Science.gov

Sample records for agricultural waste product

  1. Wastes and by-products - alternatives for agricultural use

    SciTech Connect

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  2. Food and agricultural waste: Sources of carbon for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, wastes derived from agriculture products have met with limited success in the production of biofuels. Our objective in this report is to showcase a new and meaningful concept (called “avoidance”), to measure the environmental importance of converting these waste streams into energy. Agr...

  3. Agricultural Waste.

    PubMed

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014. PMID:27620093

  4. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  5. Agricultural Waste.

    PubMed

    Shu, Huajie; Zhang, Panpan; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2015-10-01

    The management and disposal of agricultural waste are drawn more and more attention because of the increasing yields and negative effects on the environment. However, proper treatments such as converting abundant biomass wastes into biogas through anaerobic digestion technology, can not only avoid the negative impacts, but also convert waste into available resources. This review summarizes the studies of nearly two hundred scholars from the following four aspects: the characterization, reuse, treatment, and management of agricultural waste. PMID:26420088

  6. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  7. Production of bioethanol using agricultural waste: Banana pseudo stem

    PubMed Central

    Ingale, Snehal; Joshi, Sanket J.; Gupte, Akshaya

    2014-01-01

    India is amongst the largest banana (Musa acuminata) producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g%) gave maximum ethanol (17.1 g/L) with yield (84%) and productivity (0.024 g%/h) after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production. PMID:25477922

  8. ENGINEERING SACCHAROMYCES CEREVISIAE FOR ETHANOL PRODUCTION FROM AGRICULTURAL WASTE PRODUCTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research focusing on the production of alternative fuels has intensified due to increasing global demand for a limited oil supply. Fuel ethanol production in the U.S. amounted to 5 billion gallons for 2006 and is projected to increase. Most of the ethanol produced is currently from fermentation of...

  9. Agricultural Production.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This brochure describes the philosophy and scope of a secondary-level course in agricultural production. Addressed in the individual units of the course are the following topics: careers in agriculture and agribusiness, animal science and livestock production, agronomy, agricultural mechanics, supervised occupational experience programs, and the…

  10. Ethanol production from agricultural wastes using Sacchromyces cervisae

    PubMed Central

    Irfan, Muhammad; Nadeem, Muhammad; Syed, Quratualain

    2014-01-01

    The main objective of this study was production of ethanol from three lignocellulosic biomasses like sugarcane bagasse, rice straw and wheat straw by Sacchromyces cervisae. All the three substrates were ground to powder form (2 mm) and pretreated with 3%H2O2 + 2% NaOH followed by steaming at 130 °C for 60 min. These substrates were hydrolyzed by commercial cellulase enzyme. The whole fermentation process was carried out in 500 mL Erlenmeyer flask under anaerobic conditions in submerged fermentation at 30 °C for three days of incubation period. FTIR analysis of the substrates indicated significant changes in the alteration of the structure occurred after pretreatment which leads to efficient saccharification. After pretreatment the substrates were hydrolyzed by commercial cellulase enzyme and maximum hydrolysis was observed in sugarcane bagasse (64%) followed by rice straw (40%) and wheat straw (34%). Among all these tested substrates, sugarcane bagasse (77 g/L) produced more ethanol as compared to rice straw (62 g/L) and wheat straw (44 g/L) using medium composition of (%) 0.25 (NH4)2SO4, 0.1 KH2PO4, 0.05 MgSO4, 0.25 Yeast extract by S. cervisae. PMID:25242928

  11. Steam drying of industrial and agricultural products and wastes

    SciTech Connect

    Frame, G.B.; Galland, K.V.; Svensson, C.

    1983-03-01

    A new drying technique has been developed by MoDo-Chemetics and Chalmers of Technology in Sweden. Steam drying utilizes the drying capacity of superheated steam to remove moisture from porous material such as pulp or hog fuel. The first commercial dryer based on this technique was installed at Rockhammar Bruk in Sweden, where wood pulp is dried from 60% to 12% moisture content. Two commercial-size units are presently under construction, one for drying of hog fuel from 50% to 35% moisture content for on-the-grate firing in the power boiler and one for drying of sugar-beet pulp from 80% to 10% moisture content. This new technique can be applied in the drying of materials used in the production of waterboard, fiberboard, and hardboard, drying of peat, distillers grain residue, orange and pineapple pulp, grape and apple pomace, and cotton linters, for various end uses including cattlefeed and the use of residues as combustible material in small boilers. The energy-recovery aspects of the steam dryer are very important. Energy recovery in a useful form of more than 85% of the input to the dryer is feasible. 4 figures, 2 tables. (DP)

  12. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes.

    PubMed

    Huitron, C; Perez, R; Sanchez, A E; Lappe, P; Rocha Zavaleta, L

    2008-01-01

    Approximately 1 million tons of Agave tequilana plants are processed annually by the Mexican Tequila industry generating vast amounts of agricultural waste. The aim of this study was to investigate the potential use of Agave tequilana waste as substrate for the production of commercially important enzymes. Two strains of Aspergillus niger (CH-A-2010 and CH-A-2016), isolated from agave fields, were found to grow and propagate in submerged cultures using Agave tequilana waste as substrate. Isolates showed simultaneous extracellular inulinase, xylanase, pectinase, and cellulase activities. Aspergillus CH-A-2010 showed the highest production of inulinase activity (1.48 U/ml), whereas Aspergillus niger CH-A-2016 produced the highest xylanase (1.52 U/ml) and endo-pectinase (2.7U/ml) activities. In both cases production of enzyme activities was significantly higher on Agave tequilana waste than that observed on lemon peel and specific polymeric carbohydrates. Enzymatic hydrolysis of raw A. tequilana stems and leaves, by enzymes secreted by the isolates yielded maximum concentrations of reducing sugars of 28.2 g/l, and 9.9 g/l respectively. In conclusion, Agave tequilana waste can be utilized as substrate for the production of important biotechnological enzymes. PMID:18833660

  13. The organic agricultural waste as a basic source of biohydrogen production

    NASA Astrophysics Data System (ADS)

    Sriwuryandari, Lies; Priantoro, E. Agung; Sintawardani, Neni; Astuti, J. Tri; Nilawati, Dewi; Putri, A. Mauliva Hada; Mamat, Sentana, Suharwadji; Sembiring, T.

    2016-02-01

    Biohydrogen production research was carried out using raw materials of agricultural organic waste that was obtained from markets around the Bandung city. The organic part, which consisted of agricultural waste material, mainly fruit and vegetable waste, was crushed and milled using blender. The sludge that produced from milling process was then used as a substrate for mixed culture microorganism as a raw material to produce biohydrogen. As much as 1.2 kg.day-1 of sludge (4% of total solid) was fed into bioreactor that had a capacity of 30L. Experiment was done under anaerobic fermentation using bacteria mixture culture that maintained at pH in the range of 5.6-6.5 and temperature of 25-30oC on semi-continuous mode. Parameters of analysis include pH, temperature, total solid (TS), organic total solid (OTS), total gas production, and hydrogen gas production. The results showed that from 4% of substrate resulted 897.86 L of total gas, which contained 660.74 L (73.59%) of hydrogen gas. The rate of hydrogen production in this study was 11,063 mol.L-1.h-1.

  14. Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes.

    PubMed

    Ahmad, Wan Azlina; Yusof, Nur Zulaikha; Nordin, Nordiana; Zakaria, Zainul Akmar; Rezali, Mohd Fazlin

    2012-07-01

    The present work highlighted the production of violacein by the locally isolated Chromobacterium violaceum (GenBank accession no. HM132057) in various agricultural waste materials (sugarcane bagasse, solid pineapple waste, molasses, brown sugar), as an alternative to the conventional rich medium. The highest yield for pigment production (0.82 g L⁻¹) was obtained using free cells when grown in 3 g of sugarcane bagasse supplemented with 10% (v/v) of L-tryptophan. A much lower yield (0.15 g L⁻¹) was obtained when the cells were grown either in rich medium (nutrient broth) or immobilized onto sugarcane bagasse. Violacein showed similar chemical properties as other natural pigments based on the UV-Vis, Fourier transform infrared spectroscopy, thin-layer chromatography, nuclear magnetic resonance, and mass spectrometry analysis. The pigment is highly soluble in acetone and methanol, insoluble in water or non-polar organic solvents, and showed good stability between pH 5-9, 25-100 °C, in the presence of light metal ions and oxidant such as H₂O₂. However, violacein would be slowly degraded upon exposure to light. This is the first report on the use of cheap and easily available agricultural wastes as growth medium for violacein-producing C. violaceum. PMID:22278051

  15. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes.

    PubMed

    Abouelenien, Fatma; Namba, Yuzaburo; Kosseva, Maria R; Nishio, Naomichi; Nakashimada, Yutaka

    2014-05-01

    The potential for methane production from semi-solid chicken manure (CM) and mixture of agricultural wastes (AWS) in a co-digestion process has been experimentally evaluated at thermophilic and mesophilic temperatures. To the best of author(')s knowledge, it is the first time that CM is co-digested with mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Two types of anaerobic digestion processes (AD process) were used, process 1 (P1) using fresh CM (FCM) and process 2 (P2) using treated CM (TCM), ammonia stripped CM, were conducted. Methane production in P1 was increased by 93% and 50% compared to control (no AWS added) with maximum methane production of 502 and 506 mL g(-1)VS obtained at 55°C and 35°C, respectively. Additionally, 42% increase in methane production was observed with maximum volume of 695 mL g(-1)VS comparing P2 test with P2 control under 55°C. Ammonia accumulation was reduced by 39% and 32% in P1 and P2 tests. PMID:24632629

  16. Biofuels and bioenergy production from municipal solid waste commingled with agriculturally-derived biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA in partnership with Salinas Valley Solid Waste Authority (SVSWA) and CR3, a technology holding company from Reno, NV, has introduced a biorefinery concept whereby agriculturally- derived biomass is commingled with municipal solid waste (MSW) to produce bioenergy. This team, which originally...

  17. Magnitude of anthropogenic phosphorus storage in the agricultural production and the waste management systems at the regional and country scales.

    PubMed

    Chowdhury, Rubel Biswas; Chakraborty, Priyanka

    2016-08-01

    Based on a systematic review of 17 recent substance flow analyses of phosphorus (P) at the regional and country scales, this study presents an assessment of the magnitude of anthropogenic P storage in the agricultural production and the waste management systems to identify the potential for minimizing unnecessary P storage to reduce the input of P as mineral fertilizer and the loss of P. The assessment indicates that in case of all (6) P flow analyses at the regional scale, the combined mass of annual P storage in the agricultural production and the waste management systems is greater than 50 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while this is close to or more than 100 % in case of half of these analyses. At the country scale, in case of the majority (7 out of 11) of analyses, the combined mass of annual P storage in the agricultural production and the waste management systems has been found to be roughly equivalent or greater than 100 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while it ranged from 30 to 60 % in the remaining analyses. A simple scenario analysis has revealed that the annual storage of P in this manner over 100 years could result in the accumulation of a massive amount of P in the agricultural production and the waste management systems at both the regional and country scales. This study suggests that sustainable P management initiatives at the regional and country scales should put more emphasis on minimizing unwanted P storage in the agricultural production and the waste management systems. PMID:27278065

  18. Potato pulp: microbiological characterization, physical modification, and application of this agricultural waste product.

    PubMed

    Mayer, F; Hillebrandt, J O

    1997-10-01

    Potato pulp, one of the agricultural waste products obtained in high quantities during starch production, contains starch, cellulose, hemicelluloses, pectin, proteins, free amino acids and salts. It exhibits physical and physicochemical properties of a typical colloid. It is mainly used, in a dried and pelleted form, as cattle feed. Its autochthonic microbial flora (bacteria, fungi) was identified and studied with a view towards the degradative potential of the microorganisms and ways of conserving the pulp for subsequent technical applications; 33 isolates (28 bacteria, 4 fungi, 1 yeast), belonging to 15 genera were characterized. Biological conservation was possible at very low oxygen pressure, brought about by the autochthonic anaerobic microorganisms causing acidification. Chemical conservation was achieved with sorbic acid. By treatment with hot water vapour under pressure (autoclaving), followed by a pressure release procedure, intact cells in the pulp (both potato cells and microorganisms, not spores) were destroyed, and their contents and wall fragments were set free. This process resulted in low drying costs and was a prerequisite for the production of a powder that can be used as glue or as animal feed. PMID:9390450

  19. Waste ashes for use in agricultural production: II. Contents of minor and trace metals.

    PubMed

    Zhang, Fu-Shen; Yamasaki, S; Kimura, K

    2002-03-01

    The present study was carried out to examine the contents of 18 minor and trace metals in five typical municipal waste ashes in Japan. In the waste ashes, Li, Ga, Rb, Y, Zr had relatively higher concentrations, approximately 5-300 mg kg(-1), the remaining metal concentrations were generally approximately 0.05-20 mg kg(-1). A comparison of the metal concentrations in the waste ashes and in Japanese agricultural soils indicated that the ratios for Ga, Mo, Ag, Sb, W, Bi between sewage sludge ash (SSA) and the soils were approximately 10-100 and for the remaining metals approximately 0.2-2; the ratios between food scrap ash (FSA), animal waste ash (AWA), horticulture waste ash (HWA) and incinerator bottom ash (IBA) and the soils were approximately 0.2-5. Furthermore, an overall evaluation on the waste ashes was also carried out using factor analysis with the addition of the other 21 elements examined in a companion paper. In the waste ashes, the major nutrient elements and heavy metals were mainly described by four factors: factors 1 and 2 explained the main information of the minor and trace metals while factors 3 and 4 explained that of the major nutrient elements. Factor 2 in the score plots could be used to evaluate the potential risk of the waste ashes to agricultural soils. Of the five types of waste ashes, SSA and IBA were abundant with minor and trace metals; AWA was relatively abundant with major nutrient elements especially for K; FSA was relatively abundant with major nutrient elements except for K, while HWA was not abundant with either of them. PMID:11886086

  20. Utilization of agricultural wastes for production of ethanol. Progress report, October 1979-May 1980

    SciTech Connect

    Singh, B.

    1980-05-01

    The project proposes to develop methods to utilize agricultural wastes, especially cottonseed hulls and peanut shells to produce ethanol. Initial steps will involve development of methods to break down cellulose to a usable form of substrates for chemical or biological digestion. The process of ethanol production will consist of (a) preparatory step to separate fibrous (cellulose) and non-fibrous (non-cellulosic compounds). The non-cellulosic residues which may include grains, fats or other substrates for alcoholic fermentation. The fibrous residues will be first pre-treated to digest cellulose with acid, alkali, and sulfur dioxide gas or other solvents. (b) The altered cellulose will be digested by suitable micro-organisms and cellulose enzymes before alcoholic fermentation. The digester and fermentative unit will be specially designed to develop a prototype for pilot plant for a continuous process. The first phase of the project will be devoted toward screening of a suitable method for cellulose modification, separation of fibrous and non-fibrous residues, the micro-organism and enzyme preparations. Work is in progress on: the effects of various microorganisms on the degree of saccharification; the effects of higher concentrations of acids, alkali, and EDTA on efficiency of microbial degradation; and the effects of chemicals on enzymatic digestion.

  1. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.

    PubMed

    Saratale, Ganesh D; Kshirsagar, Siddheshwar D; Sampange, Vilas T; Saratale, Rijuta G; Oh, Sang-Eun; Govindwar, Sanjay P; Oh, Min-Kyu

    2014-12-01

    Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources. PMID:25374139

  2. Bacterial Cellulose Production by Acetobacter xylinum Strains from Agricultural Waste Products

    NASA Astrophysics Data System (ADS)

    Kongruang, Sasithorn

    Bacterial cellulose is a biopolysaccharide produced from the bacteria, Acetobacter xylinum. Static batch fermentations for bacterial cellulose production were studied in coconut and pineapple juices under 30 °C in 5-1 fermenters by using three Acetobacter strains: A. xylinum TISTR 998, A. xylinum TISTR 975, and A. xylinum TISTR 893. Experiments were carried out to compare bacterial cellulose yields along with growth kinetic analysis. Results showed that A. xylinum TISTR 998 produced a bacterial cellulose yield of 553.33 g/l, while A. xylinum TISTR 893 produced 453.33 g/l and A. xylinum TISTR 975 produced 243.33 g/l. In pineapple juice, the yields for A. xylinum TISTR 893, 975, and 998 were 576.66, 546.66, and 520 g/l, respectively. The strain TISTR 998 showed the highest productivity when using coconut juice. Morphological properties of cellulose pellicles, in terms of texture and color, were also measured, and the textures were not significantly different among treatments.

  3. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater.

    PubMed

    Nguyen, T A H; Ngo, H H; Guo, W S; Zhang, J; Liang, S; Yue, Q Y; Li, Q; Nguyen, T V

    2013-11-01

    This critical review discusses the potential use of agricultural waste based biosorbents (AWBs) for sequestering heavy metals in terms of their adsorption capacities, binding mechanisms, operating factors and pretreatment methods. The literature survey indicates that AWBs have shown equal or even greater adsorption capacities compared to conventional adsorbents. Thanks to modern molecular biotechnologies, the roles of functional groups in biosorption process are better understood. Of process factors, pH appears to be the most influential. In most cases, chemical pretreatments bring about an obvious improvement in metal uptake capacity. However, there are still several gaps, which require further investigation, such as (i) searching for novel, multi-function AWBs, (ii) developing cost-effective modification methods and (iii) assessing AWBs under multi-metal and real wastewater systems. Once these challenges are settled, the replacement of traditional adsorbents by AWBs in decontaminating heavy metals from wastewater can be expected in the future. PMID:24045220

  4. Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology.

    PubMed

    Tepe, Ozlem; Dursun, Arzu Y

    2014-01-01

    In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12-0.21% w/v) and yeast extract (0.12-0.3% w/v) and relatively high wheat bran (~5-6% w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B (2) showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity. PMID:24819433

  5. United States based agricultural {open_quotes}waste products{close_quotes} as fillers in a polypropylene homopolymer

    SciTech Connect

    Jacobson, R.E.; Rowell, R.M.; Caulfield, D.F.

    1995-11-01

    With the advent of modern coupling agents (MAPP or maleic anhydride grafted polypropylene), the potential use of various types of renewable, sustainable agricultural byproducts as fillers in thermoplastics is explored. Over 7.7 billion pounds of fillers were used in the plastics industry in 1993. With sharp price increases in commodity thermoplastics (i.e. approximately 25% in 94`), the amount of fillers in thermoplastic materials will increase throughout the 90`s. Various types of agricultural fibers are evaluated for mechanical properties vs. 50% wood flour and 40% talc filled polypropylene (PP). The fibers included in this study are: kenaf core, oat straw, wheat straw, oat hulls, wood flour (pine), corncob, hard corncob, rice hulls, peanut hulls, corn fiber, soybean hull, residue, and jojoba seed meal. Composite interfaces were modified with MAPP to improve the mechanical properties through increased adhesion between the hydrophilic and polar fibers with the hydrophobic and non-polar matrix. The agro-waste composites had compositions of 50% agro-waste/48% PP/2% MAPP. All of the agricultural waste by-products were granulated through a Wiley mill with a 30 mesh screen and compounded in a high intensity shear-thermo kinetic mixer. The resultant blends were injection molded into ASTM standard samples and tested for tensile, flexural, and impact properties. This paper reports on the mechanical properties of the twelve resultant composites and compares them to wood flour and talc-filled polypropylene composites. The mechanical properties of kenaf core, oat straw, wheat straw, and oat hulls compare favorably to the wood flour and talc-filled PP, which are both commercially available and used in the automotive and furniture markets.

  6. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery.

    PubMed

    Zverlov, V V; Berezina, O; Velikodvorskaya, G A; Schwarz, W H

    2006-08-01

    Clostridial acetone-butanol fermentation from renewable carbohydrates used to be the largest biotechnological process second only to yeast ethanol fermentation and the largest process ever run under sterile conditions. With the rising prices for mineral oil, it has now the economical and technological potential to replace petrochemistry for the production of fuels from renewable resources. Various methods for using non-food biomass such as cellulose and hemicellulose in agricultural products and wastes have been developed at laboratory scale. To our knowledge, the AB plants in Russia were the only full-scale industrial plants which used hydrolyzates of lignocellosic waste for butanol fermentation. These plants were further developed into the 1980s, and the process was finally run in a continual mode different from plants in Western countries. A biorefinery concept for the use of all by-products has been elaborated and was partially put into practice. The experience gained in the Soviet Union forms a promising basis for the development of modern large-scale processes to replace a considerable fraction of the current chemical production of fuel for our future needs on a sustainable basis. PMID:16685494

  7. Waste ashes for use in agricultural production: I. Liming effect, contents of plant nutrients and chemical characteristics of some metals.

    PubMed

    Zhang, Fu-Shen; Yamasaki, S; Nanzyo, M

    2002-02-01

    The chemical characteristics of 89 municipal waste ashes, including food scrap ash (FSA), animal waste ash (AWA), horticulture waste ash (HWA), sewage sludge ash (SSA) and incinerator bottom ash (IBA), from various locations in Japan were examined with the aim of evaluating their suitability for use in agriculture. Although the waste ashes came from different sources and consisted of various materials, the gross elemental composition was similar. Acid neutralization capacity (liming effect) for the waste ashes was equivalent to 10-30% of CaO and followed the sequence SSA > IBA > AWA > FSA > HWA. Average P concentrations for the five types of waste ashes ranged from 10 to 29 g kg(-1) and average K concentrations ranged from 14 to 63 g kg(-1), respectively. Metal contents in the waste ashes were compared with levels in Japanese agricultural soils. K in the waste ashes was 1.3-6 times higher and Ca was 3-12 times higher; contents of the other metals in FSA, AWA and HWA were generally less than five times higher, but Ni, Cu, Zn, Cd, Sn, Pb in SSA or IBA were approximately 10-200 times higher than those in soils. Moreover, the ceiling amounts of waste ashes that may be applied to main Japanese agricultural soils were calculated by using soil contamination standards for Cu. Water solubility of P and metals in the waste ashes were also examined. PMID:11846166

  8. Hydrogen Production and Enzyme Activities in the Hyperthermophile Thermococcus paralvinellae Grown on Maltose, Tryptone, and Agricultural Waste.

    PubMed

    Hensley, Sarah A; Moreira, Emily; Holden, James F

    2016-01-01

    Thermococcus may be an important alternative source of H2 in the hot subseafloor in otherwise low H2 environments such as some hydrothermal vents and oil reservoirs. It may also be useful in industry for rapid agricultural waste treatment and concomitant H2 production. Thermococcus paralvinellae grown at 82°C without sulfur produced up to 5 mmol of H2 L(-1) at rates of 5-36 fmol H2 cell(-1) h(-1) on 0.5% (wt vol(-1)) maltose, 0.5% (wt vol(-1)) tryptone, and 0.5% maltose + 0.05% tryptone media. Two potentially inhibiting conditions, the presence of 10 mM acetate and low pH (pH 5) in maltose-only medium, did not significantly affect growth or H2 production. Growth rates, H2 production rates, and cell yields based on H2 production were the same as those for Pyrococcus furiosus grown at 95°C on the same media for comparison. Acetate, butyrate, succinate, isovalerate, and formate were also detected as end products. After 100 h, T. paralvinellae produced up to 5 mmol of H2 L(-1) of medium when grown on up to 70% (vol vol(-1)) waste milk from cows undergoing treatment for mastitis with the bacterial antibiotic Ceftiofur and from untreated cows. The amount of H2 produced by T. paralvinellae increased with increasing waste concentrations, but decreased in P. furiosus cultures supplemented with waste milk above 1% concentration. All mesophilic bacteria from the waste milk that grew on Luria Bertani, Sheep's Blood (selective for Staphylococcus, the typical cause of mastitis), and MacConkey (selective for Gram-negative enteric bacteria) agar plates were killed by heat during incubation at 82°C. Ceftiofur, which is heat labile, was below the detection limit following incubation at 82°C. T. paralvinellae also produced up to 6 mmol of H2 L(-1) of medium when grown on 0.1-10% (wt vol(-1)) spent brewery grain while P. furiosus produced < 1 mmol of H2 L(-1). Twelve of 13 enzyme activities in T. paralvinellae showed significant (p < 0.05) differences across six different growth

  9. Hydrogen Production and Enzyme Activities in the Hyperthermophile Thermococcus paralvinellae Grown on Maltose, Tryptone, and Agricultural Waste

    PubMed Central

    Hensley, Sarah A.; Moreira, Emily; Holden, James F.

    2016-01-01

    Thermococcus may be an important alternative source of H2 in the hot subseafloor in otherwise low H2 environments such as some hydrothermal vents and oil reservoirs. It may also be useful in industry for rapid agricultural waste treatment and concomitant H2 production. Thermococcus paralvinellae grown at 82°C without sulfur produced up to 5 mmol of H2 L−1 at rates of 5–36 fmol H2 cell−1 h−1 on 0.5% (wt vol−1) maltose, 0.5% (wt vol−1) tryptone, and 0.5% maltose + 0.05% tryptone media. Two potentially inhibiting conditions, the presence of 10 mM acetate and low pH (pH 5) in maltose-only medium, did not significantly affect growth or H2 production. Growth rates, H2 production rates, and cell yields based on H2 production were the same as those for Pyrococcus furiosus grown at 95°C on the same media for comparison. Acetate, butyrate, succinate, isovalerate, and formate were also detected as end products. After 100 h, T. paralvinellae produced up to 5 mmol of H2 L−1 of medium when grown on up to 70% (vol vol−1) waste milk from cows undergoing treatment for mastitis with the bacterial antibiotic Ceftiofur and from untreated cows. The amount of H2 produced by T. paralvinellae increased with increasing waste concentrations, but decreased in P. furiosus cultures supplemented with waste milk above 1% concentration. All mesophilic bacteria from the waste milk that grew on Luria Bertani, Sheep's Blood (selective for Staphylococcus, the typical cause of mastitis), and MacConkey (selective for Gram-negative enteric bacteria) agar plates were killed by heat during incubation at 82°C. Ceftiofur, which is heat labile, was below the detection limit following incubation at 82°C. T. paralvinellae also produced up to 6 mmol of H2 L−1 of medium when grown on 0.1–10% (wt vol−1) spent brewery grain while P. furiosus produced < 1 mmol of H2 L−1. Twelve of 13 enzyme activities in T. paralvinellae showed significant (p < 0.05) differences across six different

  10. Agricultural waste as a source for the production of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Vaibhav, Vineet; Vijayalakshmi, U.; Roopan, S. Mohana

    2015-03-01

    The major interest of the paper deals with the extraction of silica from four natural sources such as rice husk, bamboo leaves, sugarcane bagasse and groundnut shell. These waste materials in large quantities can create a serious environmental problem. Hence, there is a need to adopt proper strategy to reduce the waste. In the present investigation, all the waste materials are subjected to moisture removal in a hot plate and sintered at 900 °C for 7 h. The sintered powder was treated with 1 M NaOH to form sodium silicate and then with 6 M H2SO4 to precipitate silica. The prepared silica powders were characterized by FT-IR, XRD and SEM-EDAX analysis. The silica recovered from different sources was found to vary between 52% and 78%. Magnesium substituted silica was formed from the groundnut waste and further treatment is required to precipitate silica.

  11. Agricultural waste as a source for the production of silica nanoparticles.

    PubMed

    Vaibhav, Vineet; Vijayalakshmi, U; Roopan, S Mohana

    2015-03-15

    The major interest of the paper deals with the extraction of silica from four natural sources such as rice husk, bamboo leaves, sugarcane bagasse and groundnut shell. These waste materials in large quantities can create a serious environmental problem. Hence, there is a need to adopt proper strategy to reduce the waste. In the present investigation, all the waste materials are subjected to moisture removal in a hot plate and sintered at 900°C for 7 h. The sintered powder was treated with 1 M NaOH to form sodium silicate and then with 6M H2SO4 to precipitate silica. The prepared silica powders were characterized by FT-IR, XRD and SEM-EDAX analysis. The silica recovered from different sources was found to vary between 52% and 78%. Magnesium substituted silica was formed from the groundnut waste and further treatment is required to precipitate silica. PMID:25576950

  12. Hazardous solid waste from agriculture.

    PubMed Central

    Loehr, R C

    1978-01-01

    Large quantities of food processing, crop, forestry, and animal solid wastes are generated in the United States each year. The major components of these wastes are biodegradable. However, they also contain components such as nitrogen, human and animal pathogens, medicinals, feed additives, salts, and certain metals, that under uncontrolled conditions can be detrimental to aquatic, plant, animal, or human life. The most common method of disposal of these wastes is application to the land. Thus the major pathways for transmission of hazards are from and through the soil. Use of these wastes as animal feed also can be a pathway. While at this time there are no crises associated with hazardous materials in agricultural solid wastes, the potential for problems should not be underestimated. Manpower and financial support should be provided to obtain more detailed information in this area, esepcially to better delineate transport and dispersal and to determine and evaluate risks. PMID:367770

  13. Enhanced production of industrial enzymes in Mucoromycotina fungi during solid-state fermentation of agricultural wastes/by-products.

    PubMed

    Takó, Miklós; Kotogán, Alexandra; Krisch, Judit; Vágvölgyi, Csaba; Mondal, Keshab C; Papp, Tamás

    2015-09-01

    Cellulolytic, lipolytic and proteolytic enzyme production of zygomycetes Mucor corticolus, Rhizomucor miehei, Gilbertella persicaria and Rhizopus niveus were investigated using agro-industrial wastes as substrates. Solid-state cultures were carried out on untreated corn residues (stalk and leaf) as single substrate (SSF1) or corn residues and wheat bran in mixed fermentation (SSF2). Rapid production of endoglucanase (CMCase) was observed with maximal activity reaching after about 48-h fermentation, while cellobiohydrolase (CBH) and β-glucosidase enzymes generally had their peak after 72-h incubation. Highest filter paper degrading (FPase), CMCase, CBH and β-glucosidase activities obtained were (U g⁻¹ dss) 17.3, 74.1, 12.2 and 158.3, for R. miehei, G. persicaria, M. corticolus and Rh. niveus, respectively. M. corticolus proved to be the best lipolytic enzyme producer in SSF1 presenting 447.6 U g⁻¹ dss yield, while R. miehei showed 517.7 U g⁻¹ dss activity in SSF2. Rh. niveus exhibited significantly greater protease production than the other strains. Suc-AAPF-pNA hydrolyzing activities of this strain were 1.1 and 1.96 U g⁻¹ dss in SSF1 and SSF2, respectively. We conclude that the used corn stalk and leaf residues could potentially be applicable as strong inducers for cellulase and lipase production by Mucoromycotina fungi. PMID:26344030

  14. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues.

    PubMed

    Bansal, Namita; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2012-07-01

    Various agricultural and kitchen waste residues were assessed for their ability to support the production of a complete cellulase system by Aspergillus niger NS-2 in solid state fermentation. Untreated as well as acid and base-pretreated substrates including corn cobs, carrot peelings, composite, grass, leaves, orange peelings, pineapple peelings, potato peelings, rice husk, sugarcane bagasse, saw dust, wheat bran, wheat straw, simply moistened with water, were found to be well suited for the organism's growth, producing good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. Yields of cellulases were higher in alkali treated substrates as compared to acid treated and untreated substrates except in wheat bran. Of all the substrates tested, wheat bran appeared to be the best suited substrate producing appreciable yields of CMCase, FPase and β-glucosidase at the levels of 310, 17 and 33 U/g dry substrate respectively. An evaluation of various environmental parameters demonstrated that appreciable levels of cellulases could be produced over a wide range of temperatures (20-50 °C) and pH levels (3.0-8.0) with a 1:1.5 to 1:1.75 substrate to moisture ratio. PMID:22503148

  15. Cost-Effective Production and Optimization of Alkaline Xylanase by Indigenous Bacillus mojavensis AG137 Fermented on Agricultural Waste

    PubMed Central

    Akhavan Sepahy, Abbas; Ghazi, Shokoofeh; Akhavan Sepahy, Maryam

    2011-01-01

    A xylanase producer Bacillus mojavensis strain, called AG137, isolated from cotton farm (Kashan-Iran). The optimal xylanase activity reached at 55°C & pH 9.0. Enzyme yield was studied using a medium with different agricultural wastes as inducers. Xylanase production of about 249.308 IU/mL was achieved at pH 8 and 37°C, within 48 h submerged fermentation in enzyme production medium supplemented with 2% (w/v) oat bran as an optimum carbon source. A mixture of 1% (w/v) yeast extract and 1% (w/v) tryptone as optimum nitrogen sources, agitation speed 200 rpm, and inoculum size 2% (v/v) were the optimums for maximum production. Accordingly, xylanase yield from 194.68 IU/mL under non-optimized fermentation condition enhanced to 302.466 IU/mL in optimized condition. Screened xylanase is thermostable, presenting 70% stability at 60°C during 30 min. Further enzyme incubation in higher temperature caused a decrease in the residual enzyme activity, yet it retained 68%–50% of its activity after 1 hour from 45°C to 55°C. Besides, it is stable in pH 9 and 10, maintaining over 70% of its activity for 2 h. The enzyme also could preserve 71% and 63% of its initial activity after 3 hours of pre-incubation in the same alkaline condition. Produced xylanase therefore was introduced as an alkaline-active and stable one, displaying suitable thermostability feature, confirmed by HPLC analysis. Hence, all xylanase properties highlight its promising uses in industrial scale. PMID:21904670

  16. Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication.

    PubMed

    Gabhane, Jagdish; William, S P M Prince; Gadhe, Abhijit; Rath, Ritika; Vaidya, Atul Narayan; Wate, Satish

    2014-02-01

    Banana agricultural waste is one of the potential lignocellulosic substrates which are mostly un-utilized but sufficiently available in many parts of the world. In the present study, suitability of banana waste for biofuel production with respect to pretreatment and reducing sugar yield was assessed. The effectiveness of both acid and alkali pretreatments along with autoclaving, microwave heating and ultrasonication on different morphological parts of banana (BMPs) was studied. The data were statistically analyzed using ANOVA and numerical point prediction tool of MINITAB RELEASE 14. Accordingly, the optimum cumulative conditions for maximum recovery of reducing sugar through acid pretreatment are: leaf (LF) as the substrate with 25 min of reaction time and 180°C of reaction temperature using microwave. Whereas, the optimum conditions for alkaline pretreatments are: pith (PH) as the substrate with 51 min of reaction time and 50°C of reaction temperature using ultrasonication (US). PMID:24268472

  17. Production of a raw material for energy production in agriculture

    NASA Astrophysics Data System (ADS)

    Hellstroem, G.

    1980-04-01

    The total amount of energy in products produced by Swedish agriculture was estimated to 80 TWH: 30 TWh for cereals, 15 TWh for grass and leguminosae, and 35 TWh for straw and other agricultural wastes. Of this production a large part will be used as food even in the future. New plants that would produce more energy than the ones traditionally grown in Sweden are discussed. Also other types of energy from agriculture are discussed such as methane from manure, methanol from gasification processes, and ethanol from fermentative processes. Costs were estimated from different alternatives.

  18. Renewable energy: energy from agricultural products

    SciTech Connect

    Not Available

    1984-06-01

    This study discusses major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10% of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10% mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: Growing crops such as napier grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.

  19. Irradiation of northwest agricultural products

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  20. Nitrogen mineralization in production agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the effects of N management and how it relates to the N cycle in soil ecosystems is essential to determining N availability. This manuscript describes the importance of N mineralization to production agriculture and introduces a special issue on “N Mineralization in Production Agricult...

  1. DEVELOPMENT OF A METHOD TO CONVERT GREEN AND ANIMAL WASTES TO A USEFUL AGRICULTURAL PRODUCT WITH POSSIBLE ALTERNATIVE FUEL USE

    EPA Science Inventory

    Initially, we thought that we would shred the green waste to use as a binder for the animal manure to produce a material useful as a fuel or soil amendment. Our first experiments in mixing the materials revealed that manure was, instead, better used as a binder for the green w...

  2. Agriculture waste and rising CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there are many uncertainties concerning agriculture’s role in global environmental change including the effects of rising atmospheric CO2 concentration. A viable and stable world food supply depends on productive agricultural systems, but environmental concerns within agriculture have to...

  3. Chemical Waste and Allied Products.

    PubMed

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste. PMID:27620094

  4. Irradiation of Northwest agricultural products

    SciTech Connect

    Eakin, D.E.; Tingey, G.L.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect control procedures are developed and followed. Due to the recognized potential benefits of irradiation, Pacific Northwest Laboratory (PNL) is conducting this program to evaluate the benefits of using irradiation on Northwest agricultural products under the US Department of Energy (DOE) Defense Byproducts Production and Utilization Program. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  5. Composting of agricultural and industrial wastes. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning agricultural and industrial waste treatment by composting. Articles discuss techniques, source materials, end product uses, and cost effectiveness. Materials considered include sawdust, wood chips, straw, manures, produce wastes, and industrial waste sludges. Applications of end products include pressed containers, fertilizers and soil amendments, and topsoil replacement. Composting of municipal wastes and sewage wastes is referenced in a related bibliography. (Contains a minimum of 80 citations and includes a subject term index and title list.)

  6. Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia.

    PubMed

    Nigussie, Abebe; Kuyper, Thomas W; de Neergaard, Andreas

    2015-10-01

    The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste allocation between groups of farmers with different livelihood strategies and link this allocation with the nutrient balances of their production systems, (ii) to identify farm characteristics that influence utilisation of agricultural waste for soil amendment, and (iii) to assess demand for urban waste compost. A total of 220 farmers were selected randomly and interviewed using standardised semi-structured questionnaires. Four groups of farmers, namely (i) field crop farmers, (ii) vegetable producers, (iii) ornamental-plant growers, and (iv) farmers practising mixed farming, were identified using categorical principal component and two-step cluster analyses. Field crop farmers produced the largest quantity of agricultural waste, but they allocated 80% of manure to fuel and 85% of crop residues to feed. Only <10% of manure and crop residues were applied on soils. Farmers also sold manure and crop residues, and this generated 5-10% of their annual income. Vegetable and ornamental-plant growers allocated over 40% of manure and crop residues to soil amendment. Hence, nutrient balances were less negative in vegetable production systems. Education, farm size, land tenure and access to extension services were the variables that impeded allocation of agricultural waste to soil amendment. Replacement of fuel and feed through sustainable means is a viable option for soil fertility management. Urban waste compost should also be used as alternative option for soil amendment. Our results showed variation in compost demand between farmers. Education, landownership, experience with compost and access to extension services explained variation in compost demand. We also demonstrated that

  7. VOCATIONAL AGRICULTURE RECORD BOOK FOR PRODUCTION AGRICULTURE.

    ERIC Educational Resources Information Center

    1966

    FORMS ARE PROVIDED FOR RECORDING FINANCIAL INFORMATION ABOUT SUPERVISED FARM PROGRAM ENTERPRISES BY INDIVIDUAL VOCATIONAL AGRICULTURE STUDENTS. THE BOOK IS DESIGNED ON AN ENTERPRISE BASIS AND PROVIDES SPACE FOR AGREEMENTS, INVENTORIES, EXPENSES, INCOME, SUMMARIES, AND ANALYSES. ASSISTANCE FOR TEACHERS USING THIS RECORD BOOK IS AVAILABLE IN "GUIDE…

  8. Enhancing isomaltulose production by recombinant Escherichia coli producing sucrose isomerase: culture medium optimization containing agricultural wastes and cell immobilization.

    PubMed

    Li, Sha; Xu, Hong; Yu, Jianguang; Wang, Yanyuan; Feng, Xiaohai; Ouyang, Pingkai

    2013-10-01

    Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l⁻¹), yeast extract (25.93 g l⁻¹), and corn steep liquor (10.45 g l⁻¹) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW⁻¹) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet⁻¹ h⁻¹. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose. PMID:23300051

  9. Isomaltulose production using free cells: optimisation of a culture medium containing agricultural wastes and conversion in repeated-batch processes.

    PubMed

    Kawaguti, Haroldo Y; Buzzato, Michele F; Sato, Hélia H

    2007-04-01

    The enzyme glucosyltransferase is an industrially important enzyme since it produces non-cariogenic isomaltulose (6-O-alpha-D-glucopyronosyl-1-6-D-fructofuranose) from sucrose by intramolecular transglucosylation. The experimental designs and response surface methodology (RSM) were applied for the optimisation of the nutrient concentrations in the culture medium for the production of glucosyltransferase by Erwinia sp. D12 in shaken flasks at 200 rpm and 30 degrees C. A statistical analysis of the results showed that, in the range studied, the factors had a significant effect (P < 0.05) on glucosyltransferase production and the highest enzyme activity (10.84 U/ml) was observed in culture medium containing sugar cane molasses (150 g l(-1)), corn steep liquor (20 g l(-1)), yeast extract Prodex Lac SD (15 g l(-1)) and K2HPO4 (0.5 g l(-1)) after 8 h at 30 degrees C. The production of cell biomass by the strain of Erwinia sp. D12 was carried out in a 6.6-l fermenter with a mixing rate of 200 rpm and an aeration rate of 1 vvm. Fermentation time, cellular growth, medium pH and glucosyltransferase production were observed. The greatest glucosyltransferase activity was 22.49 U/ml, obtained after 8 h of fermentation. The isomaltulose production from sucrose was performed using free Erwinia sp. D12 cells in a batch process using an orbital shaker. The influence of the parameters sucrose concentration, temperature, pH, and cell concentration on the conversion of sucrose into isomaltulose was studied. The free cells showed a high conversion rate of sucrose into isomaltulose using batch fermentation, obtaining an isomaltulose yield of 72.11% from sucrose solution 35% at 35 degrees C. PMID:17186209

  10. Renewable energy: Energy from agricultural products

    NASA Astrophysics Data System (ADS)

    1984-06-01

    Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10 percent of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10 percent mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production. Wider applications will require either government incentives or genetic engineering of crops and improve efficiencies in conversion processes to lower costs.

  11. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, James L.; Chen, Guang Jiong

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  12. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  13. Recovery of valuable agricultural materials from various industrial and municipal waste streams

    SciTech Connect

    Steele, R.B.

