosphorus (TP) discharged. TP loadings generated at the farm level, reaching the nearby streams, and attenuated to the sub-basin outlet from all sources within the sub-basin, were estimated at 106.4, 91, and 85 mtons yr(-)(1), respectively. Almost 95% of the TP loadings reaching the nearby streams were attributed to agriculture sources, and only 1.2% originated from urban areas, accounting for a combined TP load of 87.9 mtons yr(-)(1). In order to compare a Least-Cost Abatement approach to a Command-and-Control approach, the most cost effective cap of 30% TP reduction was selected, and the individual allocation was set at a TP load target of 1.6 kg ha(-1) yr(-1) (at the nearby stream level). The Least-Cost Abatement approach generated a potential cost savings of 27% ($1.3 million per year), based on an optimal credit price of $179. Dairies (major buyer), ornamentals, row crops, and sod farms were identified as potential credit buyers, whereas citrus, improved pastures (major seller), and urban areas were identified as potential credit sellers. Almost 81% of the TP credits available for trading were exchanged. The methodology presented here can be adapted to deal with different forms of trading sources, contaminants, or other technologies and management practices.

  5. Modeling a phosphorus credit trading program in an agricultural watershed.

    PubMed

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2014-10-01

    Water quality and economic models were linked to assess the economic and environmental benefits of implementing a phosphorus credit trading program in an agricultural sub-basin of Lake Okeechobee watershed, Florida, United States. The water quality model determined the effects of rainfall, land use type, and agricultural management practices on the amount of total phosphorus (TP) discharged. TP loadings generated at the farm level, reaching the nearby streams, and attenuated to the sub-basin outlet from all sources within the sub-basin, were estimated at 106.4, 91, and 85 mtons yr(-)(1), respectively. Almost 95% of the TP loadings reaching the nearby streams were attributed to agriculture sources, and only 1.2% originated from urban areas, accounting for a combined TP load of 87.9 mtons yr(-)(1). In order to compare a Least-Cost Abatement approach to a Command-and-Control approach, the most cost effective cap of 30% TP reduction was selected, and the individual allocation was set at a TP load target of 1.6 kg ha(-1) yr(-1) (at the nearby stream level). The Least-Cost Abatement approach generated a potential cost savings of 27% ($1.3 million per year), based on an optimal credit price of $179. Dairies (major buyer), ornamentals, row crops, and sod farms were identified as potential credit buyers, whereas citrus, improved pastures (major seller), and urban areas were identified as potential credit sellers. Almost 81% of the TP credits available for trading were exchanged. The methodology presented here can be adapted to deal with different forms of trading sources, contaminants, or other technologies and management practices. PMID:24907668

  6. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China*

    PubMed Central

    Guan, Fa-chun; Sha, Zhi-peng; Zhang, Yu-yang; Wang, Jun-feng; Wang, Chao

    2016-01-01

    Home courtyard agriculture is an important model of agricultural production on the Tibetan plateau. Because of the sensitive and fragile plateau environment, it needs to have optimal performance characteristics, including high sustainability, low environmental pressure, and high economic benefit. Emergy analysis is a promising tool for evaluation of the environmental-economic performance of these production systems. In this study, emergy analysis was used to evaluate three courtyard agricultural production models: Raising Geese in Corn Fields (RGICF), Conventional Corn Planting (CCP), and Pea-Wheat Rotation (PWR). The results showed that the RGICF model produced greater economic benefits, and had higher sustainability, lower environmental pressure, and higher product safety than the CCP and PWR models. The emergy yield ratio (EYR) and emergy self-support ratio (ESR) of RGICF were 0.66 and 0.11, respectively, lower than those of the CCP production model, and 0.99 and 0.08, respectively, lower than those of the PWR production model. The impact of RGICF (1.45) on the environment was lower than that of CCP (2.26) and PWR (2.46). The emergy sustainable indices (ESIs) of RGICF were 1.07 and 1.02 times higher than those of CCP and PWR, respectively. With regard to the emergy index of product safety (EIPS), RGICF had a higher safety index than those of CCP and PWR. Overall, our results suggest that the RGICF model is advantageous and provides higher environmental benefits than the CCP and PWR systems. PMID:27487808

  7. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China.

    PubMed

    Guan, Fa-Chun; Sha, Zhi-Peng; Zhang, Yu-Yang; Wang, Jun-Feng; Wang, Chao

    2016-08-01

    Home courtyard agriculture is an important model of agricultural production on the Tibetan plateau. Because of the sensitive and fragile plateau environment, it needs to have optimal performance characteristics, including high sustainability, low environmental pressure, and high economic benefit. Emergy analysis is a promising tool for evaluation of the environmental-economic performance of these production systems. In this study, emergy analysis was used to evaluate three courtyard agricultural production models: Raising Geese in Corn Fields (RGICF), Conventional Corn Planting (CCP), and Pea-Wheat Rotation (PWR). The results showed that the RGICF model produced greater economic benefits, and had higher sustainability, lower environmental pressure, and higher product safety than the CCP and PWR models. The emergy yield ratio (EYR) and emergy self-support ratio (ESR) of RGICF were 0.66 and 0.11, respectively, lower than those of the CCP production model, and 0.99 and 0.08, respectively, lower than those of the PWR production model. The impact of RGICF (1.45) on the environment was lower than that of CCP (2.26) and PWR (2.46). The emergy sustainable indices (ESIs) of RGICF were 1.07 and 1.02 times higher than those of CCP and PWR, respectively. With regard to the emergy index of product safety (EIPS), RGICF had a higher safety index than those of CCP and PWR. Overall, our results suggest that the RGICF model is advantageous and provides higher environmental benefits than the CCP and PWR systems.

  8. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China.

    PubMed

    Guan, Fa-Chun; Sha, Zhi-Peng; Zhang, Yu-Yang; Wang, Jun-Feng; Wang, Chao

    2016-08-01

    Home courtyard agriculture is an important model of agricultural production on the Tibetan plateau. Because of the sensitive and fragile plateau environment, it needs to have optimal performance characteristics, including high sustainability, low environmental pressure, and high economic benefit. Emergy analysis is a promising tool for evaluation of the environmental-economic performance of these production systems. In this study, emergy analysis was used to evaluate three courtyard agricultural production models: Raising Geese in Corn Fields (RGICF), Conventional Corn Planting (CCP), and Pea-Wheat Rotation (PWR). The results showed that the RGICF model produced greater economic benefits, and had higher sustainability, lower environmental pressure, and higher product safety than the CCP and PWR models. The emergy yield ratio (EYR) and emergy self-support ratio (ESR) of RGICF were 0.66 and 0.11, respectively, lower than those of the CCP production model, and 0.99 and 0.08, respectively, lower than those of the PWR production model. The impact of RGICF (1.45) on the environment was lower than that of CCP (2.26) and PWR (2.46). The emergy sustainable indices (ESIs) of RGICF were 1.07 and 1.02 times higher than those of CCP and PWR, respectively. With regard to the emergy index of product safety (EIPS), RGICF had a higher safety index than those of CCP and PWR. Overall, our results suggest that the RGICF model is advantageous and provides higher environmental benefits than the CCP and PWR systems. PMID:27487808

  9. Beyond climate-smart agriculture: toward safe operating spaces for global food systems

    SciTech Connect

    Gulledge, Jay; Neufeldt, Heinrich; Jahn, Margaret M; Lezaks, David P; Meinke, Jan H; Scholes, Robert J

    2013-01-01

    Agriculture is considered to be climate-smart when it contributes to increasing food security, adaptation and mitigation in a sustainable way. This new concept now dominates current discussions in agricultural development because of its capacity to unite the agendas of the agriculture, development and climate change communities under one brand. In this opinion piece authored by scientists from a variety of international agricultural and climate research communities, we argue that the concept needs to be evaluated critically because the relationship between the three dimensions is poorly understood, such that practically any improved agricultural practice can be considered climate-smart. This lack of clarity may have contributed to the broad appeal of the concept. From the understanding that we must hold ourselves accountable to demonstrably better meet human needs in the short and long term within foreseeable local and planetary limits, we develop a conceptualization of climate-smart agriculture as agriculture that can be shown to bring us closer to safe operating spaces for agricultural and food systems across spatial and temporal scales. Improvements in the management of agricultural systems that bring us significantly closer to safe operating spaces will require transformations in governance and use of our natural resources, underpinned by enabling political, social and economic conditions beyond incremental changes. Establishing scientifically credible indicators and metrics of long-term safe operating spaces in the context of a changing climate and growing social-ecological challenges is critical to creating the societal demand and political will required to motivate deep transformations. Answering questions on how the needed transformational change can be achieved will require actively setting and testing hypotheses to refine and characterize our concepts of safer spaces for social-ecological systems across scales. This effort will demand prioritizing key

  10. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall

  11. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    NASA Astrophysics Data System (ADS)

    Shukla, S.; McNally, A.; Husak, G.; Funk, C.

    2014-03-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993-2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall is

  12. Design of a solar controlled environment agriculture system (SCEAS)

    SciTech Connect

    Landstrom, D.K.; Stickford, G.H.; Talbert, S.G.; Wilkinson, W.H.

    1983-06-01

    The overall objective of the SCEAS project was to integrate advanced greenhouse agriculture technology with various energy sources and innovative cooling/ventilation concepts to demonstrate technical and economic feasibility of these facilities in several climatic regions where conventional greenhouse technology will not permit yearround growing of certain crops. The designed facility is capable of high yields of practically any crop, even temperaturesensitive vegetables such as lettuce, in extremely hostile external environments. The recirculation and ventilation system provides considerable flexibility in precise control of temperature and humidity throughout the year and in reducing water and energy consumption.

  13. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    PubMed

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome.

  14. Watershed Modeling in areas with Intensive Agricultural Irrigation

    NASA Astrophysics Data System (ADS)

    Wyss, J. R.; Watson, B. J.

    2011-12-01

    Irrigation in agricultural intensive watersheds affects soil moisture content, plays a major role in the overall water balance and also influences the hydrologic regime. Historically, irrigation in watershed modeling has been very difficult to simulate and was simulated in one of three general ways. 1) irrigation water was withdrawan from the model and never applied to the land, 2) ignored and assumed insignificant and 3) input as a constant by modifying atmospheric forcing files. For the Loading Simulation Program C++ (LSPC) model developed for the Flint River Watershed in southwest Georgia, we received a summary report of a study conducted to determine irrigation application depth, as well as spatial mapping of irrigated fields in the state of Georgia. The summary report provided minimum, mean, and maximum irrigation depth for both surface water and groundwater sources and the spatial mapping provided over 10,300 irrigated fields located within the boundaries of the Flint River Watershed. With this information we were able to calculate irrigation volume applied to the land by source water type. We discuss how these data were incorporated into the LSPC watershed modeling effort and demonstrate the utility and function of the model for irrigation application. We also investigate impacts to water balance and the hydrologic regime through a series of scenarios in the agriculturally dominated landscape of Ichawaynochaway Creek (HUC 03130009). The scenarios compare and contrast our approach with 1) ignoring irrigation both application and water withdrawal, and 2) only withdrawing the water and not applying it back to the land. We demonstrate the importance of properly simulating irrigation application in heavily influenced areas. The approach we have taken is applicable in other areas in the southeastern United States or any area that is highly influenced by irrigation practices.

  15. Making Other Worlds: Modelling Past Interactions of Agriculture and Erosion

    NASA Astrophysics Data System (ADS)

    Wainwright, J.

    2012-04-01

    It is argued that the understanding of past agricultural erosion has been greatly simplified because conceptual or numerical models have been used that emphasize the technical aspects of the erosion process, fail to recognize the spatial and temporal scaling of the erosion, and especially ignore the idea that such erosion is the result of multiple, interacting decisions made by people. While there have been significant developments in the first two of these areas over the last decade, there has been little explicit recognition of the third of these limitations. This problem is a consequence of the very different disciplinary approaches that are needed. One method that can be used to address this limitation is that of agent-based modelling. Agent-based models permit an explicit representation of how individuals or groups of individuals interact with each other and their environment. Furthermore, environmental changes can be fed back into agent behaviour, and other potential controls such as climate variations can be assessed. The CYBEROSION modelling framework has been developed to take this approach and evaluate patterns of erosion due to past land-use decision-making. Examples will be drawn from case studies in the Neolithic and Bronze Age, largely from the Mediterranean region. The emphasis is on modelling as a heuristic approach to understanding, rather than necessarily as a predictive tool. In particular, it provides guidance in relation to which parts of existing discipline-bound knowledge are needed to produce an explicit, interdisciplinary understanding of patterns of landscape change as a result of changing agricultural practice. Results from the case studies demonstrate how complex spatio-temporal patterns of past erosion can arise from relatively simple, local interactions between people and their environment. To conclude, will also be an assessment of more modern examples, as well as of related literature in archaeology, and geoarchaeology, and a

  16. Psychiatric agriculture: systemic nutritional modification and mental health in the developing world.

    PubMed

    London, Douglas S; Stoll, Andrew L; Manning, Bruce B

    2006-01-01

    Modernization of agricultural systems to increase output causes changes to the nutritional content of food entire populations consume. Human nutritional needs differ from their "food", thus producing healthy agricultural products is not equivalent to providing agricultural products that are healthy for humans. Inclusion of the food production system as a factor in the increase of neuropsychiatric disorders and other chronic diseases helps explain negative trends in modern chronic diseases that remain unchecked despite stunning advances in modern medicine. Diseases in which our own technology plays a significant role include obesity and resulting disorders, such as diabetes, heart disease, hypertension, stroke and arthritis. Modernization's lure leads to importation of modern agricultural practices into a nutritionally vulnerable, malnourished and sometimes starving developing world. Wealthier nations hedge their food portfolio by having access to a wider variety of foods. The developing world's reliance on staple foods means even a minor widespread nutritional modification of one key food can have profound effects. New agricultural techniques may improve or exacerbate neuropsychiatric disorders through nutritional modification in regions where populations walk a nutritional tightrope with little margin for error. In most of the developing world western psychiatric interventions have failed to make inroads. People's consumption of fish has a demonstrated beneficial effect on their mental health and the omega-3 fatty acid content is a significant factor. Epidemiological, biological and agricultural studies implicate a lack of dietary omega-3s as a factor in certain mental disorders. Replenishing omega-3s has improved mental illnesses in controlled clinical trials. This article's detailed tilapia fish-farming model demonstrates how aquaculture/agriculture techniques can function as a public health intervention by increasing dietary omega-3s through creation of

  17. Agricultural livelihoods in coastal Bangladesh under climate and environmental change--a model framework.

    PubMed

    Lázár, Attila N; Clarke, Derek; Adams, Helen; Akanda, Abdur Razzaque; Szabo, Sylvia; Nicholls, Robert J; Matthews, Zoe; Begum, Dilruba; Saleh, Abul Fazal M; Abedin, Md Anwarul; Payo, Andres; Streatfield, Peter Kim; Hutton, Craig; Mondal, M Shahjahan; Moslehuddin, Abu Zofar Md

    2015-06-01

    Coastal Bangladesh experiences significant poverty and hazards today and is highly vulnerable to climate and environmental change over the coming decades. Coastal stakeholders are demanding information to assist in the decision making processes, including simulation models to explore how different interventions, under different plausible future socio-economic and environmental scenarios, could alleviate environmental risks and promote development. Many existing simulation models neglect the complex interdependencies between the socio-economic and environmental system of coastal Bangladesh. Here an integrated approach has been proposed to develop a simulation model to support agriculture and poverty-based analysis and decision-making in coastal Bangladesh. In particular, we show how a simulation model of farmer's livelihoods at the household level can be achieved. An extended version of the FAO's CROPWAT agriculture model has been integrated with a downscaled regional demography model to simulate net agriculture profit. This is used together with a household income-expenses balance and a loans logical tree to simulate the evolution of food security indicators and poverty levels. Modelling identifies salinity and temperature stress as limiting factors to crop productivity and fertilisation due to atmospheric carbon dioxide concentrations as a reinforcing factor. The crop simulation results compare well with expected outcomes but also reveal some unexpected behaviours. For example, under current model assumptions, temperature is more important than salinity for crop production. The agriculture-based livelihood and poverty simulations highlight the critical significance of debt through informal and formal loans set at such levels as to persistently undermine the well-being of agriculture-dependent households. Simulations also indicate that progressive approaches to agriculture (i.e. diversification) might not provide the clear economic benefit from the perspective of

  18. Agricultural livelihoods in coastal Bangladesh under climate and environmental change--a model framework.

    PubMed

    Lázár, Attila N; Clarke, Derek; Adams, Helen; Akanda, Abdur Razzaque; Szabo, Sylvia; Nicholls, Robert J; Matthews, Zoe; Begum, Dilruba; Saleh, Abul Fazal M; Abedin, Md Anwarul; Payo, Andres; Streatfield, Peter Kim; Hutton, Craig; Mondal, M Shahjahan; Moslehuddin, Abu Zofar Md

    2015-06-01

    Coastal Bangladesh experiences significant poverty and hazards today and is highly vulnerable to climate and environmental change over the coming decades. Coastal stakeholders are demanding information to assist in the decision making processes, including simulation models to explore how different interventions, under different plausible future socio-economic and environmental scenarios, could alleviate environmental risks and promote development. Many existing simulation models neglect the complex interdependencies between the socio-economic and environmental system of coastal Bangladesh. Here an integrated approach has been proposed to develop a simulation model to support agriculture and poverty-based analysis and decision-making in coastal Bangladesh. In particular, we show how a simulation model of farmer's livelihoods at the household level can be achieved. An extended version of the FAO's CROPWAT agriculture model has been integrated with a downscaled regional demography model to simulate net agriculture profit. This is used together with a household income-expenses balance and a loans logical tree to simulate the evolution of food security indicators and poverty levels. Modelling identifies salinity and temperature stress as limiting factors to crop productivity and fertilisation due to atmospheric carbon dioxide concentrations as a reinforcing factor. The crop simulation results compare well with expected outcomes but also reveal some unexpected behaviours. For example, under current model assumptions, temperature is more important than salinity for crop production. The agriculture-based livelihood and poverty simulations highlight the critical significance of debt through informal and formal loans set at such levels as to persistently undermine the well-being of agriculture-dependent households. Simulations also indicate that progressive approaches to agriculture (i.e. diversification) might not provide the clear economic benefit from the perspective of

  19. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-11-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.

  20. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-06-01

    Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.

  1. Market assessment of photovoltaic power systems for agricultural applications worldwide

    NASA Astrophysics Data System (ADS)

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-11-01

    Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  2. Market assessment of photovoltaic power systems for agricultural applications worldwide

    NASA Technical Reports Server (NTRS)

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-01-01

    Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  3. Systems and methods for autonomously controlling agricultural machinery

    DOEpatents

    Hoskinson, Reed L.; Bingham, Dennis N.; Svoboda, John M.; Hess, J. Richard

    2003-07-08

    Systems and methods for autonomously controlling agricultural machinery such as a grain combine. The operation components of a combine that function to harvest the grain have characteristics that are measured by sensors. For example, the combine speed, the fan speed, and the like can be measured. An important sensor is the grain loss sensor, which may be used to quantify the amount of grain expelled out of the combine. The grain loss sensor utilizes the fluorescence properties of the grain kernels and the plant residue to identify when the expelled plant material contains grain kernels. The sensor data, in combination with historical and current data stored in a database, is used to identify optimum operating conditions that will result in increased crop yield. After the optimum operating conditions are identified, an on-board computer can generate control signals that will adjust the operation of the components identified in the optimum operating conditions. The changes result in less grain loss and improved grain yield. Also, because new data is continually generated by the sensor, the system has the ability to continually learn such that the efficiency of the agricultural machinery is continually improved.

  4. Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs: Supplemental Material

    NASA Technical Reports Server (NTRS)

    Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.

    2015-01-01

    Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.

  5. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Hun, Eunjin; Crow, Wade T.; Holmes, Thomas; Bolten, John

    2014-01-01

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputoutput structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross-correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moistureNDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities andor complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.

  6. Agricultural drought analysis and famine early warning with the FEWS NET land data assimilation system

    NASA Astrophysics Data System (ADS)

    McNally, A.; Shukla, S.; Funk, C. C.; Husak, G. J.; Arsenault, K. R.; Peters-Lidard, C. D.; Verdin, J. P.

    2013-12-01

    Global and regional changes related to water resources and agriculture affect food and fresh water security. To mitigate and adapt to these changes it is important to quantify how climate variability and change has impacted agricultural production and water resources. This research examines trends in supply and demand for moisture availability in rain-fed agro-pastoral regions. With a focus on the Sahel region of Africa we ask the following two questions: (1) Do land surface models, forced with remotely sensed data, detect the spatio-temporal patterns of agricultural drought over the past 30 years? (2) How have these trends impacted agricultural productivity and food security? To explore implications of hydro-climatic (e.g. precipitation and potential evapotranspiration (PET)) change on agriculture, we use the Famine Early Warning Systems Network Land Data Assimilation System (FLDAS) forced with rainfall from the University of California Santa Barbara Climate Hazards Infrared-Precipitation with Stations (CHIRPS) dataset (1981-present) and 10 km meteorological data (wind, temperature, radiation, humidity) from Cheney and Sheffield, released in 2012, for continental Africa north of 10S (1979-2008). We examine trends in model outputs (e.g. soil moisture and evapotranspiration (ET)), as well as composite indices, such at the evapotranspiration-rainfall ratio and water requirement satisfaction index (WRSI). We compare these results to the Normalized Difference Vegetation Index (NDVI) and microwave soil moisture. Finally, we examine how the different model outputs and composite indices relate to reported trends in agricultural production. Preliminary results show that the FLDAS Noah3.2 and geoWRSI models accurately estimate near surface (0-40cm) soil moisture anomalies as defined by microwave and in-situ observations across the Sahel. With respect to ET, the literature reports that vegetation biomass, as indicated by NDVI, has increased in conjunction with rainfall (i

  7. Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AnnAGNPS (Annualized Agricultural Non-Point Source Pollution Model) is a system of computer models developed to predict non-point source pollutant loadings within agricultural watersheds. It contains a daily time step distributed parameter continuous simulation surface runoff model designed to assis...

  8. Field calibration of surface: a model of agricultural chemicals in surface waters.

    PubMed

    Gustafson, D I

    1990-10-01

    Agricultural chemicals sporadically occur at detectable levels in the surface waters of intensively farmed watersheds. HSPF, a previously released model of agricultural chemicals in surface water, had been used to predict concentrations which were much higher (10 X) than those actually observed during monitoring studies. A new model, SURFACE, is described here which is much simpler than HSPF and gives better predictions of surface water concentrations. SURFACE uses PRZM, an EPA model, to calculate edge-of-field runoff losses and simple hydraulic routing algorithms to determine concentrations at the bottom of large river basins. In water systems sampled during 1985 and 1986, SURFACE predictions of annualized mean concentrations for alachlor, atrazine, cyanazine and metolachlor were within 0.09 ppb half of the time.

  9. The Development of a Web-service-based On-demand Global Agriculture Drought Information System

    NASA Astrophysics Data System (ADS)

    Deng, M.; Di, L.; Han, W.; Yagci, A.; Peng, C.

    2011-12-01

    The growing demand on detailed and accurate assessments of agriculture drought from local to global scales has made drought monitoring and forecasting a hot research topic in recent years. However, many challenges in this area still remain. One of such challenges is to how to let world-wide decision makers obtain accurate and timely drought information. Current agriculture drought information systems in the world are limited in many aspects, such as only regional or country level coverage, very coarse spatial and temporal resolutions, no on-demand drought information product generation and download services, no online analysis tools, no interoperability with other systems, and ineffective agriculture drought monitoring and forecasting. Leveraging the latest advances in geospatial Web service, interoperability and cyber-infrastructure technologies and the availability of near real-time global remote sensing data, we aims at providing a solution to those problems by building an open, interoperable, standard-compliant, and Web-service-based global agriculture drought monitoring and forecasting system (GADMFS) (http://gis.csiss.gmu.edu/GADMFS/). GADMFS will provide world-wide users with timely, on-demand, and ready-to-use agricultural drought data and information products as well as improved global agriculture drought monitoring, prediction and analysis services. For the monitoring purpose, the system lively links to near real-time satellite remote sensing data sources from NASA and NOAA and relies on drought related remotely sensed physical and biophysical parameters, such as soil moisture and drought-related vegetation indices (VIs, e.g., NDVI) to provide the current conditions of global agricultural drought at high resolutions (up to 500m spatial and daily temporal) to world-wide users on demand. For drought prediction, the system utilizes a neural network based modeling algorithm, trained with current and historic vegetation-based and climate-based drought index

  10. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-09-01

    GlobWat is a freely distributed, global soil water balance model that is used by the Food and Agriculture Organization (FAO) to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high-resolution data sets that are consistent at global level and calibrated against values for internal renewable water resources, as published in AQUASTAT, the FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes the methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models to assess levels of accuracy and validity.

  11. Integrating crops and livestock in subtropical agricultural systems.

    PubMed

    Wright, Iain A; Tarawali, Shirley; Blümmel, Michael; Gerard, Bruno; Teufel, Nils; Herrero, Mario

    2012-03-30

    As the demand for livestock products increases, and is expected to continue to increase over the next few decades, especially in developing countries, smallholder mixed systems are becoming more intensive. However, with limited land and water resources and concern about the environmental impact of agricultural practices and climate change, the challenge is to find ways of increasing productivity that do not compromise household food security, but rather increase incomes equitably and sustain or enhance the natural resource base. In developed countries there has been increased specialisation of crop and livestock production. In contrast, the majority of livestock in developing countries is kept in mixed crop/livestock systems. Crops (cereal grains and pulses) and crop residues provide the basis of the diet for animals, e.g. cereal straw fed to dairy cattle or sweet potato vines fed to pigs. Animal manure can provide significant nutrient inputs to crops. Water productivity is higher in mixed crop/livestock systems compared with growing crops alone. Mixed systems allow for a more flexible and profitable use of family labour where employment opportunities are limited. They also spread risks across several enterprises, a consideration in smallholder systems that may become even more important under certain climate change scenarios. Integrated crop/livestock systems can play a significant role in improving global food security but will require appropriate technological developments, institutional arrangements and supportive policy environments if they are to fulfil that potential in the coming decades.

  12. Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems?

    PubMed

    van Kessel, Chris; Clough, Tim; van Groenigen, Jan Willem

    2009-01-01

    Conventional wisdom postulates that leaching losses of N from agriculture systems are dominated by NO(3)(-). Although the export of dissolved organic nitrogen (DON) into the groundwater has been recognized for more than 100 yr, it is often ignored when total N budgets are constructed. Leaching of DON into stream and drinking water reservoirs leads to eutrophication and acidification, and can pose a potential risk to human health. The main objective of this review was to determine whether DON losses from agricultural systems are significant, and to what extent they pose a risk to human health and the environment. Dissolved organic N losses across agricultural systems varied widely with minimum losses of 0.3 kg DON ha(-1)yr(-1) in a pasture to a maximum loss of 127 kg DON ha(-1)yr(-1) in a grassland following the application of urine. The mean and median values for DON leaching losses were found to be 12.7 and 4.0 kg N ha(-1)yr(-1), respectively. On average, DON losses accounted for 26% of the total soluble N (NO(3)(-) plus DON) losses, with a median value of 19%. With a few exceptions, DON concentrations exceeded the criteria recommendations for drinking water quality. The extent of DON losses increased with increasing precipitation/irrigation, higher total inputs of N, and increasing sand content. It is concluded that DON leaching can be an important N loss pathway from agricultural systems. Models used to simulate and predict N losses from agricultural systems should include DON losses.

  13. Development of an Integrated Agricultural Planning Model Considering Climate Change

    NASA Astrophysics Data System (ADS)

    Santikayasa, I. P.

    2016-01-01

    The goal of this study is to develop an agriculture planning model in order to sustain the future water use under the estimation of crop water requirement, water availability and future climate projection. For this purpose, the Citarum river basin which is located in West Java - Indonesia is selected as the study area. Two emission scenarios A2 and B2 were selected. For the crop water requirement estimation, the output of HadCM3 AOGCM is statistically downscale using SDSM and used as the input for WEAP model developed by SEI (Stockholm Environmental Institute). The reliability of water uses is assessed by comparing the irrigation water demand and the water allocation for the irrigation area. The water supply resources are assessed using the water planning tool. This study shows that temperature and precipitation over the study area are projected to increase in the future. The water availability was projected to increase under both A2 and B2 emission scenarios in the future. The irrigation water requirement is expected to decrease in the future under A2 and B2 scenarios. By comparing the irrigation water demand and water allocation for irrigation, the reliability of agriculture water use is expected to change in the period of 2050s and 2080s while the reliability will not change in 2020s. The reliability under A2 scenario is expected to be higher than B2 scenario. The combination of WEAP and SDSM is significance to use in assessing and allocating the water resources in the region.

  14. WEBGIS based CropWatch online agriculture monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.

    2015-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked

  15. Simulating variably-saturated reactive transport of selenium and nitrogen in agricultural groundwater systems

    NASA Astrophysics Data System (ADS)

    Bailey, Ryan T.; Gates, Timothy K.; Halvorson, Ardell D.

    2013-06-01

    Selenium (Se) contamination in environmental systems has become a major issue in many regions world-wide during the previous decades, with both elevated and deficient Se concentrations in groundwater, surface water, soils and associated cultivated crops reported. To provide a tool that can assess baseline conditions and explore remediation strategies, this paper presents a numerical model capable of simulating the reactive transport of Se species in large-scale variably-saturated groundwater systems influenced by agricultural practices. Developed by incorporating a Se reaction module into the multi-species, variably-saturated reactive transport model UZF-RT3D, model features include near-surface Se cycling due to agricultural practices, oxidation-reduction reactions, and the inclusion of a nitrogen (N) cycle and reaction module due to the dependence of Se transformation and speciation on the presence of nitrate (NO3). Although the primary motivation is applying the model to large-scale systems, this paper presents applications to agricultural soil profile systems to corroborate the near-surface module processes that are vital in estimating mass loadings to the saturated zone in large-scale fate and transport studies. The first application jointly tests the Se and N modules for corn test plots receiving varying loadings of fertilizer, whereas the second application tests the N module for fertilized and unfertilized test plots. Results indicate that the model is successful in reproducing observed measurements of Se and NO3 concentrations, particularly in lower soil layers and hence in regards to leaching. For the first application, the Ensemble Kalman Filter (EnKF) is used to condition model parameters, demonstrating the usefulness of the EnKF in real-world reactive transport systems.

  16. Simulating variably-saturated reactive transport of selenium and nitrogen in agricultural groundwater systems.

    PubMed

    Bailey, Ryan T; Gates, Timothy K; Halvorson, Ardell D

    2013-06-01

    Selenium (Se) contamination in environmental systems has become a major issue in many regions world-wide during the previous decades, with both elevated and deficient Se concentrations in groundwater, surface water, soils and associated cultivated crops reported. To provide a tool that can assess baseline conditions and explore remediation strategies, this paper presents a numerical model capable of simulating the reactive transport of Se species in large-scale variably-saturated groundwater systems influenced by agricultural practices. Developed by incorporating a Se reaction module into the multi-species, variably-saturated reactive transport model UZF-RT3D, model features include near-surface Se cycling due to agricultural practices, oxidation-reduction reactions, and the inclusion of a nitrogen (N) cycle and reaction module due to the dependence of Se transformation and speciation on the presence of nitrate (NO₃). Although the primary motivation is applying the model to large-scale systems, this paper presents applications to agricultural soil profile systems to corroborate the near-surface module processes that are vital in estimating mass loadings to the saturated zone in large-scale fate and transport studies. The first application jointly tests the Se and N modules for corn test plots receiving varying loadings of fertilizer, whereas the second application tests the N module for fertilized and unfertilized test plots. Results indicate that the model is successful in reproducing observed measurements of Se and NO₃ concentrations, particularly in lower soil layers and hence in regards to leaching. For the first application, the Ensemble Kalman Filter (EnKF) is used to condition model parameters, demonstrating the usefulness of the EnKF in real-world reactive transport systems.

  17. Agricultural Education Early Field Experience through the Lens of the EFE Model

    ERIC Educational Resources Information Center

    Smalley, Scott W.; Retallick, Michael S.