    1995-12-31

    Many agriculturally beneficial materials can be recovered from industrial and municipal waste streams. Processes for conversion of waste by-products as diverse as treated Class A sewage sludge, waste wallboard, fly ash, and synthetic (FGD) gypsum into fertilizers, fillers and amendments are presented.

  14. Technical specifications for mechanical recycling of agricultural plastic waste

    SciTech Connect

    Briassoulis, D. Hiskakis, M.; Babou, E.

    2013-06-15

    Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities

  15. Fresh water production from municipal waste water with RO membrane technology and its application for agriculture and industry in arid area

    NASA Astrophysics Data System (ADS)

    Yokoyama, F.

    2015-04-01

    One of the biggest problems of the 21st century is the global water shortage. Therefore it is difficult to increase the quantity of conventional water resources such as surface water and groundwater for agriculture and industry in arid area. Technical advancement in water treatment membrane technology including RO membrane has been remarkable especially in recent years. As the pore size of RO membrane is less than one nanometer, it is possible to produce the fresh water, which satisfies the drinking water quality standards, with utilizing RO membrane. In this report a new fresh water resource from municipal waste water is studied to apply to the plant factory which is the water saving type agriculture and industry in arid area.

  16. Agricultural Production. An Administrative Guide for Agricultural Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    This basic instructional guide for an agricultural production program is one in a series of such guides for agricultural education. It is useful in developing and selecting instructional material and implementing competency-based education for a program directed toward helping students to become proficient in animal, plant, and soil sciences and…

  17. Technical specifications for mechanical recycling of agricultural plastic waste.

    PubMed

    Briassoulis, D; Hiskakis, M; Babou, E

    2013-06-01

    Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW. PMID:23561796

  18. Waste form product characteristics

    SciTech Connect

    Taylor, L.L.; Shikashio, R.

    1995-01-01

    The Department of Energy has operated nuclear facilities at the Idaho National Engineering Laboratory (INEL) to support national interests for several decades. Since 1953, it has supported the development of technologies for the storage and reprocessing of spent nuclear fuels (SNF) and the resultant wastes. However, the 1992 decision to discontinue reprocessing of SNF has left nearly 768 MT of SNF in storage at the INEL with unspecified plans for future dispositioning. Past reprocessing of these fuels for uranium and other resource recovery has resulted in the production of 3800 M{sup 3} calcine and a total inventory of 7600 M{sup 3} of radioactive liquids (1900 M{sup 3} destined for immediate calcination and the remaining sodium-bearing waste requiring further treatment before calcination). These issues, along with increased environmental compliance within DOE and its contractors, mandate operation of current and future facilities in an environmentally responsible manner. This will require satisfactory resolution of spent fuel and waste disposal issues resulting from the past activities. A national policy which identifies requirements for the disposal of SNF and high level wastes (HLW) has been established by the Nuclear Waste Policy Act (NWPA) Sec.8,(b) para(3)) [1982]. The materials have to be conditioned or treated, then packaged for disposal while meeting US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. The spent fuel and HLW located at the INEL will have to be put into a form and package that meets these regulatory criteria. The emphasis of Idaho Chemical Processing Plant (ICPP) future operations has shifted toward investigating, testing, and selecting technologies to prepare current and future spent fuels and waste for final disposal. This preparation for disposal may include mechanical, physical and/or chemical processes, and may differ for each of the various fuels and wastes.

  19. Methanogenic Community Dynamics during Anaerobic Utilization of Agricultural Wastes.

    PubMed

    Ziganshin, A M; Ziganshina, E E; Kleinsteuber, S; Pröter, J; Ilinskaya, O N

    2012-10-01

    This work is devoted to the investigation of the methanogenic archaea involved in anaerobic digestion of cattle manure and maize straw on the basis of terminal restriction fragment length polymorphism (T-RFLP) analysis of archaeal 16S rRNA genes. The biological diversity and dynamics of methanogenic communities leading to anaerobic degradation of agricultural organic wastes with biogas production were evaluated in laboratory-scale digesters. T-RFLP analysis, along with the establishment of archaeal 16S rRNA gene clone libraries, showed that the methanogenic consortium consisted mainly of members of the generaMethanosarcinaandMethanoculleus,with a predominance ofMethanosarcinaspp. throughout the experiment. PMID:23346384

  20. Materials with Adsorptive Properties from Agricultural By-Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will summarize the use of agricultural by-products (e.g., animal manure and plant waste) as starting materials to adsorb environmental contaminants such as mercury from air, ammonia from air, metal ions from water, and chlorinated organics from water. The results show that the mat...

  1. The Fuego Limpio project: Clean fuel from agricultural waste

    SciTech Connect

    Iadarola, C.; Beers, G.; Sargent, S.L.

    1994-12-31

    The Fuego Limpio (Spanish for {open_quotes}Clean Fire{close_quotes}) project aimed to determine the technical and economic feasibility of converting agricultural wastes, such as wheat and barley straw, into densified fuel for home and industrial applications. Consumer acceptance tests and cost studies of the fuel were conducted in the San Luis Valley of southern Colorado, an agricultural area in dire need of inexpensive fuel and economic development. The results indicate that the fuel is acceptable to local residents as an alternative to firewood, but that the production cost, at about $120/ton, is too high for the local economy to support. A more promising niche market is lodging for the mountain tourist industry, where open fires are desirable and clean fuel is a necessity to protect the local air quality.

  2. Production of an endoinulinase from Aspergillus niger AUMC 9375, by solid state fermentation of agricultural wastes, with purification and characterization of the free and immobilized enzyme.

    PubMed

    Housseiny, Manal M

    2014-05-01

    Two different substrates, sunflower (Helianthus annuus L.) tubers and lettuce (Lactuca sativa) roots, were tested. Using a mixture of both wastes resulted in higher production of endoinulinase than either waste alone. Also, ten fungal species grown on these substrates as inexpensive, carbon sources were screened for the best production of endoinulinase activities. Of these, Aspergillus niger AUMC 9375 was the most productive, when grown on the mixture using a 6:1 w/w ratio of sun flower: lettuce, and yielded the highest levels of inulinase at 50% moisture, 30°C, pH 5.0, with seven days of incubation, and with yeast extract as the best nitrogen source. Inulinase was purified to homogeneity by ion-exchange chromatography and gel-filtration giving a 51.11 fold purification. The mixture of sunflower tubers and lettuce roots has potential to be an effective and economical substrate for inulinase production. Inulinase was successfully immobilized with an immobilization yield of 71.28%. After incubation for 2 h at 60°C, the free enzyme activity decreased markedly to 10%, whereas that of the immobilized form decreased only to 87%. A reusability test demonstrated the durability of the immobilized inulinase for 10 cycles and in addition, that it could be stored for 32 days at 4°C. These results indicate that this inulinase, in the immobilized form, is a potential candidate for large-scale production of high purity fructose syrups. PMID:24810318

  3. Fast Pyrolysis of Agricultural Wastes in a Fluidized Bed Reactor

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Chen, H. P.; Yang, H. P.; Dai, X. M.; Zhang, S. H.

    Solid biomass can be converted into liquid fuel through fast pyrolysis, which is convenient to be stored and transported with potential to be used as a fossil oil substitute. In China, agricultural wastes are the main biomass materials, whose pyrolysis process has not been researched adequately compared to forestry wastes. As the representative agricultural wastes in China, peanut shell and maize stalk were involved in this paper and pine wood sawdust was considered for comparing the different pyrolysis behaviors of agricultural wastes and forestry wastes. Fast pyrolysis experiments were carried out in a bench-scale fluidized-bed reactor. The bio-oil yieldsof peanut shell and maize stalk were obviously lower than that ofpine sawdust. Compared with pine sawdust, the char yields of peanut shell and maize stalk were higher but the heating value of uncondensable gaswas lower. This means that the bio-oil cost will be higher for agricultural wastes if taking the conventional pyrolysis technique. And the characteristic and component analysis resultsof bio-oil revealed that the quality of bio-oil from agricultural wastes, especially maize stalk, was worse than that from pine wood. Therefore, it is important to take some methods to improve the quality of bio-oilfrom agricultural wastes, which should promote the exploitation of Chinese biomass resources through fast pyrolysis in afluidized bed reactor.

  4. Opportunities for Industrial Uses of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The search for and development of non-fuel industrial uses of agricultural commodities is an ongoing endeavor. New technologies which can involve chemically, enzymatically, or genetically modifying agricultural products will be required in order to meet the requirements of the products of the futur...

  5. PRODUCTION OF XYLITOL FROM AGRICULTURAL HEMICELLULOSIC BIOMASS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of value-added co-products from agricultural biomass is an important economic driver for the success of a biorefinery approach to the production of ethanol and other fuels. During most ethanol production methods, significant amounts of hemicellulose by-products are produced which are...

  6. Dry Co-Digestion of Poultry Manure with Agriculture Wastes.

    PubMed

    Abouelenien, Fatma; Namba, Yuzaburo; Nishio, Naomichi; Nakashimada, Yutaka

    2016-03-01

    This study tested the effect on thermophilic and mesophilic digestion of poultry manure (PM) or treated poultry manure (TPM) by the addition of agriculture wastes (AWS) as a co-substrate under dry conditions. PM was co-digested with a mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Results were increased methane content in biogas, with decreased ammonia accumulation and volatile acids. The highest performance occurred under mesophilic conditions, with a 63 and 41.3 % increase in methane production from addition of AWS to TPM (562 vs. 344 mL g VS(-1) from control) and PM (406 vs. 287 mL g VS(-1) from control), respectively. Thermophilic conditions showed lower performance than mesophilic conditions. Addition of AWS increased methane production by 150 and 69.6 % from PM (323.4 vs. 129 mL g VS(-1) from control) and TPM (297.6 vs. 175.5 mL g VS(-1) from control), respectively. In all experiments, 100 % acetate produced was degraded to methane. Maximum ammonia accumulation was lowered to 43.7 % by mixing of AWS (range 5.35-8.55 vs. 7.81-12.28 g N kg(-1) bed). The pH was held at 7.3-8.8, a range suitable for methanogenesis. PMID:26560702

  7. Agricultural Products: Program Planning Guide: Volume 4.

    ERIC Educational Resources Information Center

    Welton, Richard; Robb, Sam

    The program planning guide for agricultural products was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of meat and meat byproducts, dairy processing, fruit and vegetable…

  8. Agricultural Production: Program Planning Guide: Volume 1.

    ERIC Educational Resources Information Center

    Rich, William; Wood, Eugene

    The program planning guide for agricultural production was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of animal science, plant science, farm mechanics, and farm business…

  9. AVLIS production plant waste management plan

    SciTech Connect

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  10. Applications for Dielectric Properties of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of agricultural products for sensing moisture in grain and seed and their application in radio-frequency and microwave dielectric heating are discussed briefly. Values for the dielectric properties of a number of products, including grain, fruit, and poultry products...

  11. Biological production of products from waste gases

    DOEpatents

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  12. Co-processing of agricultural and biomass waste with coal

    SciTech Connect

    Stiller, A.H.; Dadyburjor, D.B.; Wann, Ji-Perng

    1995-12-31

    A major thrust of our research program is the use of waste materials as co-liquefaction agents for the first-stage conversion of coal to liquid fuels. By fulfilling one or more of the roles of an expensive solvent in the direct coal liquefaction (DCL) process, the waste material is disposed off ex-landfill, and may improve the overall economics of DCL. Work in our group has concentrated on co-liquefaction with waste rubber tires, some results from which are presented elsewhere in these Preprints. In this paper, we report on preliminary results with agricultural and biomass-type waste as co-liquefaction agents.

  13. Agricultural use of a flue gas desulfurization by-product

    SciTech Connect

    Nelson, S. Jr.; Dick, W.; Chen, L.

    1998-07-01

    Few, if any, economical alternatives exist for operators of small coal-fired boilers that require a flue-gas desulfurization system which does not generate wastes. A new duct-injection technology called Fluesorbent has been developed to help fill this gap. Fluesorbent FGD was intentionally designed so that the saturated SO{sub 2}-sorbent materials would be valuable solid amendments for agricultural or turf-grass land. Agricultural and turf grass studies recently commenced using spent Fluesorbent materials from an FGD pilot program at an Ohio power plant. In the first year of testing, alfalfa yields on field plots with the FGS by-products were approximately 250% greater than on plots with no treatment, and about 40% greater than on plots treated with an equivalent amount of agricultural lime. Because the FGD by-products contained trace elements from included fly ash, the chemical composition of the alfalfa was significantly improved.

  14. Agricultural use of a flue gas desulfurization by-product

    SciTech Connect

    Nelson, S. Jr.; Dick, W.; Chen, L.

    1998-04-01

    Few, if any, economical alternatives exist for operators of small coal-fired boilers that require a flue-gas desulfurization system which does not generate wastes. A new duct-injection technology called {open_quotes}Fluesorbent{close_quotes} has been developed to help fill this gap. Fluesorbent FGD was intentionally designed so that the saturated SO{sub 2}-sorbent materials would be valuable soil amendments for agricultural or turf-grass land. Agricultural and turf grass studies recently commenced using spent Fluesorbent materials from an FGD pilot program at an Ohio power plant. In the first year of testing, alfalfa yields on field plots with the FGD by-products were approximately 250% greater than on plots with no treatment, and about 40% greater than on plots treated with an equivalent amount of agricultural lime. Because the FGD by-products contained trace elements from included fly ash, the chemical composition of the alfalfa was significantly improved.

  15. Agricultural use of a flue gas desulfurization by-product

    SciTech Connect

    Dick, W.; Chen, L.; Nelson, S. Jr.

    1998-12-31

    Few, if any, economical alternatives exist for operators of small coal-fired boilers that require a flue-gas desulfurization system which does not generate wastes. A new duct-injection technology called Fluesorbent has been developed to help fill this gap. Fluesorbent FGD was intentionally designed so that the saturated SO{sub 2}-sorbent materials would be valuable soil amendments for agricultural or turf-grass land. Agricultural and turf grass studies recently commenced using spent Fluesorbent materials from an FGD pilot program at an Ohio power plant. In the first year of testing, alfalfa yields on field plots with the FGD by-products were approximately 250% greater than on plots with no treatment, and about 40% greater than on plots treated with an equivalent amount of agricultural lime. Because the FGD by-products contained trace elements from included fly ash, the chemical composition of the alfalfa was significantly improved. Detailed yield and chemical data are presented.

  16. Dielectric properties of agricultural products and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of agricultural products for sensing moisture in grain and seed and their application in radio-frequency and microwave dielectric heating is discussed briefly. Values for the dielectric properties of a number of products, including grain and seed, fruits and vegetab...

  17. Climate and Agriculture: Challenges for Efficient Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate has always been and will continue to be an important factor in agricultural production. Evidence of this is apparent when looking at where plants or animals are distributed around the world and the variation among years in terms of grain, forage, vegetable, and fruit production. The recent r...

  18. CLEAN FUELS FROM AGRICULTURAL AND FORESTRY WASTES

    EPA Science Inventory

    The report gives results of an experimental investigation of the operating parameters for a mobile waste conversion system based on the Georgia Tech Engineering Experiment Station's partial oxidation pyrolysis process. The object of the testing was to determine the combination of...

  19. Microbiological Production of Surfactant from Agricultural Residuals for IOR Application

    SciTech Connect

    Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn; Noah, Karl Scott; Thompson, David Neal

    2002-04-01

    Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2) convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.

  20. Estrogenicity of agricultural by-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some Minnesota farms were found to have reduced conception rates in cattle receiving embryo transfers by a local veterinarian, and dietary components were called into question. Affected farms were feeding agricultural by-products, available in either a “shredded” form or a pelletized form. These by-...

  1. Torrefaction of agricultural by-products (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Torrefaction of biomass involves heating at 200°C-300°C under inert atmosphere to remove volatiles and produce materials with higher energy values and low moisture. Agricultural by-products, such as apple, grape, olive, and tomato pomaces as well as almond and walnut shells, were torrefied at differ...

  2. Commercial-scale evaluation of two agricultural waste products, cotton burr/stem and module wraps in thermoplastic composites and comparison with laboratory-scale results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory-scale research had shown the potential of using cotton burr/stem (CBS) as a fiber filler in thermoplastic composites. This study evaluates the potential of using waste materials from cotton harvesting/ginning operations, CBS, and cotton module wraps (CMW) as a filler and substrate in ther...

  3. Agricultural Education Curriculum Guide. Agricultural Production and Management I. Course No. 6811. Agricultural Production and Management II. Course No. 6812.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    This document is designed for use by teachers of Agricultural Production and Management courses in North Carolina. It updates the competencies and content outlines from the previous guide. It lists core and optional competencies for two courses in seven areas as follows: leadership; supervised agricultural experience programs; animal science;…

  4. Health and safety risks in production agriculture.

    PubMed Central

    Von Essen, S G; McCurdy, S A

    1998-01-01

    Production agriculture is associated with a variety of occupational illnesses and injuries. Agricultural workers are at higher risk of death or disabling injury than most other workers. Traumatic injury commonly occurs from working with machinery or animals. Respiratory illness and health problems from exposures to farm chemicals are major concerns, and dermatoses, hearing loss, certain cancers, and zoonotic infections are important problems. Innovative means of encouraging safe work practices are being developed. Efforts are being made to reach all groups of farmworkers, including migrant and seasonal workers, farm youth, and older farmers. PMID:9795581

  5. Atmospheric ammonia emissions from agricultural waste combustion

    NASA Astrophysics Data System (ADS)

    Lee, David S.; Atkins, D. H. F.

    1994-02-01

    Measurements of ammonia and ammonium aerosol were made during straw and stubble burning experiments in the field. Factors were determined for the calculation of emissions of ammonia and ammonium ion, from this source, in the United Kingdom between 1981 and 1992. Emissions of NHx from straw burning were calculated to be equivalent to approximately 20 ktonnes N yr-1 in 1981 and have declined to 3.3 ktonnes N yr-1 in 1991 as a result of changes in agricultural practices in response to impending U.K. legislation. The fraction of total plant nitrogen released as NHx was estimated to be between approximately 40 and 80%. Emissions of ammonia from straw and stubble burning over a 6—8 week period over which this typically occurs were calculated to be 27% of the total U.K. emissions over the equivalent period in 1981 and 7% in 1991. We have identified straw and stubble burning as another source of ammonia currently not accounted for in European and North American emission inventories; these focus almost exclusively on emissions from animal sources.

  6. Drought, Climate Change and Potential Agricultural Productivity

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Herrera-Estrada, J. E.; Caylor, K. K.; Wood, E. F.

    2011-12-01

    Drought is a major factor in agricultural productivity, especially in developing regions where the capacity for water resources management is limited and climate variability ensures that drought is recurrent and problematic. Recent events in East Africa are testament to this, where drought conditions that have slowly developed over multiple years have contributed to reduced productivity and ultimately food crises and famine. Prospects for the future are not promising given ongoing problems of dwindling water supplies from non-renewable sources and the potential for increased water scarcity and increased drought with climate change. This is set against the expected increase in population by over 2 billion people by 2050 and rise in food demand, coupled with changes in demographics that affect food choices and increases in non-food agriculture. In this talk we discuss the global variability of drought over the 20th century and recent years, and the projected changes over the 21st century, and how this translates into changes in potential agricultural productivity. Drought is quantified using land surface hydrological models driven by a hybrid reanalysis-observational meteorological forcing dataset. Drought is defined in terms of anomalies of hydroclimatic variables, in particular precipitation, evaporation and soil moisture, and we calculate changes in various drought characteristics. Potential agricultural productivity is derived from the balance of precipitation to crop water demand, where demand is based on potential evaporation and crop coefficients for a range of staple crops. Some regional examples are shown of historic variations in drought and potential productivity, and the estimated water deficit for various crops. The multitude of events over the past decade, including heat waves in Europe, fires in Russia, long-term drought in northern China, southeast Australia, the Western US and a series of droughts in the Amazon and Argentina, hint at the influence of

  7. Utilization and recycle of agricultural wastes and residues

    SciTech Connect

    Shuler, M.L.

    1980-01-01

    A critical examination of proposed schemes for treating agricultural wastes and residues as sources of both food and energy (biogas, for instance) explores three questions as they relate to the various groups of biological and thermochemical conversion processes: What is the state of the art, what are the critical R and D needs, and which methods have the most commercial potential. The problem of cellulose degradation represents a link common to all types of agricultural waste- and residue-conversion schemes; depending on the process objectives, cellulose can be perceived as either a valuable resource or a stubborn impediment. The subjects addressed include (1) the possible methods of directly converting animal manure and plant residues into animal feedstuffs or human food, (2) the potential for anaerobic fermentation processes (particularly farm-size units) to produce energy and food from agricultural wastes while effectively controlling pollution, and (3) the thermochemical conversion of residues via combustion, partial oxidation-pyrolysis, and fluid-phase reactors. A discussion of the application of all these techniques to a single waste (rye-grass straw) places the array of available options into perspective.

  8. Monitoring pathogens from irradiated agriculture products

    NASA Astrophysics Data System (ADS)

    Butterweck, Joseph S.

    The final food and environmental safety assessment of agriculture product irradiation can only be determined by product history. Product history will be used for future research and development, regulations, commercial practices and implementation of agriculture and food irradiation on a regional basis. The commercial irradiator treats large varieties and amounts of products that are used in various environments. It, in time, will generate a large data base of product history. Field product monitoring begins when food irradiation progresses from the pilot/demonstration phase to the commercial phase. At that time, it is important that there be in place a monitoring system to collect and analyze field data. The systems managers, public health authorities and exotic disease specialists will use this information to assess the reduction of food pathogens on the populace and the environment. The common sources of monitoring data are as follows: 1) Host Monitoring a) Medical Diagnosis b) Autopsy c) Serology Surveys 2) Environmental Monitoring a) Sentinel b) Pest Surveys/Microbial Counts c) Sanitary Inspections 3) Food Industries Quality Assurance Monitoring a) End Product Inspection b) Complaints c) Continual Use of the Product

  9. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  10. Experimental analysis to utilize the solid wastes in brick production.

    PubMed

    Varadarajan, Rajagopalan; Govindan, Venkatesan

    2013-07-01

    Utilization of industrial, municipal, agricultural and other waste products in the industry has been the focus of research for economical, environmental, and technical reasons. Two solid wastes, i.e. Sugar-cane bagasse--is a fibrous waste-product of the sugar refining industry and granite processing industry generates a large amount of wastes mainly in the form of powder during sawing and polishing processes, which pollute and damage the environment, have been taken to experimental study. The objective of this study is to utilize the bagasse ash and granite waste for the manufacturing of bricks. Mixtures were prepared with 0, 10, 20, 30, 40 and 50% wastes of total weight of clay. The produced bricks are tested for mechanical properties, such as water absorption and compressive strength, according to Indian Standard Code. The result showed that 20% of bagasse ash and granite waste is optimum percentage to be used in the manufacturing of conventional bricks. PMID:25509952

  11. Agricultural R&D, technology and productivity.

    PubMed

    Piesse, J; Thirtle, C

    2010-09-27

    The relationships between basic and applied agricultural R&D, developed and developing country R&D and between R&D, extension, technology and productivity growth are outlined. The declining growth rates of public R&D expenditures are related to output growth and crop yields, where growth rates have also fallen, especially in the developed countries. However, growth in output value per hectare has not declined in the developing countries and labour productivity growth has increased except in the EU. Total factor productivity has generally increased, however it is measured. The public sector share of R&D expenditures has fallen and there has been rapid concentration in the private sector, where six multinationals now dominate. These companies are accumulating intellectual property to an extent that the public and international institutions are disadvantaged. This represents a threat to the global commons in agricultural technology on which the green revolution has depended. Estimates of the increased R&D expenditures needed to feed 9 billion people by 2050 and how these should be targeted, especially by the Consultative Group on International Agricultural Research (CGIAR), show that the amounts are feasible and that targeting sub-Saharan Africa (SSA) and South Asia can best increase output growth and reduce poverty. Lack of income growth in SSA is seen as the most insoluble problem. PMID:20713401

  12. Agricultural R&D, technology and productivity

    PubMed Central

    Piesse, J.; Thirtle, C.

    2010-01-01

    The relationships between basic and applied agricultural R&D, developed and developing country R&D and between R&D, extension, technology and productivity growth are outlined. The declining growth rates of public R&D expenditures are related to output growth and crop yields, where growth rates have also fallen, especially in the developed countries. However, growth in output value per hectare has not declined in the developing countries and labour productivity growth has increased except in the EU. Total factor productivity has generally increased, however it is measured. The public sector share of R&D expenditures has fallen and there has been rapid concentration in the private sector, where six multinationals now dominate. These companies are accumulating intellectual property to an extent that the public and international institutions are disadvantaged. This represents a threat to the global commons in agricultural technology on which the green revolution has depended. Estimates of the increased R&D expenditures needed to feed 9 billion people by 2050 and how these should be targeted, especially by the Consultative Group on International Agricultural Research (CGIAR), show that the amounts are feasible and that targeting sub-Saharan Africa (SSA) and South Asia can best increase output growth and reduce poverty. Lack of income growth in SSA is seen as the most insoluble problem. PMID:20713401

  13. Peering into the Secrets of Food and Agricultural Co-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scanning electron microscopy is a useful tool for directing product development and is equally important for developing products from food crops and co-products from the agricultural waste after harvest. The current trend in food research is to produce foods that are fast to prepare and/or ready to ...

  14. Polyhydroxyalkanoates production from waste biomass

    NASA Astrophysics Data System (ADS)

    Nor Aslan, A. K. H.; Mohd Ali, M. D.; Morad, N. A.; Tamunaidu, P.

    2016-06-01

    Polyhydroxyalkanoates (PHAs) is a group of biopolymers that are extensively researched for such purpose due to the biocompatibility with mammal tissue and similar properties with conventional plastic. However, commercialization of PHA is impended by its high total production cost, which half of it are from the cost of pure carbon source feedstock. Thus, cheap and sustainable feedstocks are preferred where waste materials from various industries are looked into. This paper will highlight recent studies done on PHA production by utilizing crop and agro waste material and review its potential as alternative feedstock.

  15. Agricultural production in Kikwawila village, southeastern Tanzania.

    PubMed

    Zehnder, A; Jeje, B; Tanner, M; Freyvogel, T A

    1987-06-01

    Food production, land utilisation and agricultural structures were surveyed at Kikwawila village, north of Ifakara (Kilombero District, Morogoro Region) in 1984. This study was part of a more comprehensive, longitudinal programme to investigate the health status of a rural community, aiming in particular at the interrelations between nutrition, parasitic infections, immunity and the environment. Out of 340 households, 100 were interviewed and their subsistence farming activities recorded. The soil was found to be of great variability, being fertile where it was of alluvial origin but of reduced potential where it was non-alluvial. In all, 70 plant species were registered as being cultivated, with rice, maize, cassava and beans providing the main staple food. Apart from a few exceptions, the fields were cultivated without any mechanization. The seasonal distribution of agricultural work is described, but no detailed workload analysis of the villagers with regard to age and sex has been performed. At the foot of the mountains, where artificial irrigation has been introduced, dry season cropping was practised in addition to the prevailing wet season farming, which rendered the cultivation of marketable crops (mainly tomatoes) possible. The farmers were found to be imaginative and capable of adapting to various conditions, irrespective of their tribal origins. Alternatively, the quality of the soil and the unreliable availability of water set limits to the potential of food production in the area. Although land is still available, it is becoming more scarce as the human population increases. The further impoverishment of the land represents an imminent danger. Therefore, top priority ought to be given to soil conservation, followed by intercropping and/or crop rotation, seed production and crop protection against game and pests. Means of implementing such measures are discussed. It is suggested that Community Agricultural Workers be installed, elected by the villagers

  16. Waste product profile: Household batteries

    SciTech Connect

    Miller, C. )

    1994-04-01

    This is the fourteenth in a series of profiles -- brief, factual listings of the solid waste management characteristics of materials in the waste stream. These profiles highlight a product, explain how it fits into integrated waste management systems, and provide current data on recycling and markets for the product. This profile does not cover wet cell lead-acid batteries such as car batteries. Household batteries include primary batteries, which cannot be recharged, and secondary (rechargeable) batteries. Household batteries are available in many sizes including bottom, AAA, AA, C, D, N, and 9-volt. In 1991, 3.8 billion household batteries, or 145,000 tons, were incinerated or landfilled in the US. Due to a limited number of programs collecting batteries, the recycling rate is very small. An EPA study estimated than in 1989, 52% of the cadmium and 88% of the mercury in MSW came from household batteries.

  17. Waste valorization by biotechnological conversion into added value products.

    PubMed

    Liguori, Rossana; Amore, Antonella; Faraco, Vincenza

    2013-07-01

    Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript. PMID:23749120

  18. TECHNOLOGY, COMPLEXITY AND CHANGE IN AGRICULTURAL PRODUCTION SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technological advances have greatly impacted agricultural production. Some innovations have been specifically designed to address problems or shortcomings in current production practices, while others have been borrowed from other disciplines and adapted to agriculture. Many of the advances in agric...

  19. Bioenergy systems report: The AID (Agency for International Development) approach. Using agricultural and forestry wastes for the production of energy in support of rural development

    SciTech Connect

    Not Available

    1989-04-01

    The Biomass Energy Systems and Technology project (BEST) seeks to integrate natural resources, private sector expertise, and financial support in order to convert biomass into marketable energy products at existing agro-processing facilities. This report documents BEST's approach to biomass promotion and includes sections on: the rationale for the project's commodity focus (sugar cane, rice, and wood); the relevant U.S. biomass experience with rice, cane, and wood residues, etc., which BEST draws upon; A.I.D.'s experience in the field application of rice, wood, and cane residue bioenergy systems; economic analyses of biomass systems (using examples from Indonesia and Costa Rica); research initiatives to develop off-season fuels for sugar mills, advanced biomass conversion systems, and energy efficiency in sugar factories; and the environmental aspects of biomass (including its ability to be used without increasing global warming).

  20. Agricultural Productivity Forecasts for Improved Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh; McNider, Richard; Moss, Donald; Alhamdan, Mohammad

    2010-01-01

    Water stresses on agricultural crops during critical phases of crop phenology (such as grain filling) has higher impact on the eventual yield than at other times of crop growth. Therefore farmers are more concerned about water stresses in the context of crop phenology than the meteorological droughts. However the drought estimates currently produced do not account for the crop phenology. US Department of Agriculture (USDA) and National Oceanic and Atmospheric Administration (NOAA) have developed a drought monitoring decision support tool: The U.S. Drought Monitor, which currently uses meteorological droughts to delineate and categorize drought severity. Output from the Drought Monitor is used by the States to make disaster declarations. More importantly, USDA uses the Drought Monitor to make estimates of crop yield to help the commodities market. Accurate estimation of corn yield is especially critical given the recent trend towards diversion of corn to produce ethanol. Ethanol is fast becoming a standard 10% ethanol additive to petroleum products, the largest traded commodity. Thus the impact of large-scale drought will have dramatic impact on the petroleum prices as well as on food prices. USDA's World Agricultural Outlook Board (WAOB) serves as a focal point for economic intelligence and the commodity outlook for U.S. WAOB depends on Drought Monitor and has emphatically stated that accurate and timely data are needed in operational agrometeorological services to generate reliable projections for agricultural decision makers. Thus, improvements in the prediction of drought will reflect in early and accurate assessment of crop yields, which in turn will improve commodity projections. We have developed a drought assessment tool, which accounts for the water stress in the context of crop phenology. The crop modeling component is done using various crop modules within Decision Support System for Agrotechnology Transfer (DSSAT). DSSAT is an agricultural crop

  1. Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Rajendran; Roopan, Selvaraj Mohana; Prabhakarn, Arunachalam; Khanna, Venkatesan Gopiesh; Chakroborty, Subhendu

    2012-05-01

    Development of reliable and eco-friendly process for the synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. We have developed modern method by using agriculture waste to synthesize silver nanoparticles by employing an aqueous peel extract of Annona squamosa in AgNO3. Controlled growth of silver nanoparticles was formed in 4 h at room temperature (25 °C) and 60 °C. AgNPs were irregular spherical in shape and the average particle size was about 35 ± 5 nm and it is consistent with particle size obtained by XRD Scherer equation.

  2. SAR Agriculture Rice Production Estimation (SARPE)

    NASA Astrophysics Data System (ADS)

    Raimadoya, M.

    2013-12-01

    The study of SAR Agriculture Rice Production Estimation (SARPE) was held in Indonesia on 2012, as part of Asia-Rice Crop Estimation & Monitoring (Asia-RiCE), which is a component for the GEO Global Agricultural Monitoring (GEOGLAM) initiative. The study was expected to give a breakthrough result, by using radar technology and paradigm shift of the standard production estimation system from list frame to area frame approach. This initial product estimation system is expected to be refined (fine tuning) in 2013, by participating as part of Technical Demonstration Site (Phase -1A) of Asia-RICE. The implementation period of this initial study was from the date of March 12 to December 10, 2012. The implementation of the study was done by following the approach of the BIMAS-21 framework, which has been developed since 2008. The results of this study can be briefly divided into two major components, namely: Rice-field Baseline Mapping (PESBAK - Peta Sawah Baku) and Crop Growth Monitoring. Rice-fields were derived from the mapping results of the Ministry of Agriculture (Kemtan), and validated through Student Extension Campaign of the Faculty of Agriculture, Bogor Agricultural University (IPB). While for the crop growth, it was derived from the results of image analysis process. The analysis was done, either on radar/Radarsat-2 (medium resolution) or optical/ MODIS (low resolution), based on the Planting Calendar (KATAM) of Kemtan. In this case, the planting season II/2012-2013 of rice production centers in West Java Province (Karawang, Subang and Indramayu counties). The selection of crop season and county were entirely dependent on the quality of the available PESBAK and procurement process of radar imagery. The PESBAK is still in the form of block instead of fields, so it can not be directly utilized in this study. Efforts to improve the PESBAK can not be optimal because the provided satellite image (ECW format) is not the original one. While the procurement process of

  3. Corn Production. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    Grace, Clyde, Jr.

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit contains nine lessons based upon competencies needed to maximize profits in corn production. The lessons cover opportunities for growing corn; seed selection; seedbed preparation; planting methods and practices; fertilizer rates and application;…

  4. Tobacco Production. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    Hughes, Mike; And Others

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit contains forty-one lessons based upon competencies needed to maximize profits in tobacco production. The lessons in this unit cover such topics as the importance of tobacco, selecting land for tobacco, soil analysis and treatment, selecting tobacco…

  5. A steady state model of agricultural waste pyrolysis: A mini review.

    PubMed

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types. PMID:27281226

  6. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  7. 7 CFR 735.105 - Care of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Licensing § 735.105 Care of agricultural products. Each warehouse operator must at all times, including during...

  8. Alcohol production from agricultural and forestry residues

    SciTech Connect

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  9. A GUIDE ON RECORD KEEPING AND ANALYSIS IN THE VOCATIONAL AGRICULTURE RECORD BOOK FOR PRODUCTION AGRICULTURE.

    ERIC Educational Resources Information Center

    DUNCAN, A.O.; TOBEN, GEORGE E.

    BASED UPON "VOCATIONAL AGRICULTURE RECORD BOOK FOR PRODUCTION AGRICULTURE," DEVELOPED DURING 1965, THIS GUIDE FOR VOCATIONAL AGRICULTURE TEACHERS AND STUDENTS ILLUSTRATES THE USE OF THE RECORD BOOK, EXPLAINS SELECTED FEATURES, AND PROVIDES ASSISTANCE WITH RECORD KEEPING AND ANALYSIS. IT WAS DEVELOPED UNDER A U.S. OFFICE OF EDUCATION (USOE)…

  10. Food, Feed, or Fuel? Phosphorus Flows Embodied in US Agricultural Production and Trade

    NASA Astrophysics Data System (ADS)

    MacDonald, G.; Bennett, E.; Carpenter, S.

    2012-12-01

    Agricultural phosphorus (P) use is integral to sustainable food production and water quality regulation. Globalization of agricultural systems, changing diets, and increasing biofuel production pose new challenges for managing non-renewable P reserves, particularly in key agricultural producing regions such as the US. We used a detailed model of the US agricultural system to assess the quantity of mineral P fertilizers used to produce food crops, livestock, and biofuels relative to the P ultimately consumed in domestic diets. We also quantified linkages in fertilizer use between the US and its trading partners globally via agricultural trade. Feed and livestock production drove by far the largest demand for P fertilizers in the US (56% of all P use for domestic and imported products). Of the total mineral P inputs to US domestic agriculture in 2007 (1905 Gg P), 28% were retained in agricultural soils as surplus P, 40% were lost through processing and waste prior to consumption in human diets, while 10% were diverted directly to biofuel production. One quarter of P fertilizer in the US was required to produce exports, particularly major food and feed crops (corn, soybean, and wheat) that drove a large net P flux out of the country (338 Gg P) with strongly crop-specific effects on soil P imbalances nationally. However, US meat consumption involved considerable reliance on P fertilizer use in other countries to produce red meat imports linked primarily to soil P surpluses abroad. We show that changes in domestic farm management and consumer waste could together reduce the P fertilizer needed to produce food consumed in the US by half, which is comparable to the P fertilizer reduction attainable by cutting domestic meat consumption (44%). More effective distribution of P use for major crops nationally and greater recycling of all agricultural wastes is critical to using US phosphate rock reserves as efficiently as possible while maintaining export-oriented agriculture.

  11. Women Participation in Agricultural Production: A Probit Analysis

    NASA Astrophysics Data System (ADS)

    Damisa, M. A.; Samndi, R.; Yohanna, M.

    Women play a very significant role in agricultural production in Nigeria. They are however accorded little attention. Inadequate information on the level of women participation in agriculture has helped to under estimate their importance in the economy and hence led to their neglect in policy issues. This study therefore employed the Probit analysis to investigate the determinants of women participation in agricultural production. It was found that the level of the disposable income, perception, tenure rights and the level of the contribution of the women to agriculture had significant impact on the women participation in agricultural production.

  12. Emerging technologies in ethanol production. Agriculture information bulletin

    SciTech Connect

    Hohmann, N.; Rendleman, C.M.

    1993-01-01

    The fuel ethanol industry is poised to adopt a wide range of technologies that would reduce costs at every stage of the production process. Improved enzymes and fermenter designs can reduce the time needed to convert corn to ethanol and lower capital costs. Membrane filtration can allow the recovery of high-value coproducts such as lactic acid. Adoption of these and other innovations in the next 5 years is expected in new ethanol plants constructed to cope with new demand resulting from Clean Air Act stipulations for cleaner burning fuel. Biomass (agricultural residues, municipal and yard waste, energy crops like switchgrass) can also be converted to ethanol, although commercial-scale ventures are limited by current technology. While biomass requires more handling and sorting before conversion, those costs may be offset by the abundance of biomass relative to corn.

  13. Alcohol production from agricultural and forestry residues

    SciTech Connect

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  14. Economic feasibility of agricultural alcohol production within a biomass system

    SciTech Connect

    Hertzmark, D.; Flaim, S.; Ray, D.; Parvin, G.

    1980-12-01

    The technical and economic feasibility of agricultural alcohol production in the United States is discussed. The beverage fermentation processes are compared and contrasted with the wet milling of corn, and alternative agricultural products for alcohol production are discussed. Alcohol costs for different fermentation methods and for various agricultural crops (corn, sugar cane, sugar beets, etc.) are presented, along with a brief discussion of US government policy implications. (JMT)

  15. Agricultural By-Products Turned into Important Materials with Adsorptive Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will summarize the use of agricultural by-products (e.g., animal manure and plant waste) as starting materials to adsorb environmental contaminants such as mercury from air, ammonia from air, metal ions from water, and chlorinated organics from water. The results show that the mat...

  16. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) is a relatively new, dynamic and versatile low technology for the economic processing of high strength waste slurries. Waste so treated may be safely disposed of or reused. In this work a model high strength agricultural waste, potato peel, was subjected to TAD to study the effects of oxygen supply at 0.1, 0.25, 0.5 and 1.0 vvm (volume air per volume slurry per minute) under batch conditions at 55 degrees C for 156 h on the process. Process pH was controlled at 7.0 or left unregulated. Effects of waste load, as soluble chemical oxygen demand (COD), on TAD were studied at 4.0, 8.0, 12.0 and 16.0 gl(-1) (soluble COD) at pH 7.0, 0.5 vvm and 55 degrees C. Efficiency of treatment, as degradation of total solids, total suspended solids and soluble solid, as well as soluble COD significantly increased with aeration rate, while acetate production increased as the aeration rate decreased or waste load increased, signifying deterioration in treatment. Negligible acetate, and no other acids were produced at 1.0 vvm. Production of propionate and other acids increased after acetate concentration had started to decrease and, during unregulated reactions coincided with the drop in the pH of the slurry. Acetate production was more closely associated with periods of oxygen limitation than were other acids. Reduction in oxygen availability led to deterioration in treatment efficiency as did increase in waste load. These variables may be manipulated to control treated waste quality. PMID:15588774

  17. The Status of Human Nutrition and Agricultural Productivity.

    ERIC Educational Resources Information Center

    Wyse, Bonita; And Others

    1986-01-01

    The authors state that the U.S. Department of Agriculture should be considering productive alternatives for the American farmer, exploring ways to use or export the excess fat, and should be spending at least half of its resources to convince the consumers of the value they are getting from agricultural products. (CT)

  18. 46 CFR 111.105-45 - Vessels carrying agricultural products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Vessels carrying agricultural products. 111.105-45... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-45 Vessels carrying agricultural products. (a) The following areas are Class II, Division 1, (Zone 10 or Z) locations on...

  19. 46 CFR 111.105-45 - Vessels carrying agricultural products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Vessels carrying agricultural products. 111.105-45... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-45 Vessels carrying agricultural products. (a) The following areas are Class II, Division 1, (Zone 10 or Z) locations on...

  20. An overview of agriforestry waste production and use in Louisiana

    SciTech Connect

    Kleit, S.; Hoop, C.F. de; Chang, S.J.

    1994-12-31

    Agriculture and forestry are the second largest employers in the state of Louisiana. Natural by-products of these industries are biomass waste in the form of bark, wood chips, sawdust, cotton gin trash, rice hulls and sugar bagasse. Disposing of these wastes poses problems for the air and water. One popular waste management solution is to use them for fuel. To measure the potential for using biomass waste for fuel and other uses, a study was conducted of sugar cane processors, cotton ginners, rice processors and the primary and secondary wood processors in Louisiana. The study revealed that while some firms use waste for their own boilers, or sell it to others for fuel, there is still unused waste. There are many reasons for this including the cost of competing energy sources, lack of marketing innovation and the economies of scale. The study`s mission includes identifying new areas for utilizing waste. To facilitate these innovations, and bridge buyers with sellers of biomass waste, a geographic information system (GIS) was developed to map all sites claiming to produce and/or consume wood waste, as well as processors of cotton gin trash, rice hulls and sugar bagasse. These data are layered with timber supply data from the U.S. Forest Service.

  1. A Spatial Data Model Desing For The Management Of Agricultural Data (Farmer, Agricultural Land And Agricultural Production)

    NASA Astrophysics Data System (ADS)

    Taşkanat, Talha; İbrahim İnan, Halil

    2016-04-01

    Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and

  2. Waste treatment in silicon production operations

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor); Tambo, William (Inventor)

    1985-01-01

    A battery of special burners, each adapted for the treatment of a particular range of waste material formed during the conversion of metallurgical grade silicon to high purity silane and silicon, is accompanied by a series arrangement of filters to recover fumed silica by-product and a scrubber to recover muriatic acid as another by-product. All of the wastes are processed, during normal and plant upset waste load conditions, to produce useful by-products in an environmentally acceptable manner rather than waste materials having associated handling and disposal problems.

  3. Agricultural Production. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.

    ERIC Educational Resources Information Center

    Batman, Kangan; Gadd, Nick; Lucas, Michele

    This publication contains the three communication skills units of the three levels of Support Materials for Agricultural Training (SMAT) in agricultural production: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner improve his or her written and spoken communication skills needed to deal with…

  4. Marketing Agricultural Products. Curriculum Guide Developed for Secondary and Post Secondary Agriculture Programs.

    ERIC Educational Resources Information Center

    Miller, W. Wade; And Others

    This curriculum guide can be used by secondary and postsecondary agriculture instructors for a semester course in marketing agricultural products or individual units can be incorporated in other courses. The curriculum guide consists of six units of study made up of two to eight lessons each. The units cover the following topics: (1) marketing…

  5. Anaerobic processes in waste treatment: Methane production. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning research, development, and applications of methane gas production by anaerobic conversion of waste materials, primarily agricultural and animal wastes, but including refuse and sewage wastes. Articles discuss the anaerobic processes involved in waste digestion, the microorganisms responsible for bioconversion of wastes, environmental variables and toxins, and energy production using biogas generators. Both large and small scale systems are considered. (Contains 250 citations and includes a subject term index and title list.)

  6. Anaerobic processes in waste treatment: Methane production. (Latest citations from the Life Sciences Collection data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning research, development, and applications of methane gas production by anaerobic conversion of waste materials, primarily agricultural and animal wastes, but including refuse and sewage wastes. Articles discuss the anaerobic processes involved in waste digestion, the microorganisms responsible for bioconversion of wastes, environmental variables and toxins, and energy production using biogas generators. Both large and small scale systems are considered. (Contains 250 citations and includes a subject term index and title list.)

  7. Major pollutants in soils of abandoned agricultural land contaminated by e-waste activities in Hong Kong.

    PubMed

    Lopez, Brenda Natalia; Man, Yu Bon; Zhao, Yin Ge; Zheng, Jin Shu; Leung, Anna Oi Wah; Yao, Jun; Wong, Ming Hung

    2011-07-01

    Polycyclic aromatic hydrocarbon (PAH), polychlorinated biphenyl (PCB), polybrominated diphenyl ether (PBDE) compounds and five heavy metals (cadmium, copper, chromium, lead, and zinc) were determined in soil samples collected from six sites of abandoned agricultural land affected by electronic-waste: e-waste dismantling workshop [EW (DW)], e-waste open burning site [EW (OBS)], e-waste storage [EW (S)], and agricultural (A) in the New Territories, Hong Kong. Persistent organic pollutants (POPs) and heavy metals were detected in all soil samples. EW (DW) contained the highest concentrations of PAHs, Cr, Cu, and Zn, whereas EW (OBS) had the highest concentrations of PCBs, PBDEs, Cd, and Pb. PAH at EW (DW) and EW (OBS) and PCB concentrations at EW (OBS) exceeded the target values of the New Dutch list, whereas Cd, Cu, Cr, Pb, and Zn levels exceeded the Chinese legislation for the protection of agricultural production and safeguarding of human health, by 3-11 times at EW (OBS) and 5-8 times at EW (DW). Lead at EW (OBS) and EW (DW) and Cr at EW (DW) greatly exceeded the Canadian Soil Quality Guidelines by 46 and 20 times and 27 times, respectively. Concentrations of POPs and heavy metals at EW (DW) and EW (OBS) were significantly higher than at EW (S) and A. It was concluded that e-waste activities led to increases of toxic chemicals at these abandoned agricultural land, which would hinder the redevelopment of the land. PMID:20811881

  8. Woody biomass production in waste recycling systems

    SciTech Connect

    Rockwood, D.L.; Snyder, G.H.; Sprinkle, R.R.

    1994-12-31

    Combining woody biomass production with waste recycling offers many mutual advantages, including increased tree growth and nutrient and water reclamation. Three biomass/recycling studies collectively involving Eucalyptus amplifolia, E. camaldulensis, and E. grandis, rapidly growing species potentially tolerant of high water and nutrient levels, are (1) evaluating general potential for water/nutrient recycling systems to enhance woody biomass production and to recycle water and nutrients, (2) documenting Eucalyptus growth, water use, and nutrient uptake patterns, and (3) identifying Eucalyptus superior for water and nutrient uptake in central and southern Florida. In a 1992-93 study assessing the three Eucalyptus species planted on the outside berms of sewage effluent holding ponds, position on the berms (top to bottom) and genotypes influenced tree size. The potential of the trees to reduce effluent levels in the ponds was assessed. In a stormwater holding pond planted in 1993, these Eucalyptus genotypes varied significantly for tree size but not for survival. E. camaldulensis appears generally superior when flooded with industrial stormwater. Potential sizes of ponds needed for different stormwater applications were estimated. Prolonged flooding of 4- and 5-year-old E. camaldulensis with agricultural irrigation runoff has had no observable effects on tree growth or survival. Younger E. camaldulensis, E. amplifolia, and E. grandis were assessed for water use and nutrient uptake during a Summer 1994 flooding.

  9. Fuel ethanol production from agricultural residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol is a renewable oxygenated fuel. In 2012, about 13.3 billion gallons of fuel ethanol was produced from corn in the USA which makes up 10% of gasoline supply. Various agricultural residues such as corn stover, wheat straw, rice straw and barley straw can serve as low-cost lignocellulosic fee...

  10. Alternative Agricultural Enterprises. Production, Management & Marketing.

    ERIC Educational Resources Information Center

    Fox, Linda Kirk; And Others

    These nine cooperative extension bulletins provide basic information on various alternative agricultural enterprises. Discussed in the first eight bulletins are the following topics: business ownership (sole proprietorship, partnership, incorporation, cooperatives); business and the family (goals, qualifications, ways of ensuring family support,…

  11. Secondary aerosol production from agricultural gas precursors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Increasing evidence from both laboratory and field work suggests that not only does ammonia produce secondary particulate matter, but some volatile org...

  12. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production. PMID:26862147

  13. Mandatory Production Controls. Issues in Agricultural Policy. Agriculture Information Bulletin Number 520.

    ERIC Educational Resources Information Center

    Economic Research Service (USDA), Washington, DC.

    Mandatory restrictions on agricultural production continue to be suggested as an alternative policy for reducing price-depressing surplus production, increasing farm income, and cutting farm program costs. A mandatory production control program (MPCP) can be implemented through two methods: (1) acreage allotments, which restrict individual farmers…

  14. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    PubMed

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth. PMID:25807048

  15. Policies for reduced deforestation and their impact on agricultural production

    PubMed Central

    Angelsen, Arild

    2010-01-01

    Policies to effectively reduce deforestation are discussed within a land rent (von Thünen) framework. The first set of policies attempts to reduce the rent of extensive agriculture, either by neglecting extension, marketing, and infrastructure, generating alternative income opportunities, stimulating intensive agricultural production or by reforming land tenure. The second set aims to increase either extractive or protective forest rent and—more importantly—create institutions (community forest management) or markets (payment for environmental services) that enable land users to capture a larger share of the protective forest rent. The third set aims to limit forest conversion directly by establishing protected areas. Many of these policy options present local win–lose scenarios between forest conservation and agricultural production. Local yield increases tend to stimulate agricultural encroachment, contrary to the logic of the global food equation that suggests yield increases take pressure off forests. At national and global scales, however, policy makers are presented with a more pleasant scenario. Agricultural production in developing countries has increased by 3.3–3.4% annually over the last 2 decades, whereas gross deforestation has increased agricultural area by only 0.3%, suggesting a minor role of forest conversion in overall agricultural production. A spatial delinking of remaining forests and intensive production areas should also help reconcile conservation and production goals in the future. PMID:20643935

  16. Policies for reduced deforestation and their impact on agricultural production.

    PubMed

    Angelsen, Arild

    2010-11-16

    Policies to effectively reduce deforestation are discussed within a land rent (von Thünen) framework. The first set of policies attempts to reduce the rent of extensive agriculture, either by neglecting extension, marketing, and infrastructure, generating alternative income opportunities, stimulating intensive agricultural production or by reforming land tenure. The second set aims to increase either extractive or protective forest rent and--more importantly--create institutions (community forest management) or markets (payment for environmental services) that enable land users to capture a larger share of the protective forest rent. The third set aims to limit forest conversion directly by establishing protected areas. Many of these policy options present local win-lose scenarios between forest conservation and agricultural production. Local yield increases tend to stimulate agricultural encroachment, contrary to the logic of the global food equation that suggests yield increases take pressure off forests. At national and global scales, however, policy makers are presented with a more pleasant scenario. Agricultural production in developing countries has increased by 3.3-3.4% annually over the last 2 decades, whereas gross deforestation has increased agricultural area by only 0.3%, suggesting a minor role of forest conversion in overall agricultural production. A spatial delinking of remaining forests and intensive production areas should also help reconcile conservation and production goals in the future. PMID:20643935

  17. FUEL ETHANOL PRODUCTION FROM AGRICULTURAL RESIDUES AND PROCESSING BYPRODUCTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2005, the production of fuel ethanol from corn starch reached 4.5 billion gallons in the U.S. Various agricultural residues such as corn stover and wheat straw, and agricultural processing byproducts such as corn fiber and rice hulls, can serve as low-cost lignocellulosic feedstocks for conversi...

  18. Conversion of agricultural by-products to methyl cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural residues are attractive raw materials for the production of industrial polymers because they are renewable and biodegradable, involve less toxic materials during manufacturing, add value to agricultural byproducts, and decrease the global dependence on petroleum-based feedstock. In this...

  19. Particulate matter characteristics during agricultural waste burning in Taichung City, Taiwan.

    PubMed

    Cheng, Man-Ting; Horng, Chuen-Liang; Su, Yi-Ru; Lin, Li-Kai; Lin, Yu-Chi; Chou, Charles C-K

    2009-06-15

    Agricultural waste burning is performed after harvest periods in June and November in Taiwan. Typically, farmers use open burning to dispose of excess rice straw. PM(2.5) and PM(2.5-10) measurements were conducted at National Chung Hsing University in Taichung City using a dichotomous sampler. The sampling times were during straw burning periods after rice harvest during 2002-2005. Ionic species including SO(4)(2-), NO(3)(-), NH(4)(+), K(+), Ca(2+), Cl(-) and Na(+) and carbonaceous species (EC and OC) in PM(2.5) and PM(2.5-10) were analyzed. The results showed that the average PM(2.5) and PM(2.5-10) concentrations were 123.6 and 31.5 microg m(-3) during agricultural waste burning periods and 32.6 and 21.4 microg m(-3) during non-waste burning periods, respectively. The fine aerosol ionic species including Cl(-), K(+) and NO(3)(-) increased 11.0, 6.7 and 5.5 times during agricultural burning periods compared with periods when agricultural waste burning is not performed. K(+) was found mainly in the fine mode during agricultural burning. High nitrogen oxidation ratio was found during agricultural waste burning periods which might be caused by the conversion of Nitrogen dioxide (NO(2)) to NO(3)(-). It is concluded that agricultural waste burning with low dispersion often causes high PM(2.5) and gases pollutant events. PMID:18995960

  20. Techniques for Measuring the Dielectric Properties of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectrics and dielectric properties of materials are defined generally, and methods for measuring dielectric properties of agricultural products are described for several frequency ranges from audio frequencies through microwave frequencies. These include measurement with impedance and admittance...

  1. The evolution of dielectric properties measurement techniques for agricultural products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The important applications for dielectric properties, or electric permittivities, of agricultural products are described and the evolution of techniques used for their measurement over frequencies ranging from audio to microwave ranges are described briefly. References are cited for further informat...

  2. Utilization of agricultural by-products in healthful food products: Organogelators, antioxidants, and spreadable products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was found that several agricultural by-products could be utilized for healthful food products. Three major applications that our research group has been focusing on will be discussed: 1) plant waxes for trans-fat free, low saturated fat-containing margarine and spread products, 2) extracts of cor...

  3. Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering.

    PubMed

    Zhao, Xinqing; Xiong, Liang; Zhang, Mingming; Bai, Fengwu

    2016-09-01

    Production of fuel ethanol from lignocellulosic feedstocks such as agricultural and forestry residues is receiving increasing attention due to the unsustainable supply of fossil fuels. Three key challenges include high cellulase production cost, toxicity of the cellulosic hydrolysate to microbial strains, and poor ability of fermenting microorganisms to utilize certain fermentable sugars in the hydrolysate. In this article, studies on searching of natural microbial strains for production of unique cellulase for biorefinery of agricultural and forestry wastes, as well as development of strains for improved cellulase production were reviewed. In addition, progress in the construction of yeast strains with improved stress tolerance and the capability to fully utilize xylose and glucose in the cellulosic hydrolysate was also summarized. With the superior microbial strains for high titer cellulase production and efficient utilization of all fermentable sugars in the hydrolysate, economic biofuels production from agricultural residues and forestry wastes can be realized. PMID:27067672

  4. Biosorption of Cu(II) ions by cellulose of cabbage waste as biosorbent from agricultural waste

    NASA Astrophysics Data System (ADS)

    Heraldy, Eddy; Wireni, Lestari, Witri Wahyu

    2016-02-01

    Biosorption on lignocellulosic wastes has been identified as an appropriate alternative technology to remove heavy metal ions from wastewater. The purpose of this research was to study the ability of cabbage waste biosorbent prepared from agricultural waste on biosorption of Cu(II). Cabbage waste biosorbent was activated with sodium hydroxide at concentration 0.1 M. The biosorption optimum conditions were studied with initial pH (2-8), biosorbent dosage (0.2-1) g/L, contact time (15-90) minutes, and metal ion concentrations (10-100) mg/L by batch method. Experimental data were analyzed in terms of two kinetic models such as pseudo-first-order and pseudo-second-order models. Langmuir and Freundlich isotherm models were applied to describe the biosorption process. The results showed that cabbage biosorbent activated by 0.1 M sodium hydroxide enhanced the biosorption capacity from 9,801 mg/g to 12,26 mg/g. The FTIR spectra have shown a typical absorption of cellulose and typical absorption of lignin decrease after activation process. The kinetic biosorption was determined to be appropriate to the pseudo-second order model with constant rate of 0,091 g/mg.min, and the biosorption equilibrium was described well by the Langmuir isotherm model with maximum biosorption capacity of 37.04 mg/g for Cu(II) at pH 5, biosorption proses was spontaneous in nature with biosorption energy 25.86 kJ/mol at 302 K.

  5. Efficient nitrogen recycling through sustainable use of organic wastes in agriculture - an Australian case study

    NASA Astrophysics Data System (ADS)

    Rigby, Hannah; Landman, Michael; Collins, David; Walton, Katrina; Penney, Nancy; Pritchard, Deborah

    2014-05-01

    The effective recycling of nutrients in treated sewage sludge (biosolids) domestic (e.g. source separated food waste), agricultural, and commercial and industrial (C&I) biowastes (e.g. food industry wastes, papermill sludge) for use on land, generally following treatment (e.g. composting, anaerobic digestion or thermal conversion technologies) as alternatives to conventional mineral fertilisers in Australia can have economic benefits, ensure food security, and close the nutrient loop. In excess of 75% of Australian agricultural soils have less than 1% organic matter (OM), and, with 40 million tonnes of solid waste per year potentially available as a source of OM, biowastes also build soil carbon (C) stocks that improve soil structure, fertility and productivity, and enhance soil ecosystem services. In recent years, the increasing cost of conventional mineral fertilisers, combined with changing weather patterns have placed additional pressure on regional and rural communities. Nitrogen (N) is generally the most limiting nutrient to crop production, and the high-energy required and GHGs associated with its manufacture mean that, additionally, it is critical to use N efficiently and recycle N resources where possible. Biosolids and biowastes have highly variable organic matter (OM) and nutrient contents, with N often present in a variety of forms only some of which are plant-available. The N value is further influenced by treatment process, storage and fundamental soil processes. The correct management of N in biowastes is essential to reduce environmental losses through leaching or runoff and negative impacts on drinking water sources and aquatic ecosystems. Gaseous N emissions also impact upon atmospheric quality and climate change. Despite the body of work to investigate N supply from biosolids, recent findings indicate that historic and current management of agricultural applications of N from biosolids and biowastes in Australia may still be inefficient leading

  6. Natural additives and agricultural wastes in biopolymer formulations for food packaging.

    PubMed

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed. PMID:24790975

  7. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    PubMed Central

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed. PMID:24790975

  8. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    NASA Astrophysics Data System (ADS)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-02-01

    The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  9. Fuel production potential of several agricultural crops

    SciTech Connect

    Mays, D.A.; Buchanan, W.; Bradford, B.N.

    1984-11-01

    Data collected on starch and sugar crops indicate that sweet potato and sweet sorghum have the best potential for alcohol production in the TVA area. Of the oil crops evaluated in this series of experiments only sunflower and okara appear to offer potential in the Tennessee Valley for oil production for fuel or other uses. 21 tabs.

  10. Equine Management and Production. Vocational Agriculture Education.

    ERIC Educational Resources Information Center

    Rudolph, James A.

    This basic core of instruction for equine management and production is designed to assist instructors in preparing students for successful employment or management of a one- or two-horse operation. Contents include seven instructional areas totaling seventeen units of instruction: (1) Orientation (basic horse production; handling and grooming;…

  11. Advanced Manufacturing and Value-added Products from US Agriculture

    NASA Technical Reports Server (NTRS)

    Villet, Ruxton H.; Child, Dennis R.; Acock, Basil

    1992-01-01

    An objective of the US Department of Agriculture (USDA) Agriculture Research Service (ARS) is to develop technology leading to a broad portfolio of value-added marketable products. Modern scientific disciplines such as chemical engineering are brought into play to develop processes for converting bulk commodities into high-margin products. To accomplish this, the extremely sophisticated processing devices which form the basis of modern biotechnology, namely, genes and enzymes, can be tailored to perform the required functions. The USDA/ARS is a leader in the development of intelligent processing equipment (IPE) for agriculture in the broadest sense. Applications of IPE are found in the production, processing, grading, and marketing aspects of agriculture. Various biotechnology applications of IPE are discussed.

  12. Effects of agriculture production systems on nitrate and nitrite accumulation on baby-leaf salads

    PubMed Central

    Aires, Alfredo; Carvalho, Rosa; Rosa, Eduardo A S; Saavedra, Maria J

    2013-01-01

    Nitrate and nitrite are widespread contaminants of vegetables, fruits, and waters. The levels of these compounds are increased as a result of using organic wastes from chemical industries, domestic wastes, effluents, nitrogenous fertilizers, and herbicides in agriculture. Therefore, determining the nitrate and nitrite levels in biological, food, and environmental samples is important to protect human health and the environment. In this context, we set this study, in which we report the effect of production system (conventional and organic) on the accumulation of nitrates and nitrites in fresh baby-leaf samples. The average levels of the nitrate () and nitrite () contents in six different baby-leaf salads of a single species (green lettuce, red lettuce, watercress, rucola, chard, and corn salad) produced in organic and conventional agriculture system were evaluated. Spectrophotometric analytical method recently published was validated and used. Nitrates and nitrites were detected in all samples. The nitrates levels from organic production varied between 1.45 and 6.40 mg/kg fresh weight (FW), whereas those from conventional production ranged from 10.5 to 45.19 mg/kg FW. The nitrites content was lower than nitrates and ranged from 0.32 to 1.89 mg/kg FW in organic production system and between 0.14 and 1.41 mg/kg FW in conventional production system. Our results showed that the nitrate content was dependent on the agricultural production system, while for nitrites, this dependency was less pronounced. PMID:24804008

  13. Education and Research Related to Organic Waste Management at Agricultural Engineering Schools

    ERIC Educational Resources Information Center

    Soliva, Montserrat; Bernat, Carles; Gil, Emilio; Martinez, Xavier; Pujol, Miquel; Sabate, Josep; Valero, Jordi

    2007-01-01

    Purpose: The purpose of this paper is to describe the experience of the Agriculture Engineering School of Barcelona (ESAB), where undergraduate students were involved in field research experiments on organic waste use in agricultural systems. Design/methodology/approach: The paper outlines how the formation of professionals oriented to work for…

  14. Benefits for agriculture and the environment from urban waste.

    PubMed

    Sortino, Orazio; Montoneri, Enzo; Patanè, Cristina; Rosato, Roberta; Tabasso, Silvia; Ginepro, Marco

    2014-07-15

    Soluble bio-based substances (SBO) that have been isolated from urban biowaste have recently been reported to enhance plant leaf chlorophyll content and growth. The same SBO have also been shown to enhance the photochemical degradation of organic pollutants in industrial effluent. These findings suggest that SBO may promote either C fixation or mineralization, according to operating conditions. The present work aims to investigate SBO performance, as a function of source material. Thus, three materials have been sampled from a municipal waste treatment plant: (i) the digestate of the anaerobic fermentation of a humid organic fraction, (ii) a whole vegetable compost made from gardening residues and (iii) compost made from a mixture of digestate, gardening residues and sewage sludge. These materials were hydrolyzed at pH13 and 60°C to yield SBO that display different chemical compositions. These products were applied to soil at 30, 145 and 500 kg ha(-1) doses for tomato cultivation. Soil and plant leaf chemical composition, plant growth, leaf chlorophyll content and CO2 exchange rate as well as fruit quality and production rate were measured. Although it did not affect the soil's chemical composition, SBO were found to significantly increase plant photosynthetic activity, growth and productivity up to the maximum value achieved at 145 kg ha(-1). The effects were analyzed as a function of SBO chemical composition and applied dose. The results of this work, compared with those of previous works, indicate that urban biowaste, if properly exploited, may furnish conjugate economic and environmental benefits, within a friendly sustainable ecosystem. PMID:24797739

  15. Agricultural potential of anaerobically digested industrial orange waste with and without aerobic post-treatment.

    PubMed

    Kaparaju, Prasad; Rintala, Jukka; Oikari, Aimo

    2012-01-01

    The potential of anaerobically digested orange waste with (AAD) and without (AD) aerobic post-treatment for use in agriculture was evaluated through chemical analyses, short-term phytotoxicity and long-term plant assays. Chemical analyses showed that AD contained ammonia and organic acids, and aerobic post-treatment did not significantly remove these phytotoxins. The N:P2O5:K2O ratio in AD was 1:0.26:0.96 and aerobic post-treatment did not change the composition in AAD except for K2O (1:0.26:1.24). Heavy metal contents in AD and AAD were more or less the same and were below the upper limit recommended for non-sewage sludge application on agricultural soils. Short-term phytotoxicity tests showed that seed germination and root elongation of Chinese cabbage and ryegrass were severely inhibited at digestate concentrations of 60-100%. Germination index values were well below the score of 50% required to indicate the phytotoxic-free nature of compost. Long-term plant assays showed that AD and AAD, when supplemented with a base fertilizer, resulted in higher plant growth, and fresh weight and dry matter production than AD without base fertilizer. The results thus indicate that aerobic post-treatment did not have any significant beneficial effect on reducing phytotoxicity, and AD could be used as such on agricultural soils, especially with high P. PMID:22519091

  16. Kinetic, equilibrium and thermodynamic studies of cadmium (II) adsorption by modified agricultural wastes.

    PubMed

    Othman, Zeid A Al; Hashem, Ali; Habila, Mohamed A

    2011-01-01

    Agricultural wastes have great potential for the removal of heavy metal ions from aqueous solution. The contamination of water by toxic heavy metals is a worldwide environmental problem. Unlike organic pollutants, the majority of which are susceptible to biological degradation, heavy metals do not degrade into harmless end products. Discharges containing cadmium, in particular, are strictly controlled because of the highly toxic nature of this element and its tendency to accumulate in the tissues of living organisms. This work aims to develop inexpensive, highly available, effective metal ion adsorbents from natural wastes as alternatives to existing commercial adsorbents. In particular, Tamrix articulata wastes were modified chemically by esterification with maleic acid to yield a carboxyl-rich adsorbent. The adsorption behavior of treated Tamrix articulata wastes toward cadmium ions in aqueous solutions in a batch system has been studied as a function of equilibration time, adsorbent dose, temperature and pH. Results showed that the maximum adsorption capacity was 195.5 mg/g in a pH 4 solution at 30 °C with a contact time of 120 min, an initial concentration of 400 mg/L and an adsorbent dose of 0.3 g/L. The kinetic data were analyzed using pseudo-first-order and pseudo-second-order kinetic models. It was shown that the adsorption of cadmium could be described by a pseudo-second-order equation. The experimental data were also analyzed using the Langmuir and Freundlich models of adsorption. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° have been evaluated and it has been found that the sorption process was spontaneous and exothermic in nature. From all of our data, we conclude that the treated Tamrix articulata wastes investigated in this study showed good potential for cadmium removal from aqueous solutions. PMID:22173337

  17. Application of food industry waste to agricultural soils mitigates green house gas emissions.

    PubMed

    Rashid, M T; Voroney, R P; Khalid, M

    2010-01-01

    Application of organic waste materials such as food processing and serving industry cooking oil waste (OFW) can recycle soil nitrate nitrogen (NO(3)-N), which is otherwise prone to leaching after the harvest of crop. Nitrogen (N) recycling will not only reduce the amount of N fertilizer application for corn crop production but is also expected to mitigate green house gas (GHG) emissions by saving energy to be used for the production of the same amount of industrial fertilizer N required for the growth of corn crop. Application of OFW at 10Mg solid ha(-1)y(-1) conserved 68 kg N ha(-1)y(-1) which ultimately saved 134 L diesel ha(-1)y(-1), which would otherwise be used for the production of fertilizer N as urea. Average fossil energy substitution value (FESV) of N conserved/recycled was calculated to be 93 US$ ha(-1)y(-1), which is about 13 million US$y(-1). Potential amount of GHG mitigation through the application of OFW to agricultural soils in Canada is estimated to be 57 Gg CO(2)Eq y(-1). PMID:19765979

  18. Effects of acid deposition on agricultural production

    SciTech Connect

    Moskowitz, P.D.; Medeiros, W.H.; Oden, N.L.; Thode, H.C. Jr.; Coveney, E.A.; Jacobson, J.S.; Rosenthal, R.E.; Evans, L.S.; Lewin, K.F.; Allen, F.L.

    1985-09-01

    A preliminary assessment, both qualitative and quantitative, was carried out on the effects of acid deposition on agriculture. An inventory was made of US crops exposed to different acid deposition levels in 1982. Most crops (valued at more than $50 billion) were exposed to annual average acid deposition levels greater than pH 4.6, but crops worth more than $220 billion were exposed to even lower pH levels. Published results of experiments on crop response to acid deposition have not identified any single crop as being consistently sensitive, and suggest that present levels of acidic precipitation in the US are not significantly affecting growth and yield of crops. Because relatively few experiments appropriate to a quantitative acid deposition assessment have been conducted, the quantitative section is necessarily based on a restricted data set. Corn, potatoes, and soybeans have been studied in experimental environments which simulate agronomic conditions and which have adequate statistical power for yield estimates; only some varieties of soybeans have demonstrated statistically significant sensitivity to acid deposition.

  19. Fuel alcohol production from agricultural lignocellulosic feedstocks

    SciTech Connect

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L. )

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa, kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.

  20. 7 CFR 205.310 - Agricultural products produced on an exempt or excluded operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Agricultural products produced on an exempt or excluded operation. 205.310 Section 205.310 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION...

  1. Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study.

    PubMed

    Ro, Kyoung S; Hunt, Patrick G; Jackson, Michael A; Compton, David L; Yates, Scott R; Cantrell, Keri; Chang, SeChin

    2014-08-01

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25%m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the (1)H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations. PMID:24810203

  2. Continuous hydrogen production from organic waste.

    PubMed

    Noike, T; Ko, I B; Yokoyama, S; Kohno, Y; Li, Y Y

    2005-01-01

    The antibiotic effects of lactic acid bacteria, Lactobacillus paracasei, on hydrogen production were investigated using glucose as the substrate for the batch experiments. The effects of lactic acid bacteria on hydrogen fermentation depended on pH and the inhibition of hydrogen-producing bacteria was prevented by keeping the pH over 5.0. Then, a continuous hydrogen production experiment was conducted by using bean curd manufacturing waste as an actual organic waste at pH 5.5 at 35 degrees C. The increase of the substrate concentration and the addition of nitrogen gave precedence to acetic and butyric acids production in the metabolic pathway and suppressed propionic acid production. As the result, continuous hydrogen production from municipal organic waste was enabled. PMID:16180421

  3. Management of agricultural biomass wastes: preliminary study on characterization and valorisation in clay matrix bricks.

    PubMed

    Barbieri, Luisa; Andreola, Fernanda; Lancellotti, Isabella; Taurino, Rosa

    2013-11-01

    In this work the feasibility of using woody agricultural biomass wastes as grapes and cherries seeds, sawdust, as pore forming agent, and sugar cane ash, as silica precursor, in bricks, were reported. Sawdust and grapes and cherries seeds, thanks to their organic substances content, during their combustion, bring an energetic support in the bricks firing phase and act as pore forming agent. Usually the addition of this kind of waste is limited to 10wt.% in order to reach an equilibrium between positive (weight and shrinkage decrease and porosity increase) and negative (increase of water absorption and mechanical resistance decrease) effects. The results show that grapes and cherries seeds, added in a percentage of 5wt.% to a brick formulation, have better influence with respect to the sawdust, maintaining the mechanical properties of the fired brick (950°C), showing modulus of rupture around 21-23MPa with a weight reduction of 3-10% (respect to the standard one). Regarding the sugar cane ash, the addition of 5wt.% improves the mechanical properties (modulus of rupture around 27MPa) and no weight decrease is observed. These results confirmed the role played by this kind of agricultural waste, which thanks to its high silica content (61wt.%) is capable to demonstrate a filler and plasticity reducing effect on the brick bodies. Tests carried out highlighted that the addition of these by-products (5wt.%) do not change negatively the main technological properties measured (water absorption, linear shrinkage, flexural resistance, etc.) and permit to hypothesize their use to obtain bricks with both insulating and higher mechanical properties using a pore agent forming or silica carrier alternative raw materials, respectively. PMID:23602302

  4. Dielectric Properties of Agricultural Products and Some Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: The use of dielectric properties of agricultural products for sensing moisture in grain and seed and their application in radio-frequency and microwave dielectric heating is discussed briefly. Values for the dielectric properties of a number of products, including grain and seed, fruits ...

  5. Co-existence of agricultural production systems.

    PubMed

    Jank, Bernhard; Rath, Johannes; Gaugitsch, Helmut

    2006-05-01

    Strategies and best practices for the co-existence of GM and non-GM crops need to be developed and implemented with the participation of farmers and other stakeholders. According to the principle of 'subsidiarity', decisions should be made by the lowest authority possible. When applying this concept to the case of GM crops, the affected society should determine their use and management in a regional decision-making process. Public participation is better accomplished at a lower level, and democratic deficits in decision-making on GMOs are better resolved, enabling farmers to manage or avoid GM crops. Ultimately, voluntary GMO-free zones might be a tool for sustainable co-existence and GM-free production and GMO-free zones might create a specific image for marketing regional products and services, such as tourism. PMID:16545877

  6. Ratite production as an agricultural enterprise.

    PubMed

    Gillespie, J M; Schupp, A R

    1998-11-01

    The ratite industry remains in the market introduction stage of evolution; basic information on markets and production is limited. It is uncertain when, or perhaps whether, either the ostrich or emu industries will progress to the market growth stage. Until significant expansion occurs, ratite operations are likely to be faced with low or even nonexistant profits. It is the authors' observation that the ostrich industry is making slow but significant progress toward introducing products into potential growth markets. The fact that ostrich products were in demand prior to the ostrich being introduced into North America has helped the industry. The future of the emu industry appears to be much less certain. In the authors' opinion, in order for the emu industry to become profitable and grow, significant promotion of emu meat and immediate resolution of the value of the oil must be achieved. Meat sales alone will not carry emu production as a profitable commercial enterprise. Veterinarians can derive significant conclusions from this information. Currently, ratite production is composed of firms generating losses or minimal profits. South African producers are receiving approximately the same amount for a slaughter ostrich as North American producers. It is unlikely that North American ostrich prices will increase significantly. Prices of ostrich breeders of $2,000 to $4,000 per pair and $400 to $450 for slaughter birds are likely to remain the same for some time. Given that world demand has increased at a slower rate than supply, prices may decrease further. Breeder and slaughter birds will continue to require significant veterinary care; however, the producer will be forced to perform more farm treatments, given the negligible margins. Based on the differences in efficiency of existing operations, there are ample opportunities for veterinarians and extension services to assist producers. Vertical coordination in the ratite industry may evolve slowly in the future

  7. Disposable products in the hospital waste stream.

    PubMed Central

    Gilden, D. J.; Scissors, K. N.; Reuler, J. B.

    1992-01-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were sorted and weighed, and potential waste reductions from recycling and substituting reusable items were calculated. Business paper, trash liners, diapers, custom surgical packs, paper gowns, plastic suction bottles, and egg-crate pads were among the 20 top items and were analyzed individually. Data from sorted trash documented potential waste reductions through recycling and substitution of 78, 41, and 18 tonnes per year (1 tonne = 1,000 kg = 1.1 tons) from administration, the operating room, and adult wards, respectively (total hospital waste was 939 tonnes per year). We offer specific measures to substantially reduce nonhazardous hospital waste through substitution, minimization, and recycling of select disposable products. Images PMID:1595242

  8. Agricultural Production: Task Analysis for Livestock Production. Competency-Based Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    This task analysis guide is intended to help teachers and administrators develop instructional materials and implement competency-based education in the agricultural production program. Section 1 contains a validated task inventory for the livestock production portion of agricultural production IV and V. Tasks are divided into six duty areas:…

  9. Effective utilization of waste water through recycling, reuse, and remediation for sustainable agriculture.

    PubMed

    Raman, Rajamani; Krishnamoorthy, Renga

    2014-01-01

    Water is vital for human, animal, and plant life. Water is one of the most essential inputs for the production of crops. Plants need it in enormous quantities continuously during their life. The role of water is felt everywhere; its scarcity causes droughts and famines, its excess causes floods and deluge. During the next two decades, water will increasingly be considered a critical resource for the future survival of the arid and semiarid countries. The requirement of water is increasing day by day due to intensive agriculture practices, urbanization, population growth, industrialization, domestic use, and other uses. On the other hand, the availability of water resources is declining and the existing water is not enough to meet the needs. To overcome this problem, one available solution is utilization of waste water by using recycling, reuse, and remediation process. PMID:24663224

  10. [Determination of Butroxydim in Agricultural Products by LC-MS].

    PubMed

    Minatani, Tomiaki; Nagai, Hiroyuki; Tada, Hiroyuki; Goto, Kotaro; Nemoto, Satoru

    2015-01-01

    An analytical method for the determination of butroxydim in agricultural products by LC-MS was developed. Butroxydim was extracted with acetonitrile and an aliquot of the crude extract was cleaned up on an octadecyl silanized silica gel (C18) cartridge column (1,000 mg), followed by a salting-out step to remove water. Before purification on a silica gel (SI) cartridge column (690 mg), polar matrices were precipitated by adding ethyl acetate, n-hexane and anhydrous sodium sulfate successively. This process effectively removed caffeine and catechins and improved recovery when analyzing residual butroxydim in tea leaves. Recovery and repeatability were good; the relative standard deviations were less than 5% for all 12 tested agricultural products (brown rice, soybean, potato, spinach, cabbage, apple, orange, grapefruit, lemon, tomato, peas with pods, and tea). Average recoveries for 11 agricultural products, except for lemon, were 74-92%. PMID:26699270

  11. Peering into the secrets of food and agricultural co-products

    NASA Astrophysics Data System (ADS)

    Wood, Delilah; Williams, Tina; Glenn, Gregory; Pan, Zhongli; Orts, William; McHugh, Tara

    2010-06-01

    Scanning electron microscopy is a useful tool for understanding food contamination and directing product development of food and industrial products. The current trend in food research is to produce foods that are fast to prepare and/or ready to eat. At the same time, these processed foods must be safe, high quality and maintain all or most of the nutritional value of the original whole foods. Minimally processed foods, is the phrase used to characterize these "new" foods. New techniques are needed which take advantage of minimal processing or processing which enhances the fresh properties and characteristics of whole foods while spending less time on food preparation. The added benefit coupled to less cooking time in an individual kitchen translates to an overall energy savings and reduces the carbon emissions to the environment. Food processing changes the microstructure, and therefore, the quality, texture and flavor, of the resulting food product. Additionally, there is the need to reduce waste, transportation costs and product loss during transportation and storage. Unlike food processing, structural changes are desirable in co-products as function follows form for food packaging films and boxes as well as for building materials and other industrial products. Thus, the standard materials testing procedures are coupled with SEM to provide direction in the development of products from agricultural residues or what would otherwise be considered waste materials. The use of agricultural residues reduces waste and adds value to a currently underutilized or unutilized product. The product might be biodegradable or compostable, thus reducing landfill requirements. Manufacturing industrial and packaging products from biological materials also reduces the amount of petroleum products currently standard in the industry.

  12. Multiple Knowledges for Agricultural Production: Implications for the Development of Conservation Agriculture in Kenya and Uganda

    ERIC Educational Resources Information Center

    Moore, Keith M.; Lamb, Jennifer N.; Sikuku, Dominic Ngosia; Ashilenje, Dennis S.; Laker-Ojok, Rita; Norton, Jay

    2014-01-01

    Purpose: This article investigates the extent of multiple knowledges among smallholders and connected non-farm agents around Mount Elgon in Kenya and Uganda in order to build the communicative competence needed to scale up conservation agriculture production systems (CAPS). Design/methodology/approach: Our methodological approach examines local…

  13. Career Preparation in Agricultural Production: A Curriculum Guide for High School Vocational Agriculture. Test Edition.

    ERIC Educational Resources Information Center

    McGhee, Max B., Comp.

    This curriculum guide in agricultural production is one of 10 guides developed as part of a vocational project stressing agribusiness, natural resources, and environmental protection. The scope of this guide includes four occupational subgroups: animal science, plant science, farm mechanics, and farm business management. It is meant as an aid to…

  14. Agricultural sectoral demand and crop productivity response across the world

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Cassidy, E. S.; Foley, J. A.

    2013-12-01

    With an increasing and increasingly affluent population, humans will need to roughly double agricultural production by 2050. Continued yield growth forms the foundation of all future strategies aiming to increase agricultural production while slowing or eliminating cropland expansion. However, a recent analysis by one of our co-authors has shown that yield trends in many important maize, wheat and rice growing regions have begun stagnating or declining from the highs seen during the green revolution (Ray et al. 2013). Additional research by our group has shown that nearly 50% of new agricultural production since the 1960s has gone not to direct human consumption, but instead to animal feed and other industrial uses. Our analysis for GLP looks at the convergence of these two trends by examining time series utilization data for 16 of the biggest crops to determine how demand from different sectors has shaped our land-use and intensification strategies around the world. Before rushing headlong into the next agricultural doubling, it would be prudent to first consult our recent agricultural history to better understand what was driving past changes in production. Using newly developed time series dataset - a fusion of cropland maps with historic agricultural census data gathered from around the world - we can examine yield and harvested area trends over the last half century for 16 top crops. We combine this data with utilization rates from the FAO Food Balance Sheet to see how demand from different sectors - food, feed, and other - has influenced long-term growth trends from the green revolution forward. We will show how intensification trends over time and across regions have grown or contracted depending on what is driving the change in production capacity. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428. doi:10.1371/journal.pone.0066428

  15. Toxicological studies for some agricultural waste extracts on mosquito larvae and experimental animals

    PubMed Central

    El-Maghraby, Somia; Nawwar, Galal A; Bakr, Reda FA; Helmy, Nadia; Kamel, Omnia MHM

    2012-01-01

    Objective To evaluate some agricultural waste extracts as insecticide and their effects on enzyme activities in liver and kidney of male mice. Methods The insecticidal activity of five tested compounds (one crude extract and 4 waste compounds) was bioassay against the 3rd instars of the Culex pipiens (Cx. pipiens) larvae in the laboratory. The LC50 values of eucalyptol, apricot kernel, Rice bran, corn, black liquor and white liquor are 91.45, 1 166.1, 1 203.3, 21 449.65, 4 025.78 and 6 343.18 ppm, respectively. Selection of the compounds for the subsequent studies was not only dependent on LC50 values but also on the persistence of these wastes products on large scale. Results White and black liquor did not produce any gross effect at 200 mg/Kg body weight. No apparent toxic symptoms were observed in tested animals during the whole period of the experiment which run out for 14 days. No statistically significance was observed in the enzyme cholinesterase activity, the activities of liver enzymes and kidney function in treated mice with black and white liquors. While, no and slight inhibition was observed after the 2 weeks of treatment period with deltamethrin and fenitrothion reached to about 24% in plasma cholinesterase enzyme activity. Significantly increase in the activities of liver enzymes and kidney function in treated mice with deltamethrin and fenitrothion. Conclusions Black liquor can be used efficiently to control Cx. pipiens larvae under laboratory condition. Environmental problem caused by rice straw can be solved by converting the waste material to beneficial natural selective insecticide. PMID:23569971

  16. Long-term assessment of the environmental fate of heavy metals in agricultural soil after cessation of organic waste treatments.