    2012-01-01

    The purpose of this national study was to describe agricultural teacher education early field experience (EFE) practices using the EFE model. The population for this study was all agricultural education teacher preparation programs (N = 83) listed in the AAAE Directory of University Faculty in Agricultural Education. Data were collected via an…

  18. Market assessment of photovoltaic power systems for agricultural applications worldwide

    SciTech Connect

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-11-01

    This report integrates and extrapolates worldwide the results of the agricultural sector PV market assessments conducted in the Philippines, Nigeria, Mexico, Morocco, and Colombia. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand-alone mode. The study focused on the needs of low- and middle-income countries. The major conclusions derived from the studies were as follows: PV will be competitive in applications requiring 2 - 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 - 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, significant agriculture sector market for PV exists; however the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market-related factors influencing the potential for US PV sales are: lack of awareness; high first costs; shortage of long-term capital; competition from German, French and Japanese companies who have their governments support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  19. A speech recognition system for data collection in precision agriculture

    NASA Astrophysics Data System (ADS)

    Dux, David Lee

    Agricultural producers have shown interest in collecting detailed, accurate, and meaningful field data through field scouting, but scouting is labor intensive. They use yield monitor attachments to collect weed and other field data while driving equipment. However, distractions from using a keyboard or buttons while driving can lead to driving errors or missed data points. At Purdue University, researchers have developed an ASR system to allow equipment operators to collect georeferenced data while keeping hands and eyes on the machine during harvesting and to ease georeferencing of data collected during scouting. A notebook computer retrieved locations from a GPS unit and displayed and stored data in Excel. A headset microphone with a single earphone collected spoken input while allowing the operator to hear outside sounds. One-, two-, or three-word commands activated appropriate VBA macros. Four speech recognition products were chosen based on hardware requirements and ability to add new terms. After training, speech recognition accuracy was 100% for Kurzweil VoicePlus and Verbex Listen for the 132 vocabulary words tested, during tests walking outdoors or driving an ATV. Scouting tests were performed by carrying the system in a backpack while walking in soybean fields. The system recorded a point or a series of points with each utterance. Boundaries of points showed problem areas in the field and single points marked rocks and field corners. Data were displayed as an Excel chart to show a real-time map as data were collected. The information was later displayed in a GIS over remote sensed field images. Field corners and areas of poor stand matched, with voice data explaining anomalies in the image. The system was tested during soybean harvest by using voice to locate weed patches. A harvester operator with little computer experience marked points by voice when the harvester entered and exited weed patches or areas with poor crop stand. The operator found the

  20. Climate change impacts utilizing regional models for agriculture, hydrology and natural ecosystems

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Asrar, G. R.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Medvigy, D.; Prasad, A. K.; Smith, E.; Stack, D. H.; Tremback, C.; Walko, R. L.

    2012-12-01

    Climate change impacts the entire Earth but with crucial and often catastrophic impacts at local and regional levels. Extreme phenomena such as fires, dust storms, droughts and other natural hazards present immediate risks and challenges. Such phenomena will become more extreme as climate change and anthropogenic activities accelerate in the future. We describe a major project funded by NIFA (Grant # 2011-67004-30224), under the joint NSF-DOE-USDA Earth System Models (EaSM) program, to investigate the impacts of climate variability and change on the agricultural and natural (i.e. rangeland) ecosystems in the Southwest USA using a combination of historical and present observations together with climate, and ecosystem models, both in hind-cast and forecast modes. The applicability of the methodology to other regions is relevant (for similar geographic regions as well as other parts of the world with different agriculture and ecosystems) and should advance the state of knowledge for regional impacts of climate change. A combination of multi-model global climate projections from the decadal predictability simulations, to downscale dynamically these projections using three regional climate models, combined with remote sensing MODIS and other data, in order to obtain high-resolution climate data that can be used with hydrological and ecosystem models for impacts analysis, is described in this presentation. Such analysis is needed to assess the future risks and potential impacts of projected changes on these natural and managed ecosystems. The results from our analysis can be used by scientists to assist extended communities to determine agricultural coping strategies, and is, therefore, of interest to wide communities of stakeholders. In future work we will be including surface hydrologic modeling and water resources, extend modeling to higher resolutions and include significantly more crops and geographical regions with different weather and climate conditions

  1. Economic feasibility of agricultural alcohol production within a biomass system

    SciTech Connect

    Hertzmark, D.; Flaim, S.; Ray, D.; Parvin, G.

    1980-12-01

    The technical and economic feasibility of agricultural alcohol production in the United States is discussed. The beverage fermentation processes are compared and contrasted with the wet milling of corn, and alternative agricultural products for alcohol production are discussed. Alcohol costs for different fermentation methods and for various agricultural crops (corn, sugar cane, sugar beets, etc.) are presented, along with a brief discussion of US government policy implications. (JMT)

  2. Pesticide fate modeling in soils with the crop model STICS: Feasibility for assessment of agricultural practices.

    PubMed

    Queyrel, Wilfried; Habets, Florence; Blanchoud, Hélène; Ripoche, Dominique; Launay, Marie

    2016-01-15

    Numerous pesticide fate models are available, but few of them are able to take into account specific agricultural practices, such as catch crop, mixing crops or tillage in their predictions. In order to better integrate crop management and crop growth in the simulation of diffuse agricultural pollutions, and to manage both pesticide and nitrogen pollution, a pesticide fate module was implemented in the crop model STICS. The objectives of the study were: (i) to implement a pesticide fate module in the crop model STICS; (ii) to evaluate the model performance using experimental data from three sites with different pedoclimatic contexts, one in The Netherlands and two in northern France; (iii) to compare the simulations with several pesticide fate models; and (iv) to test the impact of specific agricultural practices on the transfer of the dissolved fraction of pesticides. The evaluations were carried out with three herbicides: bentazone, isoproturon, and atrazine. The strategy applied in this study relies on a noncalibration approach and sensitivity test to assess the operating limits of the model. To this end, the evaluation was performed with default values found in the literature and completed by sensitivity tests. The extended version of the STICS named STICS-Pest, shows similar results with other pesticide fate models widely used in the literature. Moreover, STICS-Pest was able to estimate realistic crop growth and catch crop dynamic, which thus illustrate agricultural practices leading to a reduction of nitrate and a change in pesticide leaching. The dynamic plot-scale model, STICS-Pest is able to simulate nitrogen and pesticide fluxes, when the hydrologic context is in the validity range of the reservoir (or capacity) model. According to these initial results, the model may be a relevant tool for studying the effect of long-term agricultural practices on pesticide residue dynamics in soil and the associated diffuse pollution transfer.

  3. A GIS-based hedonic price model for agricultural land

    NASA Astrophysics Data System (ADS)

    Demetriou, Demetris

    2015-06-01

    Land consolidation is a very effective land management planning approach that aims towards rural/agricultural sustainable development. Land reallocation which involves land tenure restructuring is the most important, complex and time consuming component of land consolidation. Land reallocation relies on land valuation since its fundamental principle provides that after consolidation, each landowner shall be granted a property of an aggregate value that is approximately the same as the value of the property owned prior to consolidation. Therefore, land value is the crucial factor for the land reallocation process and hence for the success and acceptance of the final land consolidation plan. Land valuation is a process of assigning values to all parcels (and its contents) and it is usually carried out by an ad-hoc committee. However, the process faces some problems such as it is time consuming hence costly, outcomes may present inconsistency since it is carried out manually and empirically without employing systematic analytical tools and in particular spatial analysis tools and techniques such as statistical/mathematical. A solution to these problems can be the employment of mass appraisal land valuation methods using automated valuation models (AVM) based on international standards. In this context, this paper presents a spatial based linear hedonic price model which has been developed and tested in a case study land consolidation area in Cyprus. Results showed that the AVM is capable to produce acceptable in terms of accuracy and reliability land values and to reduce time hence cost required by around 80%.

  4. Agriflection: A Learning Model for Agricultural Extension in South Africa

    ERIC Educational Resources Information Center

    Worth, S. H.

    2006-01-01

    Prosperity--continuous and sustainable wealth creation--is an elusive goal in South African smallholder agriculture. This paper suggests that agricultural extension can facilitate realising this objective if an appropriate approach to extension can be developed. To develop such an approach requires that the definition of extension and the…

  5. Zoning of agricultural field using a fuzzy indicators model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for deciding how to subdivide a field into a few relatively homogenous zones is using applications of fuzzy sets theory. Data collected from a precision agriculture study in central Texas...

  6. Phosphorus cycling in Montreal's food and urban agriculture systems.

    PubMed

    Metson, Geneviève S; Bennett, Elena M

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities' P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents' relationship to, and understanding of, the food system and increases their acceptance of composting.

  7. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation research activity for historical period model intercomparison and future climate change conditions with participation of multiple crop and agricultural economic model groups around the...

  8. DRAINMOD-N II: Evaluated for an agricultural system in Iowa and compared to RZWQM-DSSAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new simulation model for N dynamics, DRAINMOD-N II, has been previously evaluated for only a few sites. We evaluated the model using ten years (1996-2005) of measured data from a subsurface-drained, corn-soybean agricultural system near Story City, Iowa. Nitrogen fertilizer was applied to plots ...

  9. Introduction The Role of the Agricultural Model Intercomparison and Improvement Project

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Hillel, Daniel

    2015-01-01

    Climate impacts on agriculture are of increasing concern in both the scientific and policy communities because of the need to ensure food security for a growing population. A special challenge is posed by the changes in the frequency and intensity of heat-waves, droughts, and episodic rainstorms already underway in many parts of the world. Changes in production are directly linked to such variations in temperature and precipitation during the growing season, and often to offseason changes in weather affecting soil-water storage and availability to crops. This is not an isolated problem but one of both global and regional importance, because of impacts on the livelihoods of smallholder farmers as well as consequences for the world food trade system. This two-part set the Agricultural Model Intercomparison and Improvement Project (AgMIP): Integrated Crop and Economic Assessments is the first to be entirely devoted to AgMIP (www.agmip.org). AgMIP is a major international research program focused on climate change and agriculture. The goal of the two parts is to advance the field by providing detailed information on new simulation techniques and assessments being conducted by this program. It presents information about new methods of global and regional integrated assessment, results from agricultural regions, and adaptation strategies for maintaining food security under changing climate conditions.

  10. Modelling of agricultural diffuse pollution and mitigation measures effectiveness in Wallonia (Belgium)

    NASA Astrophysics Data System (ADS)

    Sohier, C.; Deraedt, D.; Degré, A.

    2012-04-01

    Implementation of European directives in the environmental field and, specially, in the water management field, generates a request from policy-makers for news tools able to evaluate impact of management measures aiming at reducing pressures on ecosystems. In Wallonia (Southern Region of Belgium), the Nitrate Directive (EEC/676/91) was transposed into the "Walloon action plan for nitrogen sustainable management in agriculture" (PGDA1) in 2002. In 2007, a second plan was launched to reinforce some topics (PGDA2). Furthermore, the goal of "good quality" of surface waters and groundwater imposed by the Water Framework Directive poses new challenges in water management. In this context, a "soil and vadose" hydrological model is used in order to evaluate diffuse pollutions and efficiency of mitigation measures. This model, called EPICgrid, has been developed at catchment scale with an original modular concept on the basis of the field scale "water-soil-plant" EPIC model (Williams J.R., Jones C.A., Dyke P.T. (1984). A modelling approach to determining the relationship between erosion and soil productivity. Transactions of the ASAE. 27, 129-144). The model estimates, for each HRU identified into a 1km2 grid, water and nutrients flows into the plant-soil-vadose zone system (Sohier C., Degré A., Dautrebande S. (2009). From root zone modelling to regional forecasting of nitrate concentration in recharge flows - The case of the Walloon Region (Belgium). Journal of Hydrology, Volume 369, Issues 3-4, 15 May 2009, Pages 350-359). The model is used to make prospective simulations in order to evaluate the impact of measures currently performed to reduce the effect of diffuse pollution on water surface quality and groundwater quality, at regional scale. Response of the soil-vadose zone to agricultural practices modification is analyzed for the deadlines of the Water Framework Directive: 2015, 2021 and 2027, taking into account two climatic scenarios. Simulations results showed

  11. Using Coupled Hydrologic and Agro-economic Models to Evaluate the Impact of Agricultural Activity on Streamflows

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2014-12-01

    Irrigation substantially alters the timing and magnitude of surface water flows, and continued agricultural intensification to keep up with demand means perpetual stress on surface water resources. A critical challenge is to manage irrigation in a way that balances ecosystem health with sustaining agricultural economies. Coupled hydrologic-agroeconomic models are promising tools for meeting this challenge: the models can quantify 1) how water withdrawal for irrigation impacts streamflows, 2) how these impacts propagate through a surface water system, 3) how the amount of water available for irrigation changes the allocation of resources (e.g. land, water) to available crops, and 4) the impact of water availability on agricultural economies. However, these models can be very data intensive, which limits their applicability. We present a parsimonious coupled hydrologic-agroeconomic model that uses the Positive Mathematical Programming (PMP) method, extensively used in agricultural resource economics, and calibrates to data on allotment of agricultural inputs, available from sources such as the USDA's National Agricultural Statistics Service. PMP assumes that farmers allocate resources to maximize net revenues, justifying the use of optimality conditions to constrain the parameters of the agroeconomic model. We improve the standard PMP model by 1) having the calibrated model reproduce not only the observed input allotment but also the observed yield, and 2) using the ensemble Kalman filter equations to solve the mathematical programming problem recursively, which permits refinement of the model calibration as new observations become available. We demonstrate the proposed agroeconomic model by coupling it to HEC-HMS, a hydrologic model capable of simulating regional natural and man-made water distribution networks, to investigate the sensitivity of streamflows to the allocation of agricultural inputs (land and water) in response to changes in climatic and economic

  12. Model Evaluation and Uncertainty in Agricultural Impacts Assessments: Results and Strategies from the Agricultural Model Intercomparison and Improvement Project (AgMIP)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Hatfield, J.; Jones, J. W.; Ruane, A. C.

    2012-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is an international effort to assess the state of global agricultural modeling and to understand climate impacts on the agricultural sector. AgMIP connects the climate science, crop modeling, and agricultural economic modeling communities to generate probabilistic projections of current and future climate impacts. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. This presentation will describe the general approach of AgMIP, highlight AgMIP efforts to evaluate climate, crop, and economic models, and discuss AgMIP uncertainty assessments. Model evaluation efforts will be outlined using examples from various facets of AgMIP, including climate scenario generation, the wheat crop model intercomparison, and the global agricultural economics model intercomparison being led in collaboration with the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Strategies developed to quantify uncertainty in each component of AgMIP, as well as the propagation of uncertainty through the climate-crop-economic modeling framework, will be detailed and preliminary uncertainty assessments that highlight crucial areas requiring improved models and data collection will be introduced.

  13. [Ecological significance of arbuscular mycorrhiza biotechnology in modern agricultural system].

    PubMed

    Zhang, Yong; Zeng, Ming; Xiong, Bingquan; Yang, Xiaohong

    2003-04-01

    Mycorrhiza plays a key role in nutrient cycling in ecosystem, and protects host plant against environmental stress. Under natural condition, plant's mycorrhizal structure is a normal phenomenon, and arbuscular mycorrhiza (AM) association is the commonest mycorrhizal type. If well mycorrhizal structure can be formed during plant root system developing process, the quantity and quality of plant production will be improved in large. Because of its effects on plant growth and health, it is accepted that AM symbiosis can reduce chemical fertilizer and pesticide inputs. Consequently, this will lead to a reduction in harmful chemical substance impact on environment. The key effects of AM symbiosis can be summarized as follows: (1) improving rooting and plant establishment; (2) improving uptake of low mobile ions; (3) improving nutrient cycling; (4) enhancing plant tolerance to (biotic and abiotic) stress; (5) improving quality of soil structure; and (6) enhancing plant community diversity. In this paper, the ecological characteristic of arbuscular mycorrhiza fungi (AMF), effects of AM on host plant, and ecologic significance of AM biotechnology in agricultural system were reviewed.

  14. Culturally relevant model program to prevent and reduce agricultural injuries.

    PubMed

    Helitzer, D L; Hathorn, G; Benally, J; Ortega, C

    2014-07-01

    Limited research has explored pesticide injury prevention among American Indian farmers. In a five-year agricultural intervention, a university-community partnership, including the University of New Mexico School of Medicine, New Mexico State University, Shiprock Area Cooperative Extension Service, and Navajo Nation communities, used a culturally relevant model to introduce and maintain safe use of integrated pest management techniques. We applied the Diffusion of Innovations theory and community-based approaches to tailor health promotion strategies for our intervention. In a longitudinal study with repeated measures, we trained six "model farmers" to be crop management experts in pesticide safety, application, and control. Subsequently, these model farmers worked with 120 farm families randomized into two groups: intervention (Group 1) and delayed intervention (Group 2). Measurements included a walk-through analysis, test of knowledge and attitudes, and yield analysis. Both groups demonstrated improvements in pesticide storage behaviors after training. Test scores regarding safety practices improved significantly: from 57.3 to 72.4 for Group 1 and from 52.6 to 76.3 for Group 2. Group 1 maintained their knowledge and safety practices after the intervention. Attitudes about pesticides and communication of viewpoints changed across the study years. With pesticides and fertilizer, the number of corn ears increased by 56.3% and yield (kg m(-2)) of alfalfa increased by 41.2%. The study combined traditional farming practices with culturally relevant approaches and behavior change theory to affect knowledge, safety practices, attitudes, communication channels, and crop yield. Storage behaviors, use of pesticides and safety and application equipment, and safety practice knowledge changed significantly, as did attitudes about social networking, social support, and the compatibility and relative advantage of pesticides for farms. PMID:25174150

  15. Culturally relevant model program to prevent and reduce agricultural injuries.

    PubMed

    Helitzer, D L; Hathorn, G; Benally, J; Ortega, C

    2014-07-01

    Limited research has explored pesticide injury prevention among American Indian farmers. In a five-year agricultural intervention, a university-community partnership, including the University of New Mexico School of Medicine, New Mexico State University, Shiprock Area Cooperative Extension Service, and Navajo Nation communities, used a culturally relevant model to introduce and maintain safe use of integrated pest management techniques. We applied the Diffusion of Innovations theory and community-based approaches to tailor health promotion strategies for our intervention. In a longitudinal study with repeated measures, we trained six "model farmers" to be crop management experts in pesticide safety, application, and control. Subsequently, these model farmers worked with 120 farm families randomized into two groups: intervention (Group 1) and delayed intervention (Group 2). Measurements included a walk-through analysis, test of knowledge and attitudes, and yield analysis. Both groups demonstrated improvements in pesticide storage behaviors after training. Test scores regarding safety practices improved significantly: from 57.3 to 72.4 for Group 1 and from 52.6 to 76.3 for Group 2. Group 1 maintained their knowledge and safety practices after the intervention. Attitudes about pesticides and communication of viewpoints changed across the study years. With pesticides and fertilizer, the number of corn ears increased by 56.3% and yield (kg m(-2)) of alfalfa increased by 41.2%. The study combined traditional farming practices with culturally relevant approaches and behavior change theory to affect knowledge, safety practices, attitudes, communication channels, and crop yield. Storage behaviors, use of pesticides and safety and application equipment, and safety practice knowledge changed significantly, as did attitudes about social networking, social support, and the compatibility and relative advantage of pesticides for farms.

  16. How to Design a Targeted Agricultural Subsidy System: Efficiency or Equity?

    PubMed Central

    Cong, Rong-Gang; Brady, Mark

    2012-01-01

    In this paper we appraise current agricultural subsidy policy in the EU. Several sources of its inefficiency are identified: it is inefficient for supporting farmers’ incomes or guaranteeing food security, and irrational transfer payments decoupled from actual performance that may be negative for environmental protection, social cohesion, etc. Based on a simplified economic model, we prove that there is “reverse redistribution” in the current tax-subsidy system, which cannot be avoided. To find a possible way to distribute subsidies more efficiently and equitably, several alternative subsidy systems (the pure loan, the harvest tax and the income contingent loan) are presented and examined. PMID:22876283

  17. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    NASA Astrophysics Data System (ADS)

    Shukla, S.; McNally, A.; Husak, G.; Funk, C.

    2014-10-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agropastoral management decisions, support optimal allocation of the region's water resources, and mitigate socioeconomic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's (FEWS NET) science team. We evaluate this forecast system for a region of equatorial EA (2° S-8° N, 36-46° E) for the March-April-May (MAM) growing season. This domain encompasses one of the most food-insecure, climatically variable, and socioeconomically vulnerable regions in EA, and potentially the world; this region has experienced famine as recently as 2011. To produce an "agricultural outlook", our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios describing the upcoming season. First, we forced the VIC model with high-quality atmospheric observations to produce baseline soil moisture (SM) estimates (here after referred as SM a posteriori estimates). These compared favorably (correlation = 0.75) with the water requirement satisfaction index (WRSI), an index that the FEWS NET uses to estimate crop yields. Next, we evaluated the SM forecasts generated by this system on 5 March and 5 April of each year between 1993 and 2012 by comparing them with the corresponding SM a posteriori estimates. We found that initializing SM forecasts with start-of-season (SOS) (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month and, in some cases, 3-month lead times. Similarly, when the forecast was initialized with midseason (i.e., 5

  18. Adaptation to Interannual and Interdecadal Climate Variability in Agricultural Production Systems of the Argentine Pampas

    NASA Astrophysics Data System (ADS)

    Podestá, G. P.; Bert, F.; Weber, E.; Laciana, C.; Rajagopalan, B.; Letson, D.

    2007-05-01

    Agricultural ecosystems play a central role in world food production and food security, and involve one of the most climate-sensitive sectors of society-agriculture. We focus on crop production in the Argentine Pampas, one of the world's major agricultural regions. Climate of the Pampas shows marked variability at both interannual and decadal time scales. We explored the scope for adaptive management in response to climate information on interannual scales. We show that different assumptions about what decision makers are trying to achieve (i.e., their objective functions) may change what actions are considered as "optimal" for a given climate context. Optimal actions also were used to estimate the economic value of forecasts of an ENSO phase. Decision constraints (e.g., crop rotations) have critical influence on value of the forecasting system. Gaps in knowledge or misconceptions about climate variability were identified in open-ended "mental model" interviews. Results were used to design educational interventions. A marked increase in precipitation since the 1970s, together with new production technologies, led to major changes in land use patterns in the Pampas. Continuous cropping has widely replaced agriculture-pasture rotations. Nevertheless, production systems that evolved partly in response to increased rainfall may not be viable if climate reverts to a drier epoch. We use historical data to define a range of plausible climate trajectories 20-30 years hence. Regional scenarios are downscaled using semi-parametric weather generators to produce multiple realizations of daily weather consistent with decadal scenarios. Finally, we use the synthetic climate, crop growth models, and realistic models of decision-making under risk to compute risk metrics (e.g., probability of yields or profits being below a threshold). Climatically optimal and marginal locations show differential responses: probabilities of negative economic results are much higher in currently

  19. Designing and Implementing a Computerized Information Management System for Employment Demand Data in Agriculture/Agribusiness.

    ERIC Educational Resources Information Center

    Berkey, Arthur L.; Cooper, Gloria S.

    Planning for educational programs in agriculture/agribusiness demands knowledge of future employment demand for various occupations. At present, a functional and comprehensive occupational information system for agriculture/agribusiness does not exist. Systems that do exist, such as the Occupational Information System (OIS) and the Dictionary of…

  20. Efficient mapping of agricultural soils using a novel electromagnetic measurement system

    NASA Astrophysics Data System (ADS)

    Trinks, Immo; Pregesbauer, Michael

    2016-04-01

    depth. Instead of being towed several metres behind the tractor, as common with traditional EMI systems used in precision farming, the novel device is conveniently mounted on the front hitch of a tractor and operated from a terminal in the driver's cabin. A major improvement compared with existing EMI systems is the system's capability to cope with the induced noise from the tractor, through integration of a mechanical shielding mechanism into the sensor housing. Any remaining vehicle induced high-frequency electromagnetic noise is filtered out on-the-fly by the data acquisition software, logging the data and positioning information on a ruggedized small computer. The main purpose of this system is to permit the land owner or farmer the efficient mapping of the electrical soil conductivity across agricultural fields on the scale of the entire acreage. The main objective of the measurements is to obtain detailed information on the long wavelength variability of soil structure, while eliminating short wavelength variations. The calculation of the depth of the agricultural layer, or topsoil thickness, has been implemented by inverting the cumulative response function for all coil configurations. The resulting inverted models of the soil conductivity display the vertical distribution of agriculturally relevant soil parameters and improve the chances to identify different subsoil features. By providing this information on the shallow subsurface in real-time, while passing across the field, permits the agriculturist to variably adjust for instance tillage depth or to control other agricultural implements and machines based to the derived information, rendering the soil cultivation both ecologically as well as economically more efficient. We present the TSM system as well as derived data examples.

  1. Flood damage modeling based on expert knowledge: Insights from French damage model for agricultural sector

    NASA Astrophysics Data System (ADS)

    Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline

    2015-04-01

    In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. However, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving

  2. Flood damage modeling based on expert knowledge: Insights from French damage model for agricultural sector

    NASA Astrophysics Data System (ADS)

    Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline

    2014-05-01

    In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. Howerver, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving

  3. Toward systems-level analysis of agricultural production from crassulacean acid metabolism (CAM): scaling from cell to commercial production.

    PubMed

    Davis, Sarah C; Ming, Ray; LeBauer, David S; Long, Stephen P

    2015-10-01

    Systems-level analyses have become prominent tools for assessing the yield, viability, economic consequences and environmental impacts of agricultural production. Such analyses are well-developed for many commodity crops that are used for food and biofuel, but have not been developed for agricultural production systems based on drought-tolerant plants that use crassulacean acid metabolism (CAM). We review the components of systems-level evaluations, and identify the information available for completing such analyses for CAM cropping systems. Specific needs for developing systems-level evaluations of CAM agricultural production include: improvement of physiological models; assessment of product processing after leaving the farm gate; and application of newly available genetic tools to the optimization of CAM species for commercial production. PMID:26094655

  4. [Coupling situation of agriculture-ecology-economic system in Zhifanggou watershed of Loess hilly and gully region].

    PubMed

    Liu, Jia; Wang, Ji-Jun

    2010-06-01

    Based on the investigations in the Zhifanggou Watershed of Loess hilly and gully region from 1938 to 2007, and the establishment of eco-environmental and socio-economic comprehensive evaluation indices and coupling model, this paper analyzed the coupling situation of the agriculture-ecology-economic system in the watershed. During the study period, the agriculture-ecology-economic system in the watershed had gone through the coupling processes of economic system vs. ecosystem initial regenesis-consumption-promotion-coordination, and of ecosystem vs. economic system primary response-lag behind-recovery-coordination. According to the coupling degree fitting curves and the coupling type classification, the current agriculture-ecology-economic system in the watershed was still in the situation of coupling, and would be well coordinated.

  5. Validation of a land data assimilation system using river discharge and agricultural yield observations

    NASA Astrophysics Data System (ADS)

    Calvet, Jean-Christophe; Barbu, Alina; Fairbairn, David; Gelati, Emiliano

    2015-04-01

    Meteo-France develops the ISBA-A-gs generic Land Surface Model (LSM) able to represent the diurnal cycle of the surface fluxes together with the seasonal, interannual and decadal variability of the vegetation biomass. The LSM is embedded in the SURFEX modeling platform together with a simplified extended Kalman filter. These tools form a Land Data Assimilation System (LDAS). The current version of the LDAS assimilates SPOT-VGT LAI and ASCAT surface soil moisture (SSM) products over France (8km x 8km), and a passive monitoring of albedo, FAPAR and Land Surface temperature (LST) is performed (i.e., the simulated values are compared with the satellite products). The vegetation biomass is analysed together with the root-zone soil moisture. The LDAS was coupled to the MODCOU hydrological model, and this allowed the use of in situ river discharge observations for the validation of the whole system. Moreover, open-loop (i.e. without integrationg satellite observations into the model) simulations of the above-ground biomass of straw cereals were compared with the analyzed values (i.e. after integration of satellite observations into the model), and with agricultural yield observations. It is shown that the assimilation of satellite observations sharply enhances the overall correlation of the simulated above-ground biomass with the agricultural yield observations.

  6. Slash and Burn Agriculture: A Dynamic Spatio-temporal Model of Shifting Cultivation Locations and Areas

    NASA Astrophysics Data System (ADS)

    Plagge, C. E.; Frolking, S.; Chini, L. P.; Hurtt, G.

    2008-12-01

    Shifting cultivation is a form of agriculture, also known as slash-and-burn or swidden agriculture, in which a plot of forest is cleared and then cultivated continuously for several years, after which it is abandoned to revert to natural vegetation, and then is subsequently re-cleared after a longer fallow period. Shifting cultivation is an important form of agriculture because it affects soil erosion rates, canopy cover in tropical forests, nutrient deficiency in soils, and also has an impact on the global carbon cycle. Because it is generally outside of the larger economy, shifting cultivation is not well-represented in large-scale earth system analyses. We investigated a new way to model shifting cultivation which will be included in a global land-use transitions model to better quantify this type of land use, both historically and into the future. Ultimately this study will improve simulations of changes in the Earth system and will aid in the study of the carbon cycle and thus climate change. Our model calculates the area of shifting cultivation in square kilometers per half-degree grid cell, using gridded population data, the fraction of that population that is rural, the fraction of global population that practices shifting cultivation, the crop area needed per person, and the length of cultivation plus the fallow. Locations of shifting cultivation were further constrained by variables such as potential vegetation biomass density, population density, fraction of land already in use, GDP per capita, and average winter temperatures. With this model, we generated global estimates for total cultivated area, total population involved in shifting cultivation, and total shifting cultivation area including fallow lands. From this model it was estimated that the total global area of shifting cultivation in 2000 was approximately 1.5 million km2 with 90,000 km2 of that actually in cultivation by 190 million people.

  7. How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with biogeochemical models?

    NASA Astrophysics Data System (ADS)

    Kraus, David; Weller, Sebastian; Janz, Baldur; Klatt, Steffen; Santabárbara, Ignacio; Haas, Edwin; Werner, Christian; Wassmann, Reiner; Kiese, Ralf; Butterbach-Bahl, Klaus

    2016-04-01

    Paddy rice cultivation is increasingly challenged by physical and economic irrigation water scarcity. This already results in the trend of converting paddy rice to upland crop cultivation (e.g., maize, aerobic rice) in large parts of South East Asia. Such land management change from flooded lowland systems to well-aerated upland systems drastically affects soil C and N cycling and related emissions of greenhouse gases. Emissions of methane (CH4) are expected to decrease, while emissions of nitrous oxide (N2O) will most likely increase. In addition to such fast evolving 'pollution swapping' it is expected that on longer time scales significant amounts of soil organic carbon (SOC) stocks will be lost in form of carbon dioxide (CO2). Within the DFG-funded research unit ICON (Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water cycles), we investigated environmental impacts of land management change from historical paddy rice cultivation to the upland crops maize and aerobic rice at experimental sites at the International Rice Research Institute (IRRI), the Philippines. To present, more than three years of continuous measurement data of CH4 and N2O emissions under different fertilization regimes have been collected. In addition, measurements of SOC contents and bulk densities in different soil horizons allow for an overall very good characterization of the environmental impacts of mentioned land management change. In this contribution we will show how well mentioned land management change effects in tropical agricultural systems can be represented and thus better understood by the help of process-based biogeochemical models. Seasonal emissions of CH4 and N2O are simulated with r2 values of 0.85 and 0.78 and average underestimations of 15 and 14 %, respectively. These underestimations predominantly originate from treatments in which no fertilizer is applied (CH4) as well as uncertainties of soil hydrology (N2O). Long

  8. How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with biogeochemical models?

    NASA Astrophysics Data System (ADS)

    Kraus, David; Weller, Sebastian; Janz, Baldur; Klatt, Steffen; Santabárbara, Ignacio; Haas, Edwin; Werner, Christian; Wassmann, Reiner; Kiese, Ralf; Butterbach-Bahl, Klaus

    2016-04-01

    Paddy rice cultivation is increasingly challenged by physical and economic irrigation water scarcity. This already results in the trend of converting paddy rice to upland crop cultivation (e.g., maize, aerobic rice) in large parts of South East Asia. Such land management change from flooded lowland systems to well-aerated upland systems drastically affects soil C and N cycling and related emissions of greenhouse gases. Emissions of methane (CH4) are expected to decrease, while emissions of nitrous oxide (N2O) will most likely increase. In addition to such fast evolving 'pollution swapping' it is expected that on longer time scales significant amounts of soil organic carbon (SOC) stocks will be lost in form of carbon dioxide (CO2). Within the DFG-funded research unit ICON (Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water cycles), we investigated environmental impacts of land management change from historical paddy rice cultivation to the upland crops maize and aerobic rice at experimental sites at the International Rice Research Institute (IRRI), the Philippines. To present, more than three years of continuous measurement data of CH4 and N2O emissions under different fertilization regimes have been collected. In addition, measurements of SOC contents and bulk densities in different soil horizons allow for an overall very good characterization of the environmental impacts of mentioned land management change. In this contribution we will show how well mentioned land management change effects in tropical agricultural systems can be represented and thus better understood by the help of process-based biogeochemical models. Seasonal emissions of CH4 and N2O are simulated with r2 values of 0.85 and 0.78 and average underestimations of 15 and 14 %, respectively. These underestimations predominantly originate from treatments in which no fertilizer is applied (CH4) as well as uncertainties of soil hydrology (N2O). Long

  9. To establish pilot projects for agriculture renewable energy systems.

    THOMAS, 111th Congress

    Rep. Holden, Tim [D-PA-17

    2010-09-29

    11/16/2010 Referred to the Subcommittee on Rural Development, Biotechnology, Specialty Crops, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. Energy efficiency of Pacific Northwest agriculture irrigation pumping systems

    SciTech Connect

    Wilfert, G.L.; Harrer, B.J.

    1987-03-01

    This document addresses the energy use and efficiency characteristics of pumping plants used to irrigate agricultural cropland in the Pacific Northwest. The principal focus of this document is on field information obtained from tests of irrigation pumping plants.

  11. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model.