    PubMed

    Kwon, Soon-Ik; Jang, Yeon-A; Owens, Gary; Kim, Min-Kyeong; Jung, Goo-Bok; Hong, Seung-Chang; Chae, Mi-Jin; Kim, Kwon-Rae

    2014-06-01

    The current study examined the anthropogenic accumulation and natural decrease in metal concentrations in agricultural soils following organic waste application. Three common organic wastes, including municipal sewage sludge, alcohol fermentation processing sludge, and pig manure compost (PMC), were applied annually to an agricultural soil under field conditions over 7 years (1994-2000) at a rate of 12.5, 25, and 50 ton ha(-1) year(-1) and the soil accumulation of three metals of concern (Cu, Pb, and Zn) was monitored. Subsequently, organic waste amendments ceased and the experimental plots were managed using conventional fertilization for another 10 years (2001-2010) and the natural decrease in metal concentrations monitored. Although Cu and Zn concentrations in all experimental plots did not exceed the relevant guideline values (150 mg kg(-1) for Cu and 300 mg kg(-1) for Zn), significant increases in metal concentrations were observed from cumulative application of organic wastes over 7 years. For instance, PMC treatment resulted in an increase in Cu and Zn from 9.8 and 72 mg kg(-1) to 108.2 and 214.3 mg kg(-1), respectively. In addition, the natural decrease in Cu and Zn was not significant as soils amended with PMC showed only a 16 and 19 % decline in Cu and Zn concentrations, respectively, even 10 years after amendment ceased. This research suggested that more attention must be paid during production of organic waste-based amendments and at the application stage. PMID:24026571

  17. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective August 23, 2005, the waste specified in 40 CFR part 261 as EPA Hazardous Waste Number K181, and soil and.../or pigments production wastes. 268.20 Section 268.20 Protection of Environment...

  18. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective August 23, 2005, the waste specified in 40 CFR part 261 as EPA Hazardous Waste Number K181, and soil and.../or pigments production wastes. 268.20 Section 268.20 Protection of Environment...

  19. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective August 23, 2005, the waste specified in 40 CFR part 261 as EPA Hazardous Waste Number K181, and soil and.../or pigments production wastes. 268.20 Section 268.20 Protection of Environment...

  20. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective August 23, 2005, the waste specified in 40 CFR part 261 as EPA Hazardous Waste Number K181, and soil and.../or pigments production wastes. 268.20 Section 268.20 Protection of Environment...

  1. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective August 23, 2005, the waste specified in 40 CFR part 261 as EPA Hazardous Waste Number K181, and soil and.../or pigments production wastes. 268.20 Section 268.20 Protection of Environment...

  2. Compatibilized blends and value added products from leather industry waste

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Di Landro, Luca

    2014-05-01

    Blends based on poly(ethylene-co-vinyl acetate) (EVA) and hydrolyzed proteins (IP), derived from waste products of the leather industry, have been obtained by reactive blending and their chemical physical properties as well as mechanical and rheological behavior were evaluated. The effect of vinyl acetate content and of transesterification agent addition to increase interaction between polymer and bio-based components were considered. These blends represent a new type of biodegradable material and resulted promising for industrial application in several fields such as packaging and agriculture as transplanting or mulching films with additional fertilizing action of IP.

  3. Estimation of PCB content in agricultural soils associated with long-term fertilization with organic waste.

    PubMed

    Antolín-Rodríguez, Juan M; Sánchez-Báscones, Mercedes; Martín-Ramos, Pablo; Bravo-Sánchez, Carmen T; Martín-Gil, Jesús

    2016-06-01

    Polychlorinated biphenyl (PCB) pollution related to the use of organic waste as fertilizers in agricultural soils is a cause of major concern. In the study presented herein, PCB concentration was studied through a field trial conducted in two agricultural soils in the province of Palencia (Spain) over a 4-year period, assessing the impact of irrigation and of different types of organic waste materials. The amounts of organic waste added to the soil were calculated according to the nitrogen needs of the crop, and the concentration of PCBs was determined before and after the application of the organic waste. The resulting persistence of the total PCB content in the agricultural soils, compared with the PCB concentration in the original soils, ranged from 27% to 90%, with the lowest value corresponding to irrigated soils treated with municipal solid waste compost (MSWC) and the highest value to non-irrigated soils treated with composted sewage sludge (CSS). An estimate of the PCB content in agricultural soils after the application of organic waste materials until year 2050 was obtained, resulting in a value below 5 ng·g(-1), considered a background value for soils in sites far away from potential pollution sources. PMID:26983809

  4. Production of Fungal Glucoamylase for Glucose Production from Food Waste

    PubMed Central

    Lam, Wan Chi; Pleissner, Daniel; Lin, Carol Sze Ki

    2013-01-01

    The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (kd) 2.20 × 10−3 minutes−1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes. PMID:24970186

  5. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste.

    PubMed

    Sheets, Johnathon P; Yang, Liangcheng; Ge, Xumeng; Wang, Zhiwu; Li, Yebo

    2015-10-01

    Effective treatment and reuse of the massive quantities of agricultural and food wastes generated daily has the potential to improve the sustainability of food production systems. Anaerobic digestion (AD) is used throughout the world as a waste treatment process to convert organic waste into two main products: biogas and nutrient-rich digestate, called AD effluent. Biogas can be used as a source of renewable energy or transportation fuels, while AD effluent is traditionally applied to land as a soil amendment. However, there are economic and environmental concerns that limit widespread land application, which may lead to underutilization of AD for the treatment of agricultural and food wastes. To combat these constraints, existing and novel methods have emerged to treat or reuse AD effluent. The objective of this review is to analyze several emerging methods used for efficient treatment and reuse of AD effluent. Overall, the application of emerging technologies is limited by AD effluent composition, especially the total solid content. Some technologies, such as composting, use the solid fraction of AD effluent, while most other technologies, such as algae culture and struvite crystallization, use the liquid fraction. Therefore, dewatering of AD effluent, reuse of the liquid and solid fractions, and land application could all be combined to sustainably manage the large quantities of AD effluent produced. Issues such as pathogen regrowth and prevalence of emerging organic micro-pollutants are also discussed. PMID:26235446

  6. Agricultural Products Sales and Service Worker. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for agricultural products sales and service occupations. The list contains units (with and without subunits), competencies,…

  7. Factors Associated with Research Productivity of Agricultural Education Faculty.

    ERIC Educational Resources Information Center

    Kotrlik, Joe W.; Bartlett, James E., II; Higgins, Chadwick C.; Williams, Heather A.

    2002-01-01

    Factors influencing the research productivity of full-time agriculture professors (n=114) included the following: number of doctoral students advised to completion, self-perceptions of research confidence, and number of graduate assistant hours allocated. Not influential were percent of time on research, salary, age, gender, rank, or years in…

  8. Microwave sensing of quality attributes of agricultural and food products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave sensors for real-time characterization of agricultural and food products have become viable solutions with recent advances in the development of calibration methods and the availability of inexpensive microwave components. The examples shown here for grain, seed, and in-shell peanuts indic...

  9. Ohio Agricultural Business and Production Systems. Technical Competency Profile (TCP).

    ERIC Educational Resources Information Center

    Ray, Gayl M.; Kershaw, Isaac; Mokma, Arnie

    This document describes the essential competencies from secondary through post-secondary associate degree programs for a career in agricultural business and production systems. Following an introduction, the Ohio College Tech Prep standards and program, and relevant definitions are described. Next are the technical competency profiles for these…

  10. Wheat and barley exposure to nanoceria: Implications for agricultural productivity

    EPA Science Inventory

    The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (Triticum aestivum) and barley (Hordeum vulgare L.) exposed to nanoceria (n...

  11. Farm Laboratory Aids Post-Secondary Instruction in Agricultural Production

    ERIC Educational Resources Information Center

    Statler, Larry L.; Juhl, R. J.

    1970-01-01

    Reports a farm laboratory of 1500 swine, 40 beef cattle, 52 sheep, a 300-crop acres, and a full line of leased new farm machinery for post-secondary agricultural production students. A student board of directors manages the demonstration farm. (DM)

  12. Gender Differences in Access to Extension Services and Agricultural Productivity

    ERIC Educational Resources Information Center

    Ragasa, Catherine; Berhane, Guush; Tadesse, Fanaye; Taffesse, Alemayehu Seyoum

    2013-01-01

    Purpose: This article contributes new empirical evidence and nuanced analysis on the gender difference in access to extension services and how this translates to observed differences in technology adoption and agricultural productivity. Approach: It looks at the case of Ethiopia, where substantial investments in the extension system have been…

  13. Managing for soil protection and bioenergy production on agricultural lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy systems are needed that can aid in meeting the growing energy demands of the expanding human population without sacrificing the long-term sustainability, productivity and quality of the underlying natural resources. Agriculture, like the forestry sector, will produce the feedstocks. While ...

  14. Climate impacts on agriculture: Implications for crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 50 years present a challenge to crop production. Understanding these implications for agricultural crops is critical to being able to develop cropping systems which are resilient to stresses induced by ...

  15. Utilization of industrial and agricultural by-products for fungal amylase production.

    PubMed

    Mahmoud, S A; Abdel-Hafez, A M; Mashhoor, W A; Refaat, A A

    1978-01-01

    Attempts were made for using industrial and agricultural by-products and wastes as carbon and nitrogen sources in fermentation medium for alpha-amylase production by Aspergillus niger NRRL-337. The original carbon source of the basal medium was replaced by one of the following materials: rice bran, wheat bran, corn bran, corn starch, cane molasses, and glucose syrup. Rice bran proved to be the best carbon source that secured the highest amylase activity. The nitrogen source of the basal medium was then replaced by different cheap materials, viz: dried yeast, corn steep liquor, gluten-30, gluten-50, and corn steep precipitate. Corn steep precipitate proved to be superior in amylase production. In consideration of these results an economical medium that secured high activity, containing the following ingredients, was suggested: 2.5% corn steep precipitate, 7.2% rice bran, 0.1% MgSO4, 0.1% KH2PO4, and 0.1% CaCO3. From this medium fungal amylase was precipitated and purified. The pure enzyme gave the highest activity at 40 degrees C and pH 4.3. PMID:28620

  16. Electromagnetic radiation properties of foods and agricultural products

    SciTech Connect

    Mohsenin, N.N.

    1984-01-01

    In this book, the author examines the effects of the various regions of the electromagnetic radiation spectrum on foods and agricultural products. Among the regions of the electromagnetic radiation spectrum covered are high-energy beta and neutron particles, gamma-rays and X-rays, to lower-energy visible, near infrared, infrared, microwave and low-energy radiowaves and electric currents. Dr. Mohsenin applies these electromagnetic phenomena to food products such as fruits, vegetables, seeds, dairy products, meat and processed foods. Contents: Some Basic Concepts of Electromagnetic Radiation. Basic Instruments for Measurement of Optical Properties. Applications of Radiation in the Visible Spectrum. Color and its Measurement. Sorting for Color and Appearance. Near-Infrared and Infrared Radiation Applications. Applications of High-Energy Radiation. Related Concepts of Microwaves, Radiowaves, and Electric Currents. Measurement of Electrical Properties of Foods and Agricultural Products. Applications of Electrical Properties. Appendix, Cited References. Subject Index.

  17. Assessing Agricultural Vulnerability in India using NDVI Data Products

    NASA Astrophysics Data System (ADS)

    Kaushalya, R.; Praveen Kumar, V.; Shubhasmita, S.

    2014-11-01

    Impact of climate change on Indian rainfed agriculture was assessed using temporal NDVI data products from AVHRR and MODIS. Agricultural vulnerability was analysed using CV of Max NDVI from NOAA-AVHRR (15-day, 8 km) and MODIS-TERRA (16-day, 250 m) NDVI data products from 1982-2012. AVHRR dataset was found suitable for estimating regional vulnerability at state and agro-eco-sub-region (AESR) level while MODIS dataset was suitable for drawing district-level strategy for adaptation and mitigation. Methodology was developed to analyse NDVI variations with spatial pattern of rainfall using 10 X 10 girded data and spatially interpolating it to estimate Standard Precipitation Index. Study indicated large variations in vegetation dynamics across India owing to bio-climate and natural resource base. IPCC framework of vulnerability and exposure was used to identify vulnerable region extending from arid western India to semi-arid and dry sub-humid regions in central India and southern peninsula. This is a major agricultural region in the country with sizable human and livestock population with millions of marginal and small farm holdings. Exposure to climatic variability at local and regional levels have national implications and study indicated that over 122 districts extending over 110 mha was vulnerable to climate change that spread across 26 typical AESR in 11 states in India. Of the 74 mha under agriculture in the region, MODIS dataset indicated 47 mha as agriculturally vulnerable while coarser resolution of AVHRR dataset indicated a conservative estimate of 29 mha. First ever estimates of agricultural vulnerability for India indicates 20.4 to 33.1 % agricultural land under risk from climate change.

  18. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2006-06-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  19. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2005-11-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  20. Waste product profile: Magazines and catalogs

    SciTech Connect

    Miller, C. )

    1994-04-01

    This is the fifteenth in a series of profiles -- brief, factual listings of the solid waste management characteristics of materials in the waste stream. These profiles highlight a product, explain how it fits into integrated waste management systems, and provide current data on recycling and markets for the product. Most magazines and catalogs are printed on coated, groundwood paper. Clay, by far the most common coating, is used to help smooth the paper surface and to create an optimum surface to which glossy inks can adhere. Groundwood is the same kind of paper used for newspapers. A two-sided coated paper sheet used for magazines will normally have 30--35% clay and filler and 65--70% paper fiber. EPA estimated a 10.7 % magazine recycling rate for 1990. This is 300,000 tons of magazines. Due to increased demand, one million tons were recycled in 1993.

  1. Production of hydrogen from municipal solid waste

    SciTech Connect

    Coleman, S.L.

    1995-11-01

    The Gasification of Municipal Solid Waste (MSW) includes gasification and the process for producing a gasificable slurry from raw MSW by using high pressures of steam. A potential energy source, MSW is a composite of organic materials such as: paper, wood, food waste, etc. There are different paper grades producing different results with low-quality paper forming better slurries than high-quality papers; making MSW a difficult feedstock for gasification. The objective of the bench-scale laboratory work has been to establish operating conditions for a hydrothermal pre-processing scheme for municipal solid waste (MSW) that produces a good slurry product that can be pumped and atomized to the gasifier for the production of hydrogen. Batch reactors are used to determine product yields as a function of hydrothermal treatment conditions. Various ratios of water-to-paper were used to find out solid product, gas product, and soluble product yields of MSW. Experimental conditions covered were temperature, time, and water to feed ratio. Temperature had the strongest effect on product yields.

  2. Chemical properties of urban waste ash produced by open burning on the Jos Plateau: implications for agriculture.

    PubMed

    Pasquini, M W; Alexander, M J

    2004-02-01

    Urban centres produce most of the world's waste and between a third and a half goes uncollected. The answer to the problem of waste disposal lies partly in agriculture, as waste can be extremely nutrient-rich. In the last decade there has been a tremendous increase in the developing world in total city area under informal food production and there are many examples of waste recycling onto the urban or peri-urban plots. Farmers on the Jos Plateau, Nigeria, have developed a successful soil fertility management strategy based on the combination of inorganic fertilisers, manure and urban waste ash. This study sought to provide some preliminary data on urban waste ash produced by open burning and used in farming in a developing country. Ash samples were collected from different locations around Jos and tested for C, N, pH, P, Na, K, Ca, Mg, Fe, Mn, Zn, Cu, Ni, Cd and Pb. It was found that ash is an effective liming material (because of the high pH, and high Ca, Mg and K contents), and has the potential to contribute significant quantities of micro-nutrients such as Mn, Zn and Cu. Ash, however, is far from being a homogenous material and its variability means that its fertilising potential will vary between batches and that, even if mean and median levels are low, there is the risk of the formation of localised areas of soil with excessive heavy metal contents (this is particularly the case with Pb). Further research is required to determine the plant-availability of these elements in the ash and to assess the wider environmental and health implications of uncontrolled, open burning of waste as a means of producing ash for agricultural purposes. PMID:14967513

  3. Waste (By-Product) Utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter deals with different aspects of seafood processing byproducts. The production yield for whole raw seafoods varies greatly and depends on how it is processed. The fish processing industry generally calculates yield based on a gutted fish with head on, which typically averages about 40%. ...

  4. Food production, environmental protection, and health effects in Mexican agriculture.

    PubMed

    López de Alba, F

    1990-01-01

    In countries like Mexico, where the need to increase agricultural productivity to satisfy an ever-increasing population is great, attention to environmental problems is recent. However, current public concern has forced the administration to consider environmental protection as a key strategy in the development model. The purpose of this paper is to present the efforts being made by the country, the state of research, legislation, and regulations, and the level of participation by agrichemical producers in aiming to balance protection of the environment and development in the agricultural sector, including intensive use of mechanization and agrichemicals. PMID:2248254

  5. SYNTHETIC FUEL PRODUCTION FROM SOLID WASTES

    EPA Science Inventory

    The work described in this report has two objectives: first, to evaluate potential catalysts for the commercial practice of the gasification of chars produced by the pyrolysis of municipal or industrial wastes; second, to determine the potential for synthetic fuel production from...

  6. Anaerobic processes in waste treatment: Methane production. July 1978-March 1990 (A Bibliography from the Life Sciences Collection data base). Report for July 1978-March 1990

    SciTech Connect

    Not Available

    1990-06-01

    This bibliography contains citations concerning research, development, and applications of methane gas production by anaerobic conversion of waste materials, primarily agricultural and animal wastes, but including refuse and sewage wastes. Articles discuss the anaerobic processes involved in waste digestion, the microorganisms responsible for bioconversion of wastes, environmental variables and toxins, and energy production using biogas generators. Both large and small scale systems are considered. (Contains 334 citations fully indexed and including a title list.)

  7. Waste product profile: Polyethylene terephthalate

    SciTech Connect

    Miller, C.

    1996-02-01

    Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks are the primary product packaged in PET. Salad dressing, peanut butter, and other household and consumer products also use PET bottles. PET is also used for film, sheeting for cups and food trays, ovenable trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early `70s. Because it is an ``engineered`` resin, it is more expensive than commodity resins such as high-density polyethylene (HDPE). The primary market for recycled PET is the fiber industry, which uses PET for carpet fiber, sweaters and other clothing, and for other uses. Recycled PET can also be used for food and beverage containers. Export markets, particularly Asian countries, are becoming increasingly important.

  8. Global Agricultural Monitoring (GLAM) using MODAPS and LANCE Data Products

    NASA Astrophysics Data System (ADS)

    Anyamba, A.; Pak, E. E.; Majedi, A. H.; Small, J. L.; Tucker, C. J.; Reynolds, C. A.; Pinzon, J. E.; Smith, M. M.

    2012-12-01

    The Global Inventory Modeling and Mapping Studies / Global Agricultural Monitoring (GIMMS GLAM) system is a web-based geographic application that offers Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and user interface tools to data query and plot MODIS NDVI time series. The system processes near real-time and science quality Terra and Aqua MODIS 8-day composited datasets. These datasets are derived from the MOD09 and MYD09 surface reflectance products which are generated and provided by NASA/GSFC Land and Atmosphere Near Real-time Capability for EOS (LANCE) and NASA/GSFC MODIS Adaptive Processing System (MODAPS). The GIMMS GLAM system is developed and provided by the NASA/GSFC GIMMS group for the U.S. Department of Agriculture / Foreign Agricultural Service / International Production Assessment Division (USDA/FAS/IPAD) Global Agricultural Monitoring project (GLAM). The USDA/FAS/IPAD mission is to provide objective, timely, and regular assessment of the global agricultural production outlook and conditions affecting global food security. This system was developed to improve USDA/FAS/IPAD capabilities for making operational quantitative estimates for crop production and yield estimates based on satellite-derived data. The GIMMS GLAM system offers 1) web map imagery including Terra & Aqua MODIS 8-day composited NDVI, NDVI percent anomaly, and SWIR-NIR-Red band combinations, 2) web map overlays including administrative and 0.25 degree Land Information System (LIS) shape boundaries, and crop land cover masks, and 3) user interface tools to select features, data query, plot, and download MODIS NDVI time series.

  9. Productivity limits and potentials of the principles of conservation agriculture.

    PubMed

    Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris

    2015-01-15

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the

  10. Implications of climate mitigation for future agricultural production

    NASA Astrophysics Data System (ADS)

    Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-12-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ∼81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure

  11. A GEO Global Agricultural Water Productivity Mapping System

    NASA Astrophysics Data System (ADS)

    Thenkabail, P. S.; Pozzi, W.; Miller, N. L.; Fekete, B.; Sheffield, J.; Dumenil-Gates, L.

    2009-12-01

    Agriculture is the main consumer of freshwater, and improved precision and accuracy of the terrestrial water cycle requires a more reliable way of monitoring agricultural water use and agricultural water productivity. Wisser et al 2008 reported that agricultural water consumption over the satellite-determined crop acreage (from AVHRR, SPOT VGT), particularly for India and China (Thenkabail et al 2006) was 30% higher than the commonly used Food and Agricultural Organization country-reported agricultural crop census data. We propose further quantification and clarification of this error through the following methodology: 1) greater accuracy in measuring actual area and precise spatial distribution of irrigated and rainfed cropland areas, along with identification of crop types and cropping intensities; 2) satellite monitoring of actual evapotranspiration (water use) by croplands; 3) reconciling agricultural plot information and evapotranspiration against calculated stores of water and water budgets, as derived from a Global Hydrologic Model Multi-Model Ensemble; and (d) modeling and pin-pointing areas of low and high water productivity (WP) to optimize agricultural water use and thus save large quanta of water. We propose producing global irrigated and rainfed areas at finer scales using Landsat 30 m imagery in fusion with MODIS 250 m imagery using the spectral matching technique (Thenkabail et al 2009). Crop water use (water transpired by the crop) and crop water productivity maps can be prepared for terrestrial areas, by using the surface energy balance model, in which evapotranspiration fraction is provided from Landsat ETM+ and\\or MODIS thermal data, combined with locally derived meteorological data such as wind speed, humidity, incoming radiation, and other surface values to derive turbulent diffusion and finally computing reference evapotranspiration (e.g., Penman-Montieth approach), so that sensible heat flux may be deducted from net radiation to derive

  12. Human health problems associated with current agricultural food production.

    PubMed

    Bhat, Ramesh V

    2008-01-01

    Scientific and technological developments in the agricultural sectors in the recent past has resulted in increased food production and at the same time led to certain public health concerns. Unseasonal rains at the time of harvest and improper post harvest technology often results in agricultural commodities being contaminated with certain fungi and results in the production of mycotoxins. Consumption of such commodities has resulted in human disease outbreaks. Naturally occurring toxins, inherently present in foods and either consumed as such or mixed up with grains, had been responsible for disease outbreaks. Other possible causes of health concern include the application of various agrochemicals such as pesticides and the use of antibiotics in aquaculture and veterinary practices. Foodborne pathogens entering the food chain during both traditional and organic agriculture pose a challenge to public health. Modern biotechnology, producing genetically modified foods, if not regulated appropriately could pose dangers to human health. Use of various integrated food management systems like the Hazard Analysis and critical control system approach for risk prevention, monitoring and control of food hazards are being emphasized with globalization to minimise the danger posed to human health from improper agricultural practices. PMID:18296310

  13. Effects of agriculture production systems on nitrate and nitrite accumulation on baby-leaf salads.

    PubMed

    Aires, Alfredo; Carvalho, Rosa; Rosa, Eduardo A S; Saavedra, Maria J

    2013-01-01

    Nitrate and nitrite are widespread contaminants of vegetables, fruits, and waters. The levels of these compounds are increased as a result of using organic wastes from chemical industries, domestic wastes, effluents, nitrogenous fertilizers, and herbicides in agriculture. Therefore, determining the nitrate and nitrite levels in biological, food, and environmental samples is important to protect human health and the environment. In this context, we set this study, in which we report the effect of production system (conventional and organic) on the accumulation of nitrates and nitrites in fresh baby-leaf samples. The average levels of the nitrate ([Formula: see text]) and nitrite ([Formula: see text]) contents in six different baby-leaf salads of a single species (green lettuce, red lettuce, watercress, rucola, chard, and corn salad) produced in organic and conventional agriculture system were evaluated. Spectrophotometric analytical method recently published was validated and used. Nitrates and nitrites were detected in all samples. The nitrates levels from organic production varied between 1.45 and 6.40 mg/kg fresh weight (FW), whereas those from conventional production ranged from 10.5 to 45.19 mg/kg FW. The nitrites content was lower than nitrates and ranged from 0.32 to 1.89 mg/kg FW in organic production system and between 0.14 and 1.41 mg/kg FW in conventional production system. Our results showed that the nitrate content was dependent on the agricultural production system, while for nitrites, this dependency was less pronounced. PMID:24804008

  14. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. PMID:25708406

  15. Co-processing of agriculture and biomass waste with coal

    SciTech Connect

    Stiller, A.H.; Dadyburjor, D.B.; Wann, J.P.

    1995-12-01

    Biomass and bio-processed waste are potential candidates for co-liquefaction with coal. Specific materials used here include sawdust and poultry manure. Liquefaction experiments were run on each of these materials, separately and with coal, using tetralin as solvent at 350{degrees}C and 1000 psi(cold) hydrogen pressure for 1h. Total conversion was monitored, as well as conversion to asphaltenes, oils and gases. All the biomass samples are converted to oils and gases under the reaction conditions. Poultry manure seems to convert coal more completely, and to produce more oils and gases, than conventional liquefaction.

  16. WASTE MINIMIZATION FOR NON-AGRICULTURAL PESTICIDE APPLICATORS: EPA'S POLLUTION PREVENTION GUIDE

    EPA Science Inventory

    U.S. EPA's Office of Research and Development is preparing a guide to be published later this year for non-agricultural pesticide applicators which will provide specific information about waste minimization for pesticide users in industries such as commercial lawn care, structura...

  17. Co-processing of agricultural plastic waste and switchgrass via tail gas reactive pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixtures of agricultural plastic waste in the form of polyethylene hay bale covers (PE) (4-37%) and switchgrass were investigated using the US Department of Agriculture’s tail gas reactive pyrolysis (TGRP) at different temperatures (400-570 deg C). TGRP of switchgrass and plastic mixtures significan...

  18. Determination of caloric values of agricultural crops and crop waste by Adiabatic Bomb Calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calorific values of agricultural crops and their waste were measured by adiabatic bomb calorimetry. Sustainable farming techniques require that all potential sources of revenue be utilized. A wide variety of biomass is beginning to be used as alternative fuels all over the world. The energy potentia...

  19. A PROTOTYPE MOBILE SYSTEM FOR PYROLYSIS OF AGRICULTURAL AND/OR SILVICULTURAL WASTES

    EPA Science Inventory

    This research program was initiated to investigate three elements of a prototype mobile system for pyrolysis of agricultural and/or silvicultural wastes into clean, transportable fuels: the pyrolytic converter itself, a pyrolysis-gas-fueled internal combustion engine, and the com...

  20. Implications of salinity pollution hotspots on agricultural production

    NASA Astrophysics Data System (ADS)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  1. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  2. University degrees consistent with agricultural production in the European Union

    NASA Astrophysics Data System (ADS)

    Perdigones, Alicia; del Cerro, Jesus; Tarquis, Ana Maria; Benedicto, Susana; García, Jose Luis

    2013-04-01

    Degrees clearly oriented to rural and agricultural engineering are distinguished from the rest of the engineering areas by the need to involve the biological phenomena of engineering calculations. These degrees, which include subjects such as crop production, biotechnology and physics, among others, have evolved tremendously over the last ten years, implanting new curricula and introducing new specialties such as those dedicated to the environment or rural development, thereby adapting new social, economic and environmental aspects of each country. Currently being finalized to implement new titles in most Spanish universities, and in rest of Europe, following the guidelines set by Bologna. The process of elaboration of these degrees is complicated precisely because of the great variety of areas and subjects involved in these degrees. In this paper we study, for several countries of the European Union, the core subjects of the university degrees of agricultural engineering and the correlations between the core contents and the importance of the related uses of the soil in the different sectors of crop production (arable crops, horticulture, fruit growing, gardening, etc.) as well as other socio-economic criteria. The objective is to detect if the design of the core content is consistent in each country with the importance of the related socio-economic sector. Key-words: curriculum, crop production, agricultural engineer.

  3. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes

    PubMed Central

    da Luz, José Maria Rodrigues; Nunes, Mateus Dias; Paes, Sirlaine Albino; Torres, Denise Pereira; de Cássia Soares da Silva, Marliane; Kasuya, Maria Catarina Megumi

    2012-01-01

    The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse). The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase) and hydrolytic enzymes (cellulases, xylanases and tanases). Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6). These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes. PMID:24031982

  4. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes.

    PubMed

    da Luz, José Maria Rodrigues; Nunes, Mateus Dias; Paes, Sirlaine Albino; Torres, Denise Pereira; de Cássia Soares da Silva, Marliane; Kasuya, Maria Catarina Megumi

    2012-10-01

    The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse). The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase) and hydrolytic enzymes (cellulases, xylanases and tanases). Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6). These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes. PMID:24031982

  5. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2013-01-01 2013-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  6. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2012-01-01 2012-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  7. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2014-01-01 2014-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  8. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2011-01-01 2011-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  9. 48 CFR 470.103 - United States origin of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the products of agricultural commodities acquired for use in international feeding and development... agricultural products. 470.103 Section 470.103 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE FOOD ASSISTANCE PROGRAMS COMMODITY ACQUISITIONS 470.103 United States origin of agricultural...

  10. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential

    SciTech Connect

    Briassoulis, D.; Hiskakis, M.; Babou, E.; Antiohos, S.K.; Papadi, C.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Definition of parameters characterising agricultural plastic waste (APW) quality. Black-Right-Pointing-Pointer Analysis of samples to determine APW quality for recycling or energy recovery. Black-Right-Pointing-Pointer Majority of APW samples from various countries have very good quality for recycling. Black-Right-Pointing-Pointer Upper limit of 50% w/w soil contamination in APW acceptable for energy recovery. Black-Right-Pointing-Pointer Chlorine and heavy metals content in APW below the lowest limit for energy recovery. - Abstract: A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European research project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a 'very good quality' for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries.

  11. [Hygienic assessment of waste of soda production].

    PubMed

    Samutin, N M; Vaisman, Y I; Rudakova, L V; Kalinina, E V; Glushankova, I S; Batrakova, G M

    2013-01-01

    The object of investigations was soda industry waste. Slimes are formed at slimes storage which occupy considerable areas and are considered to be the source of permanent impact on the hydrosphere objects. Slimes storage placement within settlement boundaries and water protection zone of large watercourses leads to the deterioration of sanitary, hygienic and environmental situation and to the rising of risks to health of communities. Waste processing with getting new materials on the base of soda industry waste with wide application is seems to be one of the way for problem solving. It is essential to take into account sanitary and hygienic characteristics of slimes within justifying possible directions of its use. Thus, researches concerning assessment of physical, chemical and toxicological waste characteristics are considered to be actual. The aim of researches is to examine physical, chemical and toxicological characteristics of soda production slimes for justifying directions of its use including delivery of new materials respondent to the all regulatory sanitary and hygienic requirements. Experimental investigations of assessment physical, chemical and toxicological characteristics of slimes were carried out according to standard methods. Within assessment of toxicological slimes characteristics the following test-objects were used: Ceriodaphnia affinis, Paramecium caudatum. As a result of investigations watered slime samples were determined to be referred to the 4th hazard level (low-hazard) waste; samples with preliminary mechanical dehydration are referred to the 5th hazard level (practically nonhazardous) waste for environment. These are correspond to the 3rd and 4th hazard level according to sanitary regulations, respectively. PMID:24003694

  12. 76 FR 13973 - United States Warehouse Act; Processed Agricultural Products Licensing Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... example of a processed agricultural product is apple juice concentrate. In the past, USDA has issued USWA... agricultural products such as apple juice concentrate and other similar products. This proposal is in response... following questions: Should FSA offer a license for processed agricultural products such as apple...

  13. Ethanol production from potato peel waste (PPW).

    PubMed

    Arapoglou, D; Varzakas, Th; Vlyssides, A; Israilides, C

    2010-10-01

    Considerable concern is caused by the problem of potato peel waste (PPW) to potato industries in Europe. An integrated, environmentally-friendly solution is yet to be found and is currently undergoing investigation. Potato peel is a zero value waste produced by potato processing plants. However, bio-ethanol produced from potato wastes has a large potential market. If Federal Government regulations are adopted in light of the Kyoto agreement, the mandatory blending of bio-ethanol with traditional gasoline in amounts up to 10% will result in a demand for large quantities of bio-ethanol. PPW contain sufficient quantities of starch, cellulose, hemicellulose and fermentable sugars to warrant use as an ethanol feedstock. In the present study, a number of batches of PPW were hydrolyzed with various enzymes and/or acid, and fermented by Saccharomyces cerevisae var. bayanus to determine fermentability and ethanol production. Enzymatic hydrolysis with a combination of three enzymes, released 18.5 g L(-1) reducing sugar and produced 7.6 g L(-1) of ethanol after fermentation. The results demonstrate that PPW, a by-product of the potato industry features a high potential for ethanol production. PMID:20471817

  14. Trade-offs between agricultural production and biodiversity for biofuel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing energy demands and concerns for climate change have pushed forward the time line for biofuel production. However, the effect of large-scale biofuel production in the U.S. on the agricultural industry, primarily responsible for food production and livestock feed, and biodiversity levels of ma...

  15. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  16. Food waste and food processing waste for biohydrogen production: a review.

    PubMed

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. PMID:24121591

  17. Soil biota and agriculture production in conventional and organic farming

    NASA Astrophysics Data System (ADS)

    Schrama, Maarten; de Haan, Joj; Carvalho, Sabrina; Kroonen, Mark; Verstegen, Harry; Van der Putten, Wim

    2015-04-01

    Sustainable food production for a growing world population requires a healthy soil that can buffer environmental extremes and minimize its losses. There are currently two views on how to achieve this: by intensifying conventional agriculture or by developing organically based agriculture. It has been established that yields of conventional agriculture can be 20% higher than of organic agriculture. However, high yields of intensified conventional agriculture trade off with loss of soil biodiversity, leaching of nutrients, and other unwanted ecosystem dis-services. One of the key explanations for the loss of nutrients and GHG from intensive agriculture is that it results in high dynamics of nutrient losses, and policy has aimed at reducing temporal variation. However, little is known about how different agricultural practices affect spatial variation, and it is unknown how soil fauna acts this. In this study we compare the spatial and temporal variation of physical, chemical and biological parameters in a long term (13-year) field experiment with two conventional farming systems (low and medium organic matter input) and one organic farming system (high organic matter input) and we evaluate the impact on ecosystem services that these farming systems provide. Soil chemical (N availability, N mineralization, pH) and soil biological parameters (nematode abundance, bacterial and fungal biomass) show considerably higher spatial variation under conventional farming than under organic farming. Higher variation in soil chemical and biological parameters coincides with the presence of 'leaky' spots (high nitrate leaching) in conventional farming systems, which shift unpredictably over the course of one season. Although variation in soil physical factors (soil organic matter, soil aggregation, soil moisture) was similar between treatments, but averages were higher under organic farming, indicating more buffered conditions for nutrient cycling. All these changes coincide with

  18. Quaternized agricultural by-products as anion exchange resins.

    PubMed

    Wartelle, Lynda H; Marshall, Wayne E

    2006-01-01

    The objectives of this study were the chemical modification of readily available, low-cost agricultural by-products to anion exchange resins and the selection of the best modified by-product for further use in anion removal. Resins were prepared through the quaternization of a series of 12 agricultural by-products with N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHMAC). Phosphate ion adsorption assays were conducted at pH 7 in order to compare adsorption properties among the by-products. Quaternized corn stover showed the highest phosphorus adsorption at 0.66 mmole/g. Since corn stover exhibited the best uptake of phosphate ion, it was compared to a commercially available, cellulose-based anion exchange resin. Additionally, adsorption capacities of quaternized corn stover for arsenate, chromate, and selenate were evaluated and adsorption efficiencies were determined in simulated wastewater samples. Our results indicate that modified corn stover demonstrates good adsorption uptake for arsenate and selenate and especially for chromate. PMID:16144735

  19. Levels and distributions of polycyclic aromatic hydrocarbons in agricultural soils in an emerging e-waste recycling town in Taizhou area, China.

    PubMed

    Tang, Xianjin; Shen, Chaofeng; Cheema, Sardar Alam; Chen, Lei; Xiao, Xi; Zhang, Congkai; Liu, Wenli; Li, Feng; Chen, Yingxu

    2010-01-01

    The present study investigated the levels, distributions, profiles and possible sources of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils around Zeguo, an emerging e-waste recycling town in Taizhou area, China. Concentrations of sixteen USEPA priority PAHs and soil organic matter were analyzed in 59 agricultural soil samples. The total PAH concentrations ranged from 262.6 to 3,420.2 microg/kg, with the average values in a gradually descending order: agricultural soil near e-waste recycling plants and workshops (1,336.0 microg/kg) > agricultural soil in villages with open burning and e-waste recycling activities (945.8 microg/kg) > agricultural soil in other villages (466.5 microg/kg). Analysis of the distribution patterns of the PAHs showed that phenanthrene, anthracene, fluoranthene and pyrene were the dominant species. The significant correlations among individual, low-molecular-weight (LMW), high-molecular-weight (HMW) and total PAHs and the very similar PAH profiles in the three sampling areas indicated that the PAHs might have come from similar sources. The ratios of Anthracene to sum of Anthracene and Phenanthrene concentrations (Ant/(Ant+Phe)) and fluoranthene to sum of fluoranthene and pyrene concentrations (Flt/(Flt+Pyr)) were calculated and principal component analysis (PCA) was performed and the results suggested that an anthropogenic source such as the combustion of a petroleum product or coal during the e-waste recycling process seemed to be the main source of PAHs in the Zeguo agricultural soil. In conclusion, soils taken from Zeguo agricultural areas were considered to be heavily polluted, and the emerging e-waste recycling activities had definite effects on PAH soil concentrations. PMID:20535879

  20. Production of metal waste forms from spent fuel treatment

    SciTech Connect

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-02-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities.

  1. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    PubMed

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand. PMID:23849753

  2. Potential useful products from solid wastes.

    PubMed

    Golueke, C G; Diaz, L F

    1991-10-01

    Wastes have been aptly defined as "items, i.e. resources, that have been discarded because their possessors no longer have an apparent use for them". Accordingly, "wastes" have a significance only in relation to the items and those who have discarded them. The discarded items now are resources awaiting reclamation. Reclamation usually involves either salvage or conversion--or in modern terminology, "reuse" or "recycling". Reclamation for reuse consists in refurbishing or other upgrading without significantly altering original form and composition. Examples of wastes amenable to reuse are containers (bottles, etc.), cartons and repairable tires. With "recycling" (i.e. conservation), the discarded items are processed such that they become raw material, i.e. resources in the manufacture of "new" products. The variety of processes is wide, ranging from simply physical (grinding) through thermal (melting, gasification, combustion), to biological (composting, biogasification, hydrolysis, microbial protein production). In the paper, reuse and recycling (conversion) are evaluated in terms of advantages and disadvantages (limitations) and their respective technologies are described and discussed in detail. PMID:11537693

  3. [Discussion on agricultural product quality and safety problem from ecological view].

    PubMed

    Xiao, Ming; Dong, Nan; Lyu, Xin

    2015-08-01

    There are many different perspectives about the sustainable agriculture, which had been proposed since the last three decades in the world. While China's ecologists and agronomists proposed a similar concept named 'ecological agriculture'. Although ecological agriculture in China has achieved substantial progress, including theory, models and supporting technologies nearly several decades of practice and development, its application guidance still is not yet clear. The organic agriculture model proposed by European Union is popular, but it is limited in the beneficiary groups and the social and ecological responsibility. In this context, the article based on an ecological point of view, analyzed the shortcomings of ecological imbalance caused by a single mode of agricultural production and the negative impact on the quality of agricultural products, and discussed the core values of ecological agriculture. On this basis, we put forward the concept of sustainable security of agricultural products. Based on this concept, an agricultural platform was established under the healthy ecosysphere environment, and from this agricultural platform, agricultural products could be safely and sustainably obtained. Around the central value of the concept, we designed the agricultural sustainable and security production model. Finally, we compared the responsibility, benefiting groups, agronomic practices selection and other aspects of sustainable agriculture with organic agriculture, and proved the advancement of sustainable agricultural model in agricultural production quality and safety. PMID:26685623

  4. The application of data mining technology in the quality and security of agricultural products

    NASA Astrophysics Data System (ADS)

    Li, Huaqin; Luo, Ying

    The quality and security of agricultural products is the hot issue with public attention in China and also one of the issues that Chinese government attaches great importance to. This paper describes the principle of data mining technology and based on the environmental information data of agricultural production and the quality-security testing data of agricultural products, analyses the application of data mining technology in the quality and security of agricultural products.

  5. Biotechnological production of methanol from waste biomass

    SciTech Connect

    Kozak, R.; Morris, D.

    1995-12-01

    The production of methanol (CH{sub 3}OH) from waste biomass is possible through the use of genetically modified bacteria. The biomass to methanol conversion process makes use of a naturally occurring, direct aerobic enzymatic system referred to as oxidative demethylation. Methoxy groups are stripped off of lignin and lignin like plant substances (approximately fifty percent of all plant biomass) and hydrolyzed to form methanol. Since the biotech process is stoichiometric, potentially every methoxy group in the lignin feedstock can be converted to methanol fuel. Approximately 30-35% of lignin is a methoxy compound that can be converted. Biotechnological conversion could produce up to 100 gallons/ton or 20 billion gallons a year of methanol from waste biomass. Current work has focused on the genetic modification of the enzymatic conversion process to reach commercial production. The goals of this research are; increase product yields, implement an operon {open_quotes}switch{close_quotes} mechanism to exploit multiple feedstocks, and produce environmentally safe by-products. Progress on these topics will be reported.

  6. Microbial products from sweet potato wastes

    SciTech Connect

    Nghiem, N.P.

    1982-01-01

    Microbial production of methane from alkaline sweet potato wastes was studied. Assessment of methane production potential was based on total COD of the wastes. A single-stage and a two-stage system were studied. In both systems, to ensure stable operation and high performance, methane fermenters had to be initially seeded with large quantities of methane formers. A 50% inoculum (based on total fermenter volume) was found to be most effective. Methane formers tended to aggregate to form spherical particles which had extremely high settling rates, this eliminated the requirement of cell recycle. In both single-stage and two-stage systems the rates of gas production was sufficiently fast to induce thorough mixing of the fermenter contents. At low residence times of two and four days the two-stage system achieved significantly higher conversions. Gas production started almost immediately after feeding the methane fermenter of the two-stage system. The conversions in the methane fermenter of a two-stage system could be predicted by a model based on Contois' kinetics. The composition of the gas produced in this fermenter could also be predicted from the distribution of the organic acids in the effluent from the acid fermenter. The acid formation stage was studied in a chemostat operated at a fixed residence time of 5.5 hours. The highest yield of 0.09 g protein/g glucose consumed was obtained at pH 5.5 and 37/sup 0/C.

  7. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  8. Converting citrus waste to ethanol and other co-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of citrus processing waste (CPW) generated during juice production into value added co-products is an important aspect of the juice industry as it offers a solution to waste disposal issues. Currently the practice of drying citrus waste to produce citrus pulp pellets (CPP) for use as catt...

  9. 48 CFR 470.103 - United States origin of agricultural products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false United States origin of agricultural products. 470.103 Section 470.103 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE FOOD ASSISTANCE PROGRAMS COMMODITY ACQUISITIONS 470.103 United States origin of agricultural products. (a) Products of United States...

  10. Impacts of Stratospheric Sulfate Geoengineering on Chinese Agricultural Production

    NASA Astrophysics Data System (ADS)

    Xia, L.; Robock, A.

    2012-12-01

    Possible food supply change is one of the most important concerns in the discussion of stratospheric sulfate geoengineering. In China, the high population density and strong summer monsoon influence on agriculture make this region sensitive to climate changes, such as reductions of precipitation, temperature, and solar radiation spurred by stratospheric sulfate injection. We used results from the Geoengineering Model Intercomparison Project G2 scenario to force the Decision Support System for Agrotechnology Transfer (DSSAT) crop model to predict crop yield changes from rice, maize, and winter wheat. We first evaluated the DSSAT model by forcing it with daily observed weather data and management practices for the period 1978-2008 for all the provinces in China, and compared the results to observations of the yields of the three major crops in China. We then created two 50-year sets of climate anomalies using the results from eight climate models, for 1%/year increase of CO2 and for G2 (1%/year increase of CO2 balanced by insolation reduction), and compared the resulting agricultural responses. Considering that geoengineering could happen in the future, we used two geoengineering starting years, 2020 and 2060. For 2020, we increased the mean temperature by 1°C and started the CO2 concentration at 410 ppm. For 2060, we increased temperature by 2°C and started the CO2 concentration at 550 ppm. Without changing agriculture technology, we find that compared to the control run, geoengineering with the G2 scenario starting in 2020 or 2060 would both moderately increase rice and winter wheat production due to the CO2 fertilization effect, but the increasing rates are different. However, as a C4 crop, without a significant CO2 fertilization effect, maize production would decrease slightly because of regional drought. Compared to the reference run, the three crops all have less heat stress in southern China and their yields increase, but in northern China cooler

  11. Antioxidant and antiproliferative activities of methanolic extract from a neglected agricultural product: corn cobs.

    PubMed

    Melo-Silveira, Raniere Fagundes; Fidelis, Gabriel Pereira; Viana, Rony Lucas Silva; Soeiro, Vinícius Campelo; Silva, Rodrigo Augusto da; Machado, Daisy; Costa, Leandro Silva; Ferreira, Carmen Veríssima; Oliveira Rocha, Hugo Alexandre

    2014-01-01

    Neglected agricultural products (NAPs) are defined as discarded material in agricultural production. Corn cobs are a major waste of agriculture maize. Here, a methanolic extract from corn cobs (MEC) was obtained. MEC contains phenolic compounds, protein, carbohydrates (1.4:0.001:0.001). We evaluated the in vitro and in vivo antioxidant potential of MEC. Furthermore, its antiproliferative property against tumor cells was assessed through MTT assays and proteins related to apoptosis in tumor cells were examined by western blot. MEC showed no hydroxyl radical scavenger capacity, but it showed antioxidant activity in Total Antioxidant Capacity and DPPH scavenger ability assays. MEC showed higher Reducing Power than ascorbic acid and exhibited high Superoxide Scavenging activity. In tumor cell culture, MEC increased catalase, metallothionein and superoxide dismutase expression in accordance with the antioxidant tests. In vivo antioxidant test, MEC restored SOD and CAT, decreased malondialdehyde activities and showed high Trolox Equivalent Antioxidant Capacity in animals treated with CCl4. Furthermore, MEC decreased HeLa cells viability by apoptosis due an increase of Bax/Bcl-2 ratio, caspase 3 active. Protein kinase C expression increased was also detected in treated tumor cells. Thus, our findings pointed out the biotechnological potential of corn cobs as a source of molecules with pharmacological activity. PMID:24879583

  12. STATE OF THE ART: SWINE WASTE PRODUCTION AND PRETREATMENT PROCESSES

    EPA Science Inventory

    A review of waste generation and pretreatment processes was compiled, expanded, and interpreted for the swine production industry. Typical swine units based upon waste management techniques were detailed as concrete slab facilities, slotted floorpit units, and swine drylot or pas...

  13. Impact of alcohol fuel production on agricultural markets

    SciTech Connect

    Gardiner, W.H.

    1986-01-01

    Production of alcohol from biomass feedstocks, such as corn, was given Federal and State support which resulted in alcohol production rising from 20 million gallons in 1979 to 430 million gallons in 1984. This study estimates the impacts of alcohol production from corn on selected agricultural markets. The tool of analysis was a three region (United States, the European Community and the rest of the world) econometric model of the markets for corn, soybeans, soybean meal, soybean oil, wheat and corn byproduct feeds. Three alternative growth paths for alcohol production (totalling 1.1, 2.0, and 3.0 billion gallons) were analyzed with the model in the context of three different trade environments. The results of this analysis indicate that alcohol production of 1.1 billion gallons by 1980 would have caused moderate adjustments to commodity markets while 3.0 billion gallons would have caused major adjustments. Corn prices rose sharply with increased alcohol production as did wheat prices but to a somewhat lesser extent. The substitution of corn for soybeans on the supply side was not sufficient to offset the demand depressing effects of corn byproduct feeds on soybean meal which translated into slightly lower soybean prices. A quota limiting imports of corn gluten feed into the EC to three million tons annually would cause reductions in export earnings for corn millers.

  14. Biodiesel production using waste frying oil

    SciTech Connect

    Charpe, Trupti W.; Rathod, Virendra K.

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

  15. Vocational Training and Agricultural Productivity: Evidence from Rice Production in Vietnam

    ERIC Educational Resources Information Center

    Ulimwengu, John; Badiane, Ousmane

    2010-01-01

    The paper examines the impact of farmers' educational attainment on agricultural productivity. More specifically, it evaluates how farmers with vocational training perform compared to those with traditional educational training. A stochastic production frontier and inefficiency effects model is estimated using nationally representative household…

  16. Cleaner production: Minimizing hazardous waste in Indonesia

    SciTech Connect

    Bratasida, D.L.

    1996-12-31

    In the second long-term development plan, industry plays a significant role in economic growth. In Indonesia, industries grow very fast; such fast growth can adversely effect the environment. Exploitation of assets can mean depletion of natural resources and energy, which, if incorrectly managed, can endanger human life and the environment. The inefficient use of natural resources will accelerate their exhaustion and generate pollution, resulting in environmental damage and threats to economic development and human well being. In recent years, changes in the approach used to control pollution have been necessary because of the increasing seriousness of the problems. Initial environmental management strategies were based on a carrying capacity approach; the natural assimilative capacity accommodated the pollution load that was applied. The environmental management strategies adopted later included technologies applied to the end of the discharge point (so-called {open_quotes}end-of-pipe{close_quotes} treatments). Until now, environmental management strategies focused on end-of-pipe approaches that control pollutants after they are generated. These approaches concentrate on waste treatment and disposal to control pollution and environmental degradation. However, as industry develops, waste volumes continue to increase, thereby creating further environmental problems. In addition, the wastes produced tend to have more complex characteristics and are potentially more difficult to treat for a reasonable cost. There are often technical and financial obstacles to regulatory compliance if waste treatment is relied on as the only means of achieving environmental objectives. Consequently, the reactive end-of-pipe treatment approach has been changed to a proactive cleaner production approach. This approach is based on the concept of sustainable development and is designed to prevent pollution as well as to protect natural resources and the quality of the environment.

  17. Hydrogen production from municipal solid waste

    SciTech Connect

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B.

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  18. Minimisation and utilisation of waste mineral sludge from sodium perborate production.

    PubMed

    Grilc, Viktor; Jersan, Rok

    2002-10-01

    Various approaches to waste minimisation, waste treatment and recycling or safe disposal of the waste mineral sludge from sodium perborate production are presented and critically discussed. Some most promising actions for waste (or its harmful potential) reduction on the production level are identified. These include: a) use of better raw materials (richer boron ore), b) improvement of the ore leaching process, and c) intensification of sludge washing and dewatering. These source reduction measures have already resulted in 50% reduction of boron content in the sludge. Utilisation of the raw or treated (e.g. dried, compacted) waste sludge could be found in agriculture, civil engineering and construction material production. Agricultural use (as a lime substitute) is based on favourable content of calcium-magnesium minerals and alkali pH value of the sludge, and simultaneous absence of heavy metals. Application in civil engineering (as an aggregate) is possible after calcination, which is costly, or as a cement kiln additive. Stabilisation of sludge before disposal, when no utilisation is available, is possible by small addition of commercial binders (e.g. Portland cement) or larger amounts of pozzolanic wastes (e.g. coal fly ash). PMID:12498478

  19. Waste acceptance product specifications for vitrified high-level waste forms. Revision 1

    SciTech Connect

    Applewhite-Ramsey, A.; Sproull, J.F.

    1993-06-01

    The Nuclear Waste Policy Act of 1982 mandated that all high-level waste (HLW) be sent to a federal geologic repository for permanent disposal. DOE published the Environmental Assessment in 1982 which identified borosilicate glass as the chosen HLW form.{sup 1} In 1985 the Department of Energy instituted a Waste Acceptance Process to assure that DWPF glass waste forms would be acceptable to such a repository. This assurance was important since production of waste forms will precede repository construction and licensing. As part of this Waste Acceptance Process, the DOE Office of Civilian Radioactive Waste Management (RW) formed the Waste Acceptance Committee (WAC). The WAC included representatives from the candidate repository sites, the waste producing sites and DOE. The WAC was responsible for developing the Waste Acceptance Preliminary Specifications (WAPS) which defined the requirements the waste forms must meet to be compatible with the candidate repository geologies.

  20. Agricultural Education: Key to Providing Broader Opportunities for Third World Women in Production Agriculture.

    ERIC Educational Resources Information Center

    Lelle, Mark A.; Holt, Barbara A.

    1987-01-01

    The authors focus on providing opportunities for women in Third World countries in agriculture. A review of the body of knowledge in agricultural development and of the issues surrounding current world food crises is included. (CH)

  1. Thermophilic methane production from cattle waste.

    PubMed Central

    Varel, V H; Isaacson, H R; Bryant, M P

    1977-01-01

    Methane production from waste of cattle fed a finishing diet was investigated, using four 3-liter-working volume anaerobic digestors at 60 degrees C. At 55 degrees C a start-up culture, in which waste was the only source of bacteria, was generated within 8 days and readily adapted to 60 degrees C, where efficiency of methanogenesis was greater. Increasing the temperature from 60 to 65 degrees C tended to drastically lower efficiency. When feed concentrations of volatile solids (VS, organic matter) were increased in steps of 2% after holding for 1 months at a given concentration, the maximum concentrations for efficient fermentation were 8.2, 10.0, 11.6, and 11.6% for the retention times (RT) of 3, 6, 9, and 12 days, respectively. The VS destructions for these and lower feed concentrations were 31 to 37, 36 to 40, 47 to 49 and 51 to 53% for the 3-, 6-, 9-, and 12-day RT digestors, respectively, and the corresponding methane production rates were about 0.16, 0.18, 0.20, and 0.22 liters/day per g of VS in the feed. Gas contained 52 to 57% methane. At the above RT and feed concentrations, alkalinity rose to 5,000 to 7,700 mg of CaCo3 per liter (pH to 7.5 to 7.8), NH3 plus NH4+ to 64 to 90 mM, and total volatile acids to 850 to 2,050 mg/liter as acetate. The 3-day RT digestor was quite stable up to 8.2% feed VS and at this feed concentration produced methane at the very high rate of 4.5 liters/day per liter of digestor. Increasing the percentage of feed VS beyond those values indicated above resulted in greatly decreased organic matter destruction and methane production, variable decrease in pH, and increased alkalinity, ammonia, and total volatile acid concentrations, with propionate being the first to accumulate in large amounts. In a second experiment with another lot of waste, the results were similar. These studies indicate that loading rates can be much higher than those previously thought useful for maximizing methanogenesis from cattle waste. PMID:557954

  2. Current organic waste recycling and the potential for local recycling through urban agriculture in Metro Manila.

    PubMed

    Hara, Yuji; Furutani, Takashi; Murakami, Akinobu; Palijon, Armando M; Yokohari, Makoto

    2011-11-01

    Using the solid waste management programmes of three barangays (the smallest unit of local government in the Philippines) in Quezon City, Metro Manila, as a case study, this research aimed to further the development of efficient organic waste recycling systems through the promotion of urban agricultural activities on green and vacant spaces. First, the quantity of organic waste and compost produced through ongoing barangay projects was measured. The amount of compost that could potentially be utilized on farmland and vacant land within the barangays was then identified to determine the possibility of a local recycling system. The results indicate that, at present, securing buyers for compost is difficult and, therefore, most compost is distributed to large neighbouring farm villages. However, the present analysis of potential compost use within the barangay demonstrates that a more local compost recycling system is indeed feasible. PMID:20952443

  3. Application of methane fermentation technology into organic wastes in closed agricultural system

    NASA Astrophysics Data System (ADS)

    Endo, Ryosuke; Kitaya, Yoshiaki

    Sustainable and recycling-based systems are required in space agriculture which takes place in an enclosed environment. Methane fermentation is one of the most major biomass conversion technologies, because (1) it provides a renewable energy source as biogas including methane, suitable for energy production, (2) the nutrient-rich solids left after digestion can be used as compost for agriculture. In this study, the effect of the application of methane fermentation technology into space agriculture on the material and energy cycle was investigated.

  4. E-waste: an assessment of global production and environmental impacts.

    PubMed

    Robinson, Brett H

    2009-12-20

    to the contaminants through smoke, dust, drinking water and food. There is evidence that E-waste associated contaminants may be present in some agricultural or manufactured products for export. PMID:19846207

  5. 7 CFR 735.106 - Excess storage and transferring of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE AGENCY, DEPARTMENT OF AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Licensing § 735.106 Excess storage and transferring of agricultural products. (a) If at any time a warehouse operator stores an agricultural product in a warehouse subject to a...

  6. Productivity of Premodern Agriculture in the Cucuteni-Trypillia Area.

    PubMed

    Shukurov, Anvar; Sarson, Graeme; Videiko, Mykhailo; Henderson, Kate; Shiel, Robert; Dolukhanov, Pavel; Pashkevich, Galina

    2015-07-01

    We present paleoeconomy reconstructions for premodern agriculture, selecting, wherever required, features and parameter values specific for the Cucuteni-Trypillia cultural unity (CTU; 5,400-2,700 BC, mostly the territory of modern Ukraine, Moldova, and Romania). We verify the self-consistency and viability of the archaeological evidence related to all major elements of the agricultural production cycle within the constraints provided by environmental and technological considerations. The starting point of our analysis is the paleodiet structure suggested by archaeological data, stable isotope analyses of human remains, and palynology studies in the CTU area. We allow for the archeologically attested contributions of domesticated and wild animal products to the diet, develop plausible estimates of the yield of ancient cereal varieties cultivated with ancient techniques, and quantify the yield dependence on the time after initial planting and on rainfall (as a climate proxy). Our conclusions involve analysis of the labor costs of various seasonal parts of the agricultural cycle of both an individual and a family with a majority of members that do not engage in productive activities that require physical fitness, such as tillage. Finally, we put our results into the context of the exploitation territory and catchment analysis, to project various subsistence strategies into the exploitation territory of a farming settlement. The simplest economic complex based on cereals and domestic and wild animal products, with fallow cropping, appears to be capable of supporting an isolated, relatively small farming settlement of 50-300 people (2-10 ha in area) even without recourse to technological improvements such as the use of manure fertilizer. Our results strongly suggest that dairy products played a significant role in the dietary and labor balance. The smaller settlements are typical of the earliest Trypillia A stage but remain predominant at the later stages. A larger

  7. Global warming threatens agricultural productivity in Africa and South Asia

    NASA Astrophysics Data System (ADS)

    Sultan, Benjamin

    2012-12-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; Christensen et al 2007) has, with greater confidence than previous reports, warned the international community that the increase in anthropogenic greenhouse gases emissions will result in global climate change. One of the most direct and threatening impacts it may have on human societies is the potential consequences on global crop production. Indeed agriculture is considered as the most weather-dependent of all human activities (Hansen 2002) since climate is a primary determinant for agricultural productivity. The potential impact of climate change on crop productivity is an additional strain on the global food system which is already facing the difficult challenge of increasing food production to feed a projected 9 billion people by 2050 with changing consumption patterns and growing scarcity of water and land (Beddington 2010). In some regions such as Sub-Saharan Africa or South Asia that are already food insecure and where most of the population increase and economic development will take place, climate change could be the additional stress that pushes systems over the edge. A striking example, if needed, is the work from Collomb (1999) which estimates that by 2050 food needs will more than quintuple in Africa and more than double in Asia. Better knowledge of climate change impacts on crop productivity in those vulnerable regions is crucial to inform policies and to support adaptation strategies that may counteract the adverse effects. Although there is a growing literature on the impact of climate change on crop productivity in tropical regions, it is difficult to provide a consistent assessment of future yield changes because of large uncertainties in regional climate change projections, in the response of crops to environmental change (rainfall, temperature, CO2 concentration), in the coupling between climate models and crop productivity functions, and in the adaptation of

  8. Baseline Glass Development for Combined Fission Products Waste Streams

    SciTech Connect

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-06-29

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.[1] Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.[2-5] Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  9. Product distribution from pyrolysis of wood and agricultural residues

    SciTech Connect

    Di Blasi, C.; Signorelli, G.; Di Russo, C.; Rea, G.

    1999-06-01

    The pyrolysis characteristics of agricultural residues (wheat straw, olive husks, grape residues, and rice husks) and wood chips have been investigated on a bench scale. The experimental system establishes the conditions encountered by a thin (4 {times} 10{sup {minus}2} m diameter) packed bed of biomass particles suddenly exposed in a high-temperature environment, simulated by a radiant furnace. Product yields (gases, liquids, and char) and gas composition, measured for surface bed temperatures in the range 650--1000 K, reproduce trends already observed for wood. However, differences are quantitatively large. Pyrolysis of agricultural residues is always associated with much higher solid yields (up to a factor of 2) and lower liquid yields. Differences are lower for the total gas, and approximate relationships exist among the ratios of the main gas species yields, indicating comparable activation energies for the corresponding apparent kinetics of formation. However, while the ratios are about the same for wood chips, rice husks, and straw, much lower values are shown by olive and grape residues. Large differences have also been found in the average values of the specific devolatilization rates. The fastest (up to factors of about 1.5 with respect to wood) have been observed for wheat straw and the slowest (up to factors of 2) for grape residues.

  10. Ethanol and other products from citrus processing waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greater than 80 percent of citrus produced in Florida is processed for juice production. The bulk of this waste material is dried as citrus pulp and sold as a cattle feed by-product, often at a price lower than the cost of production. While not profitable, this does solve the problem of waste dispos...

  11. Overview of advances in water management in agricultural production:Sensor based irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technological advances in irrigated agriculture are crucial to meeting the challenge of increasing demand for agricultural products given limited quality and quantity of water resources for irrigation, impacts of climate variability, and the need to reduce environmental impacts. Multidisciplinary ap...

  12. WASTE DERIVED PRODUCTS AS A SOURCE OF ENVIRONMENTAL CONTAMINATION

    EPA Science Inventory

    The sale of reusable waste from industrial and municipal activities can potentially lower the overall cost of manufacturing and reduce the amount of material sent to waste sites for disposal. Marketed finished products that contain, either partially or wholly, are called waste d...

  13. Phosphate bonded structural products from high volume wastes

    DOEpatents

    Singh, D.; Wagh, A.S.

    1998-12-08

    A method to produce structural products from benign waste is provided comprising mixing pretreated oxide with phosphoric acid to produce an acid solution, mixing the acid solution with waste particles to produce a slurry, and allowing the slurry to cure. The invention also provides for a structural material comprising waste particles enveloped by an inorganic binder. 1 fig.

  14. Phosphate bonded structural products from high volume wastes

    DOEpatents

    Singh, Dileep; Wagh, Arun S.

    1998-01-01

    A method to produce structural products from benign waste is provided comprising mixing pretreated oxide with phosphoric acid to produce an acid solution, mixing the acid solution with waste particles to produce a slurry, and allowing the slurry to cure. The invention also provides for a structural material comprising waste particles enveloped by an inorganic binder.

  15. High-Level waste process and product data annotated bibliography

    SciTech Connect

    Stegen, G.E.

    1996-02-13

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references.

  16. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    ScienceCinema

    Danuso, Francesco [University of Udine, Italy

    2010-01-08

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  17. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Joergensen, 1994) in which systems are modeled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  18. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  19. Optimization of biogas production from coffee production waste.

    PubMed

    Battista, Federico; Fino, Debora; Mancini, Giuseppe

    2016-01-01

    This study was conducted to investigate the effects of chemical pretreatments on biogas production from coffee waste. After the preparation of a mixture of coffee waste with a TS concentration of 10%w/w, basic and acid pretreatments were conducted in batch mode and their performances were compared with the biogas produced from a mixture without any pretreatment stage. The basic pretreatment demonstrated a very good action on the hydrolysis of the lignin and cellulose, and permitted a biogas production of about 18NL/L with a methane content of almost 80%v/v. Thus, the basic pretreatment has been used to scale-up the process. The coffee refuse was has been carried out in a 45L anaerobic reactor working in continuous mode and in a mesophilic condition (35°C) with a Hydraulic Retention Time (HRT) of about 40days. A high biogas production of 1.14NL/Ld, with a methane percentage of 65%v/v was obtained, thus permitting a process yield of about 83% to be obtained. PMID:26600457

  20. Biodiversity of Aspergillus species in some important agricultural products

    PubMed Central

    Perrone, G.; Susca, A.; Cozzi, G.; Ehrlich, K.; Varga, J.; Frisvad, J.C.; Meijer, M.; Noonim, P.; Mahakarnchanakul, W.; Samson, R.A.

    2007-01-01

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A. flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different species in relation to their different adaptation to environmental and geographical conditions, and to their potential toxigenicity. Here we analyzed the biodiversity of ochratoxin producing species occurring on two important crops: grapes and coffee, and the genetic diversity of A. flavus populations occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A. ibericus, and A. uvarum. Similar studies on the Aspergillus species occurring on coffee beans have evidenced in the last five years that A. carbonarius is an important source of ochratoxin A in coffee. Four new species within the black aspergilli were also identified in coffee beans: A. sclerotioniger, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus. The genetic diversity within A. flavus populations has been widely studied in relation to their potential aflatoxigenicity and morphological variants L- and S-strains. Within A. flavus and other Aspergillus species capable of aflatoxin production, considerable diversity is found. We summarise the main recent achievements in the diversity of the aflatoxin gene cluster in A. flavus populations, A. parasiticus and the non

  1. Biogenic carbon fluxes from global agricultural production and consumption

    SciTech Connect

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  2. Biogenic carbon fluxes from global agricultural production and consumption

    NASA Astrophysics Data System (ADS)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick; Kyle, G. Page; Zhang, Xuesong; Collatz, G. James; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange and spatially distributed to 0.05° resolution using Moderate Resolution Imaging Spectroradiometer satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which was respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of approximately 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  3. Carbonization on combustion and biodegradation of agricultural waste as a possible source of silica.

    PubMed

    Krishnamoorthy, Sarayu; Iyer, Nagesh R; Murthy, A Ramachandra

    2015-02-01

    Agricultural waste being the major solid waste in the environment, the study has explored and identified the presence of minerals especially silica in the agricultural waste like sugarcane bagasse ash and rice husk ash by carbonization on combustion at different thermal conditions and biodegradation. Presence of silica in the ash samples has been well characterized by the XRD, FT-IR, EDX, SEM and N2 sorption techniques. Presence of crystal phases of silica like quartz and cristoballite is well indexed by the X-ray diffraction peaks that appeared at 2θ = 27, 40 and 60 which is further confirmed by the peaks at 1100, 820 and 620 cm(-1) of FT-IR. The elemental composition of the silica in ash is determined by EDX analysis. The exothermic reaction and the mass loss observed in the TG/DTG at the transient temperature of 840-850 °C has confirmed the presence of the α-quartz. SEM micrograph has also supported the presence of silica and has revealed the various crystal shapes that were present in the sugarcane and husk ash. The study has clearly revealed that the silica content has increased with the increase in temperature and refinement of the combustion condition to a maximum of 18.7-52 % and on biodegradation to about 48.3-92.4 %. PMID:25413790

  4. Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes.

    PubMed

    Mahmood-Ul-Hassan, Muhammad; Suthor, Vishandas; Rafique, Ejaz; Yasin, Muhammad

    2015-02-01

    The adsorption of cadmium (Cd), chromium (Cr), and lead (Pb), widely detected in wastewater, by unmodified and modified banana stalks, corn cob, and sunflower achene was explored. The three agricultural wastes were chemically modified with sodium hydroxide (NaOH), in combination with nitric acid (HNO3) and sulfuric acid (H2SO4), in order to improve their adsorptive binding capacity. The experiments were conducted as a function of contact time and initial metal ion concentrations. Of the three waste materials, corn cob had the highest adsorptive capacity for Pb than Cr and Cd. The NaOH-modified substrates had higher adsorptive capacity than the acid modified samples. The chemical treatment invariably increased the adsorption capacity between 10 and 100 %. The Langmuir maximum sorption capacity (q m) of Pb was highest (21-60 mg g(-1) of banana, 30-57 mg g(-1) of corn cob, and 23-28 mg g(-1) of sunflower achene) and that of Cd was least (4-7 mg g(-1) of banana, 14-20 mg g(-1) of corn cob, and 11-16 mg g(-1) of sunflower achene). The q m was in the order of Pb > Cr > Cd for all the three adsorbents. The results demonstrate that the agricultural waste materials used in this study could be used to remediate water polluted with heavy metals. PMID:25626568

  5. External Economic Drivers and U.S. Agricultural Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S agriculture operates in a market driven economy. As with other businesses, agricultural producers respond to economic incentives and disincentives and make decisions to maximize their welfare. In this paper we examine external economic drivers that shape agricultural systems. Specifically, we c...

  6. Extended Producer Responsibility and Product Stewardship for Tobacco Product Waste

    PubMed Central

    Curtis, Clifton; Collins, Susan; Cunningham, Shea; Stigler, Paula; Novotny, Thomas E

    2015-01-01

    This paper reviews several environmental principles, including Extended Producer Responsibility (EPR), Product Stewardship (PS), the Polluter Pays Principle (PPP), and the Precautionary Principle, as they may apply to tobacco product waste (TPW). The review addresses specific criteria that apply in deciding whether a particular toxic product should adhere to these principles; presents three case studies of similar approaches to other toxic and/or environmentally harmful products; and describes 10 possible interventions or policy actions that may help prevent, reduce, and mitigate the effects of TPW. EPR promotes total lifecycle environmental improvements, placing economic, physical, and informational responsibilities onto the tobacco industry, while PS complements EPR, but with responsibility shared by all parties involved in the tobacco product lifecycle. Both principles focus on toxic source reduction, post-consumer take-back, and final disposal of consumer products. These principles when applied to TPW have the potential to substantially decrease the environmental and public health harms of cigarette butts and other TPW throughout the world. TPW is the most commonly littered item picked up during environmental, urban, and coastal cleanups globally. PMID:26457262

  7. Bio Gas Oil Production from Waste Lard

    PubMed Central

    Hancsók, Jenő; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al2O3 catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280–380°C, P = 20–80 bar, LHSV = 0.75–3.0 h−1 and H2/lard ratio: 600 Nm3/m3). In case of the isomerization at the favourable process parameters (T = 360–370°C, P = 40 –50 bar, LHSV = 1.0 h−1 and H2/hydrocarbon ratio: 400 Nm3/m3) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms. PMID:21403875

  8. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    NASA Astrophysics Data System (ADS)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters

  9. A pyrolysis study for the thermal and kinetic characteristics of an agricultural waste with two different plastic wastes.

    PubMed

    Çepelioğullar, Özge; Pütün, Ayşe E

    2014-10-01

    In this study, thermochemical conversion of plastic wastes (PET and PVC) together with an agricultural waste (hazelnut shell) was investigated. In order to determine the thermal and kinetic behaviours, pyrolysis experiments were carried out from room temperature to 800 °C, with a heating rate of 10 °C min(-1) in the presence of a N2 atmosphere in a thermogravimetric analyzer. With the obtained thermogravimetric data, an appropriate temperature was specified for the pyrolysis of biomass-plastic wastes in a fixed-bed reactor. At the second step, pyrolysis experiments were carried out at the same conditions with the thermogravimetric analyzer, except the final temperature which was up to 500 °C in this case. After pyrolysis experiments, pyrolysis yields were calculated and characterization studies for bio-oil were investigated. Experimental results showed that co-pyrolysis has an important role in the determination of the pyrolysis mechanism and the process conditions while designing/implementing a thermochemical conversion method where biomass-plastic materials were preferred as raw materials. PMID:25062939

  10. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By-products are produced in significant amounts from crop residues such as pecan shells (PC), peanut shells (PS), and cotton gin (CG) trash. These residues can be used to produce biochar suitable for use in agricultural soil to sequester carbon and enhance plant growth by supplying and retaining nut...

  11. Career Preparation in Agricultural Products (Food Processing): A Curriculum Guide for High School Vocational Agriculture. Test Edition.

    ERIC Educational Resources Information Center

    Moore, Eddie A.

    This curriculum guide in agricultural products (food processing) is one of 10 guides developed as part of a vocational project stressing agribusiness, natural resources, and environmental protection. The scope of this guide includes three occupational subgroups: meat, fish, poultry; dairy (milk) products; fruits and vegetables. It is meant as an…

  12. Use of transgenic seeds in Brazilian agriculture and concentration of agricultural production to large agribusinesses.

    PubMed

    Marinho, C D; Martins, F J O; Amaral Júnior, A T; Gonçalves, L S A; Amaral, S C S; de Mello, M P

    2012-01-01

    We identified the commercial releases of genetically modified organisms (GMOs) in Brazil, their characteristics, the types of genetic transformation used, and the companies responsible for the development of these GMOs, classifying them into two categories: private companies, subdivided into multinational and national, and public institutions. The data came from the data bank of the national registration of cultivars and the service of national protection of cultivars of the Ministry of Agriculture, Fishing and Supply (MAPA). This survey was carried out from 1998 to February 12, 2011. Until this date, 27 GMOs had been approved, including five for soybean, 15 for maize and seven for cotton cultivars. These GMOs have been used for the development of 766 cultivars, of which, 305 are soybean, 445 are maize, and 13 are cotton cultivars. The Monsato Company controls 73.2% of the transgenic cultivars certified by the MAPA; a partnership between Dow AgroSciences and DuPont accounts for 21.4%, and Syngenta controls 4.96%. Seed supply by these companies is almost a monopoly supported by law, giving no choice for producers and leading to the fast replacement of conventional cultivars by transgenic cultivars, which are expensive and exclude small producers from the market, since seeds cannot be kept for later use. This situation concentrates production in the hands of a few large national agribusiness entrepreneurs. PMID:22869542

  13. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    PubMed

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions. PMID:22452230

  14. Associations between Schistosomiasis and the Use of Human Waste as an Agricultural Fertilizer in China

    PubMed Central

    Carlton, Elizabeth J.; Liu, Yang; Zhong, Bo; Hubbard, Alan; Spear, Robert C.

    2015-01-01

    Background Human waste is used as an agricultural fertilizer in China and elsewhere. Because the eggs of many helminth species can survive in environmental media, reuse of untreated or partially treated human waste, commonly called night soil, may promote transmission of human helminthiases. Methodology/Principal Findings We conducted an open cohort study in 36 villages to evaluate the association between night soil use and schistosomiasis in a region of China where schistosomiasis has reemerged and persisted despite control activities. We tested 2,005 residents for Schistosoma japonicum infection in 2007 and 1,365 residents in 2010 and interviewed heads of household about agricultural practices each study year. We used an intervention attributable ratio framework to estimate the association between night soil use and S. japonicum infection. Night soil use was reported by half of households (56% in 2007 and 46% in 2010). Village night soil use was strongly associated with human S. japonicum infection in 2007. We estimate cessation of night soil use would lead to a 49% reduction in infection prevalence in 2007 (95% CI: 12%, 71%). However, no association between night soil and schistosomiasis was observed in 2010. These inconsistent findings may be due to unmeasured confounding or temporal shifts in the importance of different sources of S. japonicum eggs on the margins of disease elimination. Conclusions/Significance The use of untreated or partially treated human waste as an agricultural fertilizer may be a barrier to permanent reductions in human helminthiases. This practice warrants further attention by the public health community. PMID:25590142

  15. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    PubMed

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  16. Energy potential from livestock and poultry wastes in the South. Agricultural Economic Report

    SciTech Connect

    Jones, H.B.; Ogden, E.A.

    1984-11-01

    Livestock and poultry wastes could produce significant amounts of biomass energy if conventional energy prices continue to rise. This study estimates the economically recoverable energy available through anaerobic digestion or direct burning of animal wastes in the South for the base year 1980 with projections for 1985 and 1990. Potential thermal energy from livestock and poultry wastes in 1990 could total more than 79.5 trillion Btu, or about 30 percent of the energy from such sources nationwide. The total potential farm value of biomass energy from livestock and poultry enterprises in the South could range from $344 million to $1.08 billion in 1990 depending upon the types of conventional energy displaced. Energy products from these wastes attained their highest value when substituted for LP gas.

  17. An economic and ecological perspective of ethanol production from renewable agro waste: a review.

    PubMed

    Bhatia, Latika; Johri, Sonia; Ahmad, Rumana

    2012-01-01

    Agro-industrial wastes are generated during the industrial processing of agricultural products. These wastes are generated in large amounts throughout the year, and are the most abundant renewable resources on earth. Due to the large availability and composition rich in compounds that could be used in other processes, there is a great interest on the reuse of these wastes, both from economical and environmental view points. The economic aspect is based on the fact that such wastes may be used as low-cost raw materials for the production of other value-added compounds, with the expectancy of reducing the production costs. The environmental concern is because most of the agro-industrial wastes contain phenolic compounds and/or other compounds of toxic potential; which may cause deterioration of the environment when the waste is discharged to the nature. Although the production of bioethanol offers many benefits, more research is needed in the aspects like feedstock preparation, fermentation technology modification, etc., to make bioethanol more economically viable. PMID:23217124

  18. An economic and ecological perspective of ethanol production from renewable agro waste: a review

    PubMed Central

    2012-01-01

    Agro-industrial wastes are generated during the industrial processing of agricultural products. These wastes are generated in large amounts throughout the year, and are the most abundant renewable resources on earth. Due to the large availability and composition rich in compounds that could be used in other processes, there is a great interest on the reuse of these wastes, both from economical and environmental view points. The economic aspect is based on the fact that such wastes may be used as low-cost raw materials for the production of other value-added compounds, with the expectancy of reducing the production costs. The environmental concern is because most of the agro-industrial wastes contain phenolic compounds and/or other compounds of toxic potential; which may cause deterioration of the environment when the waste is discharged to the nature. Although the production of bioethanol offers many benefits, more research is needed in the aspects like feedstock preparation, fermentation technology modification, etc., to make bioethanol more economically viable. PMID:23217124

  19. Identification of Entamoeba moshkovskii in Treated Waste Water Used for Agriculture.

    PubMed

    Fonseca, Jairo Andres; Heredia, Rubén Darío; Ortiz, Carolina; Mazo, Martín; Clavijo-Ramírez, Carlos Arturo; Lopez, Myriam Consuelo

    2016-03-01

    We conducted an observational study to determine the prevalence of Entamoeba spp., in samples collected in a waste water treatment plant that provides water for agricultural irrigation. Samples were collected weekly over a period of 10 weeks at representative contamination stages from within the treatment plant. Protozoan identification was performed via light microscopy and culture. PCR amplification of small subunit rRNA gene sequences of E. histolytica/dispar/moshkovskii was performed in culture positive samples. Light microscopy revealed the presence of Entamoeba spp., in 70% (14/20) of the raw waste water samples and in 80% (8/10) of the treated water samples. PCR amplification after culture at both 24 and 37°C revealed that 100% (29/29) of the raw waste water samples and 78.6% (11/14) of the treated waste water were positive for E. moshkovskii. We report the first isolation of E. moshkovskii in Colombia, confirmed by PCR. Recent reports of E. moshkovskii pathogenic potential suggest this finding could constitute a public health risk for people exposed to this water. PMID:26732073

  20. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS

  1. Removal of nickel(II) from aqueous solution and nickel plating industry wastewater using an agricultural waste: Peanut hulls

    SciTech Connect

    Periasamy, K.; Namasivayam, C.

    1995-07-01

    Activated carbon prepared from peanut hulls (PHC), an agricultural waste by-product, has been used for the adsorption of Ni(II) from aqueous solution. The process of uptake obeys both Freundlich and Langmuir adsorption isotherms. The applicability of Lagergren kinetic model has also been investigated. Quantitative removal of Ni(II) from 100 mL aqueous solution containing 20 mg/L Ni(II) by 85 mg PHC was observed over a pH range of 4.0 to 10.0. The suitability of PHC for treating nickel plating industry wastewater was also tested. A comparative study with a commercial granular activated carbon (GAC) showed that PHC is 36 times more efficient compared to GAC based on Langmuir adsorption capacity (Q{sub O}).

  2. Climate impacts on agriculture: Implications for crop production

    SciTech Connect

    Hatfield, Jerry L.; Boote, Kenneth J.; Kimball, B. A.; Ziska, Lewis A.; Izaurralde, Roberto C.; Ort, Don; Thomson, Allison M.; Wolfe, David W.

    2011-04-19

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 30 years present a challenge to crop production. This review focuses on the impact of temperature, CO2, and ozone on agronomic crops and the implications for crop production. Understanding these implications for agricultural crops is critical for developing cropping systems resilient to stresses induced by climate change. There is variation among crops in their response to CO2, temperature, and precipitation changes and, with the regional differences in predicted climate, a situation is created in which the responses will be further complicated. For example, the temperature effects on soybean could potentially cause yield reductions of 2.4% in the South but an increase of 1.7% in the Midwest. The frequency of years when temperatures exceed thresholds for damage during critical growth stages is likely to increase for some crops and regions. The increase in CO2 contributes significantly to enhanced plant growth and improved water use efficiency; however, there may be a downscaling of these positive impacts due to higher temperatures plants will experience during their growth cycle. A challenge is to understand the interactions of the changing climatic parameters because of the interactions among temperature, CO2, and precipitation on plant growth and development and also on the biotic stresses of weeds, insects, and diseases. Agronomists will have to consider the variations in temperature and precipitation as part of the production system if they are to ensure the food security required by an ever increasing population.

  3. Exploitation of Food Industry Waste for High-Value Products.

    PubMed

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. PMID:26645658

  4. 49 CFR 1300.5 - Additional publication requirement for agricultural products and fertilizer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... agricultural products and fertilizer. 1300.5 Section 1300.5 Transportation Other Regulations Relating to... fertilizer. (a) With respect to transportation of agricultural products (including grain, as defined in 7 U.S.C. 75, and all products thereof) and fertilizer, a rail carrier shall publish, make available,...

  5. 49 CFR 1300.5 - Additional publication requirement for agricultural products and fertilizer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... agricultural products and fertilizer. 1300.5 Section 1300.5 Transportation Other Regulations Relating to... fertilizer. (a) With respect to transportation of agricultural products (including grain, as defined in 7 U.S.C. 75, and all products thereof) and fertilizer, a rail carrier shall publish, make available,...

  6. 49 CFR 1300.5 - Additional publication requirement for agricultural products and fertilizer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... agricultural products and fertilizer. 1300.5 Section 1300.5 Transportation Other Regulations Relating to... fertilizer. (a) With respect to transportation of agricultural products (including grain, as defined in 7 U.S.C. 75, and all products thereof) and fertilizer, a rail carrier shall publish, make available,...

  7. 49 CFR 1300.5 - Additional publication requirement for agricultural products and fertilizer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... agricultural products and fertilizer. 1300.5 Section 1300.5 Transportation Other Regulations Relating to... fertilizer. (a) With respect to transportation of agricultural products (including grain, as defined in 7 U.S.C. 75, and all products thereof) and fertilizer, a rail carrier shall publish, make available,...