    PubMed

    Sadat-Noori, Mahmood; Ebrahimi, Kumars

    2016-01-01

    Groundwater contamination is a major concern for groundwater resource managers worldwide. We evaluated groundwater pollution potential by producing a vulnerability map of an aquifer using a modified Depth to water, Net recharge, Aquifer media, Soil media, Topography, Impact of vadose zone, and Hydraulic conductivity (DRASTIC) model within a Geographic Information System (GIS) environment. The proposed modification which incorporated the use of statistical techniques optimizes the rating function of the DRASTIC model parameters, to obtain a more accurate vulnerability map. The new rates were computed using the relationships between the parameters and point data chloride concentrations in groundwater. The model was applied on Saveh-Nobaran plain in central Iran, and results showed that the coefficient of determination (R (2)) between the point data and the relevant vulnerability map increased significantly from 0.52 to 0.78 after modification. As compared to the original DRASTIC model, the modified version produced better vulnerability zonation. Additionally, single-parameter and parameter removal sensitivity analyses were performed to evaluate the relative importance of each DRASTIC parameter. The results from both analyses revealed that the vadose zone is the most sensitive parameter influencing the variability of the aquifers' vulnerability index. Based on the results, for non-point source pollution in agricultural areas, using the modified DRASTIC model is efficient compared to the original model. The proposed method can be effective for future groundwater assessment and plain-land management where agricultural activities are dominant. PMID:26650205

  12. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are consistent at global level and calibrated against values for Internal Renewable Water Resources, as published in AQUASTAT, FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models.

  13. Energy and agriculture in the Haitian economy: A computable general equilibrium model

    SciTech Connect

    Jones, D.W.; Wu, M.T.C.; Das, S.; Cohn, S.M.

    1988-02-01

    This report documents a computable general equilibrium (CGE) model of the economy of Haiti, emphasizing energy use in agriculture. CGE models compare favorably with econometric models for developing countries in terms of their ability to take advantage of available data. The model of Haiti contains ten production sectors: manufacturing, services, transportation, electricity, rice, coffee, sugar cane, sugar refining, general agriculture, and fuelwood and charcoal. All production functions use functional forms which permit factor substitution. Consumption is specified for three income categories of consumers and a government sector with a linear expenditure system (LES) of demand equations. The economy exports four categories of products and imports six. Balanced trade and capital accounts are required for equilibrium. Total sectoral allocations of land, labor and capital are constrained to equal the quantities of these inputs in the Haitian economy as of the early 1980s. The model can be used to study the consequences of fiscal and trade policies and sectorally oriented productivity improvement policies. Guidance is offered regarding how to use the model to study economic growth and technological change. Limitations of the mode are also pointed out as well as user strategies which can lessen or work around some of those limitations. 19 refs.

  14. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model.

    PubMed

    Sadat-Noori, Mahmood; Ebrahimi, Kumars

    2016-01-01

    Groundwater contamination is a major concern for groundwater resource managers worldwide. We evaluated groundwater pollution potential by producing a vulnerability map of an aquifer using a modified Depth to water, Net recharge, Aquifer media, Soil media, Topography, Impact of vadose zone, and Hydraulic conductivity (DRASTIC) model within a Geographic Information System (GIS) environment. The proposed modification which incorporated the use of statistical techniques optimizes the rating function of the DRASTIC model parameters, to obtain a more accurate vulnerability map. The new rates were computed using the relationships between the parameters and point data chloride concentrations in groundwater. The model was applied on Saveh-Nobaran plain in central Iran, and results showed that the coefficient of determination (R (2)) between the point data and the relevant vulnerability map increased significantly from 0.52 to 0.78 after modification. As compared to the original DRASTIC model, the modified version produced better vulnerability zonation. Additionally, single-parameter and parameter removal sensitivity analyses were performed to evaluate the relative importance of each DRASTIC parameter. The results from both analyses revealed that the vadose zone is the most sensitive parameter influencing the variability of the aquifers' vulnerability index. Based on the results, for non-point source pollution in agricultural areas, using the modified DRASTIC model is efficient compared to the original model. The proposed method can be effective for future groundwater assessment and plain-land management where agricultural activities are dominant.

  15. A Conceptual Model of Intrapreneurship in the Iranian Agricultural Extension Organization: Implications for HRD

    ERIC Educational Resources Information Center

    Karimi, Asef; Malekmohamadi, Iraj; Daryani, Mahmoud Ahmadpour; Rezvanfar, Ahmad

    2011-01-01

    Purpose: This study seeks to build a conceptual model of agricultural extension intrapreneurship that discusses the concept and phenomenon of intrapreneurship as well as its prerequisites and outcomes. The proposed model is intended to depict the main factors that affect the phenomena of intrapreneurship within the agricultural extension…

  16. Model Course of Study for Agricultural Programs in Iowa. Preparing for the Future.

    ERIC Educational Resources Information Center

    Martin, Robert A.; And Others

    Each section contained in this packet is necessary for designing an effective program of agriculture education. The curriculum guide that is developed from this model should include the same sections. The model includes: (1) community description; (2) school description; (3) goals and objectives of education in agriculture; (4) evaluation policy;…

  17. Coupled planning of water resources and agricultural landuse based on an inexact-stochastic programming model

    NASA Astrophysics Data System (ADS)

    Dong, Cong; Huang, Guohe; Tan, Qian; Cai, Yanpeng

    2014-03-01

    Water resources are fundamental for support of regional development. Effective planning can facilitate sustainable management of water resources to balance socioeconomic development and water conservation. In this research, coupled planning of water resources and agricultural land use was undertaken through the development of an inexact-stochastic programming approach. Such an inexact modeling approach was the integration of interval linear programming and chance-constraint programming methods. It was employed to successfully tackle uncertainty in the form of interval numbers and probabilistic distributions existing in water resource systems. Then it was applied to a typical regional water resource system for demonstrating its applicability and validity through generating efficient system solutions. Based on the process of modeling formulation and result analysis, the developed model could be used for helping identify optimal water resource utilization patterns and the corresponding agricultural land-use schemes in three sub-regions. Furthermore, a number of decision alternatives were generated under multiple water-supply conditions, which could help decision makers identify desired management policies.

  18. Collaborative evaluation and market research converge: an innovative model agricultural development program evaluation in Southern Sudan.

    PubMed

    O'Sullivan, John M; O'Sullivan, Rita

    2012-11-01

    In June and July 2006 a team of outside experts arrived in Yei, Southern Sudan through an AID project to provide support to a local agricultural development project. The team brought evaluation, agricultural marketing and financial management expertise to the in-country partners looking at steps to rebuild the economy of the war ravaged region. A partnership of local officials, agricultural development staff, and students worked with the outside team to craft a survey of agricultural traders working between northern Uganda and Southern Sudan the steps approach of a collaborative model. The goal was to create a market directory of use to producers, government officials and others interested in stimulating agricultural trade. The directory of agricultural producers and distributors served as an agricultural development and promotion tool as did the collaborative process itself.

  19. Collaborative evaluation and market research converge: an innovative model agricultural development program evaluation in Southern Sudan.

    PubMed

    O'Sullivan, John M; O'Sullivan, Rita

    2012-11-01

    In June and July 2006 a team of outside experts arrived in Yei, Southern Sudan through an AID project to provide support to a local agricultural development project. The team brought evaluation, agricultural marketing and financial management expertise to the in-country partners looking at steps to rebuild the economy of the war ravaged region. A partnership of local officials, agricultural development staff, and students worked with the outside team to craft a survey of agricultural traders working between northern Uganda and Southern Sudan the steps approach of a collaborative model. The goal was to create a market directory of use to producers, government officials and others interested in stimulating agricultural trade. The directory of agricultural producers and distributors served as an agricultural development and promotion tool as did the collaborative process itself. PMID:22309968

  20. Agricultural production and stability of settlement systems in Upper Mesopotamia during the Early Bronze Age (third millennium BCE)

    NASA Astrophysics Data System (ADS)

    Kalayci, Tuna

    This study investigates the relationship between rainfall variation and rain-fed agricultural production in Upper Mesopotamia with a specific focus on Early Bronze Age urban settlements. In return, the variation in production is used to explore stability of urban settlement systems. The organization of the flow of agricultural goods is the key to sustaining the total settlement system. The vulnerability of a settlement system increases due to the increased demand for more output from agricultural lands. This demand is the key for the success of urbanization project. However, without estimating how many foodstuffs were available at the end of a production cycle, further discussions on the forces that shaped and sustained urban settlement systems will be lacking. While large scale fluctuations in the flow of agricultural products between settlements are not the only determinants of hierarchical structures, the total available agricultural yield for each urban settlement in a hierarchy must have influenced settlement relations. As for the methodology, first, Early Bronze Age precipitation levels are estimated by using modern day associations between the eastern Mediterranean coastal areas and the inner regions of Upper Mesopotamia. Next, these levels are integrated into a remote-sensing based biological growth model. Also, a CORONA satellite imagery based archaeological survey is conducted in order to map the Early Bronze Age settlement system in its entirety as well as the ancient markers of agricultural intensification. Finally, ancient agricultural production landscapes are modeled in a GIS. The study takes a critical position towards the traditionally held assumption that large urban settlements (cities) in Upper Mesopotamia were in a state of constant demand for food. The results from this study also suggest that when variations in ancient precipitation levels are translated into the variations in production levels, the impact of climatic aridification on ancient

  1. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Joergensen, 1994) in which systems are modeled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  2. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    ScienceCinema

    Danuso, Francesco [University of Udine, Italy

    2016-07-12

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  3. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  4. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model

    NASA Astrophysics Data System (ADS)

    FitzHugh, T. W.; Mackay, D. S.

    2000-09-01

    The accuracy of agricultural nonpoint source pollution models depends in part on how well model input parameters describe the relevant characteristics of the watershed. The spatial extent of input parameter aggregation has previously been shown to have a substantial impact on model output. This study investigates this problem using the Soil and Water Assessment Tool (SWAT), a distributed-parameter agricultural nonpoint source pollution model. The primary question addressed here is: how does the size or number of subwatersheds used to partition the watershed affect model output, and what are the processes responsible for model behavior? SWAT was run on the Pheasant Branch watershed in Dane County, WI, using eight watershed delineations, each with a different number of subwatersheds. Model runs were conducted for the period 1990-1996. Streamflow and outlet sediment predictions were not seriously affected by changes in subwatershed size. The lack of change in outlet sediment is due to the transport-limited nature of the Pheasant Branch watershed and the stable transport capacity of the lower part of the channel network. This research identifies the importance of channel parameters in determining the behavior of SWAT's outlet sediment predictions. Sediment generation estimates do change substantially, dropping by 44% between the coarsest and the finest watershed delineations. This change is primarily due to the sensitivity of the runoff term in the Modified Universal Soil Loss Equation to the area of hydrologic response units (HRUs). This sensitivity likely occurs because SWAT was implemented in this study with a very detailed set of HRUs. In order to provide some insight on the scaling behavior of the model two indexes were derived using the mathematics of the model. The indexes predicted SWAT scaling behavior from the data inputs without a need for running the model. Such indexes could be useful for model users by providing a direct way to evaluate alternative models

  5. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  6. Sustainable agriculture, renewable energy and rural development: An analysis of bio-energy systems used by small farms in China

    NASA Astrophysics Data System (ADS)

    Zhou, Aiming

    Renewable energy needs to be incorporated into the larger picture of sustainable agriculture and rural development if it is to serve the needs of the 3.25 billion human beings whose livelihoods and based on rural economies and ecologies. For rural communities, increasing agriculture production is key to raising income generation and improving social well-being, but this linkage depends also upon not harming natural resources. This dissertation provides an overview of recent Chinese agriculture history, discusses the role of energy in contemporary's China's agriculture and rural development, and introduces a new approach---the integrated agricultural bio-energy (IAB) system---to address the challenge of sustainable agriculture and rural development. IAB is an innovative design and offers a renewable energy solution for improving agricultural productivity, realizing efficient resource management, and enhancing social well-being for rural development. In order to understand how the IAB system can help to achieve sustainable agricultural and rural development in China, a comprehensive evaluation methodology is developed from health, ecological, energy and economic (HE3) perspectives. With data from surveys of 200 small farm households, a detailed study of IAB and conventional agricultural energy (CAE) system applications (in China's Liaoning and Yunnan Province) is conducted. The HE3 impacts of IAB systems in China's rural areas (compared to existing CAE systems) are quantified. The dissertation analyzes the full life-cycle costs and benefits of IAB systems, including their contributions to energy savings, CO2 emissions reduction, agricultural waste reduction, increased rural incomes, better rural health, and improved ecosystem sustainability. The analysis relies upon qualitative and quantitative modeling in order to produce a comprehensive assessment of IAB system impacts. Finally, the dissertation discusses the barriers to greater diffusion of the IAB systems

  7. Desert agricultural terrace systems at EBA Jawa (Jordan) - Layout, water availability and efficiency

    NASA Astrophysics Data System (ADS)

    Meister, Julia; Krause, Jan; Müller-Neuhof, Bernd; Portillo, Marta; Reimann, Tony; Schütt, Brigitta

    2016-04-01

    Located in the arid basalt desert of northeastern Jordan, the Early Bronze Age (EBA) settlement of Jawa is by far the largest and best preserved archaeological EBA site in the region. Recent surveys in the close vicinity revealed well-preserved remains of three abandoned agricultural terrace systems. In the presented study these archaeological features are documented by detailed mapping and the analysis of the sediment records in a multi-proxy approach. To study the chronology of the terrace systems optically stimulated luminescence (OSL) is used. In order to evaluate the efficiency of the water management techniques and its impact on harvest yields, a crop simulation model (CropSyst) under today's climatic conditions is applied, simulating crop yields with and without (runoff) irrigation. In order to do so, a runoff time series for each agricultural terrace system and its catchment is generated, applying the SCS runoff curve number method (CN) based on rainfall and soil data. Covering a total area of 38 ha, irrigated terrace agriculture was practiced on slopes, small plateaus, and valleys in the close vicinity of Jawa. Floodwater from nearby wadis or runoff from adjacent slopes was collected and diverted via surface canals. The terraced fields were arranged in cascades, allowing effective water exploitation through a system of risers, canals and spillways. The examined terrace profiles show similar stratigraphic sequences of mixed unstratified fine sediments that are composed of small-scale relocated sediments with local origin. The accumulation of these fines is associated with the construction of agricultural terraces, forcing infiltration and storage of the water within the terraces. Two OSL ages of terrace fills indicate that the construction of these terrace systems started as early as 5300 ± 300 a, which fits well to the beginning of the occupation phase of Jawa at around 3.500 calBC, thus making them to the oldest examples of its kind in the Middle East

  8. Landuse and agricultural management practice web-service (LAMPS) for agroecosystem modeling and conservation planning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The USDA Natural Resources Conservation Service is developing a Land Management and Operation Database (LMOD) which contains potential model input, howe...

  9. Rural Knowledge and Information Systems for Non-Agricultural Rural Needs

    ERIC Educational Resources Information Center

    Rivera, William M.

    2006-01-01

    As developing countries gradually rely less upon agriculture for rural income, rural economies require new solutions to access knowledge and information systems for rural development. Non-agricultural rural knowledge and information systems can play a significant role in developing and disseminating successful strategies to escape rural poverty.…

  10. The Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Jones, James W.; Hatfield, Jerry L.; Antle, John M.; Ruane, Alexander C.; Mutter, Carolyn Z.

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.

  11. The roles and values of wild foods in agricultural systems

    PubMed Central

    Bharucha, Zareen; Pretty, Jules

    2010-01-01

    Almost every ecosystem has been amended so that plants and animals can be used as food, fibre, fodder, medicines, traps and weapons. Historically, wild plants and animals were sole dietary components for hunter–gatherer and forager cultures. Today, they remain key to many agricultural communities. The mean use of wild foods by agricultural and forager communities in 22 countries of Asia and Africa (36 studies) is 90–100 species per location. Aggregate country estimates can reach 300–800 species (e.g. India, Ethiopia, Kenya). The mean use of wild species is 120 per community for indigenous communities in both industrialized and developing countries. Many of these wild foods are actively managed, suggesting there is a false dichotomy around ideas of the agricultural and the wild: hunter–gatherers and foragers farm and manage their environments, and cultivators use many wild plants and animals. Yet, provision of and access to these sources of food may be declining as natural habitats come under increasing pressure from development, conservation-exclusions and agricultural expansion. Despite their value, wild foods are excluded from official statistics on economic values of natural resources. It is clear that wild plants and animals continue to form a significant proportion of the global food basket, and while a variety of social and ecological drivers are acting to reduce wild food use, their importance may be set to grow as pressures on agricultural productivity increase. PMID:20713393

  12. A New Paradigm for Assessing the Role of Agriculture in the Climate System and in Climate Change

    NASA Technical Reports Server (NTRS)

    Pielke, Roger A., Sr.; Adegoke, Jimmy O.; Chase, Thomas N.; Marshall, Curtis H.; Matsui, Toshihisa; Niyogi, Dev

    2007-01-01

    This paper discusses the diverse climate forcings that impact agricultural systems, and contrasts the current paradigm of using global models downscaled to agricultural areas (a top-down approach) with a new paradigm that first assesses the vulnerability of agricultural activities to the spectrum of environmental risk including climate (a bottom-up approach). To illustrate the wide spectrum of climate forcings, regional climate forcings are presented including land-use/land-cover change and the influence of aerosols on radiative and biogeochemical fluxes and cloud/precipitation processes, as well as how these effects can be teleconnected globally. Examples are presented of the vulnerability perspective, along with a small survey of the perceived drought impacts in a local area, in which a wide range of impacts for the same precipitation deficits are found. This example illustrates why agricultural assessments of risk to climate change and variability and of other environmental risks should start with a bottom-up perspective.

  13. Methane and nitrous oxide emissions of China: Sources from agricultural systems and mitigation options

    SciTech Connect

    Lin Erda; Li Yue; Dong Hongmin; Zhou Wennong

    1994-12-31

    This paper reports the estimated results of methane and nitrous oxide emissions from China`s agricultural systems. The results show that the overall methane emissions from paddies and ruminants were 11.335 and 5.796 Tg/y, respectively in 1990. For mitigation options, based on some experiments, a number of options were recommended to reduce methane and nitrous oxide emissions. Several research priority areas were proposed to reduce the uncertainties in estimates they are: (1) improve measurement methods; (2) further identify controlling factors; and (3) develop simulation models.

  14. Ultimate drivers of native biodiversity change in agricultural systems

    PubMed Central

    Norton, David A; Reid, Nick; Young, Laura

    2013-01-01

    The ability to address land degradation and biodiversity loss while maintaining the production of plant and animal products is a key global challenge. Biodiversity decline as a result of vegetation clearance, cultivation, grazing, pesticide and herbicide application, and plantation establishment, amongst other factors, has been widely documented in agricultural ecosystems. In this paper we identify six ultimate drivers that underlie these proximate factors and hence determine what native biodiversity occurs in modern agricultural landscapes; (1) historical legacies; (2) environmental change; (3) economy; (4) social values and awareness; (5) technology and knowledge; and (6) policy and regulation. While historical legacies and environmental change affect native biodiversity directly, all six indirectly affect biodiversity by influencing the decisions that land managers make about the way they use their land and water resources. Understanding these drivers is essential in developing strategies for sustaining native biodiversity in agricultural landscapes into the future. PMID:26834971

  15. Using historical and projected future climate model simulations as drivers of agricultural and biological models (Invited)

    NASA Astrophysics Data System (ADS)

    Stefanova, L. B.

    2013-12-01

    Climate model evaluation is frequently performed as a first step in analyzing climate change simulations. Atmospheric scientists are accustomed to evaluating climate models through the assessment of model climatology and biases, the models' representation of large-scale modes of variability (such as ENSO, PDO, AMO, etc) and the relationship between these modes and local variability (e.g. the connection between ENSO and the wintertime precipitation in the Southeast US). While these provide valuable information about the fidelity of historical and projected climate model simulations from an atmospheric scientist's point of view, the application of climate model data to fields such as agriculture, ecology and biology may require additional analyses focused on the particular application's requirements and sensitivities. Typically, historical climate simulations are used to determine a mapping between the model and observed climate, either through a simple (additive for temperature or multiplicative for precipitation) or a more sophisticated (such as quantile matching) bias correction on a monthly or seasonal time scale. Plants, animals and humans however are not directly affected by monthly or seasonal means. To assess the impact of projected climate change on living organisms and related industries (e.g. agriculture, forestry, conservation, utilities, etc.), derivative measures such as the heating degree-days (HDD), cooling degree-days (CDD), growing degree-days (GDD), accumulated chill hours (ACH), wet season onset (WSO) and duration (WSD), among others, are frequently useful. We will present a comparison of the projected changes in such derivative measures calculated by applying: (a) the traditional temperature/precipitation bias correction described above versus (b) a bias correction based on the mapping between the historical model and observed derivative measures themselves. In addition, we will present and discuss examples of various application-based climate

  16. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Overview and Progress

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Hatfield, J.; Jones, J. W.; Ruane, A. C.

    2012-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is an international effort to assess the state of global agricultural modeling and to understand climate impacts on the agricultural sector. AgMIP connects the climate science, crop modeling, and agricultural economic modeling communities to generate probabilistic projections of current and future climate impacts. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. This presentation will describe the general approach of AgMIP and highlight its findings and activities. AgMIP crop model intercomparisons have been established for wheat (27 models participating), maize (25 models), and rice (15+ models), and are being established for sugarcane, soybean, sorghum/millet, and peanut. In coordination with these pilots, methodologies to utilize weather generators and downscaled climate simulations for agricultural applications are under development. An AgMIP global agricultural economics model intercomparison with participation of 11 international groups is ongoing, and a number of global biophysical models are currently being evaluated for future climate impacts on agricultural lands both as part of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) and for contribution to the IPCC Fifth Assessment Report (AR5). AgMIP is also organizing regional research efforts, and has already held workshops in South America, Sub-Saharan Africa, South Asia, Europe, and North America. Outcomes from these meetings have informed AgMIP activities, and 10 research teams from Sub-Saharan Africa and South Asia have been selected for project funding. Additional activities are planned for Australia and East Asia. As the AgMIP research community continues to work towards its goals, three key cross-cutting scientific challenges have emerged and are being

  17. What is needed to understand feedback mechanisms from agricultural and climate changes that can alter the hydrological system and the transport of sediments and agricultural chemicals?

    NASA Astrophysics Data System (ADS)

    Coupe, Richard; Payraudeau, Sylvain; Babcsányi, Izabella; Imfeld, Gwenaël

    2015-04-01

    Modern agriculture activities are constantly changing as producers try to produce a crop, keep their soils fertile, control pests, and prevent contamination of air and water resources. Because most of the world's arable land is already in production we must become more efficient if we are to feed and clothe the world's growing population as well as do this in a sustainable manner; leaving a legacy of fertile soil and clean water resources for our descendants. The objective of this paper is to demonstrate the importance of historical datasets and of developing new strategies to understand the effects of changing agricultural systems on the environment. Scientists who study agriculture and its effects on water must constantly adapt their strategies and evaluate how changing agricultural activities impact the environment. As well as understand from historical datasets on hydrology and agriculture how a changing climate or agricultural activity such as a change in tillage method might impact the processes that determine the movement of agricultural chemicals off of the target site. The 42.7 ha Hohrain (Rouffach, Alsace, France) vineyard experimental catchment offers several examples of how scientists have used historical data from this catchment to understand how the transport of agricultural chemicals may change due to a changing climate as well as how new strategies are developed for understanding the transport of agricultural chemicals. Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticides is crucial to understanding how to prevent or minimize their movement now, but also in understanding how climate change might affect runoff. If we understand how rainfall characteristics affect the transport of pesticides, we can use climate change models to predict how those characteristics might change in the future and be better prepared for

  18. Challenges of agricultural monitoring: integration of the Open Farm Management Information System into GEOSS and Digital Earth

    NASA Astrophysics Data System (ADS)

    Řezník, T.; Kepka, M.; Charvát, K.; Charvát, K., Jr.; Horáková, S.; Lukas, V.

    2016-04-01

    From a global perspective, agriculture is the single largest user of freshwater resources, each country using an average of 70% of all its surface water supplies. An essential proportion of agricultural water is recycled back to surface water and/or groundwater. Agriculture and water pollution is therefore the subject of (inter)national legislation, such as the Clean Water Act in the United States of America, the European Water Framework Directive, and the Law of the People's Republic of China on the Prevention and Control of Water Pollution. Regular monitoring by means of sensor networks is needed in order to provide evidence of water pollution in agriculture. This paper describes the benefits of, and open issues stemming from, regular sensor monitoring provided by an Open Farm Management Information System. Emphasis is placed on descriptions of the processes and functionalities available to users, the underlying open data model, and definitions of open and lightweight application programming interfaces for the efficient management of collected (spatial) data. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture pollution monitoring. The final part of the paper deals with the integration of the Open Farm Management Information System into the Digital Earth framework.

  19. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    PubMed

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  20. Successes and challenges in a novel doctoral program in systems agriculture: a case example.

    PubMed

    Lust, D; Topliff, D; Deotte, R

    2010-01-01

    A doctoral program in Systems Agriculture was initiated at West Texas A&M University, Canyon, TX, in September, 2003. The stated objective of the program was "..to prepare leaders for the agricultural industry that are trained in a multidisciplinary, research-based curriculum that emphasizes a systems approach to problem solving". The program offers a single doctoral degree in Agriculture and accepts qualified students with a master's or professional degree in agricultural or related disciplines. Courses related to systems methodologies, leadership, agricultural economics, plant and soil science, and animal science are required. Additional program requirements include a systems research project and dissertation, leadership training, and written and oral exams. The program has exceeded enrollment and graduation targets, suggesting interest in this approach to a doctoral degree. Students have entered the program with M.S. backgrounds in education, traditional agricultural disciplines, veterinary medicine, business, and physics. Graduates have gained employment in industry, university teaching and research, government research/administration, and extension. Doctoral student projects in systems agriculture contributed to curriculum changes and to the conceptual framework adopted by a multi-state research group. Designing and teaching courses for students with diverse backgrounds has been challenging. Development of a common understanding of systems agriculture was identified by a third-party program review as an issue for faculty. Development and maintenance of program standards and administrative procedures posed additional challenges. Leadership, administrative support, and timely and continuing program assessment are suggested as necessary components for a nontraditional doctoral program.

  1. Design of System Scheme and Operationmechanism on Agricultural Science &Technology Information Service System `110'

    NASA Astrophysics Data System (ADS)

    Wu, Yongchang; Hu, Zhiquan; Xiao, Bilin; Li, Quanxin

    Agricultural science & technology information service system ‘110’ (ASTISS-110), connected through unitary telephone hotline as well as multipurpose service of the network, television and video etc, is one of the most characteristic content of the Chinese rural informatization. ASTISS-110 is a low cost and high efficiency way to make the agricultural science & technology achievements extension and achieve the combination of science & technology with farmers in the rural area. This paper would primary focus on the ASTISS-110 foundation and system principle. On basis of its main functions and system objectives, we put forward the combination of the ‘Sky- Land-People’ technical solution, and analyze the management operation mechanism from commonweal service, enterprise management and commercialization operation.

  2. Interactions in Integrated Agricultural Systems: The Past, Present and Future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the 20th century, American agriculture underwent dramatic changes. At the beginning, farms were more diverse, dependent on animal traction, on-farm inputs and income, and after initial land grants nearly independent of government policy. Subsequently, social/political, economic, environmental...

  3. Environmental Services from Agricultural Stormwater Detention Systems in Florida

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Shukla, S.; Knowles, J. M.

    2011-12-01

    Agricultural Stormwater Detention Areas (ADAs) commonly exist for the purpose of downstream flood protection in high water table regions of Florida. In addition to flood protection, they are also considered an important Best Management Practice due to their presumed effectiveness in reducing nitrogen (N) and phosphorus (P) loads to the Kissimmee-Lake Okeechobee-Everglades (KLE) ecosystem. The KLE ecosystem has been adversely impacted due to excessive P loads. Despite their presumed water quality effectiveness, limited data exist on actual N and P treatment efficiencies. A study was conducted at two ADAs (ADA 1 and ADA 2) located in two row crop farms to quantify the total N and P treatment efficiencies. Water, N, and P inflow and outflows at both ADAs were monitored for a year. Results from ADA 1 suggested that P treatment efficiency was below zero indicating that the ADA was a source of P rather than a sink. On the other hand, N treatment efficiency was found to be 20%. Mean inflow and outflow N concentrations for ADA 1 were 1.6 and 1.4 mg/l respectively, indicating a 9% reduction. Mean inflow and outflow P concentrations were 0.04 and 0.06 mg/l respectively, showing an increase of 67%. Although ADA 1 was effective in retaining N it was not for P. In contrast to ADA 1, the P treatment efficiency of ADA 2 was positive (20%). Nitrogen treatment efficiency of ADA 2 was 22%. Mean inflow and outflow N concentrations for ADA 2 were 4.0 and 2.0 mg/l respectively, indicating 50% reduction. A reduction of 32% was observed for P concentrations with mean inflow and outflow P concentrations of 0.5 and 0.3 mg/l respectively. No P retention at ADA 1 was mainly due to low P adsorption capacity of the soil. Analysis of surface (0-10 cm) and subsurface (10-20 cm) soil P retention characteristics suggested that ADA 1 had no remaining P storage capacity which resulted in it being a source of P. At ADA 2, a large fraction of the area still had P storage capacity which resulted in

  4. Socially optimal drainage system and agricultural biodiversity: a case study for Finnish landscape.

    PubMed

    Saikkonen, Liisa; Herzon, Irina; Ollikainen, Markku; Lankoski, Jussi

    2014-12-15

    This paper examines the socially optimal drainage choice (surface/subsurface) for agricultural crop cultivation in a landscape with different land qualities (fertilities) when private profits and nutrient runoff damages are taken into account. We also study the measurable social costs to increase biodiversity by surface drainage when the locations of the surface-drained areas in a landscape affect the provided biodiversity. We develop a general theoretical model and apply it to empirical data from Finnish agriculture. We find that for low land qualities the measurable social returns are higher to surface drainage than to subsurface drainage, and that the profitability of subsurface drainage increases along with land quality. The measurable social costs to increase biodiversity by surface drainage under low land qualities are negative. For higher land qualities, these costs depend on the land quality and on the biodiversity impacts. Biodiversity conservation plans for agricultural landscapes should focus on supporting surface drainage systems in areas where the measurable social costs to increase biodiversity are negative or lowest.

  5. Effects of climate change on the mobilization of diffuse substances from agricultural systems

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J. A.; Fallon, P. D.; Evans, R.; Haygarth, P. M.

    2009-04-01

    Changes in the climate of temperate regions are likely to lead to increased losses of diffuse substances transferred from agricultural land to surface and ground waters e.g. sediment, carbon, nitrogen, pathogens and phosphorus. As part of a UK based science-policy initiative Integrating Water and Agricultural Management (IWAM) we have developed a framework for assessing climate change impacts on the mobilization of diffuse substances from UK agricultural land. We have reviewed the literature and provided an expert assessment of the influence of predicted changes in temperature and precipitation on detachment and solubilisation processes. We have chosen three model farm systems (MFSs; arable, lowland dairy and upland sheep). In our assessment we have found that lowland dairy is potentially the most sensitive to the predicted climate changes (2020). The projected increase in winter precipitation and all year round rainfall intensity are likely to be the largest climatic drivers for significant increases in detachment and solubilisation. An important part of our assessment was to identify the scientific gaps and uncertainties around climate change and diffuse substance mobilization and to facilitate improved recommendations for policies related to sustainable land and water management.

  6. Socially optimal drainage system and agricultural biodiversity: a case study for Finnish landscape.

    PubMed

    Saikkonen, Liisa; Herzon, Irina; Ollikainen, Markku; Lankoski, Jussi

    2014-12-15

    This paper examines the socially optimal drainage choice (surface/subsurface) for agricultural crop cultivation in a landscape with different land qualities (fertilities) when private profits and nutrient runoff damages are taken into account. We also study the measurable social costs to increase biodiversity by surface drainage when the locations of the surface-drained areas in a landscape affect the provided biodiversity. We develop a general theoretical model and apply it to empirical data from Finnish agriculture. We find that for low land qualities the measurable social returns are higher to surface drainage than to subsurface drainage, and that the profitability of subsurface drainage increases along with land quality. The measurable social costs to increase biodiversity by surface drainage under low land qualities are negative. For higher land qualities, these costs depend on the land quality and on the biodiversity impacts. Biodiversity conservation plans for agricultural landscapes should focus on supporting surface drainage systems in areas where the measurable social costs to increase biodiversity are negative or lowest. PMID:25163598

  7. Curriculum Guidelines for a Distance Education Course in Urban Agriculture Based on an Eclectic Model.

    ERIC Educational Resources Information Center

    Gaum, Wilma G.; van Rooyen, Hugo G.

    1997-01-01

    Describes research to develop curriculum guidelines for a distance education course in urban agriculture. The course, designed to train the teacher, is based on an eclectic curriculum design model. The course is aimed at the socioeconomic empowerment of urban farmers and is based on sustainable ecological-agricultural principles, an…

  8. The relationship between carbon dioxide and agriculture in Ghana: a comparison of VECM and ARDL model.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-06-01

    In this paper, the relationship between carbon dioxide and agriculture in Ghana was investigated by comparing a Vector Error Correction Model (VECM) and Autoregressive Distributed Lag (ARDL) Model. Ten study variables spanning from 1961 to 2012 were employed from the Food Agricultural Organization. Results from the study show that carbon dioxide emissions affect the percentage annual change of agricultural area, coarse grain production, cocoa bean production, fruit production, vegetable production, and the total livestock per hectare of the agricultural area. The vector error correction model and the autoregressive distributed lag model show evidence of a causal relationship between carbon dioxide emissions and agriculture; however, the relationship decreases periodically which may die over-time. All the endogenous variables except total primary vegetable production lead to carbon dioxide emissions, which may be due to poor agricultural practices to meet the growing food demand in Ghana. The autoregressive distributed lag bounds test shows evidence of a long-run equilibrium relationship between the percentage annual change of agricultural area, cocoa bean production, total livestock per hectare of agricultural area, total pulses production, total primary vegetable production, and carbon dioxide emissions. It is important to end hunger and ensure people have access to safe and nutritious food, especially the poor, orphans, pregnant women, and children under-5 years in order to reduce maternal and infant mortalities. Nevertheless, it is also important that the Government of Ghana institutes agricultural policies that focus on promoting a sustainable agriculture using environmental friendly agricultural practices. The study recommends an integration of climate change measures into Ghana's national strategies, policies and planning in order to strengthen the country's effort to achieving a sustainable environment.