  8. 49 CFR 1300.5 - Additional publication requirement for agricultural products and fertilizer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... agricultural products and fertilizer. 1300.5 Section 1300.5 Transportation Other Regulations Relating to... fertilizer. (a) With respect to transportation of agricultural products (including grain, as defined in 7 U.S.C. 75, and all products thereof) and fertilizer, a rail carrier shall publish, make available,...

  9. 7 CFR 205.310 - Agricultural products produced on an exempt or excluded operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Labels, Labeling, and... excluded operation as a certified organic operation, or (2) Be represented as a certified organic product or certified organic ingredient to any buyer. (b) An agricultural product organically produced...

  10. 7 CFR 205.310 - Agricultural products produced on an exempt or excluded operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Labels, Labeling, and... excluded operation as a certified organic operation, or (2) Be represented as a certified organic product or certified organic ingredient to any buyer. (b) An agricultural product organically produced...

  11. 7 CFR 205.310 - Agricultural products produced on an exempt or excluded operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Labels, Labeling, and... excluded operation as a certified organic operation, or (2) Be represented as a certified organic product or certified organic ingredient to any buyer. (b) An agricultural product organically produced...

  12. 7 CFR 205.310 - Agricultural products produced on an exempt or excluded operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Labels, Labeling, and... excluded operation as a certified organic operation, or (2) Be represented as a certified organic product or certified organic ingredient to any buyer. (b) An agricultural product organically produced...

  13. College Students' View of Biotechnology Products and Practices in Sustainable Agriculture Systems

    ERIC Educational Resources Information Center

    Anderson, William A.

    2008-01-01

    Sustainable agriculture implies the use of products and practices that sustain production, protect the environment, ensure economic viability, and maintain rural community viability. Disagreement exists as to whether or not the products and practices of modern biotechnological support agricultural sustainability. The purpose of this study was to…

  14. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  15. Cross-country disparity in agricultural productivity: quantifying the role of modern seed adoption.

    PubMed

    O'Gorman, Melanie; Pandey, Manish

    2010-01-01

    Inequality of agricultural labour productivity across the developing world has increased substantially over the past 40 years. This article asks: to what extent did the diffusion of Green Revolution seed varieties contribute to increasing agricultural labour productivity disparity across the developing countries? We find that 22 per cent of cross-country variation in agricultural labour productivity can be attributed to the diffusion of high-yielding seed varieties across countries, and that the impact of such diffusion differed significantly across regions. We discuss the implications of these findings for policy directed at increasing agricultural labour productivity in the developing world. PMID:21280414

  16. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2008-11-26

    Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process. PMID:18942836

  17. Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review.

    PubMed

    Ben Rebah, F; Prévost, D; Yezza, A; Tyagi, R D

    2007-12-01

    Inoculating legumes with commercial rhizobial inoculants is a common agriculture practice. Generally, inoculants are sold in liquid or in solid forms (mixed with carrier). The production of inoculants involves a step in which a high number of cells are produced, followed by the product formulation. This process is largely governed by the cost related to the medium used for rhizobial growth and by the availability of a carrier source (peat) for production of solid inoculant. Some industrial and agricultural by-products (e.g. cheese whey, malt sprouts) contain growth factors such as nitrogen and carbon, which can support growth of rhizobia. Other agro-industrial wastes (e.g. plant compost, filtermud, fly-ash) can be used as a carrier for rhizobial inoculant. More recently, wastewater sludge, a worldwide recyclable waste, has shown good potential for inoculant production as a growth medium and as a carrier (dehydrated sludge). Sludge usually contains nutrient elements at concentrations sufficient to sustain rhizobial growth and heavy metals are usually below the recommended level. In some cases, growth conditions can be optimized by a sludge pre-treatment or by the addition of nutrients. Inoculants produced in wastewater sludge are efficient for nodulation and nitrogen fixation with legumes as compared to standard inoculants. This new approach described in this review offers a safe environmental alternative for both waste treatment/disposal and inoculant production. PMID:17336515

  18. Utilization of Chitinaceous Wastes for the Production of Chitinase.

    PubMed

    Das, S; Roy, D; Sen, R

    2016-01-01

    Marine environment is the most abundant source of chitin. Several marine organisms possess chitin in their structural components. Hence, a huge amount of chitin wastes is deposited in marine environment when such organisms shed their outer skeleton and also after their demise. Waste chitins are potential nutrient source of certain microbes. These microbes produce chitinases that hydrolyze waste chitins. These organisms thus play an important role to remove the chitin wastes from marine environment. In connection with this, chitinases are found to be most important biocatalyst for the utilization of chitin wastes. Therefore, use of chitin for chitinase production is one of the useful tools for different types of bioprocesses. PMID:27452164

  19. Writing Sensors on Solid Agricultural Products for In Situ Detection.

    PubMed

    Tang, Wenzhi; Wu, Jian; Ying, Yibin; Liu, Yuan

    2015-11-01

    This study reports on direct analysis of agricultural products. An easy and environmentally friendly method for the fabrication of electrochemical sensors on solid samples is developed, and it enables in situ detection of electroactive molecules without sample extraction. Fabrication of the sensor involves writing two electrode inks on the sample. The inks are made by mixing chitosan with graphite powder (2:1, v/w) and silver powder (1:2, v/w), respectively. The written electrode can become solidified within 5 min at room temperature. The porous structure of the sensor makes the solution accessible to the surface of sample under the electrode, thereby enabling the detection without sample extraction. This sensor was used for in situ detection of methyl parathion and nitrite. The practical performance was evaluated using Fuji apple, Chinese chives, and Chinese cabbage. By writing the electrochemical sensor on solid samples, this method avoids the time-consuming and complicated sample extraction and provides a simple and green analytical strategy for on-site application. PMID:26455570

  20. Solid wastes from nuclear power production.

    PubMed Central

    Soule, H F

    1978-01-01

    Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244

  1. Phanerochaete chrysosporium inoculation shapes the indigenous fungal communities during agricultural waste composting.

    PubMed

    Zhang, Jiachao; Zeng, Guangming; Chen, Yaoning; Liang, Jie; Zhang, Chang; Huang, Binbin; Sun, Weimin; Chen, Ming; Yu, Man; Huang, Hongli; Zhu, Yi

    2014-09-01

    Inoculation with exogenous white-rot fungi has been proven to be an efficient method to promote lignocellulose biodegradation during agricultural waste composting. Indigenous fungal communities, the most important organisms responsible for mineralization and decomposition of lignocellulosic materials in composts, can be affected by sample properties and other biotic factors. This research was conducted to determine the effects of the Phanerochaete chrysosporium inoculation on the indigenous fungal communities during agricultural waste composting. Fungal communities in samples with different inoculation regimes were investigated by sequencing and quantitative PCR. Results showed that P. chrysosporium inoculants produced significant negative effects on the indigenous fungal community abundance during the thermophilic stage. Samples inoculated during Phase II contained higher proportion of Acremonium chrysogenum and Galactomyces geotrichum, while those non-inoculated samples were dominated by Coprinopsis cinerea and Scytalidium thermophilum. Moreover, the indigenous fungal community abundance was significantly correlated with the C/N ratio, water soluble carbon and moisture content (P < 0.05). Redundancy analysis indicated that the most variation in distribution of indigenous fungal community structure was statistically explained by nitrate, C/N ratio, and moisture content, factors which solely explained 29.6 % (F = 30.316, P = 0.002), 25.6 % (F = 26.191, P = 0.002) and 10.0 % (F = 10.249, P = 0.002) of the variation in the indigenous fungal community structure, respectively. PMID:24728506

  2. Programs and measures to reduce GHG emissions in agriculture and waste treatment in Slovakia

    SciTech Connect

    Mareckova, K.; Bratislava, S.; Kucirek, S.

    1996-12-31

    Slovakia is a UN FCCC Annex I country and is obliged to limit its anthropogenic GHG emissions in the year 2000 to 1990 level. The key greenhouse gas in Slovakia is CO{sub 2} resulting mainly from fuel combustion processes. However the share of CH{sub 4} and N{sub 2}O is approximately 20% of the total emissions on GWP basis. These gases are occurring mainly in non-energy sectors. The construction of the non-CO{sub 2} emission scenarios to reduce GHG and the uncertainty in N{sub 2}O and CH{sub 4} emission estimation are discussed focusing on agriculture and waste treatment. The presentation will also include information on emission trends of CH{sub 4} and N{sub 2}O since 1988. There are already implemented measures reducing GHG emissions in Slovakia, however, not motivated by global warming. A short view of implemented measures with an assessment of their benefit concerning non-CO{sub 2} GHG emissions reduction and some proposed mitigation options for agriculture and waste treatment are shown. Expected difficulties connected with preparing scenarios and with implementation of reducing measures are discussed.

  3. Systems and methods of storing combustion waste products

    DOEpatents

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.

  4. The Subtropical Grasslands LTAR: balancing agricultural production and conservation goals

    NASA Astrophysics Data System (ADS)

    Gomez-Casanovas, N.; Boughton, E.; Bernacchi, C.; DeLucia, E. H.; Sparks, J. P.; Silveira, M.; Boughton, R. K.; Swain, H.

    2015-12-01

    Subtropical grazing lands of peninsular Florida have been shaped by a long evolutionary history of lightning ignited fire followed by flooding resulting in a vast treeless prairie region in south-central Florida. In these grassland ecosystems fire return intervals are between 1-3 years. Beginning in the 1500's, Andalusian cattle began grazing in this region and the cattle industry began in earnest in the late 1800s/early 1900s. Today, Florida's prairie region is largely occupied by cow/calf ranch operations and also occupies the Northern Everglades watershed where water quality/quantity issues are at the forefront of environmental concerns. Florida ranches are characterized by a gradient of management intensities, ranging from sown pastures (most intensively managed) to semi-native pastures with a mix of introduced and native grasses, and rangeland (least managed ecosystem). Located at Archbold Biological Station, MacArthur Agro-ecology Research Center, and University of Florida Range Cattle Research Center (www.maerc.org; www.rcrec-ona.ifas.ufl.edu), a primary goal of the Subtropical Grasslands US Department of Agriculture Long-term Agro-Ecosystem Research LTAR is to balance intensification of sown pastures while enhancing management of native systems in a way that maximizes other ecosystem services (regulating, supporting, cultural, biodiversity). Here, we describe our proposed experimental design to compare ecosystem delivery from conventional and aspirational management regimes in sown pastures and native systems. Aspirational management goals are to (i) maximize productivity in sown pastures with a neutral effect on other ecosystem services, and (ii) manage native systems in a way that maximizes regulating, supporting, and biodiversity ecosystem services by utilizing patch burn grazing. Ultimately, we will determine if enhanced production in sown pasture under the aspirational management system can offset any reduction in productivity in semi

  5. Fuel production from wastes using molten salts

    SciTech Connect

    Gay, R.L.; Barclay, K.M.; Grantham, L.F.; Yosim, S.J.

    1980-01-01

    The Rockwell International molten salt process for gasification of wastes with resource recovery has been shown here to be well-suited for the processing of a variety of wastes. A variety of waste forms may be processed, that is, solids, liquids, and solid-liquid mixtures. The process is suitable for applications which involve either small or large throughputs. The gasification medium, sodium carbonate, is stable, non-volatile, inexpensive, and nontoxic. Sulfur-containing pollutants are retained in the melt when sulfur-containing wastes are gasified. In the same manner, halogen-containing pollutants are retained during gasification of halogen-containing wastes. The gasification of a high-nitrogen-content waste (leather scraps) produces very little NO/sub x/ in the off-gas. Valuable minerals may be recovered by processing of the salt after gasification of mineral-laden wastes. In general, the molten salt process is best applied to waste materials involving potential pollutants (such as sulfur or chromium) or to wastes where gasification and resource recovery are important (such as the recovery of silver with simultaneous gasification of x-ray film).

  6. The global view: issues affecting US production agriculture.

    PubMed

    Goldsmith, Peter

    2010-07-01

    This paper discusses small events occurring among developing countries, particularly but not exclusively in Asia, and their subsequent large impacts on net food exporting countries in the world, particularly, but not exclusively, located in the Western hemisphere. A Green Revolution II is underway as a result where the world's agricultural system will produce more (output) with less (inputs). Agriculture will meet the rapidly growing demand for bio-based foods, fuels, feeds, and fiber while reducing input usage, preserving the natural environment, and maintaining native ecosystems. In turn agricultural workers will receive a health dividend as chemical usage falls, automation, metering, and sensing technologies rise, and exposure to harsh environmental, both natural and man-made, conditions is reduced. This paper was prepared for the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health Conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas. PMID:20665304

  7. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    NASA Astrophysics Data System (ADS)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  8. Biofuels production on abandoned and marginal agriculture lands in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Lobell, D. B.; Field, C. B.

    2008-12-01

    The location of biofuels agriculture land is a critical parameter for predicting biomass feedstock yields, land use emissions, and optimal plant varieties. Using abandoned and marginal agriculture lands to grow feedstocks for second-generation biofuels could provide a sustainable alternative to conventional biofuels production. These marginal areas are in a state of flux in the Midwestern U.S. where a 2007 surge in biofuels has contributed to competing land use demands including conventional biofuels crops, food agriculture, and conservation. Here we apply land use and agriculture data to consider the extent and productivity of abandoned and marginal lands in the Midwestern U.S. for production of second-generation biofuels.

  9. Mississippi Curriculum Framework for Agriculture Production (Program CIP: 01.0301--Agricultural Prod. Workers & Mgrs.). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for agriculture production I and II. Presented first are a program…

  10. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  11. 12 CFR 614.4530 - Special loans, production credit associations and agricultural credit associations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Special loans, production credit associations and agricultural credit associations. 614.4530 Section 614.4530 Banks and Banking FARM CREDIT..., production credit associations and agricultural credit associations. Under policies approved by the...

  12. 12 CFR 614.4530 - Special loans, production credit associations and agricultural credit associations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Special loans, production credit associations and agricultural credit associations. 614.4530 Section 614.4530 Banks and Banking FARM CREDIT..., production credit associations and agricultural credit associations. Under policies approved by the...

  13. Exploring agricultural production systems and their fundamental components with system dynamics modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex wa...

  14. Livestock Judging. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    Smith, Anthony

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit on livestock judging contains materials based on five competencies needed to be a livestock producer. The following competencies are covered: general preparation for livestock judging, selection, and evaluation; judging, selection, and evaluation of…

  15. Feeding Livestock. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    Johnson, Boyd C.

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit on feeding livestock contains nine lessons based upon competencies needed to be a livestock producer. The lessons in this unit cover the importance of good feeding practices, the identification of nutritional needs and the composition of feeds for…

  16. Dairy Housing and Equipment. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    Colliver, Jewell B.

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit on dairy housing and equipment contains four lessons based upon competencies needed to be a dairy farmer. The lessons in this unit cover the maintenance of milking systems, the provision of adequate and economical housing for dairy animals, and the…

  17. Breeding Livestock. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    ERIC Educational Resources Information Center

    O'Bryan, Robert C.

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit on breeding livestock contains materials for use in teaching the importance of breeding, the physiology of livestock breeding, reproductive processes, sire selection, and breeding systems. Lessons on each of these competencies contain the following:…

  18. Physicochemical characterization of sewage sludge and green waste for agricultural utilization.

    PubMed

    Ramdani, N; Hamou, A; Lousdad, A; Al-Douri, Y

    2015-01-01

    In order to valorize the organic wastes, a mixture composed of 60 kg of thick sewage sludge from a wastewater treatment plant, 30 kg of green wastes (made of 10 kg straw of wheat, 10 kg manure farm wastes, and 10 kg of dead leaves), and 10 kg of wood chips was prepared. The organic wastes were mixed and put into a wooden cubic composter having a volume of 1.5 m3. Physicochemical analyses were made every 30 days for five months. The results of the analyses showed that the obtained compost had good physicochemical quality and can be used as an organic fertilizer. The main characteristics of this compost were distinguished by its pH from 7.4 to 7.8, with a ratio of organic matter of 40-42%. During composting, the humification process led to an increase in humic acids from 29.5 to 39.1 mg g(-1), a decrease in fulvic acids from 32.1 to 10.9 mg g(-1), and a global decomposition of hemicellulose, cellulose, and lignin. The obtained results show that a period of 150 days of composting gave a C/N ratio of 15.4. The total metal content in the final compost was much lower than the standard toxic levels for composts to be used as good soil fertilizers. The germination index for the two plants Cicer arietinum and Hordeum vulgare was 93% after the same period of composting, showing that the final compost was not phytotoxic. The study showed the possibility of valorization of the compost and its possible use in the domain of agriculture. PMID:25517858

  19. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    PubMed

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA. PMID:26392092

  20. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    SciTech Connect

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  1. Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits.

    PubMed

    Babbar, Neha; Dejonghe, Winnie; Gatti, Monica; Sforza, Stefano; Elst, Kathy

    2016-08-01

    Pectin containing agricultural by-products are potential sources of a new class of prebiotics known as pectic oligosaccharides (POS). In general, pectin is made up of homogalacturonan (HG, α-1,4-linked galacturonic acid monomers) and rhamnogalacturonan (RG, alternate galacturonic acid and rhamnose backbone with neutral side chains). Controlled hydrolysis of pectin containing agricultural by-products like sugar beet, apple, olive and citrus by chemical, enzymatic and hydrothermal can be used to produce oligo-galacturonides (GalpOS), galacto-oligosaccharides (GalOS), rhamnogalacturonan-oligosaccharides (RGOS), etc. However, extensive research is needed to establish the role of POS, both as a prebiotic as well as therapeutic agent. This review comprehensively covers different facets of POS, including the nature and chemistry of pectin and POS, potential agricultural residual sources of pectin, pre-treatment methods for facilitating selective extraction of pectin, identification and characterization of POS, health benefits and important applications of POS in food and feed. This review has been compiled to establish a platform for future research in the purification and characterization of POS and for in vivo and in vitro studies of important POS, so that they could be commercially exploited. PMID:25641325

  2. Removal of dyes using agricultural waste as low-cost adsorbents: a review

    NASA Astrophysics Data System (ADS)

    Bharathi, K. S.; Ramesh, S. T.

    2013-12-01

    Color removal from wastewater has been a matter of concern, both in the aesthetic sense and health point of view. Color removal from textile effluents on a continuous industrial scale has been given much attention in the last few years, not only because of its potential toxicity, but also mainly due to its visibility problem. There have been various promising techniques for the removal of dyes from wastewater. However, the effectiveness of adsorption for dye removal from wastewater has made it an ideal alternative to other expensive treatment methods. In this review, an extensive list of sorbent literature has been compiled. The review evaluates different agricultural waste materials as low-cost adsorbents for the removal of dyes from wastewater. The review also outlines some of the fundamental principles of dye adsorption on to adsorbents.

  3. [The sanitary and epidemiological problems in production and consumption waste handling in the Russian Federation].

    PubMed

    Onishchenko, G G

    2009-01-01

    At the initiative of the bodies and organizations of the Russian Agency for Consumer Surveillance, the interdepartmental commissions on sanitary purification and on production and consumption waste handling heard more than 2275 items on the subjects of the Russian Federation in 2007. In 2006-2007, in all the subjects of the Russian Federation work was under way with the local authorities to legalize or liquidate unauthorized sites of waste disposal in rural settlements. As compared with 2006, there was a reduction in both the number of unauthorized dumps from 11,062 to 9,069 and the area under them from 33,587.6 to 29,506 ha. According to the administrations of the Russian Agency for Consumer Surveillance, in 2007, the number of enterprises generating waste was 1,092,871, of them 91.2% of the enterprises were under the control of bodies and organizations of the Russian Agency for Consumer Surveillance. The largest number of enterprises (813,233) produces domestic waste and 173,272 enterprises generate factory waste; as for poultry farming and cattle breeding waste, sewage sludge, and agrochemicals, these accounted for less than 10%. As compared with 2006, the number of sludge traps, tailing pits, waste banks, terraces, ash-and-slad burrows, etc. increased and amounted to 2,338. The reduction in the volume of accumulated waste, by involving the latter into the economic turnover, by introducing and improving their processing technologies is urgent. The highest percentage of waste utilization was achieved by building enterprises (91%), followed by agricultural ones (77%). At the same time this index at the enterprising generating the bulk of waste, namely, at the minerals-extracting enterprises, is 39% as that in Russia. In 2007, pesticides and agrochemicals were kept at 5600 storage facilities, of which as many as 2180 have a sanitary-and-epidemiological opinion; 60% of the storage facilities have an organized control area. PMID:19645103

  4. Farming for Ecosystem Services: An Ecological Approach to Production Agriculture

    PubMed Central

    Philip Robertson, G.; Gross, Katherine L.; Hamilton, Stephen K.; Landis, Douglas A.; Schmidt, Thomas M.; Snapp, Sieglinde S.; Swinton, Scott M.

    2014-01-01

    A balanced assessment of ecosystem services provided by agriculture requires a systems-level socioecological understanding of related management practices at local to landscape scales. The results from 25 years of observation and experimentation at the Kellogg Biological Station long-term ecological research site reveal services that could be provided by intensive row-crop ecosystems. In addition to high yields, farms could be readily managed to contribute clean water, biocontrol and other biodiversity benefits, climate stabilization, and long-term soil fertility, thereby helping meet society's need for agriculture that is economically and environmentally sustainable. Midwest farmers—especially those with large farms—appear willing to adopt practices that deliver these services in exchange for payments scaled to management complexity and farmstead benefit. Surveyed citizens appear willing to pay farmers for the delivery of specific services, such as cleaner lakes. A new farming for services paradigm in US agriculture seems feasible and could be environmentally significant. PMID:26955069

  5. Waste management through life cycle assessment of products

    NASA Astrophysics Data System (ADS)

    Borodin, Yu V.; Aliferova, T. E.; Ncube, A.

    2015-04-01

    The rapid growth of a population in a country can contribute to high production of waste. Municipal waste and industrial waste can bring unhealthy and unpleasant environment or even diseases to human beings if the wastes are not managed properly.With increasing concerns over waste and the need for ‘greener’ products, it is necessary to carry out Life Cycle Assessments of products and this will help manufacturers take the first steps towards greener designs by assessing their product's carbon output. Life Cycle Assessment (LCA) is a process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and to assess the impact of those energy and material used and released to the environment. The aim of the study was to use a life cycle assessment approach to determine which waste disposal options that will substantially reduce the environmental burdens posed by the Polyethylene Terephthalate (PET) bottle. Several important observations can be made. 1) Recycling of the PET bottle waste can significantly reduce the energy required across the life cycle because the high energy inputs needed to process the requisite virgin materials greatly exceeds the energy needs of the recycling process steps. 2) Greenhouse gases can be reduced by opting for recycling instead of landfilling and incineration. 3) Quantity of waste emissions released from different disposal options was identified. 4) Recycling is the environmentally preferable disposal method for the PET bottle. Industry can use the tools and data in this study to evaluate the health, environmental, and energy implications of the PET bottle. LCA intends to aid decision-makers in this respect, provided that the scientific underpinning is available. Strategic incentives for product development and life cycle management can then be developed.

  6. Modern technologies of waste utilization from industrial tire production

    NASA Astrophysics Data System (ADS)

    Azimov, Yusuf; Gilmanshin, Iskander; Gilmanshina, Suriya

    2016-06-01

    The innovative technology of waste tire production recovery from JSC "Nizhnekamskshina", which determines the possibility of obtaining a new type of composite material in the form fiber filled rubber compound (FFRC) as the raw material, production of rubber products with high technical and operational characteristics.

  7. Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate.

    PubMed

    Baker, Michelle; Hobman, Jon L; Dodd, Christine E R; Ramsden, Stephen J; Stekel, Dov J

    2016-04-01

    Antimicrobial resistance is of global concern. Most antimicrobial use is in agriculture; manures and slurry are especially important because they contain a mix of bacteria, including potential pathogens, antimicrobial resistance genes and antimicrobials. In many countries, manures and slurry are stored, especially over winter, before spreading onto fields as organic fertilizer. Thus, these are a potential location for gene exchange and selection for resistance. We develop and analyse a mathematical model to quantify the spread of antimicrobial resistance in stored agricultural waste. We use parameters from a slurry tank on a UK dairy farm as an exemplar. We show that the spread of resistance depends in a subtle way on the rates of gene transfer and antibiotic inflow. If the gene transfer rate is high, then its reduction controls resistance, while cutting antibiotic inflow has little impact. If the gene transfer rate is low, then reducing antibiotic inflow controls resistance. Reducing length of storage can also control spread of resistance. Bacterial growth rate, fitness costs of carrying antimicrobial resistance and proportion of resistant bacteria in animal faeces have little impact on spread of resistance. Therefore, effective treatment strategies depend critically on knowledge of gene transfer rates. PMID:26906100

  8. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    NASA Technical Reports Server (NTRS)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  9. Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology.

    PubMed

    Ebadipour, N; Lotfabad, T Bagheri; Yaghmaei, S; RoostaAzad, R

    2016-01-01

    Biosurfactants are surface-active compounds capable of reducing surface tension and interfacial tension. Biosurfactants are produced by various microorganisms. They are promising replacements for chemical surfactants because of biodegradability, nontoxicity, and their ability to be produced from renewable sources. However, a major obstacle in producing biosurfactants at the industrial level is the lack of cost-effectiveness. In the present study, by using corn steep liquor (CSL) as a low-cost agricultural waste, not only is the production cost reduced but a higher production yield is also achieved. Moreover, a response surface methodology (RSM) approach through the Box-Behnken method was applied to optimize the biosurfactant production level. The results found that biosurfactant production was improved around 2.3 times at optimum condition when the CSL was at a concentration of 1.88 mL/L and yeast extract was reduced to 25 times less than what was used in a basic soybean oil medium (SOM). The predicted and experimental values of responses were in reasonable agreement with each other (Pred-R(2) = 0.86 and adj-R(2) = 0.94). Optimization led to a drop in raw material price per unit of biosurfactant from $47 to $12/kg. Moreover, the biosurfactant product at a concentration of 84 mg/L could lower the surface tension of twice-distilled water from 72 mN/m to less than 28 mN/m and emulsify an equal volume of kerosene by an emulsification index of (E24) 68% in a two-phase mixture. These capabilities made these biosurfactants applicable in microbial enhanced oil recovery (MEOR), hydrocarbon remediation, and all other petroleum industry surfactant applications. PMID:25748124

  10. High level radioactive waste glass production and product description

    SciTech Connect

    Sproull, J.F.; Marra, S.L.; Jantzen, C.M.

    1993-12-01

    This report examines borosilicate glass as a means of immobilizing high-level radioactive wastes. Borosilicate glass will encapsulate most of the defense and some of the commercial HLW in the US. The resulting waste forms must meet the requirements of the WA-SRD and the WAPS, which include a short term PCT durability test. The waste form producer must report the composition(s) of the borosilicate waste glass(es) produced but can choose the composition(s) to meet site-specific requirements. Although the waste form composition is the primary determinant of durability, the redox state of the glass; the existence, content, and composition of crystals; and the presence of glass-in-glass phase separation can affect durability. The waste glass should be formulated to avoid phase separation regions. The ultimate result of this effort will be a waste form which is much more stable and potentially less mobile than the liquid high level radioactive waste is currently.

  11. Land Resources for Crop Production. Agricultural Economic Report Number 572.

    ERIC Educational Resources Information Center

    Hexem, Roger; Krupa, Kenneth S.

    About 35 million acres not being cultivated have high potential for crop use and 117 million more have medium potential, according to the 1982 National Resources Inventory (NRI) conducted by the U.S. Department of Agriculture. USDA committees evaluated the economic potential for converting land based on physical characteristics of the soil; size…

  12. Agricultural Production and Business Management: Volume 1 (Crops).

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    The curriculum guide is the first part of a two-year program developed as part of revision of the total agricultural education curriculum in South Carolina. The project was designed to implement the following changes: (1) provide a more comprehensive vocational offering; (2) place a greater emphasis on behavioral objectives; (3) place a greater…

  13. Production or Perish: Changing the Inequities of Agricultural Research Priorities.

    ERIC Educational Resources Information Center

    Friedland, William H.; Kappel, Tim

    Because of the decline of farm population and family farms, the increase in energy-intensivity, and concentration process in agriculture, a rising tide of criticism has focused on the land grant system and its role in encouraging scientific applications supporting these trends. A study was conducted to develop a strategy that would change…

  14. Production of Agricultural Commodities in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are approaching the time when the needs of the world must be met using sustainable methods. Agriculture will be at the forefront of this movement and will help us to meet the food and feed needs of an ever growing population and it will play at least a part of the environmentally friendly energy...

  15. Factors affecting the dielectric properties of agricultural and food products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of materials are defined, and the major factors that influence these properties of agricultural and food materials, namely, frequency of the applied radio-frequency and microwave electric fields, water content, temperature, and density of the materials are discussed on the bas...

  16. Agricultural Production and Business Management: Volume 2 (Livestock).

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    The curriculum guide is the second part of a two-year program developed as part of a revision of the total agricultural education curriculum in South Carolina. The project was designed to implement the following changes: (1) provide a more comprehensive vocational offering; (2) place a greater emphasis on behavioral objectives; (3) place a greater…

  17. Introduction to Agricultural Products and Processing. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document consists of the teacher's guide to a module designed to teach high school students entry-level job competencies in the new areas of agriculture that are now emerging. The module, one of a series of publications designed to identify these new competencies, contains 11 instructional units that cover the following topics: trends in…

  18. Bio-Refineries Bioprocess Technologies for Waste-Water Treatment, Energy and Product Valorization

    NASA Astrophysics Data System (ADS)

    Keith Cowan, A.

    2010-04-01

    Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also, potable water is becoming a scarce resource in many parts of the world, and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non-GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food, fiber, and other biology-based products, including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific-attribute raw materials for differentiated markets, we can argue that processes such as mass cultivation of microalgae and the concept of bio-refineries be seen as part of a `new' agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste-water treatment, water polishing and endocrine disruptor (EDC) removal, sustainable energy production, and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings, and for commercial extraction of bulk commodities such as bio-oils and lecithin. This presentation will address efforts to establish a fully operational solar-driven microalgae bio-refinery for use not only in waste remediation but to transform waste and biomass to energy, fuels, and other useful materials (valorisation), with particular focus on environmental quality and sustainability goals.

  19. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  20. Solar Grade Silicon from Agricultural By-products

    SciTech Connect

    Richard M. Laine

    2012-08-20

    starts one step upstream from all other Sipv production efforts. Our process starts by producing high purity SiO2/C feedstocks from which Sipv can be produced in a single, chlorine free, final EAF step. Specifically, our unique technology, and the resultant SiO2/C product can serve as high purity feedstocks to existing metallurgical silicon (Simet) producers, allowing them to generate Sipv with existing US manufacturing infrastructure, reducing the overall capital and commissioning schedule. Our low energy, low CAPEX and OPEX process purifies the silica and carbon present in rice hull ash (RHA) at low temperatures (< 200C) to produce high purity (5-6 Ns) feedstock for production of Sipv using furnaces similar to those used to produce Simet. During the course of this project we partnered with Wadham Energy LP (Wadham), who burns 220k ton of rice hulls (RH)/yr generating 200 GWh of electricity/yr and >30k ton/yr RHA. The power generation step produces much more energy (42 kWh/kg of final silicon produced) than required to purify the RHA (5 kWh/kg of Sipv, compared to 65 kWh/kg noted above. Biogenic silica offers three very important foundations for producing high purity silicon. First, wastes from silica accumulating plants, such as rice, corn, many grasses, algae and grains, contain very reactive, amorphous silica from which impurities are easily removed. Second, plants take up only a limited set of, and minimal quantities of the heavy metals present in nature, meaning fewer minerals must be removed. Third, biomass combustion generates a product with intrinsic residual carbon, mixed at nanometer length scales with the SiO2. RHA is 80-90 wt% high surface area (20 m2/g), amorphous SiO2 with some simple mineral content mixed intimately with 5-15 wt% carbon. The mineral content is easily removed by low cost, acid washes using Mayaterials IP, leading to purified rice hull ash (RHAclean) at up to 6N purity. This highly reactive silica is partially extracted from RHAclean at 200

  1. Acceleration of Enzymatic conversion of Agricultural Waste Biomass into Bio-fuels by Low Intensity Uniform Ultrasound Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most critical stages of conversion of agricultural waste biomass into biofuels employs hydrolysis reactions between highly specific enzymes and matching substrates (e.g. corn stover cellulose with cellulase) that produce soluble sugars, which then could be converted into ethanol. Despite ...

  2. An index for quantifying the aerobic reactivity of municipal solid wastes and derived waste products.

    PubMed

    Scaglia, Barbara; Adani, Fabrizio

    2008-05-01

    The organic matter contained in municipal solid waste (MSW) and in the MSW fractions obtained by mechanical separation has strong environmental impact when the waste is used as landfill. This is partly due to the biological activity that occurs under anaerobic conditions. Negative effects on the environment include unpleasant odors, biogas, leachate and biomass self-heating. Measuring the biological reactivity of waste with the help of indicators is an important tool to prevent waste impact. The aim of this study was to develop an index capable of describing the aerobic reactivity of waste, using both biological and chemical indicators. To develop this index, 71 MSW and MSW-product samples, including biologically treated MSW and mechanically separated MSW fractions, were analyzed. Fifty of the 71 samples analyzed represented MSWs and their derived products collected from a number of Italian waste plants and sites. The remaining 21 were MSW samples collected at different times during 8 different full-scale aerobic biological processes in four treatment plants used to reduce the biological reactivity of wastes. Five of these processes used the entire (unsorted) MSW, while the remaining three used the organic fraction of the MSW obtained by mechanical pre-treatment (waste sieving). Respirometric activity (Dynamic Respiration Index, DRI) and eluates characterization (chemical oxygen demand--COD, and 5 days biological oxygen demand--BOD5) were used as indicators of waste strength, as they had previously been reported to be indirect measures of waste impact on landfill. Summarizing all studied indicators, Principal Component Analysis (PCA) was used to develop the Putrescibility Index (Ip). The results revealed Ip index of 204+/-33 (mean+/-standard deviation) and 159+/-14 for the organic fraction of MSW and MSW untreated waste respectively, and of 106+/-16 and 101+/-22 for the corresponding biologically treated waste. PMID:18280541

  3. Coffee husk waste for fermentation production of mosquitocidal bacteria.

    PubMed

    Poopathi, Subbiah; Abidha, S

    2011-12-01

    Coffee husk waste (CHW) discarded as bio-organic waste, from coffee industries, is rich in carbohydrates. The current study emphasizes the management of solid waste from agro-industrial residues for the production of biopesticides (Bacillus sphaericus, and B. thuringiensis subsp. israelensis), to control disease transmitting mosquito vectors. An experimental culture medium was prepared by extracting the filtrates from coffee husk. A conventional culture medium (NYSM) also was prepared. The studies revealed that the quantity of mosquitocidal toxins produced from CHW is at par with NYSM. The bacteria produced in these media, were bioassayed against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti) and it was found that the toxic effect was statistically comparable. Cost-effective analysis have revealed that, production of biopesticides from CHW is highly economical. Therefore, the utilization of CHW provides dual benefits of effective utilization of environmental waste and efficient production of mosquitocidal toxins. PMID:22299340

  4. Recycling and use of waste materials and by-products in highway construction: A synthesis of highway practice. Final report

    SciTech Connect

    Collins, R.J.; Ciesielski, S.K.; Mason, L.S.

    1994-01-01

    The report on recycling and use of waste materials and by-products in highway construction will be of interest to administrators and policy makers; pavements, materials, geotechnical, and environmental engineers; and other professionals involved with highway design, construction, and maintenance. Information is provided on the technical, economic, and environmental aspects (including legislative and regulatory considerations) of recycling and on the specific applications of waste materials and by-products. Information is also provided on the quantities, characteristics, possible uses, current and past research activities, and actual highway construction use of each waste material or by-product. This information is classified into four broad categories based on source: agricultural, domestic, industrial, and mineral wastes.

  5. Copper Sequestration Using Local Waste Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairies utilize copper sulfate foot baths to control hoof infections. Typical solutions are 5 or 10% copper sulfate (pH ~6), equal to 12,500 or 25,000 parts per million copper, respectively. When spent, hoof bath solutions are usually disposed of in waste lagoons and subsequently utilized for irri...

  6. Production of iron from metallurgical waste

    DOEpatents

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  7. Copper sequestration using local waste products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairies utilize copper sulfate foot baths to control hoof infections. Typical solutions are 5 or 10% copper sulfate (pH ~6), equal to 12,500 or 25,000 parts per million copper, respectively. When spent, hoof bath solutions are usually disposed of in waste lagoons and subsequently utilized for irri...

  8. Bio-hydrogen production from renewable organic wastes

    SciTech Connect

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  9. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  10. Modelling and analysis of inventory replenishment for perishable agricultural products with buyer-seller collaboration

    NASA Astrophysics Data System (ADS)

    Shen, Dongjie; Lai, K. K.; Leung, Stephen C. H.; Liang, Liang

    2011-07-01

    In this article, we study the inventory replenishment model for perishable agricultural products in a simple two-level supply chain. Collaborative forecasting is introduced into the inventory replenishment decisions to avoid overstocking and understocking of agricultural products, and to maximise profits. We analyse the model with ordering cost, holding cost, shortage cost, deterioration cost and opportunity lost cost of perishable agricultural products. Extensive numerical analysis is carried out to study the performance of the inventory policy. The optimal replenishment policy that minimises the total cost can be obtained from the model. It has demonstrated that the supply chain cost decreases with supplier and retailer's collaborative forecasting.

  11. Co-composting of faecal sludge and organic solid waste for agriculture: process dynamics.

    PubMed

    Cofie, Olufunke; Kone, Doulaye; Rothenberger, Silke; Moser, Daya; Zubruegg, Chris

    2009-10-01

    This paper presents the potentials and performance of combined treatment of faecal sludge (FS) and municipal solid waste (SW) through co-composting. The objectives were to investigate the appropriate SW type, SW/FS mixing ratio and the effect of turning frequency on compost maturity and quality. Solid waste (SW, as market waste, MW, or household waste, HW) was combined with dewatered FS in mixing ratios of 2:1 and 3:1 by volume and aerobically composted for 90 days. Four composting cycles were monitored and characterised to establish appropriate SW type and mixing ratio. Another set of five composting cycles were monitored to test two different turning frequencies: (i) once in 3-4 days during the thermophilic phase and 10 days during maturation phase and (ii) once in every 10 days throughout the composting period. Samples were taken at every turning and analysed for total solids (TS), total volatile solids (TVS), total organic carbon (TOC), electrical conductivity (EC), pH, ammonium and nitrate nitrogen (NH(4)-N and NO(3)-N) and total Kjeldahl nitrogen (TKN). Temperature, C/N ratio, NO(3)-N/NH(4)-N ratio and cress planting trials were chosen as maturity indicators. Result showed a preference of MW over HW and mixing ratio of 2:1 over 3:1. There was no significant effect of different turning frequencies on the temperature changes and the quality of mature compost. The final product contained C/N ratio of 13 and NO(3)/NH(4)-ratio of about 7.8, while TVS was about 21% TS and the NH(4)-N content was reduced to 0.01%. A co-composting duration of 12 weeks was indicated by the cress test to achieve a mature and stable product. The turning frequency of 10 days is recommended as it saves labour and still reaches safe compost with fairly high nutrient content. PMID:19660779

  12. Production and conservation results from a decade-long field-scale precision agriculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research is needed that simultaneously evaluates production and conservation outcomes of precision agriculture practices. From over a decade (1993-2003) of yield and soil mapping and water quality assessment, a multi-faceted, “precision agriculture system” (PAS) was developed and initiated in 2004 o...

  13. Assessing Change in Agricultural Productivity Caused by Drought and Conflict in Northern Syria using Landsat Imagery.

    NASA Astrophysics Data System (ADS)

    Girgin, T.; Ozdogan, M.

    2015-12-01

    Until recently, agricultural production in Syria has been an important source of revenue and food security for the country. At its peak, agriculture in Syria accounted for 25 percent of the country's GDP. In 2014, Syrian agriculture accounted for less than 5 percent of the GDP. This decline in agricultural productivity is the cause of a 3-year long drought that started in 2007, followed by a still-ongoing conflict that started in mid-2011. Using remote sensing tools, this paper focuses on the impact that the 2007-2010 drought had on agricultural production, as well as the impact that the ongoing conflict had on the agricultural production in northern Syria. Remote sensing is a powerful and great solution to study regions of the world that are hard-to-reach due to conflict and/or other limitations. It is particularly useful when studying a region that inaccessible due to an ongoing conflict, such as in northern Syria. Using multi-temporal Landsat 5 and Landsat 8 images from August 2006, 2010 and 2014 and utilizing the neural networks algorithm, we assessed for agricultural output change in northern Syria. We conclude that the ongoing Syrian conflict has had a bigger impact on the agricultural output in northern Syria than the 3-year long drought.

  14. Poultry Production for Agricultural Science I Core Curriculum. Instructor's Guide. Volume 19, Number 2.

    ERIC Educational Resources Information Center

    Timko, Joseph J.; Stewart, Bob R.

    This unit is designed to aid teachers in lesson planning in the secondary agricultural education curriculum in Missouri. Intended to be taught to ninth-grade students of vocational agriculture, the unit contains six lessons for developing competencies needed in poultry production. The lessons are as follows: (1) the importance of the poultry…

  15. Activated Carbon Derived from Fast Pyrolysis Liquids Production of Agricultural Residues and Energy Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis is a thermochemical method that can be used for processing energy crops such as switchgrass, alfalfa, soybean straw, corn stover as well as agricultural residuals (broiler litter) for bio-oil production. Researchers with the Agriculture Research Service (ARS) of the USDA developed a 2...

  16. Grassland-cropping rotations: An avenue for agricultural diversification to reconcile high production with environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity...

  17. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A need to increase agricultural production across the world for food security appears to be at odds with the urgency to reduce agriculture’s negative environmental impacts. We suggest that a cause of this dichotomy is loss of diversity within agricultural systems at field, farm and landscape scales....