  9. The relationship between carbon dioxide and agriculture in Ghana: a comparison of VECM and ARDL model.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-06-01

    In this paper, the relationship between carbon dioxide and agriculture in Ghana was investigated by comparing a Vector Error Correction Model (VECM) and Autoregressive Distributed Lag (ARDL) Model. Ten study variables spanning from 1961 to 2012 were employed from the Food Agricultural Organization. Results from the study show that carbon dioxide emissions affect the percentage annual change of agricultural area, coarse grain production, cocoa bean production, fruit production, vegetable production, and the total livestock per hectare of the agricultural area. The vector error correction model and the autoregressive distributed lag model show evidence of a causal relationship between carbon dioxide emissions and agriculture; however, the relationship decreases periodically which may die over-time. All the endogenous variables except total primary vegetable production lead to carbon dioxide emissions, which may be due to poor agricultural practices to meet the growing food demand in Ghana. The autoregressive distributed lag bounds test shows evidence of a long-run equilibrium relationship between the percentage annual change of agricultural area, cocoa bean production, total livestock per hectare of agricultural area, total pulses production, total primary vegetable production, and carbon dioxide emissions. It is important to end hunger and ensure people have access to safe and nutritious food, especially the poor, orphans, pregnant women, and children under-5 years in order to reduce maternal and infant mortalities. Nevertheless, it is also important that the Government of Ghana institutes agricultural policies that focus on promoting a sustainable agriculture using environmental friendly agricultural practices. The study recommends an integration of climate change measures into Ghana's national strategies, policies and planning in order to strengthen the country's effort to achieving a sustainable environment. PMID:26898935

  10. A distribution model for the aerial application of granular agricultural particles

    NASA Technical Reports Server (NTRS)

    Fernandes, S. T.; Ormsbee, A. I.

    1978-01-01

    A model is developed to predict the shape of the distribution of granular agricultural particles applied by aircraft. The particle is assumed to have a random size and shape and the model includes the effect of air resistance, distributor geometry and aircraft wake. General requirements for the maintenance of similarity of the distribution for scale model tests are derived and are addressed to the problem of a nongeneral drag law. It is shown that if the mean and variance of the particle diameter and density are scaled according to the scaling laws governing the system, the shape of the distribution will be preserved. Distributions are calculated numerically and show the effect of a random initial lateral position, particle size and drag coefficient. A listing of the computer code is included.

  11. Resolving Multi-Stakeholder Robustness Asymmetries in Coupled Agricultural and Urban Systems

    NASA Astrophysics Data System (ADS)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea; Reed, Patrick

    2016-04-01

    The evolving pressures from a changing climate and society are increasingly motivating decision support frameworks that consider the robustness of management actions across many possible futures. Focusing on robustness is helpful for investigating key vulnerabilities within current water systems and for identifying potential tradeoffs across candidate adaptation responses. To date, most robustness studies assume a social planner perspective by evaluating highly aggregated measures of system performance. This aggregate treatment of stakeholders does not explore the equity or intrinsic multi-stakeholder conflicts implicit to the system-wide measures of performance benefits and costs. The commonly present heterogeneity across complex management interests, however, may produce strong asymmetries for alternative adaptation options, designed to satisfy system-level targets. In this work, we advance traditional robustness decision frameworks by replacing the centralized social planner with a bottom-up, agent-based approach, where stakeholders are modeled as individuals, and represented as potentially self-interested agents. This agent-based model enables a more explicit exploration of the potential inequities and asymmetries in the distribution of the system-wide benefit. The approach is demonstrated by exploring the potential conflicts between urban flooding and agricultural production in the Lake Como system (Italy). Lake Como is a regulated lake that is operated to supply water to the downstream agricultural district (Muzza as the pilot study area in this work) composed of a set of farmers with heterogeneous characteristics in terms of water allocation, cropping patterns, and land properties. Supplying water to farmers increases the risk of floods along the lakeshore and therefore the system is operated based on the tradeoff between these two objectives. We generated an ensemble of co-varying climate and socio-economic conditions and evaluated the robustness of the

  12. Stochastic and recursive calibration for operational, large-scale, agricultural land and water use management models

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Kimball, J. S.; Jencso, K. G.

    2015-12-01

    Managing the impact of climatic cycles on agricultural production, on land allocation, and on the state of active and projected water sources is challenging. This is because in addition to the uncertainties associated with climate projections, it is difficult to anticipate how farmers will respond to climatic change or to economic and policy incentives. Some sophisticated decision support systems available to water managers consider farmers' adaptive behavior but they are data intensive and difficult to apply operationally over large regions. Satellite-based observational technologies, in conjunction with models and assimilation methods, create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents at seasonal scales.We present an integrated modeling framework that can be driven by satellite remote sensing to enable robust regional assessment and prediction of climatic and policy impacts on agricultural production, water resources, and management decisions. The core of this framework is a widely used model of agricultural production and resource allocation adapted to be used in conjunction with remote sensing inputs to quantify the amount of land and water farmers allocate for each crop they choose to grow on a seasonal basis in response to reduced or enhanced access to water due to climatic or policy restrictions. A recursive Bayesian update method is used to adjust the model parameters by assimilating information on crop acreage, production, and crop evapotranspiration as a proxy for water use that can be estimated from high spatial resolution satellite remote sensing. The data assimilation framework blends new and old information to avoid over-calibration to the specific conditions of a single year and permits the updating of parameters to track gradual changes in the agricultural system.This integrated framework provides an operational means of monitoring and forecasting what crops will be grown

  13. Methane Emissions From Global Paddy Rice Agriculture - a New Estimate Based on DNDC Model Simulations

    NASA Astrophysics Data System (ADS)

    Hagen, S. C.; Li, C.; Salas, W.; Ingraham, P.; Li, J.; Beach, R.; Frolking, S.

    2012-12-01

    Roughly one-quarter of global methane emissions to the atmosphere come from the agricultural sector. Agricultural emissions are dominated by livestock (ruminants) and paddy-rice agriculture. We report on a new estimate of global methane emissions from paddy rice c.2010, based on DNDC model simulations of rice cropping around the world. We first generated a global map of rice cropping at 0.5°-resolution, based on existing global crop maps and various other published data. For each 0.5° grid cell that has rice agriculture, we simulated all rice cropping systems that our mapping indicated to be occurring there - irrigated and/or rainfed; single-rice, double-rice, triple-rice, and/or rice-rotated with other upland crops - under local climate and soil conditions, with assumptions about crop management (e.g., fertilizer type and amount, irrigation, flooding frequency and duration, manure application, tillage, crop residue management). We estimate global paddy rice emissions at 23 Tg CH4/yr from 120 Mha of rice paddies (land area) and 160 Mha of rice cropping (harvested area) for the baseline management scenario. We also report on the spatial distribution of these emissions, and the impacts of various management alternatives (flooding methods, fertilizer types, crop residue incorporation etc.) on yield, soil carbon sequestration and emissions of methane and nitrous oxide. For example, simulations with continuous flooding on all paddies increased simulated global paddy rice emissions to 33 Tg CH4/yr, while simulations where all fertilizer was applied as ammonium sulfate reduced simulated global paddy rice emissions to about 19 Tg CH4/yr. Simulated global paddy rice yield was about 320 Tg C in grain.

  14. Modelling and analysis of inventory replenishment for perishable agricultural products with buyer-seller collaboration

    NASA Astrophysics Data System (ADS)

    Shen, Dongjie; Lai, K. K.; Leung, Stephen C. H.; Liang, Liang

    2011-07-01

    In this article, we study the inventory replenishment model for perishable agricultural products in a simple two-level supply chain. Collaborative forecasting is introduced into the inventory replenishment decisions to avoid overstocking and understocking of agricultural products, and to maximise profits. We analyse the model with ordering cost, holding cost, shortage cost, deterioration cost and opportunity lost cost of perishable agricultural products. Extensive numerical analysis is carried out to study the performance of the inventory policy. The optimal replenishment policy that minimises the total cost can be obtained from the model. It has demonstrated that the supply chain cost decreases with supplier and retailer's collaborative forecasting.

  15. Application of the Doppler lidar system to agricultural burning and air-sea interactions

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D.

    1980-01-01

    The Doppler lidar system is potentially a very powerful measurement system. Three areas concerning the system are discussed: (1) error analysis of the system to verify the results; (2) application of the system to agricultural burning in California central valley; and (3) oceanographic possibilities of the system.

  16. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability

    PubMed Central

    Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh

    2015-01-01

    Abstract In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978

  17. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability.

    PubMed

    Kumar, Anil; Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh

    2015-10-01

    In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes.

  18. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability.

    PubMed

    Kumar, Anil; Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh

    2015-10-01

    In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978

  19. Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff.

    PubMed

    Zhang, Xuyang; Zhang, Minghua

    2011-04-15

    Quantifying effectiveness of agricultural BMPs at the watershed scale is a challenging issue, requiring robust algorithms to simulate not only the agricultural production system but also pollutant transport and fate. This research addresses the challenge to simulate performances of BMPs in reducing organophosphates (OPs) runoff at the watershed scale. The SWAT model is calibrated and validated following a sensitivity analysis combining Latin Hypercube sampling and One-factor-At-a-Time simulation. The calibrated model is then applied in the Orestimba Creek Watershed to simulate BMPs including buffer strips, sediment ponds, vegetated ditches, use reduction, and their combinations. BMP simulation suggested that sediment ponds trap 54-85% of sediment from field runoff, but less than 10% of dissolved diazinon and chlorpyrifos. Use reduction can reduce pesticide load in a close-to-linear fashion. Effectiveness of vegetated ditches and buffers depends on their physical dimension and vegetation cover. Combining individual BMPs provides enhanced mitigation effects. The combination of vegetated ditches, buffer strips and use reduction decreases diazinon and chlorpyrifos load by over 94%. This study has suggested that the SWAT model reasonably predicts BMP effectiveness at the watershed scale. Results will assist decision making in implementing BMPs to reduce pesticide loads in surface runoff. PMID:21377192

  20. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    NASA Astrophysics Data System (ADS)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  1. Building an Agricultural Extension Services System Supported by ICTs in Tanzania: Progress Made, Challenges Remain

    ERIC Educational Resources Information Center

    Sanga, C.; Kalungwizi, V. J.; Msuya, C. P.

    2013-01-01

    The conventional agricultural extension service in Tanzania is mainly provided by extension officers visiting farmers to provide agricultural advisory service. This system of extension service provision faces a number of challenges including the few number of extension officers and limited resources. This article assesses the effectiveness of an…

  2. Agricultural Extension, Collective Action and Innovation Systems: Lessons on Network Brokering from Peru and Mexico

    ERIC Educational Resources Information Center

    Hellin, Jon

    2012-01-01

    Purpose: New approaches to extension service delivery are needed that stimulate increased agricultural production, contribute to collective action and which also foster the emergence of agricultural innovation systems. Research in Peru and Mexico explores some of these new approaches. Design/methodology/approach: In both countries, a qualitative…

  3. Sustaining the Earth's Watersheds-Agricultural Research Data System: Data development, user interaction, and operations management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To support the Agricultural Research Service’s Conservation Effects Assessment Project (CEAP) in assessing USDA conservation programs and practices on soil and water quality, a publicly available web-based watershed data system, called Sustaining the Earth’s Watersheds, Agricultural Research Data Sy...

  4. Which Advisory System to Support Innovation in Conservation Agriculture? The Case of Madagascar's Lake Alaotra

    ERIC Educational Resources Information Center

    Faure, Guy; Penot, Eric; Rakotondravelo, Jean Chrysostome; Ramahatoraka, Haja Andrisoa; Dugue, Patrick; Toillier, Aurelie

    2013-01-01

    Purpose: To promote sustainable agriculture, various development projects are encouraging farmers around Madagascar's Lake Alaotra to adopt conservation agriculture techniques. This article's objective is to analyze the capacity of a project-funded advisory system to accompany such an innovation and to design and implement an advisory method aimed…

  5. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A need to increase agricultural production across the world for food security appears to be at odds with the urgency to reduce agriculture’s negative environmental impacts. We suggest that a cause of this dichotomy is loss of diversity within agricultural systems at field, farm and landscape scales....

  6. A spatially distributed hydroeconomic model to assess the effects of drought on land use, farm profits, and agricultural employment

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Torres, M. O.; Wallender, W. W.; Vosti, S.; Howitt, R.; Rodrigues, L.; Bassoi, L. H.; Panday, S.

    2009-11-01

    In this paper a high-resolution linked hydroeconomic model is demonstrated for drought conditions in a Brazilian river basin. The economic model of agriculture includes 13 decision variables that can be optimized to maximize farmers' yearly net revenues. The economic model uses a multi-input multioutput nonlinear constant elasticity of substitution (CES) production function simulating agricultural production. The hydrologic component is a detailed physics-based three-dimensional hydrodynamic model that simulates changes in the hydrologic system derived from agricultural activity while in turn providing biophysical constraints to the economic system. The linked models capture the effects of the interactions between the hydrologic and the economic systems at high spatial and temporal resolutions, ensuring that the model converges to an optimal economic scenario that takes into account the spatial and temporal distribution of the water resources. The operation and usefulness of the models are demonstrated in a rural catchment area of about 10 km2 within the São Francisco River Basin in Brazil. Two droughts of increasing intensity are simulated to investigate how farmers behave under rain shortfalls of different severity. The results show that farmers react to rainfall shortages to minimize their effects on farm profits, and that the impact on farmers depends, among other things, on their location in the watershed and on their access to groundwater.

  7. Modeling the impacts of dryland agricultural reclamation on groundwater resources in Northern Egypt using sparse data

    NASA Astrophysics Data System (ADS)

    Switzman, Harris; Coulibaly, Paulin; Adeel, Zafar

    2015-01-01

    Demand for freshwater in many dryland environments is exerting negative impacts on the quality and availability of groundwater resources, particularly in areas where demand is high due to irrigation or industrial water requirements to support dryland agricultural reclamation. Often however, information available to diagnose the drivers of groundwater degradation and assess management options through modeling is sparse, particularly in low and middle-income countries. This study presents an approach for generating transient groundwater model inputs to assess the long-term impacts of dryland agricultural land reclamation on groundwater resources in a highly data-sparse context. The approach was applied to the area of Wadi El Natrun in Northern Egypt, where dryland reclamation and the associated water use has been aggressive since the 1960s. Statistical distributions of water use information were constructed from a variety of sparse field and literature estimates and then combined with remote sensing data in spatio-temporal infilling model to produce the groundwater model inputs of well-pumping and surface recharge. An ensemble of groundwater model inputs were generated and used in a 3D groundwater flow (MODFLOW) of Wadi El Natrun's multi-layer aquifer system to analyze trends in water levels and water budgets over time. Validation of results against monitoring records, and model performance statistics demonstrated that despite the extremely sparse data, the approach used in this study was capable of simulating the cumulative impacts of agricultural land reclamation reasonably well. The uncertainty associated with the groundwater model itself was greater than that associated with the ensemble of well-pumping and surface recharge estimates. Water budget analysis of the groundwater model output revealed that groundwater recharge has not changed significantly over time, while pumping has. As a result of these trends, groundwater was estimated to be in a deficit of

  8. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-05-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented, to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions resulting from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of fertilizer applied, local meteorology, and ambient air concentrations. An evaluation of EPIC-simulated crop management activities associated with fertilizer application at planting compared with similar USDA state-level event estimates shows temporally progressive spatial patterns that agree well with one another. EPIC annual inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6 % low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  9. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-10-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions which result from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of inorganic NH3 fertilizer applied, soil processes, local meteorology, and ambient air concentrations. Initial fertilizer application often occurs when crops are planted. A state-level evaluation of EPIC-simulated, cumulative planted area compares well with similar USDA reported estimates. EPIC-annual, inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6% low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric particle nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  10. Market assessment of photovoltaic power systems for agricultural applications in Nigeria

    NASA Technical Reports Server (NTRS)

    Staples, D.; Steingass, H.; Nolfi, J.

    1981-01-01

    The market potential for stand-alone photovoltaic systems in agriculture was studied. Information is presented on technical and economically feasible applications, and assessments of the business, government and financial climate for photovoltaic sales. It is concluded that the market for stand-alone systems will be large because of the availability of captial and the high premium placed on high reliability, low maintenance power systems. Various specific applications are described, mostly related to agriculture.

  11. Accessible integration of agriculture, groundwater, and economic models using the Open Modeling Interface (OpenMI): methodology and initial results

    NASA Astrophysics Data System (ADS)

    Bulatewicz, T.; Yang, X.; Peterson, J. M.; Staggenborg, S.; Welch, S. M.; Steward, D. R.

    2010-03-01

    Policy for water resources impacts not only hydrological processes, but the closely intertwined economic and social processes dependent on them. Understanding these process interactions across domains is an important step in establishing effective and sustainable policy. Multidisciplinary integrated models can provide insight to inform this understanding, though the extent of software development necessary is often prohibitive, particularly for small teams of researchers. Thus there is a need for practical methods for building interdisciplinary integrated models that do not incur a substantial development effort. In this work we adopt the strategy of linking individual domain models together to build a multidisciplinary integrated model. The software development effort is minimized through the reuse of existing models and existing model-linking tools without requiring any changes to the model source codes, and linking these components through the use of the Open Modeling Interface (OpenMI). This was found to be an effective approach to building an agricultural-groundwater-economic integrated model for studying the effects of water policy in irrigated agricultural systems. The construction of the integrated model provided a means to evaluate the impacts of two alternative water-use policies aimed at reducing irrigated water use to sustainable levels in the semi-arid grasslands overlying the Ogallala Aquifer of the Central US. The results show how both the economic impact in terms of yield and revenue and the environmental impact in terms of groundwater level vary spatially throughout the study region for each policy. Accessible integration strategies are necessary if the practice of interdisciplinary integrated simulation is to become widely adopted.

  12. Optical modeling of agricultural fields and rough-textured rock and mineral surfaces

    NASA Technical Reports Server (NTRS)

    Suits, G. H.; Vincent, R. K.; Horwitz, H. M.; Erickson, J. D.

    1973-01-01

    Review was made of past models for describing the reflectance and/or emittance properties of agricultural/forestry and geological targets in an effort to select the best theoretical models. An extension of the six parameter Allen-Gayle-Richardson model was chosen as the agricultural plant canopy model. The model is used to predict the bidirectional reflectance of a field crop from known laboratory spectra of crop components and approximate plant geometry. The selected geological model is based on Mie theory and radiative transfer equations, and will assess the effect of textural variations of the spectral emittance of natural rock surfaces.

  13. The agroecological matrix as alternative to the land-sparing/agriculture intensification model.

    PubMed

    Perfecto, Ivette; Vandermeer, John

    2010-03-30

    Among the myriad complications involved in the current food crisis, the relationship between agriculture and the rest of nature is one of the most important yet remains only incompletely analyzed. Particularly in tropical areas, agriculture is frequently seen as the antithesis of the natural world, where the problem is framed as one of minimizing land devoted to agriculture so as to devote more to conservation of biodiversity and other ecosystem services. In particular, the "forest transition model" projects an overly optimistic vision of a future where increased agricultural intensification (to produce more per hectare) and/or increased rural-to-urban migration (to reduce the rural population that cuts forest for agriculture) suggests a near future of much tropical aforestation and higher agricultural production. Reviewing recent developments in ecological theory (showing the importance of migration between fragments and local extinction rates) coupled with empirical evidence, we argue that there is little to suggest that the forest transition model is useful for tropical areas, at least under current sociopolitical structures. A model that incorporates the agricultural matrix as an integral component of conservation programs is proposed. Furthermore, we suggest that this model will be most successful within a framework of small-scale agroecological production.

  14. Research on agricultural ecology and environment analysis and modeling based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Chen, Hongfu; Wang, Mingsheng

    2009-07-01

    Analysis of agricultural ecology and environment is based on the data of agricultural resources, which are obtained by RS monitoring. The over-exploitation of farmlands will cause structural changes of the soil composition, and damage the planting environment and the agro-ecosystem. Through the research on the dynamic monitoring methods of multitemporal RS images and GIS technology, the crop growth status, crop acreage and other relevant information in agricultural production are extracted based on the monitor and analysis of the conditions of the fields and crop growth. The agro-ecological GIS platform is developed with the establishment of the agricultural resources management database, which manages spatial data, RS data and attribute data of agricultural resources. Using the RS, GIS analysis results, the reasons of agro-ecological destruction are analyzed and the evaluation methods are established. This paper puts forward the concept of utilization capacity of farmland, which describes farmland space for development and utilization that is influenced by the conditions of the land, water resources, climate, pesticides and chemical fertilizers and many other agricultural production factors. Assessment model of agricultural land use capacity is constructed with the help of Fuzzy. Assessing the utilization capacity of farmland can be helpful to agricultural production and ecological protection of farmland. This paper describes the application of the capacity evaluation model with simulated data in two aspects, namely, in evaluating the status of farmland development and utilization and in optimal planting.

  15. Relative impacts of land-use, management intensity and fertilization on microbial community structure in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of agricultural land management practices on soil prokaryotic diversity have not been well described. Soil microbial communities under three agricultural management systems (conventionally tilled cropland, hayed pasture, and grazed pasture) and two fertilizer systems [inorganic fertilizer (I...

  16. Nutrient Models Developments Using Runoff-Nutrient Relationships in an Agricultural Prairie Basin, Manitoba.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Elliott, J. A.; Baulch, H. M.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient export to streams and lakes from agricultural activities can result in significant deterioration of water quality and aquatic ecosystem health. In Western Canada, particular concerns arise for prairie agricultural systems, which are dominated by the effects of a cold climate. Insufficient attention has been given to understand the links between cold region watershed responses and nutrient concentration and a robust watershed-scale modeling framework is needed to simulate nutrient concentration and loads. Long-term, field observations of nutrient concentration-runoff relationships were used to develop nutrient concentration models for the Tobacco Creek Model Watershed (TCMW) which drains into the Red River basin. Field observations include streamflow concentrations of N and P at multiple scales from two headwater basins. Distinct nutrient concentration-runoff models for snowmelt, rain on snow (ROS) and rainfall runoff processes were developed from observed runoff-nutrient concentration relationships. Snowmelt runoff had a moderately positive correlation with particulate nutrient concentrations but no correlation with that of dissolved nutrients. ROS runoff had a weak relationship with both particulate and dissolved nutrient concentrations. Rainfall runoff had the strongest positive correlation with particulate nutrient concentrations but no association with that of dissolved nutrients. The modeling approach also identified a clear hysteretic behavior in the relationship between runoff and particulate nutrient concentration during the 2013 snowmelt runoff event at the basin outlet gauge. The models provide insight into the hydrological controls on nutrient export from cold regions watersheds and the strong effects of inter-annual climatic variability. Snowmelt runoff is a reliable exporter of large nutrient loads while nutrient export by rainfall runoff exceeded snowmelt runoff during hydrologically wet summers such as 2002, 2005, 2011 and 2013.

  17. The agroecological matrix as alternative to the land-sparing/agriculture intensification model

    PubMed Central

    Perfecto, Ivette; Vandermeer, John

    2010-01-01

    Among the myriad complications involved in the current food crisis, the relationship between agriculture and the rest of nature is one of the most important yet remains only incompletely analyzed. Particularly in tropical areas, agriculture is frequently seen as the antithesis of the natural world, where the problem is framed as one of minimizing land devoted to agriculture so as to devote more to conservation of biodiversity and other ecosystem services. In particular, the “forest transition model” projects an overly optimistic vision of a future where increased agricultural intensification (to produce more per hectare) and/or increased rural-to-urban migration (to reduce the rural population that cuts forest for agriculture) suggests a near future of much tropical aforestation and higher agricultural production. Reviewing recent developments in ecological theory (showing the importance of migration between fragments and local extinction rates) coupled with empirical evidence, we argue that there is little to suggest that the forest transition model is useful for tropical areas, at least under current sociopolitical structures. A model that incorporates the agricultural matrix as an integral component of conservation programs is proposed. Furthermore, we suggest that this model will be most successful within a framework of small-scale agroecological production. PMID:20339080

  18. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  19. Application of aerobic composting system for space agriculture

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Yoshii, Takahiro; Moriya, Toshiyuki; Yamashita, Masamichi

    Composting is a classical technique to decompose organic wastes such as animal bodies, straw, paper, raw sludge, and so on. Compared with burning of wastes, the composting method has many advantages. It is an inexpensive and safer method because of its self-heating without spending extra energy resources. It does not emit toxic pollutants such as dioxin, NOx , and SOx . The composting products can be used as organic fertilizers for agricultural production. Composting is a promising way for digesting organic wastes safely on spaceships or manned exploration on extraterrestrial planets. We have developed a small scale high-temperature composter in order to examine its feasobility to operate food waste disposing facility and fertilizer production in space. This composter has a heated reaction vessel containing compost soil (seed bacteria) provided by a compost factory. To determine the optimal condition for its operation, we analyzed the effect of temperature on metabolic activity (CO2 production rate), and water content. The dynamics of microbial community was studied by polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE). Water content was maintained to a range between 27% and 40% by continuously adding water. The highest CO2 emission was observed at around 70° C. PCR-DGGE analysis shows that the bacterial community of the compost soil is dramatically changed by changing reaction temperature. We will discuss the application of the composter in space in order to establish the closed recycling loop of bio-elements in space agriculture.

  20. A multicriteria model for planning agricultural regions within a context of groundwater rational management.

    PubMed

    Manos, B; Papathanasiou, J; Bournaris, Th; Voudouris, K

    2010-07-01

    Current international research focuses on topics like sustainable development, regional planning, environmental decision making and implementation, biodiversity conservation plus a number of other relevant issues, especially at times of economic crisis as today. Economic growth and environmental protection can go hand in hand, provided that decision makers develop and use tools and insights targeting in the implementation of successful and robust long term policies. This paper was developed in the framework of a European research project and implements a Multicriteria Mathematical Programming model that optimises the sustainable management of agricultural regions taking in account the available resources (land, labour, capital) and environmental parameters (agrochemicals, water consumption). The model achieves the optimum farm plan in the area combining different criteria to a utility function under a set of constraints and the spatial integration of the vulnerability maps of the regions into the model enables the regional authorities to design policies for the optimal agricultural development and the groundwater protection from the agricultural land uses. Furthermore, the model is used to simulate different scenarios and policies by the local stakeholders, due to changes on different social, economic and environmental parameters. In this way the decision makers can achieve alternative farm plans and agricultural land uses as well as to estimate economic, social and environmental impacts of different policies. The model has been applied to an agricultural region in Northern Greece and proved to be a valuable tool in the implementation of environmental policies and actions, especially in agricultural regions in a delicate balance as the study area.

  1. Integrated Modeling to Assess the Impacts of Changes in Climate and Socio Economics on Agriculture in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Malek, K.; Nelson, R.; Stockle, C.; Brady, M.; Dinesh, S.; Barber, M. E.; Yorgey, G.; Kruger, C.

    2012-12-01

    The objective of this work is to assess the impacts of climate change and socio economics on agriculture in the Columbia River basin (CRB) in the Pacific Northwest region of the U.S. and a portion of Southwestern Canada. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of CRB water with 14,000 square kilometers of irrigated area. Agriculture is an important component of the region's economy, with an annual value over 5 billion in Washington State alone. Therefore, the region is relevant for applying a modeling framework that can aid agriculture decision making in the context of a changing climate. To do this, we created an integrated biophysical and socio-economic regional modeling framework that includes human and natural systems. The modeling framework captures the interactions between climate, hydrology, crop growth dynamics, water management and socio economics. The biophysical framework includes a coupled macro-scale physically-based hydrology model (the Variable Infiltration Capacity, VIC model), and crop growth model (CropSyst), as well as a reservoir operations simulation model. Water rights data and instream flow target requirements are also incorporated in the model to simulate the process of curtailment during water shortage. The economics model informs the biophysical model of the short term agricultural producer response to water shortage as well as the long term agricultural producer response to domestic growth and international trade in terms of an altered cropping pattern. The modeling framework was applied over the CRB for the historical period 1976-2006 and compared to a future 30-year period centered on the 2030s. Impacts of climate change on irrigation water availability, crop irrigation demand, frequency of curtailment, and crop yields are quantified and presented. Sensitivity associated with estimates of water availability, irrigation demand, crop

  2. Development and Implementation of Production Area of Agricultural Product Data Collection System Based on Embedded System

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Guo, Wei; Che, Yinchao; Zhang, Hao; Wang, Qiang; Ma, Xinming

    To solve problems in detecting the origin of agricultural products, this paper brings about an embedded data-based terminal, applies middleware thinking, and provides reusable long-range two-way data exchange module between business equipment and data acquisition systems. The system is constructed by data collection node and data center nodes. Data collection nodes taking embedded data terminal NetBoxII as the core, consisting of data acquisition interface layer, controlling information layer and data exchange layer, completing the data reading of different front-end acquisition equipments, and packing the data TCP to realize the data exchange between data center nodes according to the physical link (GPRS / CDMA / Ethernet). Data center node consists of the data exchange layer, the data persistence layer, and the business interface layer, which make the data collecting durable, and provide standardized data for business systems based on mapping relationship of collected data and business data. Relying on public communications networks, application of the system could establish the road of flow of information between the scene of origin certification and management center, and could realize the real-time collection, storage and processing between data of origin certification scene and databases of certification organization, and could achieve needs of long-range detection of agricultural origin.

  3. Developing a Model To Explain Student Persistence in Tertiary Agricultural Study.

    ERIC Educational Resources Information Center

    Quinn, Petrina; Hemmings, Brian

    Drawing on data collected from students attending Australian rural- and urban-based universities, structural modeling was used to test the validity of a model of student persistence and satisfaction in agricultural courses. The model placed personal and environmental factors as predictors of student persistence and satisfaction and was comprised…

  4. On the utility of land surface models for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely-sensed vegetation indices (VI) is examined from January 2000 until December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strateg...

  5. A framework for developing an impact-oriented agricultural drought monitoring system from remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2016-04-01

    With a changing climate, drought has become more intensified, of which agriculture is the major affected sector. Satellite observations have proven great utilities for real-time drought monitoring as well as crop yield estimation, and many remotely sensed indicators have been developed for drought monitoring based on vegetation growth conditions, surface temperature and evapotranspiration information. However, those current drought indicators typically don't take into account the different responses of various input information and the drought impacts during the growing season, revealing some limitations for effective agricultural drought monitoring and impact analysis. Therefore, the goal of this research is to build a framework for the development of an impact-oriented and remote sensing based agricultural drought indicator. Firstly, the global agricultural drought risk was characterized to provide an overview of the agricultural drought prone areas in the world. Then, the responses of different remotely sensed indicators to drought and the impacts of drought on crop yield from the remote sensing perspective during the growing season were explored. Based on previous works on drought risk, drought indicator response and drought impact analysis, an impact-oriented drought indicator will be prototyped from the integration of the drought responses of different indicators and the drought impacts during the growing season. This research can inform an impact-oriented agricultural drought indicator, help prototype an impact-oriented agricultural drought monitoring system, and thus provide valuable inputs for effective agricultural management.

  6. Communication system modeling

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Walsh, J. R., Jr.; Wetherington, R. D.

    1971-01-01

    This report presents the results of work on communications systems modeling and covers three different areas of modeling. The first of these deals with the modeling of signals in communication systems in the frequency domain and the calculation of spectra for various modulations. These techniques are applied in determining the frequency spectra produced by a unified carrier system, the down-link portion of the Command and Communications System (CCS). The second modeling area covers the modeling of portions of a communication system on a block basis. A detailed analysis and modeling effort based on control theory is presented along with its application to modeling of the automatic frequency control system of an FM transmitter. A third topic discussed is a method for approximate modeling of stiff systems using state variable techniques.

  7. Exploring the use of structural models to improve remote sensing agricultural estimates

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.; Lakshminarayanan, M. Y.

    1984-01-01

    Satellite estimates of agricultural characteristics often are not sufficiently precise for reliable use in small geographical regions. The precision of estimates of agricultural characteristics such as crop proportions and leaf area indexes can be increased by modeling ground observations as a function of satellite estimates. Linear regression models using least squares estimators of the model parameters are most often advocated as an appropriate methodology; however, least squares estimation requires that the predictor variables are measured without error, an unreasonable assumption for this application. An alternative estimation methodology which assumes that both the response variables (ground observations) and the predictor variables (satellite estimates) are measured with error involves the use of linear structural models. The application of linear structural models to the estimation of agricultural characteristics using satellite spectral measurements is examined.

  8. Validation of remotely-sensed soil moisture observations for bare soil at 1.4 GHz: A quantitative approach through radiative transfer models to characterize abrupt transitions caused by a ponding event in an agricultural field, modifications to the radiative transfer models, and a mobile ground-based system

    NASA Astrophysics Data System (ADS)

    Erbas, Cihan

    Soil moisture controls the physical processes that exchange mass and energy between the atmosphere and the land surface in the hydrologic cycle. Improved observations of soil moisture may lead to dramatic improvements in weather forecasting, seasonal climate prediction, and our understanding of the physical, chemical and biological processes that occur within the soil. Recent advances in remote sensing have shown that microwave radiometry is a suitable approach to retrieve soil moisture. However, the quantitative aspects of remotely-sensed soil moisture observations are not well-known, and validation of remotely-sensed measurements is an important challenge. In this dissertation, we describe efforts made at Iowa State University to establish the framework needed for the validation of remotely-sensed soil moisture observations. In the process of developing this framework, we engineered new tools that can be used by both our research group and the wider remote sensing community, and we discovered new science. The first tool is a direct-sampling digital L-band radiometer system. This radiometer system is the world's first truly mobile ground-based system. The other tools are radiative transfer models that have been modified in order to be applied to the most general remote sensing situations. An incoherent radiative transfer model was modified to include the contributions of a semi-infinite layer, and a coherent radiative transfer model was modified to account for abrupt transitions in the electrical properties of a medium. The models were verified against each other and the code was written in a user-friendly format. We demonstrated the use of these tools in determining the effect of the transient ponding of water in an agricultural field on the remote sensing signal. We found that ponding was responsible for a 40 K change in the L-band horizontally-polarized brightness temperature. We were able to model this change with both modified coherent and incoherent

  9. Modelling the water-agricultural sector in Rosetta, Egypt: exploring the interaction between water and food

    NASA Astrophysics Data System (ADS)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia; Savic, Dragan; Kapelan, Zoran

    2014-05-01

    An integrated System Dynamics Model for the Rosetta region, Egypt, assessing local water balance and agricultural yield to 2050, is presented. Fifty-seven simulations are analysed to better understand potential impacts on water and food security resulting from climate and social change and local/regional policy decisions related to the agricultural sector. Water limitation is a national issue: Egypt relies on the Nile for >95% of supply, and the flow of which is regulated by the Aswan High Dam. Egypt's share water of Aswan water is limited to 55 x 19 m3 yr-1. Any reduction in supply to the reservoir or increase in demand (e.g. from an expanding agricultural sector), has the potential to lead to a serious food and water supply situation. Results show current water resource over-exploitation. The remaining suite of 56 simulations, divided into seven scenarios, also mostly show resource overexploitation. Only under significant increases to Nile flow volumes was the trend reversed. Despite this, by threading together multiple local policies to reduce demand and improve/maintain supply, water resource exploitation can be mitigated while allowing for agricultural development. By changing cropping patterns, it is possible to improve yield and revenue, while using up to 21% less water in 2050 when compared with today. The results are useful in highlighting pathways to improving future water resource availability. Many policies should be considered in parallel, introducing redundancy into the policy framework. We do not suggest actual policy measures; this was beyond the scope of the work. This work highlights the utility of systems modelling of complex systems such as the water-food nexus, with the potential to extend the methodology to other studies and scales. In particular, the benefit of being able to easily modify and extend existing models in light of results from initial modelling efforts is cited. Analysis of initial results led to the hypothesis that by producing

  10. Implementation of a segmentation method for agricultural fields in aerial sequences of images based on CSAR model

    NASA Astrophysics Data System (ADS)

    Chen, Haijun; Houkes, Zweitze

    1998-09-01

    In this paper, a segmentation method for agricultural fields in aerial sequences of images based on the Circular Symmetri Auto-Regressive (CSAR) model is presented. The image sequences assumed to be acquired by a video camera (RGB-CCD system) from an aeroplane, which moves linearly over the scene. The objects in the scenes being considered in this paper, are agricultural fields. The classes of agricultural fields to be distinguished are determined by the type of crop, e.g. potatoes sugar beet, wheat, etc. In order to recognize and classify these fields from aerial sequence of images, a reliable segmentatio is required. Here texture features are used for segmentation. The implementation of segmentation for agricultural fields in aerial sequences of images is based on CSAR model in texture analysis. By comparing the estimated parameters of CSAR model from different area in an image, the characteristics and the class of a texture may be determined. The paper describes the segmentation method and its evaluation through experiments. Based on segmentation results, classification for surface texture of vegetation from aerial sequences of images is realized.

  11. Application of methane fermentation technology into organic wastes in closed agricultural system

    NASA Astrophysics Data System (ADS)

    Endo, Ryosuke; Kitaya, Yoshiaki

    Sustainable and recycling-based systems are required in space agriculture which takes place in an enclosed environment. Methane fermentation is one of the most major biomass conversion technologies, because (1) it provides a renewable energy source as biogas including methane, suitable for energy production, (2) the nutrient-rich solids left after digestion can be used as compost for agriculture. In this study, the effect of the application of methane fermentation technology into space agriculture on the material and energy cycle was investigated.

  12. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    DOE PAGES

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; Adams, Aaron S.; Scott, Jarrod J.; Malfatti, Stephanie A.; Glavina del Rio, Tijana; Tringe, Susannah G.; Poulsen, Michael; Raffa, Kenneth F.; et al

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less

  13. Convergent Bacterial Microbiotas in the Fungal Agricultural Systems of Insects

    PubMed Central

    Suen, Garret; Biedermann, Peter H. W.; Adams, Aaron S.; Scott, Jarrod J.; Malfatti, Stephanie A.; Glavina del Rio, Tijana; Tringe, Susannah G.; Poulsen, Michael; Raffa, Kenneth F.; Klepzig, Kier D.

    2014-01-01

    ABSTRACT The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. PMID:25406380

  14. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    SciTech Connect

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; Adams, Aaron S.; Scott, Jarrod J.; Malfatti, Stephanie A.; Glavina del Rio, Tijana; Tringe, Susannah G.; Poulsen, Michael; Raffa, Kenneth F.; Klepzig, Kier D.; Currie, Cameron R.

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.

  15. Mathematical circulatory system model

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Stevens, Scott A. (Inventor)

    2010-01-01

    A system and method of modeling a circulatory system including a regulatory mechanism parameter. In one embodiment, a regulatory mechanism parameter in a lumped parameter model is represented as a logistic function. In another embodiment, the circulatory system model includes a compliant vessel, the model having a parameter representing a change in pressure due to contraction of smooth muscles of a wall of the vessel.

  16. A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research.

    PubMed

    Ireland, J J; Roberts, R M; Palmer, G H; Bauman, D E; Bazer, F W

    2008-10-01

    Research on domestic animals (cattle, swine, sheep, goats, poultry, horses, and aquatic species) at land grant institutions is integral to improving the global competitiveness of US animal agriculture and to resolving complex animal and human diseases. However, dwindling federal and state budgets, years of stagnant funding from USDA for the Competitive State Research, Education, and Extension Service National Research Initiative (CSREES-NRI) Competitive Grants Program, significant reductions in farm animal species and in numbers at land grant institutions, and declining enrollment for graduate studies in animal science are diminishing the resources necessary to conduct research on domestic species. Consequently, recruitment of scientists who use such models to conduct research relevant to animal agriculture and biomedicine at land grant institutions is in jeopardy. Concerned stakeholders have addressed this critical problem by conducting workshops, holding a series of meetings with USDA and National Institutes of Health (NIH) officials, and developing a white paper to propose solutions to obstacles impeding the use of domestic species as dual-purpose animal models for high-priority problems common to agriculture and biomedicine. In addition to shortfalls in research support and human resources, overwhelming use of mouse models in biomedicine, lack of advocacy from university administrators, long-standing cultural barriers between agriculture and human medicine, inadequate grantsmanship by animal scientists, and a scarcity of key reagents and resources are major roadblocks to progress. Solutions will require a large financial enhancement of USDA's Competitive Grants Program, educational programs geared toward explaining how research using agricultural animals benefits both animal agriculture and human health, and the development of a new mind-set in land grant institutions that fosters greater cooperation among basic and applied researchers. Recruitment of

  17. Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications

    NASA Astrophysics Data System (ADS)

    Saari, Heikki; Pellikka, Ismo; Pesonen, Liisa; Tuominen, Sakari; Heikkilä, Jan; Holmlund, Christer; Mäkynen, Jussi; Ojala, Kai; Antila, Tapani

    2011-11-01

    VTT Technical Research Centre of Finland has developed a Fabry-Perot Interferometer (FPI) based hyperspectral imager compatible with the light weight UAV platforms. The concept of the hyperspectral imager has been published in the SPIE Proc. 7474 and 7668. In forest and agriculture applications the recording of multispectral images at a few wavelength bands is in most cases adequate. The possibility to calculate a digital elevation model of the forest area and crop fields provides means to estimate the biomass and perform forest inventory. The full UAS multispectral imaging system will consist of a high resolution false color imager and a FPI based hyperspectral imager which can be used at resolutions from VGA (480 x 640 pixels) up to 5 Mpix at wavelength range 500 - 900 nm at user selectable spectral resolutions in the range 10...40 nm @ FWHM. The resolution is determined by the order at which the Fabry- Perot interferometer is used. The overlap between successive images of the false color camera is 70...80% which makes it possible to calculate the digital elevation model of the target area. The field of view of the false color camera is typically 80 degrees and the ground pixel size at 150 m flying altitude is around 5 cm. The field of view of the hyperspectral imager is presently is 26 x 36 degrees and ground pixel size at 150 m flying altitude is around 3.5 cm. The UAS system has been tried in summer 2011 in Southern Finland for the forest and agricultural areas. During the first test campaigns the false color camera and hyperspectral imager were flown over the target areas at separate flights. The design and calibration of the hyperspectral imager will be shortly explained. The test flight campaigns on forest and crop fields and their preliminary results are also presented in this paper.

  18. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  19. Modular Modeling System Model Builder

    SciTech Connect

    McKim, C.S.; Matthews, M.T.

    1996-12-31

    The latest release of the Modular Modeling System (MMS) Model Builder adds still more time-saving features to an already powerful MMS dynamic-simulation tool set. The Model Builder takes advantage of 32-bit architecture within the Microsoft Windows 95/NT{trademark} Operating Systems to better integrate a mature library of power-plant components. In addition, the MMS Library of components can now be modified and extended with a new tool named MMS CompGen{trademark}. The MMS Model Builder allows the user to quickly build a graphical schematic representation for a plant by selecting from a library of predefined power plant components to dynamically simulate their operation. In addition, each component has a calculation subroutine stored in a dynamic-link library (DLL), which facilitates the determination of a steady-state condition and performance of routine calculations for the component. These calculations, termed auto-parameterization, help avoid repetitive and often tedious hand calculations for model initialization. In striving to meet the needs for large models and increase user productivity, the MMS Model Builder has been completely revamped to make power plant model creation and maintainability easier and more efficient.

  20. Irrigated Agriculture in Morocco: An Agent-Based Model of Adaptation and Decision Making Amid Increasingly Frequent Drought Events

    NASA Astrophysics Data System (ADS)

    Norton, M.

    2015-12-01

    In the past 100 years, Morocco has undertaken a heavy investment in developing water infrastructure that has led to a dramatic expansion of irrigated agriculture. Irrigated agriculture is the primary user of water in many arid countries, often accounting for 80-90% of total water usage. Irrigation is adopted by farmers not only because it leads to increased production, but also because it improves resilience to an uncertain climate. However, the Mediterranean region as a whole has also seen an increase in the frequency and severity of drought events. These droughts have had a dramatic impact on farmer livelihoods and have led to a number of coping strategies, including the adoption or disadoption of irrigation. In this study, we use a record of the annual extent of irrigated agriculture in Morocco to model the effect of drought on the extent of irrigated agriculture. Using an agent-based socioeconomic model, we seek to answer the following questions: 1) Do farmers expand irrigated agriculture in response to droughts? 2) Do drought events entail the removal of perennial crops like orchards? 3) Can we detect the retreat of irrigated agriculture in the more fragile watersheds of Morocco? Understanding the determinants of irrigated crop expansion and contractions will help us understand how agro-ecological systems transition from 20th century paradigms of expansion of water supply to a 21st century paradigm of water use efficiency. The answers will become important as countries learn how to manage water in new climate regimes characterized by less reliable and available precipitation.

  1. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain.

    PubMed

    Ledoux, E; Gomez, E; Monget, J M; Viavattene, C; Viennot, P; Ducharne, A; Benoit, M; Mignolet, C; Schott, C; Mary, B

    2007-04-01

    A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management

  2. Autonomous agricultural remote sensing systems with high spatial and temporal resolutions

    NASA Astrophysics Data System (ADS)

    Xiang, Haitao

    In this research, two novel agricultural remote sensing (RS) systems, a Stand-alone Infield Crop Monitor RS System (SICMRS) and an autonomous Unmanned Aerial Vehicles (UAV) based RS system have been studied. A high-resolution digital color and multi-spectral camera was used as the image sensor for the SICMRS system. An artificially intelligent (AI) controller based on artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) was developed. Morrow Plots corn field RS images in the 2004 and 2006 growing seasons were collected by the SICMRS system. The field site contained 8 subplots (9.14 m x 9.14 m) that were planted with corn and three different fertilizer treatments were used among those subplots. The raw RS images were geometrically corrected, resampled to 10cm resolution, removed soil background and calibrated to real reflectance. The RS images from two growing seasons were studied and 10 different vegetation indices were derived from each day's image. The result from the image processing demonstrated that the vegetation indices have temporal effects. To achieve high quality RS data, one has to utilize the right indices and capture the images at the right time in the growing season. Maximum variations among the image data set are within the V6-V10 stages, which indicated that these stages are the best period to identify the spatial variability caused by the nutrient stress in the corn field. The derived vegetation indices were also used to build yield prediction models via the linear regression method. At that point, all of the yield prediction models were evaluated by comparing the R2-value and the best index model from each day's image was picked based on the highest R 2-value. It was shown that the green normalized difference vegetation (GNDVI) based model is more sensitive to yield prediction than other indices-based models. During the VT-R4 stages, the GNDVI based models were able to explain more than 95% potential corn yield

  3. The Role of Crop Systems Simulation in Agriculture and Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...

  4. Definition of zones with different levels of productivity within an agricultural field using fuzzy modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for the definition of zones with different levels of productivity is based on fuzzy indicator model. Fuzzy indicator model for identification of zones with different levels of productivit...

  5. Environmental modeling and exposure assessment of sediment-associated pyrethroids in an agricultural watershed.

    PubMed

    Luo, Yuzhou; Zhang, Minghua

    2011-01-05

    Synthetic pyrethroid insecticides have generated public concerns due to their increasing use and potential effects on aquatic ecosystems. A modeling system was developed in this study for simulating the transport processes and associated sediment toxicity of pyrethroids at coupled field/watershed scales. The model was tested in the Orestimba Creek watershed, an agriculturally intensive area in California' Central Valley. Model predictions were satisfactory when compared with measured suspended solid concentration (R(2) = 0.536), pyrethroid toxic unit (0.576), and cumulative mortality of Hyalella azteca (0.570). The results indicated that sediment toxicity in the study area was strongly related to the concentration of pyrethroids in bed sediment. Bifenthrin was identified as the dominant contributor to the sediment toxicity in recent years, accounting for 50-85% of predicted toxicity units. In addition, more than 90% of the variation on the annual maximum toxic unit of pyrethroids was attributed to precipitation and prior application of bifenthrin in the late irrigation season. As one of the first studies simulating the dynamics and spatial variability of pyrethroids in fields and instreams, the modeling results provided useful information on new policies to be considered with respect to pyrethroid regulation. This study suggested two potential measures to efficiently reduce sediment toxicity by pyrethroids in the study area: [1] limiting bifenthrin use immediately before rainfall season; and [2] implementing conservation practices to retain soil on cropland.

  6. Modelling of a downdraft gasifier fed by agricultural residues

    SciTech Connect

    Antonopoulos, I.-S.; Karagiannidis, A.; Gkouletsos, A.; Perkoulidis, G.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Development of software for downdraft gasification simulation. Black-Right-Pointing-Pointer Prediction of the syngas concentration. Black-Right-Pointing-Pointer Prediction of the syngas heating value. Black-Right-Pointing-Pointer Investigation of the temperature effect in reduction zone in syngas concentration. - Abstract: A non-stoichiometric model for a downdraft gasifier was developed in order to simulate the overall gasification process. Mass and energy balances of the gasifier were calculated and the composition of produced syngas was predicted. The capacity of the modeled gasifier was assumed to be 0.5 MW, with an Equivalence Ratio (EQ) of 0.45. The model incorporates the chemical reactions and species involved, while it starts by selecting all species containing C, H, and O, or any other dominant elements. Olive wood, miscanthus and cardoon were tested in the formulated model for a temperature range of 800-1200 Degree-Sign C, in order to examine the syngas composition and the moisture impact on the supplied fuel. Model results were then used in order to design an olive wood gasification reactor.

  7. The Agriculture Model Intercomparison and Improvement Project (AgMIP) (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2010-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and world agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Historical period results will spur model improvement and interaction among major modeling groups, while future period results will lead directly to tests of adaptation and mitigation strategies across a range of scales. AgMIP will consist of a multi-scale impact assessment utilizing the latest methods for climate and agricultural scenario generation. Scenarios and modeling protocols will be distributed on the web, and multi-model results will be collated and analyzed to ensure the widest possible coverage of agricultural crops and regions. AgMIP will place regional changes in agricultural production in a global context that reflects new trading opportunities, imbalances, and shortages in world markets resulting from climate change and other driving forces for food supply. Such projections are essential inputs from the Vulnerability, Impacts, and Adaptation (VIA) research community to the Intergovernmental Panel on Climate Change Fifth Assessment (AR5), now underway, and the UN Framework Convention on Climate Change. They will set the context for local-scale vulnerability and adaptation studies, supply test scenarios for national-scale development of trade policy instruments, provide critical information on changing supply and demand for water resources, and elucidate interactive effects of climate change and land use change. AgMIP will not only provide crucially-needed new global estimates of how climate change will affect food supply and hunger in the

  8. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; Asseng, S.; Basso, B.; Ewert, F.; Wallach, D.; Baigorria, G.; Winter, J. M.

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with

  9. Modeling pesticide transfer during flood events in an agricultural catchment using the SWAT model

    NASA Astrophysics Data System (ADS)

    Boithias, Laurie; Taghavi, Lobat; Oeurng, Chantha; Polard, Thierry; Ferrant, Sylvain; Jean, Séverine; Probst, Jean-Luc; Merlina, Georges; Sauvage, Sabine; Sánchez-Pérez, José-Miguel

    2010-05-01

    Pesticide monitoring, understanding of pesticide fate and pollution quantification have become major concerns in Europe since the introduction of the Water Framework Directive in 2000. Pesticides can be transported from agricultural catchments to stream networks in either the soluble or particulate phase, depending on their physicochemical properties (solubility, partition coefficient). Quick flood events therefore have a major impact on molecule transport. This study - part of the EU AguaFlash project (http://www.aguaflash-sudoe.eu/) - examined pesticide load dynamics in both the soluble and particulate phases and attempted to quantify their fluxes from various contributing compartments (surface runoff and subsurface and groundwater flows). The hydrological and water quality model SWAT (Soil and Water Assessment Tool, 2005 version) was tested at daily time step to assess the fate and transport of two pesticides with a wide range of solubility (Trifluralin and Metolachlor). SWAT was applied on an 1100 km² agricultural catchment (Save catchment, South-west France). The model was calibrated on discharge, suspended sediment, nitrate and pesticide data collected at the catchment outlet from March 2008 to March 2009, with weekly measurements during base flow and daily during flood events. Agricultural management practices (crop rotation, planting date, fertilizers and pesticide application) were entered into the model in a dominant simplifying land use approach (one rotation by sub-basin, same management operation dates throughout the catchment). Calibration for discharge fluctuations and suspended sediment and nitrate concentration variations was satisfactory. SWAT was able to accurately reproduce observed pesticide concentrations during base flows and peaks during flood events, despite the ‘dominant land use' approximation being used and management practices inputs being averaged for the whole catchment. During the simulation period, simulated preferred pathway for

  10. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    NASA Technical Reports Server (NTRS)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-01-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  11. Photovoltaic applications definition and photovoltaic system definition study in the agricultural sector. Volume II. Technical results

    SciTech Connect

    Mengel, R.W.; Nadolski, T.P.; Sparks, D.C.; Young, S.K.; Yingst, A.

    1980-05-01

    This volume describes the technical results of the study of potential photovoltaic (P/V) applications in US agriculture. The results presented address all technical aspects of the program and include a summary of agricultural energy consumption. The objectives of the technical effort reported have been to: (1) identify and characterize agricultural energy demands that can effectively use P/V power systems; (2) develop effective P/V system designs for the four most promising applications; (3) determine performance and cost-estimates for the designs; and (4) recommend systems for early test and demonstration and critical issues requiring further systems studies. The farms chosen for conceptual design include: (1) poultry layer farm, (2) hog production farm, (3) beef feedlot, and (4) year-round vegetable farm. (WHK)

  12. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    NASA Astrophysics Data System (ADS)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  13. Modeling of geothermal systems

    SciTech Connect

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1985-03-01

    During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

  14. Phytopathogenic bacteria in the system of modern agriculture.

    PubMed

    Patyka, V P; Pasichnyk, L A

    2014-01-01

    The stages of studying bacterial diseases of crops and weeds at various farming systems have been characterized, biological properties have been investigated and pathogens identified using traditional and modern molecular genetic methods of research.

  15. Climate Forcing Datasets for Agricultural Modeling: Merged Products for Gap-Filling and Historical Climate Series Estimation

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Goldberg, Richard; Chryssanthacopoulos, James

    2014-01-01

    The AgMERRA and AgCFSR climate forcing datasets provide daily, high-resolution, continuous, meteorological series over the 1980-2010 period designed for applications examining the agricultural impacts of climate variability and climate change. These datasets combine daily resolution data from retrospective analyses (the Modern-Era Retrospective Analysis for Research and Applications, MERRA, and the Climate Forecast System Reanalysis, CFSR) with in situ and remotely-sensed observational datasets for temperature, precipitation, and solar radiation, leading to substantial reductions in bias in comparison to a network of 2324 agricultural-region stations from the Hadley Integrated Surface Dataset (HadISD). Results compare favorably against the original reanalyses as well as the leading climate forcing datasets (Princeton, WFD, WFD-EI, and GRASP), and AgMERRA distinguishes itself with substantially improved representation of daily precipitation distributions and extreme events owing to its use of the MERRA-Land dataset. These datasets also peg relative humidity to the maximum temperature time of day, allowing for more accurate representation of the diurnal cycle of near-surface moisture in agricultural models. AgMERRA and AgCFSR enable a number of ongoing investigations in the Agricultural Model Intercomparison and Improvement Project (AgMIP) and related research networks, and may be used to fill gaps in historical observations as well as a basis for the generation of future climate scenarios.

  16. Canadian economic and emissions model for agriculture, C.E.E.M.A., version 1.0, report 1: Model description

    SciTech Connect

    Kulshreshtha, S.N.

    1999-09-01

    This is one of three technical reports which document an integrated agro-ecological economic modelling system that can be used to simultaneously assess the economic and the greenhouse gas emission impacts of agricultural policies at the regional and national levels. After an introduction on the background to the model and on the importance of agricultural emissions of greenhouse gases, chapter 2 outlines a conceptual basis for developing a sub-model for emission of greenhouse gases. It includes the conceptual linkages between agricultural production activities and the nature of greenhouse gas emissions. An overview of the sub-model and considerations involved in its development are provided in chapter 3. Chapter 4 follows with a description of the methodology adopted in the estimation of various emission coefficients for crop and livestock production activities. Results of a baseline scenario, agricultural production in 1994 as estimated in the CRAM model, are shown in chapter 5, and results of two alternative scenarios are presented in chapter 6. The final chapter summarizes the report and discusses areas of further research.

  17. Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree

    SciTech Connect

    Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal; Blanc, Elodie; Calvin, Katherine V.; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Lotze-Campen, Hermann; von Lampe, Martin; Mason d'Croz, Daniel; van Meijl, Hans; Mueller, C.; Reilly, J. M.; Robertson, Richard; Sands, Ronald; Schmitz, Christoph; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Willenbockel, Dirk

    2014-01-01

    Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.

  18. System Advisor Model

    2010-03-01

    The System Advisor Model (SAM) is a performance and economic model designed to facilitate decision making for people involved in the renewable energy industry, ranging from project managers and engineers to incentive program designers, technology developers, and researchers.

  19. New MOEMS based systems appropriate for spectroscopic investigations on agricultural growth and perishable food conditions

    NASA Astrophysics Data System (ADS)

    Grueger, Heinrich; Schenk, Harald; Heberer, Andreas; Zimmer, Fabian; Scherff, Werner; Kenda, Andreas; Frank, Albert

    2005-11-01

    Further optimization of the agricultural growth process and quality control of perishable food which can be fruits and vegetables as well as every kind of meat or milk product requires new approaches for the sensitive front end. One possibility is reflectance or fluorescence spectroscopy in a wide wavelength range. By now broad usage is hindered by costs, size and performance of existing systems. MOEMS scanning gratings for spectrometers and translational mirrors for Fourier Transform spectroscopy enable small robust systems working in a range from 200nm to 5μm. Both types use digital signal processors (DSPs) capable to compute the spectra and execute complex evaluation and decision algorithms. The MOEMS chips are realized by anisotropic etching of a silicon on insulator (SOI) substrate. First the backside silicon and buried oxide is removed by a wet process then the front side structure is realized by dry etching. Depending on the bearing springs a silicon plate up to 3 x 3 mm2 wide and typically 30μm thick can be driven resonantly to rotational or translational movement. Combined with additional optical components and appropriate detectors handheld Czerny-Turner or Fourier Transform spectrometers have been realized and tested. Results of first measurements of reflection spectroscopy on model substances have been performed with both system types in the NIR range. Measurements on real objects like tomatoes or apples are intended for a wider wavelength range. Future systems may contain displays and light sources as well as data storage cards or additional interfaces.

  20. Modelling animal waste pathogen transport from agricultural land to streams

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod K.; Soupir, Michelle L.; Ikenberry, Charles

    2014-03-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water.

  1. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.

  2. The Agricultural Model Intercomparison and Improvement Project (AgMIP) Town Hall

    NASA Technical Reports Server (NTRS)

    Ruane, Alex; Rosenzweig, Cynthia; Kyle, Page; Basso, Bruno; Winter, Jonathan; Asseng, Senthold

    2015-01-01

    AgMIP (www.agmip.org) is an international community of climate, crop, livestock, economics, and IT experts working to further the development and application of multi-model, multi-scale, multi-disciplinary agricultural models that can inform policy and decision makers around the world. This meeting will engage the AGU community by providing a brief overview of AgMIP, in particular its new plans for a Coordinated Global and Regional Assessment of climate change impacts on agriculture and food security for AR6. This Town Hall will help identify opportunities for participants to become involved in AgMIP and its 30+ activities.

  3. Aerial applications dispersal systems control requirements study. [agriculture

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.

    1980-01-01

    Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.

  4. Inorganic fertilizer and poultry-litter manure amendments alter the soil microbial communities in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of agricultural land management practices on soil prokaryotic diversity are not well described. We investigated three land usage systems (row cropped, ungrazed pasture, and cattle-grazed pasture) and two fertilizer systems (inorganic fertilizer or IF and poultry-litter or PL) and compare...

  5. Multispectral Imaging Systems for Airborne Remote Sensing to Support Agricultural Production Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing has shown promise as a tool for managing agricultural application and production. Earth-observing satellite systems have an advantage for large-scale analysis at regional levels but are limited in spatial resolution. High-resolution satellite systems have been available in recent year...

  6. The Novel Use of Ochre For The Removal and Recovery of Phosphate In Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Sweetman, R.; Batty, L.; Younger, P.

    If agriculture is taken to be an industry, then agricultural runoff can be seen as its waste product. As such we should seek to negate adverse agricultural losses of nutrients and sediments in a proactive way. This can be described as earth systems engineering. Sustainable nutrient loadings, buffer strips, wetlands and other buffering features are beneficial, however, practical agro-economic realities mean that 'intense' systems will still contribute substantial adverse losses. Here we show just one example, of many, that actively seek to negate phosphate losses whilst minimising the impact on farm economics. We will demonstrate that Ochre has between 70-90% phosphate stripping efficiency when carefully designed. Ochre is a by product of minewater treatment processes, and is now being used in low technology sewage treatment plants and reed beds. However, it is equally important to strip agricultural sources of phosphate. A series of experiments will be shown that discuss potential Ochre delivery and recovery systems relevant to agriculture. The basis of the design is to target nutrient rich flows in land drains, low order channels and to augment buffer strips and wetland systems.

  7. Agroforestry Systems in Zimbabwe: Promoting Trees in Agriculture.

    ERIC Educational Resources Information Center

    Vukasin, Helen L., Ed.

    Agroforestry has been defined as a sustainable crop management system which combines the production of forest crops with field crops. In June, 1987, an agroforestry workshop took place in Nyanga, Manicaland, Zimbabwe. This document was prepared to share the information presented at this workshop with other non-government organizations around the…

  8. Public Sector Agricultural Extension System Reform and the Challenges Ahead

    ERIC Educational Resources Information Center

    Rivera, William M.

    2011-01-01

    This paper is organized into two main sections. The first section examines extension as an engine for innovation and reviews the numerous priorities confronting extension systems. Section two highlights the current knowledge imperative and the critical connection of extension to post-secondary higher education and training, organizational…

  9. Integrating Digital Response Systems within a Diversity of Agricultural Audiences

    ERIC Educational Resources Information Center

    Sciarappa, William; Quinn, Vivian

    2014-01-01

    Extension educators have new computer-assisted tools as audience response systems (clickers) for increasing educational effectiveness and improving assessment by facilitating client input. From 2010-2012, 26 sessions involving 1093 participants in six diverse client categories demonstrated wide audience acceptance and suitability of clickers in…

  10. The Philippine System of Education: Some Implications to Agricultural Education.

    ERIC Educational Resources Information Center

    Mancebo, Samuel T.

    The Philippine educational system views education as a human development resource conversion process that can maximize the realization of the national developmental goals. Students comprise the principal input of this manpower resource conversion process. The output is individuals who can find useful and productive employment. Two broad strategies…

  11. Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, S. X.; Ran, L. M.; Pleim, J. E.; Cooter, E.; Bash, J. O.; Benson, V.; Hao, J. M.

    2015-06-01

    Atmospheric ammonia (NH3) plays an important role in atmospheric aerosol chemistry. China is one of the largest NH3 emitting countries with the majority of NH3 emissions coming from agricultural practices, such as fertilizer application and livestock production. The current NH3 emission estimates in China are mainly based on pre-defined emission factors that lack temporal or spatial details, which are needed to accurately predict NH3 emissions. This study provides the first online estimate of NH3 emissions from agricultural fertilizer application in China, using an agricultural fertilizer modeling system which couples a regional air quality model (the Community Multi-scale Air Quality model, or CMAQ) and an agro-ecosystem model (the Environmental Policy Integrated Climate model, or EPIC). This method improves the spatial and temporal resolution of NH3 emissions from this sector. We combined the cropland area data of 14 crops from 2710 counties with the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data to determine the crop distribution. The fertilizer application rates and methods for different crops were collected at provincial or agricultural region levels. The EPIC outputs of daily fertilizer application and soil characteristics were input into the CMAQ model and the hourly NH3 emissions were calculated online with CMAQ running. The estimated agricultural fertilizer NH3 emissions in this study were approximately 3 Tg in 2011. The regions with the highest modeled emission rates are located in the North China Plain. Seasonally, peak ammonia emissions occur from April to July. Compared with previous researches, this study considers an increased number of influencing factors, such as meteorological fields, soil and fertilizer application, and provides improved NH3 emissions with higher spatial and temporal resolution.

  12. Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, S. X.; Ran, L. M.; Pleim, J. E.; Cooter, E.; Bash, J. O.; Benson, V.; Hao, J. M.

    2015-01-01

    Atmospheric ammonia (NH3) plays an important role in atmospheric chemistry. China is one of the largest NH3 emitting countries with the majority of NH3 emissions coming from the agricultural practices, such as fertilizer application and livestock. The current NH3 emission estimates in China are mainly based on pre-defined emission factors that lack the temporal or spatial details, which are needed to accurately predict NH3 emissions. In this study, we estimate, for the first time, the NH3 emission from the agricultural fertilizer application in China online using an agricultural fertilizer modeling system coupling a regional air quality model (the Community Multi-Scale Air Quality model, CMAQ) and an agro-ecosystem model (the Environmental Policy Integrated Climate model, EPIC), which improves the spatial and temporal resolution of NH3 emission from this sector. Cropland area data of 14 crops from 2710 counties and the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data are combined to determine the crop distribution. The fertilizer application rate and method for different crop are collected at provincial or agriculture-regional level. The EPIC outputs of daily fertilizer application and soil characteristics are inputed into the CMAQ model and the hourly NH3 emission are calculated online with CMAQ running. The estimated agricultural fertilizer NH3 emission in this study is about 3 Tg in 2011. The regions with the highest modeled emission rates are located in the North China Plain. Seasonally, the peak ammonia emissions occur from April to July.Compared with previous researches, this method considers more influencing factors, such as meteorological fields, soil and the fertilizer application, and provides improved NH3 emission with higher spatial and temporal resolution.

  13. 12 CFR 617.7610 - What should the System institution do when it decides to sell acquired agricultural real estate?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... decides to sell acquired agricultural real estate? 617.7610 Section 617.7610 Banks and Banking FARM CREDIT... institution do when it decides to sell acquired agricultural real estate? (a) Notify the previous owner, (1) Within 15 days of the System institution's decision to sell acquired agricultural real estate, it...

  14. Influence of agricultural management on nitrous oxide emissions: comparison of different modelling approaches

    NASA Astrophysics Data System (ADS)

    Klier, C.; Gayler, S.; Haberbosch, C.; Ruser, R.; Stenger, R.; Flessa, H.; Priessack, E.