  18. Study of Factors Influencing Research Productivity of Agriculture Faculty Members in Iran

    ERIC Educational Resources Information Center

    Hedjazi, Yousef; Behravan, Jaleh

    2011-01-01

    The purpose of this research is to analyze the relationship between individual, institutional and demographic characteristics on one hand and the research productivity of agriculture faculty members on the other. The statistical population of the research comprises 280 academic staff in agricultural faculties all over Tehran Province. The data…

  19. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGENCY, DEPARTMENT OF AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Licensing § 735.110 Conditions for delivery of agricultural products. (a) In the absence of a lawful excuse, a warehouse operator will, without unnecessary delay, deliver the...

  20. Continuous biohydrogen production from waste bread by anaerobic sludge.

    PubMed

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge. PMID:27065225

  1. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products. PMID:26776601

  2. Potential for composting energetic material production wastes. Final report

    SciTech Connect

    Adrian, N.R.; Stratta, J.M.; Donahue, B.A.

    1995-09-01

    U.S. Army installations that manufacture munitions generate large quantities of energetic material (EM) and solid waste contaminated with energetic material (energetic material-contaminated waste, or EMCW). Disposal of EM and EMCW by open burning or open detonation (OB/OD) has been the practice for many years, but increasingly stringent environmental regulations are curtailing OB/OD operations. Although composting has been used in some instances for explosive-contaminated soils, it has not been examined for use with munitions production wastes. A literature search showed that many explosives are biodegradable and that some explosive-contaminated soils can also be treated by composting. A potential exists to treat munition production wastes by composting or other biological treatment processes. This study concluded that further investigation is needed to determine and test: (1) the energetic compounds that can be biodegraded, and (2) the conditions under which biological treatment processes can occur.

  3. Integrated bioethanol and biomanure production from potato waste.

    PubMed

    Chintagunta, Anjani Devi; Jacob, Samuel; Banerjee, Rintu

    2016-03-01

    Disposal of potato processing waste and the problem of pollution associated with it is a vital issue that is being faced by the potato processing plants. The conventional peeling methods presently followed in the processing plants for removing the potato peel, also result in the loss of some portion of the mash which is rich in starch. Indiscriminate discharge of the waste causes detrimental effects in the environment, so this problem can be resolved by successful utilization of the waste for the generation of value added products. Hence, the present work focuses on integrated production of bioethanol and biomanure to utilize the waste completely leading to zero waste generation. The first part of the work describes a comparative study of ethanol production from potato peel and mash wastes by employing co-culture of Aspergillus niger and Saccharomyces cerevisiae at various incubation time (24-120 h) instead of application of enzymes. The solid state fermentation of potato peel and mash inoculated with co-culture, resulted in bioethanol production of 6.18% (v/v) and 9.30% (v/v) respectively. In the second part of the work, the residue obtained after ethanol production was inoculated with seven different microorganisms (Nostoc muscorum, Fischerella muscicola, Anabaena variabilis, Aulosira fertilissima, Cylindrospermum muscicola, Azospirillium lipoferum, Azotobacter chroococcum) and mixture of all the organisms in equal ratio for nitrogen (N), phosphorous (P) and potassium (K) enrichment. Among them, A. variabilis was found to enrich N, P and K content of the residue by nearly 7.66, 21.66 and 15 fold than that of the initial content, ultimately leading to improved N:P:K ratio of approximately 2:1:1. The application of simultaneous saccharification and fermentation (SSF) for the conversion of potato waste to ethanol and enrichment of residue obtained after ethanol production with microorganisms to be used as manure envisages environmental sustainability. PMID:26316099

  4. Increasing Labour Productivity in Agriculture and Its Implications

    ERIC Educational Resources Information Center

    van den Ban, Anne

    2011-01-01

    In order to profit from the economic growth in their society farmers can (1) increase the yields of their crops and animals, (2) switch to the production of high value products for which there is an increasing demand in the market, (3) increase the labour productivity on their farm, (4) find non-farm sources of income for some or all of their…

  5. An assessment of biofuel use and burning of agricultural waste in the developing world

    NASA Astrophysics Data System (ADS)

    Yevich, Rosemarie; Logan, Jennifer A.

    2003-12-01

    We present an assessment of biofuel use and agricultural field burning in the developing world. We used information from government statistics, energy assessments from the World Bank, and many technical reports, as well as from discussions with experts in agronomy, forestry, and agro-industries. We estimate that 2060 Tg biomass fuel was used in the developing world in 1985; of this, 66% was burned in Asia, and 21% and 13% in Africa and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use in India and China. We find that 400 Tg of crop residues are burned in the fields, with the fraction of available residue burned in 1985 ranging from 1% in China, 16-30% in the Middle East and India, to about 70% in Indonesia; in Africa about 1% residue is burned in the fields of the northern drylands, but up to 50% in the humid tropics. We distributed this biomass burning on a spatial grid with resolution of 1° × 1°, and applied emission factors to the amount of dry matter burned to give maps of trace gas emissions in the developing world. The emissions of CO from biofuel use in the developing world, 156 Tg, are about 50% of the estimated global CO emissions from fossil fuel use and industry. The emission of 0.9 Pg C (as CO2) from burning of biofuels and field residues together is small, but nonnegligible when compared with the emissions of CO2 from fossil fuel use and industry, 5.3 Pg C. The biomass burning source of 10 Tg/yr for CH4 and 2.2 Tg N/yr of NOx are relatively small when compared with total CH4 and NOx sources; this source of NOx may be important on a regional basis.

  6. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    PubMed

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. PMID:22093705

  7. Interactions of U.S. Agricultural Production with Climatic Stresses and Reactive Nitrogen

    NASA Astrophysics Data System (ADS)

    Gehl, R. J.; Robertson, G. P.; Bruulsema, T. W.; Kanter, D.; Mauzerall, D. L.; Rotz, C. A.; Williams, C. O.

    2011-12-01

    Agricultural production both contributes to and responds to climatic variations across spatial and temporal continuums. The agriculture sector is responsible for over 6% of total U.S. greenhouse gas emissions, primarily as methane (CH4) and nitrous oxide (N2O) gases emitted by agricultural activities. Agriculture activities specifically account for about 69% of U.S. N2O emissions, largely as a result of production practices including fertilizer management, cropping systems, and manure management. Fertilizers, together with manure and legume fixation, are the three main inputs of N to US agricultural soils. All three sources have been increasing over the past two decades, while the rate at which they are removed in the form of harvested crops has been increasing at a slightly slower rate. The outlook for continued large areas of cultivation in the U.S., specifically for corn production and supported by biofuel production goals, is a major factor in sustaining demand for N fertilizer. However, rising fertilizer prices and environmental pressures on producers are encouraging increased adoption of emerging technologies such as precision agriculture, cultivars with higher N use efficiency, and enhanced-efficiency N sources such as controlled-release forms or forms with urease or nitrification inhibitors. Crop productivity also responds to climatic changes, as crop growth is affected by variables including heat, drought, ozone (O3), and increased ambient carbon dioxide (CO2). We summarize sources and fates of N for cropping systems and intensive animal systems and assess how climate change will affect crop response to and recovery of N and subsequent cascading effects on Nr. The complex interactions between agricultural Nr and climate present opportunities for mitigation/adaption relative to N use. N fertilizer and manure management, tillage, technology, and decision support models provide significant opportunities for climate mitigation and adaption in U.S. agriculture

  8. Production and degradation of polyhydroxyalkanoates in waste environment

    SciTech Connect

    Lee, S.Y.; Choi, J.

    1999-06-01

    Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the following aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.

  9. Fields of dreams: Agriculture, economy and nature in Midwest United States biofuel production

    NASA Astrophysics Data System (ADS)

    Gillon, Sean Thomas

    This work explores the social and ecological dimensions of recent biofuel production increases in the United States (US), focusing on the case of Iowa. Biofuels are proposed to mitigate the greenhouse gas emissions that cause climate change, improve US energy security, and support rural economies. Little research has examined how increased US Midwestern biofuels production will change social and ecological outcomes at farm and regional levels or interact with broader governance processes at the nexus of agriculture, energy and environment. These broad questions guide my research: (1) How does biofuel production reconfigure agricultural practice and landscapes in Iowa? (2) What are the costs, benefits and risks of increased biofuels production as seen by farmers and rural residents, and how do these factors influence farmer decisions about agriculture and conservation practice? (3) How and with what effects are biofuels initiatives constituted as a form of environmental governance through scientific knowledge and practice and political economic dynamics? To address these questions, this research integrates both qualitative and quantitative methods, drawing on a political ecological approach complemented by agroecological analysis and theoretical insights from geographical analyses of nature-society relations. Quantitative analysis focuses on changing land use patterns in agriculture and conservation practice in Iowa. Qualitative methods include extensive interviews, participant observation, and policy and document analyses. Fieldwork focused on Northeastern Iowa to understand regional changes in agricultural and conservation practice, the renegotiated position of farmers in agriculture and biofuel production, and biofuel industry development. I find that biofuel production presents significant social and ecological challenges for rural places of production. Longstanding, unequal political economic relations in industrialized agriculture limit rural economic benefits

  10. Energy use in agriculture and the articulation of modes of production in Zimbabwe

    SciTech Connect

    Weiner, D.

    1986-01-01

    The political economy of energy utilization in Zimbabwe's agricultural sector is analyzed. The geography of agricultural energy use is assessed by tracing the articulation of modes of production through time. It is argued that in the production process, labor mediates between humans and the environment. The level of development of the productive forces indicates the intensity that labor applies energy to a given space. Production relations influence the rate and direction of energy flows. Hence, energy is a fundamental component of a mode of production. The linkage between energy use in farming and the articulation of modes of production is made through the conceptualization of distinct agricultural production systems consisting of social relations and productive forces, the relationship to the state, and access to natural resources. After independence came changes in state-peasant relations and industrialization of African production in high potential reserves. Changing social relations on settler farms has caused a rapid displacement of labor by capital at a time when national job creation is dangerously low. In the absence of significant land transfers, a contradictory distribution of agricultural energy resources will continue. New forms of uneven agricultural development are emerging.

  11. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided. PMID:26995933

  12. Optimization based trade-off analysis of biodiesel crop production for managing a German agricultural catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural production, the existence of multiple trade-offs among several conflicting objectives, such as food production, water quantity, water quality, biodiversity and ecosystem services, is well known. However, quantification of the trade-offs among objectives in bioenergy crop production i...

  13. 78 FR 27953 - Notification of Proposed Production Activity, CNH America, LLC, Subzone 59B, (Agricultural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... Foreign-Trade Zones Board Notification of Proposed Production Activity, CNH America, LLC, Subzone 59B, (Agricultural Equipment Production); Grand Island, Nebraska The Lincoln Foreign-Trade Inc., grantee of FTZ 59, submitted a notification of proposed production activity to the FTZ Board on behalf of CNH America,...

  14. Monitoring Agricultural Production in Primary Export Countries within the framework of the GEOGLAM Initiative

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.; Vermote, E.

    2012-12-01

    Up to date, reliable, global, information on crop production prospects is indispensible for informing and regulating grain markets and for instituting effective agricultural policies. The recent price surges in the global grain markets were in large part triggered by extreme weather events in primary grain export countries. These events raise important questions about the accuracy of current production forecasts and their role in market fluctuations, and highlight the deficiencies in the state of global agricultural monitoring. Satellite-based earth observations are increasingly utilized as a tool for monitoring agricultural production as they offer cost-effective, daily, global information on crop growth and extent and their utility for crop production forecasting has long been demonstrated. Within this context, the Group on Earth Observations developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted by the G20 as part of the action plan on food price volatility and agriculture. The goal of GEOGLAM is to enhance agricultural production estimates through the use of Earth observations. This talk will explore the potential contribution of EO-based methods for improving the accuracy of early production estimates of main export countries within the framework of GEOGLAM.

  15. Ethanol and agriculture: Effect of increased production on crop and livestock sectors. Agricultural economic report

    SciTech Connect

    House, R.; Peters, M.; Baumes, H.; Disney, W.T.

    1993-05-01

    Expanded ethanol production could increase US farm income by as much as $1 billion (1.4 percent) by 2000. Because corn is the primary feedstock for ethanol, growers in the Corn Belt would benefit most from improved ethanol technology and heightened demand. Coproducts from the conversion process (corn gluten meal, corn gluten feed, and others) compete with soybean meal, soybean growers in the South may see revenues decline. The US balance of trade would improve with increased ethanol production as oil import needs decline.

  16. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review.

    PubMed

    Väisänen, Taneli; Haapala, Antti; Lappalainen, Reijo; Tomppo, Laura

    2016-08-01

    Natural fiber-polymer composites (NFPCs) are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residues from the industrial and agricultural processes are still underutilized as low-value energy sources. Organic materials are commonly disposed of or subjected to the traditional waste management methods, such as landfilling, composting or anaerobic digestion. The use of organic waste and residue materials in NFPCs represents an ecologically friendly and a substantially higher value alternative. This is a comprehensive review examining how organic waste and residues could be utilized in the future as reinforcements or additives for NFPCs from the perspective of the recently reported work in this field. PMID:27184447

  17. Projecting groundwater declines and agricultural production through 2110 in the High Plains Aquifer of Kansas

    NASA Astrophysics Data System (ADS)

    Steward, D. R.; Bruss, P. J.; Yang, X.; Staggenborg, S. A.; Welch, S. M.; Apley, M. D.

    2013-12-01

    Groundwater pumping supports vibrant agricultural production in the High Plains Aquifer region of Kansas, and yet, persistent aquifer depletion threatens the long-term prospects and the capacity to help feed to world's population. A new model is presented to project changes in groundwater storage and agricultural production into the future using methodology recently developed by the authors (Steward et al. 2013). This vertically integrated model directly relates groundwater pumping to corn production and feed for cattle production. Estimates are provided for the time to aquifer depletion, the rate of recharge, and the time it would take to completely refill a depleted aquifer. Estimates are also projected into the future for corn and cattle production. Scenario analysis shows the impacts of reduced pumping today on future groundwater stores and on agricultural production. This knowledge is important for society to balance groundwater use across the demands of the present with the needs of the future.

  18. Development and Implementation of Production Area of Agricultural Product Data Collection System Based on Embedded System

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Guo, Wei; Che, Yinchao; Zhang, Hao; Wang, Qiang; Ma, Xinming

    To solve problems in detecting the origin of agricultural products, this paper brings about an embedded data-based terminal, applies middleware thinking, and provides reusable long-range two-way data exchange module between business equipment and data acquisition systems. The system is constructed by data collection node and data center nodes. Data collection nodes taking embedded data terminal NetBoxII as the core, consisting of data acquisition interface layer, controlling information layer and data exchange layer, completing the data reading of different front-end acquisition equipments, and packing the data TCP to realize the data exchange between data center nodes according to the physical link (GPRS / CDMA / Ethernet). Data center node consists of the data exchange layer, the data persistence layer, and the business interface layer, which make the data collecting durable, and provide standardized data for business systems based on mapping relationship of collected data and business data. Relying on public communications networks, application of the system could establish the road of flow of information between the scene of origin certification and management center, and could realize the real-time collection, storage and processing between data of origin certification scene and databases of certification organization, and could achieve needs of long-range detection of agricultural origin.

  19. Terra Preta sanitation: re-discovered from an ancient Amazonian civilisation - integrating sanitation, bio-waste management and agriculture.

    PubMed

    Factura, H; Bettendorf, T; Buzie, C; Pieplow, H; Reckin, J; Otterpohl, R

    2010-01-01

    The recent discovery of the bio-waste and excreta treatment of a former civilisation in the Amazon reveals the possibility of a highly efficient and simple sanitation system. With the end product that was black soil they converted 10% of former infertile soil of the region: Terra Preta do Indio (black soil of the Indians). These soils are still very fertile 500 years after this civilisation had disappeared. Deriving from these concepts, Terra Preta Sanitation (TPS) has been re-developed and adopted. TPS includes urine diversion, addition of a charcoal mixture and is based on lactic-acid-fermentation with subsequent vermicomposting. No water, ventilation or external energy is required. Natural formation processes are employed to transform excreta into lasting fertile soil that can be utilised in urban agriculture. The authors studied the lacto-fermentation of faecal matter with a minimum of 4 weeks followed by vermicomposting. The results showed that lactic-acid fermentation with addition of a charcoal mixture is a suitable option for dry toilets as the container can be closed after usage. Hardly any odour occured even after periods of several weeks. Lactic-acid fermentation alone without addition of bulking agents such as paper and sliced-cut wood to raise the C/N ratio is creating a substrate that is not accepted by worms. PMID:20453341

  20. Sandia National Laboratories/Production Agency Weapon Waste Minimization Plan

    SciTech Connect

    Skinrood, A.C.; Radosevich, L.G.

    1991-07-01

    This Plan describes activities to reduce the usage of hazardous materials and the production of hazardous material waste during the development, production, stockpile, and retirement phases of war reserve nuclear weapons and nuclear weapon test units. Activities related to the development and qualification of more benign materials and processes for weapon production and the treatment and disposal of these materials from weapon retirement are described in separate plans.

  1. Atmospheric deposition of nitrogen: Potential benefits to agricultural production

    SciTech Connect

    Coveney, E.A.; Medeiros, W.H.; Moskowitz, P.D.

    1986-11-01

    Effects of indirect fertilization on agricultural lands by atmospheric deposition are examined for the four most valuable crops in the US: corn, soybean, wheat, and pasture grasses. A literature search was conducted to find suitable dose-response functions for the effects of fertilization on yield of each crop. Predicted yield changes were computed from the deposition of nitrogen to the soil in addition to nitrogen applied in accordance with current agronomic practices using these dose-response functions. Low to high nitrogen inputs from atmospheric deposition (1 to 7 kg/ha) are expected to increase the average yield of corn by 0.2 to 1.1%, soybean by 0.1 to 0.7%, wheat by 0.1 to 0.4%, and pasture grasses by 1.6 to 14%. Pasture land is predicted to receive the greatest impact because it is usually unfertilized.

  2. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts.

    PubMed

    Tathod, Anup P; Dhepe, Paresh L

    2015-02-01

    Promoter effect of Sn in the PtSn/γ-Al2O3 (AL) and PtSn/C bimetallic catalysts is studied for the conversion of variety of substrates such as, C5 sugars (xylose, arabinose), C6 sugars (glucose, fructose, galactose), hemicelluloses (xylan, arabinogalactan), inulin and agricultural wastes (bagasse, rice husk, wheat straw) into sugar alcohols (sorbitol, mannitol, xylitol, arabitol, galactitol). In all the reactions, PtSn/AL showed enhanced yields of sugar alcohols by 1.5-3 times than Pt/AL. Compared to C, AL supported bimetallic catalysts showed prominent enhancement in the yields of sugar alcohols. Bimetallic catalysts characterized by X-ray diffraction study revealed the stability of catalyst and absence of alloy formation thereby indicating that Pt and Sn are present as individual particles in PtSn/AL. The TEM analysis also confirmed stability of the catalysts and XPS study disclosed formation of electron deficient Sn species which helps in polarizing carbonyl bond to achieve enhanced hydrogenation activity. PMID:25453932

  3. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics.

    PubMed

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K

    2016-01-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications. PMID:27087123

  4. Struvite for composting of agricultural wastes with termite mound: Utilizing the unutilized.

    PubMed

    Karak, Tanmoy; Sonar, Indira; Nath, Jyoti Rani; Paul, Ranjit Kumar; Das, Sampa; Boruah, Romesh Kumar; Dutta, Amrit Kumar; Das, Kuntal

    2015-01-01

    Although, compost is the store house of different plant nutrients, there is a concern for low amount of major nutrients especially nitrogen content in prepared compost. The present study deals with preparation of compost by using agricultural wastes with struvite (MgNH4PO4·6H2O) along with termite mound. Among four composting mixtures, 50kg termite mound and 2.5kg struvite with crop residues (stover of ground nut: 361.65kg; soybean: 354.59kg; potato: 357.67kg and mustard: 373.19kg) and cow dung (84.90kg) formed a good quality compost within 70days of composting having nitrogen, phosphorus and potassium as 21.59, 3.98 and 34.6gkg(-1), respectively. Multivariate analysis of variance revealed significant differences among the composts. The four composts formed two (pit 1, pit 2 and pit 3, pit 4) different groups. Two principal components expressed more than 97% of the total variability. Hierarchical cluster analysis resulted two homogeneous groups of composts. PMID:25836374

  5. Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes.

    PubMed

    Su, Yuh-fan; Cheng, Yu-ling; Shih, Yang-hsin

    2013-11-15

    Activated carbon (AC) and zerovalent iron (ZVI) have been widely used in the adsorption and dehalogenation process, respectively, for the removal of organic compounds in environmental treatments. This study aims to prepare ZVI/AC derived from an agricultural waste, coir pith, through simple one-step pyrolysis. The effect of activation temperature and time on the surface area, iron content, and zerovalent iron ratio of ZVI/AC was systemically investigated. The results indicated that the activation of AC by FeSO4 significantly increased surface area of AC and distributed elemental iron over the AC. The X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA), and X-ray absorption near edge structure (XANES) spectra of ZVI/AC revealed that zerovalent iron was present. As compared to AC without FeSO4 activation, ZVI/AC increased the trichloroethylene removal rate constant by 7 times. The dechlorination ability of ZVI/AC was dominated by the zerovalent iron content. We have shown that lab-made ZVI/AC from coir pith can effectively adsorb and dehalogenate the chlorinated compounds in water. PMID:23994578

  6. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    NASA Astrophysics Data System (ADS)

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-04-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

  7. Enhanced removal of nitrate from water using amine-grafted agricultural wastes.

    PubMed

    Kalaruban, Mahatheva; Loganathan, Paripurnanda; Shim, W G; Kandasamy, Jaya; Ngo, H H; Vigneswaran, Saravanamuthu

    2016-09-15

    Adsorption using low-cost adsorbents is a favourable water treatment method for the removal of water contaminants. In this study the enhanced removal of nitrate, a contaminant at elevated concentration affecting human health and causing eutrophication of water, was tested using chemically modified agricultural wastes as adsorbents. Batch and fixed-bed adsorption studies were performed on corn cob and coconut copra that were surface modified by amine-grafting to increase the surface positive charges. The Langmuir nitrate adsorption capacities (mgN/g) were 49.9 and 59.0 for the amine-grafted (AG) corn cob and coconut copra, respectively at pH6.5 and ionic strength 1×10(-3)M NaCl. These values are higher than those of many commercially available anion exchange resins. Fixed-bed (15-cm height) adsorption capacities (mgN/g) calculated from the breakthrough curves were 15.3 and 18.6 for AG corn cob and AG coconut copra, respectively, for an influent nitrate concentration 20mg N/L at a flow velocity 5m/h. Nitrate adsorption decreased in the presence of sulphate, phosphate and chloride, with sulphate being the most competitive anion. The Thomas model fitted well to the fixed-bed adsorption data from four repeated adsorption/desorption cycles. Plug-flow model fitted well to the data from only the first cycle. PMID:27192699

  8. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    PubMed Central

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-01-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications. PMID:27087123

  9. A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials.

    PubMed

    Orlando, U S; Baes, A U; Nishijima, W; Okada, M

    2002-07-01

    Two lignocellulosic agricultural waste materials (LCM), sugarcane bagasse (BG) and rice hull (RH), were converted into weak-base anion exchanger and evaluated for their exchanger capacity for nitrate. Pure cellulose (PC) and pure alkaline lignin (PL) were also used as reference materials to elucidate possible reactivity in LCM. Epoxy and amino groups were introduced into BG, RH, PC and PL substrates after the reaction with epichlorohydrin and dimethylamine in the presence of pyridine and an organic solvent N,N-dimethylformamide (DMF). Amino group incorporation into cellulose decreased with the presence of water in the reaction mixture and increased with the reaction time and presence of a catalyst (pyridine). The highest maximum nitrate exchange capacity (Qmax) and yields of the prepared exchangers was obtained from PL (1.8 mmol g(-1) and 412.5%), followed by BG (1.41 mmol g(-1) and 300%), PC (1.34 mmol g(-1) and 166%) and RH (1.32 mmol g(-1) and 180%). The proposed synthetic procedure was effective in modifying PL, PC and LCM chemically resulting in a higher yield and nitrate removal capacity. PMID:12094793

  10. Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water.

    PubMed

    Zhuang, Xinshu; Yuan, Zhenhong; Ma, Longlong; Wu, Chuangzhi; Xu, Mingzhong; Xu, Jingliang; Zhu, Shunni; Qi, Wei

    2009-01-01

    We investigated the kinetics of hot liquid water (HLW) hydrolysis over a 60-min period using a self-designed setup. The reaction was performed within the range 160-220 degrees C, under reaction conditions of 4.0 MPa, a 1:20 solid:liquid ratio (g/mL), at 500 rpm stirring speed. Xylan was chosen as a model compound for hemicelluloses, and two kinds of agricultural wastes-rice straw and palm shell-were used as typical feedstocks representative of herbaceous and woody biomasses, respectively. The hydrolysis reactions for the three kinds of materials followed a first-order sequential kinetic model, and the hydrolysis activation energies were 65.58 kJ/mol for xylan, 68.76 kJ/mol for rice straw, and 95.19 kJ/mol for palm shell. The activation energies of sugar degradation were 147.21 kJ/mol for xylan, 47.08 kJ/mol for rice straw and 79.74 kJ/mol for palm shell. These differences may be due to differences in the composition and construction of the three kinds of materials. In order to reduce the decomposition of sugars, the hydrolysis time of biomasses such as rice straw and palm shell should be strictly controlled. PMID:19397989

  11. Biosorption of clofibric acid and carbamazepine in aqueous solution by agricultural waste rice straw.

    PubMed

    Liu, Zhanguang; Zhou, Xuefei; Chen, Xiaohua; Dai, Chaomeng; Zhang, Juan; Zhang, Yalei

    2013-12-01

    Due to their widespread use, clofibric acid (CA) and carbamazepine (CBZ) have been frequently detected simultaneously at relatively high concentrations in aquatic environments. In this study, agricultural waste rice straw was employed as a potentially low-cost, effective and easy-to-operate biosorbent (RSB) to remove CA and CBZ. The adsorption of both pharmaceuticals followed pseudo second-order kinetics, and intraparticle diffusion was an important rate-limiting step. The adsorption isotherms of both drugs were fit well with Freundlich model. The adsorption of CA onto RSB was exothermic and was more likely to be dominated by physical processes, while the adsorption of CBZ was endothermic. Solution pH was determined to be the most important factor for CA adsorption, such that the adsorption capacity of CA onto RSB increased with the decline of solution pH. In the lower range of solution pH below 3.1, the CA removal efficiency was enhanced with the increase of biosorbent dosage. The CBZ removal efficiency was enhanced with the increase of RSB dosage without pH control. The maximum adsorption capacities were 126.3 mg/g for CA and 40.0 mg/g for CBZ. PMID:24649668

  12. Weather based risks and insurances for agricultural production

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2015-04-01

    Extreme weather events such as frost, drought, heat waves and rain storms can have devastating effects on cropping systems. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The principle of return periods or frequencies of natural hazards is adopted in many countries as the basis of eligibility for the compensation of associated losses. For adequate risk management and eligibility, hazard maps for events with a 20-year return period are often used. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The impact of extreme weather events particularly during the sensitive periods of the farming calendar therefore requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event in the farming calendar. Physically based crop models such as REGCROP (Gobin, 2010) assist in understanding the links between different factors causing crop damage. Subsequent examination of the frequency, magnitude and impacts of frost, drought, heat stress and soil moisture stress in relation to the cropping season and crop sensitive stages allows for risk profiles to be confronted with yields, yield losses and insurance claims. The methodology is demonstrated for arable food crops, bio-energy crops and fruit. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. Though average yields have risen continuously due to technological advances, there is no evidence that relative tolerance to adverse weather events has improved. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.

  13. Building a strategy for soil protection at local and regional scale--the case of agricultural wastes landspreading.

    PubMed

    Doula, M K; Sarris, A; Hliaoutakis, A; Kydonakis, A; Papadopoulos, N S; Argyriou, L

    2016-03-01

    Agricultural wastes (AW) are produced in huge quantities worldwide and may cause detrimental effects on environmental quality, affecting soil, water, and air quality. Given the growing soil degradation worldwide, the need for more food of good quality and therefore the intensified agriculture, it is important to develop recycling plans even for those types of treated AW (e.g., composts) that are not considered hazardous. Two strategic approaches for safe and sustainable landspreading of organic wastes are proposed, depending on wastes properties and hazard potential, i.e., an approach appropriate for traditionally used wastes (manures and composts) and another approach for wastes that are potentially hazardous or hazardous and should only be reused under specific restrictions. Both approaches foresee concrete steps, require close cooperation between farmers and local/regional authorities, and are appropriate to ensure environmental sustainability at AW recycling or disposal areas. Desktop and web application tools are also presented that are anticipated to assist authorities in implementing their monitoring strategies. PMID:26846291

  14. Innovative technologies of waste recycling with production of high performance products

    NASA Astrophysics Data System (ADS)

    Gilmanshin, R.; Ferenets, A. V.; Azimov, Yu I.; Galeeva, A. I.; Gilmanshina, S. I.

    2015-06-01

    The innovative ways of recycling wastes as a tool for sustainable development are presented in the article. The technology of the production of a composite material based on the rubber fiber composite waste tire industry is presented. The results of experimental use of the products in the real conditions. The comparative characteristics of the composite material rubber fiber composite are given. The production technology of construction and repairing materials on the basis of foamed glass is presented.

  15. Toward systems-level analysis of agricultural production from crassulacean acid metabolism (CAM): scaling from cell to commercial production.

    PubMed

    Davis, Sarah C; Ming, Ray; LeBauer, David S; Long, Stephen P

    2015-10-01

    Systems-level analyses have become prominent tools for assessing the yield, viability, economic consequences and environmental impacts of agricultural production. Such analyses are well-developed for many commodity crops that are used for food and biofuel, but have not been developed for agricultural production systems based on drought-tolerant plants that use crassulacean acid metabolism (CAM). We review the components of systems-level evaluations, and identify the information available for completing such analyses for CAM cropping systems. Specific needs for developing systems-level evaluations of CAM agricultural production include: improvement of physiological models; assessment of product processing after leaving the farm gate; and application of newly available genetic tools to the optimization of CAM species for commercial production. PMID:26094655

  16. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    NASA Astrophysics Data System (ADS)

    Lin, H.; Jin, Y.; Giglio, L.; Foley, J. A.; Randerson, J. T.

    2010-12-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries and the consistency of emissions reporting among countries. We also evaluated the success of the individual countries in capturing interannual variability and long-term trends in agricultural fire activity. We combined global crop maps with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections. At a global scale, we recommend adding ground nuts, cocoa, cotton and oil palm, and removing potato, oats, pulse other and rye from the UNFCCC list of 14 crops. This leads to an overall increase of 6% of the active fires covered by the reporting system. Optimization led to a different recommended list for Annex 1 countries. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 10% to 20%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico and Nigeria) would capture over 58% of active fires in croplands worldwide. Analyses of interannual trends from the U.S. and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an efficient tool for an independent assessment of current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential for improving the robustness of the next generation inventory

  17. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste. PMID:25188783

  18. Food vs. water: the magnitude and range of global tradeoffs in agricultural production and impact

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Flörke, M.; Mueller, N. D.; Foley, J. A.

    2013-12-01

    Water is integral to agricultural production, and agriculture is by far the largest human use of water, so food security and water sustainability are inexorably linked. When water goes to food production, however, the benefits and costs are not uniformly distributed across the globe. We quantify the magnitude and global range of the multidimensional tradeoffs among food production, water consumption, and water quality impairment. To evaluate the productivity of water consumption in agriculture, we quantified the magnitude and global range of crop water productivity, the amount of food produced per unit of water consumed, for 16 major food crops (Brauman et al., 2013). We now expand on this, contextualizing the impact of high or low water productivity with information about water availability. Using outputs from the WaterGAP3 model (Flörke et al., 2013, Verzano et al. 2012), we map the burden of agricultural water consumption on total water availability. To incorporate impacts of agriculture on water quality, we include areas of excess nutrient application (Mueller et al., 2012). The integrated information about yield, water consumption, water availability, and nutrient application shows that benefits and impacts to water quantity and quality are not evenly distributed. Analogous to previous investigations of 'yield gaps,' which identified areas where biophysical conditions are sufficient for achieving yields higher than those that are attained (Licker et al., 2010), we show that in many places, for the given impacts to water, food production could be increased.

  19. Production of gaseous fuel by pyrolysis of municipal solid waste

    NASA Technical Reports Server (NTRS)

    Crane, T. H.; Ringer, H. N.; Bridges, D. W.

    1975-01-01

    Pilot plant tests were conducted on a simulated solid waste which was a mixture of shredded newspaper, wood waste, polyethylene plastics, crushed glass, steel turnings, and water. Tests were conducted at 1400 F in a lead-bath pyrolyser. Cold feed was deaerated by compression and was dropped onto a moving hearth of molten lead before being transported to a sealed storage container. About 80 percent of the feed's organic content was converted to gaseous products which contain over 90 percent of the potential waste energy; 12 percent was converted to water; and 8 percent remained as partially pyrolyzed char and tars. Nearly half of the carbon in the feed is converted to benzene, toluene and medium-quality fuel gas, a potential credit of over $25 per ton of solid waste. The system was shown to require minimal preprocessing and less sorting then other methods.

  20. FUEL AND ENERGY PRODUCTION BY BIOCONVERSION OF WASTE MATERIALS - STATE-OF-THE-ART

    EPA Science Inventory

    This report is a state-of-the-art summary of biological processes for converting waste cellulosic materials (agricultural, municipal and lumbering wastes) to fuels. It indicates the locations and quantities of suitable wastes and discusses the status of the current processing sch...

  1. From waste to resource: a systems-based approach to sustainable community development through equitable enterprise and agriculturally-derived polymeric composites

    NASA Astrophysics Data System (ADS)

    Teipel, Elisa

    creation of globally viable products from agricultural waste. This researcher seeks to encourage the propagation of CTPs throughout developing communities worldwide, each profiting from its own waste-to-resource value.

  2. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  3. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  4. Agricultural production and water use scenarios in Cyprus under global change

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  5. Enhanced fermentable sugar production from kitchen waste using various pretreatments.

    PubMed

    Hafid, Halimatun Saadiah; Rahman, Nor'Aini Abdul; Md Shah, Umi Kalsom; Baharudin, Azhari Samsu

    2015-06-01

    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production. PMID:25900092

  6. Removal of atrazine from water by low cost adsorbents derived from agricultural and industrial wastes.

    PubMed

    Sharma, Rajendra Kumar; Kumar, Anoop; Joseph, P E

    2008-05-01

    In the present study six adsorbents viz. wood charcoal, fly ash, coconut charcoal, saw dust, coconut fiber and baggasse charcoal were studied for their capacity to remove atrazine from water. The removal efficiency of different adsorbents varied from 76.5% to 97.7% at 0.05 ppm concentration and 78.5% to 95.5% at 0.1 ppm concentration of atrazine solution, which was less than removal efficiency of activated charcoal reported as 98% for atrazine (Adams and Watson, J Environ Eng ASCE 39:327-330, 1996). Wood charcoal was a cheap (Rs 15 kg(-1)) and easily available material in house holds. Since wood charcoal was granular in nature, it could be used for the removal of atrazine from water to the extent of 95.5%-97.7%. Fly ash is a waste product of thermal plant containing 40%-50% silica, 20%-35% alumina, 12%-30% carbon and unburnt minerals having a high pH of 9-10. It is very cheap and abundant material and has comparatively good adsorption capacity. It was found that fly ash effectively removed about 84.1%-88.5% atrazine from water at 0.05 and 0.1 ppm levels. Coconut shell is also waste product. Therefore, both are inexpensive. The removal efficiency of atrazine from water was 92.4%-95.2% by coconut shell charcoal and 85.9%-86.3% by coconut fiber. Sawdust is generally used as domestic fuel and found everywhere. It is also very cheap (Re. 1 kg(-1)). Baggasse charcoal is a waste product of sugar mill and abundant material. Its cost is due to transport expense, which depends upon distance from the sugar mill. The removal efficiency of sawdust and baggasse charcoal was found 78.5-80.5 and 76.5-84.6, respectively. The efficacy of chemically treated adsorbents for the removal of atrazine from water is in the order: wood charcoal > coconut shell charcoal > fly ash > coconut fiber charcoal > baggasse charcoal > sawdust. PMID:18357400

  7. Should pollution reductions count as productivity gains for agriculture?

    SciTech Connect

    Smith, V.K.

    1998-08-01

    Productivity changes have been used to gauge economic performance for at least fifty years. Because productivity measures have been so closely linked to changes in living standards, it is natural to ask whether net increases in marketed outputs are the only things that should count as gains to the standard of living. The articles by Faere and Grosskopf (FG) and Gollop and Swinand (GS) consider several different technical aspects of addressing this question. The purpose of this article is to comment on their proposals. Both articles implicitly accept the notion that changes in commodities that are not available in markets should be considered in evaluating performance. Faere and Grosskopf focus on how they should be valued in the productivity indexes, while Gollop and Swinand define conditions when pollution reductions can be allowed to count. The best overall summary of this comment on both papers repeat an overworked phrase--the devil is in the details.

  8. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    PubMed

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen. PMID:26639411

  9. Nuclear waste glass Product Consistency Test (PCT), Version 3. 0

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.

    1990-11-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Product Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples.

  10. The role of precision agriculture in food production and security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variability in production represents a multidimensional problem. Variability occurs among years induced by weather variation, within fields induced by soil variation, and across years and within fields induced by the legacy of management decisions and their interactions with the weather during the g...

  11. PRODUCTION OF BIODIESEL FROM ALGAE APPLIED TO AGRICULTURAL WASTEWATER TREATMENT

    EPA Science Inventory

    With increasing dependence on foreign oil, escalating energy prices, and persistent air and water pollution associated with energy production, the U.S. is in need of a clean-burning renewable energy sources. Biodiesel is a rapidly expanding alternative fuel that has the po...

  12. Bovine mammary stem cells: Cell biology meets production agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  13. Flue gas desulfurization (FGD) products use on agricultural land

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over half of the electricity used in the U.S. is presently produced by burning coal. Currently 114 m mt/year of coal combustion by products (CCP) are produced when coal is burned for generation of electricity. Only about 43% of CCPs currently produced in the U.S. are utilized. Opportunities should b...

  14. Agricultural water requirements for commercial production of cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  15. Production and Modification of Sophorolipids from Agricultural Feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As petroleum prices and environmental concerns continue to raise, interest in bio-based materials, that may act as substitutes for or additives to currently used products, is becoming increasingly popular. Biosurfactants, particularly glycolipids, are one class of molecule that is receiving added a...

  16. Near-infrared hyperspectral imaging for quality analysis of agricultural and food products

    NASA Astrophysics Data System (ADS)

    Singh, C. B.; Jayas, D. S.; Paliwal, J.; White, N. D. G.

    2010-04-01

    Agricultural and food processing industries are always looking to implement real-time quality monitoring techniques as a part of good manufacturing practices (GMPs) to ensure high-quality and safety of their products. Near-infrared (NIR) hyperspectral imaging is gaining popularity as a powerful non-destructive tool for quality analysis of several agricultural and food products. This technique has the ability to analyse spectral data in a spatially resolved manner (i.e., each pixel in the image has its own spectrum) by applying both conventional image processing and chemometric tools used in spectral analyses. Hyperspectral imaging technique has demonstrated potential in detecting defects and contaminants in meats, fruits, cereals, and processed food products. This paper discusses the methodology of hyperspectral imaging in terms of hardware, software, calibration, data acquisition and compression, and development of prediction and classification algorithms and it presents a thorough review of the current applications of hyperspectral imaging in the analyses of agricultural and food products.

  17. Energy production from forages (or American agriculture-back to the future)

    SciTech Connect

    Vogel, K.P.

    1996-03-01

    At the turn of the century, except for trains and water transport, the transportation and agriculture industries of the US were powered largely by herbaceous biomass, converted into usable energy by draft animals. The haylands and pasturelands now released from herbaceous biomass production were converted to grain production in many cases. This article makes the case for reconverting some of such lands to pasture/grasslands for both land and soil conservation and for use as a sustainable agricultural systems for fuel production from biomass. 21 refs., 4 tabs.

  18. Sod Production and Marketing. Instructional Materials Developed for Iowa Vocational Agriculture Teachers.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    Developed for use by vocational agriculture teachers in Iowa, this instructional unit provides information about the growing and marketing of sod for lawns. This document is one of three manuals making up a single package. (The other two are Christmas Tree Production and Marketing and Sod Production and Marketing). The manual includes an…

  19. A Grape Production Guide for Vocational Agriculture Instructors in Washington. Final Report.

    ERIC Educational Resources Information Center

    Padelford, Stewart L.; Cvancara, Joseph G., Ed.

    This curriculum guide is intended to provide vocational agriculture instructors with an up-to-date resource dealing with grape production in Washington. Addressed in the individual units of the guide are the following topics: the history of grape production; grape types important to Washington; site selection for a vineyard; establishment and…

  20. Nitrogen balance as an indicator of the environmental impact: towards sustainable agricultural production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economics is a principle driver impacting management decisions in agricultural production systems. While increasing concern has focused on preserving the natural resource base to ensure continued support for future production, little emphasis has been placed on examining how drivers alter management...

  1. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    NASA Technical Reports Server (NTRS)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  2. Agricultural production and nutrient runoff in the Corn Belt: Assessing dynamic environmental performance

    EPA Science Inventory

    Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in re...

  3. Toward agricultural sustainability through integrated crop–livestock systems. II. Production responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping and animal production as two separately specialized agricultural systems has led to unacceptable deterioration of the environment due to (i) excessive concentration of nutrients and pathogens in livestock production systems and (ii) loss of natural biodiversity and excess...

  4. Specialty Animal Production Curriculum Guide for Vocational Agriculture/Agribusiness. Curriculum Development. Bulletin No. 1806.

    ERIC Educational Resources Information Center

    University of Southwestern Louisiana, Lafayette.