    2010-05-01

    Intensive agricultural land use is considered to be the major source of the anthropogenic contribution to the increase in atmospheric nitrous oxide (N2O) concentration during the last decades. Mathematical models help to understand interacting processes in the nitrogen cycle and state variables affecting N2O emissions. Most of the simulation models which have been used to estimate N2O emissions from soils under field conditions represent the underlying processes of denitrification or nitrification by first order rates without modelling the gaseous N2O transport process. In the first part of the study we compare two modelling approaches of the modular nitrogen modelling system Expert-N for their ability to describe and quantify the seasonal variations of N2O fluxes in a potato-cropped soil. Model 1 assumes a fixed N2O:N2 ratio for N2O production and neglects the transport of N2O in the soil profile, Model 2 explicitly considers a N2O transport and assumes a dynamic reduction of N2O to N2. Data for model evaluation arise from an experiment, where N2O fluxes were monitored over the vegetation period, using a closed chamber technique. Experimental results showed a variation of N and O2 supplies between the ridge soil and inter-row soil of the potato plantation and a corresponding impact on N2O release to atmosphere. Thus, in the second part of the study we applied a multiregion modelling approach to get a spatially explicit modelling tool. In the multiregion approach a heterogeneous soil hydraulic regime is subdivided into finite, multiple, hydraulically interacting regions in the form of soil columns. Modelling results showed for the first part of the study that both modelling approaches were able to describe the observed seasonal dynamics of N2O emissions and events of high N2O emissions due to increased denitrification activity after heavy precipitation and fertiliser application. Extremely high emission rates from the inter-row soil of the potato plantation were

  15. Energy Absorbing Seat System for an Agricultural Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.

  16. MLS: Airplane system modeling

    NASA Technical Reports Server (NTRS)

    Thompson, A. D.; Stapleton, B. P.; Walen, D. B.; Rieder, P. F.; Moss, D. G.

    1981-01-01

    Analysis, modeling, and simulations were conducted as part of a multiyear investigation of the more important airplane-system-related items of the microwave landing system (MLS). Particular emphasis was placed upon the airplane RF system, including the antenna radiation distribution, the cabling options from the antenna to the receiver, and the overall impact of the airborne system gains and losses upon the direct-path signal structure. In addition, effort was expended toward determining the impact of the MLS upon the airplane flight management system and developing the initial stages of a fast-time MLS automatic control system simulation model. Results ot these studies are presented.

  17. AgMIP's Transdisciplinary Agricultural Systems Approach to Regional Integrated Assessment of Climate Impacts, Vulnerability, and Adaptation

    NASA Technical Reports Server (NTRS)

    Antle, John M.; Valdivia, Roberto O.; Boote, Kenneth J.; Janssen, Sander; Jones, James W.; Porter, Cheryl H.; Rosenzweig, Cynthia; Ruane, Alexander C.; Thorburn, Peter J.

    2015-01-01

    This chapter describes methods developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) to implement a transdisciplinary, systems-based approach for regional-scale (local to national) integrated assessment of agricultural systems under future climate, biophysical, and socio-economic conditions. These methods were used by the AgMIP regional research teams in Sub-Saharan Africa and South Asia to implement the analyses reported in their respective chapters of this book. Additional technical details are provided in Appendix 1.The principal goal that motivates AgMIP's regional integrated assessment (RIA) methodology is to provide scientifically rigorous information needed to support improved decision-making by various stakeholders, ranging from local to national and international non-governmental and governmental organizations.

  18. CROPCAST - A Review Of An Existing Remote Sensor-Based Agricultural Information System With A View Toward Future Remote Sensor Applications

    NASA Astrophysics Data System (ADS)

    Merritt, Earl S.; Heitkemper, Lawrence; Marcus, Kevin

    1984-08-01

    Global agricultural production information is the key to many economic decisions. National level planners use it to plan imports or to assess balance of payments, farmers use it to make planting decisions, lending and aid institutions use it to plan loans and aid needs, commodity buyers use it to plan purchases. Traditional information systems are slow, offer little confidence and may be inaccurate; systems based on the use of space remote sensor systems are, on the other hand, fast, provide good confidence and are demonstrating improving accuracies. The system structure for remote sensor assisted agricultural information systems is centered on a geobased structure, mapped outputs pinpoint locations where plant stress is impacting yields. Meteorological satellite assessments pinpoint where rainfall and significant solar radiation is impacting the plant environment. The CROPCAST Agricultural Information System offers an opportunity to examine an operating system which contains characteristics essential to all future systems. CROPCAST's use of a grid/cell geobased structure provides a mechanism to effectively use remote-sensor derived data of all types, i.e., Landsats, metsats, aircraft and human eyeball derived data. Predictive models operating in CROPCAST provide updated agricultural assessments in the time intervals when no Landsat or other field observation data are available. Economic models provide the opportunity to merge CROPCAST diagnostic and predictive output with the market place at both the cash and futures level. This presentation will examine the CROPCAST structure as a model for future uses of remote sensing data from civil remote sensing systems in assessing global agricultural production. A review of the future direction to be taken by the CROPCAST System will be included to identify new avenues for remote sensor-based agricultural information system growth over the coming decade of change in remote sensor systems.

  19. Modeling the Heterogeneous Effects of GHG Mitigation Policies on Global Agriculture and Forestry

    NASA Astrophysics Data System (ADS)

    Golub, A.; Henderson, B.; Hertel, T. W.; Rose, S. K.; Sohngen, B.

    2010-12-01

    Agriculture and forestry are envisioned as potentially key sectors for climate change mitigation policy, yet the depth of analysis of mitigation options and their economic consequences remains remarkably shallow in comparison to that for industrial mitigation. Farming and land use change - much of it induced by agriculture -account for one-third of global greenhouse gas (GHG) emissions. Any serious attempt to curtail these emissions will involve changes in the way farming is conducted, as well as placing limits on agricultural expansion into areas currently under more carbon-intensive land cover. However, agriculture and forestry are extremely heterogeneous, both in the technology and intensity of production, as well as in the GHG emissions intensity of these activities. And these differences, in turn, give rise to significant changes in the distribution of agricultural production, trade and consumption in the wake of mitigation policies. This paper assesses such distributional impacts via a global economic analysis undertaken with a modified version of the GTAP model. The paper builds on a global general equilibrium GTAP-AEZ-GHG model (Golub et al., 2009). This is a unified modeling framework that links the agricultural, forestry, food processing and other sectors through land, and other factor markets and international trade, and incorporates different land-types, land uses and related CO2 and non-CO2 GHG emissions and sequestration. The economic data underlying this work is the global GTAP data base aggregated up to 19 regions and 29 sectors. The model incorporates mitigation cost curves for different regions and sectors based on information from the US-EPA. The forestry component of the model is calibrated to the results of the state of the art partial equilibrium global forestry model of Sohngen and Mendelson (2007). Forest carbon sequestration at both the extensive and intensive margins are modeled separately to better isolate land competition between

  20. Integrated Workforce Modeling System

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.

    2000-01-01

    There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.

  1. A steady state model of agricultural waste pyrolysis: A mini review.

    PubMed

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types. PMID:27281226

  2. Development of a Global Agricultural Hotspot Detection and Early Warning System

    NASA Astrophysics Data System (ADS)

    Lemoine, G.; Rembold, F.; Urbano, F.; Csak, G.

    2015-12-01

    The number of web based platforms for crop monitoring has grown rapidly over the last years and anomaly maps and time profiles of remote sensing derived indicators can be accessed online thanks to a number of web based portals. However, while these systems make available a large amount of crop monitoring data to the agriculture and food security analysts, there is no global platform which provides agricultural production hotspot warning in a highly automatic and timely manner. Therefore a web based system providing timely warning evidence as maps and short narratives is currently under development by the Joint Research Centre. The system (called "HotSpot Detection System of Agriculture Production Anomalies", HSDS) will focus on water limited agricultural systems worldwide. The automatic analysis of relevant meteorological and vegetation indicators at selected administrative units (Gaul 1 level) will trigger warning messages for the areas where anomalous conditions are observed. The level of warning (ranging from "watch" to "alert") will depend on the nature and number of indicators for which an anomaly is detected. Information regarding the extent of the agricultural areas concerned by the anomaly and the progress of the agricultural season will complement the warning label. In addition, we are testing supplementary detailed information from other sources for the areas triggering a warning. These regard the automatic web-based and food security-tailored analysis of media (using the JRC Media Monitor semantic search engine) and the automatic detection of active crop area using Sentinel 1, upcoming Sentinel-2 and Landsat 8 imagery processed in Google Earth Engine. The basic processing will be fully automated and updated every 10 days exploiting low resolution rainfall estimates and satellite vegetation indices. Maps, trend graphs and statistics accompanied by short narratives edited by a team of crop monitoring experts, will be made available on the website on a

  3. The Role of Aerospace Technology in Agriculture. The 1977 Summer Faculty Fellowship Program in Engineering Systems Design

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.

  4. [Model-based biofuels system analysis: a review].

    PubMed

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  5. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    NASA Astrophysics Data System (ADS)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  6. The Study on "Academic Game"-Oriented English Course Model for Postgraduates in Agricultural Universities

    ERIC Educational Resources Information Center

    Xia, Xinrong

    2010-01-01

    Based on the analysis of the questionnaire survey on learning motivation and learning needs of postgraduates and their demands and suggestions on English teaching, the paper makes a beneficial exploration on English course model for postgraduates in agricultural universities. Under the guidance of academic game theory, the "language skills+…

  7. Emergence of the chicken as a model organism: implications for agriculture and biology.

    PubMed

    Burt, D W

    2007-07-01

    Many of the features of the chicken make it an ideal model organism for phylogenetics and embryology, along with applications in agriculture and medicine. The availability of new tools such as whole genome gene expression arrays and single nucleotide polymorphism panels, coupled with the genome sequence, will enhance this position. These advances are reviewed and their implications are discussed.

  8. Design and implementation of a GPS guidance system for agricultural tractors using augmented reality technology.

    PubMed

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor's position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  9. Design and Implementation of a GPS Guidance System for Agricultural Tractors Using Augmented Reality Technology

    PubMed Central

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor’s position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems. PMID:22163479

  10. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  11. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  12. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.

    PubMed

    Wu, Yiping; Liu, Shuguang

    2012-09-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  13. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.

    PubMed

    Wu, Yiping; Liu, Shuguang

    2012-09-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices. PMID:22790209

  14. Uncertainty and sensitivity assessments of an agricultural-hydrological model (RZWQM2) using the GLUE method

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zhang, Xiaolin; Huo, Zailin; Feng, Shaoyuan; Huang, Guanhua; Mao, Xiaomin

    2016-03-01

    Quantitatively ascertaining and analyzing the effects of model uncertainty on model reliability is a focal point for agricultural-hydrological models due to more uncertainties of inputs and processes. In this study, the generalized likelihood uncertainty estimation (GLUE) method with Latin hypercube sampling (LHS) was used to evaluate the uncertainty of the RZWQM-DSSAT (RZWQM2) model outputs responses and the sensitivity of 25 parameters related to soil properties, nutrient transport and crop genetics. To avoid the one-sided risk of model prediction caused by using a single calibration criterion, the combined likelihood (CL) function integrated information concerning water, nitrogen, and crop production was introduced in GLUE analysis for the predictions of the following four model output responses: the total amount of water content (T-SWC) and the nitrate nitrogen (T-NIT) within the 1-m soil profile, the seed yields of waxy maize (Y-Maize) and winter wheat (Y-Wheat). In the process of evaluating RZWQM2, measurements and meteorological data were obtained from a field experiment that involved a winter wheat and waxy maize crop rotation system conducted from 2003 to 2004 in southern Beijing. The calibration and validation results indicated that RZWQM2 model can be used to simulate the crop growth and water-nitrogen migration and transformation in wheat-maize crop rotation planting system. The results of uncertainty analysis using of GLUE method showed T-NIT was sensitive to parameters relative to nitrification coefficient, maize growth characteristics on seedling period, wheat vernalization period, and wheat photoperiod. Parameters on soil saturated hydraulic conductivity, nitrogen nitrification and denitrification, and urea hydrolysis played an important role in crop yield component. The prediction errors for RZWQM2 outputs with CL function were relatively lower and uniform compared with other likelihood functions composed of individual calibration criterion. This

  15. Modeling nitrous oxide emissions from irrigated agriculture: testing DayCent with high-frequency measurements.

    PubMed

    Scheer, Clemens; Del Grosso, Stephen J; Parton, William J; Rowlings, David W; Grace, Peter R

    2014-04-01

    A unique high temporal frequency data set from an irrigated cotton-wheat rotation was used to test the agroecosystem model DayCent to simulate daily N20 emissions from subtropical vertisols under different irrigation intensities. DayCent was able to simulate the effect of different irrigation intensities on N20 fluxes and yield, although it tended to overestimate seasonal fluxes during the cotton season. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N20 fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N20 emission from irrigated cropping systems. A 25-year scenario analysis indicated that N20 losses from irrigated cotton-wheat rotations on black vertisols in Australia can be substantially reduced by an optimized fertilizer and irrigation management system (i.e., frequent irrigation, avoidance of excessive fertilizer application), while sustaining maximum yield potentials. PMID:24834738

  16. Model-Based Systems

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    2007-01-01

    Engineers, who design systems using text specification documents, focus their work upon the completed system to meet Performance, time and budget goals. Consistency and integrity is difficult to maintain within text documents for a single complex system and more difficult to maintain as several systems are combined into higher-level systems, are maintained over decades, and evolve technically and in performance through updates. This system design approach frequently results in major changes during the system integration and test phase, and in time and budget overruns. Engineers who build system specification documents within a model-based systems environment go a step further and aggregate all of the data. They interrelate all of the data to insure consistency and integrity. After the model is constructed, the various system specification documents are prepared, all from the same database. The consistency and integrity of the model is assured, therefore the consistency and integrity of the various specification documents is insured. This article attempts to define model-based systems relative to such an environment. The intent is to expose the complexity of the enabling problem by outlining what is needed, why it is needed and how needs are being addressed by international standards writing teams.

  17. Validating modeled soil moisture with in-situ data for agricultural drought monitoring in West Africa

    NASA Astrophysics Data System (ADS)

    McNally, A.; Yatheendradas, S.; Jayanthi, H.; Funk, C. C.; Peters-Lidard, C. D.

    2011-12-01

    The declaration of famine in Somalia on July 21, 2011 highlights the need for regional hydroclimate analysis at a scale that is relevant for agropastoral drought monitoring. A particularly critical and robust component of such a drought monitoring system is a land surface model (LSM). We are currently enhancing the Famine Early Warning Systems Network (FEWS NET) monitoring activities by configuring a custom instance of NASA's Land Information System (LIS) called the FEWS NET Land Data Assimilation System (FLDAS). Using the LIS Noah LSM, in-situ measurements, and remotely sensed data, we focus on the following question: How can Noah be best parameterized to accurately simulate hydroclimate variables associated with crop performance? Parameter value testing and validation is done by comparing modeled soil moisture against fortuitously available in-situ soil moisture observations in the West Africa. Direct testing and application of the FLDAS over African agropastoral locations is subject to some issues: [1] In many regions that are vulnerable to food insecurity ground based measurements of precipitation, evapotranspiration and soil moisture are sparse or non-existent, [2] standard landcover classes (e.g., the University of Maryland 5 km dataset), do not include representations of specific agricultural crops with relevant parameter values, and phenologies representing their growth stages from the planting date and [3] physically based land surface models and remote sensing rain data might still need to be calibrated or bias-corrected for the regions of interest. This research aims to address these issues by focusing on sites in the West African countries of Mali, Niger, and Benin where in-situ rainfall and soil moisture measurements are available from the African Monsoon Multidisciplinary Analysis (AMMA). Preliminary results from model experiments over Southern Malawi, validated with Normalized Difference Vegetation Index (NDVI) and maize yield data, show that the

  18. The Impacts of Agricultural Land Use on Dissolved Organic Matter in a Dryland River System

    NASA Astrophysics Data System (ADS)

    Wise, J. L.; Bergamaschi, B. A.; Van Horn, D. J.; Diefendorf, A. F.

    2015-12-01

    Globally, expanding agriculture is significantly impacting aquatic nutrient cycles. In mesic systems, agriculture is a source of nitrogen and phosphorus and increases concentrations of structurally simple dissolved organic carbon (DOC). In contrast, recent studies suggest in dryland systems, where wastewater effluent is a primary nutrient source, agriculture is a nutrient sink—retaining nitrogen and phosphorous. Importantly, very little, is known about the influence of agriculture on DOC dynamics in dryland systems. To address this gap we used synoptic sampling, UV-absorbance, and fluorescence spectroscopy to elucidate source, character, and concentration of riverine and runoff DOC in a dryland agricultural system. Samples were collected along a 25 km stretch of the Rio Grande River in New Mexico (USA). The Rio Grande is an impoundment/irrigation-withdrawal controlled river that receives water from snowmelt, monsoonal storms, and wastewater effluent. During irrigation approximately 80% of the river's water is diverted into a manmade network where it waters crops and percolates through the soil before it enters a series of drains that return water to the river. Our preliminary characterization of the DOC reentering the river (DOCmean=3.23 mg/L, sd=0.81; SUVAmean=4.05, sd=1.37) indicates the agricultural pool is similar in concentration and aromaticity to riverine DOC (DOCmean= 3.10 mg/L, sd=1.17; SUVAmean= 4.64, sd=1.12). However, riverine organic matter is more terrestrially derived (FImean=1.68, sd=0.17) than organic matter in the drains (FImean=1.9, sd=0.24). Additionally, drains directly adjacent to actively irrigated fields show high concentrations (DOCmean=58.35; sd=0.91) of low aromaticity organic matter (SUVAmean=0.33; sd=0.11). We are continuing analysis throughout the irrigation season to further explore organic matter quality (traits such as bioavailability and freshness) and identify locations and processes of DOC transformation within the system

  19. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    PubMed

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability. PMID:23998504

  20. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    PubMed

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability.

  1. Identifying Hydrologic Processes in Agricultural Watersheds Using Precipitation-Runoff Models

    USGS Publications Warehouse

    Linard, Joshua I.; Wolock, David M.; Webb, Richard M.T.; Wieczorek, Michael E.

    2009-01-01

    Understanding the fate and transport of agricultural chemicals applied to agricultural fields will assist in designing the most effective strategies to prevent water-quality impairments. At a watershed scale, the processes controlling the fate and transport of agricultural chemicals are generally understood only conceptually. To examine the applicability of conceptual models to the processes actually occurring, two precipitation-runoff models - the Soil and Water Assessment Tool (SWAT) and the Water, Energy, and Biogeochemical Model (WEBMOD) - were applied in different agricultural settings of the contiguous United States. Each model, through different physical processes, simulated the transport of water to a stream from the surface, the unsaturated zone, and the saturated zone. Models were calibrated for watersheds in Maryland, Indiana, and Nebraska. The calibrated sets of input parameters for each model at each watershed are discussed, and the criteria used to validate the models are explained. The SWAT and WEBMOD model results at each watershed conformed to each other and to the processes identified in each watershed's conceptual hydrology. In Maryland the conceptual understanding of the hydrology indicated groundwater flow was the largest annual source of streamflow; the simulation results for the validation period confirm this. The dominant source of water to the Indiana watershed was thought to be tile drains. Although tile drains were not explicitly simulated in the SWAT model, a large component of streamflow was received from lateral flow, which could be attributed to tile drains. Being able to explicitly account for tile drains, WEBMOD indicated water from tile drains constituted most of the annual streamflow in the Indiana watershed. The Nebraska models indicated annual streamflow was composed primarily of perennial groundwater flow and infiltration-excess runoff, which conformed to the conceptual hydrology developed for that watershed. The hydrologic

  2. Multi- and hyperspectral UAV imaging system for forest and agriculture applications

    NASA Astrophysics Data System (ADS)

    Mäkynen, Jussi; Saari, Heikki; Holmlund, Christer; Mannila, Rami; Antila, Tapani

    2012-06-01

    VTT Technical Research Centre of Finland has developed a Fabry-Perot Interferometer (FPI) based hyperspectral imager compatible with light weight UAV (Unmanned Aerial Vehicle) platforms (SPIE Proc. 74741, 8186B2). The FPI based hyperspectral imager was used in a UAV imaging campaign for forest and agriculture tests during the summer 2011 (SPIE Proc. 81743). During these tests high spatial resolution Color-Infrared (CIR) images and hyperspectral images were recorded on separate flights. The spectral bands of the CIR camera were 500 - 580 nm for the green band, 580 - 700 nm for the red band and 700 - 1000 nm for the near infrared band. For the summer 2012 flight campaign a new hyperspectral imager is currently being developed. A custom made CIR camera will also be used. The system which includes both the high spatial resolution Color-Infrared camera and a light weight hyperspectral imager can provide all necessary data with just one UAV flight over the target area. The new UAV imaging system contains a 4 Megapixel CIR camera which is used for the generation of the digital surface models and CIR mosaics. The hyperspectral data can be recorded in the wavelength range 500 - 900 nm at a resolution of 10 - 30 nm at FWHM. The resolution can be selected from approximate values of 10, 15, 20 or 30 nm at FWHM.

  3. Evaluation of groundwater pollution risk (GPR) from agricultural activities using DRASTIC model and GIS

    NASA Astrophysics Data System (ADS)

    Mohd Ariffin, Sabrina; Zawawi, Mohamed Azwan Mohamed; Che Man, Hasfalina

    2016-06-01

    Groundwater Pollution risk (GPR) map which utilized groundwater quality is important in order to prevent the groundwater contaminant concentration due to the agricultural activities. DRASTIC model and GIS application are two important tools that had been used for accessing and predicting the quality of groundwater. These supplementary tools are calculating, visualizing, and presenting the GPR by using DRASTIC index for each hydrogeologic factor through ArcGIS software. This study was covered approximately Selangor basin area where the GPR has been defined. There are four categories of agricultural activities in the Selangor basin which are animal husbandary areas, horticultural lands, short term crops and tree, palm and other permanent crops. The map showed that the “low” zones of GPR occupied 56% of the east side of the Selangor basin, 34% of the west side of the Selangor basin exposed to “medium” zones of GPR and the “high” zones of GPR covered 10% at the north side and the south to the west side of the Selangor basin. As a particular, for agricultural activities which is 52% of Selangor basin area, the “low”, ‘’medium” and “high” zones of GPR was occupied as 42%, 43% and 15% respectively. Based on four categories of agricultural landuse, GPR map validated by nitrate distribution map, shows that the 99% of the variation in nitrate distribution zones are explained by GPR zones. In conclusion, groundwater pollution risk was affected by agricultural activities.

  4. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  5. GASOLINE TRACTOR ENGINE SYSTEMS. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 14.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY STUDENTS FOR AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT UNDERSTANDING OF THE OPERATION, COMPONENTS, AND FUNCTIONS OF VARIOUS GASOLINE TRACTOR ENGINE SYSTEMS. IT WAS DEVELOPED BY A…

  6. An Evaluation of a Welding Fumes Exhaust System. Agricultural Experiment Station Research Report 284.

    ERIC Educational Resources Information Center

    Jacobs, C. O.

    A study evaluated the feasibility of introducing unheated outside air into the airstream of a cross-flow welding exhaust system to reduce heating energy costs of a school welding laboratory. The physical facility used was the agricultural mechanics laboratory at the University of Arizona, which is similar to facilities in which instruction in…

  7. AGDEX: A System for Classifying, Indexing, and Filing Agricultural Publications. Revised Edition.

    ERIC Educational Resources Information Center

    Miller, Howard L.; Woodin, Ralph J.

    This document provides an introduction to and instructions for the use of AGDEX, a comprehensive numeric filing system to classify and organize a wide variety of agricultural publications. The index is subdivided and color coded according to the following categories: (1) field crops; (2) horticulture; (3) forestry; (4) animal science; (5) soils;…

  8. Sustainable agriculture for a dynamic world: Forage-Crop-Livestock systems research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research at the USDA-Agricultural Research Service, Grazinglands Research Laboratory is focused on development and delivery of improved technologies, strategies, and planning tools for integrated crop-forage-livestock systems under variable climate, energy, and market conditions. The GRL research p...

  9. From Cutlass to Agribusiness: Caribbean Food and Agriculture in Transition within a Global System.

    ERIC Educational Resources Information Center

    Moran, Michael J.

    This examination of the future role of food and agriculture in world peace and prosperity presents a regional cross-country view of the Caribbean countries with emphasis on the Caricom English speaking countries within a global food system environment. Following an introductory section, the second of six sections focuses on two broad agricultural…

  10. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  11. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    PubMed

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  12. Photovoltaic applications definition and photovoltaic system definition study in the agricultural sector. Volume I. Executive summary

    SciTech Connect

    Mengel, R.W.; Nadolski, T.P.; Sparks, D.C.; Young, S.K.; Yingst, A.

    1980-05-01

    Study results of identification and characterization of agricultural energy demands that can effectively use photovoltaic power systems, conceptual designs and performance analysis for selected applications, and conclusions and recommendations are presented. This volume presents an overview of the project results, the technical work accomplished, and the approach taken to achieve the project objectives. (WHK)

  13. ECOLOGICAL AND ECONOMIC DYNAMICS OF THE SHUNDE AGRICULTURAL SYSTEM UNDER CHINA'S SMALL CITY DEVELOPMENT STRATEGY

    EPA Science Inventory

    The development of small cities has been adopted as the main strategy to make full use of extra labor in the rural areas of China. The ecological and economic consequences of this development will affect over 100 million people and change the organization of agricultural systems ...

  14. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  15. Remote sensing with simulated unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare pixel sampling with plot-scale metrics for the remo...

  16. Agricultural Innovation Systems (AIS): A Study of Stakeholders and Their Relations in System of Rice Intensification (SRI)

    ERIC Educational Resources Information Center

    Suchiradipta, Bhattacharjee; Raj, Saravanan

    2015-01-01

    Purpose: This paper identifies the stakeholders of System of Rice Intensification (SRI), their roles and actions and the supporting and enabling environment of innovation in the state as the elements of the Agricultural Innovation Systems (AIS) in SRI in Tripura state of India and studies the relationship matrix among the stakeholders.…

  17. Structural Conditions for Collaboration and Learning in Innovation Networks: Using an Innovation System Performance Lens to Analyse Agricultural Knowledge Systems

    ERIC Educational Resources Information Center

    Hermans, Frans; Klerkx, Laurens; Roep, Dirk

    2015-01-01

    Purpose: We investigate how the structural conditions of eight different European agricultural innovation systems can facilitate or hinder collaboration and social learning in multidisciplinary innovation networks. Methodology: We have adapted the Innovation System Failure Matrix to investigate the main barriers and enablers eight countries…

  18. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Progress and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2011-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Recent progress and the current status of AgMIP will be presented, highlighting three areas of activity: preliminary results from crop pilot studies, outcomes from regional workshops, and emerging scientific challenges. AgMIP crop modeling efforts are being led by pilot studies, which have been established for wheat, maize, rice, and sugarcane. These crop-specific initiatives have proven instrumental in testing and contributing to AgMIP protocols, as well as creating preliminary results for aggregation and input to agricultural trade models. Regional workshops are being held to encourage collaborations and set research activities in motion for key agricultural areas. The first of these workshops was hosted by Embrapa and UNICAMP and held in Campinas, Brazil. Outcomes from this meeting have informed crop modeling research activities within South America, AgMIP protocols, and future regional workshops. Several scientific challenges have emerged and are currently being addressed by AgMIP researchers. Areas of particular interest include geospatial weather generation, ensemble methods for climate scenarios and crop models, spatial aggregation of field-scale yields to regional and global production, and characterization of future changes in climate variability.

  19. Canister Model, Systems Analysis

    1993-09-29

    This packges provides a computer simulation of a systems model for packaging nuclear waste and spent nuclear fuel in canisters. The canister model calculates overall programmatic cost, number of canisters, and fuel and waste inventories for the Idaho Chemical Processing Plant (other initial conditions can be entered).

  20. Multivariate Climate-Weather Forecasting System: An Integrated Approach for Mitigating Agricultural Risks in Punjab

    NASA Astrophysics Data System (ADS)

    Ravindranath, A.; Devineni, N.

    2015-12-01

    While India has a long history of prediction of the All India Monsoon, work on spatially specific attributes of the monsoon, as well as monsoon break periods has only recently emerged. However, from a risk management context, prognostic information of a single variable such as total precipitation or average temperature will be of less utility especially for specific operational purposes. An integrated regional climate-weather forecast system covering precipitation, temperature and humidity etc. over the year will benefit the farmers in the context of a specific decision time table for irrigation scheduling as well as for pre-season crop choices. Hence, contrary to the existing forecasting methods that develop multi time scale information of a single variable at a time, in this paper, we introduce an integrated regional multivariate climate-weather forecasting system that directly relates to agricultural decision making and risk mitigation. These multi-scale risk attributes include mutually dependent, spatially disaggregated statistics such as total rainfall, average temperature, growing degree days, relative humidity, total number of rainfall days/dry spell length, and cumulative water deficits that inform the potential irrigation water requirements for crops. Given that these attributes exhibit mutual dependence across space and time, we propose to explore common ocean-atmospheric conditions from the observations and the state of the art Global Circulation Models (GCMs) that can be utilized as the predictor variables for the forecasting system. Hierarchical Bayesian methods are be used to develop the integrated forecast system. The developed multivariate forecasts will be adapted and disseminated as decision tools for the farmers under the extension projects in Punjab region of India.

  1. PATHWAY: a simulation model of radionuclide-transport through agricultural food chains

    SciTech Connect

    Kirchner, T.B.; Whicker, F.W.; Otis, M.D.

    1982-01-01

    PATHWAY simulates the transport of radionuclides from fallout through an agricultural ecosystem. The agro-ecosystem is subdivided into several land management units, each of which is used either for grazing animals, for growing hay, or for growing food crops. The model simulates the transport of radionuclides by both discrete events and continuous, time-dependent processes. The discrete events include tillage of soil, harvest and storage of crops,and deposition of fallout. The continuous processes include the transport of radionuclides due to resuspension, weathering, rain splash, percolation, leaching, adsorption and desorption of radionuclides in the soil, root uptake, foliar absorption, growth and senescence of vegetation, and the ingestion assimilation, and excretion of radionuclides by animals. Preliminary validation studies indicate that the model dynamics and simulated values of radionuclide concentrations in several agricultural products agree well with measured values when the model is driven with site specific data on deposition from world-wide fallout.

  2. Estimating the agricultural fertilizer NH3 emission in China based on the bi-directional CMAQ model and an agro-ecosystem model

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2014-12-01

    Atmospheric ammonia (NH3) plays an important role in fine particle formation. Accurate estimates of ammonia can reduce uncertainties in air quality modeling. China is one of the largest countries emitting ammonia with the majority of NH3 emissions coming from the agricultural practices, such as fertilizer applications and animal operations. The current ammonia emission estimates in China are mainly based on pre-defined emission factors. Thus, there are considerable uncertainties in estimating NH3 emissions, especially in time and space distribution. For example, fertilizer applications vary in the date of application and amount by geographical regions and crop types. In this study, the NH3 emission from the agricultural fertilizer use in China of 2011 was estimated online by an agricultural fertilizer modeling system coupling a regional air-quality model and an agro-ecosystem model, which contains three main components 1) the Environmental Policy Integrated Climate (EPIC) model, 2) the meso-scale meteorology Weather Research and Forecasting (WRF) model and 3) the CMAQ air quality model with bi-directional ammonia fluxes. The EPIC output information about daily fertilizer application and soil characteristics would be the input of the CMAQ model. In order to run EPIC model, much Chinese local information is collected and processed. For example, Crop land data are computed from the MODIS land use data at 500-m resolution and crop categories at Chinese county level; the fertilizer use rate for different fertilizer types, crops and provinces are obtained from Chinese statistic materials. The system takes into consideration many influencing factors on agriculture ammonia emission, including weather, the fertilizer application method, timing, amount, and rate for specific pastures and crops. The simulated fertilizer data is compared with the NH3 emissions and fertilizer application data from other sources. The results of CMAQ modeling are also discussed and analyzed with

  3. Flexible system modeling

    SciTech Connect

    Maragno, M.; Schmid, C.; Schmieg, M.

    1995-04-01

    Stability analysis calculations are typically based on predefined system models, where, in the majority of cases, the well known IEEE definitions for controllers, prime movers, and other associated devices and functions are in use. for planning purposes, this approach might be acceptable, since predefined sets of parameters will allow a favorable and reasonable behavior of the analyzed system to be achieved, thus representing the possibly implementable system behavior. However, this approach is often also applied for system operation analysis purposes, for which typical IEEE models are applicable only in few cases. In quite a number of cases, even manufacturers who perform highly accurate system modeling studies have been asked to deliver block diagrams and parameters according to a list of available IEEE models. Utilities and consultants with an in-depth knowledge and tradition of conducting system operation performance and optimization studies have frequently requested adequate and accurate procedures and tools to tackle this special field of power system analysis appropriately. This need to solve complex operation analysis and special component planning problems has prompted the development of adequate methods and tools at DIgSILENT Systems in cooperation with FICHTNER C.E. This article focuses on various possibilities to approach this problem and to report on the applied strategies and methods. Comprehensive examples are given to demonstrate the capabilities of the implemented procedures.

  4. PROCAMS - A second generation multispectral-multitemporal data processing system for agricultural mensuration

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Nalepka, R. F.

    1976-01-01

    PROCAMS (Prototype Classification and Mensuration System) has been designed for the classification and mensuration of agricultural crops (specifically small grains including wheat, rye, oats, and barley) through the use of data provided by Landsat. The system includes signature extension as a major feature and incorporates multitemporal as well as early season unitemporal approaches for using multiple training sites. Also addressed are partial cloud cover and cloud shadows, bad data points and lines, as well as changing sun angle and atmospheric state variations.

  5. A model of the 0.4-GHz scatterometer. [used for agriculture soil moisture program

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1978-01-01

    The 0.4 GHz aircraft scatterometer system used for the agricultural soil moisture estimation program is analyzed for the antenna pattern, the signal flow in the receiver data channels, and the errors in the signal outputs. The operational principal, system sensitivity, data handling, and resolution cell length requirements are also described. The backscattering characteristics of the agriculture scenes are contained in the form of the functional dependence of the backscattering coefficient on the incidence angle. The substantial gains of the cross-polarization term of the horizontal and vertical antennas have profound effects on the cross-polarized backscattered signals. If these signals are not corrected properly, large errors could result in the estimate of the cross-polarized backscattering coefficient. It is also necessary to correct the variations of the aircraft parameters during data processing to minimize the error in the 0 degree estimation. Recommendations are made to improve the overall performance of the scatterometer system.

  6. Representing natural and manmade drainage systems in an earth system modeling framework

    SciTech Connect

    Li, Hongyi; Wu, Huan; Huang, Maoyi; Leung, Lai-Yung R.

    2012-08-27

    Drainage systems can be categorized into natural or geomorphological drainage systems, agricultural drainage systems and urban drainage systems. They interact closely among themselves and with climate and human society, particularly under extreme climate and hydrological events such as floods. This editorial articulates the need to holistically understand and model drainage systems in the context of climate change and human influence, and discusses the requirements and examples of feasible approaches to representing natural and manmade drainage systems in an earth system modeling framework.

  7. Critical Infrastructure Modeling System

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  8. A simulation-based interval two-stage stochastic model for agricultural non-point source pollution control through land retirement.

    PubMed

    Luo, B; Li, J B; Huang, G H; Li, H L

    2006-05-15

    This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural non-point source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and "off-site" water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties.

  9. Meteorological risks, impacts on crop production systems and agricultural insurances in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, A.; Piccard, I.

    2012-04-01

    Devastating weather-related events recorded in recent years have captured the interest of the general public in Belgium. Extreme weather events such as droughts, heat stress, rain storms and floods are projected to increase both in frequency and magnitude with climate change. Since more than half of the Belgian territory is managed by the agricultural sector, extreme events have significant impacts on agro-ecosystem services and pose severe limitations to sustainable agricultural land management. The perspective of rising risk-exposure is exacerbated further by more limits to aid received for agricultural damage (amendments to EC Regulation 1857/2006) and an overall reduction of direct income support to farmers. Current knowledge gaps related to the occurrence of extreme events and the response of agro-ecosystems need to be addressed in conjunction with their vulnerability, resilience and adaptive possibilities. A chain of risks approach starts with assessing the likely frequency and magnitude of extreme meteorological events by means of probability density functions. Impacts are subsequently based on physically based models that provide information on the state of the damage at any given time and assist in understanding the links between different factors causing damage and in determining bio-physical vulnerability. The output of regional bio-physical models is compared with remote sensing based algorithms applied on SPOT-VGT temporal data. Crop damage and risk indicators are derived from remote sensing, meteorological records, crop modelling and agricultural statistics and compared to damage statistics obtained from the government-based agricultural disaster funds. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Spatio-temporal indicators of drought during the growing season and waterlogging at harvest showed the highest agreement with damage, followed by hail and frost. In general potatoes, flax and

  10. Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems

    NASA Astrophysics Data System (ADS)

    Beusen, A. H. W.; Bouwman, A. F.; Heuberger, P. S. C.; Van Drecht, G.; Van Der Hoek, K. W.

    Here we present an uncertainty analysis of NH 3 emissions from agricultural production systems based on a global NH 3 emission inventory with a 5×5 min resolution. Of all results the mean is given with a range (10% and 90% percentile). The uncertainty range for the global NH 3 emission from agricultural systems is 27-38 (with a mean of 32) Tg NH 3-N yr -1, N fertilizer use contributing 10-12 (11) Tg yr -1 and livestock production 16-27 (21) Tg yr -1. Most of the emissions from livestock production come from animal houses and storage systems (31-55%); smaller contributions come from the spreading of animal manure (23-38%) and grazing animals (17-37%). This uncertainty analysis allows for identifying and improving those input parameters with a major influence on the results. The most important determinants of the uncertainty related to the global agricultural NH 3 emission comprise four parameters (N excretion rates, NH 3 emission rates for manure in animal houses and storage, the fraction of the time that ruminants graze and the fraction of non-agricultural use of manure) specific to mixed and landless systems, and total animal stocks. Nitrogen excretion rates and NH 3 emission rates from animal houses and storage systems are shown consistently to be the most important parameters in most parts of the world. Input parameters for pastoral systems are less relevant. However, there are clear differences between world regions and individual countries, reflecting the differences in livestock production systems.

  11. A Decision Support System for Climate Change Adaptation in Rainfed Sectors of Agriculture for Central Europe

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Berki, Imre; Drüszler, Áron; Eredics, Attila; Gálos, Borbála; Illés, Gábor; Móricz, Norbert; Rasztovits, Ervin; Czimber, Kornél

    2013-04-01

    • Background and aims: Rainfed sectors of agriculture such as nature-close forestry, non-irrigated agriculture and animal husbandry on nature-close pastures are threatened by projected climate change especially in low-elevation regions in Southeast Europe, where precipitation is the limiting factor of production and ecosystem stability. Therefore the importance of complex, long term management planning and of land use optimization is increasing. The aim of the Decision Support System under development is to raise awareness and initiate preparation for frequency increase of extreme events, disasters and economic losses in the mentioned sectors. • Services provided: The Decision Support System provides GIS-supported information about the most important regional and local risks and mitigation options regarding climate change impacts, projected for reference periods until 2100 (e.g. land cover/use and expectable changes, potential production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.). The projections are referring first of all on biological production (natural produce), but the System includes also social and economic consequences. • Methods: In the raster based system, the latest image processing technology is used. We apply fuzzy membership functions, Support Vector Machine and Maximum Likelihood classifier. The System is developed in the first step for a reference area in SW Hungary (Zala county). • Novelty: The coherent, fine-scale regional system integrates the basic information about present and projected climates, extremes, hydrology and soil conditions and expected production potential for three sectors of agriculture as options for land use and conservation. • Funding: The development of the Decision Support System "Agrárklíma" is supported by TÁMOP-4.2.2.A-11/1/KONV and 4.2.2.B-10/1-2010-0018 "Talentum" joint EU-national research projects. Keywords: climate change

  12. Assessing potential secondary effects of countermeasures in agricultural systems: a review.

    PubMed

    Salt, C A; Rafferty, B

    2001-01-01

    Secondary effects are defined as any positive or negative impacts resulting from the application of countermeasures other than radiological benefits or direct costs. They are categorised into environmental, radioecological, economic and social effects. Impacts on the environment may include changes in water, air and soil pollution or in the conservation and amenity value of an area. Radioecological effects occur when the countermeasure unintentionally alters the behaviour of the target radionuclide or any other radionuclide present. Economic effects may range from changes in agricultural income to environmental costs (e.g. impact of soil erosion on fisheries). Social effects relate to the acceptability of countermeasures, for example in terms of consumer confidence and animal welfare. Recent research into the identification and assessment of secondary effects is summarised. Non-quantitative and quantitative approaches are explained and formal evaluation procedures involving decision matrices and decision support systems are introduced. Examples of recent experimental and modelling work focusing on radiocaesium are given for the following countermeasures: soil application of potassium, administration of AFCF to livestock and ploughing techniques.

  13. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  14. Using Tracer Tests to Estimate Vertical Recharge and Evaluate Influencing Factors for Irrigated Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Lin, D.; Jin, M.; Brusseau, M.; Ma, B.; Liu, Y.

    2013-12-01

    Accurate estimation of vertical groundwater recharge is critical for (semi) arid regions, especially in places such as the North China Plain where vertical recharge comprises the largest portion of recharge. Tracer tests were used to estimate vertical recharge beneath agricultural systems irrigated by groundwater, and to help delineate factors that influence recharge. Bromide solution was applied to trace infiltration in the vadose zone beneath irrigated agricultural fields (rotated winter wheat and summer maize, orchards, and cotton) and non-irrigated woodlands at both piedmont plain (Shijiazhaung) and alluvial and lacustrine plains (Hengshui) in the North China Plain. The tracer tests lasted for more than two years, and were conducted at a total of 37 sites. Tracer solution was injected into the subsurface at a depth of 1.2 m before the rainy season. Soil samples were then collected periodically to observe bromide transport and estimate recharge rates at the point-scale. For these experiments, the only irrigation the fields received was that applied by the landowners. In addition to these tests, a controlled irrigation experiment was conducted at a single wheat and maize site. The results showed that recharge rates were lower for the alluvial and lacustrine plains sites, which comprise finer-textured soils than those present in the piedmont plain. Specifically, the recharge rate ranged between 56-466 mm/a beneath wheat-maize, 110-564 mm/a beneath orchard, and 0-21 mm/a beneath woodlands with an average recharge coefficient of 0.17 for the piedmont plain sites, while the recharge rate ranged between 26-165 mm/a beneath wheat-maize, 6-40 mm/a beneath orchard, 87-319 mm/a beneath cotton, and 0-32 mm/a beneath woodlands with an average recharge coefficient of 0.10 for the alluvial and lacustrine plain sites. Irrigation provided the primary contribution to recharge, with precipitation providing a minor contribution. The results of both the uncontrolled and controlled

  15. REDD+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling.

    PubMed

    Salvini, G; Ligtenberg, A; van Paassen, A; Bregt, A K; Avitabile, V; Herold, M

    2016-05-01

    Finding land use strategies that merge land-based climate change mitigation measures and adaptation strategies is still an open issue in climate discourse. This article explores synergies and trade-offs between REDD+, a scheme that focuses mainly on mitigation through forest conservation, with "Climate Smart Agriculture", an approach that emphasizes adaptive agriculture. We introduce a framework for ex-ante assessment of the impact of land management policies and interventions and for quantifying their impacts on land-based mitigation and adaptation goals. The framework includes a companion modelling (ComMod) process informed by interviews with policymakers, local experts and local farmers. The ComMod process consists of a Role-Playing Game with local farmers and an Agent Based Model. The game provided a participatory means to develop policy and climate change scenarios. These scenarios were then used as inputs to the Agent Based Model, a spatially explicit model to simulate landscape dynamics and the associated carbon emissions over decades. We applied the framework using as case study a community in central Vietnam, characterized by deforestation for subsistence agriculture and cultivation of acacias as a cash crop. The main findings show that the framework is useful in guiding consideration of local stakeholders' goals, needs and constraints. Additionally the framework provided beneficial information to policymakers, pointing to ways that policies might be re-designed to make them better tailored to local circumstances and therefore more effective in addressing synergistically climate change mitigation and adaptation objectives.

  16. REDD+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling.

    PubMed

    Salvini, G; Ligtenberg, A; van Paassen, A; Bregt, A K; Avitabile, V; Herold, M

    2016-05-01

    Finding land use strategies that merge land-based climate change mitigation measures and adaptation strategies is still an open issue in climate discourse. This article explores synergies and trade-offs between REDD+, a scheme that focuses mainly on mitigation through forest conservation, with "Climate Smart Agriculture", an approach that emphasizes adaptive agriculture. We introduce a framework for ex-ante assessment of the impact of land management policies and interventions and for quantifying their impacts on land-based mitigation and adaptation goals. The framework includes a companion modelling (ComMod) process informed by interviews with policymakers, local experts and local farmers. The ComMod process consists of a Role-Playing Game with local farmers and an Agent Based Model. The game provided a participatory means to develop policy and climate change scenarios. These scenarios were then used as inputs to the Agent Based Model, a spatially explicit model to simulate landscape dynamics and the associated carbon emissions over decades. We applied the framework using as case study a community in central Vietnam, characterized by deforestation for subsistence agriculture and cultivation of acacias as a cash crop. The main findings show that the framework is useful in guiding consideration of local stakeholders' goals, needs and constraints. Additionally the framework provided beneficial information to policymakers, pointing to ways that policies might be re-designed to make them better tailored to local circumstances and therefore more effective in addressing synergistically climate change mitigation and adaptation objectives. PMID:26921566

  17. Modeling Sustainable Food Systems

    NASA Astrophysics Data System (ADS)

    Allen, Thomas; Prosperi, Paolo

    2016-05-01

    The processes underlying environmental, economic, and social unsustainability derive in part from the food system. Building sustainable food systems has become a predominating endeavor aiming to redirect our food systems and policies towards better-adjusted goals and improved societal welfare. Food systems are complex social-ecological systems involving multiple interactions between human and natural components. Policy needs to encourage public perception of humanity and nature as interdependent and interacting. The systemic nature of these interdependencies and interactions calls for systems approaches and integrated assessment tools. Identifying and modeling the intrinsic properties of the food system that will ensure its essential outcomes are maintained or enhanced over time and across generations, will help organizations and governmental institutions to track progress towards sustainability, and set policies that encourage positive transformations. This paper proposes a conceptual model that articulates crucial vulnerability and resilience factors to global environmental and socio-economic changes, postulating specific food and nutrition security issues as priority outcomes of food systems. By acknowledging the systemic nature of sustainability, this approach allows consideration of causal factor dynamics. In a stepwise approach, a logical application is schematized for three Mediterranean countries, namely Spain, France, and Italy.

  18. Modeling Sustainable Food Systems.

    PubMed

    Allen, Thomas; Prosperi, Paolo

    2016-05-01

    The processes underlying environmental, economic, and social unsustainability derive in part from the food system. Building sustainable food systems has become a predominating endeavor aiming to redirect our food systems and policies towards better-adjusted goals and improved societal welfare. Food systems are complex social-ecological systems involving multiple interactions between human and natural components. Policy needs to encourage public perception of humanity and nature as interdependent and interacting. The systemic nature of these interdependencies and interactions calls for systems approaches and integrated assessment tools. Identifying and modeling the intrinsic properties of the food system that will ensure its essential outcomes are maintained or enhanced over time and across generations, will help organizations and governmental institutions to track progress towards sustainability, and set policies that encourage positive transformations. This paper proposes a conceptual model that articulates crucial vulnerability and resilience factors to global environmental and socio-economic changes, postulating specific food and nutrition security issues as priority outcomes of food systems. By acknowledging the systemic nature of sustainability, this approach allows consideration of causal factor dynamics. In a stepwise approach, a logical application is schematized for three Mediterranean countries, namely Spain, France, and Italy.

  19. Incorporating Indigenous Knowledge Systems into Agricultural and Extension Education Programs: A Study of the Perceptions of Extension Professionals.

    ERIC Educational Resources Information Center

    Rajasekaran, B.; Martin, Robert A.

    Dissemination of technologies to increase agricultural production using the conventional transfer of technology system has often failed to consider the natural environment, indigenous knowledge systems, and resource endowments around which resource-poor farmers normally operate. A sample of 96 agricultural extension professionals in 2 districts in…

  20. A Qualitative Study of Agricultural Literacy in Urban Youth: What Do Elementary Students Understand about the Agri-Food System?

    ERIC Educational Resources Information Center

    Hess, Alexander J.; Trexler, Cary J.

    2011-01-01

    Agricultural literacy of K-12 students is a national priority for both scientific and agricultural education professional organizations. Development of curricula to address this priority has not been informed by research on what K-12 students understand about the agri-food system. While students' knowledge of food and fiber system facts have been…

  1. Differences in Fish, Amphibian, and Reptile Communities Within Wetlands Created by an Agricultural Water Recycling System in Northwestern Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of a water recycling system known as the wetland-reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to store subirriga...

  2. The Use of an e-Learning System for Agricultural Extension: A Case Study of the Rural Development Administration, Korea

    ERIC Educational Resources Information Center

    Park, Duk-Byeong; Cho, Yong-Been; Lee, Minsoo

    2007-01-01

    The study explores the e-learning system of the Computer-Based Agricultural Extension Program (CBAES) and examines the differences in user satisfaction and preferences between the two systems for Agricultural Education and Extension at the Rural Development Administration (RDA) in Korea. It also describes the architecture, services, user…

  3. 12 CFR 617.7610 - What should the System institution do when it decides to sell acquired agricultural real estate?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false What should the System institution do when it... institution do when it decides to sell acquired agricultural real estate? (a) Notify the previous owner, (1) Within 15 days of the System institution's decision to sell acquired agricultural real estate, it...

  4. Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico.

    PubMed

    McCullough, Ellen B; Matson, Pamela A

    2016-04-26

    Knowledge systems-networks of linked actors, organizations, and objects that perform a number of knowledge-related functions that link knowledge and know how with action-have played a key role in fostering agricultural development over the last 50 years. We examine the evolution of the knowledge system of the Yaqui Valley, Mexico, a region often described as the home of the green revolution for wheat, tracing changes in the functions of critical knowledge system participants, information flows, and research priorities. Most of the knowledge system's key players have been in place for many decades, although their roles have changed in response to exogenous and endogenous shocks and trends (e.g., drought, policy shifts, and price trends). The system has been agile and able to respond to challenges, in part because of the diversity of players (evolving roles of actors spanning research-decision maker boundaries) and also because of the strong and consistent role of innovative farmers. Although the agricultural research agenda in the Valley is primarily controlled from within the agricultural sector, outside voices have become an important influence in broadening development- and production-oriented perspectives to sustainability perspectives.

  5. Effects of agriculture production systems on nitrate and nitrite accumulation on baby-leaf salads

    PubMed Central

    Aires, Alfredo; Carvalho, Rosa; Rosa, Eduardo A S; Saavedra, Maria J

    2013-01-01

    Nitrate and nitrite are widespread contaminants of vegetables, fruits, and waters. The levels of these compounds are increased as a result of using organic wastes from chemical industries, domestic wastes, effluents, nitrogenous fertilizers, and herbicides in agriculture. Therefore, determining the nitrate and nitrite levels in biological, food, and environmental samples is important to protect human health and the environment. In this context, we set this study, in which we report the effect of production system (conventional and organic) on the accumulation of nitrates and nitrites in fresh baby-leaf samples. The average levels of the nitrate () and nitrite () contents in six different baby-leaf salads of a single species (green lettuce, red lettuce, watercress, rucola, chard, and corn salad) produced in organic and conventional agriculture system were evaluated. Spectrophotometric analytical method recently published was validated and used. Nitrates and nitrites were detected in all samples. The nitrates levels from organic production varied between 1.45 and 6.40 mg/kg fresh weight (FW), whereas those from conventional production ranged from 10.5 to 45.19 mg/kg FW. The nitrites content was lower than nitrates and ranged from 0.32 to 1.89 mg/kg FW in organic production system and between 0.14 and 1.41 mg/kg FW in conventional production system. Our results showed that the nitrate content was dependent on the agricultural production system, while for nitrites, this dependency was less pronounced. PMID:24804008

  6. Distributed fuzzy system modeling

    SciTech Connect

    Pedrycz, W.; Chi Fung Lam, P.; Rocha, A.F.

    1995-05-01

    The paper introduces and studies an idea of distributed modeling treating it as a new paradigm of fuzzy system modeling and analysis. This form of modeling is oriented towards developing individual (local) fuzzy models for specific modeling landmarks (expressed as fuzzy sets) and determining the essential logical relationships between these local models. The models themselves are implemented in the form of logic processors being regarded as specialized fuzzy neural networks. The interaction between the processors is developed either in an inhibitory or excitatory way. In more descriptive way, the distributed model can be sought as a collection of fuzzy finite state machines with their individual local first or higher order memories. It is also clarified how the concept of distributed modeling narrows down a gap between purely numerical (quantitative) models and the qualitative ones originated within the realm of Artificial Intelligence. The overall architecture of distributed modeling is discussed along with the detailed learning schemes. The results of extensive simulation experiments are provided as well. 17 refs.

  7. Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMIP)

    NASA Astrophysics Data System (ADS)

    Xia, Lili; Robock, Alan; Cole, Jason; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Singh, Balwinder; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2014-07-01

    Geoengineering via solar radiation management could affect agricultural productivity due to changes in temperature, precipitation, and solar radiation. To study rice and maize production changes in China, we used results from 10 climate models participating in the Geoengineering Model Intercomparison Project (GeoMIP) G2 scenario to force the Decision Support System for Agrotechnology Transfer (DSSAT) crop model. G2 prescribes an insolation reduction to balance a 1% a-1 increase in CO2 concentration (1pctCO2) for 50 years. We first evaluated the DSSAT model using 30 years (1978-2007) of daily observed weather records and agriculture practices for 25 major agriculture provinces in China and compared the results to observations of yield. We then created three sets of climate forcing for 42 locations in China for DSSAT from each climate model experiment: (1) 1pctCO2, (2) G2, and (3) G2 with constant CO2 concentration (409 ppm) and compared the resulting agricultural responses. In the DSSAT simulations: (1) Without changing management practices, the combined effect of simulated climate changes due to geoengineering and CO2 fertilization during the last 15 years of solar reduction would change rice production in China by -3.0 ± 4.0 megaton (Mt) (2.4 ± 4.0%) as compared with 1pctCO2 and increase Chinese maize production by 18.1 ± 6.0 Mt (13.9 ± 5.9%). (2) The termination of geoengineering shows negligible impacts on rice production but a 19.6 Mt (11.9%) reduction of maize production as compared to the last 15 years of geoengineering. (3) The CO2 fertilization effect compensates for the deleterious impacts of changes in temperature, precipitation, and solar radiation due to geoengineering on rice production, increasing rice production by 8.6 Mt. The elevated CO2 concentration enhances maize production in G2, contributing 7.7 Mt (42.4%) to the total increase. Using the DSSAT crop model, virtually all of the climate models agree on the sign of the responses, even though

  8. Looking back to move forward on model validation: insights from a global model of agricultural land use

    NASA Astrophysics Data System (ADS)

    Baldos, Uris Lantz C.; Hertel, Thomas W.

    2013-09-01

    Global agricultural models are becoming indispensable in the debate over climate change impacts and mitigation policies. Therefore, it is becoming increasingly important to validate these models and identify critical areas for improvement. In this letter, we illustrate both the opportunities and the challenges in undertaking such model validation, using the SIMPLE model of global agriculture. We look back at the long run historical period 1961-2006 and, using a few key historical drivers—population, incomes and total factor productivity—we find that SIMPLE is able to accurately reproduce historical changes in cropland use, crop price, crop production and average crop yields at the global scale. Equally important is our investigation into how the specific assumptions embedded in many agricultural models will likely influence these results. We find that those global models which are largely biophysical—thereby ignoring the price responsiveness of demand and supply—are likely to understate changes in crop production, while failing to capture the changes in cropland use and crop price. Likewise, global models which incorporate economic responses, but do so based on limited time series estimates of these responses, are likely to understate land use change and overstate price changes.

  9. Nitrate-Nitrogen Leaching and Modeling in Intensive Agriculture Farmland in China

    PubMed Central

    Xu, Ligang; Xu, Jin

    2013-01-01

    Protecting water resources from nitrate-nitrogen (NO3-N) contamination is an important public health concern and a major national environmental issue in China. Loss of NO3-N in soils due to leaching is not only one of the most important problems in agriculture farming, but is also the main factor causing nitrogen pollution in aquatic environments. Three typical intensive agriculture farmlands in Jiangyin City in China are selected as a case study for NO3-N leaching and modeling in the soil profile. In this study, the transport and fate of NO3-N within the soil profile and nitrate leaching to drains were analyzed by comparing field data with the simulation results of the LEACHM model. Comparisons between measured and simulated data indicated that the NO3-N concentrations in the soil and nitrate leaching to drains are controlled by the fertilizer practice, the initial conditions and the rainfall depth and distribution. Moreover, the study reveals that the LEACHM model gives a fair description of the NO3-N dynamics in the soil and subsurface drainage at the field scale. It can also be concluded that the model after calibration is a useful tool to optimize as a function of the combination “climate-crop-soil-bottom boundary condition” the nitrogen application strategy resulting for the environment in an acceptable level of nitrate leaching. The findings in this paper help to demonstrate the distribution and migration of nitrogen in intensive agriculture farmlands, as well as to explore the mechanism of groundwater contamination resulting from agricultural activities. PMID:23983629

  10. Nitrate-nitrogen leaching and modeling in intensive agriculture farmland in China.

    PubMed

    Xu, Ligang; Niu, Hailin; Xu, Jin; Wang, Xiaolong

    2013-01-01

    Protecting water resources from nitrate-nitrogen (NO3-N) contamination is an important public health concern and a major national environmental issue in China. Loss of NO3-N in soils due to leaching is not only one of the most important problems in agriculture farming, but is also the main factor causing nitrogen pollution in aquatic environments. Three typical intensive agriculture farmlands in Jiangyin City in China are selected as a case study for NO3-N leaching and modeling in the soil profile. In this study, the transport and fate of NO3-N within the soil profile and nitrate leaching to drains were analyzed by comparing field data with the simulation results of the LEACHM model. Comparisons between measured and simulated data indicated that the NO3-N concentrations in the soil and nitrate leaching to drains are controlled by the fertilizer practice, the initial conditions and the rainfall depth and distribution. Moreover, the study reveals that the LEACHM model gives a fair description of the NO3-N dynamics in the soil and subsurface drainage at the field scale. It can also be concluded that the model after calibration is a useful tool to optimize as a function of the combination "climate-crop-soil-bottom boundary condition" the nitrogen application strategy resulting for the environment in an acceptable level of nitrate leaching. The findings in this paper help to demonstrate the distribution and migration of nitrogen in intensive agriculture farmlands, as well as to explore the mechanism of groundwater contamination resulting from agricultural activities.

  11. User's Guide for the Agricultural Non-Point Source (AGNPS) Pollution Model Data Generator

    USGS Publications Warehouse

    Finn, Michael P.; Scheidt, Douglas J.; Jaromack, Gregory M.

    2003-01-01

    BACKGROUND Throughout this user guide, we refer to datasets that we used in conjunction with developing of this software for supporting cartographic research and producing the datasets to conduct research. However, this software can be used with these datasets or with more 'generic' versions of data of the appropriate type. For example, throughout the guide, we refer to national land cover data (NLCD) and digital elevation model (DEM) data from the U.S. Geological Survey (USGS) at a 30-m resolution, but any digital terrain model or land cover data at any appropriate resolution will produce results. Another key point to keep in mind is to use a consistent data resolution for all the datasets per model run. The U.S. Department of Agriculture (USDA) developed the Agricultural Nonpoint Source (AGNPS) pollution model of watershed hydrology in response to the complex problem of managing nonpoint sources of pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient transport from watersheds that have agriculture as their prime use. The model operates on a cell basis and is a distributed parameter, event-based model. The model requires 22 input parameters. Output parameters are grouped primarily by hydrology, sediment, and chemical output (Young and others, 1995.) Elevation, land cover, and soil are the base data from which to extract the 22 input parameters required by the AGNPS. For automatic parameter extraction, follow the general process described in this guide of extraction from the geospatial data through the AGNPS Data Generator to generate input parameters required by the pollution model (Finn and others, 2002.)

  12. Evaluating the Impacts of an Agricultural Water Market in the Guadalupe River Basin, Texas: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.

    2014-12-01

    Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.

  13. Cost-effective means of reducing ammonia emissions from UK agriculture using the NARSES model

    NASA Astrophysics Data System (ADS)

    Webb, J.; Ryan, M.; Anthony, S. G.; Brewer, A.; Laws, J.; Aller, M. F.; Misselbrook, T. H.

    To comply with International agreements to improve air quality, signatory states need to reduce emissions of ammonia (NH 3). Since the majority of NH 3 emissions come from agriculture, measures may need to be implemented by the farming industry. Member states of the EU will, by 2010, require large pig and poultry production units to reduce NH 3 emissions to comply with the integrated pollution prevention and control directive (IPPC). The NARSES model uses a mass-flow method to estimate NH 3 emission from UK agriculture and to identify the most cost-effective means of reducing NH 3 emissions. Model runs were carried out to assess the likely impact of the IPPC Directive on UK NH 3 emissions and the sensitivity of model output to input data on the costs and abatement efficiencies of proposed abatement measures. The impact of the IPPC Directive is likely to be small, offering a reduction of c. 8700 t, 3.5% of total UK agricultural NH 3 emissions. Even large (30%) changes in our estimates of cost or changes of 10% in our estimates of abatement efficiency will make little difference to the ranking of abatement techniques according to cost-effectiveness. The most cost-effective reductions may be achieved by replacing urea fertilizer with ammonium nitrate, immediate incorporation of manures and slurries to tillage land by discs, storing all FYM and poultry manures before spreading to land and applying slurries to grassland by trailing shoe.

  14. Distributed generation systems model

    SciTech Connect

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  15. Enhancing Drought Early Warning System for Sustainable Water Resources and Agricultural Management through Apllication of Space Science - Nigeria in Perspective

    NASA Astrophysics Data System (ADS)

    Okpara, J. N.; Akeh, L. E.; Anuforom, A. C.; Aribo, P. B.; Olayanju, S. O.

    Enhancing Drought Early Warning System for Sustainable Water Resources and Agriculture Management through Application of Space Science - Nigeria in Perspective BY J N Okpara L E Akeh Anuforom P B Aribo and S O Olayanju Directorate of Applied Meteorological Services Nigerian Meteorological Agency NIMET P M B 615 Garki Abuja Nigeria e-mail underline Juddy Okpara yahoo co uk and underline tonycanuforom yahoo com underline Abstract This paper attempts to highlight the importance of drought early warning system in water resources and agricultural management in Nigeria Various studies have shown that the negative impacts of droughts and other forms of extreme weather phenomena can be substantially reduced by providing early warning on any impending weather extremes X-rayed in this study are the various techniques presently used by the Nigerian Meteorological Agency NIMET in generating information for meteorological Early Warning System EWS which are based on models that make use of ground-based raingauge data and sea surface temperatures SST Komuscu standardized precipitation index SPI inclusive These methods are often limited by such factors as network density of stations limited communication infrastructure human inefficiency etc NIMET is therefore embarking on the development of a new Satellite Agrometeorological Information System SAMIS-Nigeria for famine and drought early warning The system combines satellite data with raingauge data to give a range of

  16. Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico

    PubMed Central

    McCullough, Ellen B.; Matson, Pamela A.

    2016-01-01

    Knowledge systems—networks of linked actors, organizations, and objects that perform a number of knowledge-related functions that link knowledge and know how with action—have played a key role in fostering agricultural development over the last 50 years. We examine the evolution of the knowledge system of the Yaqui Valley, Mexico, a region often described as the home of the green revolution for wheat, tracing changes in the functions of critical knowledge system participants, information flows, and research priorities. Most of the knowledge system's key players have been in place for many decades, although their roles have changed in response to exogenous and endogenous shocks and trends (e.g., drought, policy shifts, and price trends). The system has been agile and able to respond to challenges, in part because of the diversity of players (evolving roles of actors spanning research–decision maker boundaries) and also because of the strong and consistent role of innovative farmers. Although the agricultural research agenda in the Valley is primarily controlled from within the agricultural sector, outside voices have become an important influence in broadening development- and production-oriented perspectives to sustainability perspectives. PMID:21606365

  17. Analysis agriculture's impact in a system of lakes on a karst environment with tropical climate.

    NASA Astrophysics Data System (ADS)

    Olea Olea, Selene; Escolero Fuentes, Oscar

    2015-04-01

    This paper has as main object to analyze the impact of agriculture in the water quality of the "Lagos de Montebello" area; which is located in the Southeast of Mexico. This area is prominent by its tropical climate and a karstic environment. The issue arises in a lake system affected by pollution in the later years, which has turned its former clear water into a highly sedimented muddy water in the topographically lower terrains while no polluted on the higher ones; therefore it is intended to determine if the rise in agricultural activity in the lower terrains has induced this phenomenon. The impact of agriculture has been historically studied in temperate climates with karstic environments; nevertheless it has not been very well studied in tropical climates; which are the reason of this proposal to perform a study to analyze the impact of the intensive agriculture running in the area. To develop this project we studied the area regarding to the types of crops that has being established in the zone, being mostly tomato, corn, and bean; and the fertilizers and pesticides applied to them. A groundwater monitoring plan was designed with a variety of phases such as: piezometers building, measurement of groundwater levels, measurement of field parameters, with a two months intervals (Ph, temperature, electric conductivity, total dissolved solids), and water samplings for laboratory analysis (major ions, nutrients, total organic carbon, pesticides) at twice a year, once during rainy season and then on drought. The rates of pollution agents infiltration depends on the type of soil retention and volume of water. The materials found in the soil by the piezometers are clay, silt, sand and variations between them. We determined that the geochemical qualities of the groundwater vary from calcic bicarbonate to calcic sulfated. The results reached with this monitoring provides a preliminary diagnosis on the possible causes and other implications that intensive agriculture in a

  18. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture

    SciTech Connect

    Binder, Claudia R.; Feola, Giuseppe; Steinberger, Julia K.