    This curriculum guide was developed to aid vocational agriculture/agribusiness teachers in Louisiana in improving their instruction and to provide students with the opportunity to obtain skills and knowledge in the production of nontraditional specialty animals. The guide covers the techniques of production, management, care, and marketing of…

  5. Recycling microbial lipid production wastes to cultivate oleaginous yeasts.

    PubMed

    Yang, Xiaobing; Jin, Guojie; Gong, Zhiwei; Shen, Hongwei; Bai, Fengwu; Zhao, Zongbao Kent

    2015-01-01

    To reduce wastes and the costs of microbial lipid production, it is imperative to recycle resources, including spent cell mass, mineral nutrients and water. In the present study, lipid production by the oleaginous yeast Rhodosporidium toruloides was used as a model system to demonstrate resources recycling. It was found that the hydrolysates of spent cell mass were good media to support cell growth of various oleaginous yeasts. When serial repitching experiments were performed using 70g/L glucose and the hydrolysates alone as nutrients, it produced 16.6, 14.6 and 12.9g/L lipids, for three successive cycles, while lipid titre remained almost constant when spent water was also recycled. The cell mass hydrolysates could be used as equivalents to the mixture of yeast extract and peptone to support lipid production from corn stalk hydrolysates. Our results showed efficient recycling of lipid production wastes and should be helpful to advance microbial lipid technology. PMID:25459808

  6. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... application of particular disposal and cleanup regulatory requirements regarding PCB- contaminated building... PCB-contaminated building materials. The Toxic Substances Control Act (TSCA) regulations at 40 CFR 761...-contaminated building material depend on whether the material is classified as PCB bulk product waste or...

  7. Household Hazardous Waste and Automotive Products: A Pennsylvania Survey.

    ERIC Educational Resources Information Center

    Shorten, Charles V.; And Others

    1995-01-01

    A significant fraction of household hazardous waste (HHW) is generated by home mechanics who use such products as motor oil, cleaners and solvents, and batteries. This survey assessed the following aspects: (1) perceptions of their health-related effects; (2) perceptions of their pollution potential; and (3) their use and disposal. (LZ)

  8. Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050.

    PubMed

    Bennetzen, Eskild H; Smith, Pete; Porter, John R

    2016-02-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2 -eq. yr(-1) and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop- and livestock-production, respectively. Except for the energy-use component of farming, emissions from all sources have increased less than agricultural production. Our projected business-as-usual range suggests that emissions may be further decoupled by 20-55% giving absolute agricultural emissions of 8.2-14.5 Pg CO2 -eq. yr(-1) by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food-system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis. PMID:26451699

  9. Forest products decomposition in municipal solid waste landfills

    SciTech Connect

    Barlaz, Morton A. . E-mail: barlaz@eos.ncsu.edu

    2006-07-01

    Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO{sub 2}-neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components.

  10. Hazard map of agricultural products due to typhoons-an example of Bok-choy

    NASA Astrophysics Data System (ADS)

    Lin, Yong-Jun; Ma, Kuo-Chen; Lai, Jihn-Sung; Chang, Tsang-Jung; Tan, Yih-Chi

    2015-04-01

    The torrential rain and strong wind brought by typhoons usually cause huge damages to agricultural products. This study aims at hazard map of agricultural products due to typhoons. The factors affecting the hazard of agricultural products due to typhoons include the duration of flooding, flooding depth, wind speed, and rainfall intensity. High rainfall intensity and high wind speed may knock down the leaves or fruits of the plants. The long-duration of flooding or high flooding depth may chock the plant or rotten the roots. In order to get the information needed for making hazard map due to assumed scenarios, an overland flow simulations is performed for getting the duration of flooding and maximum flooding in the study area. The data of wind speed is obtained from metrological stations. Four levels of hazard are defined due to the characteristic of the chosen agricultural products- Bok-choy (such average height of mature Bok-choy). The final goal of this study is to establish a real-time hazard evaluation system for the specific agricultural products.

  11. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  12. Economical and environmental implications of solid waste compost applications to agricultural fields in Punjab, Pakistan.

    PubMed

    Qazi, M Akram; Akram, M; Ahmad, N; Artiola, Janick F; Tuller, M

    2009-09-01

    Application of municipal solid waste compost (MSWC) to agricultural soils is becoming an increasingly important global practice to enhance and sustain soil organic matter (SOM) and fertility levels. Potential risks associated with heavy metals and phosphorus accumulations in surface soils may be minimized with integrated nutrient management strategies that utilize MSWC together with mineral fertilizers. To explore the economic feasibility of MSWC applications, nutrient management plans were developed for rice-wheat and cotton-wheat cropping systems within the Punjab region of Pakistan. Three-year field trials were conducted to measure yields and to determine the economic benefits using three management strategies and two nutrient doses. Management strategies included the application of mineral fertilizers as the sole nutrient source and application of mineral fertilizers in combination with MSWC with and without pesticide/herbicide treatments. Fertilizer doses were either based on standard N, P and K recommendations or on measured site-specific soil plant available phosphorus (PAP) levels. It was found that combining MSWC and mineral fertilizer applications based on site-specific PAP levels with the use of pesticides and herbicides is an economically and environmentally viable management strategy. Results show that incorporation of MSWC improved soil physical properties such as bulk density and penetration resistance. The PAP levels in the surface layer increased by the end of the trials relative to the initial status. No potential risks of heavy metal (Zn, Cd, Cr, Pb and Ni) accumulation were observed. Treatments comprised of MSWC and mineral fertilizer adjusted to site-specific PAP levels and with common pest management showed highest cumulative yields. A basic economic analysis revealed a significantly higher cumulative net profit and value-to-cost ratio (VCR) for all site-specific doses. PMID:19501499

  13. Lignocellulosic-derived modified agricultural waste: development, characterisation and implementation in sequestering pyridine from aqueous solutions.

    PubMed

    Ahmed, Md Juned K; Ahmaruzzaman, M; Reza, Ruhul A

    2014-08-15

    The development and characterisation of modified agricultural waste (MAW) by H3PO4 activation is addressed in this study for sequestering pyridine from aqueous solutions. The adsorbent is characterised by carbon, hydrogen and nitrogen content of 55.53%, 3.28% and 0.98% respectively. The adsorbent also shows acidic (carboxylic, lactonic, phenolic groups) and basic carbon surface functionalities, functional groups viz. hydroxyl, carboxylic acid and bounded water molecules, BET surface area of 1254.67 m(2) g(-1), heterogeneous surface morphology and graphite like XRD patterns. Adsorption of pyridine is executed to evaluate the adsorptive uptake in batch (q(e)=107.18 mg g(-1)) as well as in column system (q(e)=140.94 mg g(-1)). The adsorption process followed the pseudo-second-order kinetics with the Langmuir isotherm best representing the equilibrium adsorption data. The thermodynamic parameters (ΔH(o)=9.39 kJ mol(-1), ΔG(o)=-5.99 kJ mol(-1), ΔS(o)=50.76 J K(-1) mol(-1)) confirm the endothermic and spontaneous nature of the adsorption process with increase in randomness at solid/solution interface. The adsorption mechanism is governed by electrostatic and π-π dispersive interactions as well as by a two stage diffusion phenomena. Thermally regenerated spent MAW exhibited better adsorption efficiency for five adsorption-desorption cycles than chemically regenerated. The low-cost of MAW (USD 10.714 per kg) and favourable adsorption parameters justifies its use in the adsorptive removal of pyridine. PMID:24910057

  14. Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural wastes.

    PubMed

    Janyasuthiwong, Suthee; Phiri, Sheila M; Kijjanapanich, Pimluck; Rene, Eldon R; Esposito, Giovanni; Lens, Piet N L

    2015-01-01

    The use of agricultural wastes (groundnut shell, orange and banana peel, rice husk, coconut husk and Wawa tree saw dust) as potential cost-effective adsorbent for heavy metal removal from wastewater was evaluated. The effect of pH (2.0-6.0), adsorbent dosage (0.6-2.2 g), contact time (10-130 min) and initial concentration (Pb: 5-105 mg/L, Cu and Zn: 2.5-52.7 mg/L) on the metal removal efficiency and uptake capacity were investigated using response surface methodology to optimize the process conditions. Groundnut shell showed a high potential to remove Cu, Pb and Zn from synthetic wastewater. The highest removal efficiencies with groundnut as the adsorbent were 85% at pH 5.0 for Cu and 98% at pH 3.0 for Pb and Zn. The optimum conditions obtained were 2.5 g adsorbent with 40.7 mg/L Cu at pH 4.4 and 64 min contact time, 2.5 g adsorbent with 196.1 mg/L Pb at pH 5.6 and 60 min contact time and 3.1 g adsorbent with 70.2 mg/L Zn at pH 4.3 and 50 min contact time, for Cu, Pb and Zn, respectively. The regeneration of the groundnut shell was possible for a maximum of three cycles using 0.2 M HCl as the desorbing solution without any significant change in the adsorbing efficiency. PMID:26001037

  15. New Fission-Product Waste Forms: Development and Characterization

    SciTech Connect

    Alexandra Navrotsky

    2010-07-30

    Research performed on the program “New Fission Product Waste Forms: Development and Characterization,” in the last three years has fulfilled the objectives of the proposal which were to 1) establish ceramic waste forms for disposing of Cs, Sr and minor actinides, 2) fully characterize the phase relationships, structures and thermodynamic and kinetic stabilities of promising waste forms, 3) establish a sound technical basis for understanding key waste form properties, such as melting temperatures and aqueous durability, based on an in-depth understanding of waste form structures and thermochemistry, and 4) establish synthesis, testing, scaleup and commercialization routes for wasteform implementation through out in-kind collaborations. In addition, since Cs and Sr form new elements by radioactive decay, the behavior and thermodynamics of waste forms containing different proportions of Cs, Sr and their decay products were discovered using non-radioactive analogues. Collaborations among researchers from three institutions, UC Davis, Sandia National Laboratories, and Shott Inc., were formed to perform the primary work on the program. The unique expertise of each of the members in the areas of waste form development, structure/property relationships, hydrothermal and high temperature synthesis, crystal/glass production, and thermochemistry was critical to program success. In addition, collaborations with the Brigham Young Univeristy, Ben Gurion University, and Los Alamos National Laboratory, were established for standard entropies of ceramic waste forms, sol-gel synthesis, and high temperature synthesis. This work has had a significant impact in a number of areas. First, the studies of the thermodynamic stability of the mineral analogues provided an important technical foundation for assessment the viability of multicomponent oxide phases for Cs and Sr removal. Moreover, the thermodynamic data discovered in this program established information on the reaction

  16. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  17. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity

    USGS Publications Warehouse

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.

    2014-01-01

    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.

  18. The historical impact of climate extremes on global agricultural production and trade

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Pal, I.; Block, P. J.; Lall, U.

    2011-12-01

    How does climate variability at interannual time scales impact the volume and prices of key agricultural products on the global market? Do concurrent climate shocks in major breadbaskets of the world have serious impacts on global stocks and food prices? To what extent may irrigated agriculture or food storage buffer such impacts? Is there evidence of such impacts and/or buffering in the publicly available historical data? This talk explores these questions through empirical data analysis. During the past two years, we have seen drought in China, Europe, and Russia and floods in the United States and Australia. In this study, we examine the relationship between climate and crop yields, focusing on three main grain staples: wheat, rice, and maize. To do this, we use global production, trade, and stock data from the Food and Agricultural Organization and the United States Department of Agriculture for agriculture information and gridded observations of temperature and precipitation from 1960 through 2008. We focus on the impact of climate shocks (extreme temperatures, drought, and floods) on the agricultural production for the top exporting countries and quantify how these shocks propagate through the country's exports, imports, and grain stocks in order to understand the effect climate variability and extremes have on global food security. The ability to forecast these climate shocks at seasonal to longer lead times would significantly improve our ability to cope with perturbations in the global food supply, and we evaluate the ability of current models to produce skillful seasonal forecasts over the major grain producing regions.

  19. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  20. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    NASA Astrophysics Data System (ADS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Havlík, Petr; Herrero, Mario; Schmitz, Christoph; Rolinski, Susanne

    2015-09-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.

  1. Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production

    PubMed Central

    Rosa, Silvina M.; Simonetti, Leandro; Duval, Matías E.; Galantini, Juan A.; Bedano, José C.; Wall, Luis G.; Erijman, Leonardo

    2012-01-01

    The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non

  2. Agricultural conversion reduces biospheric vegetation productivity in the absence of external inputs

    NASA Astrophysics Data System (ADS)

    Smith, W. K.; Cleveland, C. C.; Reed, S.; Running, S. W.

    2013-12-01

    Increasing global population, energy demand, and standard of living has driven humanity to co-opt a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. Here, we explored the impact of global-scale agricultural production on a basic resource fundamental to life on Earth: global terrestrial vegetation growth (net primary production; NPP). First, we compared current rates of agricultural NPP - derived from crop-specific agricultural statistics - with rates of natural NPP - derived from satellite measurements. Next, we disaggregated our results by climate zone, conversion type, crop type, management intensity, and region to identify where agricultural conversion has driven significant degradation of biospheric NPP. At the global-scale, our data indicate that agricultural conversion has resulted in a ~7% reduction in biospheric NPP (ΔNPP), although the impact varied widely at the pixel level. Positive ΔNPP values, signifying an increase in NPP due to agricultural conversion, occurred only in areas receiving significant external water and nutrient inputs (i.e., intensively managed areas). Conversely, negative ΔNPP values, signifying a reduction in NPP due to agricultural conversion, occurred over ~90% of agricultural lands globally, with the largest reductions in areas formerly occupied by tropical forests and savannas (71% and 66% reductions in NPP, respectively). Without new global-scale policies that explicitly consider changes in NPP due to land cover conversion, future demand-driven increases in agricultural output - likely dependent on some level of expansion into natural ecosystems - could continue to drive net declines in biospheric NPP, with potential detrimental consequences for global carbon storage. A spatially explicit estimate of the effect of agricultural land cover conversion on natural primary production for 20 staple crops. ΔNPP was estimated independently for a) irrigated, b) high input, c) low

  3. A Compendium of Transfer Factors for Agricultural and Animal Products

    SciTech Connect

    Staven, Lissa H.; Napier, Bruce A.; Rhoads, Kathleen; Strenge, Dennis L.

    2003-06-02

    Transfer factors are used in radiological risk assessments to estimate the amount of radioactivity that could be present in a food crop or organism based on the calculated concentration in the source medium (i.e., soil or animal feed). By calculating the concentration in the food, the total intake can be estimated and a dose calculated as a result of the annual intake. This report compiles transfer factors for radiological risk assessments, using common food products, including meats, eggs, and plants. Transfer factors used were most often selected from recommended values listed by national or international organizations for use in radiological food chain transport calculations. Several methods of estimation and extrapolation were used for radionuclides not listed in the primary information sources. Tables of transfer factors are listed by element and information source for beef, eggs, fish, fruit, grain, leafy vegetation, milk, poultry, and root vegetables.

  4. Poverty, Income distribution and the analysis of agricultural products.

    PubMed

    Tyler, G J

    1979-01-01

    In spite of the World Bank's well intentioned objective of eliminating rural povery, an application of the most recent social cost-benefit methodology explained in a World Bank research publication will not weed out projects that lead to an increased poverty problem. The project that is examined is the introduction of tractors into Pakistan in the late 1960s. The project appeared to be successful on economic efficiency grounds, increased aggregate output and productivity, but had negative side effects on employment and the incomes of the poorer sections of the population. Projects that are economically efficient, increase the incomes of the poor, and do not significantly increase the incomes of the richer groups are ideal but difficult to achieve. The implication of those projects is a redistribution of internal wealth. PMID:12261246

  5. Climate impacts on agriculture: Implications for forage and rangeland production

    SciTech Connect

    Izaurralde, Roberto C.; Thomson, Allison M.; Morgan, Jack; Fay, Philip; Polley, Wayne; Hatfield, Jerry L.

    2011-04-19

    Projections of temperature and precipitation patterns across the United States during the next 50 years anticipate a 1.5 to 2°C warming and a slight increase in precipitation as a result of global climate change. There have been relatively few studies of climate change impacts on pasture and rangeland (grazingland) species compared to those on crop species, despite the economic and ecological importance of the former. Here we review the literature on pastureland and rangeland species to rising CO2 and climate change (temperature, and precipitation) and discuss plant and management factors likely to influence pastureland and rangeland responses to change (e.g., community composition, plant competition, perennial growth habit, seasonal productivity, and management methods). Overall, the response of pasture species to increased [CO2] is consistent with the general response of C3 and C4 type vegetation, although significant exceptions exist. Both pastureland and rangeland species should exhibit an acceleration of metabolism and development due to earlier onset of spring green-up and longer growing seasons. However, in the studies reviewed here, C3 pasture species increased their photosynthetic rates by up to 40% while C4 species exhibited no increase in photosynthesis. In general, it is expected that increases in [CO2] and precipitation would enhance rangeland net primary production (NPP) while increased air temperatures would either increase or decrease NPP. Much of this uncertainty in response is due to uncertain future projections of precipitation, both globally and regionally. For example, if annual precipitation changes little or declines, rangeland plant response to warming temperatures and rising [CO2] may be neutral or may decline due to increased water stress. This review reveals the need for comprehensive studies of climate change impacts on the pasture ecosystem including grazing regimes, mutualistic relationships (e.g., plant roots-nematodes; N

  6. Validation of an HPLC Analytical Method for Determination of Biogenic Amines in Agricultural Products and Monitoring of Biogenic Amines in Korean Fermented Agricultural Products.

    PubMed

    Yoon, Hyeock; Park, Jung Hyuck; Choi, Ari; Hwang, Han-Joon; Mah, Jae-Hyung

    2015-09-01

    An HPLC analytical method was validated for the quantitative determination of biogenic amines in agricultural products. Four agricultural foods, including apple juice, Juk, corn oil and peanut butter, were selected as food matrices based on their water and fat contents (i.e., non-fatty liquid, non-fatty solid, fatty liquid and fatty solid, respectively). The precision, accuracy, recovery, limit of detection (LOD) and quantification (LOQ) were determined to test the validity of an HPLC procedure for the determination of biogenic amines, including tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine, in each matrix. The LODs and LOQs for the biogenic amines were within the range of 0.01~0.10 mg/kg and 0.02~0.31 mg/kg, respectively. The relative standard deviation (RSD) of intraday for biogenic amine concentrations ranged from 1.86 to 5.95%, whereas the RSD of interday ranged from 2.08 to 5.96%. Of the matrices spiked with biogenic amines, corn oil with tyramine and Juk with putrescine exhibited the least accuracy of 84.85% and recovery rate of 89.63%, respectively, at the lowest concentration (10 mg/kg). Therefore, the validation results fulfilled AOAC criteria and recommendations. Subsequently, the method was applied to the analysis of biogenic amines in fermented agricultural products for a total dietary survey in Korea. Although the results revealed that Korean traditional soy sauce and Doenjang contained relatively high levels of histamine, the amounts are of no concern if these fermented agricultural products serve as condiments. PMID:26483889

  7. Validation of an HPLC Analytical Method for Determination of Biogenic Amines in Agricultural Products and Monitoring of Biogenic Amines in Korean Fermented Agricultural Products

    PubMed Central

    Yoon, Hyeock; Park, Jung Hyuck; Choi, Ari; Hwang, Han-Joon

    2015-01-01

    An HPLC analytical method was validated for the quantitative determination of biogenic amines in agricultural products. Four agricultural foods, including apple juice, Juk, corn oil and peanut butter, were selected as food matrices based on their water and fat contents (i.e., non-fatty liquid, non-fatty solid, fatty liquid and fatty solid, respectively). The precision, accuracy, recovery, limit of detection (LOD) and quantification (LOQ) were determined to test the validity of an HPLC procedure for the determination of biogenic amines, including tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine, in each matrix. The LODs and LOQs for the biogenic amines were within the range of 0.01~0.10 mg/kg and 0.02~0.31 mg/kg, respectively. The relative standard deviation (RSD) of intraday for biogenic amine concentrations ranged from 1.86 to 5.95%, whereas the RSD of interday ranged from 2.08 to 5.96%. Of the matrices spiked with biogenic amines, corn oil with tyramine and Juk with putrescine exhibited the least accuracy of 84.85% and recovery rate of 89.63%, respectively, at the lowest concentration (10 mg/kg). Therefore, the validation results fulfilled AOAC criteria and recommendations. Subsequently, the method was applied to the analysis of biogenic amines in fermented agricultural products for a total dietary survey in Korea. Although the results revealed that Korean traditional soy sauce and Doenjang contained relatively high levels of histamine, the amounts are of no concern if these fermented agricultural products serve as condiments. PMID:26483889

  8. Energy Production from Zoo Animal Wastes

    SciTech Connect

    Klasson, KT

    2003-04-07

    Elephant and rhinoceros dung was used to investigate the feasibility of generating methane from the dung. The Knoxville Zoo produces 30 cubic yards (23 m{sup 3}) of herbivore dung per week and cost of disposal of this dung is $105/week. The majority of this dung originates from the Zoo's elephant and rhinoceros population. The estimated weight of the dung is 20 metric tons per week and the methane production potential determined in experiments was 0.033 L biogas/g dung (0.020 L CH{sub 4}/g dung), and the digestion of elephant dung was enhanced by the addition of ammonium nitrogen. Digestion was better overall at 37 C when compared to digestion at 50 C. Based on the amount of dung generated at the Knoxville Zoo, it is estimated that two standard garden grills could be operated 24 h per day using the gas from a digester treating 20 metric ton herbivore dung per week.

  9. Neurotoxin Waste from Drawing Product Through the Vial Stopper

    PubMed Central

    2014-01-01

    Botulinum toxin injection is the most common cosmetic surgery procedure in the world. Current technique requires reconstitution that can produce product waste resulting in significant loss of profit as well as inaccuracy of actual units injected. By random sampling of “used empty” vials, it was shown that an average of 5 units are potentially wasted by the conventional methods of drawing up the product with a needle through the stopper of an inverted vial. Depending on the pricing and dilution of the product, this can result in a profit loss of $50 to $60 per vial, which can quickly add up to tens of thousands of dollars in a busy practice. Removing the stopper, tilting the vial, and aspirating the last residual with a small gauge needle can result in significant savings. Finally, this residual was calculated at a five-percent loss, which results in an inaccuracy of actual units delivered. PMID:25013537

  10. High grade abrasive product development from virtified industrial waste

    SciTech Connect

    Blume, R.D.; Drummond, C.H. III; Sarko, A.

    1996-12-31

    Recent developments in environmental legislation, as well as economic incentives such as the increasing cost of landfilling, have led to a paradigm shift away from encapsulation of hazardous waste. The current focus is recycling and product development utilizing industrial waste as raw materials. Current research has targeted the development of high grade abrasive (Vickers hardness (VHN) > 1000 kgF/mm{sup 2}) for blasting and buffing and polishing applications. In addition to product specific physical properties, the developed formulations must also have processing characteristics necessary for vitrification using a high temperature product burner developed by Seiler Pollution Control Systems, as well as the necessary resistance to leaching of EPA regulated hazardous components. Current work has led to the development of formulations with high VHN (950 kgF/mm{sup 2}), acceptable chemical durability, and high mechanical durability utilizing electric arc furnace dust (KO61) and foundry sand as the major components.

  11. Extraction of cellulose from agricultural waste using Montmorillonite K-10/LiOH and its conversion to renewable energy: Biofuel by using Myrothecium gramineum.

    PubMed

    Das, Archana M; Hazarika, Manash P; Goswami, Monmi; Yadav, Archana; Khound, Pradip

    2016-05-01

    Cellulose was extracted from agricultural waste like Rice Husk (RH) a renewable resource of India as well as in the World. Cellulose was isolated from rice husk (RH) using eco-friendly method with Montmorillonite K-10/LiOH solution and bleaching with 2% H2O2. The reaction parameters like time, temperature, catalyst, acid and alkali were studied to evaluate the optimum reaction conditions 6h, 80°C, 20% maleic acid and 10% LiOH (in H2O) for time, temperature, acid and alkali, respectively. Renewable energy, biofuel from agricultural waste using Myrothecium gramineum was also investigated herein. Cellulose was converted to glucose by using acid hydrolysis and the optimum reaction conditions were 140°C for 60min. in presence of H2SO4 (5% v/v). It has been recognized significantly as potential sustainable sources of sugars for fermentation to bioethanol. So, our effort was given to obtain bioethanol from RH using new and novel renewable fungal strain M. gramineum. M. gramineum was isolated from acacia plant available in NE region of India. The results revealed that % yields of cellulose, glucose and bioethanol were 68%, 60% and 25%, respectively. Moreover, the bioethanol was compared with the standard ethanol (Laboratory grade) and also the ethanol produced from the known microb Aspergillus niger. The synthesized products were characterized with the help of analytical techniques like FT-IR, GC, TGA, DSC and XRD. PMID:26876992

  12. Oil cakes - a by-product of agriculture industry as a fortificant in bakery products.

    PubMed

    Behera, Satyabadi; Indumathi, K; Mahadevamma, S; Sudha, M L

    2013-11-01

    Groundnut cake (GNC) and soybean cake (SBC) by-product of agriculture industry had protein and protein digestibility in the range of 42.7-50.5 and 71.3-76.8%, respectively. Polyphenols present in GNC and SBC were cholorogenic acid, syringic acid and p-coumaric acid. The number of bands separated in soybean meal was greater than the bands observed in GNC flour as seen in SDS-PAGE pattern, respectively. SEM of groundnut flour showed distension of protein bodies due to roasting of the oil cakes. The water absorption of wheat flour GNC blends decreased from 59.2 to 57.3% and increased in wheat flour SBC blends from 59.2 to 68.3% with an increase in oil cake from 0 to 20%. With increase in either GNC or SBC, the biscuits became harder. Addition of glycerol monostearate and sodium stearoyl lactylate in combination with 20% blend of GNC/SBC decreased the breaking strength values and increased the sensory parameters of the biscuits. Nutritionally rich biscuits were thus prepared by incorporating GNC/SBC. PMID:23742142

  13. Nuclear waste glass product consistency test (PCT), Version 5. 0

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.; Waters, B.J.

    1992-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Produce Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 5.0 of the PCT procedure is attached.

  14. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques

    SciTech Connect

    Lu Xiaowei; Jordan, Beth; Berge, Nicole D.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from

  15. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  16. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    PubMed

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed. PMID:25163531

  17. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.

    PubMed

    Alibardi, Luca; Cossu, Raffaello

    2016-01-01

    Organic waste from municipalities, food waste and agro-industrial residues are ideal feedstocks for use in biological conversion processes in biorefinery chains, representing biodegradable materials containing a series of substances belonging to the three main groups of the organic matter: carbohydrates, proteins and lipids. Biological hydrogen production by dark fermentation may assume a central role in the biorefinery concept, representing an up-front treatment for organic waste capable of hydrolysing complex organics and producing biohydrogen. This research study was aimed at evaluating the effects of carbohydrate, protein and lipid content of organic waste on hydrogen yields, volatile fatty acid production and carbon-fate. Biogas and hydrogen productions were linearly correlated to carbohydrate content of substrates while proteins and lipids failed to produce significant contributions. Chemical composition also produced effects on the final products of dark fermentation. Acetic and butyric acids were the main fermentation products, with their ratio proving to correlate with carbohydrate and protein content. The results obtained in this research study enhance the understanding of data variability on hydrogen yields from organic waste. Detailed information on waste composition and chemical characterisation are essential to clearly identify the potential performances of the dark fermentation process. PMID:26254676

  18. Microbial production of polyhydroxyalkanoates by bacteria isolated from oil wastes.

    PubMed

    Wong, A L; Chua, H; Yu, P H

    2000-01-01

    A Gram-positive coccus-shaped bacterium capable of synthesizing higher relative molecular weight (M(r)) poly-hydroxybutyrate (PHB) was isolated from sesame oil and identified as Staphylococcus epidermidis (by Microbial ID, Inc., Newark, NJ). The experiment was conducted by shake flask fermentation culture using media containing fructose. Cell growth up to a dry mass of 2.5 g/L and PHB accumulation up to 15.02% of cell dry wt was observed. Apart from using single carbohydrate as a sole carbon source, various industrial food wastes including sesame oil, ice cream, malt, and soya wastes were investigated as nutrients for S. epidermidis to reduce the cost of the carbon source. As a result, we found that by using malt wastes as nutrient for cell growth, PHB accumulation of S. epidermidis was much better than using other wastes as nutrient source. The final dried cell mass and PHB production using malt wastes were 1.76 g/L and 6.93% polymer/cells (grams/gram), and 3.5 g/L and 3.31% polymer/cells (grams/gram) in shake flask culture and in fermentor culture, respectively. The bacterial polymer was characterized by 1H-nuclear magnetic resonance (NMR), 13C-NMR, Fourier transform infrared, and differential scanning calorimetry. The results show that with different industrial food wastes as carbon and energy sources, the same biopolymer (PHB) was obtained. However, the use of sesame oil as the carbon source resulted in the accumulation of PHB with a higher melting point than that produced from other food wastes as carbon sources by this organism under similar experimental conditions. PMID:10849842

  19. Ergonomic risks and musculoskeletal disorders in production agriculture: recommendations for effective research to practice.

    PubMed

    Kirkhorn, Steven R; Earle-Richardson, Giulia; Banks, R J

    2010-07-01

    Musculoskeletal disorders (MSDs) are increasingly recognized as a significant hazard of agricultural occupation. In agricultural jobs with significant physical labor, MSDs are typically the most frequently reported injury. Although not as lethal as tractor roll-overs, MSDs can result in disability, lost work time, and increased production costs. MSDs increase production costs as a result of worker absence, medical and insurance costs, decreased work capacity, and loss of employees to turnover and competition from other less physically demanding industries. This paper will provide an overview of what is currently known about MSDs in agriculture, including high-risk commodities, tasks and work practices, and the related regulatory factors and workers' compensation costs. As agricultural production practices evolve, the types of MSDs also change, as do ergonomic risk factors. One example is the previous higher rates of knee and hip arthritis identified in farmers in stanchion dairies evolving into upper extremity tendonitis, arthritis, and carpal tunnel syndrome now found in milking technicians in dairy milking parlors. This paper summarizes the presentation, "Musculoskeletal Disorders in Labor-Intensive Operations," at the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas. The primary focus of the paper is to address current research on ergonomic solutions for MSDs in agriculture. These include improved tools, carts or equipment, as well as work practices. One of the key challenges in this area pertains to measurement, due to the fact that musculoskeletal strain is a chronic condition that can come and go, with self-reported pain as its only indicator. Alternative measurement methods will be discussed. Finally, the implementation of research into practice is reviewed, with an emphasis on best

  20. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  1. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Astrophysics Data System (ADS)

    Venuto, Charles

    1987-05-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  2. 90074: Nuclear weapons production complex: Environmental compliance and waste management

    SciTech Connect

    Holt, M.

    1997-01-17

    The aging nuclear weapons production complex, managed by the Department of Energy (DOE), faces enormous environmental and waste management problems. Several hundred billion dollars may be needed to clean up leaking waste pits, groundwater contamination, growing accumulations of radioactive - waste, and uncontrolled liquid discharges at DOE facilities. DOE`s cleanup program is carried out by the Office of Environmental Management (EM). Cleanup funding escalated rapidly after the end of the Cold War, although it has plateaued at about $6 billion per year under the Clinton Administration. Congress has expressed growing concern about the rising costs of DOE`s cleanup program. A major cost driver has been environmental regulations and cleanup schedules that the Department is required to meet, although DOE also has been accused of poorly managing many projects and allowing costs to escalate unnecessarily. DOE`s environmental program consists of a variety of major activities, including environmental restoration, waste management, development of new cleanup technology, and stabilization of surplus nuclear material and facilities. Environmental restoration involves cleanup and mitigation of past environmental contamination and uncontained waste sites, including decontamination and decommissioning of permanently closed DOE facilities.

  3. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    NASA Astrophysics Data System (ADS)

    Johnston, Matt; Licker, R.; Foley, J.; Holloway, T.; Mueller, N. D.; Barford, C.; Kucharik, C.

    2011-07-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap—essentially improving global yields to median levels—the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike—helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  4. Drivers Impacting the Adoption of Sustainable Agricultural Management Practices and Production Systems of the Northeast and Southeast U.S

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production responds to economic, social, environmental, and technological drivers operating both internal and external to the production system. These drivers influence producers’ decision making processes, and act to shape the individual production systems through modification of produ...

  5. Use of fibre wastes from production of acetate fibres

    SciTech Connect

    Askarov, M.I.; Tashpulatova, A.B.

    1995-07-01

    The rational use of production wastes is an important part of the Fergana Chemical Fibre Plant in Russia. This recycling reduces the negative effect of the technological process on the environment, increases the economy of production, and produces additional consumer goods. Consumer goods began to be produced at the plant in 1978 with processing of amide-acetate textured fibres into yarn for hand knitting. The need to increase the volumes and expand the variety of goods for the market predetermined an important increase in production of this product. Production of consumer goods has increased since 1990, and both fibre wastes and untreated low-grade fibres and filaments have been used as the starting material. Technological processes for processing wastes and low-grade figured, textured polyamide-acetate fibres into knitting yarn, haberdashery cord, and finishing tape and fringe were created and introduced in subsequent years. The primary technological formulation for production of these materials is well known and is used in light industry. However, production of each type of product in the plant was preceded by research related to selection of the optimum linear density of the filaments used, composition of blends, and the structure of figured fibres, as well as the concrete technological parameters and operating regimes of the equipment to produce articles of the required quality. Development and testing of new decorative textiles are continuing. Low grade and nonstandard acetate semifinished fibre from spinning machines and low grade, bulk dyed acetate fibres have been selected as the raw material for fabrication of these articles.

  6. Life Cycle Assessment of Switchgrass Cellulosic Ethanol Production in the Wisconsin and Michigan Agricultural Contexts

    SciTech Connect

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.; Cronin, Keith R.; Meier, Paul J.; Runge, Troy M.; Zhang, Xuesong

    2015-04-25

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combined with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.

  7. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    PubMed

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology. PMID:25022835

  8. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  9. Biodiesel production from waste frying oil using waste animal bone and solar heat.

    PubMed

    Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino

    2016-01-01

    A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. PMID:25708407

  10. [Effects of composting with earthworm on the chemical and biological properties of agricultural organic wastes: a principal component analysis].

    PubMed

    Liu, Ting; Ren, Zong-Ling; Zhang, Chi; Chen, Xu-Fei; Zhou, Bo; Dai, Jun

    2012-03-01

    Taking mixed agricultural organic wastes cattle manure and rice straw (C:N = 28.7:1) as the substrate of earthworm Eisenia foetida, an experiment was conducted to study the effects of earthworm on the changes of the chemical and biological properties of wastes during vermi-composting. After 30 days of vermi-composting, the substrate' s pH and C/N decreased while the total P content increased significantly, and the total N, available N, dissolved organic carbon, available P content, microbial biomass-C, respiration rate, and microbial quotient increased by 8.5% , 2.6%, 1.8%, 6.3%, 21.2%, 4.4%, and 30.0% whereas the organic matter content and metabolic quotient decreased by 5.0% and 21.9%, respectively, as compared with natural composting. Vermi-composting made the substrate have higher invertase, acid phosphatase, and alkaline phosphatase activities but lower catalase and urease activities. Principal component analysis and discriminant analysis confirmed the significant differences in the substrate' s chemical and biological properties between vermi-composting and natural composting. This study indicated that vermi-composting was superior to natural composting, which could obviously improve the chemical and biological properties of composted organic materials, being a high efficient technology for the management of agricultural organic wastes. PMID:22720625

  11. Impact of land-use induced changes on agricultural productivity in the Huang-Huai-Hai River Basin

    NASA Astrophysics Data System (ADS)

    Jin, Gui; Li, Zhaohua; Wang, Zhan; Chu, Xi; Li, Zhihui

    The water resource allocation is greatly influenced by the land use, agricultural productivity and farmers' income. Therefore analyzing the impacts of land use changes on agricultural productivity and subsequent effects on farmer's income is an important basis of the further study on the management mechanism and optimal water resource allocation. Taking the Huang-Huai-Hai River Basin as the study area, this study examined the impacts of conversion from cultivated land to built-up land from 2000-2005 and 2005-2008. Then the agricultural productivity was estimated with the Estimation System for Agricultural Productivity model, and the changes in agricultural productivity caused by land conversion were analyzed. Thereafter, Simultaneous Equations Model was used to analyze the impacts of the conversion from cultivated land to built-up land on the agricultural productivity and subsequent effects on farmer's income. The results showed that: (1) The agricultural productivity was stable during the whole period, reaching about 2.84 ton/ha, 3.09 ton/ha and 2.80 ton/ha on average in 2000, 2005 and 2008, respectively, but the conversion from cultivated land to built-up land had important influence on the spatial pattern of agricultural productivity. (2) The land productivity, total power of agricultural machinery and the conversion from cultivated land to built-up land had an overall positive effect on the agricultural productivity. (3) The agricultural productivity and gross domestic product had positive influence on the farmers' income, while the cultivated land area per capita and percentage of farming employee had negative influence, indicating that the farmer's income was mainly contributed by non-agricultural income. These results in this study showed that optimal land use management can play an important role in promoting virtuous ecosystem cycle and sustainable socioeconomic development, which can also lay an important foundation for further research on the optimal

  12. Production of a High-Level Waste Glass from Hanford Waste Samples

    SciTech Connect

    Crawford, C.L.; Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP).

  13. Problem area 1 effective water management in agriculture-Product area accomplishments-FY 11 - FY14

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service National Program 211 is composed of four components or problem areas. Problem Area 1, Effective Water Management in Agriculture, focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) I...

  14. On-line measurements of emissions and atmospheric fate of compounds from agricultural waste management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural emissions impact air quality on a local and regional basis. Research on the emissions and reduction of greenhouse gases from agriculture has become commonplace due to concerns about climate but other chemical compounds also impact air quality. These include compounds that are photochemi...

  15. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disposal of PCB bulk product waste..., AND USE PROHIBITIONS Storage and Disposal § 761.62 Disposal of PCB bulk product waste. PCB bulk product waste shall be disposed of in accordance with paragraph (a), (b), or (c) of this section....

  16. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disposal of PCB bulk product waste..., AND USE PROHIBITIONS Storage and Disposal § 761.62 Disposal of PCB bulk product waste. PCB bulk product waste shall be disposed of in accordance with paragraph (a), (b), or (c) of this section....

  17. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disposal of PCB bulk product waste..., AND USE PROHIBITIONS Storage and Disposal § 761.62 Disposal of PCB bulk product waste. PCB bulk product waste shall be disposed of in accordance with paragraph (a), (b), or (c) of this section....

  18. Production of bioethanol and biodiesel using instant noodle waste.

    PubMed

    Yang, Xiaoguang; Lee, Ja Hyun; Yoo, Hah Young; Shin, Hyun Yong; Thapa, Laxmi Prasad; Park, Chulhwan; Kim, Seung Wook

    2014-08-01

    Instant noodle manufacturing waste was used as feedstock to convert it into two products, bioethanol and biodiesel. The raw material was pretreated to separate it into two potential feedstocks, starch residues and palm oil, for conversion to bioethanol and biodiesel, respectively. For the production of bioethanol, starch residues were converted into glucose by α-amylase and glucoamylase. To investigate the saccharification process of the pretreated starch residues, the optimal pretreatment conditions were determined. The bioethanol conversion reached 98.5 % of the theoretical maximum by Saccharomyces cerevisiae K35 fermentation after saccharification under optimized pretreatment conditions. Moreover, palm oil, isolated from the instant noodle waste, was converted into valuable biodiesel by use of immobilized lipase (Novozym 435). The effects of four categories of alcohol, oil-to-methanol ratio, reaction time, lipase concentration and water content on the conversion process were investigated. The maximum biodiesel conversion was 95.4 %. PMID:24515118

  19. Production of ultrahigh purity copper using waste copper nitrate solution.

    PubMed

    Choi, J Y; Kim, D S

    2003-04-25

    The production of ultrahigh purity copper (99.9999%) by electrolysis in the presence of a cementation barrier has been attempted employing a waste nitric copper etching solution as the electrolyte. The amount of copper deposited on the cathode increased almost linearly with electrolysis time and the purity of copper was observed to increase as the electrolyte concentration was increased. At some point, however, as the electrolyte concentration increased, the purity of copper decreased slightly. As the total surface area of cementation barrier increased, the purity of product increased. The electrolyte temperature should be maintained below 35 degrees C in the range of investigated electrolysis conditions to obtain the ultrahigh purity copper. Considering that several industrial waste solutions contain valuable metallic components the result of present study may support a claim that electrowinning is a very desirable process for their treatment and recovery. PMID:12719148

  20. Rainfed Areas and Animal Agriculture in Asia: The Wanting Agenda for Transforming Productivity Growth and Rural Poverty

    PubMed Central

    Devendra, C.

    2012-01-01

    The importance of rainfed areas and animal agriculture on productivity enhancement and food security for economic rural growth in Asia is discussed in the context of opportunities for increasing potential contribution from them. The extent of the rainfed area of about 223 million hectares and the biophysical attributes are described. They have been variously referred to inter alia as fragile, marginal, dry, waste, problem, threatened, range, less favoured, low potential lands, forests and woodlands, including lowlands and uplands. Of these, the terms less favoured areas (LFAs), and low or high potential are quite widely used. The LFAs are characterised by four key features: i) very variable biophysical elements, notably poor soil quality, rainfall, length of growing season and dry periods, ii) extreme poverty and very poor people who continuously face hunger and vulnerability, iii) presence of large populations of ruminant animals (buffaloes, cattle, goats and sheep), and iv) have had minimum development attention and an unfinished wanting agenda. The rainfed humid/sub-humid areas found mainly in South East Asia (99 million ha), and arid/semi-arid tropical systems found in South Asia (116 million ha) are priority agro-ecological zones (AEZs). In India for example, the ecosystem occupies 68% of the total cultivated area and supports 40% of the human and 65% of the livestock populations. The area also produces 4% of food requirements. The biophysical and typical household characteristics, agricultural diversification, patterns of mixed farming and cropping systems are also described. Concerning animals, their role and economic importance, relevance of ownership, nomadic movements, and more importantly their potential value as the entry point for the development of LFAs is discussed. Two examples of demonstrated success concern increasing buffalo production for milk and their expanded use in semi-arid AEZs in India, and the integration of cattle and goats with oil