    2010-02-15

    This paper develops a framework for evaluating sustainability assessment methods by separately analyzing their normative, systemic and procedural dimensions as suggested by Wiek and Binder [Wiek, A, Binder, C. Solution spaces for decision-making - a sustainability assessment tool for city-regions. Environ Impact Asses Rev 2005, 25: 589-608.]. The framework is then used to characterize indicator-based sustainability assessment methods in agriculture. For a long time, sustainability assessment in agriculture has focused mostly on environmental and technical issues, thus neglecting the economic and, above all, the social aspects of sustainability, the multi-functionality of agriculture and the applicability of the results. In response to these shortcomings, several integrative sustainability assessment methods have been developed for the agricultural sector. This paper reviews seven of these that represent the diversity of tools developed in this area. The reviewed assessment methods can be categorized into three types: (i) top-down farm assessment methods; (ii) top-down regional assessment methods with some stakeholder participation; (iii) bottom-up, integrated participatory or transdisciplinary methods with stakeholder participation throughout the process. The results readily show the trade-offs encountered when selecting an assessment method. A clear, standardized, top-down procedure allows for potentially benchmarking and comparing results across regions and sites. However, this comes at the cost of system specificity. As the top-down methods often have low stakeholder involvement, the application and implementation of the results might be difficult. Our analysis suggests that to include the aspects mentioned above in agricultural sustainability assessment, the bottom-up, integrated participatory or transdisciplinary methods are the most suitable ones.

  19. Climate system modeling program

    SciTech Connect

    1995-12-31

    The Climate System Modeling Project is a component activity of NSF's Climate Modeling, Analysis and Prediction Program, supported by the Atmospheric Sciences Program, Geosciences Directorate. Its objective is to accelerate progress toward reliable prediction of global and regional climate changes in the decades ahead. CSMP operates through workshops, support for post-docs and graduate students and other collaborative activities designed to promote interdisciplinary and strategic work in support of the overall objective (above) and specifically in three areas, (1) Causes of interdecadal variability in the climate system, (2) Interactions of regional climate forcing with global processes, and (3) Scientific needs of climate assessment.

  20. Modeling the earth system

    SciTech Connect

    Ojima, D.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  1. Agriculture and food systems in sub-Saharan Africa in a 4°C+ world.

    PubMed

    Thornton, Philip K; Jones, Peter G; Ericksen, Polly J; Challinor, Andrew J

    2011-01-13

    Agricultural development in sub-Saharan Africa faces daunting challenges, which climate change and increasing climate variability will compound in vulnerable areas. The impacts of a changing climate on agricultural production in a world that warms by 4°C or more are likely to be severe in places. The livelihoods of many croppers and livestock keepers in Africa are associated with diversity of options. The changes in crop and livestock production that are likely to result in a 4°C+ world will diminish the options available to most smallholders. In such a world, current crop and livestock varieties and agricultural practices will often be inadequate, and food security will be more difficult to achieve because of commodity price increases and local production shortfalls. While adaptation strategies exist, considerable institutional and policy support will be needed to implement them successfully on the scale required. Even in the 2°C+ world that appears inevitable, planning for and implementing successful adaptation strategies are critical if agricultural growth in the region is to occur, food security be achieved and household livelihoods be enhanced. As part of this effort, better understanding of the critical thresholds in global and African food systems requires urgent research. PMID:21115516

  2. Identifying populations potentially exposed to agricultural pesticides using remote sensing and a Geographic Information System

    USGS Publications Warehouse

    Ward, M.H.; Nuckols, J.R.; Weigel, S. J.; Cantor, K.P.; Miller, Roger S.

    2000-01-01

    Pesticides used in agriculture may cause adverse health effects among the population living near agricultural areas. However, identifying the populations most likely to be exposed is difficult. We conducted a feasibility study to determine whether satellite imagery could be used to reconstruct historical crop patterns. We used historical Farm Service Agency records as a source of ground reference data to classify a late summer 1984 satellite image into crop species in a three-county area in south central Nebraska. Residences from a population-based epidemiologic study of non-Hodgkin lymphoma were located on the crop maps using a geographic information system (GIS). Corn, soybeans, sorghum, and alfalfa were the major crops grown in the study area. Eighty-five percent of residences could be located, and of these 22% had one of the four major crops within 500 m of the residence, an intermediate distance for the range of drift effects from pesticides applied in agriculture. We determined the proximity of residences to specific crop species and calculated crop-specific probabilities of pesticide use based on available data. This feasibility study demonstrated that remote sensing data and historical records on crop location can be used to create historical crop maps. The crop pesticides that were likely to have been applied can be estimated when information about crop-specific pesticide use is available. Using a GIS, zones of potential exposure to agricultural pesticides and proximity measures can be determined for residences in a study.

  3. Evaluating the Potential Use of Remotely-Sensed and Model-Simulated Soil Moisture for Agricultural Drought Risk Monitoring

    NASA Astrophysics Data System (ADS)

    Yan, Hongxiang; Moradkhani, Hamid

    2016-04-01

    Current two datasets provide spatial and temporal resolution of soil moisture at large-scale: the remotely-sensed soil moisture retrievals and the model-simulated soil moisture products. Drought monitoring using remotely-sensed soil moisture is emerging, and the soil moisture simulated using land surface models (LSMs) have been used operationally to monitor agriculture drought in United States. Although these two datasets yield important drought information, their drought monitoring skill still needs further quantification. This study provides a comprehensive assessment of the potential of remotely-sensed and model-simulated soil moisture data in monitoring agricultural drought over the Columbia River Basin (CRB), Pacific Northwest. Two satellite soil moisture datasets were evaluated, the LPRM-AMSR-E (unscaled, 2002-2011) and ESA-CCI (scaled, 1979-2013). The USGS Precipitation Runoff Modeling System (PRMS) is used to simulate the soil moisture from 1979-2011. The drought monitoring skill is quantified with two indices: drought area coverage (the ability of drought detection) and drought severity (according to USDM categories). The effects of satellite sensors (active, passive), multi-satellite combined, length of climatology, climate change effect, and statistical methods are also examined in this study.

  4. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    PubMed Central

    Basso, Bruno; Hyndman, David W.; Kendall, Anthony D.; Grace, Peter R.; Robertson, G. Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability. PMID:26043188

  5. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    PubMed

    Basso, Bruno; Hyndman, David W; Kendall, Anthony D; Grace, Peter R; Robertson, G Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability.

  6. Energy integrated farm system: North Dakota State University Agricultural Experiment Station

    SciTech Connect

    Not Available

    1984-01-01

    North Dakota State University Agricultural Experiment Station, a dairy farm with wheat, barley, sugar beet, and soybean crops, is designed to conserve energy through energy integrated concepts including wind break and solar energy for heating buildings, methane digestion, and energy conservation crop practices. The integrated energy concepts to be demonstrated are: generation of methane from manure; use of a milk-to-water heat exchanger and rock-bed heat storage in dairy operations; use of a solar collector energy system for space heat in the dairy barn (calf warming); efficient solid-liquid separation in manure collection system; use of digester effluent as bedding and fertilizer; and energy conservation by improved agriculture practices, such as conservation tillage, pest management, and soil testing for efficient use of fertilizer.

  7. A GPS Backpack System for Mapping Soil and Crop Parameters in Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Stafford, J. V.; Lebars, J. M.

    Farmers are having to gather increasing amounts of data on their soils and crops. Precision agriculture metre-by-metre is based on a knowledge of the spatial variation of soil and crop parameters across a field. The data has to be spatially located and GPS is an effective way of doing this. A backpack data logging system with GPS position tagging is described which has been designed to aid a fanner in the manual collection of data.

  8. System for analysis of LANDSAT agricultural data: Automatic computer-assisted proportion estimation of local areas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Kauth, R. J.; Thomas, G. S.

    1976-01-01

    The author has identified the following significant results. A conceptual man machine system framework was created for a large scale agricultural remote sensing system. The system is based on and can grow out of the local recognition mode of LACIE, through a gradual transition wherein computer support functions supplement and replace AI functions. Local proportion estimation functions are broken into two broad classes: (1) organization of the data within the sample segment; and (2) identification of the fields or groups of fields in the sample segment.

  9. Urbanization, Agricultural Intensification, and Habitat Alteration in Vietnam: Modeling Transitional Development and Emerging Infectious Diseases

    NASA Astrophysics Data System (ADS)

    Fox, J.; Saksena, S.; Spencer, J.; Finucane, M.; Sultana, N.

    2012-12-01

    Our overarching hypothesis is that new risks, in this case the H5N1 strain of avian influenza, emerge during transitions between stages of development. Moreover, these risks are not coincidental but occur precisely because of the in-between nature of the coupled human-natural system at the point when things are neither traditional nor modern but resemble the state of chaos, release and reorganization. We are testing this hypothesis in Vietnam using demographic, social, economic, and environmental data collected in national censuses and analyzed at commune and district levels to identify communes and districts that are traditional, modern, and transitional (peri-urban). Using data from the 2006 agricultural census that capture both the changing nature of the built environment (types of sanitation systems) and the loss of and diversification of agriculture systems (percent of households whose major source of income is from agriculture, and percent of land under agriculture, forests, and aquaculture), and a normalized difference vegetation index from 2006 Landsat images we created a national scale urbanicity map for Vietnam. Field work in the summer of 2011 showed this map to be an accurate (approximately 85%) approximation of traditional (rural), transitional (periurban), and modern (urban) communes. Preliminary results suggest that over 7% of the country's land area and roughly 15% of its population resides in periurban neighborhoods, and that these areas do have a statistically significant greater incidence of AVI as measured in chicken deaths than traditional and modern communes (Table 1). Transitional neighborhoods such as these force planners to ask two questions. To what extent does the dichotomy of urban/rural makes sense in the context of Vietnam, when large areas and parts of the population are caught between the two? Second, how can planners and policy makers effectively provide for basic public goods and services in these contexts?Classification of places

  10. Electronic Education System Model.

    ERIC Educational Resources Information Center

    Cloete, Elsabe

    2001-01-01

    Discusses electronic learning efforts and problems in implementing computers in schools. Defines and describes an electronic educational system model that was developed to assist the designers of different electronic learning settings to plan and successfully implement a specific learning situation, with the focus on the individual requirements of…

  11. [Agricultural production responsibility system and the work of family planning in the rural area].

    PubMed

    Zhu, M

    1982-09-29

    With the establishment of the agricultural production responsibility system, the entire agricultural management and economic system has undergone great changes, and family planning in rural areas has met with many difficulties. Because of this responsibility system, households with more manpower seem to become wealthy more rapidly than others. An existing belief among the rural population is that more children will provide a larger labor force and thus more income. Birth control and family planning are therefore becoming more difficult. In order to change existing beliefs, a comprehensive ideological education for peasants is needed so that they may understand the question of birth control from the viewpoints of national interests. Economic rewards and administrative restrictions may be used as necessary birth control measures. Agricultural production and family planning can be managed well if there is close contact and cooperation between the cadres and the masses. Extra care and benefits should be given to women of childbearing age who undergo birth control operations and agree to a single child in each household. Welfare programs for the masses, such as kindergartens and nursing homes must be established in order to reduce their worries. In addition, efforts are needed to study the new situation and solve new problems. The goal of controlling the rural population growth should be achiefed through practical work and experience.

  12. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study.

    PubMed

    Cheng, Weixiao; Li, Jianan; Wu, Ying; Xu, Like; Su, Chao; Qian, Yanyun; Zhu, Yong-Guan; Chen, Hong

    2016-03-01

    This study aims to determine abundance and persistence of antibiotics and antibiotic resistance genes (ARGs) in eco-agricultural system (EAS), which starts from swine feces to anaerobic digestion products, then application of anaerobic digestion solid residue (ADSR) and anaerobic digestion liquid residue (ADLR) to the soil to grow ryegrass, one of swine feed. Oxytetracycline had the highest concentration in manure reaching up to 138.7 mg/kg. Most of antibiotics could be effectively eliminated by anaerobic digestion and removal rates ranged from 11% to 86%. ARGs abundance fluctuated within EAS. TetQ had the highest relative abundance and the relative abundance of tetG had the least variation within the system, which indicates that tetG is persistent in the agricultural environment and requires more attention. Compared to the relative abundance in manure, tetC and tetM increased in biogas residue while three ribosomal protection proteins genes (tetO, tetQ, tetW) decreased (p<0.05), with other genes showing no significant change after anaerobic fermentation (p>0.05). Most ARGs in downstream components (soils and fishpond) of EAS showed significantly higher relative abundance than the control agricultural system (p<0.05), except for tetG and sulI.

  13. The impact of roots on soil organic carbon dynamics in annual and perennial agricultural systems

    NASA Astrophysics Data System (ADS)

    Beniston, J.; Dupont, T.; Glover, J.; Lal, R.

    2012-12-01

    Identifying and developing agricultural systems capable of transferring large quantities of carbon (C) to the soil and sustaining ecosystem processes and services is a priority for ecological researchers and land managers. Temperate grasslands have extensive root systems and transfer large quantities of C to the soil organic C (SOC) pool, which has lead to widespread interest in utilizing perennial grasses as both bioenergy crops and as a model for perennial grains. This study examined five sites in north central Kansas (U.S.A.) that contain the unique land use pairing of tall grass prairie meadows (PM) that have been harvested annually for hay for the past 75 years and annual grain (wheat) production fields (AG) that have been cultivated for a similar length of time, all on deep alluvial soils. Specific research objectives included: 1) To quantify below-ground biomass pools and root C contributions in the two systems; 2) To analyze and compare SOC pools and SOC concentration in primary particle size fractions in the two systems; 3) To utilize natural abundance δ13C signatures to determine the source and turnover of SOC in the soils of the AG sites; and 4) To elucidate the relationship of roots to both SOC pools and nematode food webs. Soil core samples were collected to a depth of 1 m in May and June 2008. Soil samples were analyzed for SOC, microbial biomass C (MBC), nematodes, and a particle size fractionation of SOC in coarse (>250 μm), particulate organic matter (POM) (53-250 μm), silt (2-53 μm), and clay (<2 μm) sized fractions. Root biomass, root length and root C were also analyzed to a depth of 1 m. Natural abundance δ13C values were obtained for all C parameters. Soils under PM had 4 times as much root C as AG soils to 1 m depth in mid May (PM 2.8 Mg ha-1 and AG 0.7 Mg ha-1) and 7 times as much root C to 1 m depth in late June (PM 3.5 Mg ha-1 and AG 0.5 Mg ha-1). The MBC pools were significantly larger in grassland soils to a depth of 60 cm in May

  14. An agricultural drought risk-assessment model for corn and soybeans

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Hubbard, Kenneth G.; Wilhite, Donald A.

    2004-05-01

    An agricultural drought risk-assessment model was developed for Nebraska, USA, for corn and soybeans on the basis of variables derived from the standardized precipitation index and crop-specific drought index using multivariate techniques. This model can be used to assess real-time agricultural drought risk for specific crops at critical times before and during the growing season by retaining previous, and adding current, weather information as the crops pass through the various development stages. This model will be helpful to decision makers, ranging from agricultural producers to policy makers and from local to national levels.The results of the model validation using three different datasets show that the risk-assessment accuracy improves as the crop develops. At the end of April, before corn is planted, the average assessment accuracy rate of drought risks on final yield is 60%. At the beginning of July, when corn is at the vegetative stage, the average assessment accuracy rate reaches 76%. In late July, when corn is at the ovule stage, the rate increases to 85%. The rates are 89% in the second half of August and the end of September, when corn is at the reproduction and ripening stages respectively. The model assessment accuracy for soybeans is lower than that for corn at the same growth stages because weather has less impact on soybeans than on corn. A reliable assessment, with 80% assessment accuracy rate, begins at mid-August, when soybeans are at pod formation stage. In early September and October, when soybeans are at pod fill and ripening stages respectively, the model is able to assess risks on soybean yield with 83% and 81% accuracy rates respectively.

  15. Modeling Agricultural Crop Production in China using AVHRR-based Vegetation Health Indices

    NASA Astrophysics Data System (ADS)

    Yang, B.; Kogan, F.; Guo, W.; Zhiyuan, P.; Xianfeng, J.

    Weather related crop losses have always been a concern for farmers On a wider scale it has always influenced decision of Governments traders and other policy makers for the purpose of balanced food supplies trade and distribution of aid to the nations in need Therefore national policy and decision makers are giving increasing importance to early assessment of crop losses in response to weather fluctuations This presentation emphasizes utility of AVHRR-based Vegetation health index VHI for early warning of drought-related losses of agricultural production in China The VHI is a three-channel index characterizing greenness vigor and temperature of land surface which can be used as proxy for estimation of how healthy and potentially productive could be vegetation China is the largest in the world producer of grain including wheat and rice and cotton In the major agricultural areas China s crop production is very dependent on weather The VHI being a proxy indicator of weather impact on vegetation showed some correlation with productivity of agricultural crops during the critical period of their development The periods of the strongest correlation were investigated and used to build regression models where crop yield deviation from technological trend was accepted as a dependent and VHI as independent variables The models were developed for several major crops including wheat corn and soybeans

  16. A radiative transfer model for microwave emissions from bare agricultural soils

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Paris, J. F.

    1975-01-01

    A radiative transfer model for microwave emissions from bare, stratified agricultural soils was developed to assist in the analysis of data gathered in the joint soil moisture experiment. The predictions of the model were compared with preliminary X band (2.8 cm) microwave and ground based observations. Measured brightness temperatures at vertical and horizontal polarizations can be used to estimate the moisture content of the top centimeter of soil with + or - 1 percent accuracy. It is also shown that the Stokes parameters can be used to distinguish between moisture and surface roughness effects.

  17. Participatory geographic information systems for agricultural water management scenario development: A Tanzanian case study

    NASA Astrophysics Data System (ADS)

    Cinderby, Steve; Bruin, Annemarieke de; Mbilinyi, Boniface; Kongo, Victor; Barron, Jennie

    One of the keys to environmental management is to understand the impact and interaction of people with natural resources as a means to improve human welfare and the consequent environmental sustainability for future generations. In terms of water management one of the on-going challenges is to assess what impact interventions in agriculture, and in particularly different irrigation strategies, will have on livelihoods and water resources in the landscape. Whilst global and national policy provide the overall vision of desired outcomes for environmental management, agricultural development and water use strategies they are often presented with local challenges to embed these policies in the reality on the ground, with different stakeholder groups. The concept that government agencies, advocacy organizations, and private citizens should work together to identify mutually acceptable solutions to environmental and water resource issues is increasing in prominence. Participatory spatial engagement techniques linked to geographic information systems (commonly termed participatory GIS (PGIS)) offers one solution to facilitate such stakeholder dialogues in an efficient and consultative manner. In the context of agricultural water management multi-scale PGIS techniques have recently been piloted as part of the ‘Agricultural Water Management Solutions’ project to investigate the current use and dependencies of water by small-holder farmers a watershed in Tanzania. The piloted approach then developed PGIS scenarios describing the effects on livelihoods and water resources in the watershed when introducing different management technologies. These relatively rapid PGIS multi-scale methods show promise for assessing current and possible future agriculture water management technologies in terms of their bio-physical and socio-economic impacts at the watershed scale. The paper discusses the development of the methodology in the context of improved water management decision

  18. Model-based predictions of anaerobic digestion of agricultural substrates for biogas production.

    PubMed

    Zhou, Haidong; Löffler, Daniel; Kranert, Martin

    2011-12-01

    A modified Anaerobic Digestion Model No. 1 (ADM1), calibrated on a laboratory digester with a feeding mix of 30% weight of cow manure and 70% weight of corn silage, was implemented, showing its performances of simulation as a decision-making and planning-supporting tool for the anaerobic digestion of agricultural substrates. The virtual fermenter obtained was used to conduct simulations with different feeding compositions and loading rates of cow manure, corn silage, grass silage and rape oil. All simulations were started at the same initial state which was represented by a steady state with an organic loading rate of 2.5 kg ODM/(mdigester3∗d). The effects of the different feeding combinations on biogas composition and biogas yield were predicted reasonably, and partly verified with the available literature data. Results demonstrated that the simulations could be helpful for taking decisions on agricultural biogas plant operation or experimental set-ups, if used advisedly.

  19. Model-based predictions of anaerobic digestion of agricultural substrates for biogas production.

    PubMed

    Zhou, Haidong; Löffler, Daniel; Kranert, Martin

    2011-12-01

    A modified Anaerobic Digestion Model No. 1 (ADM1), calibrated on a laboratory digester with a feeding mix of 30% weight of cow manure and 70% weight of corn silage, was implemented, showing its performances of simulation as a decision-making and planning-supporting tool for the anaerobic digestion of agricultural substrates. The virtual fermenter obtained was used to conduct simulations with different feeding compositions and loading rates of cow manure, corn silage, grass silage and rape oil. All simulations were started at the same initial state which was represented by a steady state with an organic loading rate of 2.5 kg ODM/(mdigester3∗d). The effects of the different feeding combinations on biogas composition and biogas yield were predicted reasonably, and partly verified with the available literature data. Results demonstrated that the simulations could be helpful for taking decisions on agricultural biogas plant operation or experimental set-ups, if used advisedly. PMID:21974886

  20. Water quality modeling using geographic information system (GIS) data

    NASA Technical Reports Server (NTRS)

    Engel, Bernard A

    1992-01-01

    Protection of the environment and natural resources at the Kennedy Space Center (KSC) is of great concern. The potential for surface and ground water quality problems resulting from non-point sources of pollution was examined using models. Since spatial variation of parameters required was important, geographic information systems (GIS) and their data were used. The potential for groundwater contamination was examined using the SEEPAGE (System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments) model. A watershed near the VAB was selected to examine potential for surface water pollution and erosion using the AGNPS (Agricultural Non-Point Source Pollution) model.

  1. Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.

    PubMed

    Zhang, Xuyang; Goh, Kean S

    2015-11-01

    Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation.

  2. Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.

    PubMed

    Zhang, Xuyang; Goh, Kean S

    2015-11-01

    Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation. PMID:26641333

  3. Modeling Spatial and Temporal Variability in Ammonia Emissions from Agricultural Fertilization

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Koloutsou-Vakakis, S.; Rood, M. J.

    2013-12-01

    Ammonia (NH3), is an important component of the reactive nitrogen cycle and a precursor to formation of atmospheric particulate matter (PM). Predicting regional PM concentrations and deposition of nitrogen species to ecosystems requires representative emission inventories. Emission inventories have traditionally been developed using top down approaches and more recently from data assimilation based on satellite and ground based ambient concentrations and wet deposition data. The National Emission Inventory (NEI) indicates agricultural fertilization as the predominant contributor (56%) to NH3 emissions in Midwest USA, in 2002. However, due to limited understanding of the complex interactions between fertilizer usage, farm practices, soil and meteorological conditions and absence of detailed statistical data, such emission estimates are currently based on generic emission factors, time-averaged temporal factors and coarse spatial resolution. Given the significance of this source, our study focuses on developing an improved NH3 emission inventory for agricultural fertilization at finer spatial and temporal scales for air quality modeling studies. Firstly, a high-spatial resolution 4 km x 4 km NH3 emission inventory for agricultural fertilization has been developed for Illinois by modifying spatial allocation of emissions based on combining crop-specific fertilization rates with cropland distribution in the Sparse Matrix Operator Kernel Emissions model. Net emission estimates of our method are within 2% of NEI, since both methods are constrained by fertilizer sales data. However, we identified localized crop-specific NH3 emission hotspots at sub-county resolutions absent in NEI. Secondly, we have adopted the use of the DeNitrification-DeComposition (DNDC) Biogeochemistry model to simulate the physical and chemical processes that control volatilization of nitrogen as NH3 to the atmosphere after fertilizer application and resolve the variability at the hourly scale

  4. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa - A review

    NASA Astrophysics Data System (ADS)

    Biazin, Birhanu; Sterk, Geert; Temesgen, Melesse; Abdulkedir, Abdu; Stroosnijder, Leo

    Agricultural water scarcity in the predominantly rainfed agricultural system of sub-Saharan Africa (SSA) is more related to the variability of rainfall and excessive non-productive losses, than the total annual precipitation in the growing season. Less than 15% of the terrestrial precipitation takes the form of productive ‘green’ transpiration. Hence, rainwater harvesting and management (RWHM) technologies hold a significant potential for improving rainwater-use efficiency and sustaining rainfed agriculture in the region. This paper outlines the various RWHM techniques being practiced in SSA, and reviews recent research results on the performance of selected practices. So far, micro-catchment and in situ rainwater harvesting techniques are more common than rainwater irrigation techniques from macro-catchment systems. Depending on rainfall patterns and local soil characteristics, appropriate application of in situ and micro-catchment techniques could improve the soil water content of the rooting zone by up to 30%. Up to sixfold crop yields have been obtained through combinations of rainwater harvesting and fertiliser use, as compared to traditional practices. Supplemental irrigation of rainfed agriculture through rainwater harvesting not only reduces the risk of total crop failure due to dry spells, but also substantially improves water and crop productivity. Depending on the type of crop and the seasonal rainfall pattern, the application of RWHM techniques makes net profits more possible, compared to the meagre profit or net loss of existing systems. Implementation of rainwater harvesting may allow cereal-based smallholder farmers to shift to diversified crops, hence improving household food security, dietary status, and economic return. The much needed green revolution and adaptations to climate change in SSA should blend rainwater harvesting ideals with agronomic principles. More efforts are needed to improve the indigenous practices, and to disseminate best

  5. Modelling resonant planetary systems

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, V.

    2012-09-01

    Many discovered multi-planet systems are in meanmotion resonances. The aim of this work is to study dynamical processes leading to the formation of resonant configurations on the basis of a unified model described earlier [1]. The model includes gravitational interactions of planets and migration of planets due to the presence of a gas disc. For the observed systems 24 Sex, HD 37124, HD 73526, HD 82943, HD 128311, HD 160691, Kepler 9, NN Ser with planets moving in the 2:1 resonance, it is shown that the capture in this resonance occurs at very wide ranges of parameters of both type I and type II migration. Conditions of migration leading to the formation of the resonant systems HD 45364 и HD 200964 (3:2 and 4:3, respectively) are obtained. Formation scenarios are studied for the systems HD 102272, HD 108874, HD 181433, HD 202206 with planets in high order resonances. We discuss also how gravitational interactions of planets and planetesimal discs lead to the breakup of resonant configurations and the formation of systems similar to the 47 UMa system.

  6. Using logic models in a community-based agricultural injury prevention project.

    PubMed

    Helitzer, Deborah; Willging, Cathleen; Hathorn, Gary; Benally, Jeannie

    2009-01-01

    The National Institute for Occupational Safety and Health has long promoted the logic model as a useful tool in an evaluator's portfolio. Because a logic model supports a systematic approach to designing interventions, it is equally useful for program planners. Undertaken with community stakeholders, a logic model process articulates the underlying foundations of a particular programmatic effort and enhances program design and evaluation. Most often presented as sequenced diagrams or flow charts, logic models demonstrate relationships among the following components: statement of a problem, various causal and mitigating factors related to that problem, available resources to address the problem, theoretical foundations of the selected intervention, intervention goals and planned activities, and anticipated short- and long-term outcomes. This article describes a case example of how a logic model process was used to help community stakeholders on the Navajo Nation conceive, design, implement, and evaluate agricultural injury prevention projects. PMID:19618808

  7. A new baseline of organic carbon stock in European agricultural soils using a modelling approach.

    PubMed

    Lugato, Emanuele; Panagos, Panos; Bampa, Francesca; Jones, Arwyn; Montanarella, Luca

    2014-01-01

    Proposed European policy in the agricultural sector will place higher emphasis on soil organic carbon (SOC), both as an indicator of soil quality and as a means to offset CO2 emissions through soil carbon (C) sequestration. Despite detailed national SOC data sets in several European Union (EU) Member States, a consistent C stock estimation at EU scale remains problematic. Data are often not directly comparable, different methods have been used to obtain values (e.g. sampling, laboratory analysis) and access may be restricted. Therefore, any evolution of EU policies on C accounting and sequestration may be constrained by a lack of an accurate SOC estimation and the availability of tools to carry out scenario analysis, especially for agricultural soils. In this context, a comprehensive model platform was established at a pan-European scale (EU + Serbia, Bosnia and Herzegovina, Croatia, Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) using the agro-ecosystem SOC model CENTURY. Almost 164 000 combinations of soil-climate-land use were computed, including the main arable crops, orchards and pasture. The model was implemented with the main management practices (e.g. irrigation, mineral and organic fertilization, tillage) derived from official statistics. The model results were tested against inventories from the European Environment and Observation Network (EIONET) and approximately 20 000 soil samples from the 2009 LUCAS survey, a monitoring project aiming at producing the first coherent, comprehensive and harmonized top-soil data set of the EU based on harmonized sampling and analytical methods. The CENTURY model estimation of the current 0-30 cm SOC stock of agricultural soils was 17.63 Gt; the model uncertainty estimation was below 36% in half of the NUTS2 regions considered. The model predicted an overall increase of this pool according to different climate-emission scenarios up to 2100, with C loss in the south and east of the area

  8. On the contribution of modelling to multifunctional agriculture: learning from comparisons.

    PubMed

    Groot, Jeroen C J; Rossing, Walter A H; Tichit, Muriel; Turpin, Nadine; Jellema, André; Baudry, Jacques; Verburg, Peter H; Doyen, Luc; van de Ven, Gerrie W J

    2009-05-01

    In this paper a set of criteria is proposed for the evaluation of the potential contribution of modelling tools to strengthening the multifunctionality of agriculture. The four main areas of evaluation are (1) policy relevance, (2) the temporal resolution and scope, (3) the degree to which spatial and socio-institutional scales and heterogeneity are addressed and (4) the level of integration in the assessment of scientific dimensions and of the multiple functions of agriculture. The evaluative criteria are applied to the portfolio of modelling approaches developed and applied in a joint project of the French research institute INRA and the Dutch Wageningen University & Research Centre. The CLUE-S model focuses on prediction of changes in multifunctional land-use at regional scale, given a set of predetermined scenarios or policy variants, e.g. for ex-ante policy assessment and initiation of discussions on regional development. The two other modelling approaches are complementary and aim to address multifunctional farming activities. The Landscape IMAGES framework generates a range of static images of possible but sometimes distant futures for multifunctional farming activities in a small region or landscape. It supports the exploration of trade-offs between financial returns from agriculture, landscape quality, nature conservation and restoration, and environmental quality. Co-Viability Analysis generates trajectories of states and farming decisions fulfilling a given set of ecological and productive constraints representing a desired and sustainable future. The three modelling approaches differ in their policy relevance, in the ways that spatial and socio-institutional scales are addressed and in their degree of explicitation of interaction between the various functions of agriculture, but jointly cover most of the desired capabilities for assessment of multifunctionality. Caveats were particularly identified in the integration of the socio-institutional dimension

  9. [Energy flow characteristics of the compound agriculture-fruit farming system in Xipo Village, Shaanxi, Northwest China].

    PubMed

    Wu, Fa-Qi; Zhu, Li; Wang, Hong-Hong

    2014-01-01

    Taking the crop-fruit farming system in Xipo Village in Chunhua, Shaanxi Province as a case, the energy flow path, input and output structure, and the indices of energy cycle for the agriculture, fruit, stockbreeding and human subsystems were compared between 2008 and 2010. Results showed that during the study period the total investment to the agriculture-fruit farming system (CAF) decreased by 1.6%, while the total output increased by 56.7%, which led to a 59.4% increase of the output/input ratio. Energy output/input ratio of the agriculture, fruit, stockbreeding, human subsystems increased by 36.6%, 21.0%, 10.0% and 3.8%, respectively. The Xipo Village still needed to stabilize the agriculture, develop stockbreeding and strengthen fruit to upgrade the compound agriculture-fruit farming system.

  10. An Internet-based simulation model for nitrogen management in agricultural settings.

    PubMed

    Shaffer, M J; Newton, B J; Gross, C M

    2001-11-14

    Complex chemical, physical, and biological processes mediate nitrogen (N) transformations and movement during agricultural production, making the optimization of fertilizer use and environmental protection exceedingly difficult. Various computer models have been developed to simulate the site-specific fate and transport of N resulting from different crop production scenarios, but these models are very complex and difficult to use for most farmers, consultants, and conservationists. In an effort to facilitate access and simplify the use of sophisticated models, the U.S. Department of Agriculture (USDA) has developed an Internet-based nitrogen analysis tool. Based on the Nitrate Leaching and Economic Analysis Package (NLEAP), the Web site allows a user to conduct multiyear N simulation modeling specific to a crop field. Servers handle much of the required data assembly and formatting, thus sparing the user"s resources. Model runs are executed on the servers and the results are transmitted to the user. This new tool is presented along with early implementation results.

  11. Review: Computer-based models for managing the water-resource problems of irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2015-09-01

    Irrigation is essential for achieving food security to the burgeoning global population but unplanned and injudicious expansion of irrigated areas causes waterlogging and salinization problems. Under this backdrop, groundwater resources management is a critical issue for fulfilling the increasing water demand for agricultural, industrial, and domestic uses. Various simulation and optimization approaches were used to solve the groundwater management problems. This paper presents a review of the individual and combined applications of simulation and optimization modeling for the management of groundwater-resource problems associated with irrigated agriculture. The study revealed that the combined use of simulation-optimization modeling is very suitable for achieving an optimal solution for groundwater-resource problems, even with a large number of variables. Independent model tools were used to solve the problems of uncertainty analysis and parameter estimation in groundwater modelling studies. Artificial neural networks were used to minimize the problem of computational complexity. The incorporation of socioeconomic aspects into the groundwater management modeling would be an important development in future studies.

  12. Incorporating representation of agricultural ecosystems and management within a dynamic biosphere model: Approach, validation, and significance

    NASA Astrophysics Data System (ADS)

    Kucharik, C.

    2004-12-01

    At the scale of individual fields, crop models have long been used to examine the interactions between soils, vegetation, the atmosphere and human management, using varied levels of numerical sophistication.